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RESUMO

Um aspecto crucial da geração de energia solar, particularmente em locais intertrop-

icais, é a variabilidade local das nuvens. Imagens de satélite não possuem resolução temporal

necessária para a previsão imediata dos impactos em usinas solares, o que torna o monitora-

mento por câmeras terrestres essencial. A detecção e monitoramento de nuvens apresentam

desafios significativos devido à natureza dinâmica das formas das nuvens, às limitações dos

dispositivos de câmeras lineares e autoajustáveis e às distorções introduzidas por lentes olho-

de-peixe. Este trabalho é dedicado ao avanço das técnicas de segmentação de nuvens com o

objetivo final de prever os impactos das nuvens na geração de energia solar, que variam de

acordo com a climatologia e geografia únicas de cada local. Utilizando câmeras baseadas em

Raspberry-Pi apontadas para o horizonte, na região de Florianópolis, Brasil, este estudo supera

as limitações das lentes olho-de-peixe, possibilitando a observação da distribuição vertical das

nuvens. Uma análise extensiva de imagens de nuvens levou à adoção de métodos de apren-

dizado profundo como U-net, HRNet e Detectron, com aprendizado por transferência aplicado

a partir de pesos treinados no conjunto de dados ”2012 ILSVRC ImageNet” e configurações

arquitetônicas como ResNet, EfficientNet e RCNN. O Experimento 28, utilizando uma arquite-

tura U-net com ResNet 18, alcançou um IoU médio de 0,564, demonstrando resultados promis-

sores na classificação de nuvens em uma resolução mais baixa. O Experimento 44 melhorou

ainda mais o desempenho, superando outros modelos com um IoU médio de 0,594, destacando

a eficácia de uma abordagem arquitetônica mais simples, porém robusta. Apesar dos desafios

impostos pela variabilidade na frequência das nuvens e condições atmosféricas, esses modelos

mostraram potencial significativo na classificação automatizada de nuvens, levando a previsões

mais precisas para os impactos na energia solar. Os resultados sublinham a necessidade de

desenvolvimento contı́nuo em métodos de segmentação e ajuste de modelos para lidar com a

complexidade dos padrões das nuvens. Embora a identificação de nuvens permaneça uma tarefa

complexa, esta pesquisa demonstrou que modelos de aprendizado profundo mais simples muitas

vezes superam os mais complexos, e a augmentação de dados desempenha um papel crı́tico no

aumento da robustez e generalização do modelo. No entanto, a variabilidade nas frequências

dos tipos de nuvens, condições atmosféricas e época do ano apresenta desafios significativos

para a comparação direta com a literatura existente. As experiências deste estudo revelaram

que, enquanto os modelos CNN convencionais oferecem desempenho confiável, há uma neces-

sidade premente de avanços para lidar de forma eficaz com classes de nuvens mais intrincadas.



Os achados reforçam a necessidade de experimentação contı́nua no campo da segmentação de

imagens e o desenvolvimento de modelos sofisticados e contextualmente conscientes para en-

frentar a natureza multifacetada das tarefas de segmentação de nuvens.

Palavras-chave: Segmentação de Nuvens; Energia Solar; Aprendizado Profundo; Imagens do

Horizonte.



RESUMO EXPANDIDO

Introdução

A presença de nuvens tem um efeito significativo nas usinas fotovoltaicas, causando variabil-

idade na energia solar que atinge a superfı́cie, e consequentemente, na geração de energia

elétrica. A detecção de nuvens e a estimativa de seus impactos nas usinas solares são tarefas de-

safiadoras, dada a metamorfose contı́nua das nuvens, a escala logarı́tmica de sua luminosidade

e a variedade e dinâmica de suas formas, sempre associadas à geografia local e às condições

climáticas atuais. Os diferentes tipos de nuvens e altitudes também têm efeitos distintos na dis-

persão, reflexão e absorção da energia solar, influenciando a produção de energia. As variações

na espessura, forma e volume das nuvens podem causar mudanças repentinas na cobertura do

céu, resultando em alterações significativas na radiação ao longo do dia.

A Organização Meteorológica Mundial (OMM) classifica as nuvens pela forma, agru-

pamento e altura da base. A estimativa do tipo e cobertura das nuvens é feita por um operador

sinótico. O desenvolvimento de sistemas e métodos de observação automatizados ainda é um

assunto em aberto, especialmente em termos de substituição da percepção altamente desen-

volvida de um classificador humano.

Sistemas comerciais automatizados, como o Whole Sky Imager (WSI), estão disponı́veis

para identificação de nuvens, avaliando seu impacto na geração de energia. No entanto, esses

sistemas apresentam problemas ao lidar com imagens usadas para previsões imediatas. As ima-

gens do WSI mostram em detalhes apenas as nuvens que estão na posição do zênite, mas perto

do horizonte, as nuvens parecem comprimidas e a imagem degrada nos detalhes.

Este estudo visa fornecer informações fundamentais sobre as categorias amplas de

nuvens, que podem ser refinadas posteriormente para abordar tipos especı́ficos de nuvens em

detalhes. Devido à rara presença de nuvens do tipo Cumulonimbusform na região, esta categoria

foi removida do conjunto de dados criado.

A identificação e classificação de nuvens perto do horizonte e a previsão de seu cam-

inho em direção a uma instalação fotovoltaica ainda é um campo de pesquisa aberto. Out-

ras configurações de métodos combinados com a câmera, bem como dados reais orientados

por aprendizado de máquina, também podem ser explorados. O aprendizado de máquina tem

avançado nos últimos anos quando se trata de previsão de irradiação solar.

Diante dos desafios e lacunas nas metodologias atuais para classificação de nuvens

e previsão de irradiação, este trabalho visa explorar e avaliar metodologias existentes para
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segmentação de nuvens. O objetivo é identificar uma abordagem confiável para a classificação

de tipos de nuvens e avaliar a viabilidade de automatizar esse processo usando técnicas de

aprendizado de máquina. A pesquisa começa com uma revisão de estudos anteriores sobre o

assunto, conforme delineado na seção de revisão da literatura.

O estudo avança ao criticar o uso de lentes olho-de-peixe para capturar imagens de

nuvens, que se mostraram subótimas para discernir a distribuição vertical das camadas de nu-

vens. Como alternativa, foram desenvolvidos dois sistemas baseados no modelo Raspberry PI

2, oferecendo qualidade de imagem comparável aos Whole Sky Imagers (WSIs), orientados na

direção predominante do movimento das nuvens, estabelecida com a experiência de meteorol-

ogistas locais.

Objetivos

Os objetivos dessa dissertação de mestrado são:

• Coletar imagens terrestres de nuvens por meio de sistemas de computador de placa única

com câmeras apontando para o horizonte.

• Criar um conjunto de dados rotulado das imagens capturadas.

• Desenvolver e comparar modelos de aprendizado de máquina para classificação de nuvens

usando imagens terrestres.

• Analisar e realizar experimentos com modelos atuais de aprendizado de máquina para

segmentação de nuvem.

• Criar um conjunto de dados rotulado de imagens de nuvens capturadas no solo com

câmeras apontadas para o horizonte.

• Desenvolver e comparar modelos de aprendizado de máquina para classificação de nuvens

usando imagens terrestres.

• Analisar e experimentar modelos atuais de aprendizado de máquina para segmentação.

Metodologia

Imagens de nuvens foram capturadas através do sistema Nimbus Gazer. Três versões do con-
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junto de dados foram criados para os experimentos realizados, com 450, 1000 e 1500 imagens,

respectivamente. As principais métricas utilizadas para validação foram a Intersection over

Union (IoU), precision e recall. Inicialmente apenas 25 experimentos foram realizados para dar

direcionamento à pesquisa e ajudar a levantar pontos de melhoria para os próximos experimen-

tos. A segunda bateria de experimentos foi composta por um total de 9 experimentos utilizando

técnicas mais aprimoradas que potencialmente levariam a um resultado melhor que a versão

anterior de experimentos. A última bateria de experimentos foi composta por 29 experimen-

tos, combinando todo o aprendizado adquirido nas experimentações anteriores e exaustando

configurações de cada experimento realizado.

Resultados e discussão

Esta pesquisa ajudou a entender melhor quais técnicas funcionam melhor para a segmentação

de nuvens. Também é evidente que o desbalanceamento de dados está afetando o desempenho

de todos os modelos desenvolvidos. No geral, enquanto modelos CNN convencionais, par-

ticularmente quando combinados com U-net, ofereceram um desempenho mais confiável em

vários tipos de nuvens, eles também exigem aprimoramentos adicionais para as classes mais

complexas de nuvens Cirriformes e Cumuliformes. O modelo HRNet parece mais promissor,

pois trabalha com diferentes resoluções, levando a uma segmentação mais refinada, no nı́vel do

pixel. Mesmo assim, alguns resultados parecem indicar que um modelo tão complexo não é

necessário para detectar as nuvens mais predominantes no céu. Um modelo mais simples, us-

ando U-net com Resnet 18, conseguiu alcançar resultados satisfatórios, usando uma resolução

muito mais baixa. Isso pode ser útil no futuro, já que o objetivo principal é usar tais modelos

para prever o movimento das nuvens e prever o impacto que terão na geração de energia solar.

A lista abaixo sumariza os principais aprendizados com essa pesquisa.

• Arquiteturas de modelo mais simples frequentemente superam as mais complexas para

tarefas de segmentação de nuvens.

• Modelos de maior resolução podem levar a uma super-segmentação devido às limitações

de precisão das anotações ground-truth.

• A classe Árvore consistentemente apresenta altas métricas de desempenho, indicando um

potencial viés na avaliação do modelo.



12

• Augmentação de dados é fundamental para a robustez do modelo, mas precisa ser cuida-

dosamente adaptado para evitar generalização subótima.

• Existe um compromisso entre a sensibilidade a classes especı́ficas de nuvens e o desem-

penho geral do modelo em vários tipos.

• Modelos Transformers, apesar de suas fortes capacidades contextuais globais, não su-

peram significativamente os modelos baseados em CNN para padrões complexos de nu-

vens.

• A super-representação de certas classes de nuvens em conjuntos de dados apresenta de-

safios para o treinamento e generalização do modelo.

• Validação detalhada é necessária para garantir que os resultados de segmentação repre-

sentem as nuvens com mais precisão do que as anotações ground-truth.

• Pesquisas futuras devem considerar modelos hı́bridos, augmentação de dados avançada e

manejo eficaz em relação ao desbalanceamento de classe.

• Augmentação de dados, embora benéfico, não pode mitigar completamente os efeitos da

super-representação de classe.

• O alto desempenho de classes facilmente segmentáveis no conjunto de dados pode não se

traduzir em uma melhoria da segmentação para tipos complexos de nuvens.

Em comparação com os experimentos iniciais realizados, pode-se observar uma mel-

horia nas métricas gerais e na qualidade da segmentação. Os resultados obtidos levantaram

questões sobre por que um modelo mais simples supera um mais complexo, o que leva à ne-

cessidade de investigações futuras. Seis causas potenciais foram identificadas para exploração

futura: 1) Overfitting, pois modelos complexos com mais parâmetros são propensos a overfit-

ting, enquanto modelos mais simples podem generalizar melhor; 2) Complexidade apropriada,

onde a tarefa de segmentação de nuvens pode não ser tão complexa para um modelo de apren-

dizado de máquina quanto inicialmente se pensava; 3) Disponibilidade de dados, já que modelos

complexos requerem mais dados para aprender efetivamente, enquanto modelos mais simples

podem ter melhor desempenho com dados limitados; 4) Ajuste de hiperparâmetros, uma vez

que modelos complexos possuem mais hiperparâmetros que precisam de ajuste ótimo para um

desempenho ideal; 5) Técnicas de regularização como dropout, weight decay ou early stop, que



podem prevenir overfitting em modelos complexos; e 6) Qualidade dos dados, onde um modelo

mais simples pode ser mais robusto contra dados ruidosos. Esses fatores serão abordados em

trabalhos futuros para obter mais informações.

Considerações finais

É importante ressaltar que não foi realizada uma análise detalhada para validar se os resultados

representavam de fato as nuvens melhor do que a verdade básica, mesmo que o conjunto de

dados tenha sido criado com a ajuda de especialistas, sempre há a probabilidade de erro hu-

mano ao determinar um tipo de classe durante a anotação de imagens. Para estudos futuros,

recomenda-se um modelo de classificação de nuvens melhor e mais abrangente com base nos

resultados apresentados nesta pesquisa.

Palavras-chave: Segmentação de Nuvens; Energia Solar; Aprendizado Profundo; Imagens do

Horizonte.



ABSTRACT

One crucial aspect of solar energy generation, particularly in inter-tropical sites, is the

local variability of clouds. Satellite imagery lacks the temporal resolution necessary for now-

casting the impacts on solar plants, thus necessitating monitoring by ground-based cameras.

Cloud detection and monitoring pose significant challenges due to the dynamic nature of cloud

shapes, the limitations of linear and self-adjusting camera devices, and distortions introduced

by fish-eye lenses. This work is dedicated to advancing cloud segmentation techniques with the

ultimate goal of predicting cloud impacts on solar energy generation, which vary according to

each site’s unique climatology and geography. Utilizing Raspberry-Pi-based cameras pointed at

the horizon, in the region of Florianópolis, Brazil, this study overcomes the limitations of fish-

eye lenses, enabling the observation of clouds’ vertical distribution. An extensive analysis of

cloud images has led to the adoption of deep learning methods such as U-net, HRNet, and De-

tectron, with transfer learning applied from weights trained on the ”2012 ILSVRC ImageNet”

dataset and architectural configurations like ResNet, EfficientNet, and RCNN. Experiment 28,

utilizing a U-net with ResNet 18 architecture, achieved an average IoU of 0.564, demonstrating

promising results in cloud classification at a lower resolution. Experiment 44 further improved

the performance, surpassing other models with an average IoU of 0.594, highlighting the ef-

fectiveness of a simpler, yet robust, architectural approach. Despite the challenges posed by

variability in cloud frequency and atmospheric conditions, these models have shown signifi-

cant potential in automated cloud classification, leading to more accurate nowcasting for solar

energy impacts. The findings underscore the need for continuous development in segmenta-

tion methods and model tuning to address the complexities of cloud patterns. Although cloud

identification remains a complex task, this research has demonstrated that simpler deep learn-

ing models often outperform more complex ones, and data augmentation plays a critical role

in enhancing model robustness and generalization. Nevertheless, the variability in cloud type

frequencies, atmospheric conditions, and the time of year presents significant challenges for

direct comparison with existing literature. This study’s experiments have revealed that while

conventional CNN models offer reliable performance, there is a pressing need for further ad-

vancements to handle more intricate cloud classes effectively. The findings underscore the

necessity for continuous experimentation in the field of image segmentation and the develop-

ment of sophisticated, contextually aware models to address the multifaceted nature of cloud

segmentation tasks.
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1 Introduction

The presence of clouds has a major effect on the photovoltaic power plants, caus-

ing significant variability in solar energy that reaches the surface, and as a consequence, in the

power energy generation HU and STAMNES [2000]. The detection of clouds and the estimation

of their impacts on solar plants is a challenging task. Clouds are always in continuous metamor-

phosis. The logarithmic scale of its luminosity Mantelli et al. [(2020], the variety and dynamic

of their shapes, along with their forming and extinction processes are always associated with lo-

cal geography and current weather conditions. Different types of clouds and altitudes, also have

distinct effects on the scattering, reflection, and absorption of solar energy, influencing energy

power production. Different thicknesses, shapes, and volumes of clouds, could cause sudden

changes in sky coverage trapping and releasing long and short waves resulting in significant

changes in radiation throughout the day.

The World Meteorological Organization (WMO) classify clouds by their shape, clus-

tering, and height of their base. According to WMO1 clouds can also be divided by groups into

specific categories such as species, variety, and additional supplementary features, as described

in WMO Cloud Atlas2. The estimation of cloud type and coverage is made by a synoptic opera-

tor. The development of automated systems and methods of observation is still an open subject.

Especially in terms of the replacement of the highly developed perception of a human observer

classification.

There are commercial automated solutions available for cloud identification, in order

to assess their impact on energy generation like Whole Sky Imager (WSI), Juncklaus Martins

et al. [(2021,2]. This system can be configured to use single or double fish-eye surface cameras.

They use pixel value analysis, and stereo techniques to evaluate the clouds. The single system

poses a problem when dealing with images used for nowcasting. WSI images show in detail

only clouds that lie on the zenith position. Near the horizon and close to the lens border, clouds

seem to be compressed and the image degrades in the details. Double fish-eye images are

coupled with additional geometric and stereo technology to determine cloud-based. But the

embedded software and additional cameras are expensive and they have to be placed kilometers

apart. One important feature of cloud classification is its vertical distribution in different layers.

The pixel value analysis used is still far from achieving the classification proposed by WMO

1https://public.wmo.int/en
2https://cloudatlas.wmo.int/en/cloud-classification-summary.html
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Mantelli et al. [(2020].

It is desirable to estimate cloud shade casting in detail, especially when it causes a

partial coverage of large power plants. Scattered cloud’s condition throughout the day has inter-

mittent effects on the generation and does not cause only attenuation in energy. But also a sur-

plus is known as over-irradiation by multiple reflections that result in levels of irradiance above

the top of atmosphere values Martins et al. [(2022]. This excess could result in some operational

problems with inverters, unbalanced energy generation among module strings, overloads, and

even safety shutdowns do Nascimento et al. [(2019, (2020]. Therefore, it is important to have

tools to model and predict the energy generated by photovoltaic technologies Tarrojam et al.

[(2012], especially when associated with storage systems. Many energy grids combine power

from multiple sources. Predicting solar power output, using accurate cloud forecasting, helps

grid managers decide when to tap into alternative energy sources like wind or hydropower,

ensuring a steady power supply to consumers. Additionally, precise prediction of cloud pat-

terns allows power plants to anticipate and adjust for these variations, ensuring more consistent

power output. Consistent and predictable power generation can lead to stable financial returns,

since power plants can face penalties or reduced rates if they fail to deliver the promised power

output to the grid. Accurate forecasting through cloud segmentation can help in avoiding such

scenarios.

From the computer vision point of view, clouds could be segmented and their path-

ways monitored by tracking. Their impact on energy generation is measured by determining the

present solar position combined with the geometric estimation of clouds shading over the power

plant. There are several segmentation methods used in the classification of clouds. Mostly

based on their shapes and inner features like texture, color similarity, brightness, and contour

continuity in an image Long et al. [2006], Mantelli et al. [2010], Mejia et al. [2016], Piccardi

[2004], Souza-Echer et al. [2006]. The albedo of a cloud has inherent characteristics that are

distinguished from common objects and outdoor scene features. Its reflectivity in the visible

spectrum is higher than the other wavelengths and its luminance values are usually cropped

due to camera scale limitations Mantelli et al. [(2020]. In general, objects only reflect the local

surrounding radiation and this approach does not comprehensively describe albedo features and

scenery under the sun. Therefore, the use of the brightness parameter is not accurate enough to

distinguish a cloud. Cloud textures are random and their diffuse edges contain gray level jumps

which are more similar to a phase step in large areas. To a certain degree, smaller parts of clouds
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are similar to the whole, and the cloud cluster has a certain fractal similarity Li et al. [(2015].

The shape, size, formation, extinction, and changing level are variable along the cloud’s path-

way which made it difficult to monitor their surface shades.

Some computer vision-based methods rely on cross-classification and divide clouds

into broader physical forms. These classifications are based on the shared properties of clouds,

such as opacity, structure, and formation processes. Specifically, following the classification

proposed by Barrett and Grant [1976], clouds can be categorized as follows:

1. Stratiform, grouping Cirrostratus, Altostratus, Stratus, and Nimbostratus.

2. Cirriform, which only includes Cirrus.

3. Stratocumuliform, encompassing Cirrocumulus, Altocumulus, and Stratocumulus.

4. Cumuliform, containing only Cumulus.

5. Cumulonimbusform, exclusive to Cumulonimbus.

These groupings were chosen to explore the broader categories, understanding that

there may be variations within each group. This study aims to provide foundational insights into

these groupings, which can later be refined to address specific cloud types in detail. However,

due to the rare presence of Cumulonimbusform clouds in the region, this category was removed

from the created dataset.

As mentioned before, the identification and classification of clouds near the horizon

and the prediction of their path toward a photovoltaic installation is still an open research field.

Other configurations of methods combined with the camera as well as real data-oriented by

machine learning could also be explored. Machine learning has gained some ground in recent

years when it comes to solar irradiation prediction Juncklaus Martins et al. [(2021,2], Kumari

and Toshniwal [(2021]. This is due to the popularization and easy access to artificial intelli-

gence frameworks, which have several ready-to-use models for image segmentation and detec-

tion. There are several recent reviews on this subject made by Juncklaus Martins et al. [(2021],

Kumari and Toshniwal [(2021], Mellit and Kalogirou [(2008], Pelland et al. [(2013], Voyant

et al. [(2017] describing recent methods recently used, but they’re no comparative evaluation of

performance among them.

The research question of this study is ”Can deep learning techniques improve the
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segmentation and classification of individual clouds in horizon-aimed camera images for now-

casting of solar irradiance absorption usage?”.

Considering the identified challenges and gaps in the current methodologies for cloud

classification and irradiation prediction, this work aims to explore and evaluate existing method-

ologies for cloud segmentation. The objective is to identify a reliable approach for cloud type

classification and assess the feasibility of automating this process using machine learning tech-

niques. The research commences with a review of prior studies on the subject matter, as outlined

in the literature review section.

The specific objectives are:

• Collect terrestrial images of clouds via single-board computer systems with cameras aim-

ing toward the horizon.

• Create a labeled dataset of cloud images captured on the ground with cameras pointed

toward the horizon.

• Develop and compare machine learning models for cloud classification using terrestrial

images.

• Analyze and experiment with current machine learning models for cloud segmentation.

The independent variables are:

• Types of Deep Learning Techniques: Different models and algorithms such as U-net,

HRNet, Detectron, etc.

• Parameters of the Models: Learning rates, number of layers, types of layers, etc.

• Image Quality and Type: Different resolutions, angles, and formats of horizon-aimed

camera images.

In contrast, the dependent variables of the study are:

• Accuracy of Cloud Segmentation and Classification: How accurately the clouds are iden-

tified and classified in the images by the deep learning models, quantified by the suite of

metrics compiled throughout the experimental trials.

• Effectiveness in Nowcasting Solar Irradiance Absorption: Measured in terms of the pre-

cision of predictions about solar irradiance absorption based on cloud types.
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The study advances by critiquing the use of fish-eye lenses for capturing cloud im-

agery, which was found to be suboptimal for discerning the vertical distribution of cloud layers.

As an alternative, two systems based on Raspberry PI model 2, offering comparable imaging

quality to WSIs, were developed. These systems were oriented towards the predominant cloud

movement directions, established with the expertise of local meteorologists Monteiro [(2001].

Real image datasets were then utilized to evaluate the performance of various frameworks in

cloud classification tasks.

In the Methodology section, the process of dataset production is elaborated, along

with a comprehensive account of the experimental procedures. The results are systematically

presented in the corresponding experiments section, providing an initial analysis of the perfor-

mance of the models developed. The Discussion section delves into an in-depth analysis of all

pertinent findings, outcomes, and considerations.

Lastly, the Conclusion section synthesizes the insights gained from this research, ar-

ticulating the implications for future technological advancements in cloud classification and

irradiation prediction. It encapsulates the contributions of the study to the field and outlines

prospective avenues for continued exploration and innovation.
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2 Related Works

Several machine learning techniques have been used to forecast solar irradiance in the

past years Kumari and Toshniwal [(2021], Martins et al. [(2022], Voyant et al. [(2017]. Some

perform cloud identification by doing a binary image segmentation on either a patch of the

sky or using WSI. Others use the physical properties of clouds and the interaction with light

and atmosphere while others use current meteorological data or exogenous data Voyant et al.

[(2017] from side stations.

Machine learning techniques can be classified as Support Vectors, K-means, Artificial

Neural Networks (ANN), and Convolutional Neural Networks (CNN). For example, in Paletta

and Lasenby [(2020], the dataset used in this study originated from the SIRTA laboratory Ha-

effelin (2005), France. The RGB images were collected over a period of seven months from

March 2018 to September 2018, with a resolution of 768 x 1024 pixels. The work is composed

of two distinct networks merged into one which outputs the irradiance estimate. On one side, a

ResNet CNN is used to extract features from sky images and on the other side, an ANN treats

available auxiliary data (past irradiance measurements, the angular position of the sun, etc).

Both outputs are fed into another ANN, which integrates them to give its prediction.

In Anagnostos et al. [(2019], sky images are retrieved every 10s from sunrise to sun-

set with a camera equipped with a fisheye lens and 1920 x 1920 pixels resolution. Specific

image features are computed for each image, then provided as inputs for the machine learn-

ing applications. The authors quantify characteristics such as image texture, color values and

other metrics. The extracted image features are used for irradiance modeling (k-neighbors neu-

ral network model), cloud classification (support vector classification model) and the energy

yield prediction with neural networks. First, image Contrast is retrieved from the gray-level

co-occurrence matrix (GLCM) which is used as input for the neural network. Additionally, im-

age features are derived from RGB channel-based color statistics and the solar position cloud

coverage ratio are used as additional inputs for the neural network. The sky imaging software

determines for each image the predominant sky or cloud type as one of seven categories: Cu-

mulus (Cu); Cirrostratus (Cs), Cirrus (Ci); Cirrocumulus (Cc), Altocumulus (Ac); Clear sky

(Clear); Stratocumulus (Sc); Stratus (St), Altostratus (As); Nimbostratus (Ns), Cumulonimbus

(Cb). The Support Vector Classification (SVC) has been chosen with best classification results,

achieving an accuracy of more than 99% of correct classifications.

The authors in Fabel et al. [(2022] focus on the semantic segmentation of ground-
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based all-sky images (ASIs) to provide high-resolution cloud coverage information of distinct

cloud types. The authors acknowledge the challenges in classifying clouds due to their variable

shape and appearance, and the high similarity between cloud types. Therefore, most state-of-

the-art methods focus on distinguishing between cloudy and cloud-free pixels without consider-

ing the cloud type. To address these challenges, the authors propose a self-supervised learning

approach that leverages a large amount of data for training, thereby increasing the model’s per-

formance. They use about 300,000 ASIs in two different pretext tasks for pretraining. One

task focuses on image reconstruction, while the other is based on the DeepCluster model, an

iterative procedure of clustering and classifying the neural network output. The model is then

fine-tuned on a small labeled dataset of 770 ASIs. The results of the study show that their self-

supervised model outperforms conventional approaches of random and pretrained ImageNet

initialization. The model achieved 85.75% pixel accuracy on average, compared to 78.34% for

random initialization and 82.05% for pretrained ImageNet initialization. The improvement was

even more significant when considering precision, recall, and Intersection over Union (IoU)

of the respective cloud classes, where the improvement ranged between 5 and 20 percentage

points, depending on the class. Furthermore, when compared to a clear-sky library (CSL) from

the literature for binary segmentation, their model outperformed the CSL by over 7 percentage

points, reaching a pixel accuracy of 95.15%.

The study of Ye et al. [(2019] discusses the challenges of fine-grained cloud detec-

tion in different regions with varying air qualities. For instance, the authors collected WSIs

from Hangzhou, a densely populated city with low air quality, and Lijiang, a sparsely populated

plateau area with high air quality. The differences in these regions add complexity to the cloud

detection problem. The authors also discuss the limitations of existing methods for cloud de-

tection, such as threshold segmentation, graph-based methods, and superpixel-based methods.

They argue that these methods often ignore cloud-type classification or treat it as a separate task

from cloud detection. The authors tested their proposed method for fine-grained cloud detec-

tion and recognition against a well-known semantic segmentation model, fully-convolutional

network (FCN). They fine-tuned a pre-trained FCN model with 400 images from their dataset,

which included images from Lijiang and Hangzhou and used 8 cloud types and the sky as

ground truth label classes. The results showed that their approach outperformed the FCN model.

They noted that due to the superpixel segmentation, their method was able to maintain edges

better than FCN, despite causing fragmentary classification errors in a very small number of
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Figure 1: Adoption of statistical methods and machine learning approaches for solar energy
generation forecasting comparison

superpixels. The computed evaluations were presented as the commonly used in semantic seg-

mentation tasks, such as precision, recall, IoU for each class, and accuracy for each image.

The authors achieved an average precision of 42.75%, average recall of 44.78%, average IoU

34.06% and an accuracy of 71.28%.

Overall, we can see a trend shift towards using machine learning approaches, from

2018 and further, as presented by Juncklaus Martins et al. [(2022]. Figure 1 shows that during

the last decade there was approximately 2.7 articles being published every year using a machine

learning approach, with a standard deviation of 3.19. Meanwhile, approximately 3.8 articles

were published using classical statistics approaches for the same subject, with a standard de-

viation of 2.44. Even with the increase of machine learning methods, statistics methods are

predominant overall and are still being used as a reliable way to predict solar energy.

The paper also presents a brief analysis of all related works, with an in-depth analysis

of several metrics, including cloud identification and tracking, and evaluation metrics compari-

son.
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3 Methodology

This section of the dissertation is organized to systematically introduce the compre-

hensive research approach taken in this study. It begins with a detailed account of the data

acquisition process, describing the specific location and weather conditions under which the

cloud imagery was captured, followed by the technical aspects of the Nimbus Gazer used in

the dataset creation. The section then transitions into describing the structure of the dataset

compiled for the experiments.

Subsequent subsections provide an overview of the various sets of experiments con-

ducted, starting with the initial experiments, classified as Clouds-450 experiments, to set the

stage for the study’s broader aims. This is followed by a thorough exploration of the Clouds-

1000 and Clouds-1500 experiments, each detailed in their respective subsections. These explore

different segmentation techniques and deep learning models ranging from EfficientNet to ad-

vanced Transformer models.

The section culminates with a comparison of results derived from these experiments

against existing literature, leading to a detailed discussion on the findings and their implications

for the field of cloud classification. The methods conclude with a transition to the concluding

remarks that synthesize the research insights and their relevance to future work in the domain.

In order to ease the understanding of this study, the items below summarize the overall

methodology applied:

• Cloud images were captured using the Nimbus Gazer system.

• Three versions of the dataset were created for the experiments performed, with 450, 1000

and 1500 images, respectively.

• The main metrics used for validation were Intersection over Union (IoU), F1-score, Pre-

cision and Recall.

• Initially, 25 experiments were carried out to give direction to the research and help raise

points for improvement for future experiments.

• The second battery of experiments was composed of a total of 8 experiments using more

improved semantic segmentation techniques - which would potentially lead to a better

result than the previous version of experiments; and 1 instance segmentation experiment

to attempt to solve an identified problem in semantic segmentation models.
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• The last battery of experiments consisted of 29 experiments, combining all the learn-

ing acquired in previous experiments and exhausting configurations of each experiment

carried out.

Figure 2 showcases the overall workflow adopted. First sky images are captured with

cameras angled slightly above the horizon, ensuring a frame rich in sky and devoid of terrestrial

obstructions like trees or buildings. A subset of these images was then manually labeled. After

accumulating sufficient labeled data, specialists reviewed and validated the annotations. Subse-

quent to this, came the training of the cloud detection models with this vetted data. The ensuing

step involved evaluating the model’s performance and concurrently using its output to further

validate manual annotations. With a range of models trained, a comparative study of the results

is performed.

Figure 2: Overall flow of work describing the steps used for all experiments

All experiments described in the subsequent sections were conducted using a variety

of hardware setups. This diversity in hardware selection was primarily driven by the availability

of resources at the time of each experiment. As a result, different models were trained on

different hardware configurations.

It is important to note that the choice of hardware can have implications on the training

efficiency and performance of the models.

3.1 Data

To construct the dataset, images were captured with cameras directed towards the

horizon in the north and south directions, in city of Florianópolis, Brazil. In order to capture
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images from the sky, the Lapix research group developed a low-cost equipment using Rasp-

berry Pi with a custom Operational System (OS) called Nimbus Gazer. Two equipment with

cameras aiming just above the horizon line in order to capture the sky and incoming clouds

are implemented. Both equipment are encased in a aluminum shell for protection against the

weather, with a clear acrylic at the front where the camera is located. The cameras used are

the Raspberry Pi camera model V1.3, with a field of view of 65°. Since there are two cameras

aiming at opposite directions, there’s the equivalent of a 130°view of the sky at all times. The

equipment is connected via ethernet cable to the lab facility.

3.1.1 Location and Weather Conditions

The place chosen to capture the cloud images was a hill nearby Federal University

of Santa Catarina’s campus: an area with good view of the sky. The area is located in Santa

Catarina Island, the insular part of Florianópolis, a city in the state Santa Catarina, located

in South Region of Brazil, as seen in Figure 3. The location’s geographic coordinates are

27°36’28.1”S 48°30’48.5”W.

According to de Meteorologia [1984], the climate of Santa Catarina island belongs

to the fundamental type Cf and the specific variety Cfa in Köppen’s classification Köppen and

Geiger [1928], with humid mesothermal climate and well-distributed rainfall throughout the

year. The average annual temperature is 20.8°C, with February being the hottest month, with a

monthly average of 24.9°C and July being the coldest month, with an average of 16.4°C. The

most frequent winds in the region, according to the description in Gaplan [1986], are from the

northeast and north, but the southern winds has more repercussions, being the culprit of the

sudden changes in temperature, also affecting clouds movement direction and speed. So, the

strong southerly winds of the island come to be strong gusts, accompanied or not by rain, which

can usually last for three days, bringing with it a variety of cloud types. During the autumn,

these bursts become more common, therefore most photos present in this dataset were taken

during this period (from 03/21 to 06/21). Based on this analysis, the research team decided that

the best locations to point the cameras was north and south, where the most predominant winds

are, so that clouds approaching the area could be seen more clearly.
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Figure 3: Location in the city of Florianópolis, Brazil were the images were captured

3.1.2 Nimbus Gazer

The Nimbus Gazer is an adaptation of the motionEyeOS3, which is a Linux distribu-

tion that turns a single-board computer into a video surveillance system. The motionEyeOS OS

is based on BuildRoot4 and uses Motion5 as a backend and motionEye6 for the frontend. Figure

4 shows the equipment.

Nimbus Gazer uses motionEye version 0.41 and Motion version 4.2.2. The system is

set to GMT time zone and prevents any camera LEDs from blinking, by disabling all LEDs in

the boot configuration file. This configuration is set by default to prevent any LED reflection

3https://github.com/motioneye-project/motioneyeos/wiki
4http://buildroot.uclibc.org/
5https://motion-project.github.io/
6https://github.com/ccrisan/motioneye/
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Figure 4: Low-cost equipment developed by the research team. In this picutre, the equipment
is installed at the UFSC Photovoltaic Laboratory at the Federal University of Santa Catarina, in
the city of Florianópolis, Brazil.

onto the camera lens. The system is set to start capturing images at 08:00 GMT and stop at

22:00 GMT. The chosen time interval was defined to capture only images with at least some

level of sunlight. The time zone of the research lab is at GMT-3. To install the OS, it is necessary

to have at least 32GB of free memory.

The configuration of the motion system is set at the lowest available frame rate of 1

frame per minute to match the time resolution of sensory data from the lab. That means that

every minute, an image is captured.
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Captured images are configured at 2592 x 1944 resolution and are stored in a local

directory before being uploaded to the cloud. A built-in option was used to upload to a Google

Drive directory to upload the images. All of the custom configurations can be seen in Appendix

A.

For monitoring, the system sends a health-check e-mail each time the system either:

boots-up, start or stop recording.

The monitoring scripts are located in the /root directory and can be customized by

editing the the corresponding .sh files:

• boot-email.sh - sends an e-mail when the system is booted.

• start-recording.sh - sends an e-mail when the system starts recording.

• stop-recording.sh - sends an e-mail when the system stops recording.

For a step-by-step configuration of the system please you can access this repository7.

Two examples of north and south images can be seen in Figure 5 below.

3.1.3 Datasets

Initially, clouds were classified into eight classes, according to the standards estab-

lished by WMO. These classes include: Altocumulus, Cirrus, Stratocumulus, Cumulus, Stra-

tus, Nimbostratus, Altostratus and Cirrocumulus. In addition to the cloud classes, an additional

class was created to represent land features present in the images, such as trees and buildings,

called ”Tree”.

However, after carrying out some experiments, details of which will be presented in

the following sections, a decision was made to employ the clustering method recommended by

Barrett and Grant [1976]. The process resulted in four distinct classes: Cirriform, Cumuliform,

Stratiform and Stratocumuliform (Table 1).

It is worth mentioning that Barrett and Grant [1976] also suggests an additional clas-

sification called Cumulonimbiform which encompasses clouds. During the image acquisition

period for the dataset, few cumulonimbus clouds were detected, and to keep the dataset more

balanced, these clouds were grouped in the Cumuliform category.

In total we developed 3 versions of the dataset used for different experiments:

7https://github.com/bjuncklaus/Clouds-1000



3.1 Data 36

Figure 5: Example of north (top) and south (bottom) images captured by cameras pointing
towards the horizon

• Version 1: 450 images with 8 cloud types and Tree class. March-April, 2021.

• Version 2: 1000 images with 5 cloud types and Tree class. March-June, 2021.

• Version 3: 1500 images with 5 cloud types and Tree class. March 2021-January 2022.

Thus, our research group decided to name each dataset version based on the amount of

images present in it. Hence, we have the: Clouds-450, Clouds-1000 and Clouds-1500 dataset.

The annotations were handmade using the Supervisely tool. The tool was created

Table 1: Cloud grouping according to Barrett and Grant [1976]
Classes Cloud Type
Stratiform Cirrostratus, Altostratus, Stratus, Nimbostratus

Cirriform Cirrus

Stratocumulus Cirrocumulus, Altocumulus, Stratocumulus

Cumuliform Cumulus, Cumulonimbus
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for image annotation and data management in which it’s possible to create the annotations via

interface available, similar to other image editors. Each image was annotated with the polygon

tool and classified using 4 cloud types: Cirriform, Cumuliform, Stratiform, Stratocumuliform

and 1 class representing trees and buildings. This classification is based on solar radiation

absorption characteristics. Due to the humid climate of the region, the Cumulonimbus (Cb)

cloud seldom forms. This type of cloud usually form in dryer regions, thus there isn’t any

occurrence of this cloud in the dataset. The cloud type distribution is shown in Table 2.

Table 2: Distribution of version 2 of the dataset by cloud type
Cloud Type Amount in Dataset % in Dataset
Tree 989 99.30%

Stratocumuliform 812 81.53%

Stratiform 271 27.21%

Cirriform 285 28.61%

Cumuliform 90 9.04%

The manual annotation process with Supervisely is time consuming and error prone,

mainly because of clouds shapes where, even to specialists, classification takes a long time to

be precise and features like cloud height and density may not be clear, leading to doubts about

its type. This problem with the clouds shape also slows down the specialists work of reviewing

annotations, forcing the Data Revision process to be done by sampling, that is, not all images

in the dataset were validated. Another problem is the mechanical process of annotating itself,

which requires the annotator to manually wrap clouds in Supervisely using the mouse cursor,

which can take a long time, especially when the image is complex, such as when clouds intersect

each other, when they have holes or complex shapes.

3.2 Clouds-450 Experiments

For the first experiments a version of the dataset that consists of 450 images and uses

all 8 cloud types as classes alongside the Tree class was used. This dataset was used only for

the initial experiments that set the course correction and led to the development of this research.

It is important to notice that 7 images had to be removed from this version of the dataset due to

the lack of precise annoation. Figure 6 shows examples of annotated images of this dataset.

The distribution of this version of the dataset can be seen in Table 3. This table already

excludes the 7 faulty images.
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Figure 6: Example of annotated images of the first version created of the dataset used for early
experiments

Table 3: Distribution of version 1 of the dataset by cloud type
Cloud Type Amount in Dataset % in Dataset
Tree 443 100%

Stratocumulus 311 71.82%

Cirrus 205 47.34%

Altocumulus 79 18.24%

Cumulus 66 15.24%

Stratus 59 13.63%

Nimbostratus 8 1.855%

Altostratus 2 0.46%

Cirrocumulus 0 0%

In order to determine the type of cloud present the Semantic Segmentation technique

was used. This technique involves a neural network identifying individual pixels in an image
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according to an object class to which each pixel belongs, dividing the image into sections that

each represent an object.

The models were constructed using the Segmentation Models library8 version 1.0.1

with the TensorFlow 2.5.0 and Keras 2.4.3 ecosystem. TensorFlow is an end-to-end open-

source platform for machine learning, developed by the Google Brain team, that provides a

comprehensive and flexible ecosystem of tools, libraries, and community resources Abadi et al.

[2016]. It allows for easy Model 28uilding and deployment. The library is a high level API with

4 models architectures for binary and multi-class image segmentation available out-of-the-box,

25 available backbones for each architecture in which all backbones have pre-trained weights

for faster and better convergence, ready-to-use segmentation losses and metrics. TensorFlow

offers multiple levels of abstraction, so users can choose the right one for their needs, from

high-level Keras API, which simplifies model development and testing, to lower-level APIs for

expert users requiring more control9.

Keras, on the other hand, is an open-source software library providing a Python in-

terface for artificial neural networks, acting as an interface for the TensorFlow library Chollet

et al. [2015]. Initially supporting multiple backends, Keras now exclusively supports Tensor-

Flow backend from version 2.4 onwards. It is designed to enable fast experimentation and pro-

totyping through user-friendliness, modularity, and extensibility, contributing to its popularity

in the deep learning community10.

For all the experiments described in this section, three model architectures were used:

the U-Net, Linknet and Feature Pyramid Network (FPN) model architecture.

The U-net is renowned for its efficacy in semantic segmentation tasks. U-net and

CNN are somewhat similar. U-net networks are Deep Convolutional Neural Networks that

were originally designed for segmentation of electron microscopy images Ronneberger et al.

[(2015].

Linknet Chaurasia and Culurciello [2017] is modeled unlike others neural networks

architectures, due to the fact that it links each encoder with the decoder, by doing this it prevents

a lost of spacial information, which can be used for up-sampling operations. Since the decoder

is sharing information by the decoder each level, there is no need for some previously used

parameters, causing an overall more efficient network and real-time operations.

8https://github.com/qubvel/segmentation models
9https://www.tensorflow.org

10https://keras.io/api/
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Feature Pyramid Network Lin et al. [(2017] is a top-down architecture with lateral

connections, created with the intent of building high-level semantic feature maps to any scale,

achieving state-of-the-art performances. This method efficiently generates object segmentation

proposals using an image-centric training strategy and many ideas from DeepMask/SharkMask

to create their own FPN mask generation. Each level of the feature pyramid is used for predict-

ing masks at different scales, respectively scales of 32, 64, 128, 256, 512 and other measures

are mapped to the nearest scale.

3.2.1 Description

As initial experiments, 25 models were created. For the development and evaluation

of these models, the initial version of the dataset, comprising 433 images, was strategically

partitioned into separate sets for training, validation, and testing. The allocation was determined

as follows: 70% of the images were used for training the model, allowing it to learn and adapt to

the characteristics of the cloud classes. A subset of 10% was reserved for validation purposes,

serving to fine-tune the model parameters and prevent overfitting during the training phase. The

remaining 20% constituted the test set, which was utilized to assess the model’s performance

and generalization capabilities on unseen data.

As a training strategy, the Adam optimizer was used in conjunction with a learning

rate reduction technique. The learning rate is reduced when the validation loss stops improving

for 2 consecutive epochs and the reduction is done by Equation 3.2.1:

new lr = current lr ∗0.2 (3.2.1)

It was decided that all experiments would require resizing of the input images. This

decision was made empirically, due to the time and memory requirements for training the mod-

els. Therefore, the ”Input Size” column in Table 3.2.1 represents the size of the resized input

images (eg. 128 means 128x128 pixel images). This table contains all the performed exper-

iments, in which the ”Batch Size” represents how many images were used in each batch of

data for training. ”Backbone” is the transfer learning model used in the experiment, whereas

”Model” is the actual model architecture being trained. ”Epochs” represents how many epochs

the model was trained on.

We used the Keras Adam optimizer and the sum of the Categorical Focal loss and
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Dice loss function. The choice of loss function is due to the nature of the problem, which is

a multi-label segmentation problem. Therefore, using these two functions together can better

assess the model’s performance instead of just one, thus leading to better convergence. Equation

3.2.2 shows the Categorical Focal loss calculation:

L(gt, pr) =−gt ·α · (1− pr)γ · log(pr) (3.2.2)

Where α is a weighting factor (same as in balanced cross entropy) and γ is a focusing parameter

for modulating factor (1 - p). With gt and pr being the ground-truth and predicted values of the

image pixel.

The Dice loss function can be calculated by Equation 3.2.3:

L(precision,recall) = 1− (1+β
2)

precision · recall
β 2 · precision+ recall

(3.2.3)

Where β is a coefficient to balance precision and recall.

The composite Categorical Focal Dice loss function combines equations 3.2.2 and

3.2.3 to form a robust loss function that is sensitive to the class imbalance and the need for

precise segmentation.

During training, specific callback functions provided by Keras were employed to en-

hance the training process. The ModelCheckpoint and ReduceLROnPlateau play a pivotal role

in preserving the best model and optimizing the learning rate, respectively.

The ModelCheckpoint callback function is designed to save the model at specific

intervals. For this experiment, the callback is configured to only save the model’s weights when

there is an improvement in the validation loss, which is a common practice to avoid overfitting

and to ensure that the model can be restored to its most effective state post-training. The settings

save weights only=True and save best only=True ensure that only the model’s weights that

yield the lowest validation loss are stored.

Table 3.2.1 summarizes all the experiments performed with this version of the dataset.

3.2.2 Results

The validation metrics used are the mean IoU and the average Dice metric (F-score

or F1-score) for multi-class targets in segmentation. These metrics were selected as they are

commonly used for semantic segmentation as they best represent both the successes and errors
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Table 4: Summary of experiments configurations
Id Input Size Batch Size Backbone Epochs Model
1 128 32 resnet18 250 Linknet

2 128 32 resnet34 250 Linknet

3 128 32 densenet169 250 FPN

4 128 32 resnet50 250 FPN

5 128 32 resnet18 250 FPN

6 128 32 densenet121 250 FPN

7 256 16 resnet18 250 Linknet

8 128 32 senet154 250 Unet

9 128 32 seresnext50 250 FPN

10 512 8 resnet34 200 Unet

11 512 8 seresnext50 200 Unet

12 512 8 efficientnetb0 200 Unet

13 512 8 efficientnetb1 200 Unet

14 512 8 efficientnetb4 200 Linknet

15 512 8 efficientnetb1 200 Linknet

16 1024 1 seresnext50 100 Linknet

17 1024 1 seresnext50 200 Unet

18 256 16 vgg16 250 FPN

19 256 16 vgg19 250 FPN

20 512 8 efficientnetb0 200 Linknet

21 512 8 resnet34 200 FPN

22 512 8 efficientnetb0 200 FPN

23 512 8 resnet18 200 Linknet

24 1024 1 resnet18 200 FPN

25 1024 4 resnet18 200 Unet
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of models.

The IoU, also known as the Jaccard index or Jaccard similarity coefficient (originally

coined coefficient de communauté by Paul Jaccard), is a statistic used for comparing the sim-

ilarity and diversity of sample sets. The Jaccard coefficient measures the similarity between

finite sample sets, and is defined as the size of the intersection divided by the size of the union

of the sample sets, as seen in Equation 3.2.4.

J(A,B) =
A∩B
A∪B

(3.2.4)

The F-score, also known as the Dice coefficient, is similar to the dice loss and can

be interpreted as a weighted average of precision and recall, where an F-score reaches its best

value at 1 and worst score at 0. The relative contributions of precision and recall to the F1-score

are equal. Equation 3.2.5 shows the F-score formula:

Fβ (precision,recall) = (1+β
2)

precision · recall
β 2 · precision+ recall

(3.2.5)

Where β is a coefficient to balance precision and recall.

Table 3.2.2 presents the results obtained with this batch of initial experiments with the

developed models.

It’s clear from the table that models with a 128x128 pixel input size did better than

those with bigger sizes. For example, the first two experiments with the Linknet model and a

128x128 input size got higher Mean IoU and Mean F1 Scores compared to others. The FPN

model with the same input size also showed good results in experiments 3 to 6.

In Figure 7, we can see the Linknet best model’s (experiment 1) ability to segment and

classify clouds. While this model maintains the overall structure and distribution of cloud types,

subtle inaccuracies can be observed. The model appears to struggle with differentiating between

closely related cloud types, as evident in the areas where Altocumulus and Stratocumulus clouds

are present. This is possibly due to their textural and color gradient similarities. This issue is less

pronounced than any other model as will be presented next, suggesting that while the Linknet

model has improved performance, it still faces challenges with complex cloud patterns and edge

definitions.

The segmentation and classification results from the best FPN model (experiment 3)

are depicted in Figure 8. The image presents a sky scene with varied cloud formations and
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Table 5: Summary of results for the Clouds-450 experiments
Id Input Size Model Loss Mean IoU Mean F1
1 128 Linknet 0.81292 0.73839 0.76193

2 128 Linknet 0.8095 0.73142 0.75492

3 128 FPN 0.80124 0.72725 0.75473

4 128 FPN 0.80623 0.72452 0.75161

5 128 FPN 0.81297 0.71854 0.74528

6 128 FPN 0.8049 0.71444 0.74161

7 256 Linknet 0.80289 0.70637 0.73162

8 128 Unet 0.78772 0.69827 0.72518

9 128 FPN 0.7882 0.68258 0.71105

10 512 Unet 0.7896 0.67929 0.70693

11 512 Unet 0.77779 0.66695 0.69519

12 512 Unet 0.78552 0.66512 0.69398

13 512 Unet 0.77683 0.65735 0.68708

14 512 Linknet 0.77741 0.61545 0.64549

15 512 Linknet 0.78173 0.61246 0.64179

16 1024 Linknet 0.81084 0.60858 0.63365

17 1024 Unet 0.80807 0.60798 0.63557

18 256 FPN 0.77944 0.60423 0.63368

19 256 FPN 0.78139 0.59913 0.62852

20 512 Linknet 0.78488 0.59905 0.62845

21 512 FPN 0.78563 0.59752 0.62706

22 512 FPN 0.78009 0.58874 0.6187

23 512 Linknet 0.78878 0.58128 0.60976

24 1024 FPN 0.71126 0.54989 0.57785

25 1024 Unet 0.7941 0.54038 0.57024
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Figure 7: Segmentation performance of the best Linknet model from the Clouds-450 experi-
ments

the treeline at the bottom, a typical setup for testing cloud segmentation models. In this in-

stance, the model correctly identifies the majority of the cloud classes, including the cumulus

and altocumulus clouds which are central in the image. However, we can discern a noticeable

challenge in differentiating between Stratocumulus and Altocumulus clouds. This suggests that

while the FPN model has achieved a high level of understanding of the cloud forms, there re-

mains an area of ambiguity in capturing the transitional zones between certain cloud types. This

could indicate a need for further model refinement or additional training data that adequately

represents the variability and subtlety of cloud transitions.

Figure 8: Segmentation results of the best FPN model from the Clouds-450 experiments

We can gather some insights into the U-net best model’s (experiment 8) performance

by looking at Figure 9. The original sky image showcases a cumulus cloud, which is typically

characterized by its dense, fluffy appearance and distinct edges. The ground truth (Gt) mask

accurately delineates the cloud’s boundaries and classifies it alongside other cloud types and

terrestrial features. However, when we examine the predicted (Pr) mask from the best U-net

model, we observe certain discrepancies.
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The U-net model, while adept at general segmentation tasks, exhibits some challenges

in precisely capturing the complex boundaries and subtle gradations of cloud density. The

model’s making more errors between altocumulus and stratocumulus cloud types. Such mis-

classification could stem from the model’s training on this limited version of the dataset, where

the distinguishing features between these cloud types may not have been adequately captured.

Additionally, the model’s interpretation of texture and color gradients within the cloud forma-

tions might have contributed to this error.

Figure 9: Comparative visualization of cloud segmentation using the best U-net model from the
Clouds-450 experiments

When we increased the input size to 512x512 and 1024x1024 pixels, the performance

went down. This is especially true for experiments 14 to 25, where both the Mean IoU and

Mean F1 scores are lower. The lowest scores were in experiments with a 1024x1024 input size,

like experiment 16 with the Linknet model and experiment 17 with the Unet model.

3.2.3 Discussion

Looking at our results, it’s clear that models with 128x128 input sizes do better than

those with larger sizes. Smaller images have fewer pixels, which makes them simpler and less

likely to cause mistakes in identifying different parts of the image. This is an issue and it needs

addressing on the next batches of experiments. Hence, the resizing of images will only be

applied onto the input images.

On the other hand, models with 1024x1024 input sizes didn’t do as well. The FPN

model had the lowest loss rate at 0.71126, but there’s an issue with the ”Tree” class affecting

the overall results. Because this class is in every image and doesn’t change much, it makes the

models seem like they are doing better than they really are. This is a problem, especially for

accurately identifying clouds.
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We also found problems with all of our models are predicting more than one class for

the same part of a cloud. This, combined with an unbalanced dataset and misleading results

from the Tree class, shows how complex and challenging it is to segment images accurately.

3.2.4 Next Steps

Given these challenges, we planned several steps to improve our image segmentation

models for the next experiments. We used more advanced model designs that are better at

handling detailed images and also tried new ways to make our training data more varied to help

the models learn to handle different scenarios with different cloud types.

Another important step is to fix the unbalanced dataset. We need to check how well

each class is being predicted and use that information to make our models better. This also

involves simplifying the task by reducing the number of classes our models have to predict.

These steps are aimed at making our models more accurate and reliable, balancing the

need to fit our current data while also being able to work well with new, unseen data.

3.3 Clouds-1000 Experiments

For these experiments, two categories of segmentation models were utilized: Seman-

tic and Instance Segmentation. The inclusion of the latter was made after performing a qualita-

tive evaluation over the results obtained from the semantic segmentation experiments. We iden-

tified a problem where distinct regions of the same cloud are erroneously classified as different

classes, we called this the ”localization” problems. This problem can’t be easily distinguished

through the validation metrics and in order to address it, this additional technique of Instance

Segmentation was included in the experiments suite. Our hypothesis is that this technique,

alongside the library used to train and evaluate the model, would help mitigate the localization

problem.

Following the overall flow described at the beginning of the section in Figure 2, an

initial evaluation was carried and led to the creation of the Clouds-1000 dataset Juncklaus Mar-

tins et al. [(2022]. This dataset consists of of 1000 sky following the same strategy described

in the 3.1 section. The images were collected every minute over the period of March–June of

2021, and the cloud annotation task was divided between 3 Data Analysts, responsible for an-

alyzing and labeling the images in the Data Annotation step, and 2 meteorologists, responsible

for supervision and validation in the Data Revision step. For this version the clustering method
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recommended by Barrett and Grant [1976], described in the 3.1.3, was followed.

This version of the dataset had faced several validations and during an inspection 4

images were either partially annotated or missing annotation entirely. Therefore, the experi-

ments using this dataset actually use 996 fully hand-annotated images. Examples of annotated

images can be seen in Figure 10.

Figure 10: Example of Clouds-1000 dataset images (left) compared with its annotated version
(right)

The annotation tool Supervisely, uses a proprietary format called Json-based Super-

visely Annotation Format to represent labels on images, a format that makes it hard to use that

labels elsewhere, except on the Supervisely platform itself. Therefore, it was necessary to con-

vert the annotations to COCO11 (Common Objects in Context) format in order to use it. COCO

is a large-scale object detection and segmentation dataset including evaluation techniques for

instance segmentation models. Annotations examples for the same image in Supervisely JSON

format and in COCO format can be seen in Appendix B and C, respectively.

The High-Resolution Network (HRNet) Wang et al. [2020] is particularly noteworthy

within the semantic segmentation models for its unique architecture. Unlike traditional segmen-

11https://cocodataset.org/
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tation networks that downsample the image to a low resolution and then gradually recover the

spatial details, HRNet maintains high-resolution representations through the entire process. It

starts with a high-resolution subnetwork, then progressively adds lower-resolution subnetworks

in parallel while exchanging the cross-resolution information through repeated multi-scale fu-

sions.

The mathematical formulation of HRNet’s fusion strategy can be expressed as fol-

lows:

Xi
t+1 = F (Xi

t ,X
i+1
t , . . . ,XN

t ) (3.3.1)

where Xi
t represents the feature maps at the i-th resolution at stage t, and F denotes the series

of fusions across the resolutions. This enables HRNet to simultaneously capture rich contextual

information and precise spatial details, which is paramount for segmentation tasks.

Figure 11 showcases an example of the the HRNet architecture. The image illustrates

the interconnected high-to-low resolution convolutions that enable the network to preserve high-

resolution feature maps throughout the depth of the network, a stark contrast to the typical

encoder-decoder structures.

Figure 11: Original HRNet architecture example as demonstrated by Wang et al. [2020]. The
example illustrates the simultaneous multi-resolution convolutions and the fusion of feature
maps across different resolutions.

The other two semantic segmentation architectures used were the previously explained

U-net with Resnet and the Efficientnet. EfficientNet Tan and Le [(2019] is distinguished by its

balance of efficiency in computation and model size. This network utilize a systematic ap-

proach called Compound Scaling, which involves scaling the depth, width, and resolution of

the network in a principled way. The Compound Scaling method is governed by a compound

coefficient, φ , which is used to proportionally scale the network width (w), depth (d), and reso-

lution (r) following the equations:

depth: d = α
φ (3.3.2)

width: w = β
φ (3.3.3)
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resolution: r = γ
φ (3.3.4)

where α , β , and γ are constants that determine how each of these dimensions is

increased for a given value of φ . This method allows EfficientNets to achieve higher accuracy

with fewer parameters compared to models scaled by traditional methods.

Figure 12 presents the EfficientNet architecture, including an example of the baseline

network (a) and the effects of scaling network width (b), depth (c), and resolution (d) indepen-

dently. Panel (e) illustrates the compound scaling method, which scales all three dimensions

uniformly with a fixed ratio, as proposed in the original EfficientNet design. EfficientNets’ ar-

chitecture is trained over the ImageNet dataset Tan and Le [(2019] and is adept at various tasks

including image classification, object detection, and, crucially for the purposes of this work,

semantic segmentation.

Figure 12: Original EfficientNet architecture example as demonstrated by Tan and Le [(2019].
The example illustrates the model scaling capabilities of the proposed architecture where (a)
is a baseline network example; (b)-(d) are conventional scaling methods that only increase one
dimension of network width, depth, or resolution. (e) is the proposed compound scaling method
that uniformly scales all three dimensions with a fixed ratio.

For the instance segmentation experiment the Detectron2 library12, an open-source

machine learning library developed by Facebook AI Research, which offers cutting-edge al-

gorithms for detection and segmentation tasks. Detectron2, the successor to Detectron and

maskrcnn-benchmarkWu et al. [(2019], was chosen for two main reasons. Firstly, it excels

in robust object detection, making it well-suited for scenarios where objects, such as different

types of clouds, overlap or are closely situated. Its advanced object detection capabilities enable

12https://github.com/facebookresearch/detectron2
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more accurate identification and classification of objects within images, thereby reducing the

occurrence of a cloud being assigned multiple classes. Secondly, Detectron2 boasts impressive

segmentation capabilities, including state-of-the-art algorithms like Mask R-CNN.

A concern was raised during the planning of these experiments regarding using dif-

ferent frameworks, might not result in a fair comparison. However, all hyperparameters were

tried to approach the same values accross all frameworks in order to reduce any bias towards a

specific framework. To better visualize the processes used in the experiments, from labeling to

validation, refer to Figure 13 which provides a detailed flow.

Figure 13: Step-by-step process from data labeling up to results and validation

The ground-truth labels used in the experiments follow the segmentation based on
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solar radiation absorption characteristics. The images were divided into three datasets: training,

validation and testing. Where 60% of the data was used for training, 20% for validation and

testing, respectively. The selection strategy was done randomly, without substitution and the

sampling of validation data was done only over the training dataset. In order to validate each

experiment the mean IoU, accuracy and F-score were used.

In total we performed 8 semantic segmentation and 1 instance segmentation experi-

ment. All experiments were performed on a Tesla p100-pcie-16gb gpu and followed the same

division and sampling criteria described above. The data used in the experiments are all from

the Clouds-1000 dataset. The division process was executed only once, therefore the training,

validation, and test sets are equal across all experiments.

3.3.1 Description

For the HRNet models, the PaddleSeg13 framework was used, which is an end-to-

end highly-efficient development toolkit for image segmentation based on PaddlePaddle, and

helps both developers and researchers in the whole process of designing segmentation models,

training models, optimizing performance and inference speed, and deploying models. This

framework was chosen because it could train the HRNet architecture faster with less vRAM

requirements than the original code.

Both the Adam optimizer and the Polynomial Decay training policy were used and

the models were trained using the standard transfer-learning/fine-tuning workflow. The network

was also fed with images with 1280x1280 resolution and trained for 80,000 iterations with a

batch size of 2 images in order to compare its results with previously trained models. For this

experiment a A100-SXM4-40GB video card was used.

The U-net with Resnet models were trained using the FastAI v2 framework14. Two

models were trained with different Resnet architectures using transfer learning, with 18 and

34 residual layers, and employed the same incremental resolution training strategy described

in section 3.2 with different parameters, in which the model is trained with a specific Resnet

architecture with different resolutions for a number of epochs. The number of epochs was

determined empirically, based on the described previous experiments and the available hardware

for training. For every resolution, the learning rate finder technique was used, which consists

of plotting the learning rate vs loss relationship for a model. The idea is to reduce the amount
13https://github.com/PaddlePaddle/PaddleSeg
14https://www.fast.ai/
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of guesswork in picking a good starting learning rate. The F-score metric was monitored for

validation during the training step. This method was applied for both experiments with Resnet18

and Resnet34.

The U-net with EfficientNet models used the mobile-size baseline network, named

EfficientNet-B0. This pre-trained model was used for transfer learning due to hardware limita-

tions and to prevent overfitting, since more complex models need more data. The only trans-

formation applied to the input images was a change in the original 2592x1944 resolution to

1280x1280 due to vram limitations. The model was trained using the Pytorch framework over

13 epochs with a learning rate of 1x10−4 and a batch size of 2 images while monitoring the

Cross Entropy loss function.

For better visualization and understanding, Table 6 encapsulates all the hyperparame-

ters tailored for each of the semantic segmentation model of the performed experiments, where

LR stands for Learning Rate and the value LR Finder means that used the learning rate finder

technique describe in Smith [2017].

Table 6: Hyperparameters for all semantic segmentation models developed
Id Model Resolution Epochs LR Batch Optimizer Loss

26 HRNet 1280x1280 80,000 1×10−4 2 Adam Cross Entropy

27 Unet + Resnet 18 243x324 45 LR Finder 12 Adam Cross Entropy

28 Unet + Resnet 18 486x648 45 LR Finder 4 Adam Cross Entropy

29 Unet + Resnet 18 972x1296 55 LR Finder 1 Adam Cross Entropy

30 Unet + Resnet 34 243x324 45 LR Finder 12 Adam Cross Entropy

31 Unet + Resnet 34 486x648 45 LR Finder 4 Adam Cross Entropy

32 Unet + Resnet 34 972x1296 55 LR Finder 1 Adam Cross Entropy

33 Unet + Efficientnet 1280x1280 13 1×10−4 2 Adam Cross Entropy

34 Detectron2 2592x1944 3,000 25×10−5 8 SGD Cross Entropy

In order to use the Detectron2 library, the dataset was converted from the Supervisely

json format to the COCO format. The conversion process involves extracting image-level and

object-level information from Supervisely annotations and reformatting it into the COCO stan-

dard. The conversion is performed through the following steps in Algorithm 1.

The algorithm converts annotations from the Supervisely format to the COCO format.

For each annotation file, image-level and object-level information is extracted. These details are

transformed and collected into a new COCO object, which is added to a set of COCO anno-

tations. The process repeats for each object in all annotation files. Finally, the complete set
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Algorithm 1 Supervisely to COCO Conversion
Input: F {AnnotationFiles}
Output: C {COCOAnnotations}
for each f in F do

I← GetImgIn f o( f )
O← GetOb jects( f )
for each o in O do

c← /0
c.bbox← ToCOCOBbox(o.bbox)
c.segmentation← ToCOCOSeg(o.segmentation)
c.category←CatToID(o.category)
c.is crowd← 0
C←C∪{c}

end for
end for
SaveToCOCO(C)

of COCO annotations is saved for future use. The conversion process ensures that all rele-

vant image-level and object-level information is accurately preserved in the resulting COCO

annotations.

After the dataset preparation, the model to predict the bounding boxes and segmenta-

tion pixels for the objects is trained. Firstly, a baseline model previously trained with Detectron2

called Mask RCNN R 50 FPN model is initiated in order to have better tradeoffs between speed

and accuracy Wu et al. [(2019]. The model’s training parameters have a batch size of 8, a learn-

ing rate of 25×10−5, and a stochastic gradient descent optimizer. The original resolution of the

input images was kept and the model was trained for 3,000 iterations on the available Google

Colab15 GPU, taking approximately three and half hours to train.

3.3.2 Results

Table 7 summarizes the overall performance of the best models tested. Each model is

identified with an unique Id for later reference. Model 28, which is the combination of U-net

and Resnet18, achieved the highest mIoU of 0.6, an accuracy of 0.8564 and F-score of 0.7234,

indicating its overall strong performance and generalization across the entire dataset.

The HRNet model achieved a mIoU of 0.3889, an accuracy of 0.7316, and an F-score

of 0.4869 over the test dataset. These results were obtained after training the network for 63,300

epochs.

15https://colab.research.google.com/
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Table 7: Average results of the best models over the test dataset

Id Model Input Size mIoU Accuracy F-score
26 HRNet 1280x1280 0.3889 0.7316 0.4869

28 Unet + Resnet18 486x648 0.6 0.8564 0.7234
32 Unet + Resnet34 972x1296 0.4796 0.7967 0.59

33 Unet + EfficientNet 1280x1280 0.4187 0.8141 0.4871

The U-net with Resnet experiments had different results with different resolutions,

as expected. However, is possible to verify in Table 8 that the model that achieved the best

quantitative metrics is the second simplest model is Model 28, composed of a Resnet18 with

486x648 resolution. This model achieved an average IoU of 0.6 across the entire test dataset.

In contrast, the Resnet model with 18 residual layers and 972x1296 resolution presented only a

slight improvement over the model using 243x324 resolution.

Table 8: Quantitative results of the best U-net models for each architecture and resolution

Resnet Size Input Size Accuracy F-Score mIoU
18 243x324 0.27 0.12 0.07

18 486x648 0.85 0.72 0.6
18 972x1296 0.48 0.23 0.17

34 243x324 0.33 0.13 0.09

34 486x648 0.17 0.09 0.05

34 972x1296 0.79 0.59 0.47

A comparison of quantitative results by semantic segmentation model is presented in

Table 9. This table shows the results of the best models over the test dataset for each class.

Model 28 outperformed the other models once again, in most of the classes, achieving the

highest mIoU and precision for the Tree and Background classes, as well as the highest precision

for the Stratocumuliform and Cirriform classes. Model 28 also achieved the highest recall for

the Tree and Background classes, and the highest recall for the Stratiform and Stratocumuliform

classes.

Model 3, which consisted of an U-net architecture combined with an EfficientNet

backbone, achieved a mIoU of 0.4187, an accuracy of 0.8141, and F-score of 0.4871 over the
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Table 9: Results of the best semantic segmentation models over the test dataset, by class

Metric mIoU Precision Recall
Target Class / Id 26 28 32 33 26 28 32 33 26 28 32 33

Background 0.59 0.76 0.69 0.72 0.75 0.85 0.81 0.79 0.73 0.88 0.82 0.88
Tree 0.9 0.94 0.9 0.92 0.91 0.97 0.92 0.94 0.98 0.96 0.97 0.97

Stratocumuliform 0.55 0.75 0.65 0.69 0.67 0.86 0.78 0.75 0.76 0.86 0.80 0.89
Stratiform 0.07 0.38 0.18 0.03 0.18 0.56 0.35 0.71 0.10 0.5 0.28 0.03

Cirriform 0.1 0.46 0.35 0.13 0.45 0.69 0.6 0.49 0.12 0.58 0.46 0.15

Cumuliform 0.09 0.29 0.07 0 0.13 0.39 0.13 0 0.25 0.53 0.12 0

test dataset at the last epoch which was trained on. However, this model also presents problems

with segmenting certain classes.

Figure 14 presents the predicted segmentation of each model on the same input image.

The Stratiform class is predominant overall with a small area of Cirriform clouds on another

layer, behind the main clouds. No model was able to identify the latter, with only model 32

inferring classes Cumuliform and Stratiformes, however none are present in the input image.

It’s also possible to observe that models a, b and d make very similar predictions, however,

looking closely is possible to see that model 26 makes a more refined prediction, at the pixel

level. Model 28 and d are more similar to the ground truth mask, this can be one of the main

reasons that Model 28 outperforms the other models.

Figure 14: Predicted cloud segmentation of different models on the same input image, showing
the predominance of Stratiform class and the differences in segmentation performance between
models

However, that’s not always the case. In Figure 15 the model 26 makes wrong predic-

tions, resulting in a much rougher inference, especially over the clouds of class Cumuliform.

Models b and c have small patches of this class inside the predicted Stratocumuliform class,

which is not correct. This shows a ”localization” problem, in which the model classifies dif-

ferent regions of the same object (cloud) as multiple classes, where the ground truth is actually



3.3 Clouds-1000 Experiments 57

only one object. The model is not able to discern that there are two main cloud objects of the

same class. The models are probably being influenced more by texture and shape than other

characteristics. The Figure shows that this problem occurs with small clouds as well, the Strati-

form clouds below the main clouds are classified as Stratocumuliform, Stratiform and Cirriform,

all in the same small region. Model 28 is able to classify more parts of the Stratiform clouds

correctly, however, only model 26 is able to detect the faint areas of these clouds at the lower

level, even though it classified it incorrectly.

Figure 15: Example of model’s inference with incorrect predictions for Cumuliform clouds and
localization problem

Figure 16 shows two examples of segmentation inference of the best overall model

(b). In contrast, the Resnet model with 18 residual layers and 972x1296 resolution presented

only a slight improvement over the model using 243x324 resolution. With this model, it barely

segment the most predominant class in the dataset, the Tree class.

The results achieved using the Resnet with 34 residual layers architecture (model 32)

were not so positive. Figure 17 shows an example of inference using the best models with

486x648 (top) and 972x1296 (bottom) resolution. All resulting inferences presented the same

problem with poor segmentation, with the Model 28arely able to identify the Tree class.

The Efficientnet model achieved an average mIoU of 0.3622. A good segmentation

is presented in Figure 18 (top). The model performs well when inferring the class with more

training samples, Stratocumuliform. Even though the resulting segmentation is not very fine

where patches of the sky appear in the middle of the thin clouds atop the image, the model is

able to make fine segmentation with the Tree class at the bottom. Some very distant clouds

on the horizon were not segmented as well. However, the struggle to segment well the less

represented classes is clearly visible (bottom). This result shows that the model is capturing

some information about the Stratiform class, but still making incorrect inferences over the same

cloud, giving preference to the more predominant class. The same occurs at the top of the

image, only this time the model was able to identify only a very small patch of the correct
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Figure 16: Example of resulting segmentation inference using the Resnet18 with 486x648 res-
olution model (b)

Figure 17: Example of inference results with 486x648 resolution (top) and 972x1296 resolution
(bottom), using the Resnet with 34 residual layers architecture. The latter corresponds to model
32 discussed previously.

Cirriform class and wrongly segmented the cloud, similar to the bottom cloud. The model

captures information about the Cirriform class and segments the same cloud into two different
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classes. This is most likely due to the thin texture of these clouds.

Figure 18: Example of good and bad resulting segmentation inference with U-net and Efficient-
net model

The instance segmentation model was assessed for Average Precision (AP) after train-

ing using the COCOEvaluator class in Detectron2 Lin et al. [(2014]. The results can be seen

in Table 10, where Type represents the type of result, which can be: bounding boxes results or

segmentation pixels. The category represents one of the 5 classes, in which the ”Tree” category

represents trees and buildings and the remaining 4 classes are cloud types. A threshold of 80%

confidence was used for inference, which is a common practice.

It’s possible to see that the Tree class has the highest score, which is expected since

the trees and buildings are virtually static, are present in basically all images, and can be easily

distinguishable from clouds. Following that, the Stratocumuliform class is the cloud class with

the highest score likely due to the abundance of images with this type of cloud in the dataset.

This class is present in 81.53% of the entire dataset. The classes Stratiform and Cirriform are

present in 27.21% and 28.61% of the images in the dataset, respectively. However one can see

that the model can distinguish better Cirriform clouds in both types of results. The Cumuliform

class is only present in 9.04% of the images, leading to believe that the results are a reflection

of that as well. Overall results are shown in Figure 19.

A qualitative evaluation was also performed to observe if the ”localization” problem
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Table 10: Detectron2 results separated by Bounding box and Segmentation pixels. Results are
given by Average Precision (AP) per image category.

Type Category AP Val AP Test
Bounding box Tree 89.948 89.064

Segmentation pixels Tree 85.603 84.029

Bounding box Stratocumuliform 22.394 21.021

Segmentation pixels Stratocumuliform 19.306 17.524

Bounding box Stratiform 2.305 5.128

Segmentation pixels Stratiform 2.063 4.939

Bounding box Cirriform 9.676 9.419

Segmentation pixels Cirriform 7.079 5.678

Bounding box Cumuliform 0 5.941

Segmentation pixels Cumuliform 0.594 6.733

Figure 19: Resulting Detectron2 segmentation examples
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ocurred with this type of model as well. Result examples of this can be seen in Figure 20.

This problem is less common with this type of model, however, it’s still present with different

characteristics. On the right side of the image, is possible to observe a detection of multiple

Stratocumuliform clouds where in fact there’s only one predominant large cloud present with a

few scattered on top. On the left side one Cirriform cloud is being classified as two objects.

Figure 20: Example of localization problem where one big cloud is classified as two or more
clouds of the same type

A problem with the detected region was also identified, where sometimes the model

tends to crop out some parts of the object. Examples of this situation are shown in Figure 21.

This is most likely due to the imposed 80% threshold for plotting the bounding boxes. During

inference, the threshold is utilized to filter out low-scored bounding boxes predicted by the

model’s Fast R-CNN component. Predictions with a confidence score lower than the threshold

are discarded, therefore it is possible to have resulting inference with no cloud classification

whatsoever.

3.3.3 Discussion

This batch of experiments offers significant insights into cloud classification using

deep learning models. A variety of architectures, including U-net with ResNet and HRNet,

were employed, demonstrating nuanced advantages in handling different cloud categories. De-

spite inherent challenges posed by atmospheric conditions and cloud variability, the models

showcased promising results in automated cloud classification, which is crucial for nowcasting

solar irradiance absorption.

One notable finding was the effectiveness of simpler architectural models in certain
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Figure 21: Example of threshold problem where clouds are not classified due to the confidence
being lower than the imposed threshold

scenarios. For instance, a U-net with ResNet 18 architecture achieved an average IoU of 0.564,

indicating that less complex models can sometimes yield sufficiently accurate results, espe-

cially in less demanding resolution settings. This finding is particularly relevant for practical

applications where computational efficiency is as important as accuracy.

Moreover, the study revealed the necessity of balancing the representation of various

cloud classes in the dataset. The over-representation or under-representation of certain cloud

types can skew the model’s learning, leading to biases in classification. This highlights the need

for a meticulously curated and balanced dataset for training robust and generalizable cloud

classification models. This is especially apparent in the distribution of the Tree class, which

appears in 99.3% of the dataset images. This over-representation leads to skewed model learn-

ing, heavily favoring the predominant class over others. Addressing this imbalance is crucial

for achieving a more accurate and unbiased cloud classification.

The significant presence of the Tree class in the dataset has led to inflated results. The

models’ high accuracy in identifying this class has obscured their performance in accurately

classifying cloud types. A class-specific evaluation is necessary to understand the models’ true

performance in cloud segmentation.

Data augmentation emerged as a crucial strategy in enhancing model robustness and

dealing with dataset imbalances. However, its application must be carefully calibrated to pre-

vent suboptimal generalization.

In summary, the Clouds-1000 experiments underscore the dynamic interplay between

model complexity, dataset characteristics, and the inherent variability of cloud formations. They

advocate for ongoing experimentation and refinement of deep learning approaches in cloud
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segmentation tasks, acknowledging both the strides made and the challenges that remain.

3.3.4 Next Steps

Building on the insights gained from this round of experiments, the next phase of

the research will focus on enhancing our understanding of the impact of various architectural

choices, data preprocessing techniques, and class considerations on the performance of neural

networks in image segmentation. The planned experiments are designed to explore the follow-

ing key areas:

• Assessment of Existing Models: We plan to evaluate U-net with different backbones

like Resnet, HRNet, and EfficientNet, using a class-balanced dataset. This will help us

understand how established architectures perform with varied class distributions.

• Data Augmentation Exploration: We aim to investigate the effects of diverse data aug-

mentation techniques on model robustness and generalization. This will help in under-

standing how different augmentation strategies can enhance model performance.

• Tree Class Analysis: By considering the inclusion or exclusion of the Tree class, we seek

to gain insights into the impact of specific class characteristics on the overall performance

of the model.

• Comparison with Vision Transformers: We will extend our evaluation to include Vision

Transformers (ViTs). Comparing these with convolutional models will provide valuable

insights into their respective strengths and weaknesses in the context of image segmenta-

tion.

3.4 Clouds-1500 Experiments

After another set of experiments and validation of the proposed framework, including

the dataset quantity and quality, a new version of the dataset was created. This version follows

the same strategy as the Clouds-1000 version of the dataset, with the addition of 500 images.

Despite efforts to maintain a balanced dataset, the team was unable to achieve an ideal

balance, even with virtually one year of captured images. This imbalance is largely due to the

peculiarity of the climatology of Florianópolis, which presents a significant predominance of
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Table 11: Distributions of image groups used in the most recent version of the dataset, Clouds-
1500

Cloud Type Amount in Dataset % in Dataset
Tree 1446 96.40%

Stratocumuliform 1122 74.80%

Stratiform 435 29.00%

Cirriform 383 25.53%

Cumuliform 246 16.40%

Stratocumuliform clouds compared to clouds of the Cumulus family. The table 11 shows the

number of images that use their respective class.

As shown in Table 12, the Tree class had an increase of 387 instances (39.13%) the

Stratocumuliform class grew by 310 instances (38.18%), and the Stratiform class expanded

by 164 instances (60.52%). Additionally, Cirriform and Cumuliform classes increased by 98

(34.39%) and 156 (173.33%) instances, respectively, indicating significant augmentation of the

dataset to facilitate more comprehensive studies.

Table 12: Comparison of dataset expansion from version Clouds-1000 to Clouds-1500
Class Type Amount Added Percentage Increase (%)
Tree 457 46.20%

Stratocumuliform 310 38.18%

Stratiform 164 60.52%

Cirriform 98 34.39%

Cumuliform 156 173.33%

The experiments were carefully structured, taking into account both the qualitative

and quantitative aspects of model performance. The use of two versions of the Clouds-1500

dataset, one including the Tree class and one without, maintained consistency across all tests,

ensuring that the insights derived were valid and comparable. This comprehensive examination

aims to contribute valuable insights to the field of image segmentation and offers practical

guidance for researchers and practitioners working on similar challenges.

For this batch of experiments, 29 models were created and evaluated in total. In order

to perform a data selection process for creating train, validation, and test subsets from a dataset

of images and their corresponding masks the technique demonstrated in 2 was performed.

This version of the dataset consists of a total of 1500 images, however some images
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were missing class annotations and had to be removed from the dataset for the following ex-

periments. This exclusion lead to a total of 1478 images used. Now, let D represent the set

of available directories containing images and masks, and let P = {5,4,3,2,1} be the set of

priority values assigned to the pixel values in the masks. The algorithm follows the following

steps:

Algorithm 2 Image Subset Selection Algorithm
1: Let D be the set of available directories
2: Let P = {5,4,3,2,1} be the priority values
3: Initialize counters: ntrain← 0, nvalidation← 0, ntest← 0
4: for subset ∈ {train,validation, test} do
5: Create output directories for subset
6: for all files in subset directory do
7: if file is an image (e.g., ”.jpg”) then
8: mask file← Generate mask filename
9: selected← False

10: for all directory Di in shuffled D do
11: if image and mask files exist in Di then
12: Copy image and mask to subset and corresponding mask subset
13: Update subset image counter
14: selected← True
15: Break loop
16: end if
17: end for
18: if selected is False then
19: Continue to next file
20: end if
21: end if
22: end for
23: end for

The algorithm ensures a representative distribution of images with varying pixel val-

ues across the three subsets, while also considering a shuffling mechanism to avoid any bias

in the selection order. The output is the creation of three subsets: train, validation, and test,

containing a total of 1227, 28, and 223 images, respectively.

3.4.1 Description

Table 13 summarizes all the performed experiments, consolidating parameters across

all different approaches implemented. This synthesis provides a coherent view of the setup,

serving as a reference for details and groundwork for discussing results.

Efficientnet is grounded in an established architecture, complemented with an efficient
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Table 13: Summary of all the performed experiments
# Experiment Backbone Tree Augmentation Input Size Batch Size Device

35 EfficientNet U-net with b0 Yes No 1280 x 1280 2 RTX 3090

36 EfficientNet U-net with b0 No No 1280 x 1280 2 RTX 3090

37 EfficientNet U-net with b0 No Yes 1280 x 1280 2 RTX 3090

38 EfficientNet U-net with b1 No Yes 1280 x 1280 2 RTX 3090

39 EfficientNet U-net with b1 No No 1280 x 1280 2 RTX 3090

40 HRNet OCRNet Yes No 1280 x 1280 2 Tesla V100

41 HRNet OCRNet No No 1280 x 1280 2 RTX 3090

42 HRNet OCRNet No Yes 1280 x 1280 2 RTX 4090

43 HRNet OCRNet No Yes 1280 x 1280 2 RTX 3090

44 U-net + Resnet Resnet 18 Yes No 243x324 12 Tesla V100

45 U-net + Resnet Resnet 18 Yes No 486x648 4 Tesla V100

46 U-net + Resnet Resnet 18 Yes No 972x1296 1 Tesla V100

47 U-net + Resnet Resnet 18 No No 243x324 60 a100 40gb

48 U-net + Resnet Resnet 18 No No 486x648 16 a100 40gb

49 U-net + Resnet Resnet 18 No No 972x1296 4 a100 40gb

50 U-net + Resnet Resnet 18 No Yes 243x324 60 a100 40gb

51 U-net + Resnet Resnet 18 No Yes 486x648 16 a100 40gb

52 U-net + Resnet Resnet 18 No Yes 972x1296 4 a100 40gb

53 U-net + Resnet Resnet 34 Yes No 243x324 12 Tesla V100

54 U-net + Resnet Resnet 34 Yes No 486x648 4 Tesla V100

55 U-net + Resnet Resnet 34 Yes No 972x1296 1 Tesla V100

56 U-net + Resnet Resnet 34 No No 243x324 12 Tesla T4

57 U-net + Resnet Resnet 34 No No 486x648 4 Tesla T4

58 U-net + Resnet Resnet 34 No No 972x1296 1 Tesla T4

59 U-net + Resnet Resnet 34 No Yes 243x324 60 a100 40gb

60 U-net + Resnet Resnet 34 No Yes 486x648 16 a100 40gb

61 U-net + Resnet Resnet 34 No Yes 972x1296 4 a100 40gb

62 Transformer PP-LiteSeg No Yes 1280 x 1280 2 a100 40gb

63 Transformer Segformer No Yes 1280 x 1280 2 a100 40gb

backbone. For image processing, dimensions were changed to 1280×1280 based on hardware

processing capabilities constraints; empirical observations from prior testing indicated optimal

memory utilization on 16GB RAM GPUs.

For calculating the loss we used the CrossEntropyLoss. For it allows for heavier

penalization of incorrect predictions, providing a nuanced error gradient which aids learning.

Optimization was achieved using an adaptive optimizer. This optimizer is a combination of two



3.4 Clouds-1500 Experiments 67

other optimizer, which computes adaptive learning rates for parameters. The update rule adapts

weights using moment estimates, speeding up convergence and lessening the need for learning

rate adjustments.

A consistent rate was maintained across experiments to ensure uniformity and com-

parability. Fluctuating rates could introduce variances, complicating the attribution of perfor-

mance differences to architectures or other adjustments.

Training duration was capped due to time constraints associated with computational

resources. Specifically, processing time for a single epoch was approximately 28 hours with

one concurrent worker.

1. A baseline model developed through architecture search to identify optimal architectures

at different resolutions.

2. A scaled-up version of the previous model, with more parameters, potentially more accu-

rate but computationally expensive. Scaled up using a method which increases network

aspects.

Techniques to artificially expand training data by applying various transformations

were mentioned. Here are the specific techniques:

• An augmentation that mirrors images on a horizontal axis. Useful since the vertical ori-

entation is crucial and constant.

– Probability of mirroring during training.

• An augmentation combining three transformations:

– Moving the image by pixels.

– Zooming in or out, aiding in recognizing varying sizes.

– Rotating by an angle, aiding in orientation invariance.

With the foundation of an efficient architecture and key augmentations chosen, a series

of tests were conducted. Each aimed at understanding the impact of variants and transforma-

tions on task performance. The following detail each setup:

• A combination with an efficient architecture:
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– Variation 1: Included a class with a certain number of workers.

– Variation 2: Excluded a class with a different number of workers.

– Variation 3: Used transformations, excluded a class, and adjusted the number of

workers.

• Another combination with a scaled-up architecture:

– Configuration 1: Excluded a class, used transformations similar to the previous com-

bination, and set a certain number of workers.

– Configuration 2: Excluded a class, did not use transformations, and set the same

number of workers.

Adjusting the number of workers across configurations was strategic, responding to

the environment. Given concurrent processes, adjusting helps in managing resources efficiently.

By doing so, data loading is optimized without overburdening, allowing for smooth sessions and

consistent testing.

For the HRNet experiments we performed a resizing to 1280× 1280 matched mem-

ory specifications, ensuring batch processing accommodation and used a backbone and variant

optimized for long-range contextual capture in segmentation.

For loss calculation we also used CrossEntropyLoss optimized with AdamW, a variant

including weight decay, parameters set to penalize weight magnitude, aiding overfit prevention

and model generalization.

Training spanned 80,000 iterations, a figure based on complexity and dataset size to

ensure convergence.

Exploration of training conditions was aimed at performance optimization and under-

standing impacts of various configurations:

1. Inclusion of the tree class allowed direct comparison with prior experiments incorporating

this class. Trained using infrastructure with a balance between computational power and

accessibility.

2. Noting possible detractions from overall performance by the tree class, training of a con-

figuration specifically excluding it aimed to discern its influence on segmentation and

ascertain any efficacy improvement. Trained using an advanced computational ecosys-

tem.
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3. With potential augmentation benefits recognized, an exploration combined class exclu-

sion with augmentation techniques to measure enhancement impacts. The implemented

augmentations introduced mirrored image versions, combined with color and geometric

perturbations, and pixel value scaling.

For the U-net + Resnet experiments, the same incremental resizing technique de-

scribed in section 3.2 was adopted, allowing training at multiple resolutions. Beginning with

243×324, then 486×648, and 972×1296. This method’s rationale is that smaller images speed

up initial epochs, while larger images, introduced later, provide finer details. These experiments

employ a series of incremental input sizes and variations in the Resnet backbone (Resnet 18 and

Resnet 34) to evaluate the model’s segmentation performance across different cloud classes.

Each size increase was preceded by a fine-tuning phase of 15 epochs to adapt to new

dimensions. The lr find() method from FastAI, plotting loss versus rates, guided optimal rate

selection. Post-fine-tuning training lasted 30 epochs for the first sizes and 40 for the largest,

necessary for capturing intricate details at higher resolutions.

CrossEntropyLoss was, once again, consistently used, with a steady weight decay of

1e−3 to mitigate overfitting. A custom metric, DiceMulti, monitored performance, aggregating

scores across classes, offering a comprehensive efficacy view.

Transformers are a class of neural network architectures that have revolutionized

sequence-to-sequence tasks. Introduced by Vaswani et al. [2023], their fundamental premise

is built around the self-attention mechanism.

Given a sequence of input tokens, x1,x2, . . . ,xn, each token is transformed into corre-

sponding query Q, key K, and value V representations using learned weight matrices WQ,WK,

and WV respectively:

Q = x×WQ

K = x×WK

V = x×WV

The attention scores between a query from one token and the keys from all tokens are

computed using a dot product:

Score(Q,K) = Q ·KT
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These scores determine the weight of each token’s value for the current token, after

being normalized with a softmax function:

Attention(Q,K,V ) = softmax
(

Score(Q,K)√
dk

)
×V

Where dk is the dimension of the key vectors, and the division by
√

dk is for scaling

purposes.

The output of the self-attention mechanism for each token is a weighted sum of all

value vectors, where the weights are determined by the attention scores.

In practice, multiple self-attention mechanisms (or “heads”) are run in parallel, each

using different weight matrices. The outputs of these heads are concatenated and linearly trans-

formed to produce the final output.

When applied to cloud segmentation, the transformer can capture long-range depen-

dencies between different regions of an image. Traditionally, convolutions in CNNs have a

localized view (defined by their kernel size), but the self-attention mechanism in transformers

can weigh the importance of all other pixels when considering a particular pixel.

In the context of cloud segmentation:

1. Cloud structures can be vast and intricately connected, making it vital to understand the

global context and dependencies between different parts of an image.

2. Transformers can provide a more holistic view of an image, allowing the model to recog-

nize patterns and structures that span large distances.

3. By attending to distant but related parts of an image, transformers can potentially improve

the granularity and accuracy of cloud segmentation.

While transformers were originally designed for sequence-to-sequence tasks, their

inherent capability to capture long-range dependencies makes them promising candidates for

tasks like cloud segmentation, where understanding the global context of an image is crucial.

Within the scope of these experiments, the transformative capabilities of Transformer

architectures were explored, notably through the lenses of the PP-LiteSeg and Segformer mod-

els. Both models were trained for 80.000 iterations in order to address the intricate challenges

of cloud segmentation, especially the demarcation between nebulous cloud structures and clear

skies, necessitated a particularly adept model. It was in this context that the PP-LiteSeg, with

its integration of transformer mechanisms, emerged as a pivotal asset.
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The PP-LiteSeg is introduced as a lightweight model tailored for real-time semantic

segmentation tasks. A cornerstone of its design is the Flexible and Lightweight Decoder (FLD),

which has been conceptualized to mitigate the computational overhead traditionally associated

with decoders in segmentation tasks. Pushing the envelope further, the Model 28oasts a Unified

Attention Fusion Module (UAFM). This module is a harmonious blend of spatial and channel

attention mechanisms, culminating in the generation of a weight which subsequently fuses with

the input features to augment the quality of feature representation.

Additionally, in a bid to combine global context without being penalized by high com-

putational costs, the Simple Pyramid Pooling Module (SPPM) was introduced into the model.

The synergy of these modules and mechanisms enables PP-LiteSeg to carve out a unique niche

for itself, where it champions a commendable trade-off between speed and accuracy, setting it

leagues apart from contemporaneous methodologies.

Recognizing the intrinsic challenges of cloud segmentation, where interpreting vast

and complex cloud configurations is paramount, the decision to integrate PP-LiteSeg was strate-

gic. The model’s understanding of spatial relationships and patterns rendered it particularly

adept at navigating the intricate mazes of cloud structures. The transformer functionalities

within PP-LiteSeg furnished the comprehensive and holistic perspective of the task warranted,

making it an invaluable component of the experimental arsenal.

Both experiments have the input images resized to 1280× 1280 dimensions, with a

batch size for training. The RandomHorizontalFlip data augmentation technique was applied

to enhance the model’s generalization capabilities.

To further tackle the localization problem described in section 3.3, a tailored approach

within the Transformer architectures was employed, notably by leveraging a MixedLoss func-

tion. This function combines CrossEntropyLoss and SemanticConnectivityLoss in a calculated

ratio to refine the segmentation output, specifically addressing the challenge of correctly delin-

eating cloud structures without fragmenting them into multiple classes erroneously.

The CrossEntropyLoss serves as the primary component of the loss function, driving

the model to align its predictions with the ground-truth class labels. It fundamentally encourages

accurate classification on a per-pixel basis, which is critical for the segmentation task. However,

when used alone, it might not fully capture the relational nuances between neighboring pixels,

potentially leading to the previously observed localization problem where different regions of

the same cloud are incorrectly classified as separate entities.
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To counteract this, the SemanticConnectivityLoss was integrated, a novel loss compo-

nent designed to preserve semantic continuity across the segmented regions. By emphasizing

the connectivity of semantically similar regions, this loss component helps the model to recog-

nize and maintain the integrity of individual cloud structures within the segmentation map. It

effectively penalizes the model for producing fragmented classifications within a single cloud,

encouraging it to produce a coherent segmentation that reflects the unified nature of each cloud

entity.

By combining these losses through the MixedLoss method, with coefficients [0.8,0.2],

individual pixel accuracy and semantic coherence across the entire image were aimed. This

mixed approach fosters a balance, allowing the model to learn from the global structural in-

formation provided by the transformer’s attention mechanisms while being steered away from

over-segmentation.

The Transformer-based PP-LiteSeg and Segformer models inherently capture long-

range dependencies within the image, which is beneficial for understanding the global context

of cloud configurations. The integration of SemanticConnectivityLoss within the MixedLoss

function complements these architectural strengths. It ensures that while the model benefits

from the global perspective afforded by the Transformers, it does not lose sight of the local

continuity that is crucial for accurate cloud segmentation.

The learning rate schedule follows a PolynomialDecay policy, starting from 0.0001

and decaying according to the equation:

learning rate = initial learning rate×
(

1− current iteration
total iterations

)0.9

This method ensures a smooth and adaptive learning rate adjustment, conducive to stable and

effective optimization. The AdamW optimizer, with its β1 and β2 values of 0.9 and 0.999,

respectively, along with a weight decay of 0.01, completes the optimization strategy, combining

momentum and regularization for efficient convergence.

In the first Transformer experiment, the PP-LiteSeg model was employed, focusing

on specific architectural choices. The STDC2 architecture backbone was used. This backbone

choice involves a Spatio-Temporal Deep Convolutional design (STDC2), aimed at capturing

both spatial and temporal information through a series of convolutional layers. It helps in lever-

aging hierarchical features from different stages for more effective segmentation.

The architecture is further characterized by the arm out chs and seg head inter chs
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parameters. The arm out chs vector [32,64,128] represents the number of output channels in

different arm stages, which is essential in controlling the capacity and complexity of the model.

The seg head inter chs vector [32,64,64] defines the number of channels in the intermediate

layers of the segmentation head, offering flexibility in design and efficiency in computation.

The other experiment was conducted using the SegFormer model, which integrates

the Vision Transformer (ViT) architecture with a novel segmenting strategy. The SegFormer

leverages a backbone known as the MixVisionTransformer B0, combining convolutional neural

networks with transformers.

Vision Transformers (ViTs) represent an adaptation of the transformer architecture,

initially designed for natural language processing tasks, to computer vision challenges. Unlike

regular transformers, which operate primarily on sequential data, ViTs apply the transformer’s

self-attention mechanism directly to a sequence of image patches. This allows the model to

capture relationships and dependencies across different regions of the image, which is a depar-

ture from the localized feature extraction commonly found in convolutional neural networks

(CNNs).

In a traditional transformer, the input is usually a sequence of tokens, often words

or subwords, embedded in a continuous vector space. Attention mechanisms within the trans-

former then enable the model to weigh the significance of each token in relation to others,

allowing for the modeling of complex dependencies in the input sequence.

In contrast, the Vision Transformer begins by dividing an input image into non-

overlapping patches, treating them as analogous to the tokens in a text sequence. These patches

are linearly embedded into a vector space and processed through a series of transformer layers.

The self-attention mechanism allows the model to consider the entire image at once, thereby

capturing global patterns and dependencies that might be missed by localized convolutions.

While the transformer’s self-attention mechanism offers a powerful means of model-

ing dependencies in sequential data, the Vision Transformer’s adaptation of this architecture to

visual data opens up new possibilities for understanding and representing images. By operating

on patches of the image rather than on individual pixels or localized features, the Vision Trans-

former can abstract and generalize visual patterns across the image, potentially offering superior

performance in tasks like image classification, object detection, and semantic segmentation.

The departure from localized convolutions to global attention represents a fundamen-

tal shift in perspective and offers a complementary view of visual data. This has led to the
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emergence of hybrid models, such as SegFormer, that combine the strengths of both transform-

ers and traditional CNNs. Such integrations aim to balance the local feature extraction capabil-

ities of CNNs with the global context awareness provided by transformers, creating models that

are both interpretative and effective in complex visual tasks.

The SegFormer’s innovative integration of transformers with traditional CNNs, cou-

pled with the specific configuration for the cloud segmentation task, offers a promising direc-

tion for achieving both efficiency and effectiveness in segmenting cloud regions. Extensive

evaluations are expected to elucidate the comparative performance between this model and the

previously described PP-LiteSeg.

3.4.2 Results

Table 14 shows the results of all models created for this suite of experiments, high-

lighting the best results of each metric column in bold.

Results from experiments 35 through 39, applying EfficientNet with U-net structures

(with b0 and b1 structures), show varied performance across different cloud categories. These

outcomes reveal nuanced capabilities under varying conditions of category inclusion and data

transformation.

Experiment 35 showed exceptional detection in one category is noted with the high-

est measures of 0.94 and 0.96, and an outstanding value of 0.98, as seen in predictions for

another category. Despite this, there is a notable decline in metrics for other categories across

all tests, with measures reaching zero. This suggests limitations in segmentation abilities for

these categories, potentially due to factors like category imbalance or unrepresentative data for

training.

As demonstrated in Figure 22, comparisons between predictions from experiment 35

and the ground truth emphasize segmentation effectiveness for certain cloud categories. Yet,

they also reveal difficulties in capturing subtle features of other categories, with zero recall for

these. The consistent metrics in background elements, contrasted with over-segmentation in

some clouds, reveal nuanced strengths and areas for refinement, such as addressing category

imbalances and enhancing feature capture for fine-structured clouds.

Experiments with a more complex backbone (38 and 39) do not show a marked im-

provement over the simpler backbone (35 to 37), suggesting that increasing complexity does

not translate to proportional gains in segmentation for the cloud categories and data used.



3.4 Clouds-1500 Experiments 75

Table 14: Results of all models over the test dataset, by class
Tree Stratocumuliform Stratiform Cirriform Cumuliform

# IoU Pr Recall IoU Pr Recall IoU Pr Recall IoU Pr Recall IoU Pr Recall

35 0.94 0.96 0.98 0.54 0.57 0.91 0.54 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00

36 - - - 0.53 0.55 0.94 0.00 0.14 0.00 0.00 0.11 0.00 0.00 0.09 0.00

37 - - - 0.53 0.55 0.94 0.00 0.03 0.00 0.00 0.02 0.00 0.00 0.07 0.00

38 - - - 0.52 0.55 0.91 0.00 0.09 0.00 0.00 0.04 0.00 0.00 0.08 0.00

39 - - - 0.54 0.58 0.89 0.00 0.13 0.00 0.00 0.02 0.00 0.00 0.20 0.00

40 0.97 0.99 0.98 0.48 0.74 0.57 0.44 0.52 0.76 0.26 0.44 0.39 0.64 0.77 0.79

41 - - - 0.64 0.70 0.87 0.46 0.67 0.59 0.16 0.73 0.17 0.39 0.69 0.48

42 - - - 0.58 0.69 0.78 0.34 0.65 0.42 0.34 0.52 0.50 0.61 0.65 0.92
43* - - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

44 0.89 0.97 0.91 0.89 0.98 0.91 0.59 0.71 0.77 0.26 0.49 0.36 0.34 0.56 0.46

45 0.89 0.97 0.91 0.59 0.69 0.79 0.23 0.47 0.31 0.39 0.63 0.51 0.27 0.62 0.33

46 0.91 0.97 0.93 0.59 0.69 0.79 0.23 0.47 0.88 0.39 0.63 0.51 0.27 0.62 0.33

47 - - - 0.51 0.75 0.62 0.20 0.40 0.30 0.34 0.46 0.57 0.28 0.49 0.39

48 - - - 0.58 0.67 0.82 0.14 0.48 0.16 0.37 0.57 0.52 0.28 0.51 0.38

49 - - - 0.57 0.63 0.85 0.09 0.41 0.11 0.38 0.50 0.63 0.28 0.51 0.38

50 - - - 0.58 0.68 0.80 0.23 0.48 0.32 0.36 0.57 0.50 0.25 0.51 0.33

51 - - - 0.59 0.67 0.82 0.17 0.50 0.20 0.39 0.61 0.52 0.27 0.46 0.40

52 - - - 0.54 0.67 0.73 0.24 0.38 0.39 0.37 0.60 0.49 0.23 0.54 0.29

53 0.88 0.98 0.90 0.55 0.73 0.69 0.26 0.43 0.39 0.39 0.57 0.56 0.29 0.50 0.40

54 0.92 0.97 0.94 0.55 0.71 0.71 0.22 0.45 0.29 0.37 0.52 0.57 0.30 0.37 0.32

155 0.94 0.97 0.96 0.52 0.62 0.77 0.11 0.32 0.14 0.31 0.50 0.45 0.05 0.48 0.06

56 - - - 0.59 0.71 0.67 0.27 0.48 0.38 0.39 0.61 0.51 0.27 0.55 0.34

57 - - - 0.56 0.68 0.75 0.22 0.46 0.29 0.37 0.50 0.58 0.23 0.50 0.30

58 - - - 0.50 0.60 0.75 0.12 0.26 0.18 0.17 0.54 0.20 0.10 0.34 0.12

59 - - - 0.59 0.71 0.77 0.24 0.52 0.32 0.37 0.57 0.52 0.32 0.50 0.47

60 - - - 0.58 0.67 0.81 0.17 0.47 0.22 0.38 0.58 0.52 0.25 0.51 0.33

61 - - - 0.59 0.67 0.83 0.19 0.49 0.24 0.38 0.62 0.50 0.27 0.57 0.35

62 - - - 0.56 0.66 0.77 0.17 0.34 0.25 0.39 0.68 0.47 0.28 0.43 0.43

63 - - - 0.59 0.72 0.76 0.25 0.45 0.35 0.37 0.55 0.54 0.35 0.50 0.54

Figures 29, 30, 31, and 32 in the Appendix D section, illustrate outcomes of experi-

ments 36 - 39. All structures have mislabeled most cloud formations, except for one category in

Experiment 35. This misclassification is quantitatively reflected in the precision scores for Stra-

tocumuliform clouds, which are relatively low compared to their recall rates that exceed 89%

across the experiments. Such high recall rates indicate that the models are likely overfitting to
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Figure 22: Experiment 35 sample results of inference over the test dataset

the Stratocumuliform class, leading to a high number of false positives. This overgeneralization

severely undermines the models’ ability to accurately identify and classify other cloud types, as

seen by the negligible IoU scores for the Stratiform, Cirriform, and Cumuliform classes.

The results from experiments 40 through 43, utilizing HRNet combined with OCR-

Net, illustrate a varied performance that is particularly informative regarding the network’s

ability to generalize across different cloud classes, resulting in some very good overall models.

Experiment 40 presents exemplary performance for the Background class with an IoU

of 0.97, precision of 0.99, and recall of 0.98, signifying exceptional ability in distinguishing

clear sky from clouds. This trend continues with high metrics for the Stratocumuliform and Cu-

muliform classes, although a significant dip in IoU for the Stratiform class is observed. Notably,

the Cirriform class shows a robust precision of 0.77, despite a moderate IoU, which suggests

confidence in the model’s predictions for this complex cloud type. This model is the best model

overall from experiments 40 to 43. It shows a strong ability to distinguish the background from
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cloud types and maintains a robust performance across various cloud classes. Experiment 40

exhibits a good balance between precision and recall, suggesting it is capable of generalizing

well across the different cloud structures represented in the dataset.

Experiment 41 demonstrates an improved IoU of 0.64 for the Stratocumuliform class

over experiment 40, indicating better segmentation capabilities. However, there is a noticeable

decline in precision and recall for the Cumuliform class, as shown by the precision of 0.69 and

recall of 0.48. This could suggest that while experiment 41 improves upon certain cloud types,

it may not be as effective in distinguishing Cumuliform clouds as experiment 40.

Experiment 42 shows a strong recall of 0.92 for the Cumuliform class, which is a sig-

nificant improvement, indicating the model’s sensitivity to this type of cloud has been enhanced.

Nevertheless, the lower IoUs for Stratocumuliform and Stratiform classes, when compared to

experiment 40, imply that there could be a trade-off in the model’s performance across different

cloud types.

The difference in performance of experiment 43, where all metrics collapse to zero

except for the Background class, which has perfect recall but extremely low precision and IoU,

suggests a major issue with the model’s ability to generalize. The high recall alongside a very

low precision indicates that while the model is labeling almost all pixels as background, it

is doing so incorrectly, leading to a failure in segmenting any cloud classes. The utilization

of ”RandomHorizontalFlip, RandomDistort, Normalize” data augmentation techniques might

have contributed to this generalization issue. It’s possible that the combination of these aug-

mentations introduced too much variability or altered the images in a way that the model could

no longer effectively learn the relevant features for cloud segmentation.

The qualitative results from experiment 40 can be visualized in Figure 23, providing

an illustrative representation of the model’s performance. The strong capacity for cloud clas-

sification is evident in the first sample, where the model demonstrates a pronounced ability to

distinguish between Cumuliform and Stratocumuliform clouds, reflecting the high Intersection

over Union (IoU) scores. This aligns with the quantitative measures, which recorded an IoU of

0.97 for Cumuliform and 0.99 for Stratocumuliform classes. Despite some minor misclassifi-

cations, the predicted cloud contours are largely accurate, denoting a robust feature extraction

capability. The other three experiments can be seen on Figures 33, 34 and 35 in the Appendix

D section.

Challenges in classifying Stratiform and Cirriform clouds are observable in the first
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Figure 23: Experiment 40 sample results of inference over the test dataset

sample, which is consistent with the comparatively lower IoU scores of 0.48 and 0.57 for these

classes, respectively. The model’s propensity to overpredict certain cloud types indicates a

potential area for improvement, specifically in differentiating cloud classes with subtler charac-

teristics.

Overall, the visual samples from experiment 40, as depicted in Figure 23, underscore

the model’s proficiency in segmenting multiple cloud types with substantial accuracy, particu-

larly for Cumuliform and Stratocumuliform clouds. The fidelity of the spatial distribution in the

model’s predictions points to a high degree of accuracy in cloud segmentation tasks. Nonethe-

less, the performance on Stratiform and Cirriform clouds, alongside the segmentation of trees

and background, indicates a scope for further optimization. The demonstrated capabilities es-

tablish experiment 40’s HRNet combined with OCRNet as the most adept model across the

experiments, especially when considering its ability to generalize and its detailed adherence to

the intricate structures of cloud forms.
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The Unet + Resnet experiments generally show good performance for the Background

and Stratocumuliform classes across most experiments, as indicated by relatively high IoU, pre-

cision, and recall values. The performance on the Stratiform class is moderate but significantly

lower than for the Background and Stratocumuliform classes, which suggests that the models

are less adept at capturing the features of this cloud type. However, experiment 44 demonstrates

the highest IoU for Tree and Stratocumuliform, and very high precision and recall for these

classes as well, establishing it as the strongest model overall for these classes. It also presents

decent scores for Cirriform and Cumuliform clouds, indicating a more balanced performance

compared to other models in the experiment.

The Cirriform and Cumuliform classes consistently present challenges for segmenta-

tion, as evidenced by lower performance metrics across all experiments. However, models 45

and 46 achieve the highest IoU values for Cirriform clouds, suggesting certain configurations

within these experiments were more adept at segmenting this cloud type. Model 46 also shows

notably high recall for Stratiform clouds, indicating its effectiveness at detecting most instances

of this class despite the moderate IoU.

The incremental input sizes do not demonstrate a straightforward relationship between

input size and segmentation performance. Some larger input sizes lead to better performance

for certain classes (e.g., the Stratiform class in Experiment 46), but this is not a consistent trend

across all classes and experiments. The varying performance across the input sizes suggests

that while larger input sizes may provide more detailed information, they do not necessarily

translate into better segmentation performance. This could be due to the fact that the increased

resolution might introduce noise or overfitting issues.

Comparing the Resnet 18 (experiments 44 - 52) backbone variations, there is no

clear indication that one backbone outperforms the other significantly across the different cloud

classes up to Experiment 52. This indicates that the increase in resolution does not have a major

impact on segmentation performance for this task.

For the Stratiform class, the highest IoU is observed in Experiment 44, suggesting

that this particular configuration might be capturing the relevant features of this class more

effectively. While the performance on Cirriform and Cumuliform classes is low across the

board, models 45 and 46 for Cirriform and 10c for Cumuliform classes show that there are

individual experiments where these classes have slightly higher metrics. This indicates that

there might be specific configurations or conditions under which the models can capture these



3.4 Clouds-1500 Experiments 80

cloud types better, and these warrant further investigation.

In conclusion, while the experiments from 44 to 52 provide valuable insights, model

44 stands out for its overall balanced performance across various cloud classes. It appears to be

the best model of the series, suggesting a potential direction for optimizing cloud segmentation

tasks. Further investigation into the configurations of model 44 could yield important insights

into improving segmentation accuracy for more complex cloud types.

Figure 24: Experiment 44 sample results of inference over the test dataset

The inference samples in Figure 24 demonstrate the Resnet18 model’s performance

in classifying various categories such as Cumuliform, Cirriform, Stratiform, Stratocumuliform,

Tree, and Background. The predictions made by the model largely conform to the ground truth

with some noticeable exceptions, which is indicative of the model’s high precision and recall in

most categories, as reflected by the quantitative metrics of experiment 10a, showing particularly

strong performance in the Stratocumuliform class with IoU 0.89, precision 0.98 and recall 0.91.

However, some challenges are visible in the differentiation between very similar
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classes, such as between Stratiform and Stratocumuliform clouds, as well as between cloud

types and the background, where the contrasts are subtle. This is quantitatively corroborated

by the relatively lower precision score in the latter. The results imply that while the model is

generally robust in classifying distinct features, it may struggle with classes that have less pro-

nounced distinguishing characteristics or where the segmentation boundaries are less defined.

This observation could lead to further model refinement, potentially by augmenting the train-

ing data in underperforming categories or by tuning the model to better capture the nuances

between similar classes.

The remaining results of the Resnet18 experiments are presented in Figures 36, 37,

38, 39, 40, 41, 42, 43, in the Appendix D section.

Moving forward to experiments 53 to 59, the modifications in the U-net + Resnet

structure and input sizes continue to impact the model’s performance on cloud segmentation.

These experiments further the understanding of how backbone variations and input parameters

affect segmentation accuracy across different cloud types.

In this series, models 53, 54, and 55, which utilize the Resnet 34 backbone, show

an intriguing pattern. Notably, 53 and 54 both exhibit high IoU scores, with 53 demonstrating

an impressive balance across IoU, precision, and recall metrics, particularly in Background,

Stratocumuliform, and Stratiform classes. Model 54, while it has slightly lower IoU in certain

classes compared to 53, it has a better recall across almost all classes, which may be preferred

in applications where detecting the presence of a cloud type is more critical than precisely

delineating its boundaries.

On the other hand, model 55, despite achieving the highest IoU and precision for

Background, Stratocumuliform, and Stratiform classes, experiences a significant drop in per-

formance in the Cirriform and Cumuliform classes. This hints at a potential overfitting to the

more easily segmented classes at the expense of the model’s generalization capabilities.

Experiments 56 to 61 do not consistently surpass the segmentation accuracy of the

model from experiments 53 - 55. While there are improvements in certain areas, such as the

Cumuliform class in model 61, they do not present a clear overall advancement in segmentation

performance.

Figure 25 presents a visual assessment of the Resnet34 model’s performance in dis-

cerning distinct classes in sky images. The figure suggests that the Resnet34 model has a com-

mendable degree of accuracy in identifying and segmenting the main cloud formations. The
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Figure 25: Experiment 53 sample results of inference over the test dataset

model’s prediction of Cirriform clouds are not precise, which are thinner and more dispersed

clouds, posing a challenge for accurate segmentation. The predictions for Stratiform and Stra-

tocumuliform classes reveal some confusion, possibly due to their similar visual textures, which

could result in misclassification. The model’s interpretation of the ’Tree’ class and its separation

from the background are performatic. Although the differentiation is quite clear in the input im-

ages, the prediction panels show some inconsistencies, especially in the boundary areas where

the tree line meets the sky.

The remaining results of the Resnet34 experiments are presented in Figures 44, 45,

46, 47, 48, 49, 50, 51, in the Appendix D section.

In conclusion, model 53 emerges as the best performer with its high accuracy and

balanced metrics, challenging the earlier dominance of model 44. Model 53’s results suggest

that while the increased depth of the Resnet 34 backbone does not drastically outshine Resnet

18 in all aspects, it does offer benefits in certain configurations and classes. The comprehensive



3.4 Clouds-1500 Experiments 83

examination of models 10a to 15c underscores the importance of tailored configurations for each

cloud class and highlights the potential for further nuanced improvements in cloud segmentation

tasks. The quest for an optimal model must, therefore, consider both the nuanced needs of

the specific cloud classes being segmented and the trade-offs between different performance

metrics.

Experiment 62, utilizing the PP-LiteSeg architecture, presents a balanced perfor-

mance with a notable IoU of 0.77 for the Cumuliform class, which is impressive compared

to previous models. However, it demonstrates moderate performance in other cloud classes

with an IoU of 0.56 for the Background class and a lower IoU for the Stratiform class. De-

spite its moderate IoU, this model achieves reasonable precision and recall values across most

classes, indicating a fair balance between detecting the presence of clouds and delineating their

boundaries. This suggests that while the model can generally distinguish between cloud types,

there is room for improvement in classification accuracy.

Figure 26: Experiment 62 sample results of inference over the test dataset
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As illustrated in Figure 26, allows for the observation of the model’s segmentation

capabilities. In the predicted images, the model displays some proficiency in recognizing and

segmenting Cirriform clouds, as indicated by the relatively accurate representation of their fluffy

and dense structures. However, the model’s ability to segment well Stratiform, seems to be less

precise, as seen in the misclassified regions in the first row of predictions.

The model also appears to struggle with accurately delineating Stratocumuliform

clouds, possibly due to their subtle textural differences, leading to instances of mislabeling

this class with the Cumuliform class in the third row. This can be a common issue when dealing

with classes that have low inter-class variability and high intra-class similarity.

Overall, the visual results presented in Figure 26 imply a solid foundational capability

of the model in semantic segmentation tasks, with room for enhancement in class distinction

and edge definition. Such qualitative insights, when supplemented with the missing quantitative

metrics, could provide a more comprehensive understanding of the model’s performance and

inform further developmental strategies.

Experiment 63, employing the Segformer architecture, indicates a step forward, espe-

cially in terms of Background and Cumuliform classes with IoUs of 0.59 and 0.76, respectively,

and impressive recall values across the board. The improvements in precision for the Stratocu-

muliform class and IoU for the Stratiform class suggest that this architecture is more capable of

capturing finer details within these cloud types. Moreover, the improved precision in the Cirri-

form and Cumuliform classes, coupled with the highest recall of 0.54 in Cumuliform, reflects

this model’s enhanced ability to segment these complex structures.

The advancements in Experiment 63’s Segformer architecture over the PP-LiteSeg

architecture of Experiment 62 are evident in the ability to better differentiate between the cloud

types, achieving more accurate segmentation, particularly for the Stratocumuliform and Strati-

form classes. However, both Transformer-based models show that there are still challenges to

overcome, especially when it comes to the complex textures of Cirriform clouds, where CNN-

based models had already struggled.

Comparing the performance of the Transformer-based models to the earlier CNN-

based models, it’s clear that each architecture has its strengths and areas for improvement.

While Transformer models provide competitive or superior performance in certain classes, such

as the Background and Cumuliform, they do not universally outperform CNN-based models in

all aspects of cloud segmentation.
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Figure 27: Experiment 63 sample results of inference over the test dataset

As depicted in Figure 27, one can see that the model is also quite adept at identifying

Cirriform clouds, as it closely matches the ground truth with similar shapes and extents. This

model also presents challenges with Stratocumuliform clouds, however, a slight improvement

is indicated in the predicted area compared to experiment 62.

In conclusion, the performance of experiments 62 and 63 highlights the potential of

Transformer-based architectures in the field of cloud segmentation. Experiment 63’s Segformer

model, in particular, with its balanced performance across all metrics and notable improvements

in specific cloud classes, suggests a promising direction for further research and development.

Nonetheless, it remains evident that the perfect model for cloud segmentation has not yet been

realized, and the trade-offs between precision, recall, and IoU must continue to be considered.

The complexity of accurately classifying cloud structures requires an ongoing effort to fine-tune

these advanced architectures.
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3.4.3 Discussion

Comparing study results with those in existing literature presents challenges, primar-

ily due to the dataset’s unique nature and cloud classification tasks’ particularities. Specific

conditions in the dataset significantly impact cloud classification model performance. Results

can be influenced by variables like cloud type frequency, atmospheric conditions, and time of

year. For example, a dataset with a high percentage of cirrus clouds, which are challenging to

categorize, or highly turbid weather, could result in poorer performance metrics. Conversely, a

dataset with mostly clear skies and recognizable cloud formations might produce better results.

Without using the same dataset for evaluation, this variability complicates direct comparisons

between studies.

This study differs from others in the field as horizon-oriented images were chosen

for use. Many studies use images of the entire sky or specific sky areas. The chosen method

provides more context than patch images while not offering a comprehensive 360-degree view

like ASIs, making comparisons with other studies difficult. Additionally, significant differences

in methodologies and performance metrics across studies further complicate comparisons.

In Table 15, Fabel et al. [(2022] achieved competitive performance in cloud layer clas-

sification using IP-SR* and DC** methods, with average IoU of 0.622 and 0.619, respectively.

These results indicate these approaches’ effectiveness in distinguishing cloud layers based on

height. However, in contrast, Ye et al. [(2019] utilized a fine-grained algorithm and achieved an

average IoU of 0.34 for classifying eight different cloud types in a dataset of 500 test images,

which demonstrates the difficulties related to this problem.

With the developed Clouds-1000 experiments, the best model used a U-net architec-

ture with ResNet18 (experiment 28) to classify four distinct cloud types, achieving a comparable

average accuracy of 0.8564, with promising performance in terms of average precision, recall,

and IoU. Now when comparing to the Clouds-1500 experiments and excluding the background

class, the proposed methods show promising performance in terms of average precision, recall,

and intersection over union. The comparative results shows that the best performing implemen-

tation in terms of evaluation metrics is Experiment 10a. This implementation has surpassed

metric performance, with exception of AR, indicating an improvement in accurate classifica-

tion and localization within images. Specifically, Experiment 10a achieved notable advance-

ment, with a slightly simpler architecture, from corresponding scores of the Clouds-1000 best

resulting model.
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Table 15: Comparative analysis of results between this study and the literature in terms of
class type, methodology, number of images used for testing, and performance metrics: Average
Precision (AP), Average Recall (AR), and Average Intersection over Union (AIoU)

Study Class Type Methodology Test Size AP AR AIoU

Fabel et al. [(2022] 3 cloud layers IP-SR* 154 0.779 0.751 0.622

Fabel et al. [(2022] 3 cloud layers DC** 154 0.766 0.742 0.619

Ye et al. [(2019] 8 cloud types fine-grained algo. 500 0.427 0.447 0.34

Clouds-1000 4 cloud types + tree Unet + Resnet18 (#28) 200 0.694 0.686 0.564

Clouds-1500 4 cloud types + tree U-net + EfficientNet b0 (#35) 223 0.328 0.378 0.404

Clouds-1500 4 cloud types + tree HRNet (#40) 223 0.692 0.698 0.558

Clouds-1500 4 cloud types + tree U-net + Resnet 18 (#44) 223 0.742 0.682 0.594
Clouds-1500 4 cloud types + tree U-net + Resnet 34 (#53) 223 0.642 0.588 0.474

Clouds-1500 4 cloud types PP-LiteSeg (#62) 223 0.527 0.48 0.345

Clouds-1500 4 cloud types Segformer (#63) 223 0.555 0.547 0.39

Moreover, experiment 40 of the Clouds-1500 is noted as second-best overall, also

surpassing results in terms of AR, with competitive metrics. This illustrates that refinements in

methodology yield similar outcomes, although with a more complex implementation. Consis-

tent enhancement in performance from Experiments 35 to 63, especially in 40 and 44, suggests

an effective iterative process of experimentation and modification for the problem at hand.

The primary reason for selecting these references for comparison is both presented

semantic segmentation results, which went beyond binary classification, and showcased good

performance. It is essential to highlight distinctions in methodologies. In Fabel et al. [(2022],

the focus was on cloud layer classes, using cloud height for classification. Although providing

valuable insights into clouds’ vertical distribution, it did not differentiate between cloud types

within the same layer. In contrast, Ye et al. [(2019] employed a more comprehensive classifi-

cation scheme, allowing for a detailed representation of cloud types and their characteristics.

Since both Fabel et al. [(2022] and Ye et al. [(2019] compare their results with other studies, it

establishes a precedent for comparative analysis. By following this approach, the comparison

extends, and results can be evaluated in relation to additional relevant studies in the field.

By comparing the results against the two works, the aim was to evaluate the methodol-

ogy’s effectiveness thoroughly and identify improvement areas. The comparison highlights the

importance of considering cloud layer distinctions and a diverse set of cloud classes in semantic
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segmentation tasks for comprehensive cloud-related phenomena analysis.

The conducted experiments reveal the intricate interactions between model archi-

tecture, data augmentation, and class specificity, highlighting the difficulties associated with

cloud segmentation. The main theme of these findings is complexity, emphasizing the need for

customized solutions to address the wide range of complex patterns that various cloud types

present.

Data augmentation has emerged as a pivotal factor influencing model performance.

The EfficientNet’s variation in response to data augmentation (experiments 35 - 39) under-

scores its potential in enhancing robustness and generalization. Notably, experiment 35 high-

lighted the utility of data augmentation in improving results for specific classes. Conversely,

aggressive data augmentation in the HRNet (experiment 43) led to suboptimal generalization,

particularly for cloud segmentation. This disparity underscores the need for careful calibration

of augmentation strategies in relation to the specificities of the task at hand.

EfficientNet and U-net, while promising, demonstrated limitations, especially in seg-

menting complex cloud types like Cirriform and Cumuliform clouds. Innovative approaches

such as nuanced data augmentation, class-centric optimizations, or new architectural innova-

tions may be necessary to advance in these areas.

The combination of HRNet with OCRNet showcased potential yet also indicated that

no universal solution exists. The sensitivity of models to specific augmentations and the in-

tricate balance between sensitivity and specificity call for meticulous fine-tuning in training

procedures.

The U-net + Resnet configurations revealed that improvements in cloud segmentation

do not uniformly arise from increased input size or model depth, particularly for challenging

classes like Cirriform and Cumuliform clouds. When comparing results of experiments 44 to

52 with those of 53 to 61, several conclusions can be drawn. Firstly, there appears to be a

complex interaction between input sizes and the model’s ability to segment various cloud types,

as larger input sizes do not uniformly translate to better performance. Secondly, the depth of the

Resnet backbone—switching from 18 to 34 layers—does not consistently yield improvements,

suggesting that other factors may play a more pivotal role in the segmentation task.

The Transformers models, particularly in experiments 62 and 63, segmented well the

Background class due to their global contextual strengths. However, their performance on more

complex cloud patterns did not surpass CNN-based models significantly. This outcome was un-
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expected, given the transformers’ inherent capability to capture long-range dependencies which

could potentially translate into a nuanced understanding of the spatial coherence necessary for

cloud segmentation. Despite employing a MixedLoss function designed to enhance localization

accuracy by promoting semantic continuity, the Transformer models did not exhibit a notable

reduction in the localization problem. The persistence of localization issues in Experiments

16 and 17 suggests that while the Transformer models processed global contextual information

effectively, they may lack in capturing the fine-grained textural details that are pivotal in distin-

guishing complex cloud formations. This points to a potential limitation within the Transformer

architectures in their current form when applied to the specific nuances of cloud segmentation

tasks. Such findings prompt further investigation into how these models can be adjusted or

extended, perhaps through the integration of CNN-like mechanisms or additional specialized

layers, to better handle the granular specifics of this domain.

The dataset employed in these experiments showed a notable overrepresentation of

the Stratocumuliform class. This imbalance posed a challenge for model training and gener-

alization, as models tend to perform better on classes with more examples. In an attempt to

counteract this skew, data augmentation techniques were implemented to artificially enhance

the variability and volume of the underrepresented classes. The lack of diversity in the predic-

tions underscores potential issues within the models’ training regimen, possibly necessitating

a more balanced dataset or an adjustment in the learning algorithm to reduce the current bias

towards the Stratocumuliform clouds. It is important to mention that a problem with some

inference images for experiment 37 as denoted on Figure 30 was detected. This is the only

model that presented this problem of horizontally flipping the inference masks and may suggest

that there was data augmentation leakage to the test dataset, indicating that further analysis is

necessary to understand the problem.

However, despite these efforts, the improvement in performance metrics for classes

other than Stratocumuliform was not as significant as anticipated. Data augmentation, while

beneficial in enhancing the robustness of models to variations in input data, did not adequately

compensate for the inherent imbalance present in the dataset. This was particularly evident in

the Cumuliform and Cirriform classes, which continued to present challenges for all models

tested, including the leading ones from Experiments 40 and 44. The results suggest that while

data augmentation is a powerful tool, it cannot fully mitigate the effects of class overrepresen-

tation. This has important implications for the field of cloud classification, indicating a need for
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not only advanced model architectures and training techniques but also well-balanced datasets.

Future directions may include further refining data augmentation strategies specifically for un-

derrepresented classes or perhaps synthesizing new training examples through techniques such

as Generative Adversarial Networks (GANs). It is also imperative to explore methods for ef-

fectively handling class imbalance, such as cost-sensitive learning, where the model penalizes

misclassifications of the minority class more heavily during training. While experiments 40

and 42 present significant potential in cloud segmentation, especially for the Cumuliform and

Background classes, experiment 41 reveals the difficulties in achieving consistent performance

across different types of clouds. This mixed performance emphasizes the complexity of cloud

segmentation tasks, where different architectures and configurations can lead to varying lev-

els of success in accurately classifying and segmenting cloud structures. It underscores the

necessity for a careful balance of model architecture, training procedures, and data augmenta-

tion techniques to achieve the best generalization and predictive performance across all cloud

classes.

The inclusion of the Tree class in the dataset warrants a particular discussion. As

indicated in Table 14, the Tree class consistently showed high Intersection over Union (IoU),

Precision (Pr), and Recall values across multiple experiments, notably in Experiment 6 with

an IoU of 0.97, Pr of 0.99, and Recall of 0.98, and in Experiments 44 and 54 where the IoU

remained above 0.88. The Tree class’s distinct visual characteristics compared to cloud classes

may have contributed to this consistency, providing the models with a simpler segmentation

task that bolstered overall performance metrics.

However, while the Tree class showed high performance, this did not translate into

improved segmentation for cloud classes, which are the primary focus of the study. The over-

representation of the Stratocumuliform class, despite data augmentation efforts, did not yield

significant improvements in the segmentation of other cloud types, particularly for the more

complex Cirriform and Cumuliform classes. It raises the question of whether the presence of

the Tree class within the dataset might have induced a bias in the models, allowing for high

accuracy in an easily identifiable class while not necessarily contributing to the discernment

required for more complex cloud segmentation tasks. The high performance in the Tree class

suggests that models may be allocating more resources to effectively segment this class, poten-

tially at the cost of neglecting the finer, more subtle features of cloud types. This effect can often

lead to a model’s overfitting to the majority class and underperforming on minority classes. In
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this case, the Tree class may be acting as a ’majority’ class in terms of segmentation ease, over-

shadowing the more nuanced cloud classes that require more sophisticated pattern recognition

capabilities. The results suggest a need for a careful review of class representation within train-

ing datasets, ensuring that the presence of one highly distinguishable class does not detract from

the overall objective of balanced and equitable model performance across all classes.

Compared to the initial experiments performed, an improvement in overall metrics

and the quality of the segmentation can be seen. The achieved results have raised questions

about why a simpler model outperforms a more complex one, leading to the need for future

investigations. Six potential causes were identified for further exploration: 1) Overfitting, as

complex models with more parameters are prone to overfitting, while simpler models can gen-

eralize better; 2) Appropriate complexity, where the task of cloud segmentation may not be

as complex for a machine learning model as initially thought; 3) Data availability, as complex

models require more data to learn effectively, while simpler models may perform better with

limited data; 4) Hyperparameter tuning, since complex models have more hyperparameters that

need optimal tuning for optimal performance; 5) Regularization techniques like dropout, weight

decay, or early stopping, which can prevent overfitting in complex models; and 6) Data quality,

where a simpler model may be more robust against noisy data. These factors will be addressed

in future works to gain further insights.

An important disclaimer is that no detailed analysis was performed to validate if the

results were actually representing the clouds better than the ground truth, even though the

dataset was created with the help of specialists there’s always the probability of human error in

determining a class type while annotating images.
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4 Conclusion

The initial experiments showed that it is possible and feasible to classify clouds using

current techniques of machine learning. Flat cameras pointing to the horizon allowed vertical

distribution observation for cloud classification and avoided image distortion of fish-eye lenses

whilst simplified image processing. When compared to the literature the results are positive

overall, even for initial results with the first version of the developed dataset. The collective

analysis of the experimental outcomes emphasizes the inherent complexity in cloud segmen-

tation tasks and the consequent necessity for tailored model development and data handling

methods. The presented findings show that no single model architecture or technique is uni-

formly effective across all scenarios. The variable impact of data augmentation and the nuance

of class-specific model performance underscore the need for sophisticated, contextually aware

approaches in model development for cloud segmentation.

This study has led to several noteworthy conclusions and future research directions.

The methodology applied provided valuable insights into the complexities and nuances of cloud

segmentation.

The initial hypothesis postulated that higher image resolution would facilitate more

accurate cloud classification. However, the empirical evidence gathered through various ex-

periments challenges this assumption. It was observed that simpler models, like the U-net with

ResNet 18 architecture, achieved commendable results even with lower-resolution images. This

finding suggests that the advantage conferred by high-resolution images may not be as signifi-

cant as previously believed in the domain of cloud classification.

A critical observation is the relative performance of different model architectures.

HRNet, while proficient in handling multi-resolution images and theoretically advantageous

for detailed segmentation tasks, did not markedly surpass the simpler models in practice. This

outcome highlights a crucial point in model selection: complexity does not necessarily equate

to effectiveness, especially in cloud segmentation tasks.

Vision Transformers, offer extensive context-aware capabilities. Surprisingly, they

did not demonstrate superiority over CNN-based models in cloud segmentation. This finding

can be attributed to the inherent strengths of CNNs in texture and local context detection, which

appear to be more aligned with the requirements of cloud segmentation tasks. Thus, we iden-

tify several potential avenues for future research. One particularly promising direction is the

creation and examination of synthetic data emphasizing specific characteristics like texture and



4 CONCLUSION 93

pattern repetition. This could shed light on model behaviors and provide insights into the factors

influencing cloud classification performance. Continued experimentation with cloud tracking

techniques is also recommended. Exploring simpler computer vision methods could be particu-

larly fruitful in addressing localization issues observed in models like Detectron2. The potential

of Vision Transformers in this domain remains to be fully explored, and further experiments are

suggested to ascertain their utility in cloud segmentation.

The role of data augmentation emerged as a key theme in the study. Enhancing the

dataset’s variety, especially in terms of cloud types and atmospheric conditions, could address

some of the class imbalance issues encountered and improve model robustness. Investigating

the use of very low-resolution images for applications such as solar radiance nowcasting opens

up new, efficient pathways for cloud classification methodologies.

One practical outcome of this study is the insight that simpler deep learning models

can be effectively employed for real-world applications like solar radiance nowcasting. Devel-

oping a baseline model, incorporating the learning from this study, could enable its application

in real-world scenarios, enhancing the predictive capabilities for solar energy generation.

Future work may involve the exploration of hybrid models that leverage both the local

pattern recognition strengths of CNNs and the global context comprehension of Transformers.

Additionally, the creation of more advanced data augmentation pipelines that more closely mir-

ror the dynamic nature of cloud formations could further enhance model performance. Such

processes will be instrumental in overcoming the complexities presented by the nuanced and

varied classes of clouds. These findings confirm the importance of continuous experimentation

in the field of image segmentation, as even small changes in methodology can lead to substantial

improvements in model performance.

This research helped better understand which techniques work best for cloud seg-

mentation. It is also evident that data imbalance is affecting the performance of all models

developed. Overall, while conventional CNN models, particularly when combined with U-net,

offered more reliable performance across various cloud types, they too require further enhance-

ment for the more intricate Cirriform and Cumuliform cloud classes. The HRNet model looks

more promising as it works with different resolutions, thus leading to a more refined segmenta-

tion, at the pixel level. Even though, some results seem to indicate that such an intricate model is

not necessary in order to detect the most predominant clouds in the sky. A simpler model using

U-net with Resnet 18 was able to achieve satisfactory results, using a much lower resolution.



4 CONCLUSION 94

This can be useful in the future since the main objective for the future is to use such models to

predict cloud motion and forecast the impact it will have on solar power generation. For future

studies, a better overall cloud classification model is recommended based on results presented

in this research. In conclusion, this research has significantly contributed to the understanding

of cloud segmentation and classification. The findings underscore the importance of model se-

lection, the nuanced role of image resolution in cloud classification, and the potential of simpler

models in this domain. The future research directions identified from this study not only pave

the way for advanced experimentation in cloud segmentation but also hold promise for practical

applications in solar energy forecasting.

For ease of reading, below is a summary of the main findings:

• Simpler model architectures often outperform more complex ones for cloud segmentation

tasks.

• Higher resolution models may lead to over-segmentation due to the ground-truth annota-

tions’ precision limitations.

• The Tree class consistently shows high performance metrics, indicating a potential bias

in model evaluation.

• Data augmentation is pivotal for model robustness but needs to be carefully tailored to

avoid sub-optimal generalization.

• A trade-off exists between sensitivity to specific cloud classes and overall model perfor-

mance across various types.

• Transformer models, despite their global contextual strengths, do not significantly surpass

CNN-based models for complex cloud patterns.

• Overrepresentation of certain cloud classes in datasets presents challenges to model train-

ing and generalization.

• Detailed validation is required to ensure segmentation results represent clouds more ac-

curately than ground truth.

• Future research should consider hybrid models, advanced data augmentation, and han-

dling class imbalances effectively.
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• Data augmentation, while beneficial, cannot fully mitigate the effects of class overrepre-

sentation.

• The high performance of easily segmentable classes in the dataset may not translate to

improved segmentation for complex cloud types.
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L. R. do Nascimento, T. de Souza Viana, R. A. Campos, and R. Rüther. Extreme solar
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A Appendix A: Nimbus Gazer System Screenshots

The picture below shows a Nimbus Gazer system screenshot, where all custom set-

tings used in image capture can be seen.

Figure 28: Screenshot of our custom configurations of the Nimbus Gazer system.
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B Appendix B: Json-based Supervisely Annotation Format

Below is an annotation example for one of the dataset images, in Json-based super-

vised annotation format. The image corresponding to this annotation is the same as in the

Appendix C.

{

"description": "",

"tags": [],

"size": {

"height": 1944,

"width": 2592

},

"objects": [

{

"id": 818029968,

"classId": 8907989,

"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Arvore",

"points": {

"exterior": [
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[1, 1229],[27,1238],[59,1265],[89,1321],[1 ⌋

53,1362],[199,1392],[229,1364],[294,13 ⌋

41],[319,1358],[340,1376],[370,1415],[ ⌋

406,1438],[439,1466],[493,1491],[556,1 ⌋

489],[597,1486],[659,1495],[687,1514], ⌋

[703,1532],[715,1560],[724,1583],[757, ⌋

1608],[788,1625],[800,1650],[825,1696] ⌋

,[839,1735],[853,1770],[910,1730],[936 ⌋

,1712],[954,1712],[975,1733],[996,1760 ⌋

],[1007,1783],[1032,1816],[1062,1836], ⌋

[1101,1848],[1113,1869],[1129,1896],[1 ⌋

164,1938],[1205,1943],[1260,1869],[126 ⌋

7,1816],[1332,1818],[1428,1742],[1481, ⌋

1707],[1507,1657],[1523,1590],[1576,15 ⌋

62],[1633,1579],[1679,1618],[1909,1503 ⌋

],[1882,1431],[1909,1401],[1896,1355], ⌋

[1877,1284],[1875,1231],[1903,1201],[1 ⌋

946,1213],[1988,1192],[2002,1162],[204 ⌋

3,1137],[2126,1123],[2167,1123],[2193, ⌋

1187],[2287,1173],[2393,1240],[2430,12 ⌋

49],[2466,1222],[2462,1190],[2510,1208 ⌋

],[2542,1178],[2533,1146],[2570,1143], ⌋

[2586,1125],[2588,1097],[2591,1943],[0 ⌋

,1943]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

],

"interior": []

}

},

{

"id": 818029967,

"classId": 8907990,

"description": "",
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"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [

[2154, 490],[2107,532],[2071,567],[2052,58 ⌋

9],[2084,620],[2159,599],[2169,620],[2 ⌋

247,643],[2285,596],[2313,596],[2352,6 ⌋

15],[2394,632],[2432,605],[2472,567],[ ⌋

2479,527],[2449,504],[2432,497],[2430, ⌋

466],[2434,420],[2403,383],[2365,387], ⌋

[2332,404],[2313,426],[2288,437],[2264 ⌋

,442],[2249,463],[2223,483],[2200,490]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

],

"interior": []

}

},

{

"id": 818029966,

"classId": 8907990,

"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [
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[1725, 297],[1700,311],[1690,357],[1702,40 ⌋

1],[1742,430],[1835,404],[1851,359],[1 ⌋

844,328],[1828,311],[1828,295],[1849,2 ⌋

92],[1868,288],[1886,292],[1915,316],[ ⌋

1934,340],[1956,369],[1975,383],[2002, ⌋

390],[2020,385],[2010,354],[2001,333], ⌋

[2027,297],[2038,269],[2024,262],[1993 ⌋

,267],[1955,259],[1927,252],[1889,245] ⌋

,[1849,250],[1801,260],[1782,276]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

],

"interior": []

}

},

{

"id": 818029965,

"classId": 8907990,

"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [

[2069, 369],[2048,378],[2036,414],[2036,43 ⌋

2],[2074,452],[2122,452],[2153,468],[2 ⌋

188,454],[2199,440],[2243,430],[2259,4 ⌋

25],[2282,423],[2328,401],[2326,368],[ ⌋

2290,361],[2247,375],[2205,387],[2162, ⌋

397],[2119,409],[2096,413]

↪→

↪→

↪→

↪→

↪→

],
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"interior": []

}

},

{

"id": 818029964,

"classId": 8907990,

"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [
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[428, 1409],[487,1376],[536,1377],[589,137 ⌋

6],[707,1365],[807,1343],[875,1336],[9 ⌋

04,1332],[978,1291],[1029,1263],[1108, ⌋

1230],[1170,1198],[1231,1168],[1246,11 ⌋

91],[1255,1215],[1264,1239],[1290,1253 ⌋

],[1317,1265],[1348,1289],[1347,1329], ⌋

[1319,1370],[1331,1402],[1362,1407],[1 ⌋

395,1403],[1418,1388],[1457,1367],[148 ⌋

2,1365],[1495,1374],[1490,1407],[1506, ⌋

1438],[1530,1436],[1528,1400],[1563,13 ⌋

89],[1582,1402],[1625,1410],[1641,1412 ⌋

],[1599,1438],[1579,1457],[1589,1479], ⌋

[1618,1486],[1641,1509],[1636,1531],[1 ⌋

601,1554],[1554,1562],[1530,1583],[151 ⌋

1,1626],[1501,1673],[1480,1692],[1451, ⌋

1723],[1400,1744],[1374,1758],[1350,17 ⌋

77],[1319,1806],[1298,1808],[1276,1808 ⌋

],[1250,1846],[1250,1860],[1241,1882], ⌋

[1200,1924],[1164,1908],[1144,1874],[1 ⌋

127,1851],[1087,1836],[1054,1822],[102 ⌋

7,1801],[1011,1773],[1008,1723],[975,1 ⌋

701],[935,1694],[916,1704],[873,1713], ⌋

[845,1723],[828,1708],[819,1687],[805, ⌋

1647],[795,1621],[773,1595],[750,1580] ⌋

,[736,1562],[719,1524],[691,1486],[657 ⌋

,1476],[614,1472],[572,1472],[513,1472 ⌋

],[484,1472],[437,1462],[411,1448]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

],

"interior": []

}

},

{



B APPENDIX B: JSON-BASED SUPERVISELY ANNOTATION FORMAT 108

"id": 818029963,

"classId": 8907990,

"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [
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[1686, 1599],[1651,1572],[1638,1540],[1646 ⌋

,1498],[1667,1456],[1691,1418],[1709,1 ⌋

409],[1739,1390],[1796,1349],[1815,132 ⌋

7],[1828,1291],[1847,1247],[1859,1224] ⌋

,[1878,1194],[1904,1158],[1920,1129],[ ⌋

1937,1093],[1964,1060],[2009,1032],[20 ⌋

62,1009],[2140,1000],[2175,1009],[2241 ⌋

,1026],[2275,1028],[2285,996],[2315,99 ⌋

6],[2352,1009],[2397,1024],[2460,1040] ⌋

,[2509,1023],[2553,1015],[2586,1024],[ ⌋

2591,1042],[2591,1068],[2591,1089],[25 ⌋

91,1114],[2557,1139],[2532,1146],[2525 ⌋

,1169],[2517,1192],[2498,1194],[2458,1 ⌋

194],[2430,1220],[2384,1217],[2352,119 ⌋

8],[2296,1169],[2274,1167],[2226,1169] ⌋

,[2201,1163],[2173,1131],[2125,1123],[ ⌋

2102,1125],[2017,1140],[1998,1158],[19 ⌋

84,1180],[1959,1199],[1924,1205],[1906 ⌋

,1213],[1889,1232],[1878,1255],[1880,1 ⌋

283],[1887,1306],[1887,1331],[1891,135 ⌋

5],[1899,1374],[1910,1399],[1891,1416] ⌋

,[1885,1433],[1887,1449],[1897,1468],[ ⌋

1899,1487],[1885,1511],[1857,1527],[18 ⌋

26,1542],[1771,1568],[1749,1578],[1724 ⌋

,1597]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

],

"interior": []

}

},

{

"id": 818029962,

"classId": 8907990,
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"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [

[363, 1371],[407,1371],[460,1366],[515,136 ⌋

3],[545,1345],[581,1325],[630,1333],[6 ⌋

97,1334],[757,1338],[814,1303],[831,12 ⌋

61],[852,1218],[839,1155],[823,1154],[ ⌋

763,1180],[708,1202],[685,1206],[671,1 ⌋

206],[668,1174],[672,1136],[674,1110], ⌋

[716,1073],[749,1028],[716,979],[653,9 ⌋

84],[561,1026],[498,1034],[452,1025],[ ⌋

436,1034],[465,1075],[504,1099],[501,1 ⌋

157],[503,1169],[488,1196],[471,1217], ⌋

[451,1237],[433,1234],[396,1251],[358, ⌋

1273],[315,1303],[308,1327],[326,1366]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

],

"interior": []

}

},

{

"id": 818029961,

"classId": 8907990,

"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",
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"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [

[164, 1330],[194,1298],[242,1276],[297,125 ⌋

3],[347,1237],[411,1204],[436,1169],[4 ⌋

24,1116],[330,1100],[251,1100],[183,10 ⌋

81],[179,1050],[227,1012],[213,984],[1 ⌋

85,927],[147,915],[113,927],[69,957],[ ⌋

32,989],[0,996],[0,1221]

↪→

↪→

↪→

↪→

↪→

],

"interior": []

}

},

{

"id": 818029960,

"classId": 8907990,

"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [
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[1839, 976],[1899,956],[1945,956],[1981,97 ⌋

9],[1992,1003],[2070,1003],[2128,999], ⌋

[2167,982],[2184,942],[2124,945],[2071 ⌋

,960],[2071,935],[2061,903],[1988,903] ⌋

,[1925,902],[1879,899],[1832,939],[182 ⌋

8,950]

↪→

↪→

↪→

↪→

↪→

],

"interior": []

}

},

{

"id": 818029959,

"classId": 8907990,

"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [

[2212,

917],[2231,892],[2254,873],[2267,879], ⌋

[2315,896],[2335,889],[2345,906],[2314 ⌋

,935],[2285,962],[2224,947],[2198,947]

↪→

↪→

↪→

],

"interior": []

}

},

{

"id": 818029958,
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"classId": 8907990,

"description": "",

"geometryType": "polygon",

"labelerLogin": "unknown",

"createdAt": "2021-08-03T17:45:49.547Z",

"updatedAt": "2021-08-03T17:45:49.547Z",

"tags": [],

"classTitle": "Estratocumuliformes",

"points": {

"exterior": [

[2425,

872],[2378,906],[2375,945],[2467,949], ⌋

[2463,927],[2524,949],[2535,920],[2548 ⌋

,912],[2587,895],[2520,867],[2464,862]

↪→

↪→

↪→

],

"interior": []

}

}

]

}
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C Appendix C: COCO Annotation format

Below is an annotation example for one of the dataset images, in COCO format. The

image corresponding to this annotation is the same as in the Appendix B.

{

"annotations": [

{

"area": 2191986,

"bbox": [

0,1097,2591,846

],

"category_id": 1,

"id": 0,

"image_id": 0,

"iscrowd": 0,

"segmentation": [

[
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1,1229,27,1238,59,1265,89,1321,153,1362,19 ⌋

9,1392,229,1364,294,1341,319,1358,340, ⌋

1376,370,1415,406,1438,439,1466,493,14 ⌋

91,556,1489,597,1486,659,1495,687,1514 ⌋

,703,1532,715,1560,724,1583,757,1608,7 ⌋

88,1625,800,1650,825,1696,839,1735,853 ⌋

,1770,910,1730,936,1712,954,1712,975,1 ⌋

733,996,1760,1007,1783,1032,1816,1062, ⌋

1836,1101,1848,1113,1869,1129,1896,116 ⌋

4,1938,1205,1943,1260,1869,1267,1816,1 ⌋

332,1818,1428,1742,1481,1707,1507,1657 ⌋

,1523,1590,1576,1562,1633,1579,1679,16 ⌋

18,1909,1503,1882,1431,1909,1401,1896, ⌋

1355,1877,1284,1875,1231,1903,1201,194 ⌋

6,1213,1988,1192,2002,1162,2043,1137,2 ⌋

126,1123,2167,1123,2193,1187,2287,1173 ⌋

,2393,1240,2430,1249,2466,1222,2462,11 ⌋

90,2510,1208,2542,1178,2533,1146,2570, ⌋

1143,2586,1125,2588,1097,2591,1943,0,1 ⌋

943

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

]

]

},

{

"area": 111020,

"bbox": [

2052,383,427,260

],

"category_id": 2,

"id": 1,

"image_id": 0,

"iscrowd": 0,
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"segmentation": [

[

2154,490,2107,532,2071,567,2052,589,2084,6 ⌋

20,2159,599,2169,620,2247,643,2285,596 ⌋

,2313,596,2352,615,2394,632,2432,605,2 ⌋

472,567,2479,527,2449,504,2432,497,243 ⌋

0,466,2434,420,2403,383,2365,387,2332, ⌋

404,2313,426,2288,437,2264,442,2249,46 ⌋

3,2223,483,2200,490

↪→

↪→

↪→

↪→

↪→

↪→

]

]

},

{

"area": 64380,

"bbox": [

1690,245,348,185

],

"category_id": 2,

"id": 2,

"image_id": 0,

"iscrowd": 0,

"segmentation": [

[

1725,297,1700,311,1690,357,1702,401,1742,4 ⌋

30,1835,404,1851,359,1844,328,1828,311 ⌋

,1828,295,1849,292,1868,288,1886,292,1 ⌋

915,316,1934,340,1956,369,1975,383,200 ⌋

2,390,2020,385,2010,354,2001,333,2027, ⌋

297,2038,269,2024,262,1993,267,1955,25 ⌋

9,1927,252,1889,245,1849,250,1801,260, ⌋

1782,276

↪→

↪→

↪→

↪→

↪→

↪→

↪→

]
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]

},

{

"area": 31244,

"bbox": [

2036,361,292,107

],

"category_id": 2,

"id": 3,

"image_id": 0,

"iscrowd": 0,

"segmentation": [

[

2069,369,2048,378,2036,414,2036,432,2074,4 ⌋

52,2122,452,2153,468,2188,454,2199,440 ⌋

,2243,430,2259,425,2282,423,2328,401,2 ⌋

326,368,2290,361,2247,375,2205,387,216 ⌋

2,397,2119,409,2096,413

↪→

↪→

↪→

↪→

]

]

},

{

"area": 929880,

"bbox": [

411,

1168,

1230,

756

],

"category_id": 2,

"id": 4,

"image_id": 0,
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"iscrowd": 0,

"segmentation": [

[

428,1409,487,1376,536,1377,589,1376,707,13 ⌋

65,807,1343,875,1336,904,1332,978,1291 ⌋

,1029,1263,1108,1230,1170,1198,1231,11 ⌋

68,1246,1191,1255,1215,1264,1239,1290, ⌋

1253,1317,1265,1348,1289,1347,1329,131 ⌋

9,1370,1331,1402,1362,1407,1395,1403,1 ⌋

418,1388,1457,1367,1482,1365,1495,1374 ⌋

,1490,1407,1506,1438,1530,1436,1528,14 ⌋

00,1563,1389,1582,1402,1625,1410,1641, ⌋

1412,1599,1438,1579,1457,1589,1479,161 ⌋

8,1486,1641,1509,1636,1531,1601,1554,1 ⌋

554,1562,1530,1583,1511,1626,1501,1673 ⌋

,1480,1692,1451,1723,1400,1744,1374,17 ⌋

58,1350,1777,1319,1806,1298,1808,1276, ⌋

1808,1250,1846,1250,1860,1241,1882,120 ⌋

0,1924,1164,1908,1144,1874,1127,1851,1 ⌋

087,1836,1054,1822,1027,1801,1011,1773 ⌋

,1008,1723,975,1701,935,1694,916,1704, ⌋

873,1713,845,1723,828,1708,819,1687,80 ⌋

5,1647,795,1621,773,1595,750,1580,736, ⌋

1562,719,1524,691,1486,657,1476,614,14 ⌋

72,572,1472,513,1472,484,1472,437,1462 ⌋

,411,1448

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

]

]

},

{

"area": 574659,

"bbox": [
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1638,996,953,603

],

"category_id": 2,

"id": 5,

"image_id": 0,

"iscrowd": 0,

"segmentation": [

[

1686,1599,1651,1572,1638,1540,1646,1498,16 ⌋

67,1456,1691,1418,1709,1409,1739,1390, ⌋

1796,1349,1815,1327,1828,1291,1847,124 ⌋

7,1859,1224,1878,1194,1904,1158,1920,1 ⌋

129,1937,1093,1964,1060,2009,1032,2062 ⌋

,1009,2140,1000,2175,1009,2241,1026,22 ⌋

75,1028,2285,996,2315,996,2352,1009,23 ⌋

97,1024,2460,1040,2509,1023,2553,1015, ⌋

2586,1024,2591,1042,2591,1068,2591,108 ⌋

9,2591,1114,2557,1139,2532,1146,2525,1 ⌋

169,2517,1192,2498,1194,2458,1194,2430 ⌋

,1220,2384,1217,2352,1198,2296,1169,22 ⌋

74,1167,2226,1169,2201,1163,2173,1131, ⌋

2125,1123,2102,1125,2017,1140,1998,115 ⌋

8,1984,1180,1959,1199,1924,1205,1906,1 ⌋

213,1889,1232,1878,1255,1880,1283,1887 ⌋

,1306,1887,1331,1891,1355,1899,1374,19 ⌋

10,1399,1891,1416,1885,1433,1887,1449, ⌋

1897,1468,1899,1487,1885,1511,1857,152 ⌋

7,1826,1542,1771,1568,1749,1578,1724,1 ⌋

597

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

]

]

},
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{

"area": 213248,

"bbox": [

308,979,544,392

],

"category_id": 2,

"id": 6,

"image_id": 0,

"iscrowd": 0,

"segmentation": [

[

363,1371,407,1371,460,1366,515,1363,545,13 ⌋

45,581,1325,630,1333,697,1334,757,1338 ⌋

,814,1303,831,1261,852,1218,839,1155,8 ⌋

23,1154,763,1180,708,1202,685,1206,671 ⌋

,1206,668,1174,672,1136,674,1110,716,1 ⌋

073,749,1028,716,979,653,984,561,1026, ⌋

498,1034,452,1025,436,1034,465,1075,50 ⌋

4,1099,501,1157,503,1169,488,1196,471, ⌋

1217,451,1237,433,1234,396,1251,358,12 ⌋

73,315,1303,308,1327,326,1366

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

]

]

},

{

"area": 180940,

"bbox": [

0,915,436,415

],

"category_id": 2,

"id": 7,

"image_id": 0,
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"iscrowd": 0,

"segmentation": [

[

164,1330,194,1298,242,1276,297,1253,347,12 ⌋

37,411,1204,436,1169,424,1116,330,1100 ⌋

,251,1100,183,1081,179,1050,227,1012,2 ⌋

13,984,185,927,147,915,113,927,69,957, ⌋

32,989,0,996,0,1221

↪→

↪→

↪→

↪→

]

]

},

{

"area": 37024,

"bbox": [

1828,899,356,104

],

"category_id": 2,

"id": 8,

"image_id": 0,

"iscrowd": 0,

"segmentation": [

[

1839,976,1899,956,1945,956,1981,979,1992,1 ⌋

003,2070,1003,2128,999,2167,982,2184,9 ⌋

42,2124,945,2071,960,2071,935,2061,903 ⌋

,1988,903,1925,902,1879,899,1832,939,1 ⌋

828,950

↪→

↪→

↪→

↪→

]

]

},

{

"area": 13083,
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"bbox": [

2198,873,147,89

],

"category_id": 2,

"id": 9,

"image_id": 0,

"iscrowd": 0,

"segmentation": [

[

2212,917,2231,892,2254,873,2267,879,2315,8 ⌋

96,2335,889,2345,906,2314,935,2285,962 ⌋

,2224,947,2198,947

↪→

↪→

]

]

},

{

"area": 18444,

"bbox": [

2375,862,212,87

],

"category_id": 2,

"id": 10,

"image_id": 0,

"iscrowd": 0,

"segmentation": [

[

2425,872,2378,906,2375,945,2467,949,2463,9 ⌋

27,2524,949,2535,920,2548,912,2587,895 ⌋

,2520,867,2464,862

↪→

↪→

]

]

}
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],

"categories": [

{

"id": 0,

"name": "Clouds",

"supercategory": "none"

},

{

"id": 1,

"name": "Arvore",

"supercategory": "Clouds"

},

{

"id": 2,

"name": "Estratocumuliformes",

"supercategory": "Clouds"

}

],

"images": [

{

"date_captured": "2022-12-12T19:14:15+00:00",

"file_name": "2021-04-09-10-00_jpg.rf.4e9d3b485fe3 ⌋

2b9325a2f491f5dfff7a.jpg",↪→

"height": 1944,

"id": 0,

"license": 1,

"width": 2592

}

],

"info": {

"contributor": "",

"date_created": "2022-12-12T19:14:15+00:00",
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"description": "Exported from roboflow.ai",

"url": "https://public.roboflow.ai/object-detection/un ⌋

defined",↪→

"version": "1",

"year": "2022"

},

"licenses": [

{

"id": 1,

"name": "Public Domain",

"url": "https://creativecommons.org/publicdomain/z ⌋

ero/1.0/"↪→

}

]

}



D APPENDIX D: ADDITIONAL RESULT IMAGES 125

D Appendix D: Additional Result Images

Figure 29: Experiment 36 sample results
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Figure 30: Experiment 37 sample results
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Figure 31: Experiment 38 sample results



D APPENDIX D: ADDITIONAL RESULT IMAGES 128

Figure 32: Experiment 39 sample results
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Figure 33: Experiment 41 sample results
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Figure 34: Experiment 42 sample results
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Figure 35: Experiment 43 sample results
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Figure 36: Experiment 45 sample results
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Figure 37: Experiment 46 sample results
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Figure 38: Experiment 47 sample results
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Figure 39: Experiment 48 sample results
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Figure 40: Experiment 49 sample results
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Figure 41: Experiment 50 sample results



D APPENDIX D: ADDITIONAL RESULT IMAGES 138

Figure 42: Experiment 51 sample results
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Figure 43: Experiment 52 sample results
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Figure 44: Experiment 54 sample results
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Figure 45: Experiment 55 sample results
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Figure 46: Experiment 56 sample results
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Figure 47: Experiment 57 sample results
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Figure 48: Experiment 58 sample results
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Figure 49: Experiment 59 sample results
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Figure 50: Experiment 60 sample results
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Figure 51: Experiment 61 sample results
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