
FEDERAL UNIVERSITY OF SANTA CATARINA

TECHNOLOGY CENTER

AUTOMATION AND SYSTEMS DEPARTMENT

UNDERGRADUATE COURSE IN CONTROL AND AUTOMATION ENGINEERING

Lukas Alberto Belck

Development of an Application for Reusable Supply Chain Mapping

Berlin

2024

Lukas Alberto Belck

Development of an Application for Reusable Supply Chain Mapping

Final report of the subject DAS5511 (Course Final

Project) as a Concluding Dissertation of the Under-

graduate Course in Control and Automation Engi-

neering of the Federal University of Santa Catarina.

Supervisor: Prof. Leandro Buss Becker, Dr.

Berlin

2024

Lukas Alberto Belck

Development of an Application for Reusable Supply Chain Mapping

This dissertation was evaluated in the context of the subject DAS5511 (Course Final

Project) and approved in its final form by the Undergraduate Course in Control and

Automation Engineering

Florianópolis, June 01, 2024.

Prof. Marcelo de Lellis Costa de Oliveira , Dr.

Course Coordinator

UFSC/CTC/DAS

Examining Board:

Prof. Leandro Buss Becker, Dr.

Advisor

UFSC/CTC/DAS

Ana Selina Haberbosch

Supervisor

seedtrace GmbH

Prof. Eduardo Rauh Müller, Dr.

Evaluator

UFSC/CTC/DAS

Prof. Eduardo Camponogara, Dr.

Board President

UFSC/CTC/DAS

This work is dedicated to my grandmother Vera.

ACKNOWLEDGEMENTS

I dedicate this work to my grandmother Vera, who gave me all the love and

support I needed to achieve this goal. I miss you every day. To my parents Alexander

and Fabiola, who, despite the distance, have always been with me. For all the teaching,

nudging and love I received, thank you very much. Dear NEO colleagues - thank you

for believing in me, thank you for all the opportunities, but above all, thank you for the

time we spent together. To the friends I made at UFSC along this journey - it was a

great honor to walk this path with you. I’ll never forget those moments. See you soon.

ABSTRACT

In the dynamic field of supply chain management, the demand for adaptable, trans-

parent, and efficient mapping systems is becoming ever more crucial for companies

across industries. The use or development of digital platforms to enhance the visibility

and management of supply chains has become a priority for businesses seeking to

optimize their operations and comply with both national and supra-national legislation.

This thesis addresses these needs by developing a solution that introduces the concept

of reusable chains in a digital supply chain management platform.

While existing solutions for mapping supply chains are available, feedback from users

highlighted a significant limitation: the absence of a feature to create reusable chains.

This limitation became apparent as businesses increasingly sought to enhance opera-

tional efficiency and sustainability by optimizing the mapping of components common

to multiple products.

The core of this thesis is the creation of a new feature within a digital supply chain man-

agement platform that enables the use of reusable ’Component Chains’. This feature

allows users to map the journey of individual ingredients of a product once and reuse

them across multiple product supply chains, significantly enhancing operational effi-

ciency and data consistency. The backend solution developed for this feature leverages

GraphQL for API development and SQL for database design, ensuring robust support

for the frontend application in creating and displaying these reusable chains.

Keywords: Supply Chain Management. GraphQL API. SQL Database Design.Sustainability.

Transparency. Modular Mapping, Digital Platform. Web Development. Backend Devel-

opment. Python.

RESUMO

No cenário em constante evolução da gestão da cadeia de suprimentos, a necessidade

de sistemas de mapeamento mais adaptáveis, transparentes e eficientes é cada vez

mais crítica. O desenvolvimento de soluções digitais para melhorar a visibilidade e a

gestão das cadeias de suprimentos tornou-se uma prioridade para as empresas que

buscam otimizar suas operações e cumprir a legislação nacional e supranacional. Esta

tese aborda essas necessidades desenvolvendo uma solução que introduz o conceito

de cadeias reutilizáveis em uma plataforma digital de gestão da cadeia de suprimentos.

Embora existam soluções existentes para mapear cadeias de suprimentos, o feedback

dos usuários destacou uma limitação significativa: a ausência de um recurso para criar

cadeias reutilizáveis. Esta limitação tornou-se evidente à medida que as empresas

procuravam cada vez mais melhorar a eficiência operacional e a sustentabilidade,

otimizando o mapeamento de componentes comuns a vários produtos.

O cerne desta tese é a criação de um novo recurso dentro de uma plataforma digital

de gestão da cadeia de suprimentos que permite o uso de ’Cadeias de Componentes’

reutilizáveis. Este recurso permite que os usuários mapeiem a jornada de ingredientes

individuais de um produto uma vez e os reutilizem em várias cadeias de suprimentos

de produtos, melhorando significativamente a eficiência operacional e a consistência

dos dados. A solução de backend desenvolvida para este recurso utiliza GraphQL para

o desenvolvimento de API e SQL para o design do banco de dados, garantindo suporte

robusto para o aplicativo frontend na criação e exibição dessas cadeias reutilizáveis.

Palavras-chave: Gestão da Cadeia de Suprimentos. API GraphQL. Design de Banco

de Dados SQL. Sustentabilidade. Transparência. Mapeamento Modular. Plataforma

Digital. Desenvolvimento Web. Desenvolvimento Backend. Python.

LIST OF FIGURES

Figure 1 – Current Product journey . 23

Figure 2 – Adding a new activity to the product journey 23

Figure 3 – Current Simplified Database Entity Relationship Diagram 24

Figure 4 – New section for mapping component chains, including an example of

an imported chain . 28

Figure 5 – Supply chain of a product with multiple imported component chains 29

Figure 6 – New dialog for adding activities, including fields for output compo-

nents and company details . 29

Figure 7 – Add step dialog showing stardarized steps 30

Figure 8 – CI/CD Pipeline Diagram . 36

Figure 9 – Simplified Proposed Database Schema for Chains 38

Figure 10 – Overview of the chain construction process per request. 47

Figure 11 – Level 1 Chain without imported chains. 53

Figure 12 – Level 2 Chain with imported Level 1 Chain. 54

Figure 13 – Response Times for Level 1 Chain 54

Figure 14 – Response Times for Level 2 Chain 55

Figure 15 – Histogram of Response Times for Level 1 Chain 55

Figure 16 – Histogram of Response Times for Level 2 Chain 56

Figure 17 – Response Time for Level 1 Chain Performance Benchmark 56

Figure 18 – Throughput for Level 1 Chain Performance Benchmark 56

Figure 19 – Response Time for Level 2 Chain Performance Benchmark 57

Figure 20 – Throughput for Level 2 Chain Performance Benchmark 57

Figure 21 – CPU Utilization of Python Cloud Run Container 57

Figure 22 – Memory Utilization of Python Cloud Run Container 57

Figure 23 – CPU Utilization of Cloud SQL Database 58

Figure 24 – Memory Utilization of Cloud SQL Database 58

LISTINGS

3.1 Current GraphQL schema for Product Journey 25

4.1 Installing dependencies with poetry 34

4.2 Creating the DB with make . 35

4.3 make db command . 35

4.4 Adding new migrations to the DB . 35

4.5 Running the application with python 35

4.6 Running the application with make 35

4.7 Query to retrieve a specific chain by its ID 40

4.8 Query to fetch a collection of chains with filters and pagination . . 40

4.9 Query to retrieve a specific activity by its ID 40

4.10 Mutation to create a new product and a supply chain 40

4.11 Mutation to create a new activity outside of a chain 40

4.12 Mutation to create a new chain . 40

4.13 Mutation to delete an existing chain by its ID 40

4.14 Mutation to add a sequence of steps to a chain 41

4.15 Mutation to delete a specific step from a chain 41

4.16 Mutation to create a new activity within a chain step 41

4.17 Mutation to update the details of an existing step in a chain 41

4.18 Mutation to remove an activity from a chain step 41

4.19 Mutation to modify the details of an existing activity in a chain . . . 41

4.20 Mutation to import chains into another 41

4.21 Mutation to reorder the sub-chains within a parent chain 41

4.22 Mutation to update the details or structure of an existing chain . . . 42

4.23 Mutation to remove sub-chain from a chain 42

4.24 Type definition for Chain . 42

4.25 Type definition for ChainVisibilitySettings 42

4.26 Enum for ChainLocationVisibility . 42

4.27 Type definition for ChainTasksDetails 43

4.28 Type definition for ChainTask . 43

4.29 Type definition for ChainStep . 43

4.30 Type definition for ChainStepActivity 43

4.31 Type definition for Activity . 43

4.32 Type definition for ChainLink . 44

4.33 Type definition for PointPosition . 44

4.34 Type definition for SubChain . 44

4.35 Type definition for BoundingBoxPosition 44

4.36 Enum for ChainType . 45

LIST OF TABLES

Table 1 – Functional Requirements for the Application 31

Table 2 – Non-Functional Requirements for the Application 32

CONTENTS

Listings . 10

1 INTRODUCTION . 14

1.1 PROBLEM STATEMENT . 14

1.2 IMPORTANCE OF THE PROBLEM 14

1.3 PROPOSED SOLUTION . 15

1.4 RESULTS AND SIGNIFICANCE . 15

1.5 CONTRIBUTIONS BY THE AUTHOR 15

1.6 OBJECTIVE . 16

1.7 MONOGRAPH’S STRUCTURE . 17

2 THEORETICAL BACKGROUND . 18

2.1 SUPPLY CHAIN MAPPING . 18

2.2 AGILE METHODOLOGY . 18

2.3 SOFTWARE DEVELOPMENT LIFECYCLE 18

2.4 DATABASE TECHNOLOGIES . 19

2.5 API DEVELOPMENT . 19

2.6 TECHNOLOGIES . 20

3 SYSTEM DESIGN AND REQUIREMENTS SPECIFICATION 22

3.1 CURRENT APPLICATION STATE . 22

3.1.1 Database Structure . 22

3.1.2 GraphQL queries and mutations 25

3.2 PROPOSED SOLUTION . 27

3.2.1 Solution Requirements . 29

4 PROJECT IMPLEMENTATION AND TECHNICAL DETAILS 33

4.1 DEVELOPMENT ENVIRONMENT . 33

4.1.1 Python Project Dependencies . 34

4.1.2 Project Setup . 34

4.1.3 CI/CD Pipeline . 35

4.2 DATABASE DESIGN . 37

4.2.1 SQL Schema Design . 37

4.3 API DEVELOPMENT . 39

4.3.1 GraphQL Schema Usage . 45

4.3.2 Building chains on request . 46

4.3.3 Propagating changes on Chains 48

4.3.3.1 Adding Steps to a Chain . 48

4.3.3.2 Recursive Addition of Steps to Parent Chains 49

4.4 MIGRATION OF DATA . 50

4.5 CHALLENGES AND SOLUTIONS . 51

4.5.1 Implementation Conclusion . 51

5 PROJECT RESULTS AND SYSTEM EVALUATION 53

5.1 RESPONSE TIME PERFORMANCE 53

5.2 SYSTEM THROUGHPUT PERFORMANCE 55

5.3 RESOURCE UTILIZATION . 56

5.4 COMPARISON WITH INITIAL REQUIREMENTS 58

5.5 TECHNICAL ACHIEVEMENTS . 58

5.6 LIMITATIONS OF THE CURRENT SYSTEM 59

5.7 CONCLUSIONS . 59

6 CONSIDERATIONS AND PERSPECTIVES 61

6.1 FUTURE DIRECTIONS . 61

6.2 CONCLUDING PERSPECTIVES . 62

References . 63

14

1 INTRODUCTION

In the evolving landscape of supply chain management, the need for more adapt-

able, transparent, and efficient mapping systems is increasingly critical. Businesses

today are under pressure to optimize their operations and ensure compliance with

both national and supra-national legislation. Additionally, there is a growing demand

from consumers for transparency, as they seek detailed information about product in-

gredients, origins, and social/ecological impacts. This consumer-driven push towards

sustainability and transparency has become a significant market trend, providing added

value to businesses that can meet these demands.

According to various reports, consumers are highly concerned about production

practices and packaging. In the food industry alone, 69% of consumers are very con-

cerned about production, 59% research packaging, and yet 60% lack trust in certificates

and quality labels. Furthermore, 75% of consumers desire more detailed information

and are willing to switch suppliers to obtain it (RESEARCH, 2019; FMI; FOOD IN-

TEGRITY, 2018; FMI; LABELINSIGHT, 2018).

To address these challenges, a digital platform was developed to focus on the

management and communication of sustainability claims along global supply chains.

This platform enables businesses to collect, analyze, and disclose relevant data while

ensuring that reporting and compliance requirements are met. The platform facilitates

a holistic approach to supply chain transparency, factoring sustainability criteria into

every step along the chain. For confidential reasons, the company and platform names

are not disclosed.

1.1 PROBLEM STATEMENT

Despite the advancements offered by the platform, feedback from clients high-

lighted a significant limitation: the absence of a feature to create reusable supply chain

mappings. Businesses managing multiple products with common components faced

redundancy and inefficiency, as the current system required each product’s supply

chain to be mapped individually. This limitation impeded operational efficiency and data

consistency, posing challenges in the management of complex supply chains.

1.2 IMPORTANCE OF THE PROBLEM

The identified problem is crucial because it directly impacts the platform’s ability

to manage supply chains efficiently. The inability to reuse common components across

different product supply chains results in increased workload, higher risk of errors, and

inconsistent data management. Addressing this issue is essential for enhancing the

platform’s functionality and meeting the growing demand for more efficient supply chain

Chapter 1. Introduction 15

solutions.

1.3 PROPOSED SOLUTION

To address this problem, a project was embarked upon to develop a new feature

called ’Component Chains’. This feature allows the mapping of individual components

once, enabling their reuse across multiple product supply chains. The introduction of

’Component Chains’ represents a pivotal evolution of the platform, directly addressing

client needs and market trends.

1.4 RESULTS AND SIGNIFICANCE

The implementation of ’Component Chains’ has empowered clients to map their

products more efficiently and effectively within the platform. Companies can now create

a single, reusable map for common components, significantly reducing redundancy

and streamlining the entire supply chain mapping process. This improvement not only

enhances data consistency but also ensures that supply chain representations are

more accurate and reliable.

Additionally, the enhanced functionality allows businesses to better communi-

cate the intricacies of their supply chains to end consumers. By providing a clear, de-

tailed view of the journey each product component takes, companies can build greater

trust and transparency with their customers. This capability supports stronger compli-

ance with sustainability and transparency regulations, reinforcing the credibility of their

sustainability claims. Overall, the successful integration of ’Component Chains’ has

markedly improved the user experience on the platform, making it a more powerful tool

for supply chain management and consumer engagement.

1.5 CONTRIBUTIONS BY THE AUTHOR

The author was responsible for the backend development of the ’Component

Chains’ feature. This involved designing and implementing the GraphQL API, creating

the necessary SQL database schema, and automating the migration of existing supply

chain data. The frontend development, including the user interface for visualizing and

managing ’Component Chains’, was carried out by the frontend team, based on designs

provided by the design team.

This thesis demonstrates the practical application of modern software develop-

ment and data management methodologies to solve a critical problem in supply chain

management.

Chapter 1. Introduction 16

1.6 OBJECTIVE

The primary objective of this thesis is to enhance the platform by developing a

feature that allows for the creation and management of reusable ’Component Chains’.

This feature aims to address the limitations of the current supply chain mapping system,

which lacks the ability to efficiently handle common components shared across multiple

products. By introducing ’Component Chains’, the platform will enable businesses to

map the journey of individual components once and reuse this mapping across multiple

product supply chains. This improvement is expected to significantly reduce redundancy,

enhance data consistency, and improve operational efficiency.

To achieve this objective, the thesis focuses on the backend development nec-

essary to support the new feature. This includes the design and implementation of a

robust GraphQL Queries and Mutations for the frontend application to consume and dis-

play on the application and the restructuring of the database schema to accommodate

reusable chains. The specific objectives of the project are:

1. Develop a GraphQL API: The API will facilitate the creation, management, and

retrieval of ’Component Chains’, ensuring seamless integration with the existing

supply chain mapping functionalities.

2. Design SQL Tables: New database tables will be created to store data on

reusable ’Component Chains’ and their relationships with multiple supply chains

and products.

3. Automate Data Migration: Existing supply chain data will be migrated to the

new format, ensuring historical data integrity and supporting the new ’Component

Chains’ concept.

4. Enhance User Experience: The platform’s user interface will be improved to offer

detailed tools for visualizing and managing ’Component Chains’ within the context

of supply chain mapping.

This project aligns with the growing demand for more adaptable, transparent, and

efficient supply chain management systems, addressing both operational needs and

compliance requirements. The successful implementation of this feature is expected

to provide significant benefits to businesses by streamlining supply chain mapping

processes and enhancing overall transparency and sustainability.

By achieving these objectives, the thesis aims to contribute to the field of supply

chain management by providing a practical solution that leverages advanced tech-

nologies such as GraphQL and SQL to improve data management and operational

efficiency.

Chapter 1. Introduction 17

1.7 MONOGRAPH’S STRUCTURE

This thesis is organized into six chapters, starting with the current chapter that

introduces the project. Chapter 2 discusses the theoretical foundations essential for

understanding the project’s development. In Chapter 3, the project requirements, both

functional and non-functional, are outlined along with a development plan; this chapter

also presents the current state of the application. Chapter 4 describes the detailed im-

plementation of the software solution, including the database and GraphQL schema, as

well as code and system architecture. The project results and performance evaluation

are presented in Chapter 5. The thesis concludes with Chapter 6, where final thoughts,

project limitations, and future directions are discussed.

18

2 THEORETICAL BACKGROUND

In this chapter, we delve into the theoretical foundations underpinning the method-

ologies and technologies utilized in the thesis project. We explore essential concepts

in supply chain mapping, Agile methodology, software development lifecycle prac-

tices, database technologies, API development, and various technologies critical to

the project. Understanding these theoretical elements is crucial for comprehending the

implementations discussed in the next chapters.

2.1 SUPPLY CHAIN MAPPING

Supply chain mapping in the context of this thesis refers to the process of doc-

umenting and visualizing the flow of materials, information, and financial transactions

across different stages of the supply chain. This includes identifying all the entities

involved, such as suppliers, manufacturers, and distributors, their activities, and under-

standing their relationships and dependencies. By mapping these elements, businesses

can achieve greater transparency and efficiency, making it easier to manage complex

supply chains and ensure compliance with sustainability standards. In this thesis, sup-

ply chain mapping is extensively used in chapter 3, where the current application state

and its database structure are analyzed. The improvements proposed in section 3.2

leverage these concepts to enhance data reuse and component mapping.

2.2 AGILE METHODOLOGY

Agile development is based on iterative and incremental approaches, empha-

sizing flexibility, collaboration, and customer feedback. The core principles of Agile,

as outlined in the Agile Manifesto, include valuing individuals and interactions over

processes and tools, working software over comprehensive documentation, customer

collaboration over contract negotiation, and responding to change over following a

plan (BECK et al., 2001). In the context of API development, Agile practices involve

frequent iterations, continuous feedback, and adaptive planning. These practices help

ensure that APIs are developed in a manner that meets the evolving needs of users and

stakeholders. Techniques such as sprint planning, daily stand-ups, and retrospectives

are commonly used to manage and improve the development process (SCHWABER;

BEEDLE, 2002).

2.3 SOFTWARE DEVELOPMENT LIFECYCLE

Continuous Integration (CI) is a development practice where developers fre-

quently integrate their code changes into a shared repository, usually several times a

day. Each integration is automatically verified by automated tests to detect integration

Chapter 2. Theoretical Background 19

errors as quickly as possible. This practice helps maintain code quality and enables

early detection of issues (DUVALL; MATYAS; GLOVER, 2007). Common tools used for

CI include Jenkins, Travis CI, CircleCI, and GitLab CI, which provide automated build

and testing capabilities to streamline the integration process. In this thesis, Terraform

and GitLab CI are utilized to automate testing and validation tasks, as described in

section 4.1.

Continuous Delivery (CD) extends the concept of CI by ensuring that code

changes are automatically tested and prepared for release to production. Continuous

Deployment goes a step further by automatically deploying every change that passes

all stages of the production pipeline to the end-users. These practices aim to reduce the

risk and time associated with releasing software updates (HUMBLE; FARLEY, 2010).

Tools commonly used for CD include Jenkins, Spinnaker, AWS CodePipeline, and

GitHub Actions, Terraform, GCP Cloud Build which facilitate the automated deployment

and delivery of software updates, ensuring smooth and reliable releases. In this thesis,

Gitlab CI, Terraform and GCP Cloud Build are used to manage the deployment pipeline,

as detailed section 4.1.

2.4 DATABASE TECHNOLOGIES

SQL databases, or relational databases, use structured query language (SQL)

for defining and manipulating data. They are based on a table-based schema and are

ideal for applications requiring complex queries and transactional consistency. Popular

SQL databases include PostgreSQL, MySQL, and Oracle (ELMASRI; NAVATHE, 2016).

On the other hand, graph databases are designed to treat the relationships between

data as equally important as the data itself. These databases use graph structures with

nodes, edges, and properties to represent and store data. This makes them ideal for

applications where understanding and navigating relationships is crucial, such as social

networks, recommendation engines, and, importantly, supply chain mapping. Popular

graph databases include Neo4j and Dgraph (PERRYMAN; BECHBERGER, 2020; JAIN,

2021). In this thesis, PostgreSQL is used as the primary database for managing the

data. Section 5 mention graphs databases as Neo4j for future improvements.

2.5 API DEVELOPMENT

RESTful APIs are based on representational state transfer (REST) principles,

which define a set of constraints for creating web services. These APIs use standard

HTTP methods and are stateless, allowing for scalable and modular applications. REST-

ful APIs are widely used due to their simplicity and ease of integration (RICHARDSON;

AMUNDSEN; RUBY, 2013). In contrast, GraphQL is a query language for APIs and

a runtime for executing those queries. It allows clients to request only the data they

Chapter 2. Theoretical Background 20

need, making APIs more efficient and flexible. GraphQL was developed by Facebook

and is increasingly being adopted for modern API development due to its capability to

aggregate multiple sources into a single query (BYRON; BANKS, 2018). In this thesis,

GraphQL is implemented for the backend application and is used to create the queries

and mutation the frontend consumes, as discussed in chapter 6.

2.6 TECHNOLOGIES

Python is a high-level, interpreted programming language known for its readabil-

ity and ease of use. It supports multiple programming paradigms, including procedural,

object-oriented, and functional programming. Python is widely used in web develop-

ment, data analysis, artificial intelligence, and more (ZELLE, 2004). FastAPI is a mod-

ern, fast (high-performance), web framework for building APIs with Python 3.7+ based

on standard Python type hints. It is designed to be easy to use and easy to deploy,

with automatic interactive API documentation generated using Swagger and ReDoc

(LUBANOVIC, 2023). PostgreSQL is an open-source relational database management

system (RDBMS) known for its robustness, extensibility, and standards compliance.

It supports both SQL and JSON for relational and non-relational queries, making it

versatile for various applications (MOMJIAN, 2001). SQLAlchemy is a SQL toolkit and

Object-Relational Mapping (ORM) library for Python. It provides a full suite of well-

known enterprise-level persistence patterns, designed for efficient and high-performing

database access (RAMM; BAYER; RHODES, 2011).

GraphQL, as previously mentioned, is a powerful query language for APIs. It

allows clients to specify the structure of the response, improving efficiency and flexibility

in data retrieval (BYRON; BANKS, 2018). Graphene is a Python library used to build

GraphQL schemas/types fast and easily. It is fully featured with integrations for popular

frameworks like Django and SQLAlchemy (AKBARY, 2015).

Git is a distributed version control system designed to handle everything from

small to very large projects with speed and efficiency. It allows multiple developers to

work on a project simultaneously without interfering with each other’s work, making it a

crucial tool for modern software development (CHACON; STRAUB, 2014).

Terraform is an infrastructure as code software tool that enables users to de-

fine and provision data center infrastructure using a high-level configuration language.

It provides a consistent workflow for managing infrastructure across various service

providers, allowing for the efficient and repeatable creation of cloud and on-premises

resources (TERRAFORM. . . , n.d.). In this thesis, Terraform is used to automate the de-

ployment and management of infrastructure, ensuring consistent environments across

development, testing, and production stages, as discussed in section 4.1.

In this thesis, these technologies are used extensively across various stages:

Python, FastAPI, and PostgreSQL form the core stack for developing and managing

Chapter 2. Theoretical Background 21

APIs and database interactions; SQLAlchemy is used for ORM purposes, and Git is

employed for version control and collaboration.

22

3 SYSTEM DESIGN AND REQUIREMENTS SPECIFICATION

In this chapter, it’s presented the detailed system design and the requirements

specification for the supply chain mapping application. We begin by examining the cur-

rent state of the application, highlighting its capabilities and limitations. This analysis

sets the stage for proposing enhancements aimed at addressing the identified chal-

lenges. Subsequently, the functional and non-functional requirements necessary for

implementing the proposed solution are outlined, ensuring that the system meets both

the user needs and performance expectations.

3.1 CURRENT APPLICATION STATE

The current state of the application being analyzed in this thesis is an existing

supply chain mapping web application. This application enables companies to map

their supply chains by detailing the steps and activities involved in the production and

distribution of their products. The primary objective of this section is to describe the

current capabilities and limitations of this application in the context of supply chain

complexity and data reuse.

The existing application allows users to create and manage detailed supply chain

maps for individual products. Each product in the application is associated with a series

of steps and activities that represent its journey through the supply chain. Users can

visualize the sequence of these steps and activities, providing a clear understanding of

the supply chain’s structure and flow. Due to confidential reasons, only mock designs of

the application will be shown. Figure 1 shows a mock design of the current application

state.

In this interface, a product can be mapped out with specific activities with location

for each step in the supply chain. Each step is individually mapped and visualized,

providing a comprehensive overview of the product’s journey from raw material to

finished product.

The application also includes functionality for creating new locations and activ-

ities within the product journey, as shown in figure 2. This interface allows users to

specify the location, supply chain step, activity details, and incoming connections for a

new location card. This process enhances the flexibility and customization of the supply

chain mapping, enabling detailed and specific data entry for each step.

3.1.1 Database Structure

The current database structure supports the functionalities of the application by

storing and managing the data necessary for supply chain mapping on each Product.

This section outlines the main tables required to handle the information shown in the

Chapter 3. System Design and Requirements Specification 23

Figure 1 – Current Product journey

Figure 2 – Adding a new activity to the product journey

product journey and describes their roles within the application.

The key tables in the database include supplier_locations, which stores infor-

mation about various locations involved in the supply chain, such as latitude, longitude,

and supplier details. The supply_chain_step_locations table links specific locations

to the supply chain steps, creating a detailed mapping of where each activity in the

supply chain takes place. The supply_chain_steps table contains the steps involved

in the supply chain for a product version, representing specific activities or stages in

the product’s journey. The supply_chain_links table defines the connections between

Chapter 3. System Design and Requirements Specification 24

different supply chain steps, which is crucial for visualizing the flow and sequence of

the supply chain. The products table stores information about the products managed

within the system, each of which can have multiple versions. The product_versions

table stores different versions of a product, each with distinct supply chain steps and

details.

The figure 3 shows a simplified version of the of those tables and how they are

connected via the FKs.

Figure 3 – Current Simplified Database Entity Relationship Diagram

The tables companies, products and supplier are also linked to the tables above

but are out of the scope in this project.

The application utilizes these tables to enable users to map out their product

supply chains effectively:

• Mapping Activities: The supplier_locations and supply_chain_step_locations

tables allow users to specify and visualize the geographical locations and specific

activities for each step in the supply chain. Users can add new activities, as shown

in figure 2.

• Defining Supply Chain Steps: The supply_chain_steps table stores detailed

information about each step in the supply chain, allowing users to define and

organize the sequence of steps involved in the production and distribution of their

products. All activities from supplier_locations are linked to a specific step.

• Visualizing Supply Chain Flow: The supply_chain_links table is used to con-

nect different supply chain step locations, enabling users to connect the entire

flow of the supply chain. This helps in understanding how various activities of

different steps are interlinked.

Chapter 3. System Design and Requirements Specification 25

• Managing Products and Versions: The products and product_versions tables

allow users to manage multiple products and their different versions. Each product

version can have a unique set of supply chain steps, which are tracked and

visualized in the application. Other fields from these tables were removed for

confidential reasons.

3.1.2 GraphQL queries and mutations

The application backend provides a set of GraphQL queries and mutations that

facilitate the management and visualization of supply chain data. This section outlines

the main queries and mutations used to interact with the supply chain information,

describing their roles and how they support the functionalities of the application. The

GraphQL schema for the product journey can be summarized by it’s code representation

on 3.1.

1 # Queries

2 supplyChain(id: ID!, lang: Language = null): SupplyChain

3 product(id: ID!): Product

4 supplierLocation(id: ID!, lang: Language = null): SupplierLocation

5 supplierLocations(lang: Language = null , ...):

SupplierLocationConnection

6

7 # Mutations

8 createSupplierLocation(input: CreateSupplierLocationInput !):

CreateSupplierLocationPayload

9 updateSupplierLocation(id: ID!, input: UpdateSupplierLocationInput!,

lang: Language = null): UpdateSupplierLocationPayload

10 deleteSupplierLocations(ids: [ID]!): DeleteSupplierLocationsPayload

11 updateSupplyChainSteps(id: ID!, input: SupplyChainStepsInput!, lang:

Language = null): UpdateSupplyChainStepsPayload

12 updateSupplyChainStepLocation(lang: Language = null , stepLocation:

SupplyChainStepLocationInput !): UpdateSupplyChainStepLocationPayload

13 removeSupplyChainStepLocation(input: RemoveSupplyChainStepLocationInput

!): RemoveSupplyChainStepLocationPayload

Listing 3.1 – Current GraphQL schema for Product Journey

The supplyChain query retrieves a specific supply chain by its ID, including its

steps and step locations. The product query fetches details of a product by its ID, in-

cluding its title, status, and related QR codes. This query is essential for accessing

product-specific information within the application. The supplierLocation query re-

trieves detailed information about a specific supplier location by its ID. These locations

are linked to supply chain steps locations to be referred to in specific chains and to

allow some reusability across products. The supplierLocations query provides a list

of supplier locations with pagination options. An optional language parameter can be

Chapter 3. System Design and Requirements Specification 26

used for localization, ensuring that the data can be presented in the desired language.

The createSupplierLocation mutation creates a new supplier location with

the specified input data. The updateSupplierLocation mutation updates an existing

supplier location by its ID with the provided input data. The deleteSupplierLocations

mutation deletes multiple supplier locations identified by their IDs. This mutation is

essential for managing and maintaining the integrity of supplier location data within the

system. The updateSupplyChainSteps mutation updates the steps of a supply chain

by its ID with the provided input data. The updateSupplyChainStepLocation mutation

updates or creates a supply chain step location with the provided input data. The

removeSupplyChainStepLocation mutation removes a supply chain step location with

the provided input data. This mutation helps maintain the accuracy and relevance of

supply chain mappings by allowing the removal of obsolete or incorrect step locations.

The mutation provide an optional language parameter can be used for localization,

facilitating updates to localized entries.

The application leverages these GraphQL queries and mutations to enable users

to map and manage their supply chains effectively. The supplyChain query is used to

fetch comprehensive details about a supply chain, including its steps and step locations.

This data is essential for visualizing the entire supply chain journey within the appli-

cation. The product query allows users to access detailed information about specific

products, which is crucial for associating supply chain data with the correct product

versions. Queries like supplierLocation and supplierLocations provide access to

detailed information about supplier locations, which can be mapped to supply chain

steps. Mutations such as createSupplierLocation and updateSupplierLocation en-

able users to add and modify these locations. The updateSupplyChainSteps muta-

tion allows users to update the sequence and details of supply chain steps. The

updateSupplyChainStepLocation and removeSupplyChainStepLocation mutations en-

able precise management of step locations within the supply chain, ensuring accurate

and up-to-date mapping.

The key features of the current application include step and location mapping,

interactive visualization, geographical context, supplier management, and customizable

step names. Users can define and visualize each step and activity in a product’s supply

chain. This includes specifying locations and connecting different steps to illustrate the

flow of the supply chain. The application offers an interactive interface where users

can click on different elements to view more details, add new steps, or modify existing

ones. Each step and activity can be associated with specific geographical locations,

enhancing the clarity of the supply chain’s geographical distribution. Users can add

and manage suppliers directly within the supply chain map, facilitating the integration

of supplier data into the overall supply chain visualization. Users have the flexibility to

name the steps and activities as desired, allowing for personalized terminology that

Chapter 3. System Design and Requirements Specification 27

best fits their processes. While this flexibility can enhance user experience, it may also

reduce the standardization necessary for effective sharing and comparison of supply

chain data with other companies.

Despite its capabilities, the current application has several limitations, particularly

in managing complex supply chains with reusable components. The current system

does not support the concept of reusable ’Component Chains.’ Each product must be

mapped individually, even if multiple products share common components or steps in

their supply chains. This leads to redundancy and inefficiency in managing supply chain

data. Without reusable components, the same steps and activities must be recreated

for each product, increasing the risk of data inconsistency and errors. As the number

of products and their associated supply chains grow, the current system’s approach

can become cumbersome and difficult to manage. Transitioning existing data to a new

format that supports reusable components poses challenges in maintaining historical

data integrity.

In the following chapter, the proposed solution will be detailed, outlining the new

functional and non-functional requirements necessary to address those limitations.

3.2 PROPOSED SOLUTION

The proposed solution introduces a new section for users to map "Component

Chains" within the application. This chapter describes the new features and functionali-

ties, accompanied by some illustration designs, and discusses how these translate into

specific backend requirements.

The proposed solution for the application introduces a comprehensive approach

to managing and visualizing complex supply chain data by introducing "Component

Chains." Component chains allow users to map the journey of individual components

separately, which can then be reused across multiple product supply chains. This mod-

ular approach enhances scalability and consistency, reducing redundancy by enabling

users to define a component’s journey once and apply it to various products. The key

components of the proposed solution are:

• Component Chains: A modular approach to mapping that allows components to

be mapped once and reused across multiple supply chains.

• Supply Chains: Similar to component chains, but linked to a specific product and

typically describing the final product sold by the company.

• Standardized Chain Steps: Supply chain steps now follow standardized naming

conventions to facilitate the importing functionality of chains.

• Renamed Supplier Locations: Supplier locations have been renamed to "Activi-

ties" but retain the same functionality with additional capabilities.

Chapter 3. System Design and Requirements Specification 28

To begin with, Figure 4 illustrates the new section for users to map component

chains. This example already includes a chain being imported, demonstrating how

users can define the journey of individual components within a supply chain. Each

component chain can be reused across multiple product supply chains, enhancing

scalability and consistency in mapping similar components used in different products.

Figure 4 – New section for mapping component chains, including an example of an

imported chain

Next, Figure 5 shows a supply chain of a product with multiple imported compo-

nent chains. These imported chains can now be used in other products that reuse those

parts of the supply chain but might include additional activities or materials. This inte-

gration allows for a comprehensive view of the product’s entire supply process, linked

to specific products and ensuring detailed, product-specific mapping.

Additionally, Figure 6 presents the updated dialog for adding activities, which

were previously known as supplier locations. The new dialog now includes fields for

output components and company details, enhancing the capability to manage various

processes and locations within the supply chain. This renaming and additional func-

tionality clarify the role of activities and support more precise and flexible mapping of

supply chain steps.

To support the functionality of importing component chains, the steps within

the chains are now standardized. Figure 7 illustrates the standardized chain steps,

including Origin, Processing, Handling, Manufacturing, Distribution, and Return. This

standardization ensures that all supply chains and component chains follow a uniform

structure, making it easier to integrate and manage them.

Chapter 3. System Design and Requirements Specification 29

Figure 5 – Supply chain of a product with multiple imported component chains

Figure 6 – New dialog for adding activities, including fields for output components and

company details

3.2.1 Solution Requirements

The proposed solution should fulfill a set of functional requirements to ensure

the successful implementation and operation of the new features within the applica-

tion. These requirements are essential for enabling the creation, management, and

integration of component chains and supply chains, along with standardized steps and

Chapter 3. System Design and Requirements Specification 30

Figure 7 – Add step dialog showing stardarized steps

renamed activities. The summarized functional requirements are presented in Table 1.

In addition to the functional requirements, the proposed solution must meet

several non-functional requirements to ensure it performs effectively and provides a

robust user experience. These requirements address aspects such as performance,

security, usability, and maintainability. The summarized non-functional requirements are

presented in Table 2.

Chapter 3. System Design and Requirements Specification 31

Requirement Description

Creation of Component

Chains

Allow users to create new component chains, option-

ally naming and attributing to a partner. Users can cre-

ate steps and activities within each component chain.

Editing Component Chains Provide functionality for users to edit details of exist-

ing component chains, including modifying steps and

activities. Changes should be tracked and logged for

audit purposes.

Importing Component

Chains

Enable users to import existing component chains into

other component chains or supply chains, ensuring im-

ported chains maintain their integrity and relationships.

Prevent the import of other supply chains into a supply

chain.

Deleting Component

Chains

Allow users to delete existing component chains that

are not in use. Ensure chains being imported cannot

be deleted to maintain data integrity.

Creation of Supply Chain-

s/Products

Allow users to create new supply chains. An empty

product is created and linked to the supply chain.

Users can define steps and activities within each sup-

ply chain using standardized naming conventions.

Standardized Chain Steps Support predefined, standardized step names and or-

der: Origin, Processing, Handling, Manufacturing, Dis-

tribution, and Return. Validate that each step within

a chain adheres to standardized naming conventions

and order.

Creation and Management

of Activities

Allow users to create and manage activities within a

chain, including specifying a Partner. Store relevant

information such as location, description, and owner

details.

GraphQL API Enhance-

ments

Include queries to retrieve component chains and their

details. Provide mutations for creating, updating, and

deleting component chains. Support functionality for

importing component chains into other chains or sup-

ply chains.

Table 1 – Functional Requirements for the Application

Chapter 3. System Design and Requirements Specification 32

Requirement Description

System Responsiveness Provide a fast and responsive user interface, with page

load times of less than 10 seconds under normal load

conditions. Backend operations should be executed

within 5 seconds for 95% of transactions.

Scalability Handle an increasing number of users and data with-

out performance degradation. Support horizontal and

vertical scaling to accommodate growing data volumes

and user interactions.

Data Protection Ensure all data, including supply chain and component

chain details, are securely stored and transmitted. Use

data encryption for sensitive information both at rest

and in transit.

Data Integrity Ensure accuracy and consistency of data through in-

tegrity checks and validation rules. Perform regular

backups to prevent data loss in case of failures.

Code Quality Follow best coding practices and standards to ensure

the system is easy to understand, modify, and extend.

Conduct code reviews and automated testing to main-

tain high code quality.

Documentation Provide comprehensive documentation for both end-

users and developers. Regularly update user manuals,

API documentation, and system architecture guides.

Modularity Design the system with modularity in mind, allowing

components to be developed, tested, and deployed

independently.

Browser Compatibility Ensure compatibility with all major web browsers, in-

cluding Chrome, Firefox, Safari, and Edge. Degrade

gracefully on older browser versions, ensuring basic

functionality is maintained.

Integration with Existing

Systems

Integrate with existing modules and third-party sys-

tems via well-defined APIs. Ensure compatibility with

common data formats and protocols for seamless data

exchange.

Table 2 – Non-Functional Requirements for the Application

33

4 PROJECT IMPLEMENTATION AND TECHNICAL DETAILS

In this chapter, we delve into the practical aspects of implementing the proposed

solution for the application. Building upon the foundational design principles and re-

quirements outlined in the previous chapters, this section provides a detailed account

of the technical steps taken to bring the solution to life. The focus lies on the comprehen-

sive database design, robust API development, and thorough testing and integration

processes necessary to ensure the system’s functionality, and scalability.

The chapter begins with the development evironment and moves on to the design

of the database schema, which forms the backbone of the application by supporting

the management and visualization of complex supply chain data. This includes an

overview of the SQL schema and the measures implemented to maintain data integrity

and security. Following this, we explore the development of the GraphQL API, detailing

the schema design, resolvers, query optimization, and mechanisms for building and

propagating changes in supply chains.

Data migration is a critical aspect of transitioning from the existing system to

the new implementation. This chapter outlines the strategies and tools used to migrate

data seamlessly, ensuring continuity and accuracy. Lastly, we discuss the challenges

encountered during the project and the solutions devised to overcome them, provid-

ing insights into the problem-solving approaches that were essential to the project’s

success.

By the end of this chapter, readers will have a comprehensive understanding of

the technical implementation of the application’s new features, from database design

to API development, data migration, and the solutions to the challenges faced during

the process.

4.1 DEVELOPMENT ENVIRONMENT

The development environment for this project was set up on a MacBook with an

M1 chip, running macOS. The primary programming language used was Python 3.11,

managed within the project repository using Poetry for package management. Below is

a detailed list of the installed software and tools necessary for building and maintaining

the application:

• Visual Studio Code: Adopted as the source code editor for its smart syntax

highlighting, autocompletion features, and robust extensions for Python, Docker,

and Git.

• Python 3.11: The main programming language for the project. This version has

chosen by it’s performance improvement and the language for it’s popularity and

ease of use.

Chapter 4. Project Implementation and Technical Details 34

• Poetry: Used as the package manager to handle dependencies and manage the

Python environment. Poetry simplifies dependency management and ensures a

reproducible environment.

• Alembic: Utilized for database migrations, allowing for version control of the

database schema and ensuring consistency across different environments.

• Terraform: Infrastructure as Code (IaC) tool used to provision and manage infras-

tructure on Google Cloud Platform (GCP). It enables consistent and repeatable

deployments.

• Docker: Employed for containerization, allowing the application to run in isolated

environments both locally and in production. This ensures consistency between

development and deployment environments.

• PostgreSQL: The database management system used for storing and managing

application data. Locally, PostgreSQL runs within a Docker container, while in

production, it is deployed as a managed SQL database on GCP.

• Make: Used for automating common setup and development tasks through a

Makefile, simplifying environment setup and project management.

4.1.1 Python Project Dependencies

The project dependencies are specified in the pyproject.toml file in the application

repository and managed using Poetry. The primary dependencies include:

• SQLAlchemy: For defining ORM models and database interaction.

• FastAPI: A modern, fast web framework for building API endpoints.

• Graphene: For creating a GraphQL API on the routes defined by FastAPI.

• Pydantic: For input and output type validation, ensuring data integrity and consis-

tency.

4.1.2 Project Setup

With Python and poetry installed, running the command:

1 poetry install

Listing 4.1 – Installing dependencies with poetry

The repository includes a Makefile with commands to streamline setup and

development tasks. For example, to set up the database, create a Docker container

with PostgreSQL, and run migrations using Alembic:

Chapter 4. Project Implementation and Technical Details 35

1 make db

Listing 4.2 – Creating the DB with make

Under the hood runs alembic and bootstraps the DB with some initial data:

1 poetry run alembic upgrade head

2 poetry run python -m boostrap_db

Listing 4.3 – make db command

New migrations can be added using alembic. Running the following command

compares the current SQLAlchemy ORM models state in the repository and whatever

is on the database and create a appropriate migration file with changes to apply:

1 alembic revision --autogenerate "New revision based on changes"

Listing 4.4 – Adding new migrations to the DB

The SQLAlchemy models are defined in Python to represent the database

schema. These models are used throughout the application to interact with the database

in a structured way.

The application can be started using either of the following commands

1 poetry run python app/main.py

Listing 4.5 – Running the application with python

1 make api

Listing 4.6 – Running the application with make

Both commands will spin up the application using Uvicorn, with the port and

database connection details specified by environment variables.

Locally, the PostgreSQL database runs in a Docker container. The connection

details are specified in the application’s configuration files to ensure seamless connec-

tivity

4.1.3 CI/CD Pipeline

The application is deployed across three environments: development (dev), stag-

ing (stg), and production (prd). Each environment is represented by a corresponding Git

branch: dev, master, and production. A CI/CD pipeline is triggered whenever changes

are committed to these branches. The pipeline runs the appropriate Terraform scripts

to provision and manage the infrastructure on GCP.

Figure 8 shows a diagram that illustrates the CI/CD pipeline for the repository:

The CI/CD pipeline for this repository is designed to automate the process of

testing, validating, pushing, and deploying code changes. This pipeline ensures that

every change is thoroughly tested and validated before being deployed to different

environments.

Chapter 4. Project Implementation and Technical Details 36

Figure 8 – CI/CD Pipeline Diagram

The pipeline consists of several stages and jobs that facilitate this process. The

stages include Test, Plan, Push, Migrate, and Deploy, each playing a crucial role in

ensuring the application’s integrity and functionality across environments.

In the Test stage, jobs such as test-merge-requests are triggered by any Merge

Chapter 4. Project Implementation and Technical Details 37

Request (MR) to the develop, master, or any branch. These jobs run tests written in

Python in the application backend repository to ensure that the new changes do not

break existing functionality and maintain code integrity.

The Plan stage involves validating the infrastructure as code (IaC) using Ter-

raform. Jobs like validate-terraform-dev/stg/prd validate the Terraform configura-

tions for the development, staging, and production environments, respectively, ensuring

that the infrastructure changes are correctly defined.

The Push stage pushes the validated configurations and Docker images to

the respective environments and creates any necessary infrastructure. Jobs such as

push-dev/stg/prd send the Docker images to the Google Cloud Platform (GCP) reposi-

tory for their respective environments and use Terraform to create or update necessary

infrastructure like Cloud Run instances or SQL databases.

The Migrate stage applies necessary database schema changes using Alem-

bic, a Python tool for database migrations. Jobs like migrate-dev/stg/prd apply these

changes in their respective environments, ensuring the database schema is up-to-date.

The Deploy stage involves deploying the new Docker images to Cloud Run, cre-

ating new revisions. Jobs such as deploy-dev/stg/prd handle the deployment for their

respective environments. These deployment jobs depend on the successful completion

of both the Push and Migrate stages.

The pipeline also includes optional Destroy jobs for tearing down infrastruc-

ture in specific environments. These jobs, like destroy-dev and destroy-stg, are run

manually if the developer wishes to perform cleanup.

This CI/CD pipeline ensures a robust process where changes are automatically

tested, validated, and deployed, maintaining the stability and reliability of the application

across all environments while allowing manual cleanup when needed.

4.2 DATABASE DESIGN

The database design for the application involves a comprehensive schema that

supports the management and visualization of complex supply chain data through the

introduction of "Component Chains." The schema is designed to enhance scalability,

consistency, and data integrity by mapping component journeys and integrating them

into product supply chains. The key entities and their relationships are outlined below.

4.2.1 SQL Schema Design

The proposed SQL schema for the solution is presented in Figure 9. This schema

includes various tables and their relationships, facilitating the mapping of component

chains and supply chains.

Chapter 4. Project Implementation and Technical Details 38

Figure 9 – Simplified Proposed Database Schema for Chains

The schema consists of the following primary tables and their respective rela-

tionships:

• chains: This new table represents chain entities and serves as the central con-

nection point for the remaining tables to model a real-life chain. When linked to

a product_version entity, the chain is considered a supply chain; otherwise, it is

considered a component chain.

• subchains: This table allows the system to understand which chain is imported

into which other chain. It includes the following columns:

– child_chain_id: Foreign key linking to the chains table, indicating the im-

ported chain.

– parent_chain_id: Foreign key linking to the chains table, indicating the par-

ent chain into which the child chain was imported to.

– order: Indicates the position of the imported (child) chain, as multiple can be

imported and rearranged.

• chain_steps: Contains the steps within a specific chain, similar to the

supply_chain_steps from Figure 3.

– previous_chain_step_id: A new column indicating the previous step in the

chain. An empty value signifies the first step of the chain.

– next_chain_step_id: A new column indicating the next step in the chain. An

empty value signifies the last step of the chain.

• chain_step_activities: Maps activities to specific chain steps, detailing the order

and associated activities. This is similar to supply_chain_steps_locations in

Figure 3.

Chapter 4. Project Implementation and Technical Details 39

– order: This column indicates the relative position of the activity card within

the step. It is used by the frontend to determine the positioning of the activity

card. This order is relative, as it needs to accommodate changes when

dealing with subchains or when other activities are imported into the chain

in question.

• activities: Stores information about activities, previously referred to as supplier

locations, including details such as location and associated components.

• components: Contains details about components used in activities, including in-

formation on attributes and associations. They represent ingredients of a product.

• chain_visibility_settings: Manages visibility settings for different chains, includ-

ing the visibility status. Although out of the scope of this thesis, it allows users to

define how certain parts of the chains are seen by end consumers.

• chain_tasks: Contains tasks associated with each chain, including details about

the task’s status and order. These tasks guide the user in creating a complete

and detailed chain representation within the application. Further details about this

table won’t be provided as it’s not the focus of the thesis.

• chain_step_mappings: Maps parent and child chain steps to enable hierarchical

chain structures, facilitating the organization of complex chains. This table is

crucial for allowing chains to be imported into other chains and helps reconstruct

the chain’s structure with subchains (e.g., positioning steps and their activities).

Further details are provided in section 4.3.3.

• chain_links: Defines the links between different chain step activities, detailing

the source and target activities along with the creation timestamp.

Tables related to products and product versions have not been modified in the

proposed schema. However, a product version can be linked to a chain. When a product

version is associated with a chain, that chain is considered the supply chain of the

product.

4.3 API DEVELOPMENT

The API layer is crucial for the functionality of the application, enabling communi-

cation between the frontend user interface and the backend database. The development

of the GraphQL API focuses on providing efficient, flexible, and secure access to the

underlying data. This section details the design and implementation of the GraphQL

schema, resolvers, query optimization techniques, and the specific functionalities for

building and propagating changes in chains.

Chapter 4. Project Implementation and Technical Details 40

The GraphQL schema serves as the blueprint for the API, defining the types of

data that can be queried and mutated, as well as the relationships between different

data entities. The proposed queries and mutations for this solution are presented and

summarized below.

1 type Query {

2 chain(id: UUID!, lang: Language = null): Chain

3 }

Listing 4.7 – Query to retrieve a specific chain by its ID

1 type Query {

2 chains(chainFilter: ChainType = null , partnerId: UUID = null ,

mappingInitialised: Boolean = null , lang: Language = null , before:

String = null , after: String = null , first: Int = null , last: Int =

null): ChainConnection

3 }

Listing 4.8 – Query to fetch a collection of chains with filters and pagination

1 type Query {

2 activity(id: UUID!, lang: Language = null): Activity

3 }

Listing 4.9 – Query to retrieve a specific activity by its ID

1 type Mutation {

2 createNewProduct(input: CreateNewProductInput !):

CreateNewProductPayload

3 }

Listing 4.10 – Mutation to create a new product and a supply chain

1 type Mutation {

2 createActivity(input: CreateActivityInput!, lang: Language = null):

CreateActivityPayload

3 }

Listing 4.11 – Mutation to create a new activity outside of a chain

1 type Mutation {

2 createChain(input: CreateChainInput !): CreateChainPayload

3 }

Listing 4.12 – Mutation to create a new chain

1 type Mutation {

2 deleteChain(id: UUID!): DeleteChainPayload

3 }

Listing 4.13 – Mutation to delete an existing chain by its ID

Chapter 4. Project Implementation and Technical Details 41

1 type Mutation {

2 createChainSteps(input: CreateChainStepsInput !):

CreateChainStepsPayload

3 }

Listing 4.14 – Mutation to add a sequence of steps to a chain

1 type Mutation {

2 deleteChainStep(id: UUID!): DeleteChainStepPayload

3 }

Listing 4.15 – Mutation to delete a specific step from a chain

1 type Mutation {

2 createChainActivity(input: CreateChainActivityInput !):

CreateChainActivityPayload

3 }

Listing 4.16 – Mutation to create a new activity within a chain step

1 type Mutation {

2 updateChainStep(input: UpdateChainStepInput !):

UpdateChainStepPayload

3 }

Listing 4.17 – Mutation to update the details of an existing step in a chain

1 type Mutation {

2 deleteChainActivity(id: UUID!): DeleteChainActivityPayload

3 }

Listing 4.18 – Mutation to remove an activity from a chain step

1 type Mutation {

2 updateChainActivity(id: UUID!, input: UpdateChainActivityInput !):

UpdateChainActivityPayload

3 }

Listing 4.19 – Mutation to modify the details of an existing activity in a chain

1 type Mutation {

2 importChains(id: UUID!, ids: [UUID]!): ImportChainsPayload

3 }

Listing 4.20 – Mutation to import chains into another

1 type Mutation {

2 reorderSubChains(id: UUID!, ids: [UUID]!): ReorderSubChainsPayload

3 }

Listing 4.21 – Mutation to reorder the sub-chains within a parent chain

Chapter 4. Project Implementation and Technical Details 42

1 type Mutation {

2 updateChain(id: UUID!, input: UpdateChainInput !): UpdateChainPayload

3 }

Listing 4.22 – Mutation to update the details or structure of an existing chain

1 type Mutation {

2 removeSubChain(id: UUID!): RemoveSubChainPayload

3 }

Listing 4.23 – Mutation to remove sub-chain from a chain

1 type Chain {

2 id: UUID!

3 companyId: UUID!

4 imageId: UUID

5 createdTimestamp: DateTime!

6 title: String!

7 image: ImageVariant

8 mappingInitialised: Boolean!

9 productVersionId: UUID

10 partnerId: UUID

11 partner: Partner

12 visibilitySettings: ChainVisibilitySettings!

13 inUse: Boolean!

14 outputComponents: [Component]

15 chainTasksDetails: ChainTasksDetails!

16 chainSteps: [ChainStep]

17 chainStepActivities: [ChainStepActivity]

18 subChains: [SubChain]

19 boundingBoxPosition: BoundingBoxPosition

20 productId: UUID

21 involvedPartners: [Partner]

22 }

Listing 4.24 – Type definition for Chain

1 type ChainVisibilitySettings {

2 id: UUID!

3 chainId: UUID!

4 locationVisibility: ChainLocationVisibility!

5 createdTimestamp: DateTime!

6 modifiedTimestamp: DateTime!

7 }

Listing 4.25 – Type definition for ChainVisibilitySettings

1 enum ChainLocationVisibility {

2 APPROXIMATE

3 COUNTRY

Chapter 4. Project Implementation and Technical Details 43

4 EXACT

5 }

Listing 4.26 – Enum for ChainLocationVisibility

1 type ChainTasksDetails {

2 tasks: [ChainTask]!

3 total: Int

4 completed: Int

5 }

Listing 4.27 – Type definition for ChainTasksDetails

1 type ChainTask {

2 id: UUID!

3 title: String!

4 done: Boolean!

5 createdTimestamp: DateTime!

6 order: Int!

7 }

Listing 4.28 – Type definition for ChainTask

1 type ChainStep {

2 id: UUID!

3 chainId: UUID!

4 title: String!

5 order: Int!

6 createdTimestamp: DateTime!

7 isDeletable: Boolean!

8 }

Listing 4.29 – Type definition for ChainStep

1 type ChainStepActivity {

2 id: UUID!

3 activityId: UUID!

4 chainStepId: UUID!

5 createdTimestamp: DateTime!

6 activity: Activity

7 incomingLinks: [ChainLink]

8 pointPosition: PointPosition

9 }

Listing 4.30 – Type definition for ChainStepActivity

1 type Activity {

2 id: UUID!

3 partnerId: UUID

4 componentId: UUID

Chapter 4. Project Implementation and Technical Details 44

5 createdTimestamp: DateTime!

6 description: String!

7 title: String!

8 name: String

9 locationCoordinates: Coordinates

10 langs: [String]!

11 logs: [ActivityLog]!

12 firstLog: ActivityLog

13 latestLog: ActivityLog

14 mediaList: [MediaType]

15 impactClaims(before: String = null , after: String = null , first: Int =

null , last: Int = null): ImpactClaimConnection

16 component: Component

17 partner: Partner

18 cultivatedAreas: CultivatedAreas

19 }

Listing 4.31 – Type definition for Activity

1 type ChainLink {

2 id: UUID!

3 chainStepActivitySourceId: UUID!

4 chainStepActivityTargetId: UUID!

5 }

Listing 4.32 – Type definition for ChainLink

1 type PointPosition {

2 x: Int!

3 y: Int!

4 }

Listing 4.33 – Type definition for PointPosition

1 type SubChain {

2 id: UUID!

3 parentChainId: UUID!

4 childChainId: UUID!

5 createdTimestamp: DateTime!

6 outputComponents: [Component]!

7 boundingBoxPosition: BoundingBoxPosition!

8 title: String!

9 outputStepActivitiesIds: [UUID]!

10 }

Listing 4.34 – Type definition for SubChain

1 type BoundingBoxPosition {

2 xMax: Int!

3 xMin: Int!

Chapter 4. Project Implementation and Technical Details 45

4 yMax: Int!

5 yMin: Int!

6 }

Listing 4.35 – Type definition for BoundingBoxPosition

1 enum ChainType {

2 COMPONENT

3 SUPPLY

4 }

Listing 4.36 – Enum for ChainType

GraphQL queries serve to fetch specific data of chains and their related models.

The main proposed GraphQL query is chain (Listing 4.7), which returns an object with

data that allows the frontend to display it to the user.

GraphQL mutations provide various ways to create, update, and delete data

related to chains, components, and activities. The mutations that allow the recursive na-

ture of chains to work include importChains (Listing 4.20), createChainSteps (Listing

4.14), and createChainActivity (Listing 4.16).

The schema types define the structure of the data and the relationships between

different entities. These types are crucial for ensuring that the data returned by the API

is structured correctly and that the relationships between different pieces of data are

maintained.

In summary, the design and implementation of the GraphQL API for the appli-

cation involve creating a schema that defines the data structures and relationships,

implementing queries and mutations to manage the data, and ensuring that the API

provides efficient, flexible, and secure access to the underlying data.

4.3.1 GraphQL Schema Usage

The Chain (Listing 4.24) object is pivotal in the response structure used by the

frontend application to visually build the chain. By utilizing the chainStepActivities

field that contains a list of ChainStepActivity (Listing 4.30) objects at their respective

positions, defined on pointPosition attribute, the frontend is able to construct the

chain, including activities from the sub-chains. This structure is constructed per request,

ensuring that the latest data is always used. All mutations that change the structure of

the chain (e.g., adding a step or importing a chain) return a full Chain type. This allows

the frontend client to rebuild the chain visually with the updated data. Further details on

how this is implemented follows.

Chapter 4. Project Implementation and Technical Details 46

4.3.2 Building chains on request

In this section, I discuss the process of constructing the chains response for

the frontend, focusing on calculating the correct position of chain step activities. The

approach involves recursively traversing imported chains and arranging their activities

appropriately. The bounding boxes of subchains are also calculated to enable proper

display on the frontend.

The main idea is to look at the subchain table to identify all imported chains. We

then recursively traverse these chains to check for further imported chains. Once a

root chain is reached, we start adding activities. Importantly, the activities of imported

chains are always positioned before those of the source chain requested by the user.

Figure 10 provides an overview of how the chains are constructed per request

and reflects the process implemented in the code which is not presented for confidential

reasons. Here’s a step-by-step explanation of the diagram:

1. Request Chain: The process starts when the frontend client (FE Client) sends a

HTTP request for a chain.

2. Initialize ChainBuilder: The API server initializes the ChainBuilder class with

the database session and chain ID.

3. Call build(): The build() method of the ChainBuilder class is called.

4. Fetch Root Chain: If the root chain is None, the root chain is fetched using the

chain_id from the database.

5. Sort Steps: The steps of the root chain are sorted using the previous_step_id

and next_step_id attributes of each step.

6. Initialize Output: The output object is initialized with the root model’s data.

7. For Each Subchain: For each subchain, the build_sub_chain function is called

recursively.

a) Get Chain and Related Models: The subchain and its related models are

fetched from the database.

b) Extend Step List: The step list is extended with the subchain steps.

c) Recursively Build Subchains: The build_sub_chain function is called re-

cursively for nested subchains. Runs step 7 for the chains.

d) Position Activities: The activities of the subchain are positioned in the

output model in the correct step.

8. Position Root Chain Activities: The activities of the root chain are positioned in

the output model.

Chapter 4. Project Implementation and Technical Details 47

Figure 10 – Overview of the chain construction process per request.

9. Return Output Model: The output model, containing activities of the root chain

and all subchains, recursively included until no subchains remain, is returned to

the frontend client.

Chapter 4. Project Implementation and Technical Details 48

4.3.3 Propagating changes on Chains

Here it’s described how changes in one chain are reflected in another chain when

that chain is imported. As explained in the previous section, chains are built on request,

but we need to ensure certain models are created for the chain to build successfully.

Whenever an activity is added to a chain, it is sufficient to add a single corresponding

ChainStepActivity model to the relevant ChainStep of the chain in question. This

addition will automatically be reflected in all other chains that import this chain, as the

build_sub_chain function will incorporate this activity.

To ensure the correct mapping of this activity to the appropriate step of the root

chain (since the activity was added to a step of the imported chain and not directly to

the root chain), we utilize the ChainStepMapping table. This table facilitates the mapping

of steps from child chains to their respective parent chains, thereby enabling the correct

positioning of activities from subchains within the root chain. Consequently, we can

accurately determine the location of the activity within the parent chain.

4.3.3.1 Adding Steps to a Chain

When adding a new step to a chain, we need to ensure a new step is created and

linked in all parent chains (chains that import that one), or if the parent chain already

contains the necessary steps, just link them. This ensures the hierarchical structure

and positions of the steps are maintained across the chains.

The code implementation is not presented for confidential reasons but can be

described as follows.

The code manages and updates a sequence of steps within a hierarchical chain

structure. This system ensures that steps are correctly added, ordered, and linked,

maintaining the integrity and logical flow of the chain and its parent chains. The detailed

steps below outline how this function operates:

1. Fetching Current Steps: The function begins by retrieving the current steps of

the chain.

2. Creating New Steps: Based on user input, new steps are created and added to

the database. These steps are then inserted into their correct positions within the

sorted list of steps.

3. Updating Step Links: The linking between steps is updated to reflect the new

order, ensuring the logical sequence of steps in the chain is maintained.

4. Mapping Steps to Parent Chains: For each parent chain that includes the current

chain, the function recursively updates the parent chains to reflect the new steps

added to the child chain. This is done using a mapping table that aligns each step

Chapter 4. Project Implementation and Technical Details 49

in the child chain with the corresponding step in the parent chain, ensuring the

correct positioning of activities in subchains within the root chain.

4.3.3.2 Recursive Addition of Steps to Parent Chains

When adding a new step to a chain, it is crucial to ensure that the new step

is also added to all parent chains that import this chain. This process ensures that

changes propagate through the hierarchy of chains, maintaining the consistency and

integrity of the overall chain structure.

Due to confidential reasons, the actual code implementation is not presented but

can be descibred as follow.

The function manages and updates a sequence of steps within a hierarchical

chain structure. This system ensures that steps are correctly added, ordered, and linked,

maintaining the integrity and logical flow of the chain and its parent chains. The detailed

steps below outline how this function operates:

1. Fetching and Sorting Steps: The function fetches and sorts the steps of the

current chain to maintain a consistent order.

2. Mapping Current Steps: A dictionary is created to map the current steps, keeping

track of their order and whether they are new.

3. Adding New Steps: For each step in the input, the function checks if it already

exists in the current chain. If not, it creates a new step and inserts it into the

correct position. It also updates the order of subsequent steps to accommodate

the new steps.

4. Updating Chain Step Mappings: The function updates the chain step mappings

using the ChainStepMapping table. This ensures that each step in the child chain

is correctly mapped to a step in the parent chain, enabling the correct positioning

of activities.

5. Recursive Propagation: The function recursively calls itself for each parent chain,

ensuring that the new steps are propagated up the chain hierarchy.

6. Updating Bounding Box: If the last step is new, the bounding box end step ID is

updated. The chain steps are linked again to maintain consistency.

7. Final Commit: The changes are committed to the database, and the chain is

refreshed and updated.

By using the ChainStepMapping table to map steps between parent and child

chains, the system ensures that any changes, including new activities or steps, are

Chapter 4. Project Implementation and Technical Details 50

correctly reflected across all chains in the hierarchy. This mechanism maintains the

integrity and consistency of the chain structures and their activities.

4.4 MIGRATION OF DATA

The migration of data from the old chain structure to the new one is a critical

step in enhancing the platform’s capabilities. This section outlines the process and

steps involved in migrating the supply chain data from the existing tables to the newly

designed ones. The goal is to ensure a seamless transition while maintaining data

integrity and enabling the new feature of reusable ’Component Chains’.

Due to confidential reasons, the actual code implementation for the migration is

not presented. Instead, the key steps taken during the migration process are outlined

below:

1. Setup and Initialization: Setting up the environment and importing necessary

modules to interact with the database. This includes configuring the path and

importing required classes and functions from the application.

2. Retrieve Products: Fetching all products from the database to determine which

supply chains need to be migrated.

3. Fetch Latest Product Version: For each product, retrieving the latest version to

work with the most up-to-date supply chain data.

4. Delete Existing Chains: Removing any existing chains associated with the prod-

uct version to avoid duplication and ensure a clean state for the new data.

5. Create New Supply Chain Entries: For each product, creating a new supply

chain entry in the new structure, initializing it with necessary metadata such as

the company ID and chain tasks.

6. Migrate Steps and Activities: Transferring each step and activity from the old

structure to the new one, ensuring that all relevant details are correctly mapped.

This includes mapping the old step activities to new ones and ensuring that all

details, such as titles and order, are correctly transferred.

7. Establish Links: Creating the necessary links between activities in the new struc-

ture to maintain the relationships and dependencies that existed in the old struc-

ture. This step ensures that the relationships and dependencies between different

parts of the supply chain are preserved.

8. Finalize and Commit: Committing the new data to the database and updating the

product version to reference the new supply chain structure. The product version

Chapter 4. Project Implementation and Technical Details 51

is updated to reference the new supply chain structure, and any temporary or old

data is cleaned up to ensure a smooth transition.

This comprehensive migration process ensures that the application’s data is ac-

curately and efficiently transitioned to the new structure, enabling enhanced functionality

and the use of reusable ’Component Chains’.

4.5 CHALLENGES AND SOLUTIONS

During the implementation of the ’Component Chains’ feature, several significant

challenges were encountered. One of the primary challenges was dealing with recursive

functions, which led to N+1 query problems in database operations. This issue resulted

in the generation of numerous database queries, significantly slowing down the API

response time.

The recursive nature of supply chain data meant that each level of the chain

required additional database queries to retrieve its subcomponents. This recursive

querying led to performance bottlenecks, as each query added incremental load to the

database, resulting in slow response times for the API.

To mitigate this issue, we focused on optimizing the database read operations.

Calculating the positions within the supply chain was relatively quick compared to the

time required to retrieve all the necessary data from the database. Therefore, enhancing

the efficiency of data retrieval was crucial.

One of the key solutions implemented was adding indexes to the foreign key

columns of the subchain models. These indexes significantly improved the performance

of read queries, reducing the overall time required to fetch the necessary data. Although

this optimization provided notable improvements, further enhancements and considera-

tions are discussed in chapter 6.

4.5.1 Implementation Conclusion

The development of the API layer is a pivotal component of the application, facil-

itating seamless communication between the frontend user interface and the backend

database. This comprehensive schema design enables precise data retrieval and ma-

nipulation, crucial for managing the intricate chain structures within the application. The

detailed queries and mutations not only support basic CRUD operations but also handle

complex hierarchical relationships and ensure data consistency across the entire chain

hierarchy.

The process of building and propagating changes within chains is meticulously

designed to maintain the integrity and logical flow of activities. By employing recursive

functions and updating step mappings, the system ensures that any new step or change

Chapter 4. Project Implementation and Technical Details 52

in a chain is accurately reflected in all parent chains. This recursive propagation mech-

anism is essential for maintaining the hierarchical structure and the correct positioning

of steps and activities.

In conclusion, the detailed steps and recursive processes described in this sec-

tion underscore the importance of maintaining a coherent and dynamic chain structure

within the application. The API development not only addresses current needs but also

lays a strong foundation for future scalability and enhancements, ensuring that the

application can adapt to evolving requirements while maintaining data integrity and per-

formance. By following these structured approaches, the application is well-equipped

to manage complex chain hierarchies and provide users with a reliable and efficient

platform.

53

5 PROJECT RESULTS AND SYSTEM EVALUATION

To evaluate the performance of the newly developed "Component Chains" feature

within the platform, various performance metrics were utilized. These metrics included

response time, system throughput, and resource utilization. The key metrics and their

evaluations are as follows:

Two types of component chains were used for the performance benchmarks:

• Level 1 Chain: A simple component chain that does not import any other chain.

It has one Origin and one Processing step. The Origin step contains 3 Harvesting

activities that link to the Peeling activity in the Processing step.

• Level 2 Chain: A more complex component chain that imports other chains. It

has 2 imported chains. In total, 9 activities across 3 steps.

Figures 11 and 12 illustrate the structure of the Level 1 and Level 2 Chains,

respectively.

Figure 11 – Level 1 Chain without imported chains.

5.1 RESPONSE TIME PERFORMANCE

To assess the response times of the system a benchmark involving 100 requests

to the endpoint to get the chain response, spaced by 10ms delays was performed. The

results are as follow:

• Level 1 Chain Benchmark: The average response time was approximately

294.74 milliseconds with a standard deviation of 80.43 milliseconds.

• Level 2 Chain Benchmark: The average response time was significantly higher

at 916.16 milliseconds, with a standard deviation of 95.68 milliseconds.

Chapter 5. Project Results and System Evaluation 59

5.6 LIMITATIONS OF THE CURRENT SYSTEM

Despite the successes, the current system has some limitations:

• Performance Issues with Complex Chains: The Level 2 Chain benchmarks

revealed higher response times, indicating a need for optimization to handle more

complex supply chains efficiently.

• Scalability: As the number of products and their associated chains grow, the

system may require further enhancements to maintain performance and manage-

ability.

• User Documentation: More comprehensive user documentation and tutorials

are needed to help users fully leverage the new features and indicate they should

start mapping their components chains first and then import those in their products

supply chains.

5.7 CONCLUSIONS

In conclusion, while the project has significantly improved the platform’s capa-

bility to manage reusable supply chains, further refinements are necessary to address

performance and scalability issues fully.

• Response Time:

– The Level 1 Chain maintains lower and more stable response times, suitable

for environments where quick responses are critical.

– The Level 2 Chain experiences higher and more variable response times,

which is expected due to its complexity. Optimization may be needed to

handle complex chains more efficiently.

• Throughput:

– The system handles increased loads well for the Level 1 Chain, maintaining

a higher throughput.

– For the Level 2 Chain, the throughput is lower and less stable, indicating the

need for performance tuning when dealing with complex chain interactions.

• Overall Performance:

– The platform shows robustness in handling simple chains with minimal degra-

dation in performance under load.

Chapter 5. Project Results and System Evaluation 60

– For more complex chains, while the system can still manage the load, there

is room for improvement in both response time and specially throughput to

ensure a consistent user experience.

These results provide valuable insights into the system’s performance and high-

light areas for further optimization, particularly for more complex chain interactions.

61

6 CONSIDERATIONS AND PERSPECTIVES

The implementation of the "Component Chains" feature within the platform marks

a significant advancement in the realm of supply chain management. The methodology

employed was robust, leveraging modern technologies such as GraphQL for API devel-

opment and SQL for database management. The execution was methodical, ensuring

that each stage of the development process was meticulously planned and executed.

The outcomes, as evidenced by the performance metrics, indicate a substantial im-

provement in both efficiency and scalability.

However, the project was not without its challenges. The integration of reusable

components posed significant technical difficulties, particularly in ensuring data consis-

tency and managing the migration of existing supply chain data. Moreover, while the

system throughput and response times improved, the scalability of the solution may still

be limited by the underlying database architecture, which could be a point of concern

as the platform scales. Additionally, it was observed that there are often multiple activ-

ities at the beginning of the chain, such as "harvest" activities from different farmers

or workers. These activities should be clustered together and visualized differently to

provide a clearer and more cohesive representation of the supply chain’s initial stages.

6.1 FUTURE DIRECTIONS

Several technical improvements can be considered to further enhance the plat-

form:

• Graph Database Integration: Incorporating a graph database such as Neo4j

or Dgraph could significantly improve the efficiency and scalability of managing

complex supply chain data. Graph databases are inherently designed to handle

interconnected data, making them ideal for supply chain mapping where relation-

ships between entities are critical.

• Enhanced Data Analytics: Developing advanced analytics tools to provide deeper

insights into supply chain data could add substantial value. This could include pre-

dictive analytics, anomaly detection, and more sophisticated reporting capabilities.

• Improved User Interface: While the current interface is functional, there is always

room for improvement in terms of user experience. Enhancing the UI to be more

intuitive and providing better visualization tools, particularly for clustering initial

activities like "harvest" from different sources, could further streamline the process

for end-users.

• Scalability Enhancements: Addressing the scalability concerns of the current

system by exploring distributed database solutions or optimizing the current

Chapter 6. Considerations And Perspectives 62

database schema can ensure that the platform can handle larger datasets and

more complex queries as the user base grows.

6.2 CONCLUDING PERSPECTIVES

The introduction of the "Component Chains" feature has set a new benchmark

for supply chain management platforms. It has addressed a critical need for reusability

and efficiency, significantly reducing redundancy and enhancing data consistency.

The project’s impact is multifaceted, providing not only operational benefits but

also enhancing transparency and trust among stakeholders. By enabling businesses

to map their supply chains more effectively, the platform supports compliance with

sustainability standards and fosters greater consumer trust.

In conclusion, the development of the "Component Chains" feature represents a

significant step forward in the platform supply chain management feature. Future work

should focus on further enhancing the platform’s scalability and functionality, ensuring

that it continues to meet the evolving needs of businesses and their supply chains.

Special attention should be given to the clustering and visualization of initial activities

to improve clarity and usability.

63

REFERENCES

AKBARY, Syrus. GraphQL framework for Python. [S.l.]: GitHub, 2015.

https://github.com/graphql-python/graphene.

BECK, Kent et al. Manifesto for Agile Software Development. [S.l.: s.n.], 2001.

Available from: https://agilemanifesto.org/.

BYRON, Eve Porcello; BANKS, Alex. Learning GraphQL. [S.l.]: O’Reilly Media, Inc.,

2018. ISBN 9781492030713.

CHACON, S.; STRAUB, B. Pro Git. [S.l.]: Apress, 2014. (The expert’s voice). ISBN

9781484200766. Available from: https://books.google.de/books?id=jVYnCgAAQBAJ.

DUVALL, P.M.; MATYAS, S.; GLOVER, A. Continuous Integration: Improving

Software Quality and Reducing Risk. [S.l.]: Pearson Education, 2007.

(Addison-Wesley Signature Series). ISBN 9780321630148. Available from:

https://books.google.de/books?id=PV9qfEdv9L0C.

ELMASRI, R.; NAVATHE, S.B. Fundamentals of Database Systems, Global Edition.

[S.l.]: Pearson Education, 2016. ISBN 9781292097626. Available from:

https://books.google.de/books?id=xdCuDAAAQBAJ.

FMI; FOOD INTEGRITY, The Center for. Transparency Roadmap for Food

Retailers: Strategies to Build Consumer Trust. [S.l.], 2018. Retrieved from FMI and

The Center for Food Integrity.

FMI; LABELINSIGHT. The Transparency Imperative: Product Labeling from the

Consumer Perspective. [S.l.], 2018. Retrieved from FMI and LabelInsight.

HUMBLE, J.; FARLEY, D. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. [S.l.]: Pearson Education, 2010.

(Addison-Wesley Signature Series (Fowler)). ISBN 9780321670229. Available from:

https://books.google.de/books?id=6ADDuzere-YC.

JAIN, Manish. Dgraph: Synchronously Replicated, Transactional and Distributed Graph

Database. arXiv preprint arXiv:1708.09050, 2021. Available from:

https://github.com/dgraph-io/dgraph/blob/master/paper/dgraph.pdf.

https://github.com/graphql-python/graphene
https://agilemanifesto.org/
https://books.google.de/books?id=jVYnCgAAQBAJ
https://books.google.de/books?id=PV9qfEdv9L0C
https://books.google.de/books?id=xdCuDAAAQBAJ
https://books.google.de/books?id=6ADDuzere-YC
https://github.com/dgraph-io/dgraph/blob/master/paper/dgraph.pdf

References 64

LUBANOVIC, B. FastAPI. [S.l.]: O’Reilly Media, 2023. ISBN 9781098135461.

Available from: https://books.google.de/books?id=XJHhEAAAQBAJ.

MOMJIAN, B. PostgreSQL: Introduction and Concepts. [S.l.]: Addison-Wesley,

2001. ISBN 9780201703313. Available from:

https://books.google.de/books?id=GE9GAQAAIAAJ.

PERRYMAN, J.; BECHBERGER, D. Graph Databases in Action: Examples in

Gremlin. [S.l.]: Manning, 2020. ISBN 9781638350101. Available from:

https://books.google.de/books?id=vjszEAAAQBAJ.

RAMM, M.; BAYER, M.; RHODES, B. SQLAlchemy: Database Access Using

Python. [S.l.]: Addison Wesley Professional, 2011. (Developer’s Library). ISBN

9780132364676. Available from: https://books.google.de/books?id=GRvHOwAACAAJ.

RESEARCH, Allied. Food Traceability Market Report. [S.l.], Mar. 2019. Retrieved

from Allied Research.

RICHARDSON, L.; AMUNDSEN, M.; RUBY, S. RESTful Web APIs: Services for a

Changing World. [S.l.]: O’Reilly Media, 2013. ISBN 9781449359744. Available from:

https://books.google.de/books?id=wWnGAAAAQBAJ.

SCHWABER, K.; BEEDLE, M. Agile Software Development with Scrum. [S.l.]:

Prentice Hall, 2002. (Agile Software Development). ISBN 9780130676344. Available

from: https://books.google.de/books?id=BpFYAAAAYAAJ.

TERRAFORM by HashiCorp. [S.l.: s.n.]. https://www.terraform.io. Accessed:

2024-06-04.

ZELLE, J.M. Python Programming: An Introduction to Computer Science. [S.l.]:

Franklin, Beedle, 2004. (Franklin Beedle Series). ISBN 9781887902991. Available

from: https://books.google.de/books?id=aJQILlLxRmAC.

https://books.google.de/books?id=XJHhEAAAQBAJ
https://books.google.de/books?id=GE9GAQAAIAAJ
https://books.google.de/books?id=vjszEAAAQBAJ
https://books.google.de/books?id=GRvHOwAACAAJ
https://books.google.de/books?id=wWnGAAAAQBAJ
https://books.google.de/books?id=BpFYAAAAYAAJ
https://www.terraform.io
https://books.google.de/books?id=aJQILlLxRmAC

