
FEDERAL UNIVERSITY OF SANTA CATARINA
TECHNOLOGY CENTER

AUTOMATION AND SYSTEMS DEPARTMENT
UNDERGRADUATE COURSE IN CONTROL AND AUTOMATION ENGINEERING

Fernando Kendy Marciniak Arake

End-to-end development of a demonstrator for defect detection

Aachen
2024

Fernando Kendy Marciniak Arake

End-to-end development of a demonstrator for defect detection

Final report of the subject DAS5511 (Course Final Project)
as a Concluding Dissertation of the Undergraduate Course
in Control and Automation Engineering of the Federal
University of Santa Catarina.
Supervisor: Prof. Eric Aislan Antonelo, Dr.
Co-supervisor: Henrik Heymann, M.Sc.

Aachen
2024

Ficha catalográfica gerada por meio de sistema automatizado gerenciado pela BU/UFSC.
Dados inseridos pelo próprio autor.

Marciniak Arake, Fernando Kendy
 End-to-end development of a demonstrator for defect
detection / Fernando Kendy Marciniak Arake ; orientador,
Eric Aislan Antonelo, coorientador, Henrik Heymann, 2024.
 70 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Engenharia de Controle e Automação,
Florianópolis, 2024.

 Inclui referências.

 1. Engenharia de Controle e Automação. 2. Internet of
Things. 3. Computer Vision. 4. Defect Detection. I. Aislan
Antonelo, Eric . II. Heymann, Henrik . III. Universidade
Federal de Santa Catarina. Graduação em Engenharia de
Controle e Automação. IV. Título.

Fernando Kendy Marciniak Arake

End-to-end development of a demonstrator for defect detection

This dissertation was evaluated in the context of the subject DAS5511 (Course Final Project)
and approved in its final form by the Undergraduate Course in Control and Automation

Engineering

Florianópolis, February 26th, 2024.

Prof. Marcelo De Lellis Costa de Oliveira, Dr.
Course Coordinator

Examining Board:

Prof. Eric Aislan Antonelo, Dr.
Advisor

UFSC/CTC/DAS

Henrik Heymann, M.Sc.
Supervisor

Fraunhofer IPT

Prof. Gabriel Thaler, M.Sc.
Evaluator

UFSC/CTC/DAS

Prof. Eduardo Camponogara, Dr.
Board President

UFSC/CTC/DAS

ACKNOWLEDGEMENTS

I am grateful for my family and friends. Obrigado, pai e mãe.

DISCLAIMER

Aachen, February 15th, 2024.

As representative of the Fraunhofer Institute for Production Technology in which the
present work was carried out, I declare this document to be exempt from any confidential or
sensitive content regarding intellectual property, that may keep it from being published by
the Federal University of Santa Catarina (UFSC) to the general public, including its online
availability in the Institutional Repository of the University Library (BU). Furthermore, I attest
knowledge of the obligation by the author, as a student of UFSC, to deposit this document in the
said Institutional Repository, for being it a Final Program Dissertation (“Trabalho de Conclusão

de Curso”), in accordance with the Resolução Normativa n° 126/2019/CUn.

Henrik Heymann
Fraunhofer Institute of Production Technology

ABSTRACT

With the Industry 4.0 advent, companies started the digital transformation of their assets and
processes. The Internet of Things (IoT) plays a big part in this transformation, connecting
devices and machines, leading to better production control, and providing valuable procedure
data. Computer Vision (CV) is another area that is taking advantage of industrial digitization.
Making good use of cameras and the images they acquire together with CV techniques based on
Machine Learning (ML) models, it is possible to setup a CV based system for defect detection,
ensuring production quality. The main motivation surrounding the project was the planning
and development of a pilot system which can be further reused by different use cases, either
as a whole or as a first reference. The focus of this work was the End-to-End development
of a demonstrator for defect detection. It started with the hardware selection, hardware setup
(physically and connection to a specific cloud), establishment of a socket-based server, setup of
a backend service in an existing web application, selection and training of a CV model, and the
deployment making use of containers. A simple mockup was used for the frontend, as it was
not a goal of the project. The selected use case was based on the MVTec Anomaly Detection
Dataset, specifically for defect detection in cables. The goal was achieved and the whole system
worked well, from data acquisition to the final deployment. Keywords: Defect detection. IoT.
Computer vision.

RESUMO

Com o advento da Indústria 4.0, empresas iniciaram a transformação digital dos seus ativos e
processos. A Internet das Coisas (IoT) desempenha um papel importante nesta transformação,
conectando dispositivos e máquinas, levando a um melhor controle da produção e fornecendo
dados valiosos. A Visão Computacional (CV) é outra área que está aproveitando a digitalização
industrial. Fazendo bom uso de câmeras e das imagens por elas adquiridas junto a técnicas de CV
baseadas em modelos Aprendizado de Máquina (ML), é possível montar um sistema baseado
em CV para detecção de defeitos, garantindo qualidade na produção. A principal motivação
a cerca desse projeto era o planejamento e desenvolvimento de um sistema piloto que possa
ser reutilizado futuramente em diferentes casos de uso, tanto o sistema todo quanto como uma
referência inicial. O foco desse projeto é o desenvolvimento completo de um demonstrador para
detecção de defeitos. Partindo da seleção de hardware, a montagem do hardware (fisicamente e
conexão a uma cloud específica), definição de um servidor baseado em sockets, desenvolvimento
de um serviço de backend em um aplicação web existente, seleção e treinamento de um modelo
de CV, e a implantação do sistema fazendo uso de containers. Um modelo simples de frontend
foi utilizado visto que não era um objetivo do projeto. O caso de uso selecionado foi baseado
no MVTec Anomaly Detection Dataset, especificamente para a detecção de defeitos em cabos.
O objetivo foi alcançado e o sistema como um todo funcionou bem, desde a aquisição de
dados até o deployment final. Palavras-chave: Detecção de defeitos. Internet das Coisas. Visão
computacional.

LIST OF FIGURES

Figure 1 – Fraunhofer Institute for Production Technology. 13
Figure 2 – Methodology’s flowchart. 15
Figure 3 – Industry 4.0 and its main areas. 18
Figure 4 – AI and its subgroups. 19
Figure 5 – Use of a CIS for quality inspection in an ion-lithium battery production. . . 20
Figure 6 – Object detection working flow. 21
Figure 7 – Confusion Matrix. 22
Figure 8 – Intersection over Union. 23
Figure 9 – Precision-recall curve. 24
Figure 10 – Performance of the latest YOLO models. 25
Figure 11 – Network example. 25
Figure 12 – Client/Server setup using sockets. 27
Figure 13 – Technical setup. 29
Figure 14 – Images used to train the model. 30
Figure 15 – Raspberry Pi 4 B 8GB. 32
Figure 16 – ArduCam B029201. 32
Figure 17 – Signal Tower TC-9539296. 33
Figure 18 – Hardware setup. 35
Figure 19 – Raspberry Pi’s pins. 36
Figure 20 – Client/Server socket-based setup. 41
Figure 21 – Train/Validation loss and performance metrics with no data preprocessing. . 50
Figure 22 – Post prediction. 50
Figure 23 – Camera acquired image vs dataset image. 51
Figure 24 – Example image after using GaussianBlur() and ColorJitter() methods. 51
Figure 25 – Augmented images. 53
Figure 26 – Roboflow’s annotating tool. 54
Figure 27 – Dataset full configuration. 54
Figure 28 – Train/Validation loss and performance metrics. 58
Figure 29 – Images post prediction. 59
Figure 30 – Frontend on the IQP web application. 61
Figure 31 – Final prototype. 61
Figure 32 – Architecture of the YOLOv8 model. 69

LIST OF TABLES

Table 1 – Validating results. 59

CONTENTS

1 INTRODUCTION . 12
1.1 CONTEXTUALIZATION . 12
1.2 THE RESEARCH INSTITUTE . 12
1.2.1 The Fraunhofer Society . 12
1.2.2 The Fraunhofer Institute for Production Technology - IPT 13
1.2.3 The Production Quality Department . 13
2 OBJECTIVES . 14
3 METHODOLOGY . 15
4 THEORETICAL BACKGROUND . 17
4.1 INDUSTRY 4.0 . 17
4.2 IOT . 17
4.3 ARTIFICIAL INTELLIGENCE . 19
4.3.1 Machine Learning . 19
4.3.2 Computer Vision . 20
4.3.2.1 Object detection . 21
4.3.2.2 YOLOv8 model . 21
4.4 COMPUTER NETWORKS . 25
4.4.1 Socket programming . 26
4.4.2 Communication Protocols . 26
4.5 MULTITHREADING . 27
4.6 WEB DEVELOPMENT . 28
4.7 CONTAINER . 28
5 DEMONSTRATOR DEVELOPMENT 29
5.1 TECHNICAL SETUP . 29
5.2 USE CASE: DEFECT DETECTION IN CABLES 29
5.3 HARDWARE AND SOFTWARE SELECTION 30
5.3.1 Hardware . 30
5.3.2 Software tools . 32
5.4 HARDWARE SETUP . 34
5.5 SOFTWARE SETUP - RASPBERRY PI 36
5.5.1 VPN connection . 37
5.5.2 Image acquisition and socket client . 38
5.6 CLIENT/SERVER USING SOCKETS . 41
5.6.1 Server . 42
5.6.2 Clients . 45
5.7 BACKEND SERVICE . 45
5.8 YOLOV8 TRAINING . 49

5.8.1 Original data set . 49
5.8.2 Data Preprocessing . 49
5.8.3 Model training . 55
5.9 DEPLOYMENT USING DOCKER CONTAINERS 55
6 RESULTS . 58
7 CONCLUSION . 62

References . 64
ANNEX A – . 69

12

1 INTRODUCTION

1.1 CONTEXTUALIZATION

The industrial scenario is getting more and more influenced by the Industry 4.0 (I4.0)
and its topics nowadays (deeper explanation on chapter 4). The main aspect of the I4.0 is
the digitization of its processes and services, leading to better control over the many different
processes in a factory. To achieve the desired level of control, information about the procedures
is needed, and that is where the Internet of Things (IoT) comes in scene. IoT defines a network
of devices, systems, sensors, and softwares that connects and exchange data with each other.
Having IoT devices throughout the production chain allows for a detailed overview of the
process, helping in getting insights and finding new solutions and optimizations. Companies
are making use of real time data analysis to make decisions, ensuring that no immediate issue
may influence on the final product. Many are the possibilities of improvement in the production
chain, being the production quality the focus of this project. Production quality assures that
the company is effectively fabricating products that are according to their standards, leading
to a increase in clients satisfaction and fidelity. To assure production quality, many different
techniques can be used, like Computer Vision (CV), which is the case of this project. By using
a well established CV model widely used throughout both the industry and academy, YOLOv8,
it was possible to achieve solid defect detection in the planned system.

The project focuses on developing a pilot system for defect detection by planning its
architecture and developing the prototype. It aims at providing this first system that can be reused
or used as an initial reference for further projects, while also being an easy to carry system that
can be taken to fairs and events, allowing the institute (see next section) to showcase what it does
and gathering interest from both the general public and possible partners. The main requisites
are to have it as automated as possible - seeking for a "plug and play" prototype, to make it
portable, to work in a continuous error less manner, and to be scalable.

The system is composed by a camera connected to a device which should communicate
with a service at the Intelligent Quality Platform IQP, a website of Fraunhofer IPT. The service
will make the defect detection, which will be displayed in the frontend of the application and
physically through a light column.

1.2 THE RESEARCH INSTITUTE

The project was developed at the Fraunhofer Institute for Production Technology. Further
explanations of the company and its history will be shown in the next subsections.

1.2.1 The Fraunhofer Society

The Fraunhofer-Gesellschaft is a German-based organization named after Joseph von
Fraunhofer (1787 – 1826), a German researcher who made significant contributions to modern

Chapter 1. Introduction 13

optics, discovering the Fraunhofer lines. The institution was founded in Munich on March 26th,
1949. Since it was the post-war period, there was an urgent need to strengthen the industry,
mainly in iron and steel and mechanical engineering. Later on, in 1951, it was the first time
that the Fraunhofer-Gesellschaft received funds from the Marshall Plan through the European
Recovery Program. That was the beginning of the organization, which opened its first institute
in 1954. By 1956, other institutes were opened, leaving the region of Bavaria and expanding
across Germany.

The Fraunhofer-Gesellschaft is the leading applied research organization in the world,
with 76 institutes and research units throughout Germany. The funding usually comes from three
main sources: industry contracts, publicly funded projects, and federal and state government.

1.2.2 The Fraunhofer Institute for Production Technology - IPT

Many institutes are related to the Fraunhofer-Gesellschaft, and the Fraunhofer Institute
for Production Technology IPT is one of them. Having been opened in 1980, it is located in
Aachen, Nordrhein-Westfalen, Germany, and is focused on production matters, especially in
manufacturing.

Figure 1 – Fraunhofer Institute for Production Technology.

Source: (Fraunhofer IPT, 2024).

1.2.3 The Production Quality Department

The production quality is the department in which the project was developed. Among its
main focuses, are the consistent digitalization and cross-linking of production data and maximal
resource efficiency, figures in high positions.

https://www.ipt.fraunhofer.de/en/Profile.html

14

2 OBJECTIVES

The main objective of the project is the end-to-end development of a demonstrator for
defect detection, starting with the architecture setup to the development and implementation.

To reach the main objective, some specific objectives had to be achieved, being them:

• A solid performance of the CV defect detection model to prove its usability and its effec-
tiveness.

• Flawless interaction of all the system components: Raspberry Pi, socket-server, backend,
and frontend.

• Stablish a solid pilot system, opening the path for future improvements without changing
much of the original.

15

3 METHODOLOGY

All of the steps described here are developed in Section 4 and 5. The idea of the project
was the one described in chapter 2, but how to achieve that? Figure 2 shows the flowchart of the
steps that were taken, leading to the final prototype.

Figure 2 – Methodology’s flowchart.

Source: author.

1. Literature review: for a better understanding of the methods and techniques that were
going to be used, it was needed to research and read about them, leading to a more solid
theoretical knowledge.

2. Use case definition: knowing that it was going to be about defect detection, a use case had
to be defined. The ideal use case would be industry related, being easy to use and handle.
A public dataset by MVTec was chosen, containing defects in cables.

3. Hardware and software selection: based on real-time images, the full hardware setup had
to be decided. The controlling device (i.e. Arduino, ESP32, Raspberry Pi) had to be easy
to use, with solid documentation, while also attending some requirements, such as the
automation of certain processes. A Raspberry Pi, a USB camera, and a traffic light column
were selected. For the software, Python is the main programming language, and all the
used systems had Linux distributions on them.

4. Hardware and software setup: after selecting the hardware, it was all assembled. The goal
was to have flawless interaction between the hardware units that were previously selected,
mainly worrying about the activation of the 24V light column and its control. Software

Chapter 3. Methodology 16

wise, the goal was to achieve the automated execution and start of the tasks the Raspberry
would perform.

5. Socket-based server/client: for the communication between the Raspberry Pi and the
Virtual Machine (VM), a socket-based server was used. The goal was to have a standard
architecture to handle different connections and its inputs/outputs (requests, commands,
returns).

6. Backend service: since the objective was to deploy this service on an existing web ap-
plication of IPT, a FastAPI backend was defined. The backend would be responsible for
requesting new images and, after receiving them, using a defect detection model on it,
returning the image with the prediction on top of it.

7. Model training: using the YOLOv8 model and the chosen dataset, the model was trained.
By using only the images available in the data set, the model did not perform that well,
being biased and over fitted. Data augmentation techniques were used in order to improve
the model training, leading to better performance.

8. Deployment: at the end, the complete system was deployed at the FEC making use of
Docker containers.

17

4 THEORETICAL BACKGROUND

4.1 INDUSTRY 4.0

In the 18th century, what is called the First Industrial Revolution happened. Its most
remarkable change in the way things were produced was the introduction of steam engines,
which led to a rise in human productivity (SINGH; SHARMA, 2020). The so-called Second
Industrial Revolution, which happened in the 19th century, was responsible for popularizing the
usage of electricity and steel in the industry (AGARWAL, H.; AGARWAL, R., 2017). These
two were key factors in the increase and widespread of mass production models, like Fordism.
A little further, by the middle of the 20th century, the Third Industrial Revolution took place,
with the most notable change being the technological revolution. It started with the movement
from mechanical and analog electronic technology to digital electronics, to the massive use of
microelectronic devices (computers, microprocessors, semiconductors), and the invention of the
Internet by the late 60s (MOHAJAN, 2021). It is still happening and is expected to endure until
the 2030s.

While being part of the 3rd Industrial Revolution, society and technology had great
advances. This advance led to what is called the Fourth Industrial Revolution, or the Industry
4.0. This new revolution is built around the concept of smart factories, with the integration
between men and technology through Cyber-Physical Systems (CPS) (PETRILLO et al., 2018).
As defined by Zanero (2017) "In many real-world systems, computational and physical resources
are strictly interconnected: embedded computers and communication networks govern physical
actuators that operate in the outside world and receive inputs from sensors, creating a smart
control loop capable of adaptation, autonomy, and improved efficiency". According to Petrillo
et al. (2018), Industry 4.0 covers three fundamental aspects:

1. Digitization and increased integration of vertical and horizontal value chains;

2. Digitization of product and service offerings;

3. Introduction of innovative digital business models.

All of the aforementioned topics add up to the idea of a smart factory: digitization of each
process of an industry so more control and improvements can be done over each of them.

With all the digitization happening, another concept was defined: the Internet of Things
(IoT) - Figure 3. The following subsection will give an overview of IoT.

4.2 IOT

The Internet of Things can be defined as a technology that is embodied in a wide spec-
trum of networked products, systems, and sensors, which take advantage of advancements in

Chapter 4. Theoretical background 18

Figure 3 – Industry 4.0 and its main areas.

Source: (Aethon, 2018).

computing power, electronics miniaturization, and network interconnections to offer new capa-
bilities not previously possible (ROSE; ELDRIDGE; CHAPIN, 2015).

A typical IoT system works through real-time data collection and exchange. It also stated
that, commonly, IoT systems have the following components (AWS, 2024c):

1. Smart devices: devices that are used to collect data, user inputs, or user patterns and send
and receive data from the IoT application. In the case of the project, it was a camera for
image acquisition;

2. IoT application: An IoT application is a collection of services and software that integrates
data received from various IoT devices. It uses machine learning or artificial intelligence
(AI) technology to analyze this data and make informed decisions. These decisions are
communicated back to the IoT device and the IoT device then responds intelligently to
inputs (AWS, 2024c). For this project, two main services compose the IoT application: a
socket server and a backend service;

3. Graphical User Interface (GUI): management through a GUI. A webpage was used as the
GUI for the project.

All three common components add up to a complete IoT system, which can be used for different
purposes: smart houses, production quality, and employee safety. In this case, it was used for
assurance of production quality, in specific, defect detection.

https://aethon.com/mobile-robots-and-industry4-0/

Chapter 4. Theoretical background 19

4.3 ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) can be explained, in a shallow manner, as "something" ca-
pable of replicating human capacities, such as thinking, planning, selecting, and defining. "On
an operational level for business use, AI is a set of technologies that are based primarily on
machine learning and deep learning, used for data analytics, predictions and forecasting, object
categorization, natural language processing, recommendations, intelligent data retrieval, and
more" (GOOGLE, 2024b). Figure 4 shows how AI and its subgroups (ML, DL) are related.

Figure 4 – AI and its subgroups.

Artificial Intelligence

Machine Learning

Deep Learning

Source: author.

4.3.1 Machine Learning

It would be easier to explain to a child what is the difference between a racing car and a
common car through examples, rather than trying to find rules or conditions that define a racing
car (JANIESCH; ZSCHECH; HEINRICH, 2021). This phrase works extremely well to define
the idea behind Machine Learning (ML). The computer, as a ML system, is fed by data so it can
by itself assess characteristics and patterns of what is being watched. Jordan and Mitchell (2015)
defined Machine Learning as an improvement in a performance metric as a task is performed,
through some sort of training experience.

Depending on what is being assessed, it is expected that the machine is able to take
actions that match the desired behavior, whether it is a movie recommendation, autonomous
driving, or, in this case, defect detection. Based on (MAHESH, 2020), ML can be defined by
the following subgroups:

• Supervised Learning: a ML task that aims to learn a function that maps one input and one
output based on an input-output reference. Labeled data is provided, for example, animal
images. After training the model, it is expected that a picture of a dog will be classified as
such.

Chapter 4. Theoretical background 20

• Unsupervised Learning: making opposition to Supervised Learning, there are no correct
answers. Non-labeled data is provided to the model, being the model responsible for
extracting characteristics and patterns from it. Going back to the animals example, the
model might classify the animals not based on their species, but on their characteristics
from, like animals with and without wings (birds, in general).

• Reinforcement Learning: Reinforcement Learning is an area of ML focused on how an
agent will take actions in a given environment so a certain reward can be maximized.
Good examples of this are old games played by AI. In the case of the popular game Pong,
the agent has as a reward the scored points. It considers these before taking action, always
looking to maximize the reward.

4.3.2 Computer Vision

According to Azure (2024), "Computer vision is a field of computer science that focuses
on enabling computers to identify and understand objects and people in images and videos. Like
other types of AI, computer vision seeks to perform and automate tasks that replicate human
capabilities. In this case, computer vision seeks to replicate both the way humans see and the
way humans make sense of what they see."

In modern Computer Vision (CV), Deep Learning has become the most used method to
achieve high-quality CV products. "Computer vision uses deep learning to form neural networks
that guide systems in their image processing and analysis. Convolutional neural networks (CNN)
techniques enable deep learning inference for image classification and object detection. Once
fully trained, computer vision models can perform object recognition, detect and recognize
people, and even track movement" (INTEL, 2024).

The most common use cases for CV in industrial cases are object detection and recog-
nition, packaging inspection, sorting and counting, and quality inspection, which is the case of
this project. Figure 5 shows a setup using a Contact Image Sensor (CIS) in a manufacturing
environment.

Figure 5 – Use of a CIS for quality inspection in an ion-lithium battery production.

Source: (Alexander Kreppein, 2023).

Chapter 4. Theoretical background 21

4.3.2.1 Object detection

The statement by Mathworks (2024) defines clearly what is object detection in CV:
"Object detection is a computer vision technique for locating instances of objects in images
or videos. Object detection algorithms typically leverage machine learning or deep learning
to produce meaningful results. When humans look at images or videos, we can recognize and
locate objects of interest within a matter of moments. The goal of object detection is to replicate
this intelligence using a computer".

Object detection algorithms will take an image as input and return both the coordinates
of the bounding boxes and the detected object (the format of these outputs may vary from model
to model). In the case of Figure 6, an image containing a dog, a bicycle, and a truck is used as
input. After being processed by the model, the given output is made of a set of four coordinates
that represent the boundary boxes (xmin,xmax,ymin,ymax) and a string that names the detected
object (HASSAN; KHALIL; AHMAD, 2020).

Figure 6 – Object detection working flow.

Source: (HASSAN; KHALIL; AHMAD, 2020).

For this project, instead of detecting objects (cars, trees, cups), object detection tech-
niques were used for defect detection in cables. The following section will introduce and explain
the model that was used.

4.3.2.2 YOLOv8 model

You Only Look Once (YOLO) is an object detection and image segmentation model
developed by Joseph Redmon and Ali Farhadi at the University of Washington, being launched
in 2015. Many versions of the model have been released in the past years and their main versions,
according to the documentation by Ultralytics (2024), are:

Chapter 4. Theoretical background 22

• YOLOv3: released in 2018, enhanced the performance of the previous versions by using
a more efficient backbone network, multiple anchors, and spatial pyramid pooling.

• YOLOv5: in 2020, the 5th version was released. It significantly improved the performance
and added new features, like hyperparameter optimization, integrated experiment tracking,
and automatic export to popular export formats.

• YOLOv8: launched in 2023, it is the latest version of the model. It supports many different
tasks, including detection, segmentation, pose estimation, tracking, and classification. It
is very versatile and allows users to use it for many different applications.

The differences between performance for the latest versions can be seen in Figure 10.
The metric is the Mean Average Precision (mAP), commonly used to analyze the performance
of object detection models. It is based on four other sub metrics (SHAH, 2022):

1. Confusion Matrix: based on 4 attributes. Represents how many predictions are correct and
incorrect per class, helping in understanding the classes that are being confused by the
model as other classes (TIWARI, 2022).

• True Positives (TP): the prediction is correct.

• True Negatives (TN): no prediction is made, which is expected. In object detection,
it is not taken into account. It can be said that it is correctly detecting the background
of an object as background, so no detection.

• False Positives (FP): the prediction is incorrect, no object should be detected.

• False Negatives (FN): no prediction is made, but it should.

Figure 7 – Confusion Matrix.

Source: (SHAH, 2022).

Chapter 4. Theoretical background 23

2. Intersection over Union (IoU): indicates the overlap of the predicted bounding box co-
ordinates to the ground truth boxes. Higher IoU values mean that the prediction closely
resembles the ground truth box coordinates, the closer to one the better (Figure 8).

Figure 8 – Intersection over Union.

Source: (SHAH, 2022).

3. Precision: it measures how well you can find true positives (TP) out of all positive pre-
dictions (TP + FP). For example, if the precision of the model is 0.753, it means that the
prediction should be correct around 75% of the time.

Precision =
TP

TP +FP
(1)

4. Recall: it measures how well you can find true positives (TP) out of all the real positives
available (TP + FN). The closer to 1 the better, meaning that the amount of FN is very
low.

Recall =
TP

TP +FN
(2)

Having all these metrics defined, it is possible to plot the precision-recall curve (figure 9).
This graph "shows how to recall changes for a given precision and vice versa in a computer vision
model" (SOLAWETZ, 2020). The metric of interest for this curve is the Average Precision (AP)
which is defined as the weighted mean of precisions at each threshold with the increase in recall
from the previous threshold used as the weight. In this case, the threshold is the confidence score
assigned to the predicted bounding boxes. So for each different confidence score, a threshold is
set.

To start calculating the mAP, it is needed to define an IoU threshold. With the IoU thresh-
old defined, it is possible to define the TP (IoU > IoU threshold), FP (IoU < IoU threshold), and
FN (missing prediction). Having them, the Precision and Recall for each threshold (confidence)
is calculated. Then, for each class of the model, a precision-recall curve is generated, and from
that, the AP is calculated. To finish it off, the mAP is the mean of all the APs that were calculated.
Equation (3) defines mAP, being N the number of classes available.

Chapter 4. Theoretical background 24

Figure 9 – Precision-recall curve.

Source: (CHUGH, 2023) .

mAP =
1
N

N

∑
n=1

APn (3)

The advantage of using mAP to measure the performance of the model is that it takes
into account all the classes available in a single metric, giving robustness to the analysis. The
higher the mAP the better the model is across its classes. Depending on the IoU threshold that
was chosen, the terminology changes. So for a fixed IoU of 0.5, the term is mAP@0.5. In the
case of a range of IoU thresholds, from 0.10 to 0.90 with a step size of 0.05, the term would be
mAP@0.10:0.05:0.90.

With the understanding of what mAP is, it is possible to go back to the YOLO models
and check their overall performances comparing each other, as seen in Figure 10. It is notable
that the newest version of the model is the best one, requiring fewer parameters to reach better
performance. It is also faster than the old ones.

For the model that was used in this project, YOLOv8, the output is as follows: a set of
bounding boxes that enclose the detected objects in the format (xcenter,ycenter,width,height), the
probabilities of the object belonging to each of the possible classes, and an integer that displays
the maximum number of possible detected objects. The architecture of the model can be seen in
Figure 32. The architecture of the model will not be further commented on nor explained in this
document.

Chapter 4. Theoretical background 25

Figure 10 – Performance of the latest YOLO models.

Source: (ULTRALYTICS, 2023).

4.4 COMPUTER NETWORKS

As said by IBM (2024), "A computer network comprises two or more computers that are
connected—either by cables (wired) or WiFi (wireless)—to transmit, exchange, or share data
and resources. You build a computer network using hardware (e.g., routers, switches, access
points, and cables) and software (e.g., operating systems or business applications)".

Figure 11 – Network example.

Source: (JACOBS, 2023).

Some terms and concepts are important to have a clearer understanding of Computer
Networks, being them:

1. IP address: it is a 32-bit number. It uniquely identifies a host (e.g., computer, printer,
router) on a TCP/IP network (MICROSOFT, 2022).

2. Nodes: A network node can be defined as the connection point among network devices,
allowing to send data from one endpoint to the other (SOLARWINDS, 2024).

Chapter 4. Theoretical background 26

3. Ports: identifies a specific connection between network devices. Each port is identified by
a number. If you think of an IP address as comparable to the address of a hotel, then ports
are the suites or room numbers within that hotel (IBM, 2024).

There are many network types, LAN (Local Area Network) and VPN (Virtual Private
Network) are the most important ones for this project. LAN defines a computer network in which
the devices are relatively close to each other (e.g., school, supermarket, company building).
LANs are usually private. VPN, according to (IBM, 2024), is "A VPN is a secure, point-to-point
connection between two network endpoints. A VPN establishes an encrypted channel that keeps
a user’s identity and access credentials, as well as any data transferred, inaccessible to hackers".

4.4.1 Socket programming

IBM (2021b) defines a socket as a communications connection point (endpoint) that you
can name and address in a network. Socket programming uses sockets to establish communica-
tion between different devices in a network.

Sockets behave as follows (IBM, 2021a):

• A socket will keep existing as long as the process maintains itself connected to it.

• A socket can be named and used to communicate with other sockets (in the same domain).

• Sockets perform the communication when the server accepts a connection from them.

In Figure 12, it is possible to see a client/server setup based on sockets. First, sockets
are defined, both for the server and the client. Then, the socket is bound to a specific address
and port by the bind() method. Right after, the server keeps on listening until the client asks to
establish a connection. After accepting, both the server and client can either send or receive data
from each other, being the connection closed whenever one of them finishes it.

The protocol used for the communication between these devices is TCP/IP, which will
be explained in subsection 4.4.2.

4.4.2 Communication Protocols

According to IBM (2023), protocols are sets of rules for message formats and proce-
dures that allow machines and application programs to exchange information. There are many
communication protocols, being the main ones for this project:

1. TCP/IP: based on the Transmission Control Protocol (TCP) and the Internet Protocol (IP).
TCP is responsible for receiving the data, dividing it into packets, adding a destination
address, and passing it ahead. Then, the packet is used to define an IP datagram, which
has a header and trailer. The datagram is passed on using, for example, an ethernet cable
(IBM, 2023).

Chapter 4. Theoretical background 27

Figure 12 – Client/Server setup using sockets.

Source: (PRODEVELOPERTUTORIAL, 2020).

2. HTTP: "The Hypertext Transfer Protocol (HTTP) is the foundation of the World Wide
Web, and is used to load webpages using hypertext links. HTTP is an application layer pro-
tocol designed to transfer information between networked devices and runs on top of other
layers of the network protocol stack. A typical flow over HTTP involves a client machine
making a request to a server, which then sends a response message" (CLOUDFLARE,
2024).

4.5 MULTITHREADING

For Multithreading, 2 concepts are important to understand: process and thread. A pro-
cess is a program that is running in some system. Dividing this program into smaller independent
units, results in threads. A collection of threads makes up a process (GOEL, 2023).

Multithreading becomes extremely useful for cases where it is needed to handle more
than one task at the same time. In the case of this project, where a Raspberry should keep on
listening to a socket while also acquiring images, multithreading is extremely useful. Not only it
allow both tasks to be run simultaneously, but it also helps in making better use of the available
resources.

Chapter 4. Theoretical background 28

4.6 WEB DEVELOPMENT

Dharmen (2024) defined web development as follows: "Web development refers to the
creating, building, and maintaining of websites. It includes aspects such as web design, web
publishing, web programming, and database management. It is the creation of an application
that works over the internet i.e. websites."

Backend

The backend is the "back" part of a website, where users can not interact with nor
visualize it. It is responsible for setting up the logics that will be presented to the user through
the front end (webpage).

4.7 CONTAINER

Containers are commonly used in software development. "A container is a standard unit
of software that packages up code and all its dependencies so the application runs quickly and
reliably from one computing environment to another" (DOCKER, 2024b).

The biggest advantage of using containers is the isolation that they bring, meaning that
independently of the device that is running the containerized application, the application will
always work the same.

29

5 DEMONSTRATOR DEVELOPMENT

5.1 TECHNICAL SETUP

Having the methodology defined in Chapter 3, and after reviewing and checking on the
needed knowledge in Chapter 4, it was possible to define the final technical setup of the project,
as seen in Figure 13. It shows all that is running on the FEC (server, backend, frontend) and
what is running outside of it (Raspberry Pi (client, VPN)). All the main interactions between
each part are displayed, mostly showing what is being requested and returned.

Figure 13 – Technical setup.

- Informationsklassifizierung -

FEC VM

Raspberry Pi

Light Box

Camera

Socket
Client

Traffic
light

column

Backend Docker Container* Frontend
Docker

Container*FastAPI Application

POST
request-image

GET
make-prediction

React JS

Send image

Return: defect
or no defect

Dash-
board

Request
latest
info

Set traffic light
column color:
Defect -> red
No defect -> green

* Running in Intelligent Quality Platform on Fraunhofer Edge Cloud

GET
status

Socket Server Docker Container*

VPN

Return:
prediction

+
image

Socket Client

Send prediction result Receive image path

Defect
Detection

Model

Source: author.

5.2 USE CASE: DEFECT DETECTION IN CABLES

As said previously, the focus of the project is on the end-to-end development of a demon-
strator for defect detection. So, it was needed to have some data to detect defects.

The online available MVTec anomaly detection dataset (MVTec AD) was the chosen
dataset. As defined by MVTec (2024) "MVTec AD is a dataset for benchmarking anomaly
detection methods with a focus on industrial inspection. It contains over 5000 high-resolution
images divided into fifteen different object and texture categories". Among all these available
images, which cover different industrial processes, defects on cables were selected. This use
case was the chosen one due to it being industry related while also having defects that were
easier to identify. As the focus of the project was to define the architecture of the system and

Chapter 5. Demonstrator development 30

how to implement it, the use case should be real-life related, but also easier to handle and work
with.

Figure 14 – Images used to train the model.

(a) Good cable. (b) Defected cable: bent wires.

(c) Defected cable: cut inner in-
sulation.

(d) Defected cable: cut outer in-
sulation.

(e) Defected cable: missing ca-
ble.

Source: (MVTEC, 2024).

In Figure 14, it is possible to see all the classes that were considered in this project. Figure
14a shows a cable that is in perfect conditions. In Figures 14b, 14c, 14d, and 14e defected cables
are shown, along with their defects names.

5.3 HARDWARE AND SOFTWARE SELECTION

Many different tools were required for the development of the project, both software and
hardware. This first part will present them.

5.3.1 Hardware

Talking about the hardware, first, the main ones will be all listed, and then each one will
get a deeper explanation.

The three main hardware components of the project are:

1. Raspberry Pi 4 B 8 GB;

Chapter 5. Demonstrator development 31

2. Arducam B029201 4K 8MP;

3. Signal Tower TC-9539296.

Raspberry Pi 4 B

The Raspberry Pi Foundation is the company responsible for the Raspberry Pi in all its
versions. They have as their main mission "to enable young people to realize their full potential
through the power of computing and digital technologies" (FOUNDATION, 2023). They also
want to reach as many people as possible, in three main areas: education, non-formal learning,
and research.

With this contextualization about who developed the Raspberry Pi, it is reasonable to take
a look at the device now. The idea of the Pi is to be a single-board computer while providing good
performance and having an affordable price. The first device, Raspberry Pi 1 B, was released in
2012 with a single-core 700MHz CPU and 256MB RAM. Since 2012, many versions have been
developed and made available to the public. This project used the Raspberry Pi 4 B, which is the
fourth generation. The exact specifications of it are as follows (further details can be seen here):

• Processor: ARM Cortex-A72;

• Processor cores: 4 x;

• RAM: 8 GB;

The other options, compared to the Raspberry Pi, would be either an Arduino or an
ESP32. For the functionality of acquiring images, either one of them would work perfectly. The
main reason why the Raspberry was selected over the other options is the automation of the tasks
that would be running on the device. Remembering that the final prototype is a demonstrator
that would be taken around to fairs and events, having a plug and play device is a must. It is
possible to easily run Linux distros in a Raspberry, being possible to use systemd services to
automate tasks, such as running the VPN connection service and the image acquisition script.

ArduCam B029201 4K 8MP

Being developed by ArduCam, the camera that was used in the project is the B029201 4K
8MP. Based on the 1/4" Sony IMX219 image sensor, this camera provides high-quality images
in a small device. The main advantage over other options, is that it is a USB camera, so basically
Plug and Play. It is assembled in a metal case with a rotatable bracket.

Signal Tower TC-9539296

The idea of the project is to show how to build and set up a defect detection system,
which is commonly used in industrial processes. It was decided to have an indicator by the

https://www.raspberrypi.org/about/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.arducam.com/about-us/

Chapter 5. Demonstrator development 32

Figure 15 – Raspberry Pi 4 B 8GB.

Source: (TRU, 2024a).

Figure 16 – ArduCam B029201.

Source: (ARDUCAM, 2023).

camera, just like in real industry. For this, a 24V signal tower containing three different LED
colors (basically a traffic light) was used.

5.3.2 Software tools

In this section, the software tools that were used are going to be shown and explained.

Linux

For both the VM running the backend service and the Raspberry Pi that is acquiring
the images, Linux is the operating system. The two of them are running Ubuntu distros. The
Raspberry is using Ubuntu Desktop, which includes a graphical user interface, making it easier

Chapter 5. Demonstrator development 33

Figure 17 – Signal Tower TC-9539296.

Source: (TRU, 2024b).

to check on the webcam. The VM runs Ubuntu with no graphical interface.

systemd

Another used tool was the systemd, which according to Red Hat (2024) is a system and
service manager for Linux operating systems. It was used to create some specific services for
the project.

Python

Python is a high-level programming language that had its first release around 1991.
Among the main goals of Python, is the focus on code readability and ease of use. It sup-
ports OOP and is one of the most popular programming languages. It is mainly used for data
science/machine learning and web development (backend), but it has been acquiring space in
other sorts of applications, like hardware programming (an area that used to be dominated by
high-performance programming languages), which also involves this project. The main Python
libraries used will be described in sequence. The minor and less complex ones will be shortly
described in the Development chapter as they appear.

OpenCV

"OpenCV (Open Source Computer Vision Library) is an open-source computer vision
and machine learning software library. OpenCV was built to provide a common infrastructure
for computer vision applications and to accelerate the use of machine perception in commercial
products" (OPENCV, 2020). It was mostly used for image saving and acquisition.

threading

Threading is a library that helps implement multithreading in Python programs.

Chapter 5. Demonstrator development 34

socket

This Python library helps write code to create and interact with socket objects, i.e. a
socket server.

os

The OS module on Python provides ease of use to interact with the operating system.
It helps define paths, create/delete folders and files, and access some of the operating system
dependencies.

FastAPI

According to its own documentation, FastAPI is a modern, high-performance, web frame-
work for building APIs with Python. It was used for the backend of the project.

ultralytics

Ultralytics is a company focused on AI. They focus on creating and providing the best
possible models through their library. The YOLOv8 model used is theirs.

PyTorch - torchvision

PyTorch is a well known machine learning framework. In the context of this project, the
torchvision package was used. As stated in their documentation, it is a package that contains
popular datasets, model architectures, and common image transformations for computer vision
(which is the reason why it was used).

5.4 HARDWARE SETUP

Starting the project, after selecting the hardware, it was needed to assemble it. The signal
tower needs 24V as supply voltage, while the Raspberry Pi can only provide 3.3V. To solve
that, relays were used. As a first glimpse of the setup, in Figure 18, the Raspberry Pi sends
low-voltage signals to the relays, where the high-voltage circuit is then activated, allowing the
control of the signal tower.

Talking a little about relays, they are switches that turn circuits on or off. They take an
electrical signal as input to either connect or disconnect another circuit. Some of the common
usages are:

• Control of high voltage circuits/devices by low voltage ones, mediated by the relay.

• Protection of electrical systems and minimization of damages due to over currents/voltages
(PRASAD, 2022).

Chapter 5. Demonstrator development 35

Figure 18 – Hardware setup.

Source: author.

Going back to Figure 18, the relay configuration was made by the electrical department
of IPT. The green relay is the one that is effectively taking the output of Raspberry’s GPIO
pins. When these are received, an internal high-voltage circuit is activated, providing the 24V
output. This output is going through another relay, which takes 24V as input and can output as
high as 250V. This second one, in this case, is working as a security gadget for the circuit. In
applications where bigger voltages are needed, the second relay would be able to provide it.

As described in Raspberry (2024a)’s documentation, the device has multiple pins avail-
able. Figure 19 shows all the available pins. There are different types:

• Power: there are 3.3V and 5V pins for power supply.

• Ground: pins to ground the circuit.

• GPIO: general-purpose input/output pins. Multipurpose pins that can be used to interact
with external devices by reading/sending digital signals.

GPIO pins were used to communicate with the signal tower. A test script was used to
test the full setup.

from gpiozero import LED
from time import sleep

green = LED (25)
yellow = LED (22)

Chapter 5. Demonstrator development 36

Figure 19 – Raspberry Pi’s pins.

Source: (RASPBERRY, 2024b).

red = LED (23)

while True:
yellow .off ()
red.on()
sleep (.5)
red.off ()
green.on()
sleep (.5)
green.off ()
yellow .on()
sleep (.5)

It uses GPIO pins 22, 23, and 25 to define LED objects, from the gpiozero library. The
LED object defines them as output pins, and using the on() and off() methods, it is possible to
activate and deactivate the pins, sending signals to the relay that activates the signal tower. With
the test code, it was possible to conclude that the signal tower was receiving the commands from
the Raspberry Pi, which in this case, was simulating a very quick traffic light.

5.5 SOFTWARE SETUP - RASPBERRY PI

The code that is running on the Raspberry Pi is divided into two parts: the script respon-
sible for both the socket client and image acquisition and the systemd service responsible for
connecting the VPN.

Chapter 5. Demonstrator development 37

5.5.1 VPN connection

To connect the different devices, mainly the Raspberry and the VM that is running
both the server and the backend service, a VPN connection was used. An OpenVPN file was
used to establish the connection. A command is called taking the file as a parameter and a
password is required to establish the connection. A systemd service was defined so the VPN
would automatically connect as the Raspberry Pi was turned on.

First, a script was created. It started defining that the script should be interpreted using
the expect command. The timeout was set to -1, so it waits indefinitely until the desired pattern is
returned. In this case, it is the password. The spawn command creates a new process responsible
for running the OpenVPN file. Then, the "Password" is expected. The password is sent, and the
last expect command waits for the process to end before finishing it.

#!/ usr/bin/ expect -f

set timeout -1
spawn sudo openvpn /path/to/ovpn/file/vpn.ovpn
expect -re " Password "
send " password \r"
expect eof

With the script created, a systemd service file was defined. It starts with a [Unit] section
containing the description of the service and conditions for the service to start. The conditions
are initialization of the basic network services and when the network is online. The [Service]
describes the execution of the service. It defines the vpnsetup.sh file should be executed using
the expect command. It also states that the service should always restart in case of failure. The
final section, [Install], defines the service should be started in the default target (after all system
initialization is complete).

[Unit]
Description = Connect to VPN on startup
After= network . target network - online . target

[Service]
ExecStart =/ usr/bin/ expect /home/demo/ Desktop /vpn/ vpnsetup .sh
Type= simple
Restart = always

[Install]
WantedBy = default . target

With the vpnrun.service file ready, some commands were required to activate and run
the service. "daemon-reload" is used so systemd can detect the newly created service file. Then,
using "enable" followed by "start", the service is up and running.

Chapter 5. Demonstrator development 38

5.5.2 Image acquisition and socket client

The first part of this code is used to define the used libraries and some global variables.
The logging library is used for more flexible handling of logs in Python. It provides a more com-
plete error diagnosis, auxiliating in debugging the code. The IP_ADDRESS and PORT variables
will be further explained in the next section, along with the client_socket. A threading.Lock()
object is attributed to a variable. It is useful in multithreading when a resource is being accessed
by multiple threads, which could lead to issues. The lock prevents different threads access the
same resource at the same time (e.g. the current_frame variable is being updated and another
function tries to use it). The previously cited LED objects define the pins used to communicate
with the traffic light column.

import cv2
import threading
import socket
import logging
import pickle
import struct
import time
from datetime import datetime
from gpiozero import LED

logging . basicConfig (level= logging .INFO)
logger = logging . getLogger (__name__)

IP_ADDRESS = " 10.34.97.244 "
PORT = 5003

client_socket = None
current_frame = None
exit_flag = False
lock = threading .Lock ()

green = LED (25)
yellow = LED (22)
red = LED (23)

The connect_to_server() function is responsible for establishing the connection to the
server. In case it is unable to do it, it will wait for 5 seconds, and then try again.

The function that is actively in charge of acquiring the images is camera_thread(). It
checks for the camera availability, in case it is not possible, an error is raised and after 5 seconds
another attempt is made. In case it connects and the exit_flag is False, it keeps on updating the
current_frame making use of the lock that was previously defined.

def connect_to_server ():
global client_socket
while not exit_flag :

Chapter 5. Demonstrator development 39

try:
client_socket = socket . socket (socket .AF_INET , socket .

SOCK_STREAM)
client_socket . connect ((HOST , PORT))
logger .info(" Connected to server .")
return

except socket .error as e:
logger .error(f" Unable to connect to server , retrying :

{e}")
time. sleep (5) # Wait 5 seconds before retrying

def camera_thread ():
global current_frame
while not exit_flag :

try:
cam = cv2. VideoCapture (0)
if not cam. isOpened ():

raise IOError (" Camera not accessible !")
logger .info(" Camera connected !")
while not exit_flag :

ret , frame = cam.read ()
if not ret:

logger .error("Error in grabbing frame!")
break

with lock:
current_frame = frame

cam. release ()
except IOError as e:

logger .error(f"{e}. Retrying in 5 seconds ")
time. sleep (5)

The last function is called main(). It is responsible for connecting to the server, acquiring
the images, and sending them over to the server. It defines a thread for the camera_thread()
function and calls the connect_to_server() function. Once connected, it waits for the commands
that will arrive. In case the command is "capture_image", it uses the lock and defines a dictionary
containing the current image and a timestamp of when the image was acquired. Then it is sent
to the server. When the command is "state", it will check the value of state (normal or defect)
and activate the corresponding LED. the final command, "close", closes the connection.

def main ():
global exit_flag , client_socket
client_socket = None
thread = threading . Thread (target = camera_thread)
thread .start ()
try:

while not exit_flag :
if client_socket is None:

Chapter 5. Demonstrator development 40

connect_to_server ()
try:

command = client_socket .recv (1024) . decode (’utf -8’)
if command == ’capture_image ’:

with lock:
if current_frame is not None:

data_dict = {
’timestamp ’: datetime .now ().

strftime (’%Y-%m-%d_%H-%M-%S’),
’image ’: current_frame

}
send_data = pickle .dumps(data_dict)
data_size = struct .pack("I", len(

send_data))
client_socket . sendall (data_size +

send_data)
elif command . startswith (’state:’):

state_value = int(command .split(’:’)[1])
if state_value == 1:

logger .info(" Normal !")
green.on()
time.sleep (2)
green.off ()

elif state_value == 2:
logger . warning (" Defect !")
red.on()
time.sleep (2)
red.off ()

elif command == ’close ’:
logger .info(" Server requested shutdown .")
client_socket . sendall (b’Client shutting down.’

)
break

except socket .error as e:
logger .error(f" Socket error , attempting to

reconnect : {e}")
if client_socket :

client_socket .close ()
client_socket = None

except KeyboardInterrupt :
logger .info(" Interrupted by user.")

exit_flag = True
thread .join ()
if client_socket :

client_socket .close ()

The last part was setting up a systemd service to automatically connect the Raspberry Pi
with the server, making it ready to use right after startup. It has the same structure as the VPN

Chapter 5. Demonstrator development 41

service, with some differences in the calls and actions. Under [Service], the path in which the
Python script is located was defined in WorkingDirectory. The ExecStart parameter is where the
script and interpreter are defined. The rest is the same as the VPN service.

[Unit]
Description = Camera script service !
After= network . target network - online . target
[Service]
Type= simple
User=demo
WorkingDirectory =/ path/to/ python / script /
ExecStart =/ path/to/ python / interpreter / python camerascript .py
Restart = always
[Install]
WantedBy =multi -user. target

5.6 CLIENT/SERVER USING SOCKETS

Since many devices were used in the project and they were dependent on the data that
would come from each one, an architecture had to be defined for this information exchange. It
was defined that a client/server architecture based on sockets would be used. Figure 20 shows
the full architecture that was used, along with its relations, which will be further explained in
this section.

Figure 20 – Client/Server socket-based setup.

- Informationsklassifizierung -

Socket Server

Raspberry Pi
Backend Service

FastAPI Application

Server IP: XX.XX.XX.XXX

Raspberry Pi
Socket

FastAPI
Socket

Raspberry Port:
ZZZZ

FastAPI Port:
YYYY

Connect Accept ConnectAccept

Handle Rasp.
Client

Handle
FastAPI Client

“capture_image”
“state”

Forward commands

{
“timestamp”: Y-m-d_H-M-S
“image”: frame
}

if “capture_image”
return

If “state”

Traffic Light ColumnOn or off green/red
LED

- saves frame

{
“path”: absolute path
“filename.”: specific file
}

Start Server
Rasp. Port: ZZZZ
FastAPI Port: YYYY

Source: author.

Chapter 5. Demonstrator development 42

5.6.1 Server

Starting with the server, it contains 4 functions:

1. start_server();

2. accept_connections(server_socket, handler_function);

3. handle_raspberry_pi_client(client_socket, address);

4. handle_fastapi_client(client_socket, address).

It first defines the used libraries. Some variables are also declared, being the name self-
explained. The PATH one indicates where the images that were acquired should be stored. They
are called "raw" due to being straight out of the camera, with no processing nor prediction made
on them. One variable for each socket is also defined.

import socket
import threading
import cv2
import pickle
import struct
import os
import json

IP_ADDRESS = "XX.XX.XX.XXX"
FASTAPI_PORT = YYYY
RASP_PORT = ZZZZ
PATH = "/path/to/save/raw/image"

fastapi_client_socket = None
raspberry_pi_socket = None

The start_server() function is the one responsible for starting the server. As explained
previously in subsection 4.4.1, the server has to do some processes before being able to ac-
cept connections from different clients. It starts by defining the socket types and then binding
specific addresses and ports to each socket, one for the Raspberry Pi and one for the FastAPI
service. After the binding part, the server is ready to listen and wait for new connection requests.
Multithreading is used to allow the simultaneous connection of both sockets.

def start_server ():
fastapi_server_socket = socket . socket (socket .AF_INET , socket .

SOCK_STREAM)
raspberry_server_socket = socket . socket (socket .AF_INET , socket

. SOCK_STREAM)

fastapi_server_socket .bind ((IP_ADDRESS , FASTAPI_PORT))
raspberry_server_socket .bind ((IP_ADDRESS , RASP_PORT))

Chapter 5. Demonstrator development 43

fastapi_server_socket . listen ()
raspberry_server_socket . listen ()

print (" Server listening for FastAPI and Raspberry Pi clients
...")

threading . Thread (target = accept_connections , args =(
fastapi_server_socket , handle_fastapi_client)).start ()

threading . Thread (target = accept_connections , args =(
raspberry_server_socket , handle_raspberry_pi_client)).start
()

def accept_connections (server_socket , handler_function):
while True:

client_socket , address = server_socket . accept ()
threading . Thread (target = handler_function , args =(

client_socket , address)).start ()

The accept_connections(server_socket, handler_function) function is responsible for
accepting the connections from the Raspberry Pi and FastAPI clients. It takes as arguments the
socket of each one of them and also the functions that are responsible for handling the clients. It
runs a multithread for the handler functions.

For the handle_raspberry_pi_client(client_socket, address) function, which is responsi-
ble for the operations that are performed with the Raspberry Pi client, it takes as input the socket
and its address. The raspberry_pi_socket variable is defined as global due to its usage in other
functions. It keeps on listening for any information that might come from the client. Once there
is data available, it checks for the size of the message based on the data_size_header variable. A
dictionary is being sent by the Raspberry Pi, containing an image and a timestamp of when it
was acquired. The image is saved. It checks for the existence of the FastAPI socket, and sends a
JSON containing the path where the raw images are being stored and the specific name of the
current image.

def handle_raspberry_pi_client (client_socket , address):
global raspberry_pi_socket
raspberry_pi_socket = client_socket
print (f" Connected to Raspberry Pi client : { address }")
try:

connection = client_socket . makefile (’rb’)
while True:

data_size_header = connection .read (4)
if not data_size_header :

break
data_size = struct . unpack ("I", data_size_header)[0]
data = connection .read(data_size)
if not data:

Chapter 5. Demonstrator development 44

break

image_data = pickle .loads(data , fix_imports =False ,
encoding ="bytes")

frame = image_data [’image ’]
timestamp = image_data [’timestamp ’]
image_filename = f" image_ { timestamp }. jpg"
cv2. imwrite (os.path.join(PATH , image_filename), frame)

if fastapi_client_socket :
saved_image_filename = os.path.join(PATH ,

image_filename)
saved_image_dict = {

’path ’: saved_image_filename ,
’filename ’: image_filename

}
saved_image_json = json.dumps(saved_image_dict)
fastapi_client_socket . sendall (saved_image_json .

encode ())

print (f" Received image from Raspberry Pi saved as ’{
image_filename }’")

finally :
raspberry_pi_socket = None
client_socket .close ()

The last function, handle_fastapi_client(client_socket, address), handles the FastAPI
client connection. It takes the commands that are sent by the FastAPI client and forwards them
to the Raspberry Pi. The commands are "capture_image" for acquiring a new frame, "state" for
the result of the prediction, and "close" to close the connection.

def handle_fastapi_client (client_socket , address):
global fastapi_client_socket
fastapi_client_socket = client_socket
print (f" Connected to FastAPI client : { address }")
try:

while True:
command = client_socket .recv (1024) . decode ()
if command == ’capture_image ’:

print (" FastAPI requested an image capture ")
if raspberry_pi_socket :

raspberry_pi_socket . sendall (command . encode ())
else:

print (" Raspberry Pi client is not connected .")
elif command . startswith (’state:’):

state_value = command .split(’:’)[1]
if raspberry_pi_socket :

raspberry_pi_socket . sendall (f"state :{

Chapter 5. Demonstrator development 45

state_value }". encode ())
elif command == ’close ’:

break
finally :

fastapi_client_socket = None
client_socket .close ()

5.6.2 Clients

Both the clients, Raspberry Pi and FastAPI service, are pretty similar. They have three
global variables: the IP_ADDRESS, PORT, and client_socket. The first two are used to connect
to the server, and the last one to interact with the socket throughout the code (i.e. send commands
and receive the image path).

5.7 BACKEND SERVICE

This backend service was built around the idea of integrating it to an existing web
application of the company: the Intelligent Quality Platform (IQP). IQP is an initiative by
IPT built to demonstrate the extensive range of machine learning use cases to the industry,
including predictive maintenance of machinery, prediction of product quality, and detection of
machine/products anomalies. It focuses on having various ML applications in a standardized
platform for easier access and control.

The backend was built using FastAPI. This framework, as stated previously, is designed
to build fast efficient APIs in Python. APIs, according to AWS (2024a) are mechanisms that
enable two software components to communicate with each other using a set of definitions and
protocols. FastAPI works based on REST APIs. It stands for Representational State Transfer and
works based on defining a set of functions. In the scope of this project, the following methods
were used:

• GET: this type of request is used to retrieve information. It will never modify it, only
accessing it and, for example, display it on the frontend.

• POST: request used to create new resources (i.e. request an image to be takena and saved).

• ON EVENT: endpoints based on the ocurrency of events. Usually used in the startup
and/or shutdown of an application.

Before explaining the endpoints, some libraries were called and variables defined. The
PIL library is responsible for handling images, to open and interact with. Then the IP_ADDRESS
and PORT were set. Some global variables for the client socket object, filename, and the saving
path to the images post-prediction. To end, some FastAPI configurations were made. A FastAPI
object, app, was defined and the addresses that should be able to interact with the backend were
also set.

Chapter 5. Demonstrator development 46

from fastapi import FastAPI , UploadFile
from fastapi . middleware .cors import CORSMiddleware
from fastapi . responses import FileResponse
from ultralytics import YOLO
import cv2
import socket
import os
from PIL import Image , ImageDraw
import json
import numpy as np
import time

IP_ADDRESS = "XX.XX.XX.XXX" # Server ’s IP
PORT = YYYY # Port for FastAPI to connect to the

socket server
client_socket = None
filename = None
SAVE_PATH = ’/path/to/save/ predicted / images /’

app = FastAPI ()

CORS middleware setup
app. add_middleware (

CORSMiddleware ,
allow_origins =["http :// localhost :WWWW", "http :// localhost :GGGG

"],
allow_credentials =True ,
allow_methods =["*"],
allow_headers =["*"],

)

For the ON EVENT methods, the startup one was used to stablish the connection with
the socket-based server. The second one, shutdown, was used to close this connection.

@app. on_event (" startup ")
async def startup_event ():

global client_socket
client_socket = socket . socket (socket .AF_INET , socket .

SOCK_STREAM)
client_socket . connect ((IP_ADDRESS , PORT))
print (" connected ")

@app. on_event (" shutdown ")
async def shutdown_event ():

global client_socket
if client_socket :

client_socket .close ()

Chapter 5. Demonstrator development 47

The POST method, used in "request-image", is responsible for requesting images. The
command is sent to the server, which forwards it to the Raspberry Pi. After having the image
saved, the server forwards the path and name of the most recent frame. The prediction is made
on top of this image, and a new image, with the prediction (bounding box) on it, is saved. Then,
based on the prediction, a command is sent to the server about it being normal or defective.

@app.post("/request -image/")
async def request_image ():

global client_socket
global filename
try:

client_socket . sendall (b" capture_image ") # Send
command to capture image

Wait for the server to send back the image path
image_path_data = client_socket .recv (1024)
image_path_data = image_path_data . decode (’utf -8’).

strip ()
image_path_data = json.loads(image_path_data)
image_path = image_path_data [’path ’]
filename = image_path_data [’filename ’]
if image_path :

if os.path. exists (image_path):
pred = prediction (image_path)
if len(pred) > 0:

state = 2
else:

state = 1
annotated = annotate (Image.open(image_path),

pred)
save_prediction (annotated , filename)
time.sleep (5)
state_message = f"state :{ state}"
client_socket . sendall (state_message . encode ())
return {" status ": " Success ", " message ": "Image

received and processed ", " prediction ":
pred , "state": state}

else:
return {" status ": " Failure ", " message ": "Image

file not found"}
else:

return {" status ": " Failure ", " message ": "No image
path received from the server "}

except Exception as e:
print(f"Error during image request : {e}")
return {" status ": " Failure ", " message ": f"Error during

image request : {e}"}

Some extra functions were used in the "request-image" endpoint, being "prediction",

Chapter 5. Demonstrator development 48

"annotate", and "save_prediction". The "prediction" function is responsible for predicting on
top of the acquired image. It returns a list containing the bounding boxes coordinates, the defect
names, and the confidence of the prediction (0 to 1, the higher the better). The "annotate" function
takes as input the image that the prediction was made on and the output of that prediction. It
takes the image and draws the bounding boxes on top of it. The last one, "save_prediction",
saves the image with the prediction so the front end can access and display it.

def prediction (image_path):
model = YOLO(’best.pt’)
image = cv2. imread (image_path)
results = model. predict (image)
result = results [0]
output = []
for box in result .boxes:

x1 , y1 , x2 , y2 = [round (x) for x in box.xyxy [0]. tolist ()]
class_id = box.cls [0]. item ()
prob = round (box.conf [0]. item (), 2)
output . append ([x1 , y1 , x2 , y2 , result .names[class_id],

prob])
return output

def annotate (image , boxes):
draw = ImageDraw .Draw(image)
for box in boxes:

x1 , y1 , x2 , y2 , object_type , probability = box
draw. rectangle ([(x1 , y1), (x2 , y2)], outline ="red", width

=3)
draw.text ((x1 , y1 - 10) , f"{ object_type } ({ probability })",

fill="red")
return image

def save_prediction (image , filename):
image_np = np.array(image). astype (np. uint8)
image_np_bgr = cv2. cvtColor (image_np , cv2. COLOR_RGB2BGR)
cv2. imwrite (os.path.join(SAVE_PATH , filename), image_np_bgr)

The GET method, used in "last-predicted-image" is responsible for getting the last image
that was saved (using the global variable "filename"). It is used by the frontend to display the
prediction. The other GET endpoint was set for testing purposes, to check if the backend was
working.

@app.get("/")
async def home ():

return {" status ": "ok"}

@app.get("/last -predicted -image")
async def last_predicted_image ():

if filename :

Chapter 5. Demonstrator development 49

return FileResponse (SAVE_PATH + filename)
else:

return None

5.8 YOLOV8 TRAINING

This section will talk about the YOLOv8 model and, mostly, the data that was used to
train it. Since the use case is based on a dataset that is available online, it was decided to print
some of the images to test the model later (none of the images that were printed were used to
train the model).

YOLOv8 was selected as the model due to it being extremely efficient, as seen in 4, and
easy to use, bringing good performance and allowing to focus on the other parts of the system’s
architecture. The reason to selecting it is similar to the use case, being easy to use while still
being a model that is effectively used in the industry.

5.8.1 Original data set

In Figure 21, it is possible to see the metrics of the training and validation using only
the original data set, with no preprocessing nor data augmentation. The most relevant metrics
when evaluating an object detection model, the Mean Average Precision (mAP), is not stable
and changed very aggressively through the training epochs. Compared to what can be seen in
Chapter 6 (Figure 28) where data augmentation techniques were used, the performance improved
drastically. Figure 22 shows a prediction made by the model trained with only the original data
set, showing that even though it is able to predict a defect correctly, it also fails, predicting a
non-existing defect. To fix these issues, data augmentation techniques were used, improving the
overall performance of the model.

5.8.2 Data Preprocessing

The model YOLOv8 has very detailed documentation, provided by Ultralytics (2024). It
is easy to use the model, being the main concern of the data that is being fed to it. The developed
system works by getting images from the camera connected to the Raspberry Pi. Figure 23
shows the same image from 2 perspectives, 23a shows what is being acquired by the camera
while 23b shows what is the original from the dataset.

It is possible to see the difference between both images, especially the brightness and
"blur" differences, comparing the acquired and dataset images. To begin with, the chosen images,
which represent most of the dataset (just 2 or 3 of each type of defect were left for printing and
testing), were all preprocessed.

This preprocessing was based on Data Augmentation techniques. AWS (2024b) defined:
"Data augmentation is the process of artificially generating new data from existing data, primarily
to train new machine learning (ML) models. ML models require large and varied datasets for

Chapter 5. Demonstrator development 50

Figure 21 – Train/Validation loss and performance metrics with no data preprocessing.

Source: author.

Figure 22 – Post prediction.

Source: author.

initial training, but sourcing sufficiently diverse real-world datasets can be challenging because
of data silos, regulations, and other limitations. Data augmentation artificially increases the
dataset by making small changes to the original data."

Looking for images that were more similar to the ones acquired by the camera, two
functions available in PyTorch’s torchvision package were used: GaussianBlur() and ColorJit-

Chapter 5. Demonstrator development 51

Figure 23 – Camera acquired image vs dataset image.

(a) Camera acquired image. (b) Dataset image.

Source: author / (MVTEC, 2024).

ter(). The first one was used to get the images a little more "blurry", while the second changed
the brightness of the image, making it more similar to the images acquired. Figure 24 shows
the results after these first two steps, which were applied to all the chosen data. With this new
dataset, many different data augmentation techniques were applied.

Figure 24 – Example image after using GaussianBlur() and ColorJitter() methods.

Source: author (based on (MVTEC, 2024).

The following piece of code were used to perform the desired augmentation:

import os
from PIL import Image
import torchvision . transforms as transforms

ORIGINAL_PATH = "path/to/ dataset "

Chapter 5. Demonstrator development 52

AUGMENTED_PATH = "path/to/save/ augmented "

augmentations = [
transforms . RandomHorizontalFlip (1) ,
transforms . RandomVerticalFlip (1) ,
transforms . RandomRotation ((0 ,10)),
transforms . RandomRotation ((-10 ,0)),
transforms . ColorJitter (contrast =(0.8 ,0.95))
transforms . GaussianBlur (kernel_size =(5 ,9) ,sigma =(5)),
transforms . ColorJitter (brightness =(1.2 ,1.4)),

]

def augment ():
for image_name in os. listdir (ORIGINAL_PATH):

image_path = os.path.join(ORIGINAL_PATH , image_name)
img = Image.open(image_path)
for idx , augmentation in enumerate (augmentations):

augmented_img = augmentation (img)
augmented_img_path = os.path.join(AUGMENTED_PATH , f"{

image_name .split (’.’) [0]} _aug_{idx }. png")
augmented_img .save(augmented_img_path)

print(f"Image { image_name } just got augmented !")
print ("Data augmentation and saving completed .")
pass

if __name__ == " __main__ ":
augment ()

The chosen augmentations were:

• RandomHorizontalFlip: takes as input the probability of flipping the image horizontally,
in this case, 100%.

• RandomVerticalFlip: same as the previous one, but flips vertically.

• RandomRotation: applies a random rotation on the image. In this case, a random angle
between [0, 10] and [-10, 0].

• ColorJitter(contrast): randomly changes the contrast. In this case, a random value between
[0.8, 0.95].

Figure 25 shows all the performed augmentations. From each of the initial pictures of
the dataset (total of 37) another 5 were generated, leading to a final dataset of size 222. The
train/test split will be covered in the next subsection.

Having the 222 images dataset defined, the only thing left to do was label the images.
Making use of Roboflow, an online tool that allows an easy way to annotate images for object
detection tasks. This part demanded quite some time, being a very manual task.

https://roboflow.com/annotate

Chapter 5. Demonstrator development 53

Figure 25 – Augmented images.

(a) Horizontal flip. (b) Vertical flip.

(c) Random rotation. (d) Contrast.

Source: author (based on MVTec, 2024).

After uploading the images to Roboflow’s platform, the next step is doing the annotation.
Figure 26 shows the process of annotating them. Using the Bounding Box Tool, the one on
the right of Figure 26, it is possible to define the bounding boxes that will define the object to
detect. After setting the bounding box, a class definition is required, in this case, a missing cable
defect. After having the images ready, the dataset creation is set. The 222 images are separated
into 4 classes: bent wires, cut inner insulation, cut outer insulation, and missing cable. Right
after, the size of the dataset is defined. The train/validation/test split is 79% for training, 13%
for validation, and 8% for testing. For the preprocessing steps that Roboflow provides, none
were applied. Same for the augmentations. Figure 27 shows the full configuration of the dataset.

https://www.mvtec.com/company/research/datasets/mvtec-ad

Chapter 5. Demonstrator development 54

Another solid feature of Roboflow is the possibility of exporting the dataset to YOLOv8 format.

Figure 26 – Roboflow’s annotating tool.

Source: author.

Figure 27 – Dataset full configuration.

Source: author.

Chapter 5. Demonstrator development 55

5.8.3 Model training

YOLOv8’s documentation is very rich and complete, making it quite simple to use. For
the training, a Google Colab notebook was used. "Colab is a hosted Jupyter Notebook service
that requires no setup to use and provides free access to computing resources, including GPUs
and TPUs. Colab is especially well suited to machine learning, data science, and education"
(GOOGLE, 2024a). To check on the used notebook, click here.

To begin with the training, the environment was set up. A GPU option was selected and
the needed libraries were installed: ultralytics and roboflow. When exporting a dataset from
roboflow, it provides a code snippet to download it. By running the cell, the dataset is ready for
use. Ultralytics provides two ways of using its tools: running a Python script or through CLI
(Command Line Interface) commands. In this case, CLI was used. Many parameters can be
taken in a call, being the main and used ones:

• Task: define the task to be performed. In this case, object (defect) detection.

• Mode: what to do with the model. Can be training, validating, predicting, exporting,
tracking, and benchmarking.

• Model: choose which of the available YOLOv8 models will be used. The available options
are: nano, small, medium, large, and extra large. Varying from the small one which has
less complex layers and architecture, to the more complex extra large one, which posseses
higher accuracy and is heavier (demands more powerful hardware).

• Data: indicates the dataset path.

• Epochs: define how many epochs will be used to train the model. Ultralytics provides
built-in early stopping functionalities, so even if a higher number of epochs is defined,
once the training does not improve significantly it stops.

• Imgsz: image size defines the size of the input images.

!yolo task= detect mode=train model= yolov8m .pt data ={ dataset .
location }/ data.yaml epochs =500 imgsz =640

After finishing the training, the model’s weights are saved in two files: best and last. Best
being the top results and last the final one (either after all the epochs or after the early stopping).

5.9 DEPLOYMENT USING DOCKER CONTAINERS

The final part of the project was to deploy it making use of docker containers. Docker is
a platform designed to help developers build, share, and run container applications (DOCKER,
2024b).

https://colab.research.google.com/drive/1FDBdCBAR2FI62DxjKdplePVLsot9kCjo?usp=sharing

Chapter 5. Demonstrator development 56

The containers were defined as displayed in Figure 13. One for the server, one for the
backend, and one for the frontend (the frontend implementation and deployment are not part
of this project). Two Dockerfile files were created, one for the server and one for the backend.
Starting with the server, it defines that the container should run a 3.11 version of Python. The
working directory is the same as where the file is located. The RUN command is used to install
pip and upgrade it if needed (pip is the standard Python packages manager). It copies the
"requirements.txt" file available in the directory and installs all the libraries listed there. The
system is updated and some needed resources are installed. Then, the rest of the files are copied.
This second copy is important because Docker works sequentially, meaning that each command
inside the Dockerfile is considered a layer. So every time the container is rebuilt, docker will try
to access and reuse layers from older builds. Since the "requirements.txt" rarely changes, these
layers will be reused, and only the changes in the actual code/application are going to be rebuilt.
It is also relevant that it is one of the last commands because all layers after the changed one are
going to be rebuilt (DOCKER, 2024a). Once again, due to the layered organization of docker,
the system is asked to be updated. The last line defines the command that should be run, in this
case, the execution of the server script.

Create a ubuntu base image with python 3 installed .
FROM python :3.11
#Set the working directory
WORKDIR /
RUN python -m pip install --upgrade pip
COPY requirements .txt /
RUN pip3 install -r / requirements .txt
RUN apt -get update
RUN apt -get install -y libgl1 -mesa -glx
#Add app files
COPY . .
RUN apt -get -y update
#Run the command
CMD [" python3 ", " server .py"]

The backend Dockerfile is basically the same, being the main difference the script that
will be executed and the working directory.

Since it was needed to handle multiple containers, the "docker-compose" CLI was used.
It runs based on a .yml file, in which the desired container configurations are defined. Under
"services", the two were set as live_demo_service_dev and live_demo_socket_dev. The server
one is set to always restart and to be built based on the Dockerfile from the socketserver folder.
The name is set and ports are defined. It maps the port number from the host device to the
container one, separated by a ":". The same goes for the "volumes" argument, having the device
path mapped to the container one. The backend service is set to depend on the server service, so
it will only activate after the server is started. The rest of the configurations are the same, except
for the path and ports.

Chapter 5. Demonstrator development 57

version : ’3.7 ’
services :

live_demo_service_dev :
depends_on :

- live_demo_socket_dev
restart : always
build: ./
container_name : live_demo_service_dev
ports:

- TTTT:TTTT
volumes :

- /path/to/save/raw/image :/ path/ container /raw

live_demo_socket_dev :
restart : always
build: ./ socketserver
container_name : live_demo_socket_dev
ports:

- YYYY:YYYY
- ZZZZ:ZZZZ

volumes :
- /path/to/save/raw/image :/ path/ container /raw

58

6 RESULTS

This chapter will present the results of the project, checking each part of the development
chapter, and testing it out. First, the trained model will be evaluated. Then, Software setup - Rasp-
berry Pi, Client/Server using sockets, and Backend service sections are going to be presented
together. The Docker container deployment will come as last.

MODEL PERFORMANCE

Starting with the trained model, its performance was evaluated. Figure 28 shows the train
and validation losses along with some metrics for the model performance. Both precision (P)
and recall (R) curves indicate a good performance. The specific values of the validation can
be seen in Table 1. It shows that both P and R had good results. The mAP50 had really good
results, with a percentage of 99.5%. The mAP50-95, which considers the IoU threshold to vary,
has a lower value of 0.742 across all classes. Although showing a lower value on the mAP50-95,
the model performance is satisfying for the given purpose. The full Colab notebook with the
training, validating, and testing can be seen here. A prediction for each type of defect can be
seen in Figure 29.

Figure 28 – Train/Validation loss and performance metrics.

Source: author.

https://colab.research.google.com/drive/1FDBdCBAR2FI62DxjKdplePVLsot9kCjo?usp=sharing
https://colab.research.google.com/drive/1FDBdCBAR2FI62DxjKdplePVLsot9kCjo?usp=sharing

Chapter 6. Results 59

Table 1 – Validating results.

Class Images Instances Box(P Recall mAP50 mAP50-95
all 29 33 0.943 0.99 0.995 0.742

bent-wire 29 7 0.905 1 0.995 0.663
cut-inner-insulation 29 11 0.898 1 0.995 0.762
cut-outer-insulation 29 6 1 0.959 0.995 0.608

missing-cable 29 9 0.969 1 0.995 0.936
Source: author.

Figure 29 – Images post prediction.

(a) Bent wire. (b) Cut inner insulation.

(c) Cut outer insulation. (d) Missing cable.

Source: author.

https://colab.research.google.com/drive/1FDBdCBAR2FI62DxjKdplePVLsot9kCjo?usp=sharing
https://colab.research.google.com/drive/1FDBdCBAR2FI62DxjKdplePVLsot9kCjo?usp=sharing

Chapter 6. Results 60

FULL TESTING: RASPBERRY PI, SERVER, BACKEND, FRONTEND

In Chapter 5, the Raspberry Pi setup was defined, the socket-based server was set, and
the backend service was constructed. Now, for this section, all of them were tested together.
Having the Server online, it will wait to accept any connection request, in the case, from the
Raspberry and the backend. Some "print" statements were used to check on the connections as
follows:

Server listening for FastAPI and Raspberry Pi clients ...
Connected to FastAPI client : (’FastAPI IP’, port)
Connected to Raspberry Pi client : (’Raspberry IP’, port)

Having both connected, it means that the system is ready. As stated before, the frontend
part was not covered in this project. By accessing the front end, a button is available, and after
clicking it, the backend is called, using the POST method followed by the GET. After requesting
the frontend, the backend outputs the prediction results and shows that both requests worked.
Figure 30 shows the frontend with the prediction.

BACKEND OUTPUT

0: 480 x640 1 missing -cable , 622.5 ms
Speed: 6.8 ms preprocess , 622.5 ms inference , 3.3 ms postprocess per

image at shape (1, 3, 480, 640)
INFO: 127.0.0.1:44122 - "POST /request -image/ HTTP /1.1" 200 OK
INFO: 127.0.0.1:44122 - "GET /last -predicted -image HTTP /1.1"

200 OK

To conclude the results chapter, Figure 31 shows the final prototype that was built. The
camera is fixed on the upper part, between two light sources. The image to be predicted is put
right under it. All the images that are being used as tests were never seen by the model, they
were separated before subsection 5.8.2.

Chapter 6. Results 61

Figure 30 – Frontend on the IQP web application.

Source: author.

Figure 31 – Final prototype.

(a) Final prototype: front part opened. (b) Final prototype: front part closed.

Source: author.

62

7 CONCLUSION

Digital transformation in production is a hot topic in the industry right now, with more
companies looking forward to implementing new techniques and methods that will help assure
safety and quality in their production. The digitization of their assets becomes a must in the
context of Industry 4.0. Based on that, this project aimed at developing a demonstrator for
defect detection, covering all the steps. Starting with the hardware and architecture setup, data
acquisition and transmission, training of a CV model for defect detection, setup of a backend
service on an existing web application, and the deployment making use of Docker containers.
The developed prototype will be used to showcase what Fraunhofer IPT does and give a first
example to companies that are looking forward to the digitization of their assets.

It started off with a solid literature review, in which the main concepts that would be
needed were thoroughly reviewed/learned. The first contact with some technologies (backend,
containers) was extremely enriching, providing a valuable skill to the author’s professional life.
The hardware and software selection went smoothly, being reasonably discussed between the
author and the local supervisor. Having the hardware set up, the software that would run on the
Raspberry Pi was developed. By making use of systemd services, the scripts that were defined
would automatically start as the device turned on, automating the process of connecting to both
the VPN and the socket-based server. The server was defined, along with specific functions
to handle the different clients. Further on, the backend service was developed. Working based
on RESTAPI methods, it fulfilled all the desired functionalities, making the predictions and
returning the results to the traffic light column connected to the Raspberry Pi. To make the
prediction, a CV model was trained. The data preprocessing was the main step towards the
training of a YOLOv8 model. The last step covered the deployment of the service on the IQP
web application of IPT.

The results were satisfying as the whole architecture that was set worked well. The
images were being acquired and accordingly sent to the server, which was responsible for
storing them. The server sending the image path over to the backend service worked well too,
allowing the backend to make predictions on the acquired images and storing them. The model
performed well with the real-time acquired images, which was a concern at first, given that the
dataset images had differences compared to the ones coming from the camera. The size of the
dataset was another concern. Data augmentation techniques were performed to address both
these issues. The serial communication between the Raspberry Pi and the traffic light column
went smoothly. The demonstrator was able to accomplish the defined goals and opened the path
to further improvements.

For future work, that are some things that were already discussed between the author and
the company’s supervisor. The main ones being:

1. Frontend: define a virtual traffic light column, displaying the same output as the real one
along with a timestamp. Also, displays an indication of the connected devices (Raspberry,

Chapter 7. Conclusion 63

server).

2. Check on the image resolution of the prediction, making it higher.

3. Videostream: instead of receiving single images every request, set the backend so a live
video will be displayed, with the predictions being made on top of it. By changing the
RESTAPI methods to a Websocket-based endpoint it should be possible.

By making use of many different technologies and concepts, the overall knowledge
that was gained in the development of this project is enormous. Many topics that compose the
curriculum of the Automation and Control Engineering course were used. To cite the main ones:
electronics, programming, computer networks, and artificial intelligence. The final result was
satisfying and future work will definitely add up to the already existing system.

64

REFERENCES

AGARWAL, Harshit; AGARWAL, Rashi. First Industrial Revolution and Second Industrial
Revolution: Technological Differences and the Differences in Banking and Financing of the
Firms. Saudi Journal of Humanities and Social Sciences, 2017. Available from:
https://www.academia.edu/41330434/First_Industrial_Revolution_and_Second_
Industrial_Revolution_Technological_Differences_and_the_Differences_in_
Banking_and_Financing_of_the_Firms.

ARDUCAM. 4K 8MP IMX219 autofocus USB camera module with metal case. [S.l.: s.n.],
Sept. 2023. Available from: https://www.arducam.com/product/arducam-autofoucs-
imx219-usb-camera-b029201/.

AWS, Amazon. What is an API (Application Programming Interface)? [S.l.: s.n.], 2024a.
https://aws.amazon.com/what-is/api/.

AWS, Amazon. What Is Data Augmentation. [S.l.: s.n.], 2024b.
https://aws.amazon.com/what-is/data-augmentation/.

AWS, Amazon. What is IoT (Internet of Things)? [S.l.: s.n.], 2024c.
https://aws.amazon.com/what-is/iot/.

AZURE, Microsoft. What is computer vison? [S.l.: s.n.], 2024.
https://azure.microsoft.com/en-us/resources/cloud-computing-
dictionary/what-is-computer-vision#object-classification.

CHUGH, Vidhi. Precision-Recall Curve in Python Tutorial. [S.l.: s.n.], 2023.
https://www.datacamp.com/tutorial/precision-recall-curve-tutorial.

CLOUDFLARE. What is HTTP? [S.l.: s.n.], 2024.
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-
protocol-http/.

DHARMEN. Web Development. [S.l.: s.n.], 2024.
https://www.geeksforgeeks.org/web-development/.

DOCKER. Docker Docs - Layers. [S.l.: s.n.], 2024a.
https://docs.docker.com/build/guide/layers/.

https://www.academia.edu/41330434/First_Industrial_Revolution_and_Second_Industrial_Revolution_Technological_Differences_and_the_Differences_in_Banking_and_Financing_of_the_Firms
https://www.academia.edu/41330434/First_Industrial_Revolution_and_Second_Industrial_Revolution_Technological_Differences_and_the_Differences_in_Banking_and_Financing_of_the_Firms
https://www.academia.edu/41330434/First_Industrial_Revolution_and_Second_Industrial_Revolution_Technological_Differences_and_the_Differences_in_Banking_and_Financing_of_the_Firms
https://www.arducam.com/product/arducam-autofoucs-imx219-usb-camera-b029201/
https://www.arducam.com/product/arducam-autofoucs-imx219-usb-camera-b029201/
https://aws.amazon.com/what-is/api/
https://aws.amazon.com/what-is/data-augmentation/
https://aws.amazon.com/what-is/iot/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-computer-vision##object-classification
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-computer-vision##object-classification
https://www.datacamp.com/tutorial/precision-recall-curve-tutorial
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-protocol-http/
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-protocol-http/
https://www.geeksforgeeks.org/web-development/
https://docs.docker.com/build/guide/layers/

References 65

DOCKER. What is a Container? [S.l.: s.n.], 2024b.
https://www.docker.com/resources/what-container/.

FOUNDATION, Raspberry Pi. Raspberry Pi Foundation - About us. [S.l.: s.n.], Sept. 2023.
Available from: https://www.raspberrypi.org/about/.

GOEL, Ashwin. Multithreading in Operating System. [S.l.: s.n.], 2023.
https://www.geeksforgeeks.org/multithreading-in-operating-system/.

GOOGLE. Google Colaboratory. [S.l.: s.n.], 2024a. https://colab.google/.

GOOGLE. What is Artificial Intelligence (AI)? [S.l.: s.n.], 2024b.
https://cloud.google.com/learn/what-is-artificial-intelligence?hl=en.

HASSAN, Ehtesham; KHALIL, Yasser; AHMAD, Imtiaz. Learning feature fusion in deep
learning-based object detector. Journal of Engineering, Hindawi Limited, v. 2020, p. 1–11,
2020.

IBM. Socket characteristics. [S.l.: s.n.], 2021a. https:
//www.ibm.com/docs/en/i/7.1?topic=programming-socket-characteristics.

IBM. Socket programming. [S.l.: s.n.], 2021b.
https://www.ibm.com/docs/en/i/7.1?topic=communications-socket-programming.

IBM. TCP/IP protocols. [S.l.: s.n.], 2023.
https://www.ibm.com/docs/hu/aix/7.1?topic=protocol-tcpip-protocols.

IBM. What is networking? [S.l.: s.n.], 2024. https://www.ibm.com/topics/networking.

INTEL. What Is Computer Vision? [S.l.: s.n.], 2024.
https://www.intel.com.br/content/www/br/pt/internet-of-things/computer-
vision/overview.html.

JACOBS, Steven. Help configuring firewalls routers and switches and wireless solutions.
[S.l.: s.n.], 2023. https://de.fiverr.com/stevenjaco/help-configuring-firewalls-
routers-and-switches-and-wireless-solutions.

JANIESCH, Christian; ZSCHECH, Patrick; HEINRICH, Kai. Machine learning and deep
learning. Electronic Markets, Springer, v. 31, n. 3, p. 685–695, 2021.

https://www.docker.com/resources/what-container/
https://www.raspberrypi.org/about/
https://www.geeksforgeeks.org/multithreading-in-operating-system/
https://colab.google/
https://cloud.google.com/learn/what-is-artificial-intelligence?hl=en
https://www.ibm.com/docs/en/i/7.1?topic=programming-socket-characteristics
https://www.ibm.com/docs/en/i/7.1?topic=programming-socket-characteristics
https://www.ibm.com/docs/en/i/7.1?topic=communications-socket-programming
https://www.ibm.com/docs/hu/aix/7.1?topic=protocol-tcpip-protocols
https://www.ibm.com/topics/networking
https://www.intel.com.br/content/www/br/pt/internet-of-things/computer-vision/overview.html
https://www.intel.com.br/content/www/br/pt/internet-of-things/computer-vision/overview.html
https://de.fiverr.com/stevenjaco/help-configuring-firewalls-routers-and-switches-and-wireless-solutions
https://de.fiverr.com/stevenjaco/help-configuring-firewalls-routers-and-switches-and-wireless-solutions

References 66

JORDAN, Michael I; MITCHELL, Tom M. Machine learning: Trends, perspectives, and
prospects. Science, American Association for the Advancement of Science, v. 349, n. 6245,
p. 255–260, 2015.

MAHESH, Batta. Machine learning algorithms-a review. International Journal of Science
and Research (IJSR).[Internet], v. 9, n. 1, p. 381–386, 2020.

MATHWORKS. What Is Object Detection? [S.l.: s.n.], 2024.
https://www.mathworks.com/discovery/object-detection.html.

MICROSOFT. Understand TCP/IP addressing and subnetting basics. [S.l.: s.n.], 2022.
https://learn.microsoft.com/en-us/troubleshoot/windows-
client/networking/tcpip-addressing-and-subnetting.

MOHAJAN, Haradhan. Third Industrial Revolution Brings Global Development. Journal of
Social Sciences and Humanities, v. 7, n. 4, p. 239–251, Dec. 2021.

MVTEC. The MVTec anomaly detection dataset (MVTec AD). [S.l.: s.n.], 2024.
https://www.mvtec.com/company/research/datasets/mvtec-ad.

OPENCV. About. [S.l.: s.n.], Nov. 2020. Available from: https://opencv.org/about/.

PETRILLO, Antonella; DE FELICE, Fabio; CIOFFI, Raffaele; ZOMPARELLI, Federico.
Fourth Industrial Revolution: Current Practices, Challenges, and Opportunities. In:
IntechOpen. Ed. by Antonella Petrillo. [S.l.]: IntechOpen, 2018. chap. 1. DOI:
10.5772/intechopen.72304.

PRASAD, Leela. What is Relay? How it Works? Types, Applications, Testing. [S.l.: s.n.],
2022. https://www.electronicshub.org/what-is-relay-and-how-it-works/.

PRODEVELOPERTUTORIAL. Linux System Programming: Creating TCP sockets.
[S.l.: s.n.], 2020. https://www.prodevelopertutorial.com/linux-system-
programming-creating-tcp-sockets/.

RASPBERRY. Physical Computing with Python. [S.l.: s.n.], 2024a.
https://projects.raspberrypi.org/en/projects/physical-computing/1.

RASPBERRY. Raspberry Pi Documentation. [S.l.: s.n.], 2024b.
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html.

https://www.mathworks.com/discovery/object-detection.html
https://learn.microsoft.com/en-us/troubleshoot/windows-client/networking/tcpip-addressing-and-subnetting
https://learn.microsoft.com/en-us/troubleshoot/windows-client/networking/tcpip-addressing-and-subnetting
https://www.mvtec.com/company/research/datasets/mvtec-ad
https://opencv.org/about/
https://doi.org/10.5772/intechopen.72304
https://www.electronicshub.org/what-is-relay-and-how-it-works/
https://www.prodevelopertutorial.com/linux-system-programming-creating-tcp-sockets/
https://www.prodevelopertutorial.com/linux-system-programming-creating-tcp-sockets/
https://projects.raspberrypi.org/en/projects/physical-computing/1
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

References 67

RED HAT, Inc. Chapter 10. managing services with Systemd Red Hat Enterprise.
[S.l.: s.n.], 2024. Available from: https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-
managing_services_with_systemd.

ROSE, Karen; ELDRIDGE, Scott; CHAPIN, Lyman. The internet of things: An overview. The
internet society (ISOC), Reston, VA, v. 80, p. 1–50, 2015.

SHAH, Deval. Mean Average Precision (mAP) Explained: Everything You Need to Know.
[S.l.: s.n.], 2022. https://www.v7labs.com/blog/mean-average-precision.

SINGH, Bikram Jit; SHARMA, Ashwani. Evolution of Industrial Revolutions: A Review.
International Journal of Innovative Technology and Exploring Engineering, v. 9, n. 11,
p. 66–73, 2020. DOI: 10.35940/ijitee.I7144.0991120.

SOLARWINDS. What Is a Network Node? [S.l.: s.n.], 2024.
https://www.solarwinds.com/resources/it-glossary/network-node.

SOLAWETZ, Jacob. What is Mean Average Precision (mAP) in Object Detection?
[S.l.: s.n.], 2020. https://blog.roboflow.com/mean-average-precision/.

TIWARI, Ashish. Chapter 2 - Supervised learning: From theory to applications. In:
PANDEY, Rajiv; KHATRI, Sunil Kumar; SINGH, Neeraj kumar; VERMA, Parul (Eds.).
Artificial Intelligence and Machine Learning for EDGE Computing. [S.l.]: Academic Press,
2022. P. 23–32. ISBN 978-0-12-824054-0. DOI:
https://doi.org/10.1016/B978-0-12-824054-0.00026-5. Available from:
https://www.sciencedirect.com/science/article/pii/B9780128240540000265.

TRU. TRU COMPONENTS Pure Set Raspberry Pi® 4 B 8 GB. [S.l.: s.n.], 2024a.
https://www.conrad.de/de/p/tru-components-pure-set-raspberry-pi-4-b-8-gb-
4-x-1-5-ghz-inkl-netzteil-inkl-gehaeuse-2299384.html?refresh=true.

TRU. TRU COMPONENTS Signal tower TC-9539296. [S.l.: s.n.], 2024b.
https://www.conrad.com/en/p/tru-components-signal-tower-tc-9539296-led-
red-yellow-green-1-pc-s-2384824.html.

ULTRALYTICS. Ultralytics YOLOv8 - github. [S.l.: s.n.], 2023.
https://github.com/ultralytics/ultralytics?tab=readme-ov-file.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-managing_services_with_systemd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-managing_services_with_systemd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-managing_services_with_systemd
https://www.v7labs.com/blog/mean-average-precision
https://doi.org/10.35940/ijitee.I7144.0991120
https://www.solarwinds.com/resources/it-glossary/network-node
https://blog.roboflow.com/mean-average-precision/
https://doi.org/https://doi.org/10.1016/B978-0-12-824054-0.00026-5
https://www.sciencedirect.com/science/article/pii/B9780128240540000265
https://www.conrad.de/de/p/tru-components-pure-set-raspberry-pi-4-b-8-gb-4-x-1-5-ghz-inkl-netzteil-inkl-gehaeuse-2299384.html?refresh=true
https://www.conrad.de/de/p/tru-components-pure-set-raspberry-pi-4-b-8-gb-4-x-1-5-ghz-inkl-netzteil-inkl-gehaeuse-2299384.html?refresh=true
https://www.conrad.com/en/p/tru-components-signal-tower-tc-9539296-led-red-yellow-green-1-pc-s-2384824.html
https://www.conrad.com/en/p/tru-components-signal-tower-tc-9539296-led-red-yellow-green-1-pc-s-2384824.html
https://github.com/ultralytics/ultralytics?tab=readme-ov-file

References 68

ULTRALYTICS. Ultralytics YOLOv8 Docs. [S.l.: s.n.], 2024.
https://docs.ultralytics.com/.

ZANERO, Stefano. Cyber-Physical Systems. Computer, v. 50, n. 4, p. 14–16, 2017. DOI:
10.1109/MC.2017.105.

https://docs.ultralytics.com/
https://doi.org/10.1109/MC.2017.105

69

ANNEX A –

Figure 32 – Architecture of the YOLOv8 model.

Source: (Range King, 2023).

https://github.com/RangeKing

	End-to-end development of a demonstrator for defect detection
	Title page

	Ficha Catalográfica - UFSC
	End-to-end development of a demonstrator for defect detection
	Approval
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Contextualization
	The research institute
	The Fraunhofer Society
	The Fraunhofer Institute for Production Technology - IPT
	The Production Quality Department

	Objectives
	Methodology
	Theoretical background
	Industry 4.0
	IoT
	Artificial Intelligence
	Machine Learning
	Computer Vision
	Object detection
	YOLOv8 model

	Computer Networks
	Socket programming
	Communication Protocols

	Multithreading
	Web development
	Container

	Demonstrator development
	Technical setup
	Use case: defect detection in cables
	Hardware and software selection
	Hardware
	Software tools

	Hardware setup
	Software setup - Raspberry Pi
	VPN connection
	Image acquisition and socket client

	Client/Server using sockets
	Server
	Clients

	Backend service
	YOLOv8 training
	Original data set
	Data Preprocessing
	Model training

	Deployment using docker containers

	Results
	Conclusion
	References
	

		2024-05-24T14:36:12-0300

		2024-06-10T10:54:59+0200
	Henrik Heymann

		2024-06-10T10:55:45+0200
	Henrik Heymann

