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RESUMO 
A neuropatia autônomica cardiovascular (NAC), complicação do diabetes mellitus 
(DM), é uma condição que afeta a regulação neural do sistema cardiovascular. O 
objetivo desta tese é analisar sinais de variabilidade da frequência cardíaca (VFC) 
usando a decomposição de modo empírico (DME) e técnicas estabelecidas de análise 
da VFC para identificar alterações precoces ou subclínicas na função autonômica de 
indivíduos com DM que possuem NAC. A tese está estruturada em três seções: (a) o 
desenvolvimento e validação de uma ferramenta de processamento de sinais de VFC 
integrada a um banco de dados para o pré-processamento de sinais de 
eletrocardiograma (ECG) e fotopletismografia (PPG), permitindo a análise da VFC e 
sensibilidade barorreflexa, bem como a implementação do método DME e extração 
de parâmetros, que foi a base para ambos os estudos desta tese; (b) o Primeiro 
Estudo investigou a relevância das características baseadas na DME extraídas dos 
sinais de VFC para diferenciar entre os níveis de progressão da NAC em pacientes 
com DM tipo 2. Este estudo envolveu 60 participantes igualmente divididos em três 
grupos: semNAC - ausência de NAC, subNAC - NAC subclínica e estNAC - NAC 
estabelecida. Seis características da DME (ܴܵܣ௔௥௘௔ - área do sinal analítico; ܱܵܦ ௔ܲ௥௘௔ 
- área do gráfico de diferenças de segunda ordem; ܱܵܦ ஼்ܲெ – medida da tendência 
central do gráfico de diferença de segunda ordem; ܲܵܦ௣௞௔௠௣ – amplitude de pico da 
estimativa da densidade espectral de potência; e ܲܵܦ௠௙௥௘௤ - frequência média da 
estimativa da densidade espectral de potência) foram extraídas dos sinais de intervalo 
RR e comparadas entre os grupos. Os resultados revelaram diferenças significativas 
entre os indivíduos semNAC e estNAC para todos os parâmetros da DME e seus 
componentes, exceto para ܲܵܦ௠௙௥௘௤. Além disso, apenas alguns componentes da 
DME de cada parâmetro mostraram diferenças significativas entre indivíduos semNAC 
ou estNAC e aqueles com subNAC. Também houve uma redução gradual na 
variabilidade e distribuição de potência dos componentes da DME correlacionada com 
os estágios de gravidade da NAC e; (c) o Segundo Estudo, que avaliou o desempenho 
de vários modelos de aprendizado de máquina supervisionados e diferentes técnicas 
de seleção de características para a classificação multiclasse dos níveis de gravidade 
da NAC. O estudo utilizou um conjunto de dados composto por dados de ECG e PPG 
de 250 indivíduos com DM tipo 1 ou tipo 2, categorizados em três classes de 
progressão da NAC. Três conjuntos de características foram considerados: um 
contendo parâmetros convencionais da VFC (incluindo domínios de tempo, frequência 
e parâmetros não lineares), outro composto exclusivamente por características 
baseadas na DME derivadas da VFC, e o último incorporando uma combinação de 
todas essas características derivadas da VFC. Os principais resultados indicaram que 
os modelos de aprendizado de máquina que utilizaram o conjunto composto 
resultaram na maior acurácia de classificação (88,4%), com características de todos 
os métodos de análise da VFC contribuindo para esse resultado. Ambos os estudos 
demonstraram que as medidas extraídas da DME podem contribuir para caracterizar 
alterações subclínicas associadas à manifestação da NAC em conjunto com 
parâmetros tradicionais da VFC. Esses resultados demonstram o potencial de 
medidas baseadas na DME como uma ferramenta de triagem viável para o 
diagnóstico precoce da NAC. 
 
Palavras-chave: Complicações Diabetes Mellitus; Neuropatias Diabéticas; 
Variabilidade Frequência Cardíaca; Eletrocardiograma; Decomposição Modo 
Empírico; Aprendizado de Máquina. 
 



ABSTRACT 
 
Cardiovascular autonomic neuropathy (CAN), a diabetes mellitus (DM) complication, 
is a condition that disrupts the neural regulation of the cardiovascular system. This 
thesis aims to analyse heart rate variability (HRV) signals using the empirical mode 
decomposition (EMD) and established HRV analysis techniques, to identify early or 
subclinical autonomic function alterations in DM individuals with CAN. The thesis is 
structured into three sections: (a) the development and validation of an HRV signal 
processing tool integrated with a database for preprocessing electrocardiogram (ECG) 
and photoplethysmogram (PPG) signals, allowing for HRV and baroreflex sensitivity 
analysis, along with the implementation of the EMD method and feature extraction, 
which was the basis for both the studies of this thesis; (b) the First Study, that 
investigated the relevance of EMD-based features extracted from HRV signals to 
differentiate between progression levels of CAN among type 2 DM patients. This study 
involved 60 participants equally divided into three groups: noCAN - no presence of 
CAN, subCAN - subclinical CAN, and estCAN - established CAN. Six EMD features 
ܦܱܵ ;௔௥௘௔ – the area of the analytical signalܴܵܣ) ௔ܲ௥௘௔ - area of the second-order 
difference plot; ܵ ܦܱ ஼்ܲெ - the central tendency measure of the second-order difference 
plot; ܲܵܦ௣௞௔௠௣ - peak amplitude of the power spectral density estimation; ܲܵܦ௕௣௢௪ - 
band power of the power spectral density estimation; and ܲܵܦ௠௙௥௘௤ - mean frequency 
of the power spectral density estimation) were extracted from the RR interval signals 
and compared between groups. The results revealed significant differences between 
the noCAN and estCAN individuals for all EMD features and their components, except 
for the ܲܵܦ௠௙௥௘௤. Moreover, only some EMD components of each feature showed 
significant differences between individuals with noCAN or estCAN and those with 
subCAN. Also, there was a gradual reduction in variability and power distribution of the 
EMD components correlated to the stages of CAN severity; and (c) the Second Study 
assessed the performance of several supervised machine learning models and 
different feature selection techniques for the multiclass classification of CAN severity 
levels. The study employed a dataset comprising ECG and PPG data from 250 
individuals with either type 1 or type 2 DM, categorized into three classes of CAN 
progression. Three feature sets (FS) were considered: one containing conventional 
HRV features (including time, frequency domains, and nonlinear parameters), another 
consisting solely of EMD-based features derived from HRV, and the last one 
incorporating a combination of all these HRV-derived features. The main findings 
revealed that the ML models using the composite FS resulted in the highest 
classification accuracy (88.4%), with features from all HRV analysis methods 
contributing to this outcome. Both studies demonstrated that EMD outcome measures 
can contribute to characterizing subclinical changes associated with CAN 
manifestation in conjunction with traditional HRV features. These findings demonstrate 
the potential of EMD-based measures as a viable screening tool for early CAN 
diagnosis. 
 
Keywords: Diabetes Mellitus Complication; Diabetic Neuropathies; Heart Rate 
Variability; Electrocardiogram; Empirical Mode Decomposition; Machine Learning



RESUMO EXPANDIDO 
 
Introdução 
A diabetes mellitus (DM) é uma doença crônica que ocorre quando o corpo não 
consegue produzir insulina suficiente ou não consegue usar efetivamente a insulina 
que produz, resultando em níveis elevados de glicose no sangue. Os distúrbios 
metabólicos da DM levam a danos difusos e generalizados nos nervos periféricos, 
autonômicos e nos pequenos vasos sanguíneos. Dentre esses danos, destaca-se a 
neuropatia autonômica cardiovascular (NAC), caracterizada por lesões nas fibras 
nervosas autônomas que inervam o coração, levando a alterações na frequência 
cardíaca e na dinâmica cardiovascular. Embora seja uma condição grave, a NAC é 
frequentemente subdiagnosticada, uma vez que os sintomas clínicos (por exemplo, 
taquicardia em repouso, hipotensão ortostática e regulação anormal da pressão 
arterial) só aparecem em estágios avançados da doença. Assim, a detecção precoce 
da NAC, especialmente em sua fase subclínica (ou seja, quando os sintomas 
característicos da doença ainda não são aparentes ou totalmente desenvolvidos, mas 
podem haver alterações subjacentes), é essencial para iniciar intervenções que visem 
atrasar a progressão da doença ou, até mesmo, reverter seu curso. No diagnóstico da 
NAC, os testes de reflexo cardiovascular são considerados o padrão-ouro, sendo 
utilizados para avaliar a resposta do sistema cardiovascular a estímulos específicos. 
No entanto, a NAC apresenta uma manifestação silenciosa e pode não exibir sintomas 
nos estágios iniciais, o que dificulta o diagnóstico precoce apenas por meio dos testes 
de reflexo cardiovascular. Nos estágios iniciais ou subclínicos da NAC, observam-se 
principalmente anormalidades nos reflexos barorreceptores e alterações na 
variabilidade da frequência cardíaca (VFC). Os reflexos barorreceptores são 
respostas automáticas do sistema nervoso autônomo (SNA) a mudanças na pressão 
arterial, enquanto a VFC refere-se à variação no intervalo de tempo entre os 
batimentos cardíacos. A VFC é utilizada para avaliar a regulação cardiovascular, em 
que níveis adequados de variabilidade indicam uma resposta equilibrada entre os 
componentes simpático e parassimpático do SNA. Os índices de VFC são derivados 
de análises no domínio do tempo e da frequência, além de incorporar medidas não 
lineares. Dentre as abordagens não lineares, um método que tem sido aplicado na 
análise de sinais de VFC e sinais biomédicos em geral é a decomposição de modo 
empírico (DME). A DME decompõe um sinal complexo em componentes intrínsecas 
e adaptativas, conhecidas como modos empíricos, as quais representam diferentes 
escalas de variabilidade presentes no sinal original. 
 
Objetivos 
O objetivo principal desta tese é analisar sinais de VFC usando a DME e técnicas 
estabelecidas de análise da VFC para identificar alterações precoces ou subclínicas 
na função autonômica de indivíduos com DM que possuem NAC. Os objetivos 
específicos são: (a) sistema de processamento de sinais de VFC: desenvolver um 
sistema de processamento de sinais de VFC integrado a um banco de dados para o 
pré-processamento de sinais de eletrocardiograma (ECG) e fotopletismografia (PPG), 
permitindo a análise da VFC e sensibilidade barorreflexa, bem como a implementação 
do método DME e extração de parâmetros; (b) primeiro estudo: investigar a relevância 
das métricas baseadas na DME extraídas dos sinais de VFC para diferenciar entre os 
níveis de progressão da NAC em pacientes com DM tipo 2 (DM2) e; (c) segundo 
estudo: avaliar o desempenho de modelos de aprendizado de máquina na 



classificação multiclasse dos níveis de progressão da NAC usando uma combinação 
de métricas de VFC e métricas derivadas da DME aplicada ao sinal de VFC. 
 
Sistema de processamento de sinais de VFC 
Metodologia 
O sistema de processamento de sinais de VFC foi desenvolvido no MATLAB e 
integrado a um banco de dados criado no Access. Esse sistema recebe sinais de ECG 
e PPG como entrada, realiza o pré-processamento desses sinais e extrai o sinal de 
VFC. A análise do sinal de VFC inclui o cálculo de parâmetros nos domínios do tempo 
e da frequência, análises não lineares e a aplicação do método de DME. O sistema 
também inclui um módulo para análise da sensibilidade barorreflexa, utilizando os 
sinais de VFC e PPG. Todos esses parâmetros calculados são enviados e 
armazenados no banco de dados para análise posterior. Para validação do sistema, 
foram coletados dados de ECG de 25 indivíduos saudáveis. Em seguida, foram 
calculadas 19 medidas de VFC nos domínios do tempo, frequência e não lineares. 
Essas medidas foram comparadas com as mesmas medidas calculadas no Kubios 
HRV Standard, um software validado cientificamente para análise de VFC. A validação 
utilizou análises estatísticas com cálculo do coeficiente de correlação intraclasse (ICC) 
e gráficos de Bland-Altman.  
 
Resultados e Discussão 
O sistema de processamento e análise da VFC foi desenvolvido como uma ferramenta 
personalizada para análise dos sinais de ECG e PPG, sendo utilizado como base para 
o desenvolvimento de ambos os estudos apresentados nesta tese. Na validação, os 
gráficos de Bland-Altman, nos quais a maioria dos pontos estava dentro dos limites 
de concordância, em conjunto com as medidas de ICC, predominantemente acima de 
0,9, demonstraram a consistência entre as medidas dos dois sistemas, indicando a 
confiabilidade do software desenvolvido.  
 
Primeiro estudo 
Metodologia 
Este estudo envolveu 60 participantes com DM2 igualmente divididos em três grupos: 
semNAC - ausência de NAC, subNAC - NAC subclínica e estNAC - NAC estabelecida. 
Seis características foram extraídas dos modos empíricos após a DME dos sinais de 
VFC: ܴܵܣ௔௥௘௔ - área do sinal analítico, ܱܵܦ ௔ܲ௥௘௔ - área do gráfico de diferenças de 
segunda ordem, ܱܵܦ ஼்ܲெ – medida da tendência central do gráfico de diferença de 
segunda ordem, ܲܵܦ௣௞௔௠௣ – amplitude de pico da estimativa da densidade espectral 
de potência e ܲܵܦ௠௙௥௘௤ - frequência média da estimativa da densidade espectral de 
potência. Para comparar as diferenças médias dos parâmetros entre os grupos foi 
conduzida uma análise de variância (ANOVA) no R. 
 
Resultados e Discussão 
Os resultados da ANOVA revelaram diferenças significativas entre os indivíduos 
semNAC e estNAC para todos os parâmetros da DME e seus componentes, exceto 
para ܲܵܦ௠௙௥௘௤. Além disso, apenas alguns componentes da DME de cada parâmetro 
mostraram diferenças significativas entre indivíduos semNAC ou estNAC e aqueles 
com subNAC. Também houve uma redução gradual na variabilidade e distribuição de 
potência dos componentes da DME correlacionada com os estágios de gravidade da 
NAC. Os resultados deste estudo sugerem que as medidas de resultados baseadas 



em DME são promissoras na caracterização de mudanças associadas à progressão 
de NAC em indivíduos com DM2. 
 
Segundo estudo 
Metodologia 
Neste estudo, utilizou-se um conjunto de dados composto por dados de ECG e PPG 
de 250 indivíduos com DM tipo 1 ou DM2. Esses participantes foram categorizados 
em três classes de progressão da NAC (semNAC - ausência de NAC, subNAC - NAC 
subclínica e estNAC - NAC estabelecida). Considerou-se três conjuntos de 
características: o primeiro com parâmetros convencionais da VFC (incluindo domínios 
de tempo, frequência e parâmetros não lineares); o segundo com características 
derivadas da VFC utilizando a DME; e o terceiro, um conjunto composto, que incorpora 
uma combinação de todas essas características incluindo métricas da DME e métricas 
convencionais da VFC. Para a seleção de características foram aplicadas técnicas 
como selectKbest, eliminação de características recursivas e análise de componentes 
principais. Os modelos de aprendizado de máquina multiclasse supervisionados 
utilizados incluíram máquina de vetor de suporte, K vizinhos mais próximos, análise 
de discriminante linear e quadrática, regressão logística, classificador adaboost e 
árvore de decisão. O estudo foi desenvolvido utilizando a linguagem Python e o 
ambiente Jupyter Notebook. 
 
Resultados e Discussão 
Os principais resultados indicaram que os modelos de aprendizado de máquina que 
utilizaram o conjunto composto resultaram na maior acurácia de classificação, 
obtendo uma acurácia de 88,4% com o classificador K vizinhos mais próximos e a 
técnica de seleção de eliminação de características recursivas. Além disso, as 
características derivadas de todos os métodos de análise da VFC contribuíram para 
esse resultado. Por fim, os modelos de classificação utilizando os conjuntos de 
métricas individuais (somente VFC ou somente DME) não obtiveram uma acurácia na 
classificação superior a 76,5%. 
 
Considerações Finais 
Ambos os estudos demonstraram que as medidas extraídas da DME em conjunto com 
parâmetros tradicionais da VFC podem contribuir para caracterizar alterações 
subclínicas associadas à manifestação da NAC. Esses resultados evidenciam o 
potencial das medidas baseadas na DME como uma ferramenta adicional de triagem 
para complicações cardiovasculares decorrentes da DM, auxiliando no diagnóstico 
precoce da NAC. 
 
Palavras-chave: Complicações Diabetes Mellitus; Neuropatias Diabéticas; 
Variabilidade Frequência Cardíaca; Eletrocardiograma; Decomposição Modo 
Empírico; Aprendizado de Máquina.
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1 INTRODUCTION 
 

This section presents a contextualization and motivation of the studies 

developed in this thesis and presents the thesis’ objectives. 

 

 CONTEXTUALIZATION 

 

According to the International Diabetes Federation (IDF, 2021), it is estimated 

that 537 million people are living with diabetes mellitus (DM), which represents 10.5% 

of the world’s population. DM is a chronic disorder that occurs when the body cannot 

produce enough insulin or cannot effectively use the insulin it produces, resulting in 

raised blood glucose levels (American Diabetes Association, 2021). The metabolic 

disorders of DM lead to diffuse and widespread damage to the peripheral and 

autonomic nerves and small vessels. Among these, damage to the autonomic nerve 

fibres that innervate the heart and blood vessels is known as cardiovascular autonomic 

neuropathy (CAN), resulting in abnormalities in heart rate and vascular dynamics (Vinik 

et al., 2018). Data indicate a varied prevalence of CAN in type 1 and 2 DM, varying 

from 17% to 73%, depending on clinical and demographic factors (Williams et al., 

2022). 

Cardiovascular autonomic neuropathy (CAN) is an autonomic dysfunction that 

affects the neural regulation of the cardiovascular system, occurring as a result of 

diabetes mellitus (DM) (Spallone, 2019). The strongest risk factors for the development 

of CAN in type 1 DM are the duration of diabetes and hyperglycaemia. In contrast, in 

type 2 DM, multifactorial risk factors, such as obesity, hypertension, and 

hyperlipidaemia, play a significant role (Andersen et al., 2018; Williams et al., 2022). 

CAN is associated with morbidity, high cardiovascular mortality, and sudden cardiac 

death (Spallone, 2019). Although it is a serious condition, CAN is frequently under-

recognized since the clinical symptoms (e.g., weakness, resting tachycardia, 

orthostatic hypotension, abnormal blood pressure regulation) only appear in advanced 

stages of disease (Ang et al., 2020). Thus, the early detection of CAN, especially in its 

subclinical stage (i.e., when the characteristic disease symptoms are not yet apparent 

or fully developed, but there might be underlying changes or abnormalities), is 

essential to initiate timely interventions. 
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The gold standard for CAN diagnosis is the series of cardiac autonomic reflex 

tests (CARTs), which measure the heart rate and blood pressure responses to simple 

interventions such as deep breathing, the Valsalva manoeuvre, and lying-to-standing 

(Williams et al., 2022). These responses are compared to normal and age-adjusted 

cut-off values (O’Brien; O’Hare; Corrall, 1986). Nevertheless, CAN has a silent 

presentation and may exhibit no symptoms or have subtle symptoms, making it 

challenging to identify and diagnose in the initial stages with only the CARTs (Vinik et 

al., 2018). In addition, CARTs must follow consistent and standardized protocols, 

which require active patient collaboration (Ang et al., 2020). Early or subclinical CAN 

is limited to baroreceptor abnormalities and changes in heart rate variability (HRV) 

(Fisher; Tahrani, 2017). Hence, HRV indices are a different approach to CARTs for 

assessing autonomic function, as they are easier and quicker than CARTs, patient-

independent, and sensitive to early dysfunction (Spallone, 2019).  

HRV refers to the time elapsed between two successive R-waves of the QRS 

complex on the electrocardiogram (ECG) (i.e., the RR interval) (Acharya; Kannathal; 

Krishnan, 2004). HRV indices are amongst the simplest and most reliable ways to 

assess CAN. They are obtained by time- and frequency-domain methods, which 

measure, respectively, the overall magnitude of the fluctuations of the RR interval 

between each heartbeat around the average values and the magnitude of fluctuations 

in a predetermined range of frequency (Rolim; de Souza; Dib, 2013). Despite having a 

wide basis of evidence for the supportive value of HRV analysis in CAN diagnosis and 

risk stratification in diabetic individuals (Cardoso et al., 2023; Castiglioni et al., 2022; 

Pop-Busui et al., 2022), HRV methods and indices for decision-making and, most 

importantly, CAN severity quantification remain an active and expanding research topic 

(Benichou et al., 2018). 

HRV reflects the dynamic changes in the autonomic nervous system’s 

regulation and is determined by the combined inputs of the sympathetic and 

parasympathetic systems (Williams et al., 2022). HRV signals involve nonlinear 

contributions and are essentially non-stationary (Acharya; Kannathal; Krishnan, 2004). 

Thus, measures from information and invariant domains that can accurately describe 

the nonlinear properties of HRV signals are strongly recommended to be used in 

conjunction with traditional techniques because they may provide supplementary 

information about the underlying mechanisms involved in cardiovascular regulation 

(Bravi; Longtin; Seely, 2011; Sassi et al., 2015). Several studies have demonstrated 
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the usefulness of the nonlinear analysis of HRV for assessing cardiac abnormalities 

and have explored techniques such as the correlation dimension, Poincare plots, 

entropy parameters, recurrence plots, and detrended fluctuation analysis (Faust et al., 

2012; Jelinek et al., 2013; Khandoker; Jelinek; Palaniswami, 2009; Rajendra Acharya 

et al., 2013; Roy; Ghatak, 2013). 

Among these techniques, a nonlinear method that has been explored for HRV 

analysis is empirical mode decomposition (EMD). EMD is a data analysis method 

proposed by Huang et al. (1998) that decomposes a time series into a set of simpler 

and more interpretable oscillatory modes called intrinsic mode functions (IMFs). The 

Hilbert transform can be applied to IMFs to obtain their analytical signal, from which 

additional information can be calculated, such as the instantaneous frequency and the 

amplitude and phase modulation of the IMF (Maheshwari; Kumar, 2014). EMD is an 

adaptive and data-driven technique, which makes it well-suited to analysing signals 

that have complex, nonlinear, and non-stationary characteristics. Compared to other 

methods of time-frequency analysis of signals, EMD addresses some of these 

limitations. For example, the Fourier transform is a linear technique that assumes the 

signal is stationary over time (Maheshwari; Kumar, 2014), which is not the case for 

HRV signals that exhibit nonlinear interactions between different frequency 

components (Benichou et al., 2018). On the other hand, the Wavelet transform is a 

frequency-based method that selects an appropriate wavelet basis function and scale, 

while EMD is a time-based method that does not require a priori knowledge of the 

signal frequency content (Maheshwari; Kumar, 2014). 

As a result of its different approach and the advantages over the analysis of 

complex and nonlinear time-series signals, the use of the EMD technique has gained 

increasing attention and has been adopted for a variety of biomedical signals, such as 

the electroencephalogram for epileptic seizure classification (Bajaj; Pachori, 2012; 

Pachori; Patidar, 2014), emotion recognition (Abdulrahman; Baykara; Alakus, 2022; 

Salankar; Mishra; Garg, 2021), and the identification of autism severity level (Hadoush; 

Alafeef; Abdulhay, 2019), electromyography for the analysis of amyotrophic lateral 

sclerosis (Mishra et al., 2016, 2017) or for the classification of neuromuscular disorders 

(Dubey et al., 2022; Naik; Selvan; Nguyen, 2016) and ECG signals for the classification 

of cardiovascular diseases (Hasan; Bhattacharjee, 2019), ECG denoising (Kumar; 

Panigrahy; Sahu, 2018; Rakshit; Das, 2018), the classification of ventricular 

arrhythmias (Mohanty et al., 2021), the prediction of sudden cardiac death (-Bautista 
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et al., 2023), and the detection of hypertension (Soh et al., 2020) or the extraction of 

foetal ECG (Barnova et al., 2021). 

The study by Echeverria et al. (2001) was one of the first to propose the 

application of EMD to HRV analysis, concluding that EMD and the associated Hilbert 

spectral representation are powerful techniques for HRV time-frequency analysis due 

to their capabilities of independently isolating the main frequency components and 

dealing with non-stationary and nonlinear features of the ECG signal. Subsequently, a 

study by Souza Neto et al. (2004) also showed that EMD is a flexible processing 

method that enhances the assessment of cardiovascular autonomic control, 

overcoming the limitations posed by the linearity and stationarity assumptions inherent 

in traditional spectral techniques. Pachori et al. (2015) proposed a set of EMD-based 

features applied to the RR interval signals that allowed differentiation between subjects 

with and without diabetes. In the same context, Pachori et al. (2016) presented a 

methodology for screening patients with DM by applying the EMD method to 

decompose HRV signals, achieving a classification accuracy of 95.63%. Acharya et al. 

(2017) subjected HRV signals to the EMD technique to identify and classify normal and 

congestive heart failure, obtaining an accuracy of 97.01%.  Sood et al. (2016) proposed 

a methodology for discriminating between normal and coronary artery disease subjects 

using heart rate signals, showing statistically significant EMD-based features. 

Similarly, Shi et al. (2020) investigated EMD-based features applied to HRV signals on 

sudden cardiac death (SCD), predicting subjects at risk earlier with an accuracy of 

96.1% and outperforming the classical linear estimators of SCD. These studies 

highlighted that analysing HRV signals using the EMD technique provides relevant 

information about overall cardiac abnormalities. 

This understanding is especially significant in the context of the cardiovascular 

system, which continually adapts to changes in internal and external conditions to 

maintain blood pressure homeostasis through complex and dynamic feedback 

mechanisms that simultaneously affect several processes such as heart rate, cardiac 

output, blood pressure, respiration, and peripheral resistance. In this way, there is a 

need for nonlinear, non-stationary, and multivariate approaches to assess 

cardiovascular interactions and their causal structure in health and disease (Orini et 

al., 2017). Furthermore, it is necessary to develop biomarkers for early and precise 

prediction of diabetes complications, which are specific, stage-related, and non-

invasive (Ahluwalia et al., 2019). However, single biomarkers will likely have inherent 
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limitations; therefore, combining several biomarkers may be more precise in identifying 

those at high risk for developing diabetes or identifying complications when DM is 

already established (Dorcely et al., 2017). The identification of biomarkers, metrics, or 

patterns of risk based on data generated by a monitoring device (e.g., ECG and PPG 

data) combined with clinical data is facilitating the development of risk-prediction 

models for diabetes and diabetes-related complications that will, in turn, change the 

DM control to a personalized approach with personalized treatment and management 

strategies leading to precision medicine in DM (Fagherazzi; Ravaud, 2019).  

In connection with this, applying artificial intelligence (AI) will facilitate the 

analysis of extensive datasets to create predictive models, which offer valuable 

insights for patients and healthcare providers to enhance the control and treatment of 

DM and its complications (Fagherazzi; Ravaud, 2019). Predictive models can be used 

to estimate the probability or risk of a specific outcome or to classify that a particular 

outcome is present/absent (diagnostic prediction model) or will happen within a specific 

timeframe (prognostic prediction model) in an individual (Cichosz; Johansen; Hejlesen, 

2016). The development of predictive models for the onset of chronic microvascular 

complications in patients suffering from DM could contribute to evaluating the 

relationship between exposure to an individual factor and the risk of the onset of a 

specific complication, to stratifying the patient’s population in a medical centre 

concerning this risk, and to developing tools for the support of informed clinical decision 

in patient’s treatment (Dagliati et al., 2018). 

Recently, several studies have proposed the use of AI through the use of 

machine learning algorithms for CAN classification based on HRV features (Abdalrada 

et al., 2017; Alkhodari et al., 2021; Carricarte Naranjo et al., 2017b; Cornforth; 

Tarvainen; Jelinek, 2013, 2014; Hassan et al., 2022; Khandoker; Jelinek; Palaniswami, 

2009b; Nedergaard et al., 2023; Wehler et al., 2021). Most existing approaches have 

successfully identified CAN through binary classification, primarily focusing on 

distinguishing between patients with CAN and without CAN. Some studies evaluated 

CAN in a multiclass approach (Abdalrada et al., 2017; Hassan et al., 2022; Nedergaard 

et al., 2023), achieving good results, but they did not evaluate the use of features 

calculated from the HRV signal components derived from the EMD method. 

In this context, this thesis’ significance is based on four complementary aspects: 

(a) identifying parameters that characterize the subtle changes occurring in the early 

stages of CAN (i.e., the subclinical phase, where the disease is present but symptoms 
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are not yet evident or are very mild), enabling the initiation of preventive treatment to 

control symptoms and potentially slow or reverse the disease progression (Fisher; 

Tahrani, 2017; Williams et al., 2022); (b) introducing a novel application of the EMD 

method, since the EMD method has not been applied to analyse HRV signals of DM 

patients with CAN at different levels of severity. Previous studies of the EMD method 

have been limited to binary CAN or DM classification; (c) proposing the utilization of 

HRV indices as a complementary method for CARTs in CAN diagnosis and monitoring, 

offering the advantages of time-effectiveness, patient-independence, and providing 

quantitative measurements; and d) contributing to ongoing research on the relevance 

of nonlinear HRV analysis approaches in investigating the neural control of the 

cardiovascular system in the presence of CAN. 

The work is organized in three parts outlined as follows: (1) the development 

and validation of an HRV processing tool to serve as the basis for conducting analyses 

of ECG and PPG data, along with the calculation of EMD extracted features; (2) the 

first study, which evaluates the relevance of EMD derived features for CAN severity 

levels differentiation and; (3) the second study, which focuses on the evaluation of 

machine learning models for multiclass classification of CAN severity levels, using both 

traditional HRV features and EMD-derived features. 

 

 OBJECTIVES 

 

1.2.1 Main Objective 
 

The main objective of this study is to investigate the complexity of heart rate 

variability signals by combining nonlinear methodologies with conventional techniques. 

This approach aims to assess early changes in the autonomic function of diabetic 

individuals with cardiovascular autonomic neuropathy. 
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1.2.2 Specific Objectives 
 

1.2.2.1 HRV Processing Tool 

 

To develop an HRV signal processing tool integrated with a database 

connection, facilitating the analysis of ECG and PPG data, enabling the computation 

of HRV-derived features, and conducting EMD analysis. 

 

1.2.2.2 First Study 

 

To investigate the relevance of the EMD-based features extracted from HRV 

signals to differentiate between progression levels of cardiovascular autonomic 

neuropathy among type 2 DM patients (i.e., no CAN, subclinical CAN, and established 

CAN). 

 

1.2.2.3 Second Study 

 

To assess the performance of machine learning models in the multiclass 

classification of CAN severity levels (i.e., no CAN, subclinical CAN, and established 

CAN) using a combination of HRV features and EMD-derived features. 
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 LITERATURE REVIEW 
 

The literature review is subdivided into four sections: 2.1) Cardiovascular 

System, with an overall description focusing on the electrocardiogram derivation and 

definition of HRV; 2.2) Autonomic Nervous System with an initial description of its 

structure and functionality, primarily related to the cardiovascular control; 2.3) Diabetes 

Mellitus, with a general explanation about the disease and its complications, and; 2.4) 

Cardiac Autonomic Neuropathy, detailing this complication, how it is diagnosed and its 

association with HRV analysis and BRS. 

 

 CARDIOVASCULAR SYSTEM 

 

The cardiovascular system comprises the heart and a network of blood vessels 

circulating blood to tissues and organs. The heart works as a pump by forcing blood 

into the arterial circulation to deliver oxygen and nutrients to tissues and remove carbon 

dioxide and waste products from these tissues into the venous circulation that carries 

blood back to the heart (Biaggioni et al., 2022; Goldberger; Goldberger; Shvilkin, 

2013). 

The ability to contract without any outside signal gives the heart its unique 

property, which comes from the specialized myocardial cells known as autorhythmic 

cells (or pacemaker cells) in the cardiac muscle. The autorhythmic cells’ action 

potential depolarization phase is caused by Ca2+ influx, followed by the repolarization 

phase due to K+ efflux. So, an action potential originates spontaneously in the heart’s 

pacemaker cells and spreads into the contractile cells of the cardiac muscle through 

gap junctions. The action potentials of myocardial contractile cells have a 

depolarization phase created by Na+ influx and a repolarization phase due to K+ efflux 

with a plateau phase created by Ca2+ influx (Silverthorn, 2019). 

 

2.1.1 Electrocardiogram 
 

The electrocardiogram (ECG) records the heart’s electrical activity produced by 

the spread of the stimuli through the atria and ventricles, followed by the return of the 

stimulated atrial and ventricular muscle to the resting state. The ECG is an extracellular 
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recording representing the sum of multiple action potentials in many heart muscle cells 

(Goldberger; Goldberger; Shvilkin, 2013; Silverthorn, 2019). 

Each phase of cardiac electrical activity produces a specific wave or complex, 

and each one reflects depolarization or repolarization of the atria and ventricles (see 

Figures 1 and 2). The heart’s depolarization begins in the sinoatrial or sinus node (SA), 

autorhythmic cells in the right atrium (RA) that serve as the heart’s primary pacemaker. 

The P wave represents the atria depolarization. The depolarization wave spreads 

rapidly to the atrioventricular node (AV) via intermodal pathways. Conduction slows 

through the AV node, allowing sufficient time for complete atrial depolarization and 

contraction. From the AV node, the depolarization rushes through the ventricular 

conducting system to the apex of the heart, resulting in ventricular depolarization. The 

QRS complex represents the progressive wave of ventricular depolarization, followed 

by ventricular repolarization during the T wave (Silverthorn, 2019). 

 

Figure 1 - Representation of the electrical activity on the heart and respective 
electrocardiogram reading. Purple and peach regions, respectively, represent 
depolarization and repolarization. Typically, the cardiac stimulus is generated in the 
sinoatrial or sinus node (SA), represented by the P wave. The stimulus then spreads 
through the right atrium (RA) and left atrium (LA). Next, it spreads through the 
atrioventricular node (AV), passing into the left ventricle (LV) and right ventricle (RV), 
represented by the QRS complex. The T wave represents ventricular repolarization, 
which reinitiates the cardiac cycle. 

 
Source: Adapted from (Silverthorn, 2019). 
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2.1.2 Heart Rate Variability 
 

Heart rate variability (HRV) is a reliable reflection of many physiological factors 

modulating the normal heart’s rhythm, allowing us to assess the overall cardiac health 

and the state of the heart’s autonomic neural regulation. HRV analysis is based on the 

RR interval time series, the sequence of intervals between successive points of R 

peaks of QRS complexes in the ECG (see Figure 2) (Kamath; Watanabe; Upton, 

2016). HRV analysis is considered a non-invasive methodology of substantial utility to 

evaluate autonomic control mechanisms and identify patients with increased cardiac 

mortality (Orini et al., 2017).  

HRV indicates the heart’s ability to respond to multiple physiological and 

environmental events (e.g., breathing, physical exercise, mental stress, hemodynamic 

and metabolic changes, sleep, and orthostatism) and compensate for disease-induced 

disorders (Kim et al., 2018). Thus, an optimal level of HRV is associated with healthy 

self-regulatory capacity, and adaptability or resilience (Shaffer; Ginsberg, 2017), 

modulated by separate rhythmic contributions from the sympathetic and 

parasympathetic autonomic activity at distinct frequencies. 

 

Figure 2 - Components of the electrocardiogram with waves, segments, and intervals. 
A typical electrocardiogram has five waves or deflections called P, Q, R, S, and T 
waves; PR and ST segments between the waves and PR, QT, and RR intervals, which 
consist of a combination of waves and segments. RR interval is the time between 
successive QRS complexes. 

 
Source: Elaborated by the author. 

 

 AUTONOMIC NERVOUS SYSTEM 

 

The autonomic nervous system (ANS) is structurally and functionally positioned 

to coordinate bodily functions ensuring homeostasis (e.g., cardiovascular and 
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respiratory control, thermal regulation, gastrointestinal motility, urinary and bowel 

excretory functions, reproduction and metabolic and endocrine physiology) and 

adaptive responses to stress (i.e., flight or fight response) (Biaggioni et al., 2022). 

Traditionally, the organization of physiological control of the ANS is divided into two 

main branches: the sympathetic nervous system (SNP) and the parasympathetic 

nervous system (PNS). Stimulation of the SNP mediates physiological responses of 

fight and flight, manifested as increased heart rate (HR) and blood pressure (BP), 

mobilization of needed energy stores, and heightened arousal. In contrast, stimulation 

of PNS tends to produce effects that are opposite to those of the SNS, such as slowing 

of HR and cardiac contractility and enhanced digestive functions. Although these 

systems appear to have opposing effects, for any given situation, the system must be 

considered in its entity because it is necessary to coordinate the firing and response 

of both arms of the ANS (Vinik; Erbas; Casellini, 2013). The effects on different end 

organs due to stimulation of either the PNS or SNP are shown in Table 1. 

The autonomic nervous system (ANS) is a key regulator of metabolic processes, 

controlling glucose metabolism and regulating the physiological function of essential 

organs involved in this metabolism (Hoshi et al., 2019). This process occurs directly 

through neuronal input and indirectly via circulation, influencing insulin and glucagon 

release and hepatic glucose production. Sympathetic nerve activation increases 

glucagon secretion from the pancreatic alpha cells, while vagal stimuli increase insulin 

secretion. In the liver, sympathetic activation increases blood glucose levels, while 

parasympathetic stimulation decreases blood glucose. The ANS may also impact 

insulin regulation indirectly by modulating the immune and inflammatory reaction 

driven toward beta cells (Hoshi et al., 2019; Vinik; Erbas; Casellini, 2013). Also, the 

ANS plays a primary role in maintaining homeostasis by regulating arterial pressure 

and all significant cardiovascular variables. 
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Table 1 - Autonomic Nervous System Functions. 

Organ 
Sympathetic Nervous 
System 

Parasympathetic Nervous 
System 

Eye 

Pupils 

Ciliary muscle 

 

Dilatation 

Relax (far vision) 

 

Constriction 

Constrict (near vision) 

Lacrimal gland Slight secretion Secretion 

Parotid gland Slight secretion Secretion 

Submandibular gland Slight secretion Secretion 

Heart 
Increased rate 

Positive inotropism 

Slowed rate 

Negative inotropism 

Lungs Bronchodilation Bronchoconstriction 

Gastrointestinal tract Decreased motility Increased motility 

Kidney Decreased output None 

Bladder 
Relax detrusor muscle 

Contract sphincter 

Contract detrusor muscle 

Relax sphincter 

Sweat glands Secretion Palmar sweating 

Piloerection muscles Contraction None 

Source: Adapted from (Biaggioni et al., 2022). 

 

2.2.1 Neural Control of the Cardiovascular System 
 

The ANS continuously regulates the cardiovascular system through the 

sympathetic and parasympathetic divisions. This is carried out by a network of neurons 

located in the medulla oblongata that receive inputs from other central structures (e.g., 

the hypothalamus, cerebral cortex, and medullary chemoreceptors) and peripheral 

reflexes arising from baroreceptor, chemoreceptor, mechanoreceptor, thermoreceptor, 

and nociceptor afferents (located in the blood vessels, heart, lungs, skeletal muscles, 

skin and viscera) (Biaggioni et al., 2022; Orini et al., 2017). 

In a healthy human heart, there is a dynamic relationship between the PNS and 

SNS. The PNS tone predominates over the sympathetic tone at rest. PNS stimulation 

causes a decrease in heart rate and strength of contraction, almost no effect on blood 

vessels, and provokes a decrease in arterial pressure but does not affect peripheral 

vascular resistance. On the other hand, the SNP has a predominant role in 

cardiovascular regulation due to its effect in increasing cardiac rate and contractility, 
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causing constriction of arteries and veins and, consequently, increasing blood pressure 

(Biaggioni et al., 2022; Cardinali, 2017; Orini et al., 2017). A summary of the effects of 

PNS and SNP on the cardiovascular system is presented in Table 2. 

Heart rate is initiated by autorhythmic cells in the SA node, but it is modulated 

by neural and hormonal input. The ANS connection with the pacemaker cells 

influences the permeability of the channel to K+, Na+, and Ca2+, causing depolarisation 

velocity effects. The parasympathetic neurotransmitter acetylcholine (ACh) delays the 

onset of the action potential in the pacemaker through an increase of K+ permeability 

and a decrease of Ca2+ permeability, which slows the heart rate. On the other hand, 

sympathetic activation increases the permeability of the channel to Na+ and Ca2+ influx, 

which speeds up the pacemaker depolarization rate and consequently increases heart 

rate (Silverthorn, 2019). 

 

Table 2 - Effect of the autonomic nervous system on the cardiovascular system. 

Organ Sympathetic stimulation Parasympathetic stimulation 

Heart Increased rate Slowed rate 

Heart Increased force of contraction Decreased force of contraction 

Coronaries 
Constricted (α), 

Dilated (β2) 
Dilated 

Vessel Constricted No effect 

Arterioles (resistance 

vessels) 
Constricted No effect 

Adrenal medullae Release of epinephrine No effect 

Arterial pressure Short-term increase Short-term decrease 

Source: Adapted from Orini et al. (2017). 
 

2.2.2 Baroreflex 
 

The central nervous system’s primary function is to ensure adequate blood flow 

to the brain and heart by maintaining sufficient mean arterial pressure. The 

baroreceptor reflex is the primary pathway for homeostatic mean arterial blood 

pressure control. The baroreflex is a negative feedback system that buffers short-term 

fluctuations in arterial pressure by modifying the heart rate and peripheral resistance 

according to the input from pressure-sensing baroreceptors. The changes in blood 

pressure occur by the indirect stretch sense of blood vessels via baroreceptors, which 
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are sensory afferent nerve endings located in walls of the carotid arteries and the aorta, 

where they continuously monitor the pressure of blood flowing to the brain (carotid 

baroreceptors) and the body (aortic baroreceptors) (Kamath; Watanabe; Upton, 2016; 

Orini et al., 2017; Silverthorn, 2019).  

The blood pressure regulatory system can be considered to be a feedback 

system consisting of sensors (the baroreceptor that measures blood pressure at select 

locations in the body), a processing unit (residing in the central nervous system), and 

an output unit (the autonomic nervous system, which adjusts blood pressure by 

changing HR, cardiac contractility and resistance of peripheral blood vessels) (Kamath; 

Watanabe; Upton, 2016).  

The last section (Section 2.2.1) describes that the ANS regulates the 

cardiovascular system through the sympathetic and parasympathetic divisions (see 

Table 2).  So, an increase in arterial blood pressure increases the baroreceptor activity, 

which leads to a decrease in sympathetic neural outflow, decreasing vasoconstrictor 

tone, myocardial contractility (to decrease stroke volume), and slowing down the heart 

rate. These sympathetic influences work with parasympathetic influences on the 

sinoatrial node to decrease heart rate. Conversely, the opposite occurs during a 

decrease in blood pressure (Biaggioni et al., 2022; Silverthorn, 2019). An illustration of 

this mechanism is presented in Figure 3. 

 

Figure 3 – The baroreceptor reflex mechanism. 

 
Source: Adapted from Biaggioni et al. (2022) and Silverthorn (2019). 
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 DIABETES MELLITUS 

 

Diabetes mellitus (DM) represents a series of metabolic conditions associated 

with hyperglycaemia caused by partial or total insulin insufficiency from a medical 

perspective. From the patient’s perspective, diabetes is a life-long condition requiring 

daily attention to diet, lifestyle, and self-monitoring of blood glucose, with frequent 

medication administration. Besides that, it is frequently associated with varying 

degrees of anxiety, depression, and multiple visits to healthcare providers (Egan; 

Dinneen, 2019). 

DM can be classified into the following major categories: (a) Type 1 (T1DM): 

pancreatic beta-cells are destroyed, usually by autoimmune inflammatory mechanism, 

which typically leads to absolute insulin deficiency, with a variable rate of progression; 

(b) Type 2 (T2DM): complex metabolic disorder associated with beta-cell dysfunction 

and varying degrees of insulin resistance; (c) Gestational: carbohydrate intolerance 

with onset or first recognition during pregnancy, is associated with an increase in 

adverse outcomes and increased risk of type 2 diabetes in later life and; (d) Less 

common types: inherited diabetes associated with a mutation in certain beta-cell or 

hepatic genes, diabetes associated with a pancreatic disease or endocrinopathies, 

drug or chemical-induced diabetes and others (Egan; Dinneen, 2019). 

People with diabetes have an augmented risk of developing several life-

threatening health problems, increasing medical care costs, falls, causing pain, and 

consequently lowering the quality of life. Diabetic neuropathies (DN) are the most 

prevalent chronic complications of DM, being characterized by a set of clinical 

syndromes that affect distinct regions of the nervous and peripheral systems, 

individually or combined (Pop-Busui et al., 2017; Vinik; Casellini; Névoret, 2016). The 

prevalence of neuropathy in T2DM ranges from 8 to 51% and 11 to 50% in T1DM 

individuals, increasing with disease duration (Feldman et al., 2019). 

The duration of diabetes and HbA1c (a measurement of glycated haemoglobin 

as a surrogate for average daily glucose levels) are significant predictors of DN. They 

are commonly associated with other metabolic factors such as obesity (the most 

influential), insulin resistance, and hypertension (particularly in T2DM) (Callaghan et 

al., 2020). Other independent risk factors for DN development include smoking, alcohol 

abuse, increased height, and older age (Feldman et al., 2019). Among the various 

forms of DN, diabetic peripheral neuropathy (DPN) and diabetic autonomic 
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neuropathies, particularly cardiovascular autonomic neuropathy (CAN), are by far the 

most prevalent (Feldman et al., 2019; Pop-Busui et al., 2017). 

Diabetic Peripheral Neuropathy is one of the major complications in patients 

with Type 1 and Type 2 DM (Tesfaye; Selvarajah, 2012). A simple definition of DPN 

for clinical practice is “the presence of symptoms and/or signs of peripheral nerve 

dysfunction in people with diabetes after excluding other causes” (Boulton; Gries; 

Jervell, 1998). Also, it is defined as a “symmetrical, length-dependent sensorimotor 

polyneuropathy attributable to metabolic and micro-vessel alterations as a result of 

chronic hyperglycaemia exposure and cardiovascular risk covariates” (Tesfaye et al., 

2010). The prevalence of diabetes-related peripheral neuropathy ranges from 16% to 

as much as 87 %, with painful diabetes-related neuropathy reported in about 26% of 

adults with diabetes (International Diabetes Federation, 2021). 

Peripheral nerve fibres are classified into large myelinated fibres, small thinly 

myelinated fibres, and unmyelinated fibres. DPN involves both small and large nerve 

fibres in a length-dependent pattern. Small nerve fibre injuries occur earlier than large 

ones (Won; Park, 2016). Thus, sensory symptoms are more prominent than motor 

symptoms and usually involve the lower limbs with a stocking-like distribution. The 

main symptoms are pain, paraesthesia, hyperesthesia, deep aching, burning, and 

sharp stabbing sensations. All sensory modalities can be affected, particularly 

vibration, touch, and position perception that are indicative of considerable Aα/β fibre 

damage and pain, with abnormal heat and cold temperature perception that is a 

characteristic of small thinly myelinated Aδ and unmyelinated C-fibre damage 

(Feldman et al., 2019; Vinik; Casellini; Névoret, 2016), as represented in Figure 4. 

As stated, the sensory nerve fibres are the most affected in the early course of 

DPN; however, as the disease progresses, muscle weakness becomes present, 

affecting distal leg muscles. These muscle alterations affect the foot (or gait) dynamics 

and plantar pressure distribution, leading to foot deformities and, ultimately, foot 

ulceration (Amin; Doupis, 2016; Suda et al., 2018). Furthermore, DPN is the leading 

cause of disability due to foot ulceration, amputation, gait disturbance, and fall-related 

injury (Juster-Switlyk; Smith, 2016). In summary, foot ulceration is considered the 

primary precursor of lower extremity amputation among patients with diabetes (Amin; 

Doupis, 2016). 
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Figure 4 – Peripheral nervous system and type of nerve fibres. Clinical presentation of 
small and large fibre neuropathies. 

 
Abbreviations: GIT, gastrointestinal; GUT, genitourinary. 

Source: Adapted from Vinik; Casellini and Névoret (2016). 

 

Diabetic autonomic neuropathies (DAN) are disorders caused by impairment of 

the sympathetic and parasympathetic nervous system, associated with various specific 

symptoms (Feldman et al., 2019). DAN may be either clinically evident or subclinical. 

DAN typically occurs as a system-wide disorder affecting all parts of the ANS; the 

vagus nerve, which is the longest of the ANS nerves, accounts for ~75 % of all 

parasympathetic activity, and DAN manifests first in longer nerves, so even early 

effects of DAN are widespread (Vinik; Erbas; Casellini, 2013). Major clinical 

manifestations of DAN include hypoglycaemia unawareness, resting tachycardia, 

exercise intolerance, orthostatic hypotension, constipation, gastroparesis, erectile 

dysfunction, sudomotor dysfunction, impaired neurovascular function, and brittle 

diabetes (i.e., hard-to-control-diabetes) (Pop-Busui et al., 2017). 

Among the autonomic neuropathies, Cardiac Autonomic Neuropathy (CAN) is 

the most serious and clinically relevant of the complications, as CAN is an independent 

risk factor for cardiovascular mortality, arrhythmia, silent ischemia, myocardial 

dysfunction, or any major cardiovascular event (Pop-Busui et al., 2017). CAN is the 

focus of this work; thus, it is further addressed in the next section. 
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 CARDIAC AUTONOMIC NEUROPATHY 

 

The metabolic disorders of diabetes lead to diffuse and widespread damage of 

peripheral and autonomic nerves and small vessels. When diabetic neuropathy affects 

the autonomic nervous system (ANS), it can damage the cardiovascular, 

gastrointestinal, genitourinary, and neurovascular systems. Of these, damage to the 

autonomic nerve fibres that innervate the heart and blood vessels is known as cardiac 

autonomic neuropathy (CAN), resulting in abnormalities in heart rate control and 

vascular dynamics (Vinik; Erbas; Casellini, 2013). 

CAN in DM is among the strongest risk markers for future global and 

cardiovascular mortality, and the increase of other micro- and macrovascular 

complications increases the probability of having CAN in both types of DM, being more 

pronounced in T2DM (Motataianu et al., 2018). The prevalence of CAN in unselected 

people with type 1 and type 2 diabetes is approximately 20%, but it can be as high as 

65% with increasing age and diabetes duration (Vinik; Erbas; Casellini, 2013). Clinical 

correlates or risk markers for CAN are age, diabetes duration, glycaemic control, 

microvascular complications (peripheral polyneuropathy, retinopathy, and 

nephropathy), hypertension, obesity, smoking, and dyslipidaemia  (Cha et al., 2018). 

The study by Andersen et al. (2018) reported that higher HbA1c, weight, body mass 

index (BMI), and triglycerides were associated with prevalent CAN.  

In parallel to the development of peripheral neuropathy, DM affects cardiac 

autonomic neurons in an ascending fashion, with pathological changes affecting first 

the longest nerve fibres, which in the ANS is the vagus nerve that modulates 

approximately 75% of all parasympathetic activity (Kuehl; Stevens, 2012). Thus, in an 

early phase of CAN, there is a loss of parasympathetic function due to denervation, 

with a resulting compensatory increase of sympathetic tone. Later, sympathetic 

denervation follows, causing an increase in cardiac sympathetic tone, which seems to 

correlate with the progression of peripheral neuropathy (Kuehl; Stevens, 2012; Vinik; 

Erbas; Casellini, 2013). The imbalance of sympathetic/parasympathetic observed in 

CAN patients is a significant cause of morbidity and mortality associated with a high 

risk of cardiac arrhythmias and sudden death, possibly related to silent myocardial 

ischemia; cardiovascular disease (CVD) remains the main cause of excess mortality 

among patients with type 1 and type 2 DM  (Vinik, 2012). 
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2.4.1 CAN Diagnosis 
 

The Toronto Consensus established four reasons why the diagnosis of CAN is 

relevant to clinical practice: (a) for diagnosing and staging CAN (initial, definite, and 

advanced or severe), (b) for the differential diagnosis of clinical manifestations (e.g., 

resting tachycardia, orthostatic hypotension) and their respective treatment, (c) for 

stratifying the degree of cardiovascular risks and the risk of other diabetic 

complications, and (d) to adjust the goal of glycated haemoglobin (HbA1c) in each 

patient (Bernardi et al., 2011). 

Screening for autonomic dysfunction should be performed at the diagnosis of 

type 2 diabetes and five years after the diagnosis of type 1 diabetes, particularly in 

patients at higher risk due to a history of poor glycaemic control, cardiovascular risk 

factors, diabetic peripheral neuropathy, and macro or microangiopathic diabetic 

complications (Vinik, 2012). The body’s functional response to the immediate 

metabolic needs is regulated by the beat-to-beat variation, where a high variability 

reflects the cardiac ability to adapt and implies good health. At the same time, 

disturbances to this control system result in lower HRV values (Balcıoğlu, 2015). 

Early or subclinical autonomic dysfunction may exhibit no symptoms, and it can 

only be detected by lower indices of HRV and abnormal BRS (which can be present at 

the time of DM diagnosis). Initial parasympathetic denervation enables augmentation 

of sympathetic tone in the early stages of CAN. Over time, sympathetic denervation 

follows and correlates clinically with advanced CAN patients who present resting 

tachycardia (>100 bpm) and/or a fixed HR, as well as orthostatic hypotension (OH), 

intolerance to exercise and syncope (Kuehl; Stevens, 2012; Vinik et al., 2018). The 

most common symptoms of CAN occur upon standing and include light-headedness, 

weakness, palpitations, faintness, and syncope; however, these symptoms may occur 

relatively late in the disease course (Pop-Busui et al., 2017). The CAN staging is 

summed up in Figure 5. 

High resting HR is the least specific sign of CAN and can also reflect vagal 

impairment and/or sympathetic overactivity in cardiac diseases, poor fitness, obesity, 

or anaemia; it has a prognostic value in the general and diabetic population  (Spallone, 

2019). In the ADVANCE study of 11140 T2DM patients, a higher HR was associated 

with an increased risk of all-cause mortality and cardiovascular death; however, it is 

unclear whether a high HR is directly conditioned to a higher risk or is a marker for 
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other factors (Hillis et al., 2012). The study of Zafrir et al. (2016) also demonstrated 

that resting tachycardia and reduced heart rate recovery are independently and 

additively associated with long-term mortality, myocardial infarction, or stroke in T2DM 

without known coronary heart disease. 

 

Figure 5 – The stages of cardiovascular autonomic neuropathy. 

 
Source: Adapted from Vinik; Erbas and Casellini (2013). 

 

The Toronto Consensus Panel (Bernardi et al., 2011), the European Society of 

Cardiology, the North American Society of Pacing and Electrophysiology (Dillingham 

et al., 2016), and the American Diabetes Association Position Statement on Diabetic 

Neuropathy (Pop-Busui et al., 2017) recommend the following regarding CAN 

assessments for clinical trials measuring a targeted intervention or for prognostication 

(Vinik et al., 2018): 

a) standardized cardiovascular reflex tests (CARTs); 

b) heart rate variability analysis (see section 3.1); 

c) resting tachycardia (> 100 bpm) and/or a fixed heart rate; 

d) measurement of QT corrected interval on ECG recording; 

e) baroreflex sensitivity (see Section 3.3). 

 

Functional diagnostics of the cardiovascular autonomic system are intended to 

help assess individual autonomic reflex arcs’ functional integrity. The more common 

way to assess cardiovascular autonomic function is through an indirect evaluation by 

measuring the end-organ response (e.g., heart rate, blood pressure, respiration, or 

blood flow) after provocative physiological tests, which is the cardiovascular reflex tests 

(CARTs) proposal (Ziemssen; Siepmann, 2019).  
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CARTs were first proposed in the study of Ewing et al. (1985), as detailed in 

Table 3. CARTs evaluate short-term RR alterations, and the five tests are the gold 

standard for decades in clinical practice to identify CAN in patients with diabetes. Most 

recent evidence has reduced the diagnostic utility of the handgrip test (Körei et al., 

2017). These tests have good sensitivity, specificity, and reproducibility and are non-

invasive, safe, well-standardized, and easily performed (Vinik, 2012). 

 

Table 3 - Summary of the Ewing tests. 
Test Interpretation Normal Response 

HR response during 

paced deep breathing 

E:I ratio (longest RR during expiration 

divided by shortest RR during 

inspiration) 

HR > 15 beats/min difference is 

normal, and HR < 10 beats/min is 

abnormal. 

E:I ratio > 1.17* 
 

HR response to standing 30:15 ratio (RR around the 30th 

heartbeat divided by RR around the 

15th heartbeat) 

Typically, tachycardia is followed 

by reflex bradycardia. 

30:15 ratio > 1.03 
 

Valsalva manoeuvre: the 

subject exhales into the 

mouthpiece of a 

manometer to 40 mmHg 

for 15 s 

Evaluates the ratio of the longest RR 

divided by the shortest RR during and 

after a provoked increase in 

intrathoracic pressure. 

The ratio of longest to shortest 

RR interval > 1.2 

 

 
 

 

BP response to standing Evaluate the difference in both SBP 

and DBP, measured in a supine 

position, and after 2 min, the patient is 

standing. 

The usual response is a drop of 

<10 mmHg in SBP 

Abnormal is a drop of <20 mmHg 

in SBP or a drop of <10 mmHg in 

DBP  
 

BP response to isometric 

exercise 

A squeeze of the handgrip 

dynamometer for 5 min at 30 % 

maximum 

The usual response is a rise of   

>16 mmHg in the diastolic BP in 

the other arm 

Abbreviations: RR, RR interval; HR, heart rate; E:I, expiration: inspiration; BP, blood pressure; SBP, 

systolic blood pressure; DBP, diastolic blood pressure; bpm, beats per minute. *Ratio values are 

adjusted by age. Source: Adapted from Vinik et al. (2018). 

 

CARTs also allow for CAN staging, according to the number of test 

abnormalities: the presence of one abnormal or two borderline CART results identifies 

possible or early CAN to be confirmed over time; at least two abnormal cardiovagal 
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results are required for a definite or a confirmed diagnosis of CAN; and the presence 

of orthostatic hypotension identifies severe or advanced CAN (Ewing et al., 1985; 

Spallone, 2019; Vinik et al., 2018). 

HRV indices are the easiest and most reliable way to assess cardiac autonomic 

neuropathy, obtained by time- and frequency-domain methods, which measure, 

respectively, the overall magnitude of the fluctuations of the RR interval between each 

heartbeat around the average values (statistical analysis) and the magnitude of 

fluctuations in a predetermined range of frequency (spectral analysis) (Rolim; de 

Souza; Dib, 2013). HRV time- and frequency-domain indices should be considered as 

additional and not an alternative to CARTs in clinical practice, thus allowing for 

supplemental early and prognostic information to current CARTs (Spallone, 2019).  

Due to the long experience and validation of traditional time and frequency-

domain HRV analysis, these remain the methods for assessing ANS physiology and 

pathophysiological modelling, making them the most reliable tools. However, 

measures from information and invariant domains that may describe the nonlinear 

properties of HRV signal accurately are strongly recommended to be used in 

conjunction with the traditional ones since they may provide supplementary or different 

information about underlying mechanisms involved in cardiovascular regulation (Sassi 

et al., 2015).  

The evaluation of HRV in DM patients has been assessed in several studies 

using time- and frequency-domain methods, as well as nonlinear approaches. For 

further details on the HRV analysis technique, see section 3.1. 

As previously discussed, low HRV is a marker for autonomic dysfunction, a 

known feature of both types of DM. In the study of Coopmans et al. (2020), both 

prediabetes and T2DM patients were independently associated with lower HRV (both 

in the time and frequency domain), strongly suggesting that cardiac autonomic 

dysfunction is already present in prediabetes and HRV indices could be useful to 

identify subclinical CAN. In the same context, the study of Jaiswal et al. (2013) 

compared HRV parameters in T1DM and healthy individuals, exploring potential 

contributors of altered HRV and concluding that T1DM presented a reduced overall 

HRV and parasympathetic loss with sympathetic override, being connected to 

hyperglycaemia. The study of Silva et al. (2017) reinforced that T1DM individuals 

showed decreased sympathetic and parasympathetic activities through HRV indices 

discriminating from healthy individuals. 
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According to a recent systematic review that included T2DM patients and 

healthy controls during 24-hour electrocardiogram, T2DM patients presented an 

overall decrease in HRV; both sympathetic and parasympathetic activity was 

decreased, which can be explained by the effects of altered blood glucose levels on 

HRV. In this review, T2DM patients presented significantly lower values for the 

following parameters: RR-intervals, RMSSD, pNN50, total power, low-frequency (LF), 

and high-frequency (HF) (Benichou et al., 2018).  

The study of Tarvainen et al. (2014) considered the risk factors associated with 

CAN and reported that high glycaemic values have an unfavourable effect on cardiac 

autonomic function, and this effect is pronounced in long-term T2DM patients. In this 

same study, HR was increased, and HRV decreased in hyperglycaemia; besides, 

mean RR, SDNN, RMSSD, pNN50, HRVI, TINN, LF, HF, and total power decreased 

in T2DM patients. In the same context, a Brazilian longitudinal study concluded that 

decreased HRV is an independent risk predictor for the incidence of diabetes within 

four years; from the six HRV indices analysed, five (SDNN, pNN50, RMSSD, LF, and 

HF) showed an increased relative risk of developing diabetes with low HRV (Hoshi et 

al., 2019). 

Besides time- and frequency-domain indices, non-linear measurements can 

detect changes related to a disease occurrence in the time series. Physiological 

complexity is associated with the ability of living systems to adjust to an ever-changing 

environment, which requires integrative multiscale functionality. In contrast, under free-

running conditions, a sustained decrease in complexity reflects a reduced ability of the 

system to function in specific dynamical regimes, possibly due to decoupling or 

degradation of control mechanisms (Costa; Goldberger; Peng, 2005). Some studies 

have demonstrated the association between diabetes and abnormal non-linear HRV 

parameters (Roy; Ghatak, 2013; Silva-E-Oliveira et al., 2017). 

The study of Hsu et al. (2012) stated that the features of heart rate dynamics 

could be better identified by dynamic analysis of Poincaré plot than by traditional HRV 

analysis techniques, providing a qualitatively and quantitatively visual measure of the 

ANS activity, which then, provides prognostic information on patients with heart failure 

and patients vulnerable to life-threatening arrhythmias.  

In the same context, the study of Khandoker; Jelinek; Palaniswami (2009) 

presented the usefulness of HRV and complexity analysis from short-term ECG 

recordings as a screening tool for CAN. The results demonstrated that CAN subjects 
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had reduced Poincare plot patterns and significantly lower sample entropy (SampEn) 

values, demonstrating the potential utility of these HRV markers in CAN diagnosis and 

prognosis.  

A systematic review that analysed studies of HRV as a tool for diagnostic 

evaluation in individuals with DM also demonstrated the reduction of HRV and loss of 

complexity in individuals with DM, suggesting that some parameters such as Sample 

Entropy, SD1/SD2 (ratio of the Poincaré plot standard deviation perpendicular to the 

line of identity by the Poincaré plot standard deviation along the line of identity), 

SDANN (standard deviation of the mean of normal RR-intervals), high frequency, 

Recurrence Plot, Approximate Entropy (ApEn), Detrended fluctuation analysis (DFA), 

Correlation Dimension (CD), Lyapunov exponent and heart rate turbulence of tilt have 

better discriminatory power to detect autonomic dysfunction (Da Silva et al., 2016). 

Similarly, Rajendra Acharya et al. (2013) study determined whether or not DM is 

present by determining cardiac health using non-linear HRV analysis (e.g., ApEn and 

DFA), achieving high accuracy. 

Related to the usage of entropies for HRV analysis, sample entropy has been 

associated with changes to blood glucose level and glycated haemoglobin (HbA1c), 

indicating that hyperglycaemia induces changes in RR time series complexity, which 

is not detectable by standard linear methods (Tarvainen et al., 2014). In another study, 

HRV complexity increased with hyperglycaemia, as indicated by increases in Shannon 

and multiscale entropy (Tarvainen et al., 2013). Also, a study to diagnose the ECG 

signals and detect arrhythmia demonstrated that spectral entropy could provide good 

separation among different ECG beats (Asgharzadeh-Bonab; Amirani; Mehri, 2020). 

Applying the MSE method to the analysis of RR intervals of healthy subjects, 

subjects with heart failure (HF), and subjects with atrial fibrillation (AF) shows that the 

healthy dynamics are the most complex. Under pathological conditions, the time series 

structure may change in two ways: loss of variability and the emergence of more 

regular patterns in patients with HF and random types of output in patients with AF. 

MSE reveals decreased system complexity (Costa; Goldberger; Peng, 2005). 

Likewise, the study of (Xiao et al., 2018) assessed MSE in a group of upper-

middle-aged non-diabetic subjects and diabetic subjects; the results demonstrated 

consistent and significant reductions of large-scale MSE, highlighting its ability to 

identify diabetes-associated vascular changes, which is consistent with the fact that 

diabetes impairs vascular structural integrity. In the same study, the large-scale MSE 
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also had a significant negative association with fasting blood sugar and HbA1c levels, 

further highlighting the adverse impact of diabetes on vascular endothelial function in 

both acute and chronic hyperglycaemia, respectively. 

Still exploring the entropies as HRV analysis methods, the study of (Liu et al., 

2013) proposed the use of ApEn, SampEn, fuzzy entropy (FuzzyEn), and a new 

entropy measure based on FuzzyEn, named fuzzy measure entropy, for HRV analysis 

on healthy subjects and subjects with heart failure. The results demonstrated that the 

fuzzy-based entropies better classified the two groups. Similarly, the study of 

(Carricarte Naranjo et al., 2017) proposed to explore the potential of permutation 

entropy (PermEn) in the analysis of HRV complexity for the assessment of CAN in type 

1 diabetic subjects. They found that for some specific temporal scales, PermEn 

indicators were significantly lower in CAN patients than those calculated for controls, 

concluding that PermEn analysis of HRV is a promising method for CAN assessment 

since PermEn seems to provide additional information to that obtained with traditional 

HRV methods. 

 

2.4.2 Baroreflex Sensitivity 
 

The baroreflex sensitivity (BRS) is a technique to assess cardiac vagal and 

sympathetic baroreflex function, in which a depressed BRS is a further marker for 

subclinical CAN (Kuehl; Stevens, 2012). BRS is a sensitive indicator of CAN in DM 

patients (Frattola et al., 1997) and is associated with cardiovascular events  (Spallone, 

2019). 

Some studies have shown that BRS abnormalities occur before abnormalities 

of conventional autonomic function tests, allowing early detection of CAN (Frattola et 

al., 1997). Similarly, the study of Kück et al. (2020) investigated BRS early in the course 

of both type 1 and type 2 diabetes and its temporal sequence over five years; the 

results demonstrated that T2DM patients showed early baroreflex dysfunction, likely 

due to insulin resistance and hyperglycaemia, albeit without progression over five 

years. The study of Svačinová et al. (2013) found that type 1 diabetics, compared with 

controls, had a decreased mean BRS. Similarly, the study of Petry et al. (2020) 

demonstrated that BRS indices distinguished T1DM individuals with subclinical and 

established CAN, which could be an early sign of autonomic dysfunction and contribute 

to CAN detection in its asymptomatic stage. 
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Recently, short-term glycaemic variability (GV) and long-term GV, represented 

by HbA1c variability, an independent risk factor for cardiovascular events, were 

reported as risk factors for CAN (Spallone, 2019). In addition, the study of Matsutani 

et al. (2018) investigated the relationship between long-term GV and BRS in T2DM 

patients, concluding that visit-to-visit HbA1c variability was inversely related to BRS 

independently of the mean HbA1c in patients with T2DM, which might be a marker of 

reduced BRS. 

Besides the clinical relevance of BRS to detecting early impairment of 

autonomic function, BRS also provides information of prognostic value. For example, 

BRS is an independent predictor of mortality in patients with DM (Gerritsen et al., 2001) 

and a predictor of mortality following a recent myocardial infarction (La Rovere et al., 

1998). The BRS impairment in T2DM patients may be reversible or improved after 

weight loss, combined exercise training (aerobic and resistance), and during slow 

breathing manoeuvres (Spallone, 2019). 
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 METHODS 
 

This section describes the main methods that were used for the development of 

this work. The section is divided into the following sub-sections: (3.1) HRV Analysis 

and Indices; (3.2) Empirical Mode Decomposition Method and Extracted Parameters; 

(3.3) Baroreflex Sensitivity Analysis Calculation and; (3.4) Machine Learning Methods. 

 

 HEART RATE VARIABILITY ANALYSIS 

 

This section describes the analysis methods for HRV that can be divided into 

time-domain, frequency-domain, and non-linear methods. The derivation of the HRV 

signal is explained in section 2.1.2. 

 

3.1.1 Time-Domain Parameters 
 

The time-domain indices of HRV quantify the variability in measurements of the 

normal-to-normal (NN) intervals (i.e., the time between successive heartbeats resulting 

from sinus node depolarization). Time-domain indices can be divided into two 

subgroups: statistical indices and geometric indices obtained from the probability 

density function of NN intervals. A summary of the indices with a short description is 

presented in Table 4. 

Time-domain measures do not provide a means to adequately quantify 

autonomic dynamics or determine the rhythmic or oscillatory activity generated by the 

different physiological control systems; however, since they are always calculated the 

same way, data of different studies are comparable considering the same recording 

length (Shaffer; McCraty; Zerr, 2014) 
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Table 4 - Summary of heart rate variability in time-domain measures. 
Parameter Unit Description 

SDNN ms The standard deviation of NN intervals 

NN mean ms Mean of NN intervals 

RMSSD ms Root mean square of successive NN interval differences 

SDSD ms The standard deviation of differences between adjacent NN intervals 

NN50 count Number of successive NN intervals that differ by more than 50 ms 

pNN50 % NN50 count divided by the total number of NN intervals 

NN20 count Number of successive NN intervals that differ by more than 20 ms 

pNN20 % NN20 count divided by the total number of NN intervals 

HR change bpm Difference between the maximum and minimum heartbeat 

HTI - HRV triangular index: integral of the density of the RR interval histogram 
divided by its height 

TINN ms Triangular interpolation; baseline width of the NN interval histogram 

SI - Baevsky's stress index 

Source: Elaborated by the author. 

 

3.1.2 Frequency-Domain Parameters 
 

The main idea behind the frequency domain analysis of HRV is the observation 

that HRV is composed of certain well-defined rhythms, which are related to different 

regulatory mechanisms of cardiovascular control, so to obtain more detailed 

information on the dynamics and frequency components of HRV, the power spectral 

density can be applied. PSD analysis provides the basic information of how power (i.e., 

signal energy) distributes as a function of frequency, which allows the autonomic 

balance to be quantified at any given time and also to distinguish between the activity 

of the sympathetic and parasympathetic nervous system (Kamath; Watanabe; Upton, 

2016). 

For short-term recordings, three main spectral components are distinguished: 

very-low-frequency (VLF), low-frequency (LF), and high-frequency (HF) rhythms that 

operate within different frequency ranges. Frequency-domain measurements can be 

expressed in absolute power, calculated as milliseconds squared divided by cycles per 
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second (ms²/Hz), or as relative power, estimated in a percentage of total HRV power 

or in normalised units (n.u.), which divides the absolute power for a specific frequency 

band by the summed absolute power of the LF and HF bands (Shaffer; Ginsberg, 

2017). The frequency-domain parameters are summarized in Table 5. 

The VLF band (0.003 – 0.04 Hz) comprises rhythms between 25 and 300 s, 

related to the fluctuation in vasomotor tonus associated with thermoregulation and 

sweating (sympathetic control). There is uncertainty regarding the physiological 

mechanisms responsible for activity within this band; however, experimental evidence 

suggests that the heart’s intrinsic nervous system contributes to the VLF rhythm and 

the SNS influences the amplitude and frequency of its oscillations. Although all low 

values on HRV measurements predict a higher risk of adverse outcomes, VLF power 

is more strongly associated with all-cause mortality than HF or LF power. Low VLF 

power is associated with arrhythmic death and posttraumatic stress disorder, high 

inflammation, and has been correlated with low testosterone levels (McCraty; Shaffer, 

2015; Shaffer; Ginsberg, 2017). 

The LF band (0.04 – 0.15 Hz) reflects mainly baroreceptor activity during resting 

conditions. Studies suggest that both the PNS and SNP may produce LF power, with 

recent evidence demonstrating how the LF band can be affected by parasympathetic 

dynamics. The centre frequency of the LF band is 0.1 Hz, produced by the SNS, while 

the PNS can be observed to affect heart rhythms down to 0.05 Hz (Shaffer; Ginsberg, 

2017; Valenza et al., 2018). 

Lastly, the HF band (0.15 – 0.40 Hz) reflects parasympathetic control or vagal 

activity, called the respiratory band, because it corresponds to HR variations related to 

the respiratory cycle, known as respiratory sinus arrhythmia (RSA). The modulation of 

vagal tone helps maintain the dynamic autonomic regulation important for 

cardiovascular health and reduced parasympathetic (high frequency) activity has been 

found in many cardiac pathologies. Regarding psychological regulation, lower HF 

power is associated with stress, panic, anxiety, or worry. The LF/HF ratio reflects the 

interaction of both types of autonomic modulation (Kamath; Watanabe; Upton, 2016; 

Shaffer; Ginsberg, 2017; Shaffer; McCraty; Zerr, 2014; Vinik, 2012). 
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Table 5 - Summary of heart rate variability in frequency-domain measures. 
Parameter Band Unit Description 

VLF power 0.003 – 0.04 Hz ms² 
The absolute power of the very-low-frequency 

band 

LF power 0.04 – 0.15 Hz ms² The absolute power of the low-frequency band 

LF peak  Hz The peak frequency of the low-frequency band 

LF norm  n.u. 
The relative power of the low-frequency band in 

normalised units. LF/(Total power-VLF) x 100 

HF power 0.15 – 0.40 Hz ms² The absolute power of the high-frequency band 

HF peak  Hz The peak frequency of the high-frequency band 

HF norm  n.u. 
The relative power of the high-frequency band in 

normalised units. HF/(Total power-VLF) x 100 

Total power  ms²/Hz The sum of energy in the VLF, LF, and HF bands 

LF/HF  % The ratio of LF to HF power 

Source: Elaborated by the author. 

 

3.1.3 Non-linear Parameters 
 

The non-linear analysis methods do not assess the magnitude of the variability 

but rather the signal quality, scaling, and correlation property, allowing a more subtle 

characterization of autonomic balance (Vinik et al., 2018). Non-linear measurements 

quantify the unpredictability of a time series, which results from the complexity of the 

mechanisms that regulate HRV (Shaffer; Ginsberg, 2017). 

Due to the difficulty of frequency band separations over sympathetic and 

parasympathetic activities, the non-linear measures are becoming increasingly 

important for investigating and interpreting the pathophysiological behaviour of HRV 

under various conditions and enhancing its prognostic values (Vinik et al., 2018). 

Besides that, nonlinear indices correlate with specific frequency and time-domain 

measurements when generated by the same process (Shaffer; Ginsberg, 2017). 

One alternative for characterizing the heart rate variability is to measure the 

regularity or complexity of the fluctuations without specifying the form of repeating 

patterns. In this context, entropy is a general approach for quantifying the data’s 

regularity or information content; therefore, different entropy measures are included in 

the non-linear analysis (Kamath; Watanabe; Upton, 2016). As already discussed, the 

ANS adapts HR to the current needs, which might change continuously. Thus, the RR 
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series is irregular with high entropy; however, when the system becomes less 

responsive to environmental stimuli, the entropy decreases, and the RR signal 

becomes more “ordered”. In this way, highly-ordered (low values of entropy) signals 

are more predictable than low-ordered (high values of entropy) signals (Sassi et al., 

2015). 

The nonlinear measures explored in this work are detailed below and 

summarized in Table 6. 

 

Table 6 – Summary of non-linear heart rate variability measures. 
Parameter Unit Description 

SD1 ms Poincaré plot standard deviation perpendicular to the line of 
identity  

SD2 ms Poincaré plot standard deviation along the line of identity 

S  The area of the ellipse adjusted to the Poincare plot 

SD1/SD2 % Ratio of SD1/SD2 

CSI  Cardiac Sympathetic Index 

CVI  Cardiac Vagal Index 

ApEn  Approximate entropy 

SampEn  Sample entropy 

MSE (Area S, Area 
L, Slope S)  Multiscale entropy, area calculations of short and long-time 

scales 

FuzzyEn  Fuzzy entropy 

ShEn  Shannon entropy 

SpEn  Spectral entropy 

PermEn  Permutation entropy 

DFA α1  Detrended fluctuation analysis, which describes short-term 
fluctuations 

DFA α2  Detrended fluctuation analysis, which describes long-term 
fluctuations 

CD, D2  Correlation dimension 

Source: Elaborated by the author. 
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3.1.3.1 The Poincaré Plot 

 

The Poincaré plot is obtained by plotting every RR interval against the prior 

interval, creating a scatter plot. A quantitative plot analysis can be made by adjusting 

it to an ellipse, as represented in Figure 6. The following non-linear measurements can 

be derived: SD1, the standard deviation of the instantaneous (short-term) beat-to-beat 

RR interval variability (minor axis of the ellipse or ellipse’s width); SD2, the standard 

deviation of the long-term RR interval variability (major axis of the ellipse or ellipse’s 

length); S, which corresponds to the area covered by the ellipse calculated by doing 

the product of π, SD1 and SD2 and; the ratio of SD1/SD2 (Hsu et al., 2012; Piskorski; 

Guzik, 2007; Shaffer; Ginsberg, 2017; Tayel; AlSaba, 2015). 

SD1 correlates with baroreflex sensitivity and HF power, reflecting 

parasympathetic activity, while SD2 reflects sympathetic modulation and correlates 

with BRS and LF power. The SD1/SD2 ratio correlates with the LF/HF ratio and 

measures autonomic balance. An elongated, torpedo-like shape with decreased 

SD1/SD2 ratio is associated with an elevated sympathetic tone, and a more oval, fan-

shaped configuration resulting from increased SD1/SD2 indicates less sympathetic 

tone; the points get more scattered when vagal activity increases or sympathetic 

activity decreases (Hsu et al., 2012; Piskorski; Guzik, 2007; Shaffer; Ginsberg, 2017; 

Tayel; AlSaba, 2015). 

In addition to the cited parameters, TOICHI et al. (1997) proposed two new 

measures employing the Poincaré plot to assess cardiac autonomic function: a) CSI, 
the cardiac sympathetic index, and b) CVI, the cardiac vagal index. The CSI and CVI 

metrics are calculated from Equations (1) and (2), respectively. 

 

 CSI = 
ௌ஽ଵ
ௌ஽ଶ

             (1) 

 
 CVI = log (SD1 . SD2)                            (2) 
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Figure 6 – Illustration of a standard Poincaré plot of RR intervals. 

 
Source: Adapted from Jelinek et al. (2014). 

 

 

3.1.3.2 Approximate Entropy (ApEn) 

 

ApEn measures the regularity and complexity of a time series. This method 

examines time series for similar epochs: more frequent and more similar epochs lead 

to lower values of ApEn, which reflects a high degree of regularity and predictability. 

ApEn (m, r, N) depends on three parameters: the length m of the vector being 

compared, the tolerance parameter r, and the number of N data points. In practice, 

ApEn is biased since it is heavily dependent on the record length and is uniformly lower 

than expected for short records, which implies greater regularity of the signal that may 

be present (Kamath; Watanabe; Upton, 2016; Richman; Moorman, 2000; Shaffer; 

Ginsberg, 2017). 

 

3.1.3.3 Sample Entropy (SampEn) 

 

The sample Entropy provides a less biased and more reliable measure of signal 

regularity and complexity when compared to ApEn measures. The interpretation and 

use of SampEn remain the same as for ApEn, in which a lower value of SampEn also 

indicates more self-similarity in the time series. Also, SampEn may be calculated from 

a much shorter time series (e.g., fewer than 200 values) (Richman; Moorman, 2000). 

 
 



49 

3.1.3.4 Multiscale Entropy (MSE) 

 

The multiscale entropy development has been motivated by three hypotheses: 

a) the complexity of a biological system reflects its ability to adapt and function in an 

ever-changing environment; b) biological systems need to operate across multiple 

spatial and temporal scales, and hence their complexity is also multi-scaled; and c) a 

broad class of disease states, as well as ageing, which reduce the adaptive capacity 

of the individual, appear to degrade the information carried by output variables. So, 

complexity measurement, defined as MSE, quantifies the information expressed by the 

physiologic dynamics over multiple time scales (Costa; Goldberger; Peng, 2005). 

The MSE calculation is comprised of two steps: (a) coarse-graining the signals 

into different time scales and (b) quantifying the degree of irregularity in each coarse-

grained time series using sample entropy (SampEn). In this way, the entropy is 

calculated as a scale function, providing a measure of information richness embedded 

in different time scales (Costa; Goldberger; Peng, 2005). 

Regarding cardiac inter-beat interval time series, we can refer to “large” and 

“small” time scales when the scales are larger or smaller than one typical respiratory 

cycle length, approximately five cardiac beats. Small-scale represents autonomic 

nervous activity, whereas large-scale reflects vascular regulatory function. Thus, three 

different parameters can be derived: a) summation of quantitative values of scale 1-5 

(Area S); b) summation of quantitative values of scale 6-20 (Area L); and c) linear-fitted 

slope of the first five scales (Slope S), as represented in Figure 7 (Costa; Goldberger; 

Peng, 2005). 

 
Figure 7 - Illustrative graph of multiscale entropy-derived parameters. 

 
Source: Ho et al. (2011). 
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3.1.3.5 Fuzzy Entropy (FuzzyEn) 

 

The ApEn and SampEn entropy measures have poor statistical stability since 

the vector’s similarity is defined based on the Heaviside function of the classical sets, 

which is a two-state classifier that judges two vectors as either “similar” or “dissimilar”, 

with no intermediate states. Thus, a fuzzy entropy measure was proposed, importing 

the concept of fuzzy sets, where the vector’s similarity is defined by fuzzy similarity 

degree (graduated similarity classifier), achieving better statistical stability. The 

advantages of FuzzyEn are: a) insensitive to noise, b) highly sensitive to changes in 

the information content, and c) less dependent on data length than ApEn and SampEn 

(Acharya et al., 2015; Chen et al., 2009). 

 

3.1.3.6 Shannon Entropy (ShEn) 

 

Shannon’s entropy measures a set of relational parameters that vary linearly 

with the logarithm of the number of possibilities. ShEn of a random variable X that 

takes the values x1, x2… xN is defined as Equation (3), where p (xi) are probabilities of 

acceptance by the random variable X values xi.  

 

 ShEn = - ∑ ௡(௜ݔ)݌ ௔݃݋݈ (௜ݔ)݌
௜ୀଵ , ܽ > 1                              (3) 

 

ShEn is also a measure of data spread and is most commonly used to assess 

the dynamical order of a system. It is characterized by a degree of uncertainty 

associated with the occurrence of the result; a higher value gives a more uncertain 

outcome and is more difficult to predict. When applied to an RR time series, xi can be 

considered an RR interval, and p (xi) is estimated by counting the number of RR 

intervals in a given recording (Borowska, 2015; Orini et al., 2017). 

 

3.1.3.7 Spectral Entropy (SpEn) 

 

Spectral entropy measures how the information in the signal is distributed 

across different frequencies (Acharya et al., 2015). SpEn is a normalized form of 

Shannon’s entropy, which uses the power spectrum amplitude components of the time 

series for entropy evaluation, quantifying the spectral complexity of the signal. SpEn is 
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obtained by multiplying the power in each frequency pf by the logarithm of the same 

power, as represented in Equation (4) (Acharya et al., 2015; Borowska, 2015). 

 

 SpEn = - ∑ ௙݌  log( ௙)௙݌                                   (4) 
 

3.1.3.8  Permutation Entropy (PermEn) 

 

Permutation entropy is a complexity estimation of time series by identifying the 

couplings between the time-series signal. The signal dynamics can be derived by 

assessing the presence and absence of permutation patterns of different elements in 

the given time-series signal. At high frequencies, PermEn elevates with an asymmetry 

of the time series, while at low frequencies, the permutations corresponding to peaks 

and troughs observed are seldom. The largest value of PermEn is one, which means 

the time series is completely random; the smallest value is zero, which means the time 

series is very regular (Acharya et al., 2012; Brandt; Pompe, 2002). 

In short, the PermEn refers to the local order structure of the time series and is 

a measure of chaotic and non-stationary time series in the presence of dynamical 

noise. The advantages of this entropy are: (a) it is simple, robust, and less prone to 

computational complexity; (b) it applies to real and noisy data; (c) it does not require 

any model assumption and is suitable for the analysis of nonlinear processes, and (d) 

it is useful to analyse huge data sets and requires less pre-processing time and fine-

tuning of parameters (Acharya et al., 2012; Brandt; Pompe, 2002). 

  

3.1.3.9 Correlation Dimension (CD or D2) 

 

The correlation dimension estimates the minimum number of variables required 

to construct a model of system dynamics—the more variables required to predict the 

time series, the higher its complexity. An attractor is a set of values (or a path) towards 

the system convergence, and the correlation dimension is one of the simplest methods 

for estimating a system’s attractor dimension. This quantity cannot accurately define 

the real dimension of the system (the calculation of correct CD for biomedical signals 

is computationally not easily achieved), but it gives a measure of the complexity of the 

system, that is, when CD increases, the system becomes more complex (Kamath; 

Watanabe; Upton, 2016; Shaffer; Ginsberg, 2017). 
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3.1.3.10 Detrended Fluctuations Analysis (DFA, α1, α2) 

 

DFA extracts the correlations (expressed by scaling properties) between 

successive RR intervals over different time scales. This analysis results in slope α1, 

which describes brief fluctuations, and slope α2, which describes long-term 

fluctuations. The long-range scaling exponent α2 for a healthy person is ~1, while the 

short-range scaling exponent α1 is usually between 0.5 and 1.5. Many factors affect it, 

such as the functioning of the baroreflex mechanism and breathing modulation 

(Shaffer; Ginsberg, 2017). 

 

 

 EMPIRICAL MODE DECOMPOSITION 

 

The EMD method is an adaptive data analysis method applicable to nonlinear 

and non-stationary signals (Huang et al., 1998). The EMD model decomposes data 

into finite intrinsic mode functions (IMFs) based on directly extracting the energy 

associated with various intrinsic time scales. With the Hilbert transform, the IMFs yield 

instantaneous frequencies as functions of time that give sharp identifications of 

embedded structures. The final presentation of the results is an energy-frequency-time 

distribution, designated as the Hilbert spectrum, which accurately represents non-

stationary and nonlinear signals (Huang et al., 1998). 

Unlike Fourier analysis or wavelet transforms, EMD breaks down a time signal 

into a set of base signals derived from the data itself; this unique approach allows EMD 

to preserve the full non-stationarity of the signal (Maheshwari; Kumar, 2014). In 

addition to contrasting the Fourier analysis that produces a series of sine and cosine 

functions of fixed amplitudes to represent each frequency constituent in the signal, the 

IMFs are oscillatory modes whose amplitude and frequency vary over time (Huang et 

al., 1998). 

The EMD of a time-series signal x(t) can be represented as a sum of IMFs, 

IMF୧(t), and a residue component, r୒(t), as represented in Equation (5): 

x(t) = ∑ IMF୧(t) +  r୒(t) ୒
୧ୀଵ  

(5) 

 

The algorithm to extract the IMFs of a time-series signal using EMD follows an iterative 

process known as the sifting process, summarized as follows (Huang et al., 1998): 
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a) Identify the signal maxima and minima; 

b) Compute the interpolated upper and lower envelopes and the 

instantaneous local mean of the envelopes; 

c) Subtract the obtained local mean from the original signal x(t) to obtain the 

first component IMF୧(t); 

d) Check whether the component IMF୧(t) satisfies the two basic conditions of 

the IMF: 

 The number of extrema—maxima and minima—and the number of 

zero-crossings in a signal should be either equal or differ by a 

maximum of one; 

 At any point, the mean value of two envelopes, one formed by 

connecting local maxima and the other by local minima, should be 

zero. 

e) Repeat steps (a) to (c) until it satisfies the conditions of the IMF (or by 

applying a stopping criterion such as the number of repetitions); 

f) Repeat steps (a) to (c) for calculating the next IMFs until no more 

components can be extracted (or by removing criteria such as the number 

of required IMFs). 

 

After the signal decomposition, the Hilbert transformation applied to the 

obtained IMFs provides an analytical signal representation (ASR) of IMFs (i.e., a 

complex-valued function with no negative frequency components). Any complex 

signal, z(t), can be considered the sum of its real part, IMF୧(t), and its imaginary part, 

Im(t), and rewritten in a polar coordinate system, as demonstrated in Equation (6). 

Equations (7) and (8) denote the instantaneous amplitude A(t) and phase Ɵ(t) of the 

complex analytic signal, respectively: 

 

z(t) = IMF୧(t) + jIm(t) = A(t) ݁௝Ɵ(୲) (6) 

A(t) = ඥIMF୧(t)ଶ +  Im(t)²   (7) 

Ɵ(t) = tanିଵ( ୍୫(୲)
୍୑୊౟(୲)) (8) 
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When applied to HRV analysis, the RR interval is decomposed into amplitude 

and frequency-modulated (AM–FM) signal components, the IMFs. The study of 

(Echeverria et al., 2001) demonstrated that the isolation of the first four components of 

the EMD is necessary to recognize the spectral bands of the autonomic modulation. 

Thus, the studies limited the decomposition to four IMFs, considering they held the 

most significant signal variation. 

 

3.2.1 The Features of EMD-derived IMFs 
 

The features extracted from the EMD-derived IMFs were as follows: the area of 

analytical signal representation (ܴܵܣ௔௥௘௔), the second-order difference plot area 

ܦܱܵ) ௔ܲ௥௘௔), and the central tendency measure of the second-order difference plot 

ܦܱܵ) ஼்ܲெ). Furthermore, the features extracted after power spectral density estimation 

of the IMFs were peak amplitude (ܲܵܦ௣௞௔௠௣), band power (ܲܵܦ௕௣௢௪), and mean 

frequency (ܲܵܦ௠௙௥௘௤). The specifics of how these features were obtained are explained 

below. 

 

3.2.1.1 The Area of Analytical Signal Representation (ܴܵܣ௔௥௘௔) 

 

The IMF analytic signal s(n) can be plotted as the imaginary part, Im{s(n)}, 

against the real part, R{s(n)}. This IFM analytical signal representation (ASR) plot 

shows a circular pattern with a unique centre of rotation (Lai; Ye, 2003). Thus, a feature 

of the area can be estimated. One of the standard methods to summarize graph 

information is the central tendency measure (CTM). The CTM is computed by selecting 

a circular region of radius r around the origin, counting the number of points within the 

radius, and dividing by the total number of points N, as in the study of Cohen, Hudson, 

and Deedwania (1996). This procedure is demonstrated in Equations (9) and (10): 

 

CTM = ∑ ୈ(୬)ొ
౤సభ

୒
       (9) 

D(n) = 1 if ([R{s(n)}]ଶ +  [Im{s(n)}]ଶ)଴.ହ  < r
0 otherwise

 

 

     (10) 
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The radius of the plot is computed using the CTM. In this work, a radius of 95% 

CTM was chosen to calculate the ASR area. Finally, the ܴܵܣ௔௥௘௔ is computed as in 

Equation (11). 

 

 ௔௥௘௔ = π . r² (11)ܴܵܣ

 

3.2.1.2 The Second-Order Difference Plots (ܱܵܦ ௔ܲ௥௘௔ and ܱܵܦ ஼்ܲெ) 

 

The second-order difference plots (SODPs) are centred around the origin 

representing the variability rate; they help model biological systems, such as heart rate 

variations, to characterize the degree of theoretical chaos (Cohen; Hudson; 

Deedwania, 1996). The SODPs extract the rate of the data variability (e.g., they assess 

the variability present in the IMFs of the RR interval signals) and provide a graphical 

representation of successive differences in the same series when plotted against each 

other (Hadoush; Alafeef; Abdulhay, 2019; Pachori et al., 2015). 

The SODP graph of a given signal x(n) can be obtained by plotting X(n) versus 

Y(n), as defined in Equations (12) and (13), respectively: 

 

X(n) = IMF୧(n + 1) − IMF୧(n) 

 
     (12) 

Y(n) = IMF୧(n + 2) − IMF୧(n + 1)      (13) 

 

Once the SODP is obtained, we used the 95% confidence ellipse area of the 

SODP graph to obtain the ܱܵܦ ௔ܲ௥௘௔. The procedure to calculate the ellipse area is 

given as the following process (Cavalheiro et al., 2009; Pachori; Patidar, 2014). 

Compute ܵ௫, ܵ௬, and ܵ௫௬, according to Equation (14) to Equation (16): 

 

ܵ௫= ටଵ
ே

 ∑ X(n)²ேିଵ
௡ୀ଴  

 

    

(14) 

ܵ௬  = ටଵ
ே

 ∑ Y(n)²ேିଵ
௡ୀ଴  

   

    

(15) 
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ܵ௫௬  = 
ଵ
ே

 ∑ X(n) Y(n)  

 

     

(16) 

Compute D, a, and b parameters according to Equations (17), (18), and (19): 

 

D = ට൫ܵ௫
ଶ +  ܵ௬

ଶ൯ − 4(ܵ௫
ଶܵ௬

ଶ − ܵ௫௬
ଶ ) 

 
     (17) 

a = 1.7321ඥܵ௫
ଶ +  ܵ௬

ଶ +   (ܦ

 
     (18) 

b = 1.7321ඥܵ௫
ଶ +  ܵ௬

ଶ −   (ܦ

 
     (19) 

From parameters a and b, the ܱܵܦ ௔ܲ௥௘௔ is calculated as in Equation (20): 

 

ܦܱܵ ௔ܲ௥௘௔ = π . a . b 

 
   (20) 

In addition, the CTM method was applied to the SODP graphs. The CTM was 

calculated for each IMF’s fixed circular region around the SODP origin point. Therefore, 

a low-variable plot will have points clustered around the origin. Additionally, the 

diseased state of the heart exhibits a greater degree of chaos (Cohen; Hudson; 

Deedwania, 1996). The ܱܵܦ ஼்ܲெ is defined as the ratio between the number of points 

within the fixed radius and the total number of points. The radius was defined by visual 

inspection as 0.02, 0.01, 0.002, and 0.001 for the 1st to 4th IMF, respectively. 

 

3.2.1.3 The Power Spectral Density Estimation (ܲܵܦ௣௞௔௠௣, ܲܵܦ௕௣௢௪ and ܲܵܦ௠௙௥௘௤)  

 

The power spectral density (PSD) estimation describes the power distribution 

over frequency contained in a signal. The x-axis represents frequency, while the y-axis 

represents the magnitude or power of the signal at that frequency in units expressed 

in decibels (dB) or squared units of the original signal. Welch’s method was used to 

estimate the PSD. In brief, it is an averaging method that divides the signal into 

overlapping segments, computes the periodogram of each segment, and averages 

these periodograms to obtain an estimate of the PSD over a certain frequency range 

(Subasi, 2019). In this study, the adopted frequency range was 0–0.5 Hz. Welch’s PSD 
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was estimated for each of the four extracted IMFs. The PSD peak amplitude 

 was defined as the absolute maximum height of the PSD waveform. The (௣௞௔௠௣ܦܵܲ)

PSD band power (ܲܵܦ௕௣௢௪) was calculated as the average power computed by 

integrating the PSD estimate curve, and, finally, the PSD mean frequency (ܲܵܦ௠௙௥௘௤), 

as the average frequency of the spectrum, was calculated as the weighted average of 

the frequencies, with the weights being the PSD values at each frequency. 

 

 BAROREFLEX SENSITIVITY ANALYSIS 

 

This section presents the two steps for baroreflex analysis. First, the blood 

pressure estimation from ECG and PPG variables, and second, the methodology for 

BRS index estimation. Details about the baroreflex mechanism are described in 

section 2.2.2. 

 

3.3.1 Blood Pressure Estimation 
 

Blood pressure (BP) is an indicator of the state of the circulatory system, being 

one of the most dynamic physiologic variables routinely measured in clinical practice. 

BP consists of a series of pulse waves continuously changing in terms of both 

frequency and amplitude and represents the response of cardiovascular control 

mechanisms to environmental stimulations and to daily life challenges aimed at 

maintaining cardiovascular “homeostasis” (Bote; Recas; Hermida, 2020; Solà; 

Delgado-Gonzalo, 2019). 

BP measurement methods can be categorized as invasive (e.g., catheterization) 

and non-invasive (e.g., auscultation or sphygmomanometer, oscillometry, and volume 

clamping, which employs an inflatable cuff). Catheterization is the gold standard 

method since the measurement is done by placing a strain gauge in fluid contact with 

blood at any arterial site. Auscultation is the standard clinical method; BP is measured 

by occluding an artery with a cuff and detecting the Korotkoff sounds using a 

stethoscope and manometer during cuff deflation. Oscillometry is an automatic method 

that measures BP using a cuff with a pressure sensor inside it (Mukkamala et al., 2015; 

Solà; Delgado-Gonzalo, 2019). 
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With improvements in sensor technology, many approaches have been 

employed to study the BP relationship with ECG and photoplethysmography (PPG) 

parameters such as pulse arrival time (PAT), pulse transit time (PTT), and pulse wave 

velocity (PWW). PTT is the time delay for the pressure wave to travel between two 

arterial sites. At the same time, PAT is the time delay between the ECG waveform and 

a distal arterial waveform and is equal to the sum of the PTT and pre-ejection period, 

of which PEP is the time interval between the start of ventricular depolarization and the 

moment of aortic valve opening. Finally, PWW is the reciprocal of PTT (1/PTT). 

(Mukkamala et al., 2015; Rajala; Lindholm; Taipalus, 2018). PAT is often calculated as 

the time delay between the R peak in the ECG signal and a certain feature in the PPG 

waveform (i.e., peak, foot, or the maximum value of the first derivative) (Rajala; 

Lindholm; Taipalus, 2018), as demonstrated in Figure 8. 

 

Figure 8 – Pulse arrival time (PAT) measurement. PAT calculated from the R peak of 
the electrocardiogram to (a) the maximum value of the first derivative, (b) the peak 
value, and (c) the foot value of the photoplethysmogram. 

 
Source: Adapted from Ding et al. (2016). 

 

Although these techniques based on PAT, PTT, or PWW cannot measure BP 

as accurately as the gold standard method, they can monitor BP continuously in a non-

invasive, automatic, and cuff-less way. Among the different BP estimation models 

based on PAT and PTT, linear models are the most widely proposed due to their 

robustness against artefacts present in the waveforms. Also, multivariate models can 

be found in the literature that includes other variables (e.g., heart rate, PPG parameters 
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such as systolic and diastolic time, PPG pulse width, PPG amplitude) that could 

improve the model’s accuracy (Bote; Recas; Hermida, 2020; Mukkamala et al., 2015; 

Rajala; Lindholm; Taipalus, 2018; Solà; Delgado-Gonzalo, 2019). 

In this context, the study by Wong, Poon, and Zhang (2009) investigated the 

relationship between blood pressure and PTT proposing linear models of PTT-based 

estimation using the least squares method in first and repeatability tests; the results 

confirmed the linearity between systolic blood pressure and PTT achieving reasonable 

BP estimations. Another study proposed by Rajala, Lindholm, and Taipalus (2018) 

compared PPG signals measured from the wrist and finger to evaluate if wrist PPG 

could be used to calculate PAT and also investigated the correlation between PWW 

and systolic BP. From the results, wrist PPG can be used for PAT calculation, with the 

PPG foot or first derivative peak being the most suitable method for wrist PAT 

calculation. Also, the correlation between PWW and systolic BP was below 0.5, 

indicating that BP estimation still has challenges. 

 

3.3.2 Baroreflex Sensitivity 
 

Baroreflex sensitivity (BRS) is commonly measured as a ratio of the change in 

heart rate (quantified by its reciprocal, the RR interval) in response to a fixed change 

in the blood pressure, with the idea of characterising the “quality” of operation of the 

entire blood pressure regulatory system with a single numerical value. Its unit is 

“ms/mmHg” and is usually positive, in which a higher BRS value indicates that the 

system strongly reacts to pressure changes, i.e., the system is more sensitive 

(Kuusela, 2013). 

Traditional approaches to testing the sensitivity of baroreceptors of the carotid 

sinus and aortic arch include pharmacological stimulation and neck suction. More 

recent approaches enable the BRS to be estimated non-invasively from the RR interval 

changes associated with spontaneous fluctuations in blood pressure and are closely 

correlated with the results of the pharmacological method. These approaches include 

the slope method, the advanced slope method, the sequence method, and the spectral 

method. The slope and advanced slope methods perturb the blood pressure control 

system through the application of some medication and the measurement of the 

response to such a perturbation while simultaneously recording electrocardiogram and 

blood pressure waveforms (Kuusela, 2013; Zygmunt; Stanczyk, 2010). 
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The sequence method analyses the relations between fluctuations in blood 

pressure extracted in particular sequences and RR intervals. However, instead of 

concentrating on a singular pressure rise or fall (slope method), the calculation is 

performed multiple times during a recording, and, in this case, the pressure rise and 

fall are not externally induced since naturally occurring fluctuations of these signals are 

utilized (Kuusela, 2013; Zygmunt; Stanczyk, 2010).  

In the sequence technique, represented in Figure 9, beat-by-beat blood 

pressure and RR interval recordings are scanned for sequences in which systolic blood 

pressure (SBP) and RR interval concurrently increase or decrease for at least three 

consecutive beats. Second, accepted sequences need a minimum change of 

0.5mmHg in SBP and a change of 1 ms in the RR interval, which is advanced by one 

beat to compensate for an assumed adjustment delay between the BP and RR interval. 

Finally, identified sequences need to present a correlation coefficient greater than 0.85. 

Baroreflex sensitivity is then assessed from the relationship between systolic blood 

pressure and RR interval across these fragments, fitting a regression line to the 

sequence and the slope of the regression gives the BRS value (Kuusela, 2013; 

Zygmunt; Stanczyk, 2010). 

The baroreflex mechanism may also be studied based on spectral analysis of 

heart rate and blood pressure variability signals. With this method, baroreflex 

sensitivity is assessed by analysing the RR interval changes associated with rhythmic 

blood pressure oscillations over a range of frequencies reported to reflect baroreflex 

function (Kamath; Watanabe; Upton, 2016; Zygmunt; Stanczyk, 2010). 

 

Figure 9 - Illustration of the sequence method. Accepted sequences have a minimum 
of three consecutive rising (or falling) values in systolic blood pressure (SBP) and RR 
intervals, which must have a minimum increase/decrease of 0.5 mmHg in SBP (ΔSBP) 
and a minimum increase/decrease of 1 ms in RR intervals (ΔRR) advanced by one. 

 
Source: Adapted from Kuusela (2013). 
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 MACHINE LEARNING METHODS 

 

This section describes fundamental concepts and methods to develop and 

evaluate a machine learning model. Also, it presents brief explanations about standard 

machine learning algorithms that were tested in this work. 

 

3.4.1 Feature Selection 
 

Feature selection is a solution to reduce the generalization error by choosing a 

simpler model with fewer parameters or reducing the final dataset’s dimensionality. For 

biomedical signal processing, the analysis methods include the representation of 

biosignals as a feature vector that can be further analysed to identify the most 

representative features and reduce the final dataset’s dimensionality (Remeseiro; 

Bolon-Canedo, 2019). 

There are two different main approaches in the feature selection process. The 

first one is to make an independent assessment, based on general characteristics of 

data and is called the filter method since the feature set is filtered out before model 

construction. The second approach is the wrapper method, which uses a machine-

learning algorithm to evaluate a different subset of features. Finally, it selects the one 

with the best performance on classification accuracy (Kavakiotis et al., 2017), as 

represented in Figure 10. Some common approaches for feature selection are 

commented on in the next sub-sections. 

 

Figure 10 - Feature selection methods based on how they combine the selection 
algorithm and the model building. (a) Filter Method. (b) Wrapper Method. 

 
Source: Elaborated by the author. 
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3.4.1.1 Univariate Filter Methods 

 

Univariate filter methods evaluate each feature individually and do not consider 

feature interactions; these methods provide a score for each feature, often based on 

statistical tests. The scores usually either measure the linear correlation (e.g., Pearson 

correlation coefficient and Spearman’s rank correlation coefficient) or evaluate each 

feature individually and rank the features based on specific criteria (e.g., Chi-squared 

score, Mutual information, ANOVA, ROC-AUC). However, since each feature is 

considered separately, univariate methods only focus on feature relevance and cannot 

detect feature interaction or redundancy (Pudjihartono et al., 2022). 

Scores based on statistical tests provide a p-value that may be used to rule out 

some features, for example, if the p-value is above a certain threshold (typically 0.01 

or 0.05). The p-value is proportional to the similarity of the two classes. In a 

classification scenario, we want the two classes to differ; hence, a low p-value is 

preferred. Therefore, a low p-value indicates a high probability that the individual 

classes are separable. In a diagnostic setting, a p-value below 0.05 indicates clinical 

significance (Rajendra Acharya et al., 2013).  

One example of a filter-based feature selection method is the SelectKBest. 

SelectKBest uses statistical tests like chi-squared test, ANOVA F-test, or mutual 

information score to score and rank the features based on their relationship with the 

output variable. Then, it selects the k features with the highest scores to be included 

in the final feature subset (Pedregosa et al., 2011). 

 

3.4.1.2 Multivariate Filter Methods 

 

The multivariate filter methods consider a subset of features simultaneously and 

can model feature dependencies. Despite its advantages, the multivariate methods are 

more computationally heavy and independent from the classifier algorithm than 

univariate methods (Pudjihartono et al., 2022). 

One popular category of multivariate filter methods is the ReliefF-based 

algorithm (Remeseiro; Bolon-Canedo, 2019). ReliefF is a ranker approach that 

considers correlations between predictors because it is based on the nearest-

neighbour procedure. The worth of each variable is estimated by considering how well 

its values distinguish between neighbours’ subjects. So, a useful feature should have 
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values similar to examples from the same class and different from examples from the 

other classes (Remeseiro; Bolon-Canedo, 2019). In summary, it scores the importance 

of a feature according to how well the feature’s value distinguishes samples that are 

similar to each other but belong to different classes (Pudjihartono et al., 2022). 

 

3.4.1.3 Wrapper Methods 

 

In contrast to filter methods, wrapper methods use the performance of the 

chosen classifier algorithm as a metric to support the selection of the best feature 

subset. These methods tend to perform better than filter methods, with the cost of being 

dependent on the classifier used and computationally heavy due to the high number 

of computations required to generate and evaluate the feature subsets (Pudjihartono 

et al., 2022).  

One example of the wrapper-based method is the Recursive Feature 

Elimination (RFE). This approach starts with all features, builds a model, and discards 

the least important feature according to the model. A new model is built using all but 

the discarded features, and so on, until only prespecified numbers of features are left. 

So, when using RFE, two options need to be selected: a) the number of features to 

select and b) choice of the algorithm used to help choose features (e.g., decision tree, 

logistic regression, random forest, etc.) (Müller; Guido, 2016). 

 

3.4.2 Feature Extraction 
 

Besides feature selection, feature extraction methods are another data 

dimensionality reduction technique. When compared to feature selection, the main 

difference is that feature extraction combines the original features and creates a set of 

new features, while feature selection selects a subset of the original features 

(Remeseiro; Bolon-Canedo, 2019). 

The principal component analysis (PCA) is an example of a feature extraction 

technique used for deriving a low-dimensional set of features from a large set of 

variables. Given a large set of correlated variables, principal components allow 

summarizing this set with a smaller number of representative variables that collectively 

explain most of the variability in the original set (James et al., 2014). PCA is a technique 



64 

for feature extraction related to dimensionality reduction, starting from an initial set of 

measured data and building derived values intended to be informative and non-

redundant, facilitating the subsequent learning and generalization steps of ML 

algorithms (Müller; Guido, 2016). 

Considering a dataset with n observations and p features, the idea is that each 

of the n observations lives in a p-dimensional space, but not all of these dimensions 

are equally interesting. PCA is a tool to find a low-dimensional representation of a data 

set that contains as much as possible of the variation. Each of the dimensions, namely 

principal components, found by PCA, is a linear combination of the p features. The 

finding of the principal components comes from the eigenvalue/eigenvectors problem, 

solving the characteristic equation of the correlation matrix of the observed variables.  

For example, when reducing a set of features represented by two principal 

components, the first principal component vector (PC1) defines the most correlated line 

with the data. At the same time, the second principal component (PC2) is a linear 

combination of the variables that are uncorrelated with PC1. The condition of zero 

correlation between PC1 and PC2 is equivalent to the requirement that their directions 

be perpendicular or orthogonal (James et al., 2014), as represented in Figure 11. 

 

Figure 11 – Representation of a principal component analysis into two principal 
components, the PC1 and PC2. 

 
Source: Elaborated by the author. 

 

3.4.3 Feature Scaling 
 

Feature scaling is a method to normalize the range of independent variables or 

data features to prevent classification biases. Since the range of values of raw data 

may vary widely, ML functions may not work properly; for example, many classifiers 

calculate the distance between two points by the Euclidean distance, which will be a 
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problem with different magnitudes of features (Isler et al., 2019; Müller; Guido, 2016). 

Some methods for feature scaling are presented in the next sub-sections. 

 

3.4.3.1 Standardization 

 

This method, also known as Z-score normalization, ensures that for each 

feature, the mean is 0 and unit variance, bringing all features to the same magnitude. 

This method is used in ML algorithms such as SVM, LR, PCA, and ANNs (Müller; 

Guido, 2016). The method is detailed in Equation                                          (21), where 

x’ is the standardized value, x is the original feature vector, ̅ݔ is the mean of the feature 

vector and σ is the standard deviation of the feature vector. 

 

x’ = ௫ି ௫̅
ఙ

                                          (21) 

 

If data contains many outliers, especially in small datasets, scaling using the 

mean and variance of the data is not recommended. One option is to scale the features 

according to the 1st and 3rd quartiles of the dataset, such that more extreme values and 

outliers become less pronounced (Müller; Guido, 2016; Raschka; Mirjalili, 2019). 

 

3.4.3.2 Min-Max Normalization 

 

Normalize the attributes to re-scale them to make all values fall into the same 

interval, between 0 and 1, as detailed in Equation       (21), where x’ is the normalized 

value, and x is the original value. 

 

 x' = ௫ ି ௠௜௡ (௫)
୫ୟ୶(௫) ି ୫୧୬(௫)

       (21) 

 

3.4.3.3  Mean Normalization 
 

Like min-max normalization, it scales values between -1 and 1, as detailed in 

Equation         (23), where x’ is the normalized value and x is the original value. 

 

 x' = ௫ ି ௠௘௔௡ (௫)
୫ୟ୶(௫) ି ୫୧୬(௫)

          (23) 
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3.4.4 Machine Learning Algorithms 
 

This section provides an overview of this study’s supervised machine-learning 

algorithms. In the context of supervised learning, the construction of a model takes 

place using training data, which is subsequently evaluated on new, unseen data with 

the same characteristics as the training set. Successful predictions on this unseen data 

demonstrate the model's ability to generalize from the training set to the test set (Müller; 

Guido, 2016). A supervised learning model is represented in Figure 12. 

 

Figure 12 - A supervised machine learning algorithm model. 

 
Source: Adapted from Nasteski (2017). 

 

The objective is to build a model to generalize as accurately as possible without 

overfitting or underfitting the data. Overfitting occurs when a model fits too closely to 

the training set’s particularities and cannot generalize to new data; the model is too 

complex for the amount of information. In contrast, underfitting occurs when the model 

cannot capture all the aspects of variability in the data (Müller; Guido, 2016). There are 

two major types of supervised machine-learning problems: classification and 

regression. In classification, the goal is to predict a class label, a choice from a 

predefined list of possibilities. At the same time, in regression, the expected output is 

a number from a continuous range rather than a discrete-valued class (Kubat, 2017). 

 

3.4.4.1 K-Nearest Neighbours 

 

The K-nearest neighbours (KNN) is a simple non-parametric method used for 

classification and regression. The algorithm “looks” at the K points in the training set 
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nearest to the test input x, counts how many members of each class are in this set, 

and returns that empirical fraction as the estimate (Murphy, 2012). The parameter k of 

neighbours can be an arbitrary number. So, for each test point, it is counted the number 

of neighbours which belong to class 0 and class 1; the more frequent class is assigned 

to that point or, in other words, the majority class among the k-nearest neighbours, as 

represented in Figure 13. By default, Euclidean distance is used to measure the 

distance between data points (Müller; Guido, 2016). 

 

Figure 13 – The K-nearest neighbour algorithm representation. In the example, for k = 
3, class A is more frequent; therefore, the tested data point (i.e., star) is labelled as 
class A. 

 
Source: Elaborated by the author. 

 

3.4.4.2 Logistic Regression 

 

Logistic regression (LR) models the probability (i.e., a value between 0 and 1 

exclusively) that a quantitative response variable belongs to a particular category. A 

logistic function is derived from a sigmoid function to ensure that the probability p(x) 

falls between 0 and 1, as represented in Equation (24). If there are multiple explanatory 

variables, the expression β଴ + βଵx can be revised to β଴ +  βଵx +  βଶxଶ + ⋯ +  β୫x୫. 

 

p(x) = ଵ
ଵା ௘ష(ഁబశ ഁభೣ)           (24) 

 

For linear classification models, such as logistic regression, the decision 

boundary is a linear function of the input or, in other words, a linear classifier that 

separates two classes using a line, a plane, or a hyperplane. Thus, after the calculation 

of the linear model and mapping the result to the range of 0 to 1 with the logistic 

function, the prediction is interpreted by assigning a threshold to the probability (i.e., 
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given two classes, if the probability is > 0.5, the output is predicted to class 1; 

otherwise, the prediction is for class 0, as represented in Figure 14. To make a good 

prediction, the algorithm needs to (a) optimize the parameters β to give the best 

possible reproduction of training set labels, which is usually done by numerical 

approximation of maximum likelihood or stochastic gradient descent, and (b) use some 

regularization parameter (Nasteski, 2017). 
 

Figure 14 - Illustration of logistic regression algorithm concept. 

 
Source: Elaborated by the author. 

 

3.4.4.3 Decision Trees 

 

Decision trees are a non-parametric supervised learning method that aims to 

predict the value of a target variable by learning simple decision rules inferred from the 

data features. Essentially, DT learns a hierarchy of if/else questions, leading to a 

decision. These decision questions are called tests. In building a decision tree, the 

algorithm searches over all possible tests and finds the one that is more informative 

about the target variable (Nasteski, 2017). So, a binary tree of decisions is built, with 

each node containing a test, as shown in Figure 15. 
 

Figure 15 – Representation of the decision tree algorithm. Each node contains a test 
or a conditional control statement, which leads to a decision. 

 
Source: Elaborated by the author. 
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3.4.4.4 Support Vector Machines 

 

Support vector machines are supervised learning methods that can be used for 

regression and classification. Given labelled training data, the algorithm outputs an 

optimal hyperplane in N-dimensional space (N- the number of features) that distinctly 

classifies the data points, as represented in Figure 16 (a). This is known as the kernel 

trick, and it works by computing the distance (more precisely, the scalar products) of 

the data points for the expanded feature representation (Müller; Guido, 2016). 

Many possible hyperplanes could be chosen, but the objective is to find a plane 

with the maximum margin (i.e., the maximum distance between data points of both 

classes) since, in general, the larger the margin, the lower the generalization error of 

the classifier. Only a subset of training points matters for defining the hyperplane (or 

the decision boundary): the ones that lie on the border between the classes, namely, 

support vectors, as represented in Figure 16 (b) (Müller; Guido, 2016). 

 

Figure 16 – (a) Representation of the support vector machine (SVM) algorithm. From 
the input space, the algorithm finds a line or hyperplane in multidimensional space that 
separates output classes. (b) Hyperplane representation of an SVM algorithm. 

 
Source: Elaborated by the author. 

 

In SVM, there are two main tuning parameters: the gamma and the C parameter. 

The gamma parameter determines how far the importance of a single training example 

reaches; with high values, only nearby points are considered, and with low values, far 

away points are also considered. The C parameter is a regularization parameter that 

controls how much to avoid misclassifying each training example. For large values of 

C, the optimization will choose a smaller-margin hyperplane if that hyperplane does a 

better job of getting all the training points classified correctly; conversely, a small value 

of C will cause the optimizer to look for a larger-margin separating hyperplane, even if 

that hyperplane misclassifies more points (Müller; Guido, 2016; Murphy, 2012). 
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3.4.5 Model Evaluation 
 

Employing the same dataset for both training model parameters and evaluating 

its performance is a methodological error, as it can lead to overfitting—when a model 

fits the training data excessively and performs poorly on new, unseen data. The next 

sections introduce two distinct approaches to model evaluation. 

 

3.4.5.1 Holdout Method 

 

The simplest model evaluation approach is the holdout method, which divides a 

labelled dataset into two segments: a training set and a test set, as shown in Figure 

17. Subsequently, a model is trained using the training data and used to predict the 

test set’s labels. The dataset is partitioned through random subsampling, often 

allocating 70% of the samples to the training set and the remaining 30% to the test set. 

It is important to ensure stratified splitting, which retains the original class distribution 

within the resulting subsets (Kubat, 2017; Müller; Guido, 2016; Raschka, 2018). 

In the context of the holdout method, holdout validation can be divided into the 

following stages: a) Partition the dataset into training and test sets; b) Select a suitable 

learning algorithm for the specific problem and train a model; c) Utilize the model on 

the test set to measure its generalization accuracy or error and; d) Evaluate the 

generalization performance using the entire dataset, operating under the assumption 

that the algorithm benefits from more data until its full capacity is reached (Raschka, 

2018). 

 

Figure 17 - Representation of the holdout method. The dataset is partitioned into a 
training set for constructing the model and a testing set for assessing model 
performance. 

 
Source: Elaborated by the author. 
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3.4.5.2 Cross-Validation 

 

When the dataset is partitioned into training and test sets, the number of 

samples for learning the model is reduced (especially in small datasets). One solution 

to this problem is to use the cross-validation (CV) technique. CV is a statistical method 

for evaluating generalization performance that is more stable and thorough than the 

subsampling of train-test sets. In this approach, the training set is split repeatedly, and 

multiple models are trained, with the most commonly used version being k-fold cross-

validation, where k is a user-specified number (usually 5 or 10). The performance 

measure reported by k-fold cross-validation is the average of the values computed for 

each iteration (Hastie; Tibshirani; Friedman, 2009; James et al., 2014; Müller; Guido, 

2016). The CV method is exemplified in Figure 18. 

 

Figure 18 - Illustration of k-fold cross-validation with k = 5. The training dataset is 
divided into k-subset (folds) and is used for test and training purposes for k iteration 
times so that each subsample will be used at least once as a test set and the remaining 
(k-1) as the training set. Once all the iterations are completed, the average prediction 
rate for each model is calculated. 

 
Source: Elaborated by the author. 

 

There are some advantages of using CV instead of train-tests splits, such as: a) 

each model will be in training set precisely once, and each fold is the test set once; 

therefore, the model needs to generalize well to all of the samples in the dataset and 

the CV scores (and their mean) to be high; b) provides with an idea on how the model 

might perform in the worst-case and best-case scenarios when applied to new data 
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and; c) use of data more effectively which will usually result in more accurate models. 

The disadvantage of CV lies in the increased computational cost (Müller; Guido, 2016). 

 

3.4.6 Model Evaluation Metrics 
 

3.4.6.1 Correct and Incorrect Classification 

 

When testing a classifier with known results classes, each sample classification 

encounters one of the four different outcomes: 1) the example is positive, and the 

classifier correctly recognizes it as such (true positive - TP); 2) the example is negative 

and the classifier correctly recognizes it as such (true negative - TN); 3) the example 

is positive, but the classifier labels it as negative (false negative - FN) and; 4) the 

example is negative, but the classifier labels it as positive (false positive – FP). So, the 

number of correct classifications is the number of TP plus TN, and the number of errors 

is the number of FP plus FN (Kubat, 2017). One way to represent the possible resulting 

outcomes is by using confusion matrices, as illustrated in Figure 19. 

 

Figure 19 - Illustration of a confusion matrix for binary classification. TN – true negative, 
FP – false positive, FN – false negative, TP – true positive. 

 
Source: Elaborated by the author. 

 

3.4.6.2 Accuracy 

 

Accuracy is a way to summarize the result in the confusion matrix and compute 

the model’s accuracy, calculated as the number of correct predictions (TP and TN) 

divided by the number of all samples, detailed in Equation (25). 

 

Accuracy = ்௉ା ்ே
்௉ା்ேାி௉ାிே

 (25) 
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3.4.6.3 Precision 

 

Precision is the probability that the classifier is right when labelling an example 

as positive, obtained by the number of true positives (TP) divided by the sum of positive 

predictions (TP and FP), as obtained in Equation (26). It is the frequency with which a 

model was correct when predicting the positive class. Precision is also known as 

positive predictive value. 

 

Precision = ்௉
்௉ାி௉

 (26) 
 

3.4.6.4 Recall 

 

Measures the number of correct predictions, divided by the number of results 

that should have been predicted correctly, as detailed in Equation (27). Recall answers 

on how many the model correctly identified out of all the possible positive labels. It is 

the frequency with which a model is correct among all positive examples in the set. 

Recall is also known as sensitivity, hit rate, or true positive rate. 

 

Recall = ்௉
்௉ାிே

 

 
 

 
 
(27) 

3.4.6.5 Sensitivity and specificity 

 

Sensitivity (Se) and Specificity (Sp) are the recall metrics measured on the 

positive and negative examples, respectively, as detailed in Equations           (28) and          

(29). 

 

 Se = ்௉
்௉ା ிே

           (28) 

 

 Sp = ்ே
்ே ା ி௉

          (29) 
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3.4.6.6 F1-score 

 

F1-score is the combination of precision and recall, which can be a better 

measure than accuracy on imbalanced datasets, as demonstrated in Equation (30). It 

gives a score between 0 and 1, where 1 means the model is perfect (low false positives 

and low false negatives) and 0 means the model is useless. 
  

F1-score = 2 * ௉௥௘௖௜௦௜௢௡ ∗ ோ௘௖௔௟௟
௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟

 (30) 

 

3.4.6.7 The receiver operating curve and the area under the curve 
 

Another tool commonly used to analyse the behaviour of classifiers at different 

thresholds is the receiver operating characteristic curve, or ROC curve. The ROC curve 

considers all possible thresholds for a given classifier, showing the false positive rate 

(FPR) against the true positive rate (TPR). The ideal curve for the ROC curve is close 

to the top left: a classifier that produces a high precision while keeping a low false-

positive rate. The area under the curve (AUC) is a summary of the ROC curve 

represented by a single value between 0 (worst) and 1 (best). A meaningful 

interpretation of the AUC should be greater than 0.5, and values falling within the range 

of 0.7 to 0.8 are considered fair, while those between 0.8 and 0.9 are regarded as 

good, and values exceeding 0.9 are considered excellent. AUC is highly recommended 

to use when evaluating models on imbalanced data. (Kubat, 2017; Müller; Guido, 

2016). Both concepts are illustrated in Figure 20. 
 

Figure 20 – Representation of the receiver operating curve (ROC) and the area under 
the curve (AUC). 

 
Source: Elaborated by the author. 
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 HRV PROCESSING TOOL 
 

This section describes the development of the heart rate variability analysis tool, 

which was used in the methodology of this work’s first and second studies. 

 

 INTRODUCTION 

 

Heart rate variability (HRV) analysis is a non-invasive method for autonomic 

modulation assessment (Billman, 2011; Karemaker, 2017). By examining variations in 

time intervals between successive heartbeats, HRV offers a unique perspective into 

the adaptability and resilience of the cardiovascular system (Shaffer; McCraty; Zerr, 

2014). HRV analysis offers the potential to assist in monitoring diseases, categorizing 

risks, and providing crucial insights into individuals' health statuses. HRV analysis finds 

application in various clinical contexts besides cardiological conditions, such as mental 

health disorders, sleep health assessment, epilepsy management, diabetic 

neuropathy, and other medical scenarios (Faust et al., 2022).  

Due to the HRV’s wide applicability in research, some HRV analysis tools have 

been developed such as the HRV toolkit available at Physionet (Vest et al., 2018), the 

Kubios HRV software (Tarvainen et al., 2014b), the R package RHRV (García Martínez 

et al., 2017), the SinusCor (Bartels et al., 2017), beside others. Although various 

analysis software packages are accessible, certain options are proprietary; some come 

pre-configured with limited settings, and others lack calculating all HRV features (with 

some only available in premium versions). Additionally, poor documentation and 

occasional lack of support from their authors further contribute to these software 

limitations. Thus, to facilitate accurate HRV assessment and analysis, the development 

of custom HRV software becomes indispensable. 

Hence, this work aims to develop a specialized solution for HRV analysis that 

meets the specific needs of our research. Additionally, the goal is to incorporate 

modules for ECG, PPG, BRS, and EMD analysis while establishing integration with a 

database to centralize data and simplify further analysis procedures. 

 

 

 



76 

 MATERIAL AND METHODS 

 

4.2.1 Purpose and Overview 
 

The main functionality of the tool includes an algorithm that extracts HRV 

signals from raw ECG signals and calculates various HRV-derived parameters. The 

extracted HRV signals encompass measures from the time domain, frequency domain, 

non-linear analyses, and empirical mode decomposition analysis. The tool also has an 

algorithm for PPG processing to estimate the blood pressure for the baroreflex 

analysis. Furthermore, the HRV processing tool has an MS Access (Microsoft, 2019) 

database connection for automated storage of the processed data.  

The HRV processing tool was developed using MATLAB (R2018a, 

MathWorks, MA, USA). The algorithm implementation was built upon the open-source 

PhysioNet Cardiovascular Signal Toolbox (Vest et al., 2018), utilizing the techniques 

described in Section 3. The overview of the developed HRV signal processing tool is 

presented in Figure 21. 

 

Figure 21 – Diagram overview of the developed heart rate variability analysis tool. The 
electrocardiogram (ECG) signal is pre-processed to extract the heart rate variability 
(HRV) signal. HRV analysis includes measures from the time domain, frequency 
domain, non-linear, and empirical mode decomposition (EMD) analysis. The 
photoplethysmography (PPG) signal is processed and combined with the HRV signal 
for the baroreflex sensitivity (BRS) analysis. The HRV tool is connected to a database 
for storing the processed data. 

 
Source: Elaborated by the author. 
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4.2.2 Input and Data Pre-Processing 
 

The HRV processing tool accepts ECG and PPG signals in .txt format. The 

signals’ sampling frequency can be adjusted by setting one parameter (e.g., 500 Hz or 

1000 Hz).  

The ECG pre-processing steps include: (a) baseline correction, mean 

subtraction to remove the DC offset from the signal and to centre the ECG waveform 

around the zero-axis, and (b) filtering, bandpass-filter (fourth-order Butterworth FIR 

filter, 0.5–40 Hz) to remove high-frequency noise, including power line interference and 

baseline wander.  

The R peaks detection for extraction of the heart rate variability signal follows 

the ECG pre-processing. The RR intervals, characterized by the time between 

successive R peaks of the QRS complexes of the ECG signal, are detected and 

calculated based on Pan–Tompkin’s algorithm (Pan; Tompkins, 1985). A specific RR 

interval (RRn in seconds) within the ECG signal is defined as the interval of two 

successive QRS complexes determining the RR sequence: [RR1, RR2, …, RRn-1] in 

seconds, and the heart rate (beats per minute) is given according to Equation 31. 

 

HR (bpm) = ଺଴
ୖୖ୬

          (31) 
 

The RR sequence is further processed to remove spurious peaks that are too 

close together (i.e., gaps smaller than the sampling frequency) or too far (i.e., gaps 

higher than 2 seconds) and RR intervals that change more than 20%, considering the 

median value of the previous five and next five intervals (Vest et al., 2018). Finally, the 

corrected RR sequence (i.e., the NN sequence) proceeds for HRV analysis (see 

section 4.2.3). 

The PPG pre-processing steps are similar to the ECG including, (a) baseline 

correction, subtraction of the mean value from the PPG signal to remove baseline drift, 

and (b) filtering, bandpass-filter (fourth-order Butterworth FIR filter, 0.5–10 Hz). These 

pre-processing steps are essential to enhance the quality of both ECG and PPG 

signals, ensuring accurate and reliable data for further analysis. After pre-processing 

the PPG data, the next step involves detecting characteristic points in the PPG signal, 

such as the peaks and foot values. A sequence marking the foot values is then 

generated to be used as part of the BRS analysis (see section 4.2.4). 
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The ECG and PPG pre-processing algorithm is presented in the flowchart of 

Figure 22. 

 

Figure 22 – The flowchart of the electrocardiogram (ECG) and photoplethysmogram 
(PPG) pre-processing steps. 

 
Abbreviations: HRV – heart rate variability, PAT – pulse arrival time, SBP – systolic blood pressure, 

and BRS – baroreflex sensitivity. Source: Elaborated by the author. 
 

4.2.3 HRV Analysis 
 

The HRV analysis comprises the computation of various HRV-based features. 

These include measures from both the time and frequency domains and nonlinear 

parameters. Additionally, it involves extracting features from the Empirical Mode 

Decomposition analysis. 

From the time domain, some of the calculated parameters are the mean of NN 

intervals (NNmean), the standard deviation of all NN intervals (SDNN), root mean 

square of successive NN interval differences (RMSSD), number and percentage of 

differences between adjacent RR intervals that are longer than 50 ms (NN50 and 

pNN50, respectively), number and percentage of differences between adjacent RR 
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intervals that are longer than 20 ms (NN20 and pNN20, respectively), HRV triangular 

index (HTI), i.e., integral of the density of the RR interval histogram divided by its 

height,  triangular interpolation of NN interval histogram (TINN), i.e., baseline width of 

the NN interval histogram and Baevsky’s stress index (SI) (see section 3.1.1 for more 

details on HRV time-domain measures). 

The frequency-domain measures rely on the power spectral density (PSD) 

estimation computed with Welch’s and the Lomb-Scargle periodogram methods.  The 

RR interval time series is an event time series, which can be interpreted as a 

hypothetical continuous function sampled unevenly in time at the moments of R peaks 

(Kamath; Watanabe; Upton, 2016). The Fourier transform assumes that the input data 

is sampled evenly in time; hence, FFT-based PSD estimate requires resampling to an 

evenly time series, and cubic spline interpolation is often preferred to linear 

interpolation because of the latter increases LF power (due to flattening) and HF power 

(due to sharp edges at each beat) (Vest et al., 2018). 

Welch’s method is FFT-based so, the RR signal is resampled to 8 Hz, before 

applying Welch’s method. The other parameters for Welch’s method are the Hamming 

window function, window width of 300 points, 50% overlap between segments, and 

1024 as the number of DFT points. On the other hand, the Lomb-Scargle periodogram 

can handle unevenly sampled data, making it a more appropriate analysis technique 

for the RR interval data since it provides a better PSD estimate (Clifford; Tarassenko, 

2005). 

After the PSD is calculated with the two cited methods, various frequency-

domain HRV metrics will be calculated. The generalized frequency bands in the case 

of short-term HRV recordings are very low frequency (VLF, 0.003–0.04 Hz), low 

frequency (LF, 0.04–0.15 Hz), and high frequency (HF, 0.15–0.4 Hz). The frequency-

domain measures extracted from the PSD estimated for each frequency band included 

absolute and relative powers of LF and HF bands, LF and HF band powers in 

normalized units, the LF/HF power ratio, and peak frequencies for each band (see 

section 3.1.2 for more details on the HRV frequency-domain measures). 

In addition, the following methods were implemented to analyse the non-linear 

properties of HRV: Poincare plot (including the features SD1, SD2, S, SD1/SD2 or CSI 

and CVI), Correlation dimension (CD), Detrended fluctuation analysis (features alpha1 

and alpha2), Approximate entropy (ApEn), Sample Entropy (SampEn), Multiscale 

entropy (MSE), Fuzzy entropy (FuzzyEn), Shannon entropy (ShEn), Permutation 
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entropy (PermEn) and Spectral entropy (SpEn) (see section 3.1.3 for more details on 

the HRV non-linear measures). 

Finally, in the last module of the HRV processing tool, the HRV signals are 

decomposed using the EMD method, generating the intrinsic mode functions (IMFs). 

The processing tool analyses the HRV segments using the original EMD method 

outlined in (Huang et al., 1998)  with the official MATLAB code (R2018a, MathWorks, 

MA, USA). Custom code was implemented to compute the following features from the 

EMD-derived IMFs: the area of analytical signal representation (ܴܵܣ௔௥௘௔), the second-

order difference plot area (ܱܵܦ ௔ܲ௥௘௔), and the central tendency measure of the second-

order difference plot (ܱܵܦ ஼்ܲெ). Furthermore, the features extracted after power 

spectral density estimation of the IMFs are peak amplitude (ܲܵܦ௣௞௔௠௣), band power 

 see section 3.2 for more details on the) (௠௙௥௘௤ܦܵܲ) and mean frequency ,(௕௣௢௪ܦܵܲ)

EMD technique and its features). 

Figure 23 illustrates a block diagram depicting the HRV and BRS analyses and 

outlining the feature extraction process. 

 

Figure 23 – The block diagram of the heart rate variability (HRV) and baroreflex 
sensitivity (BRS). 

 
Abbreviations: NN sequence – RR interval corrected sequence. PPG – photoplethysmography, FFT – 

fast Fourier transform, EMD – empirical mode decomposition, BP – blood pressure. 
Source: Elaborated by the author. 
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4.2.4 BRS Analysis 
 

The BRS analysis includes two steps: (a) the blood pressure (BP) estimation 

obtained from the ECG (NN interval) and the PPG (foot sequence) and (b) the BRS 

calculated from the estimated systolic BP signal and the NN interval. 

Firstly, the pulse arrival time is estimated (i.e., the difference between the R 

peaks of the ECG and the PPG foot values – see Figure 8 in section 3.3), obtaining 

the PAT sequence. Secondly, the systolic blood pressure (SBP) model is estimated 

based on the study of Wong, Poon and Zhang (2009). Finally, from the estimated SBP 

model and the NN intervals, the BRS value is calculated using the sequence method, 

detailed in Figure 9 in section 3.3. From the accepted up-and-down sequences, some 

of the calculated parameters are the number of sequences selected, the number of up-

and-down sequences, the mean and standard deviation of the up-and-down slopes, 

and the mean and standard deviation of all the sequences. 

 

4.2.5 Database 
 

A database is an organized collection of data, generally stored and accessed 

electronically from a computer system. The database management system (DBMS) is 

the software that interacts with end-users, applications, and the database to capture 

and analyse the data. Microsoft Access is a relational DBMS that models data as rows 

and columns in a series of tables, using SQL (structured query language) to write and 

query data. 

The HRV processing tool in MATLAB is integrated with an Access Database, 

facilitating the transfer of processed data from MATLAB to the database. This 

centralized database is a repository for all participant-related data, encompassing 

clinical information, anthropometric measurements, questionnaire responses, and the 

various computed features extracted through the HRV processing tool. 

The database is structured into several tables to manage and store the data 

efficiently. The main tables are: 

 Info Table - contains information about each participant, such as their 

unique ID, name, age, gender, weight, height, DM type, age of DM 

diagnosis, DM duration, other relevant clinical details, and contact 

information; 
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 Medications Table – holds information regarding medications and their 

respective dosages; 

 Exams results Table – holds information related to examination outcomes 

and blood test results;  

 Conditions Table – stores information about the participant’s medical 

conditions and associated complications; 

 DATA Table – serves as the primary repository for all collected data 

information. It records which signals were collected, such as ECG, PPG, 

arterial blood pressure, and electromyography. Additionally, the table 

includes essential details such as the collection date, record time, and the 

sampling frequency for each data entry; 

 HRV Analysis – contains information about all the calculated features 

derived from time and frequency domain measurements, as well as 

nonlinear measurements; 

 BRS Analysis – comprises all the calculated features from the BRS 

analysis; 

 EMD Analysis – comprises all the EMD extracted features. 
The entity relationship diagram of the database’s tables is demonstrated in 

Figure 24.  
 

Figure 24 – The entity relationship diagram of the database. 

 
Abbreviations: PK – private key (unique identifier for each record in a database table); FK – foreign 

key (column in a database table that references the primary key of another table). 
Source: Elaborated by the author. 
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During each analysis performed using the HRV processing tool in MATLAB, the 

calculated features for each sample are automatically written to their corresponding 

tables in the Access database, as represented in Figure 25. The processing tool maps 

the computed parameters to the appropriate entries in the database, ensuring that the 

data is accurately associated with the respective participant or sample. This integration 

between the processing tool and the database facilitates the efficient and accurate 

storage of HRV analysis results for further retrieval and analysis. 

 

Figure 25 – The block diagram representing the connection between MATLAB’s heart 
rate variability (HRV) processing tool and the Microsoft Access Database. The 
calculated parameters in MATLAB are inserted into the database table with an SQL 
function. Each data table column is a feature, and each line is a different sample. 

 
Source: Elaborated by the author. 

 

4.2.6 Tool Validation 
 

4.2.6.1 Participants 

 

Twenty-five participants (10F / 15M) aged 32.2 ± 7.1 (mean ± SD) were recruited 

from the Professor Polydoro Ernany University Hospital of the Federal University of 

Santa Catarina—HU/UFSC/EBSERH. The inclusion criteria considered healthy 

individuals aged 18–75 years who exhibited no signs of any medical conditions. The 

institutional research ethics committee approved the study (protocol number 

3.326.385), and participants only entered the study after informed consent. It is 

important to note that the researcher personally conducted the data collection process, 

ensuring a careful acquisition of information. 

Initially, anthropometric data (including age, height, weight, and body mass 

index) were collected, along with administering a questionnaire to identify potential 
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medical conditions. Subsequently, resting ECG signals were acquired from 

participants for 10 minutes, during which they maintained a supine position. These 

ECG signals were captured using a custom-built acquisition system developed by the 

Institute of Biomedical Engineering at the Federal University of Santa Catarina. The 

system operates at a sampling rate of 500 Hz and employs a bipolar three-lead 

configuration. This setup utilizes disposable adhesive electrodes (3M, Red Dot, 2560) 

for electrode placement. 

 

4.2.6.2 Statistical Analysis 

 

The HRV processing tool was validated to ensure its accuracy and reliability. 

This validation was performed by comparing nineteen of the calculated HRV 

measurements with those obtained from Kubios HRV Standard 3.5.0, a scientifically 

validated HRV analysis software (Tarvainen et al., 2014).  

After the HRV signals were extracted from the twenty-five collected ECG 

recordings, the subsequent features were derived: (a) from time-domain: NN mean, 

SDNN, RMSSD, pNN50, HTI, and TINN; (b) from frequency-domain: VLF power, LF 

power, HF power, LF/HF, LF norm and HF norm and; (c) from the non-linear analyses: 

SD1, SD2, SD2/SD1, SampEN, ApEN, DFA α1 and DFA α2. These features are 

explained in section 3.1. Both software used Welch’s power spectrum estimation 

method for frequency domain analysis, with segment size set to 300s and 50% overlap. 

No artefact correction nor any preprocessing method was applied to the signals. The 

validation included statistical analyses with the Intraclass Correlation Coefficient (ICC) 

calculation and Bland-Altman plots. 

When measuring continuous data, the ICC assesses the consistency or 

agreement between multiple raters or methods. It considers systematic variation (i.e., 

biases) and random variations (i.e., errors or uncertainties) between the measurement 

methods. ICC values range from 0 to 1, with higher values indicating better agreement 

(Koo; Li, 2016; Liljequist; Elfving; Roaldsen, 2019). According to Koo and Li (2016), an 

ICC interpretation is presented in Table 7.  

 

 

 



85 

Table 7 – The intraclass correlation coefficient (ICC) interpretation. 
ICC Interpretation 
<0.5 Poor agreement 
0.5 to 0.75 Moderate agreement 
0.75 to 0.9 Good agreement 
0.9 to 1.0 Excellent agreement 

Source: KOO; LI (2016). 

 

The Bland-Altmann method is a method to assess the agreement between two 

continuous measurement methods by constructing limits of agreement. This method 

involves plotting the difference between measurements against their average, allowing 

for visualization of any systematic bias or variability (Bland; Altman, 1999; Karun; 

Puranik, 2021; Sedgwick, 2013). The steps to construct a Bland-Altmann plot, 

according to Karun and Puranik (2021), include (1) calculation of the difference 

between the measurements of method one and method two (e.g., the developed HRV 

tool and the Kubios software); (2) calculation of the mean of the measurements of 

method one and method two and; (3) calculation of the lower and upper limits of 

agreement as mean of difference ± 1.96 x standard deviation of difference. An example 

of a Bland-Altmann plot is presented in Figure 26. 

 

Figure 26 – The Bland-Altmann plot. 

 
Source: Elaborated by the author. 

 

The calculation of Intraclass Correlation Coefficients (ICC) and their 

corresponding 95% confidence intervals followed an absolute-agreement model for a 

single measure (i.e., when systematic differences between methods are relevant and 

where a single measure of a single method is considered). The Bland-Altmann method 
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was calculated based on an R function (i.e., BA.plot) provided by Karun and Puranik 

(2021). The statistical analyses were performed using R 4.2.0 (R Core Team, 2022). 

 

 

 RESULTS 
 

This section presents some of the results (data and graphs) generated by the 

developed HRV processing tool and its validation results. 
 

4.3.1 HRV Analysis 
 

Figures 27 to 31 present the HRV initial analysis steps: (a) the ECG pre-

processed with the baseline corrected and filtered (Figure 27); (b) the R peaks 

detection (Figure 28); (c) the heart rate obtained from the RR intervals (Figure 29); (d) 

the RR correction obtaining the NN sequence (Figure 30), and; (e) the NN intervals 

histogram (Figure 31). 
 

Figure 27 – The electrocardiogram (ECG) signal after detrending and filtering using a 
finite impulse response (FIR) bandpass filter with cut-off frequencies set at 0.5 and 45 
Hz. 

 
Source: Elaborated by the author. 
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Figure 28 – The electrocardiogram (ECG) signal with the identified R peaks. 

 
Source: Elaborated by the author. 

Figure 29 – The heart rate, measured in beats per minute (bpm), derived from the 
calculated RR intervals. 

 
Source: Elaborated by the author. 

 

Figure 30 – The original RR interval (blue line) and the corrected RR interval or NN 
sequence (red line). 

 
Source: Elaborated by the author. 
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Figure 31 – The NN intervals histogram. 

 
Source: Elaborated by the author. 

 

Figures 32 to 36 present the subsequent HRV analysis steps: (a) Spectral 

analysis of HRV using the FFT-based Welch’s periodogram method (Figure 32); (b) 

Spectral analysis of HRV using the Lomb periodogram method (Figure 33); (c) the 

Poincaré plot (Figure 34); (d) the result of the EMD applied to HRV signals (Figure 35) 

and; (e) the power spectral density of the EMD-derived components (Figure 36). 
 

 
Figure 32 - Spectral analysis of HRV using the FFT-based Welch’s periodogram 
method. 

 
Source: Elaborated by the author. 
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Figure 33 - Spectral analysis of HRV using the Lomb periodogram method 

 
Source: Elaborated by the author. 

 

Figure 34 – The Poincaré plot. 

 
Source: Elaborated by the author. 

 

Figure 35 - The first four intrinsic mode functions (IMFs) and the residual derived from 
the empirical mode decomposition applied to a heart rate variability signal. The plot at 
the top depicts the original RR interval data. In all plots, the x-axis denotes time in 
seconds, while the y-axis represents the amplitude of RR intervals. 

 
Source: Elaborated by the author. 
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Figure 36 – The power spectral density estimation of the intrinsic mode functions 
(IMFs) derived from the empirical mode decomposition of a heart rate variability signal. 

 
Source: Elaborated by the author. 

 

4.3.2 BRS Analysis 
 

Figures 37, 38, and 39, respectively, present the BRS analysis steps: (a) the 

ECG and PPG pre-processing obtaining the NN sequence and the PPG foot sequence 

for calculation of the pulse arrival time; (b) the estimation of blood pressure variations 

over time and; (c) the BRS calculation which relies on the up and down sequences 

derived from the NN interval and systolic blood pressure variations. 

 

Figure 37 – Plot of the electrocardiogram (ECG) and photoplethysmogram (PPG) 
filtered signals, along with the marked ECG peaks and PPG feet points used to 
calculate the pulse arrival time. 

 
Source: Elaborated by the author. 
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Figure 38 - The model generated the blood pressure (BP) variation over time. The 
upper line (blue) represents the systolic BP, while the middle line (black) represents 
the diastolic BP. The bottom line corresponds to the mean arterial pressure. 

 
Source: Elaborated by the author. 

 

Figure 39 – Measurement of baroreflex sensitivity (BRS) from positive sequences (red 
lines with increasing systolic blood pressure and RR interval) and negative sequences 
(blue lines with decreasing systolic blood pressure and RR interval). 

 
Source: Elaborated by the author. 

 

4.3.3 Tool Validation 
 

The ICC results are presented in Table 8. It is worth highlighting that most of the 

calculated HRV features exhibited ICC values above 0.9, with two features (TINN and 

LF power) above 0.8 and one feature (DFA α2) resulting in an ICC of 0.67. 
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Table 8 – The intraclass correlation coefficient (ICC) results for the HRV analysis 
features measured using both the developed HRV tool and Kubios software. 
  F test with true value 0 
Measurement ICC (95% C.I.) Value df1 df2 p-value 
NN mean 1 (1-1) 2.3e+08 24 25 <0.001 
SDNN 1 (1-1) 3.98e+08 24 25 <0.001 
RMSSD 1 (1-1) 1.46e+08 24 25 <0.001 
pNN50 0.995 (0.99 – 0.998) 433 24 25 <0.001 
HTI 0.935 (0.86 – 0.971) 29.8 24 25 <0.001 
TINN 0.846 (0.686 – 0.929) 12 24 25 <0.001 
VLF power 0.956 (0.903 – 0.98) 44.2 24 25 <0.001 
LF power 0.852 (0.696 – 0.932) 12.5 24 25 <0.001 
HF power 0.982 (0.959 – 0.992) 108 24 25 <0.001 
LF/HF 0.994 (0.986 – 0.997) 324 24 25 <0.001 
LF norm 0.969 (0.932 – 0.986) 63.3 24 25 <0.001 
HF norm 0.969 (0.932 – 0.986) 63.4 24 25 <0.001 
SD1 1 (1-1) 1.42e+08 24 25 <0.001 
SD2 0.994 (0.986 – 0.997) 309 24 25 <0.001 
SD2/SD1 0.999 (0.998 – 1) 2752 24 25 <0.001 
SampEN 0.947 (0.884 – 0.976) 36.5 24 25 <0.001 
ApEN 0.906 (0.802 – 0.957) 20.4 24 25 <0.001 
DFA α1 0.957 (0.905 – 0.98) 45 24 25 <0.001 
DFA α2 0.677 (0.397 – 0.843) 

 
5.19 24 25 <0.001 

Source: Elaborated by the author. 

The Bland-Altman method was used to plot the difference in the HRV features 

for each participant (the HRV processing tool measurement minus Kubios HRV 

measurement) against the mean of the two measurements. Figures 40, 41, and 42 

showcase Bland-Altmann plots for various features across time domain, frequency 

domain, and non-linear analysis. Notably, upon observing the graphs, it becomes 

evident that a significant proportion of data points within the Bland-Altman plots 

depicting HRV features keep to the limits of agreement. 
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Figure 40 – The Bland-Altman plots comparing heart rate variability features extracted 
from the time domain, measured using the developed HRV tool and Kubios software. 
(a) NN mean (the mean of NN intervals), (b) SDNN (the standard deviation of NN 
intervals), (c) HTI (HRV triangular index; integral of the density of the RR interval 
histogram divided by its height), and (d) TINN (Triangular interpolation; baseline width 
of the NN interval histogram). 

 
Source: Elaborated by the author. 

 
Figure 41 – The Bland-Altman plots comparing heart rate variability features extracted 
from the frequency domain, measured using the developed HRV tool and Kubios 
software. (a) VLF power (the absolute power of the very-low-frequency band – 0.003 
to 0.04 Hz), (b) LF power (the absolute power of the low-frequency band – 0.04 to 0.15 
Hz), (c) HF power (the absolute power of the high-frequency band – 0.15 to 0.40 Hz), 
and (d) LF/HF (the ratio of LF to HF power). 

 
Source: Elaborated by the author. 
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Figure 42 – The Bland-Altman plots comparing nonlinear heart rate variability features 
measured with the developed HRV tool and Kubios software. (a) SD2/SD1 (Poincaré 
plot ratio), (b) SampEN (sample entropy), (c) ApEN (approximate entropy), and (d) 
DFA α1 (slope α1 from the detrended fluctuation analysis). 

 
Source: Elaborated by the author. 

 

 

 DISCUSSION AND CONCLUSION 

 

The HRV tool demonstrated in this section was primarily developed as a 

custom solution for ECG analysis. It includes the computation of essential HRV 

features and integrates PPG analysis to facilitate the BRS assessment. Additionally, 

the tool features a module for the empirical mode decomposition analysis and is 

connected to a database, facilitating data analysis. The studies outlined in this work 

(sections 5 and 6) utilized the developed HRV tool, demonstrating its usability and 

adaptability. This includes the flexibility to adjust feature units, include new features or 

methods, and format data outputs according to the study requirements. 

 Regarding the validation of the software, the interpretation of the Bland-Altmann 

plots provides an understanding of the agreement between the two measurement 

methods, namely the developed HRV tool and the Kubios software, for assessing heart 

rate variability features. Most data points on the Bland-Altman plots fall within the limits 

of agreement, indicating a strong consistency between the two measurement methods.  

This is reflected in the high ICC values, predominantly exceeding 0.9, indicating 

an excellent agreement between the two approaches. Notably, for two features (the LF 
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power and TINN), the ICC values were above 0.8, still indicating a good agreement 

between the methods. Lastly, one feature (DFA α2) exhibited an ICC of 0.67, which 

suggests a moderate level of agreement. While still indicating an acceptable level of 

agreement, this result warrants further investigation to understand potential sources of 

variability or measurement differences specific to this feature extracted from the 

detrended fluctuation analysis. 

To conclude, the Bland-Altman plots, in conjunction with the ICC values, 

demonstrated the overall consistency between the developed HRV tool and Kubios 

software across various HRV features. These results suggest that the developed 

software is accurate and reliable for computing HRV-based features. 
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 FIRST STUDY 
 

This section presents the first study of this work entitled “The Use of Empirical 
Mode Decomposition on Heart Rate Variability Signals to Assess Autonomic 
Neuropathy” (Cossul et al., 2023). 
 

 OBJECTIVE 
 

This research investigated the relevance of the EMD-based features extracted 

from HRV signals to differentiate between progression levels of cardiovascular 

autonomic neuropathy among type 2 DM patients (i.e., no CAN, subclinical CAN, and 

established CAN). 
 

 MATERIAL AND METHODS 
 

A block diagram of our proposed methodology for CAN investigation based on 

the EMD method applied to HRV signals is presented in Figure 43 and will be further 

explained in the following sections. 

 

5.2.1 Participants 
 

An a priori sample size estimation was performed in G*Power (Erdfelder et al., 

2009), assuming a statistical power of 0.80 and a significance level of 0.05. For a one-

way ANOVA with three groups and a moderate effect size (Cohen’s d = 0.05), the study 

required a minimum sample size of 42 participants. However, to ensure robustness 

and address potential limitations, sixty participants diagnosed with type 2 DM were 

recruited from Professor Polydoro Ernany University Hospital of the Federal University 

of Santa Catarina—HU/UFSC/EBSERH (see Table 9). The inclusion criteria specified 

that participants were 18–75 years old and of any gender. The exclusion criteria 

included the diagnosis of retinopathy, chronic infectious or inflammatory diseases, use 

of an implantable electronic device (e.g., a cardiac pacemaker), and use of drugs that 

can affect cardiovascular function (e.g., beta-blockers). The institutional research 

ethics committee approved the study (protocol number 3.326.385 – Attachment A), 

and participants only entered the study after informed consent. It is important to note 
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that the researcher personally conducted the data collection process, ensuring a 

careful acquisition of information. 

 

Figure 43 - A block diagram illustrating the proposed methodology for investigating 
cardiovascular autonomic neuropathy (CAN) in individuals with type 2 diabetes mellitus 
(T2DM) through the application of empirical mode decomposition (EMD) to heart rate 
variability (HRV) signals. The participants’ electrocardiogram (ECG) and 
photoplethysmography (PPG) signals were collected. In the pre-processing stage, the 
ECG signals underwent bandpass filtering, followed by the derivation of the HRV 
signals. The feature extraction stage involved applying EMD to the HRV signals to 
obtain the first four intrinsic mode functions (IMFs) components. From these IMFs, the 
following features were calculated: ܴܵܣ௔௥௘௔ - area of the analytical signal; ܱܵܦ ௔ܲ௥௘௔ - 
area of the second-order difference plot; ܱܵܦ ஼்ܲெ - the central tendency measure of 
the second-order difference plot; ܲܵܦ௣௞௔௠௣ - peak amplitude of the power spectral 
density estimation; ܲ  ௕௣௢௪ - band power of the power spectral density estimation; andܦܵ
 ௠௙௥௘௤ - mean frequency of the power spectral density estimation. The final stageܦܵܲ
involved conducting the statistical analysis to compare the mean differences of all the 
features among the different CAN severity level groups: noCAN - individuals with 
T2DM without CAN; subCAN - individuals with T2DM and subclinical CAN; and estCAN 
- individuals with T2DM and established CAN. The PPG signal was used for CAN 
classification purposes. 

 
Source: Data from (Cossul et al., 2023). 

 

Table 9 – Demographic and clinical data of the participants. 
 noCAN subCAN estCAN 

n 20 20 20 

Age (yrs) 60.1 ± 4.5 62.0 ± 7.0 57.0 ± 8.4 

Gender 7F/13M 12F/8M 10F/10M 

DM duration (yrs) 13.2 ± 9.5 13.9 ± 9.8 17.6 ± 9.3 

HbA1c (mmol/mol) 89 ± 22 71 ± 31 99 ± 19 
Note: Values are presented as mean ± SD. Abbreviations: DM - diabetes mellitus; noCAN - individuals 
with type 2 DM without cardiac autonomic neuropathy; subCAN - individuals with type 2 DM with 
subclinical cardiac autonomic neuropathy; estCAN - individuals with type 2 DM and established cardiac 
autonomic neuropathy; HbA1c - glycated haemoglobin. Source: Data from (Cossul et al., 2023). 
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The anthropometric and clinical data (e.g., age, DM duration, use of 

medications, presence of complications, and the last results of the glycated 

haemoglobin (HbA1c) test—a blood test that shows the average blood sugar (glucose) 

level over the past two to three months) were obtained from previous ECG and 

photoplethysmography (PPG) data. The participants were given cardiac autonomic 

reflex tests (CARTs) and baroreflex sensitivity (BRS) analyses to classify them into 

three levels of CAN (i.e., noCAN—no presence of CAN, subCAN—subclinical CAN, 

and estCAN—established CAN). The CARTs comprised tests for heart rate response, 

including the RR interval to paced breathing, the Valsalva manoeuvre, and postural 

change from lying to standing (Fisher; Tahrani, 2017). The standardized CARTs used 

in this study are the gold standard method recommended for CAN assessment in 

patients with diabetes (Vinik et al., 2018). Furthermore, BRS is a quantitative 

description of the arterial baroreflex, a critical determinant of the neural regulation of 

the cardiovascular system, relying on the analysis of spontaneous fluctuations of beat-

by-beat arterial pressure and cardiac interval (Borowik et al., 2015). BRS is a sensitive 

indicator of CAN in type 2 DM (Borowik et al., 2015; Kück et al., 2020) and an accurate 

screening tool for staging CAN, even in the subclinical phase when the usual clinical 

tests do not detect alteration due to the absence of overt symptoms (Petry; Marques; 

Marques, 2020). Further details about the BRS analysis can be obtained in section 3.3. 

The CARTs were performed according to the O’Brien tests (O’Brien; O’Hare; 

Corrall, 1986), based on Ewing  (Ewing; Campbell; Clarke, 1980), and incorporated a 

composite score (CS). The CARTs were evaluated as normal (i.e., CS up to 1) or 

abnormal (i.e., CS greater than 2). For the BRS analysis, two steps were performed: 

(i) an estimation of systolic blood pressure (SBP) from ECG and PPG signals based 

on a model proposed by Rajala, Lindholm, and Taipalus (2018) and (ii) a BRS value 

estimation from the estimated SBP and the RR intervals based on the sequence 

method (Kuusela, 2013). The mean values of BRS were compared against age-

adjusted reference values to determine normal or abnormal results (Kardos et al., 

2001; Tank et al., 2000). Subsequently, the noCAN group was defined when the 

CARTs and BRS analysis were considered normal, and the subCAN group was 

defined when the CARTs were normal and the BRS analysis was abnormal. Finally, 

estCAN was defined when the CART and BRS results were abnormal. 
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5.2.2 ECG and PPG Recording and Processing 
 

The participants were asked to lie in a comfortable position. Three disposable 

adhesive electrodes (3M, Red Dot, 2560) were positioned following the bipolar 

derivation for ECG recording. The PPG sensor was positioned on the index finger, and 

the cuff for measuring blood pressure (model Omron HEM-712) was placed on the left 

arm, opposite the PPG sensor, as illustrated in Figure 44. 

 

Figure 44 – The protocol illustration for ECG, PPG, and blood pressure data collection. 

 
Source: Elaborated by the author. 

 

The ECG and PPG signals were recorded using a custom-made acquisition 

system developed by the Federal University of Santa Catarina’s Institute of Biomedical 

Engineering with a sampling frequency of 500 Hz. The data collection protocol started 

allowing the subject to rest for ten minutes. This initial phase establishes a baseline 

assessment unaffected by motion or external factors, ensuring a dependable basis for 

consistently comparing subjects. Following this, the data collection proceeded as 

follows, according to the CARTs protocol described in section 2.4.1: 

1. Resting 

The participant lies supine quietly, without sleeping, for 10 minutes while ECG 

and PPG signals are recorded. 

2. Blood Pressure measurement 
The blood pressure was measured with the participant lying. 
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3. HR response to Deep Breathing 

The participant was instructed to breathe deeply at six breaths a minute (i.e., 

five seconds in and five seconds out). The data collection software emits 

informative and correctly paced sounds to help the participant regulate 

breathing. 

4. HR response to Valsalva Manoeuvre 
The participant was asked to blow into a mouthpiece connected to a 

manometer (digital), hold a pressure of 40 mmHg for 15 seconds, and then 

breathe normally for 45 seconds. 
5. Immediate HR response to Standing 
With the participant lying, the PPG and ECG signals were continuously 

measured for approximately 10 seconds; the participant was then asked to 

stand up unaided, and the recording continued for one more minute. 

6. Blood Pressure measurement 
The blood pressure was measured about a minute after the participant stood. 

 

After data collection, the ECG signal proceeded to data processing. The ECG 

signals were bandpass-filtered (fourth-order Butterworth FIR filter, 0.5–40 Hz) to 

remove high-frequency noise, including power line interference and baseline wander. 

Subsequently, the RR intervals between successive R peaks of QRS complexes were 

detected and calculated based on Pan-Tompkin’s algorithm (Pan; Tompkins, 1985). 

Lastly, the RR sequence was inspected to remove spurious RR peaks where the RR 

intervals changed more than 20% within a median value window of the following five 

and the previous five RR intervals (Vest et al., 2018). The corrected HRV signals 

proceeded for analysis (see section 4, which describes the HRV signal processing 

tool). 

 

5.2.3 Feature Extraction 
 

The HRV segments were analysed using the original EMD method outlined in 

Huang et al. (1998) with the official MATLAB (R2018a, MathWorks, MA, USA) EMD 

algorithm for the component’s derivation. Then, custom software was created in 

MATLAB to extract features from the EMD modes, including the area of the analytical 

signal (ܴܵܣ௔௥௘௔), the area of the second-order difference plot (ܱܵܦ ௔ܲ௥௘௔), the central 
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tendency measure of the second-order difference plot (ܱܵܦ ஼்ܲெ), and the features 

extracted after power spectral density estimation: peak amplitude (ܲܵܦ௣௞௔௠௣), band 

power (ܲܵܦ௕௣௢௪), and mean frequency (ܲܵܦ௠௙௥௘௤). 

Further details of the EMD technique and the extracted features are delineated 

in Section 3 – Methods, while the developed MATLAB HRV Processing Tool is 

described in Section 4 – HRV signal Processing Tool.   

 

5.2.4 Statistical Analysis 
 

A one-way analysis of variance (ANOVA) was conducted to compare mean 

differences between CAN severity level groups (i.e., noCAN, subCAN, and estCAN). 

The homogeneity of variances and the normality assumptions were verified through 

Levene’s test and Shapiro–Wilks’s test, respectively. As a result of the non-normal 

distribution, variables were log-transformed to perform the analysis. Pairwise multiple 

comparisons were performed with Tukey (equal variances assumed) or the Games–

Howell test for unequal variances. The results are shown as mean ± standard 

deviation, and the significance level of 0.05 was adopted. The statistical analysis was 

performed with R 4.2.0 (R Core Team, 2022). 

 

 

 RESULTS 

 

The results of the Shapiro–Wilk test of normality indicate that the distributions 

were non-normal for the variables ܴܵܣ௔௥௘௔, ܵ ܦܱ ௔ܲ௥௘௔, ܲ ܲ ௣௞௔௠௣, andܦܵ  ௕௣௢௪ while theܦܵ

variables ܱܵܦ ஼்ܲெ and ܲܵܦ௠௙௥௘௤ were normally distributed. The same results were 

observed for the four IMF components of each feature. The results of Levene’s 

homogeneity of variances test indicate equal variances for all features except for the 

ܦܱܵ ஼்ܲெ of the 1st, 2nd, and 4th IMF components. 

A representative illustration of the resulting EMD applied to decompose the RR 

interval signal in a subject with no diagnosis of CAN is illustrated in Figure 45. The top 

row shows the original RR interval signal. The following rows demonstrate the first four 

IMFs and the residual component. As expected, the higher the IMF index, the lower its 

frequency content. 



102 

Figure 45 - The first row represents the original RR interval signal, followed by its first 
four intrinsic mode functions and the residual obtained after empirical mode 
decomposition from a subject with no diagnosis of cardiovascular autonomic 
neuropathy. 

 
Source: Data from (Cossul et al., 2023). 

 

The univariate ANOVA shows a significant difference between the CAN groups 

for the variables log(ܴܵܣ௔௥௘௔), log(ܱܵܦ ௔ܲ௥௘௔), SODPେ୘୑, log(ܲܵܦ௕௣௢௪), and 

log(ܲܵܦ௣௞௔௠௣) and their components (i.e., IMF1, IMF2, IMF3, and IMF4) (p < 0.01). In 

contrast, there was no significant difference between the CAN groups for the ܲܵܦ௠௙௥௘௤ 

variable and its EMD components. The feature values are presented in Table 10. 
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Table 10 - Feature values (mean ± standard deviation) for ASRୟ୰ୣୟ - the area of the 
analytical signal; ܱܵܦ ௔ܲ௥௘௔ - the area of the second-order difference plot (SODP); 
ܦܱܵ ஼்ܲெ - the central tendency measure of SODP; ܲܵܦ௕௣௢௪ - the power spectral 
density (PSD) band power; ܲܵܦ௣௞௔௠௣ - the PSD peak amplitude; and ܲܵܦ௠௙௥௘௤ - the 
PSD mean frequency for the four intrinsic mode functions decomposed from the 
empirical mode decomposition technique of each group; noCAN - individuals with type 
2 DM without cardiac autonomic neuropathy; subCAN - individuals with type 2 DM with 
subclinical cardiac autonomic neuropathy; and estCAN - individuals with type 2 DM 
and established cardiac autonomic neuropathy. Significance levels are a p < 0.05 when 
comparing noCAN to subCAN, b p < 0.05 when comparing noCAN to estCAN, and c p 
< 0.05 when comparing subCAN to estCAN. 

Feature Group ۷۴ۻ૚ ۷۴ۻ૛ ۷۴ۻ૜ ۷۴ۻ૝ 

log (ܴܵܣ௔௥௘௔) 

noCAN −6.777 ± 0.770 b −7.399 ± 0.338 b −7.424 ± 0.287 b −7.300 ± 0.432 ab 

subCAN −7.199 ± 0.540 c −7.580 ± 0.282 −7.609 ± 0.204 −7.616 ± 0.263 a 

estCAN −7.655 ± 0.382 bc −7.739 ± 0.268 b −7.694 ± 0.450 b −7.712 ± 0.224 b 

log (ܱܵܦ ௔ܲ௥௘௔) 

noCAN −0.654 ± 0.665 b −1.878 ± 0.609 b −2.810 ± 0.488 ab −3.598 ± 0.527 ab 

subCAN −1.957 ± 0.802 c −2.374 ± 0.740 c −3.294 ± 0.584 a −4.071 ± 0.557 ac 

estCAN −1.086 ± 0.759 bc −2.963 ± 0.703 bc −3.733 ± 0.733 b −4.551 ± 0.621 bc 

SODPେ୘୑ 

noCAN 0.773 ± 0.268 b 0.887 ± 0.173 b 0.317 ± 0.180 ab 0.694 ± 0.234 ab 

subCAN 0.887 ± 0.209 0.941 ± 0.105 0.531 ± 0.276 ac 0.868 ± 0.143 ac 

estCAN 0.981 ± 0.037 b 0.987 ± 0.029 b 0.750 ± 0.253 bc 0.947 ± 0.089 bc 

log (ܲܵܦ௕௣௢௪) 
noCAN −3.480 ± 0.574 b −3.839 ± 0.432 b −3.921 ± 0.370 ab −3.912 ± 0.390 ab 

subCAN −3.897 ± 0.668 c −4.166 ± 0.564 c −4.288 ± 0.388 ac −4.314 ± 0.382 ac 

estCAN −4.492 ± 0.654 bc −4.749 ± 0.622 bc −4.687 ± 0.612 bc −4.655 ± 0.527 bc 

log 

 (௣௞௔௠௣ܦܵܲ)

noCAN −2.562 ± 0.617 b −2.771 ± 0.435 b −2.613 ± 0.379 ab −2.392 ± 0.403 ab 

subCAN −3.028 ± 0.692 c −3.094 ± 0.570 c −2.975 ± 0.368 ac −2.793 ± 0.391 ac 

estCAN −3.667 ± 0.724 bc −3.741 ± 0.626 bc −3.349 ± 0.644 bc −3.106 ± 0.551 bc 

 ௠௙௥௘௤ܦܵܲ
noCAN 0.290 ± 0.051 0.097 ± 0.019 0.041 ± 0.010 0.018 ± 0.003 

subCAN 0.266 ± 0.054 0.090 ± 0.029 0.039 ± 0.121 0.019 ± 0.006 

estCAN 0.285 ± 0.0463 0.098 ± 0.031 0.039 ± 0.008 0.017 ± 0.004 

Source: Data from (Cossul et al., 2023). 

 

The analytic signal and the second-order difference plots of the IMFs for the 

three groups (noCAN, subCAN, and estCAN) are demonstrated in Figures 46 and 47, 

respectively. From Figure 46, it can be observed that the spread of the analytic signal 

is lower for the estCAN group in all IMFs, resulting in a larger number of points inside 

the radius and, therefore, a larger ܴܵܣ௔௥௘௔. Similarly, Figure 47 reveals that the second-

order difference plot exhibits a greater dispersion in the noCAN group but becomes 

progressively more clustered in the subCAN group and even more in the estCAN 
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group. This result is reflected by the decrease in the ܱܵܦ ௔ܲ௥௘௔ and an increase in the 

SODPେ୘୑, which calculates the ellipse area and the grouping of points around the origin. 

 

Figure 46 - The analytic signal representation (ASR) of the first four intrinsic mode 
functions obtained after the empirical mode decomposition analysis of the RR interval 
signals for the three groups: noCAN - individuals with type 2 diabetes (T2DM) without 
cardiovascular autonomic neuropathy (CAN); subCAN - individuals with T2DM with 
subclinical CAN; and estCAN - with T2DM with established CAN. Note: The zoomed 
plots of the estCAN group are presented in the top corner of each IMF plot. 

 
Source: Data from (Cossul et al., 2023). 
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Figure 47 - The second-order difference plots for the first four intrinsic mode functions 
(IMFs) obtained after empirical mode decomposition analysis of the RR interval signal 
for the three groups are as follows: noCAN - individuals with type 2 diabetes (T2DM) 
without cardiovascular autonomic neuropathy (CAN); subCAN - individuals with T2DM 
with subclinical CAN; and estCAN - individuals with T2DM with established CAN. Note: 
The zoomed plots of the estCAN group are presented in the top corner of each IMF 
plot. 

 
Source: Data from (Cossul et al., 2023). 

 

Welch’s power spectral density estimation plots of the intrinsic mode functions 

for the three groups (noCAN, subCAN, and estCAN) are demonstrated in Figure 48; 

the frequency content decreases as the IMF index increases. The power of all IMF 

shows a decreasing trend from the noCAN group to the subCAN group and further to 

the estCAN group. When examining each group’s IMFs individually, the noCAN group 

exhibits a higher power in IMF1, while the subCAN and estCAN groups show higher 

powers in IMF3 and IMF4. 
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Figure 48 - The power spectral density (PSD) estimation for the first four intrinsic mode 
functions (IMFs) was obtained after the empirical mode decomposition analysis of the 
RR interval signals for the three groups: noCAN - individuals with type 2 diabetes 
(T2DM) without cardiovascular autonomic neuropathy (CAN); subCAN - individuals 
with T2DM with subclinical CAN; and estCAN - individuals with T2DM with established 
CAN. Note: The plots have different scales on the y-axis for better visualization. 
 

 
Source: Data from (Cossul et al., 2023). 

 

All features derived from the four EMD-extracted IMF components exhibited 

significant differences between the extreme groups (noCAN and estCAN). When 

comparing the noCAN and subCAN groups, the third and fourth components were 

particularly effective in distinguishing between them. Furthermore, for the subCAN and 

estCAN groups, certain EMD components of each feature presented a significant 

ability to distinguish between the groups. The following paragraphs provide a more 

detailed description of these results. 

Regarding the log(ܴܵܣ௔௥௘௔) of the four EMD components of each group, the 

posthoc analysis demonstrates that there was a significant difference between the 

noCAN and estCAN groups (p < 0.01) for all components, a significant difference 

between the subCAN and estCAN groups (p < 0.05) in the fourth component, and a 

significant difference between the noCAN and subCAN groups (p < 0.05) in the first 

component (see Table 10 and Figure 49a). 
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Figure 49 - The comparison of parameters for cardiovascular autonomic neuropathy 
(CAN) groups for the four IMFs of the RR interval signals (mean ± standard error of 
the mean): noCAN - individuals with type 2 diabetes (T2DM) without CAN; subCAN - 
individuals with T2DM with subclinical CAN; and estCAN - individuals with T2DM with 
established CAN. (a) ܴܵܣ௔௥௘௔ - the area of analytic signal representation. (b) ܱܵܦ ௔ܲ௥௘௔ 
- the area of the second-order difference plot (SODP). (c) ܱܵܦ ஼்ܲெ - the central 
tendency measure of SODP. (d) ܲܵܦ௕௣௢௪ - the power spectral density (PSD) band 
power. (e) ܲ  .௣௞௔௠௣ - the PSD peak amplitude. * p < 0.05 - significant group differenceܦܵ

 
Source: Data from (Cossul et al., 2023). 

 

Considering the log(ܱܵܦ ௔ܲ௥௘௔), the posthoc analysis of the four EMD 

components of each group also revealed a significant difference between the noCAN 

and estCAN groups (p < 0.01) for all components. Additionally, a significant difference 

between the noCAN and subCAN (p < 0.05) groups was found for the log(ܱܵܦ ௔ܲ௥௘௔) 

of the third and fourth IMFs, and a significant difference between subCAN and estCAN 

(p < 0.05) for all components, except for the third one (p < 0.09) (see Table 10 and 

Figure 49b). 

The estCAN group shows a significantly higher ܱܵܦ ஼்ܲெ mean value (p < 0.01) 

for all components compared to the noCAN group, as well as a significantly higher 
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mean value (p < 0.05) for the 3rd and 4th IMF components compared to the subCAN 

group. Similarly, the estCAN group exhibited a significantly higher ܱܵܦ ஼்ܲெ mean 

value (p < 0.05) for the third and fourth components compared to the subCAN group 

(see Table 10 and Figure 49c). 

Lastly, the post hoc analysis of PSD-derived features demonstrates significantly 

reduced log (ܲܵܦ௕௣௢௪) (p < 0.05) and log (ܲܵܦ௣௞௔௠௣) (p < 0.05) mean values for the 

estCAN group compared to the noCAN and subCAN groups for all IMFs. Similarly, the 

subCAN group presented significantly reduced mean values for the log (ܲܵܦ௕௣௢௪) (p < 

0.05) and log (ܲܵܦ௣௞௔௠௣) (p < 0.05) parameters compared to the noCAN group for the 

3rd and 4th IMF components (see Table 10, Figure 49d, e). 

 

 DISCUSSION 

 

In summary, it was observed that all features (except the ܲܵܦ௠௙௥௘௤) calculated 

from the four EMD-extracted IMF components differed significantly between the 

extreme groups (i.e., noCAN and estCAN). More importantly, the specific IMF 

components of each feature could effectively distinguish individuals without a CAN 

diagnosis or with an established CAN from those with subclinical CAN (refer to Figure 

49). 

This research explores a new approach for analysing the RR interval signals 

acquired from type 2 DM individuals at different stages of cardiovascular autonomic 

neuropathy. We used the EMD method, which decomposes non-stationary and 

nonlinear signals into IMFs. The findings of this study suggest that employing the 

nonlinear EMD method enables the extraction of several parameters from heart rate 

variability that hold promise in identifying changes associated with the manifestation 

and progression of CAN. Specifically, the complex plane plots from the analytical signal 

representation and the second-order difference plot of the first four IMFs were used to 

extract the ASRୟ୰ୣୟ, SODPୟ୰ୣୟ and SODPେ୘୑ features, while the power spectral density 

of the IMFs was used to obtain the ܲܵܦ௕௣௢௪, PSD୮୩ୟ୫୮ and ܲܵܦ௠௙௥௘௤ features. These 

parameters were compared across subjects at distinct stages of CAN (noCAN, 

subCAN, and estCAN). The main results were as follows: (a) decreased IMF variability 

and (b) decreased IMF power distribution, according to CAN progression.  
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The autonomic nervous system (ANS) maintains homeostasis by regulating 

arterial pressure and all significant cardiovascular variables through the sympathetic 

and parasympathetic divisions (Orini et al., 2017). The ANS imbalance manifesting as 

CAN in the diabetic population is an important predictor of cardiovascular events (Vinik 

et al., 2018), as reflected in the abnormal HRV indices. The nonlinear analysis methods 

of HRV allow a more subtle characterization of autonomic balance and are reliable 

markers of morbidity and mortality in patients with cardiovascular disease (Vinik et al., 

2018). Furthermore, nonlinear HRV indices in diabetic populations may have 

diagnostic and prognostic potential for identifying asymptomatic CAN and 

cardiovascular events (Khandoker; Jelinek; Palaniswami, 2009). A recent study found 

that prediabetes and T2DM patients were independently associated with lower HRV 

(both in the time and frequency domains), strongly suggesting that the HRV indices 

could help identify subclinical CAN (Coopmans et al., 2020). In another study, T2DM 

patients presented an overall decrease in HRV and decreased sympathetic and 

parasympathetic activity (Benichou et al., 2018). Correspondingly, BRS is also a 

sensitive indicator of CAN in DM patients (Frattola et al., 1997) and can be associated 

with cardiovascular events (Spallone, 2019). 

Previous studies (Chen et al., 2019; Pan et al., 2019) have demonstrated a 

correlation between the first four IMFs extracted by EMD and the HRV frequency 

components (VHF, HF, LF, and VLF, respectively). The HRV oscillatory components 

are usually divided into the following spectral profiles: (a) very-high-frequency (VHF, 

0.4 to 1 Hz); (b) high-frequency (HF, 0.15 to 0.40 Hz); (c) low-frequency (LF, 0.04 to 

0.15 Hz); (d) very-low-frequency (VLF, <0.04 Hz) bands (Shaffer; Ginsberg, 2017). 

However, in short-term recordings (5–10 min), the spectral analysis of HRV holds three 

main frequency bands: HF, LF, and VLF (Shaffer; Ginsberg, 2017). By examining the 

power spectrum density of the HRV signal’s EMD components (Figure 48), we could 

observe the energy distribution according to the different frequency components and 

associate IMF1 with the HF component, IMF3 with the LF component, and IMF4 with 

the VLF band. IMF2 is not clearly defined between the LF and HF components. 

Importantly, each frequency component can be related to the different activities of the 

autonomic nervous system. The HF band reflects parasympathetic activity and is a 

marker of cardiac vagal modulation. In contrast, the LF band modifies the 

parasympathetic and sympathetic nervous systems and indicates baroreceptor activity 

during resting conditions (Shaffer; Ginsberg, 2017). We noticed that the mean values 
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of ܲܵܦ௕௣௢௪ and PSD୮୩ୟ୫୮ decrease as CAN progresses. This effect was more evident 

when comparing the estCAN group to the noCAN or subCAN groups, as all EMD 

components were significant. This reduction was less noticeable when comparing the 

noCAN group to the subCAN group, as only the 3rd and 4th IMFs were significant. 

These results demonstrated reduced sympathetic and parasympathetic activity and 

baroreceptor activity as the disease progressed. 

In the subCAN group, the sympathetic activity (IMF2, IMF3, and IMF4) had a 

higher amplitude than the parasympathetic activity (mainly IMF1). In contrast, in the 

noCAN group, the parasympathetic modulation was higher. This result was expected 

since autonomic nerves are affected in a length-dependent manner (Balcıoğlu, 2015; 

Vinik; Ziegler, 2007). The first manifestation of CAN often occurs due to damage in the 

vagus nerve, the longest nerve of the ANS, disrupting the parasympathetic activity and 

increasing the sympathetic tone (Balcıoğlu, 2015; Pop-Busui, 2010). This fact is 

reflected in the results, where the HF components of HRV, represented by IMF1 and 

partly by IMF2, were not significantly different between the noCAN and subCAN groups, 

while the LF components represented by IMF3 and IMF4 were significantly different. 

Therefore, for the CAN subclinical assessment, it would be more important to use 

parameters derived from the lower frequency contents of the HRV. 

Considering the features obtained from the analytical signal representation and 

the second-order difference plot, we evaluated the presence and extent of variability 

in the IMFs of RR intervals in the CAN groups. It was observed that the ASRୟ୰ୣୟ and 

SODPୟ୰ୣୟ values decreased in the IMFs of the subCAN group compared to noCAN and 

decreased further in the IMFs of the estCAN group compared to the others, indicating 

a pattern of decreasing variability according to CAN progression. In contrast, the 

SODPେ୘୑ values increase in the noCAN group compared to subCAN, and a further 

increase in the estCAN group. The lower values of the SODPେ୘୑ indicate higher 

dispersion as the signal is spread and the number of points within the same radius is 

reduced. Thus, similar to ASRୟ୰ୣୟ and SODPୟ୰ୣୟ, the SODPେ୘୑ parameter is associated 

with decreased variability in IMFs for more severe levels of CAN. The heart rate 

response test is still preserved in the subclinical stage, and symptoms are absent. 

However, baroreflex sensitivity tests present alterations and could explain why only the 

ASRୟ୰ୣୟ, SODPୟ୰ୣୟ, and SODPେ୘୑ metrics of some IMFs could distinguish subtle changes 

in the RR interval of the subCAN group. 



111 

Several studies (Alkhodari et al., 2021; Carricarte Naranjo et al., 2017b; 

Cornforth; Jelinek; Tarvainen, 2015; Faust et al., 2012; Jelinek et al., 2019; Khandoker 

et al., 2010; Khandoker; Jelinek; Palaniswami, 2009a; Lin et al., 2017; Pachori et al., 

2015; Roy; Ghatak, 2013; Selvan et al., 2022) have demonstrated the effectiveness of 

nonlinear HRV methods in evaluating the progression of CAN. However, many of these 

approaches have addressed CAN as a binary classification problem, distinguishing 

only between no CAN and CAN (Alkhodari et al., 2021; Carricarte Naranjo et al., 

2017b; Khandoker; Jelinek; Palaniswami, 2009a). Others have examined 

cardiovascular function in healthy individuals and those with DM (Faust et al., 2012; 

Pachori et al., 2015; Roy; Ghatak, 2013). As a result, they fail to capture the distinct 

stages of disease progression. Nonetheless, some works (Cornforth; Jelinek; 

Tarvainen, 2015; Jelinek et al., 2019; Khandoker et al., 2010; Selvan et al., 2022) 

evaluated CAN as a multiclass problem, separating the groups by levels of severity, 

which aligns with the approach proposed in our work. For example, SELVAN et al. 

(2022) evaluated time segments of ECG recordings from individuals with different 

disease severities and healthy individuals using complexity analysis, specifically 

computing the fractal dimension. Similarly, Cornforth; Jelinek; Tarvainen (2015), and 

Jelinek et al. (2019) categorized the participants into three CAN groups (i.e., without, 

early, and definite) and applied techniques such as multiscale entropy, multifractal 

detrended fluctuation analysis, and Renyi entropy to sets of RR intervals. Khandoker 

et al. (2010) also introduced a novel HRV parameter named tone-entropy, which 

demonstrated the ability to differentiate between stages of CAN progression. In 

contrast to our study, these studies have certain limitations. Firstly, they relied solely 

on CARTs to classify participants, whereas we employed CARTs and BRS 

measurements. Secondly, they had relatively small or disproportional sample sizes, 

potentially impacting the generalizability of their findings. Lastly, there was a lack of 

diabetes clinical data available (e.g., DM type and duration) for the participants, which 

restricts further analysis possibilities. 

 

 

 

 

 



112 

 CONCLUSION 

 

In this work, we investigated the relevance of EMD-based features extracted 

from RR intervals to identify changes between different levels of CAN severity. We 

observed a gradual reduction in the IMF variability and power distribution over the 

frequency correlated to the stages of CAN severity, indicating the loss of complexity 

and decrease in autonomic nervous system tones as CAN progressed. All the features, 

except ܲܵܦ௠௙௥௘௤, could distinguish between individuals with no CAN and those with 

either subclinical or established CAN. We highlight that the specific IMF components 

of each feature could effectively distinguish individuals without a CAN diagnosis or with 

established CAN from those with subclinical CAN. Subclinical CAN detection is 

essential for timely interventions to improve prognostics and potentially reverse 

disease progression. Thus, this study’s findings suggest that EMD-based outcome 

measures are promising in characterizing changes associated with CAN progression 

in individuals with T2DM. 

A limitation of this study is that we did not compare the proposed features with 

the standard HRV features to determine whether they offer superior performance or 

contribute to better differentiation between the groups. Nonetheless, this method can 

be further developed by combining a larger sample size with other HRV-based indices 

and user-independent classification algorithms. Future studies could also explore the 

progression of CAN in individuals with type 1 DM and gestational DM. These could 

contribute to developing diagnostic tools for a more accurate assessment of CAN 

progression. 
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 SECOND STUDY 
 

This section presents the second study of this work entitled “Classifying 
Cardiovascular Autonomic Neuropathy in Diabetic Subjects: A Machine 
Learning Multiclass Approach using Heart Rate Variability and Empirical Mode 
Decomposition”. 

 

 OBJECTIVE 

 

To assess the performance of machine learning models in the multiclass 

classification of CAN severity levels (i.e., no CAN, subclinical CAN, and established 

CAN) using a combination of HRV features and EMD-derived features. 

 

 MATERIAL AND METHODS 

 

The diagram of the methodology for CAN classification using machine learning 

models is presented in Figure 50 and will be further explained in the following sections.  

The data pre-processing and feature extraction were performed using the 

developed HRV signal processing tool in MATLAB (R2018a, MathWorks, MA, USA), 

which were described in Section 4. The next steps, including feature selection, model 

training, and evaluation, were conducted using Python 3.9.7 and Jupyter Notebook 

6.4.5. The libraries imported and used within the project were scikit-learn (Pedregosa 

et al., 2011), pandas, and numpy. 
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Figure 50 – General overview diagram of the methodology. The data collected from 
multiple studies involving individuals with diabetes mellitus (DM) includes the 
electrocardiogram (ECG) and photoplethysmography (PPG) signals, blood pressure 
measurements, questionnaires about signs and symptoms of cardiovascular 
autonomic neuropathy (CAN) and glycated haemoglobin (HbA1C) test results. The 
heart rate variability signal (HRV) processing tool is used for data pre-processing and 
feature extraction, including the HRV, empirical mode decomposition (EMD), and 
baroreflex sensitivity analysis (BRS) (see section 4). The participants were classified 
into three levels of CAN: "noCAN" (absence of CAN), "subCAN" (subclinical CAN), and 
"estCAN" (established CAN). The dataset, containing all features, was partitioned into 
three distinct feature sets. Subsequently, feature selection techniques were applied, 
including SelectKBest, Recursive Feature Elimination (RFE), and Principal Component 
Analysis (PCA). Following this feature selection process, various classification models, 
such as SVM (Support Vector Machine), KNN (K-Nearest Neighbours), LDA (Linear 
Discriminant Analysis), QDA (Quadratic Discriminant Analysis), logistic regression, 
decision tree, and AdaBoost (Adaptive Boosting), were employed on the data. Lastly, 
the models were evaluated to assess their classification performance. 

 
Source: Elaborated by the author. 

 

6.2.1 Dataset Description 
 

The dataset employed in this study comprises ECG and PPG data collected 

from 250 participants diagnosed with either type 1 or type 2 DM.  

All data were collected at the Professor Polydoro Ernany University Hospital of 

the Federal University of Santa Catarina—HU/UFSC/EBSERH, as part of previous 
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studies conducted by the research group at the Federal University of Santa Catarina’s 

Institute of Biomedical Engineering. The institutional research ethics committee 

approved the studies (protocol numbers 3.326.385, 120.103, and 4.982.983), and 

participants only entered the study after informed consent. 

The study data included in the dataset were collected under the same conditions 

and using a similar protocol. The ECG and PPG data were collected during a resting 

state of five to eight minutes and sampled at 500 Hz. Additionally, CARTs were 

performed, and blood pressure measurements were recorded for BRS evaluations for 

each participant. The dataset also contained additional demographic and clinical 

information about the participants, including their age, gender, duration of DM, and 

HbA1c levels. With the collected dataset, participants were classified into three levels 

of CAN: "noCAN" (absence of CAN), "subCAN" (subclinical CAN), and "estCAN" 

(established CAN). The data collection protocol and participants’ classification criteria 

are the same as those in the first study (refer to section 5.2). Table 11 presents a 

detailed overview of the dataset, detailing its classes. 

 

Table 11 – Dataset description. 
 noCAN subCAN estCAN 

n 127 75 50 

Age (yrs) 42.0 ± 15.0   46.0 ± 15.0 50.5 ± 12.0  

Gender 59 F / 68 M 38 F / 37M 28 F / 22 M 

DM duration (yrs) 14.9 ± 10.3 16.2 ± 10.4 17.5 ± 10.5 

HbA1c (%) 8.4 ± 1.7 8.5 ± 1.7  10.0 ± 1.88 
Note: Values are presented as mean ± SD. Abbreviations: DM - diabetes mellitus; noCAN - individuals 

with type 2 DM without cardiac autonomic neuropathy; subCAN - individuals with type 2 DM with 

subclinical cardiac autonomic neuropathy; estCAN - individuals with type 2 DM and established cardiac 

autonomic neuropathy; HbA1c - glycated haemoglobin. Source: Elaborated by the author. 

 

6.2.2 Data Pre-processing and Feature Extraction 
 

The data pre-processing includes the ECG and PPG data filtering for noise and 

interference removal. The ECG is further processed for the detection of RR peaks and 

the extraction of the HRV signal. The PPG data is used for predicting the blood 

pressure model, allowing for the BRS analysis. The data pre-processing and feature 
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calculation were accomplished using the developed HRV processing tool explained 

and validated in Section 4. 

 

6.2.3 Feature Sets 
 

For data analysis, three distinct sets of features were derived from the same 

original dataset as follows: 

 

 Feature Set One - a feature set comprising HRV parameters obtained 

through time, frequency domain, and non-linear analysis; 

The parameters included in this feature set are: the mean of NN intervals (NN 

mean), the standard deviation of NN intervals (SDNN), the coefficient of variation of 

NN intervals (CV), root mean square of successive NN interval differences (RMSSD), 

percentage of successive NN intervals that differ by more than 50 ms (pNN50), HRV 

triangular index (HTI), the absolute power of the very-low-frequency band (VLF power), 

the absolute power of the low-frequency band (LF power), the absolute power of the 

high-frequency band (HF power), the sum of energy in the VLF, LF and HF bands 

(Total power), ratio of LF to HF power bands (LF/HF), Poincaré plot features (SD1, 

SD2, SD1/SD2, ellipse area), approximate entropy (ApEN), sample entropy 

(SampEN), fuzzy entropy (FuzzyEn), cardiac sympathetic and vagal index (CSI, CVI) 

and features from the detrended fluctuation analysis (DFA α1 and DFA α2) (see section 

3.1 for features description). 

 

  Feature Set Two - a feature set derived from EMD analysis of HRV 

signals; features were calculated for each of the first four intrinsic mode functions 

(IMFs) components obtained from the EMD method. 

The parameters included in this feature set are the area of the analytical signal 

ܦܱܵ) the area of the second-order difference plot ,(௔௥௘௔ܴܵܣ) ௔ܲ௥௘௔), the central tendency 

measure of the second-order difference plot (ܱܵܦ ஼்ܲெ), peak amplitude (ܲܵܦ௣௞௔௠௣) 

extracted after power spectral density estimation, approximate entropy (ApEN), and 

the coefficient of variation (CV) (see section 3.2 for features description). 
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 Feature Set Three (composite) - a set combining all features from the 

preceding feature sets (feature set one and feature set two). 

 

6.2.4 Feature Scaling 
 

Given the differences in feature ranges, feature normalization was employed for 

the classification input features to prevent potential biases (S. B. Kotsiantis; D. 

Kanellopoulos; P. E. Pintelas, 2006). The methods considered for feature scaling 

included standardization, min-max normalization, and mean normalization, as detailed 

in Section 3.4.3. 

 

6.2.5 Feature Selection 
 

Feature selection (FS) helps to choose the most discriminative features from a 

given feature set and avoid overfitting (S. B. Kotsiantis; D. Kanellopoulos; P. E. 

Pintelas, 2006). Initially, a correlation analysis was conducted, and in cases where the 

correlation between features exceeded 0.9, one of them was subsequently eliminated.  

Afterwards, various FS techniques and their respective variations were used for 

further feature refinement: (a) SelectKBest, employing both ANOVA F-value and 

mutual information score functions; (b) Recursive feature elimination (RFE) with four 

different estimators: Support Vector Classification (with a linear kernel), Logistic 

Regression, Decision Treen, and Gradient Boosting Classifier; and (c) Principal 

component analysis (PCA) with the option to retain either five or ten components. 

Three different feature set sizes were considered for each FS method, considering 10, 

15, and 20 features (see section 3.4.1 for more details about the FS methods). The FS 

methods and their variations are summarized in Table 12. 
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Table 12 – Summary of employed feature selection methods and their variations. 
ID Method Score function/Estimator Number of features 

/components to select 
1 SelectKBest ANOVA F-value 10 
2 SelectKBest ANOVA F-value 15 
3 SelectKBest ANOVA F-value 20 
4 SelectKBest Mutual info 10 
5 SelectKBest Mutual info 15 
6 SelectKBest Mutual info 20 
7 RFE SVC linear 10 
8 RFE SVC linear 15 
9 RFE SVC linear 20 
10 RFE Logistic regression 10 
11 RFE Logistic regression 15 
12 RFE Logistic regression 20 
13 RFE Decision tree 10 
14 RFE Decision tree 15 
15 RFE Decision tree 20 
16 RFE Gradient boosting 10 
17 RFE Gradient boosting 15 
18 RFE Gradient boosting 20 
19 PCA - 5 
20 PCA - 10 
Note: SVC – support vector classification; RFE – recursive feature elimination; PCA – principal 

component analysis. Source: Elaborated by the author. 

 

6.2.5.1 Classification 

 

The methodology included testing supervised machine learning models in the 

three feature sets, where the classes were noCAN, subCAN, and estCAN. This study 

used various machine learning models and their variations for the multiclass 

classification of HRV-based features. The models employed were: (a) SVM – support 

vector machine with four different kernels: linear, rbf, poly, and sigmoid; (b) KNN – K 

nearest neighbours with the number of neighbours equal to five, ten and fifteen; (c) 

LDA and QDA - linear and quadratic discriminant analysis; (d) LR – logistic regression 

with three solvers: lbfgs, liblinear and newton-cg; (e) AdaBoost Classifier with both 1.0 

and 0.2 learning rates and; (f) DT – Decision tree (see section 3.4.4 for further model-

specific details). The employed ML models and their variations are summarized in 

Table 13. 
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Table 13 - Summary of employed machine learning models and their variations. 
Machine learning model Parameters 

SVM kernels = linear, rbf, poly, sigmoid 
KNN number of neighbours = 5, 10, 15 
LDA solver = svd 
QDA default 
LR solver = lbfgs, liblinear, newton-cg 

AdaBoost learning rate = 1.0, 0.2 
DT default 

Note: SVM – support vector machine; KNN – K-nearest neighbours; LDA – linear discriminant 

analysis; QDA – quadratic discriminant analysis; LR – logistic regression; DT – decision tree.  

Source: Elaborated by the author. 

 
 
6.2.6 Model Evaluation 
 

This study used a ten-fold cross-validation method to evaluate the classifiers.  

This method involved partitioning the dataset into ten subsets, and in each iteration, 

nine subsets were used for training while the remaining one was held out for testing. 

The classifier performance was quantified by calculating the average value across 

these ten folds (section 3.4.5). The ML models were evaluated using various 

performance metrics, including accuracy, F1-score, and the area under the ROC curve 

(AUC) (section 3.4.6). 

 

 RESULTS 

 

A summary of some of the feature values used in the classification models for 

the three classes of CAN is presented in Table 14. Notably, a reduction in certain 

features is noticeable, specifically "HTI," "power_lf_welch," "power_hf_welch," and all 

"Peak_amplitude_db" when comparing the noCAN group to the subCAN and estCAN 

groups. On the contrary, a decrease is observed in some variables, including "alpha2" 

and all "CTM_r." 
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Table 14 – Feature values (mean ± standard deviation) for the three classes: noCAN 
- individuals without cardiac autonomic neuropathy (CAN), subCAN - individuals with 
subclinical CAN, and estCAN – individuals with established CAN. 

Feature Method noCAN subCAN estCAN 
NNmean TD 893.62 ± 130.99 765.38 ± 123.32 765.75 ± 128.56 

HTI TD 10.35 ± 4.13 6.62 ± 3.47 4.27 ± 1.74 
CVI TD 3.10 ± 0.43 2.61 ± 0.52 2.18 ± 0.51 

power_lf_welch FD 34.17 ± 12.61 30.87 ± 11.66 22.22 ± 12.43 
power_hf_welch FD 29.44 ± 15.41 26.06 ± 17.71 27.60 ± 22.06 

alpha1 NL 0.98 ± 0.23 1.03 ± 0.28 0.92 ± 0.33 
alpha2 NL 0.80 ± 0.19 0.89 ± 0.18 0.94 ± 0.20 

CTM_r1 EMD 0.29 ± 0.16 0.53 ± 0.26 0.71 ± 0.21 
CTM_r2 EMD 0.51 ± 0.22 0.76 ± 0.23 0.90 ± 0.15 
CTM_r3 EMD 0.76 ± 0.21 0.90 ± 0.17 0.97 ± 0.95 
CTM_r4 EMD 0.69 ± 0.21 0.86 ± 0.15 0.94 ± 0.09 

Peak_amplitude_db1 EMD -23.10 ± 6.25 -29.94 ± 6.99 -35.22 ± 6.87  
Peak_amplitude_db2 EMD -25.18 ± 4.69 -30.51 ± 6.06 -37.58 ± 6.78  
Peak_amplitude_db3 EMD -24.61 ± 4.03 -29.73 ± 4.81 -34.77 ± 6.90  
Peak_amplitude_db4 EMD -23.16 ± 4.59 -28.02 ± 4.60 -32.63 ± 6.35  

Note: TD – time domain; FD – frequency domain; NL – nonlinear and EMD – empirical mode 

decomposition. Source: Elaborated by the author. 

 

The top features selected by the FS methods are demonstrated in Tables 15, 

16, and 17, corresponding to the first, second, and third feature sets, respectively. In 

Table 15, representing feature set one, the selected features vary and encompass 

elements from time, frequency, and nonlinear domains. In Table 16, which represents 

feature set two, a mixture of features from all EMD components is observed, with only 

the RFE including the IMFs’ coefficient of variation. Finally, in the third feature set, as 

seen in Table 17, the selected features are predominantly derived from the time and 

nonlinear domains combined with EMD-based features. 
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Table 15 – The most significant features identified through selectKbest and recursive 
feature elimination (RFE) feature selection methods for feature set one (combining 
time, frequency, and non-linear domain features extracted from heart rate variability 
signals). 

Feature Selection 
Method Top Selected Features 

SelectKBest 
(ANOVA f-value) 

'TypeDM', 'NNmean', 'SDNN', 'CV', 'RMSSD', 'pNN50_pr', 'HTI', 
'power_vlf_welch', 'power_lf_welch', 'ellipse_area', 'CVI', 

'alpha2', 'Ent_Fuzzy', 'CTM_r1', 'CTM_r2' 
 

SelectKBest 
(mutual info) 

'NNmean', 'SDNN', 'CV', 'RMSSD', 'pNN50_pr', 'HTI', 
'power_lf_welch','power_hf_welch','lf_nu_welch', 'ellipse_area', 

'CVI', 'alpha1', 'alpha2', 'CTM_r1', 'CTM_r2' 
 

RFE (SVC linear 
and gradient 

boosting) 

'NNmean', 'SDNN', 'CV', 'RMSSD', 'HTI', 'power_lf_welch', 
'lf_nu_welch', 'SD1_SD2_ratio', 'alpha1', 'alpha2', 'ApEN', 

'Ent_Amostra', 'Ent_Fuzzy', 'CTM_r1', 'CTM_r2' 
Source: Elaborated by the author. 

 

 

Table 16 - The most significant features identified through selectKbest and recursive 
feature elimination (RFE) feature selection methods for feature set two (combining 
EMD-based features from heart rate variability signals). 

Feature Selection 
Method Top Selected Features 

SelectKBest 
(ANOVA f-value) 

'log_Asr1', 'CTM_r1', 'log_Asodp_abs1', 'log_Asr2', 
'log_Asodp_abs2', 'log_Asr3', 'CTM_r3', 'log_Asodp_abs3', 

'log_Asr4', 'CTM_r4', 'log_Asodp_abs4', 'Peak_amplitude_db1', 
'Peak_amplitude_db2', 'Peak_amplitude_db3', 

'Peak_amplitude_db4' 
 

SelectKBest 
(mutual info) 

'log_Asr1', 'log_Asodp_abs1', 'log_Asr2', 'CTM_r2', 
'log_Asodp_abs2', 'log_Asr3', 'CTM_r3', 'log_Asodp_abs3', 

'log_Asr4', 'CTM_r4', 'log_Asodp_abs4', 'Peak_amplitude_db1', 
'Peak_amplitude_db2', 'Peak_amplitude_db3', 

'Peak_amplitude_db4' 
 

RFE (SVC linear 
and gradient 

boosting) 

'log_Asr1', 'log_Asodp_abs1', 'log_Asr2', 'CTM_r3', 'CTM_r4', 
'Peak_amplitude_db1', 'Peak_amplitude_db2', 

'Peak_amplitude_db3', 'Peak_amplitude_db4, 'ap_entr2', 
'ap_entr3', 'cv_imf1', 'cv_imf2', 'cv_imf3', 'cv_imf4' 
Source: Elaborated by the author. 
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Table 17 - The most significant features identified through selectKbest and recursive 
feature elimination (RFE) feature selection methods for feature set three (combining 
time, frequency, non-linear domain, and EMD-based features from heart rate variability 
signals – all features from feature sets one and two). 

Feature Selection 
Method Top Selected Features 

SelectKBest 
(ANOVA f-value) 

'SDNN', 'HTI', 'CVI', 'CTM_r1', 'CTM_r2', 'log_Asr1', 'log_Asr2', 
       'log_Asodp_abs2', 'CTM_r3', 'log_Asodp_abs3', 

'log_Asodp_abs4', 'Peak_amplitude_db1', 
'Peak_amplitude_db2', 'Peak_amplitude_db3', 

'Peak_amplitude_db4' 
 

SelectKBest 
(mutual info) 

'SDNN', 'HTI', 'ellipse_area', 'CVI', 'CTM_r1', 'CTM_r2', 
'log_Asr1', 'log_Asodp_abs2', 'log_Asr3', 'CTM_r3', 

'log_Asodp_abs3', 'CTM_r4', 'Peak_amplitude_db2', 
'Peak_amplitude_db3', 'Peak_amplitude_db4' 

 
RFE (SVC linear 

and gradient 
boosting) 

'NNmean', 'HTI', 'power_hf_welch', 'alpha1', 'CTM_r1', 'CTM_r3', 
'CTM_r4', 'Peak_amplitude_db1', 'Peak_amplitude_db2', 
'Peak_amplitude_db3', 'Peak_amplitude_db4', 'ap_entr1', 

'cv_imf1', 'cv_imf4' 
Source: Elaborated by the author. 

 

The classification results of the ML models are summarized in Tables 18, 19, 

and 20, corresponding to the first, second, and third feature sets, respectively. Within 

each feature set, the tables highlight the ten best results from all models and their 

variations, accounting for all feature selection methods and their corresponding 

variations. 

 In Table 18, representing feature set one, the classification performances 

ranged from 68.6% to 72.5%. The SVM model with a linear kernel achieved the highest 

classification accuracy. This model was built using the ten initial features selected 

through RFE with a decision tree estimator (accuracy = 72.5%, F1-score = 73.0%, and 

AUC = 0.856). As shown in Table 19, the classification performances varied from 

68.6% to 76.5% within feature set two. The best classifier in this set was the SVM 

model with a linear kernel, utilizing fifteen features chosen through RFE with a gradient 

boosting estimator (accuracy = 76.5%, F1-score = 72.6%, and AUC = 0.842). 

 Lastly, classification performances improved for feature set three, as 

represented in Table 20, ranging from 82.5% to 88.4%. The most successful classifier 

was the KNN model with five neighbours, employing ten selected features from RFE 

with support vector classification and a linear score function (accuracy = 88.4%, F1-

score = 87.9%, and AUC = 0.881). 
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Table 18 – Evaluation of multiclass classification performance for cardiovascular 
autonomic neuropathy using feature set one (combining time, frequency, and non-
linear domain features extracted from heart rate variability signals). 

Classifier FS method Accuracy (%) F1-score (%) AUC 

SVM linear 
SelectKBest (6) 72.5 71.2 0.827 
RFE (13) 72.5 73.0 0.856 
RFE (17) 72.5 72.4 0.824 

     
KNN (n = 15) SelectKBest (1) 70.6 67.9 0.807 

     

LDA 
SelectKBest (1) 68.6 68.5 0.794 
SelectKBest (4) 68.6 68.5 0.795 
RFE (14) 70.6 70.7 0.809 

     
LR (liblinear) SelectKBest (2) 71.6 69.8 0.805 

 RFE (14) 70.6 70.5 0.833 
     

AdaBoost (LR = 0.2) RFE (18) 68.6 68.0 0.758 
Notes:  Machine learning classifier models = support vector machine with linear kernel (SVM linear); 

K-nearest neighbours (KNN) model with fifteen neighbours n; linear discriminant analysis (LDA); 
logistic regression (LR) with ‘liblinear’ solver; AdaBoosting classifier with learning rate (LR) equal to 

0.2; Feature selection (FS) method = recursive feature elimination (RFE). The numbers in parenthesis 
correspond to the FS methods’ specifics, as detailed in Table 12.  

Source: Elaborated by the author. 
 
 

Table 19 - Evaluation of multiclass classification performance for cardiovascular 
autonomic neuropathy using feature set two (combining EMD-based features from 
heart rate variability signals). 

Classifier FS method Accuracy (%) F1-score (%) AUC 

SVM linear 
SelectKBest (6) 68.6 68.0 0.837 
RFE (14) 72.6 72.3 0.815 
RFE (17) 76.5 72.6 0.842 

     
SVM rbf RFE (9) 71.6 69.9 0.789 

     
KNN (n = 5) SelectKBest (4) 70.6 70.0 0.800 

     
LDA SelectKBest (6) 70.6 70.6 0.835 

     
QDA RFE (9) 72.5 71;0 0.788 

     

LR liblinear SelectKBest (6) 73.5 73.6 0.825 
SelectKBest (18) 70.6 70.0 0.815 

     
AdaBoost (LR = 1.0) RFE (12) 68.6 68.0 0.788 

Notes:  Machine learning classifier models = support vector machine with linear and rbf kernels (SVM 
linear, SVM rbf); K-nearest neighbours (KNN) model with five neighbours n; linear discriminant 

analysis (LDA); quadratic discriminant analysis (QDA), logistic regression (LR) with ‘liblinear’ solver; 
AdaBoosting classifier with learning rate (LR) equal to 1.0; Feature selection (FS) method = recursive 
feature elimination (RFE). The numbers in parenthesis correspond to the FS methods’ specifics, as 

detailed in Table 12.  
Source: Elaborated by the author. 
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Table 20 – Evaluation of multiclass classification performance for cardiovascular 
autonomic neuropathy using feature set three (combining time, frequency, non-linear 
domain, and EMD-based features from heart rate variability signals – all features from 
feature sets one and two). 

Classifier FS method Accuracy (%) F1-score (%) AUC 

SVM linear 

SeleckKbest (6) 80.6 79.9 0.858 
RFE (9) 82.5 82.2 0.845 
RFE (18) 84.5 84.3 0.861 
PCA (20) 84.5 83.4 0.851 

     
KNN (n = 5) SelectKBest (1) 82.5 81.3 0.842 

RFE (7) 88.4 87.9 0.881 
     

LDA RFE (1) 86.5 86.1 0.878 
RFE (16) 86.5 86.0 0.822 

     
LR (liblinear) RFE (18) 86.5 86.3 0.834 

     
AdaBoost (LR = 0.2) RFE (9) 82.5 82.0 0.810 

Notes:  Machine learning classifier models = support vector machine with linear kernel (SVM linear); 
K-nearest neighbours (KNN) model with five neighbours n; linear discriminant analysis (LDA); logistic 

regression (LR) with ‘liblinear’ solver; AdaBoosting classifier with learning rate (LR) equal to 0.2; 
Feature selection (FS) method = recursive feature elimination (RFE); principal component analysis 

(PCA). The numbers in parenthesis correspond to the FS methods’ specifics, as detailed in Table 12. 
Source: Elaborated by the author. 

 
 

 DISCUSSION  

 

This study evaluated several machine learning methods, including SVM, KNN, 

LDA, QDA, LR, AdaBoost, and DT, along with different feature selection techniques 

such as SelectKBest, RFE, and PCA. The main objective was to perform a multiclass 

classification focusing on CAN severity levels using features derived from HRV. 

Additionally, the aim was to assess the performance of applying EMD to calculating 

HRV signal parameters within the classification process. For this purpose, three 

feature sets were considered: one containing conventional HRV features (including 

time, frequency domains, and nonlinear parameters), another consisting solely of 

EMD-based features derived from HRV, and the last incorporating all these HRV-

derived features. The study utilized a dataset comprising clinical information, ECG, and 

PPG data collected from 250 individuals with DM. Participants were categorized into 

three groups: those with no presence of CAN, those with early or subclinical CAN, and 

those with severe or established CAN. 

The main findings of the current study revealed that: a) the combination of 

traditional HRV measures with EMD-based features (i.e., feature set three), in 
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conjunction with the KNN classifier, resulted in the highest classification accuracy, 

achieving a value of 88.4% (see Table 20); b) the features from all HRV analysis 

methods contributed to this result, considering the top selected features determined 

through the RFE technique within the third feature set (see Table 17); c) the 

classification models using individual features, whether conventional or computed from 

decomposed components of the HRV signal (i.e., feature sets one and two), did not 

achieve a classification accuracy exceeding 76.5%. 

 Recently, several studies have proposed the use of machine learning algorithms 

for CAN classification based on HRV features (Abdalrada et al., 2017; Alkhodari et al., 

2021; Carricarte Naranjo et al., 2017b; Cornforth; Tarvainen; Jelinek, 2013, 2014; 

Hassan et al., 2022; Khandoker; Jelinek; Palaniswami, 2009b; Nedergaard et al., 2023; 

Wehler et al., 2021). The summary of the methodology and performance of these 

studies is presented in Table 21.  

 Most existing approaches have successfully identified CAN through binary 

classification, primarily focusing on distinguishing between patients with CAN and 

without CAN. One example is the study of (Alkhodari et al., 2021), which investigated 

the feasibility of using HRV features over 24 hours for screening the presence of CAN, 

achieving an accuracy of 98.3%. In another approach, the study of (Wehler et al., 2021) 

investigated the reliability of HRV analysis of ultra shorts HRV to classify definite CAN, 

achieving good results (AUC > 0.8). Other examples of binary CAN classification 

studies include the studies of (Carricarte Naranjo et al., 2017c; Cornforth; Tarvainen; 

Jelinek, 2013, 2014; Khandoker; Jelinek; Palaniswami, 2009b) that explore nonlinear 

techniques in the HRV analysis. Nevertheless, this binary methodology has constraints 

when it comes to categorization, as it cannot detect patients with early CAN alterations. 

To address this limitation, developing multiclass classification methods that can 

differentiate among various CAN severity levels can enhance diagnostic accuracy, 

providing opportunities for early diagnosis and timely interventions (Williams et al., 

2022). In the literature, the most relevant study in this context is the study by Hassan 

et al. (2022), which uses parameters collected from Ewing tests, QT analysis, HRV 

features, demographic, and other clinical data to perform a multiclass classification of 

CAN stages, achieving excellent results with an accuracy of 88.959% and an AUC of 

0.933. Nedergaard et al. (2023)’ study also assessed CAN at three levels of 

classification using clinical measures, clinical biochemistry, and certain features from 

HRV in the time and frequency domains. The best result was achieved with the random 



126 

forest classifier, which returned an F1-score of 60%, indicating a result that may be 

considered less substantial. This study does not evaluate the impact of nonlinear 

variability measures on classification. Another study, conducted by Abdalrada et al. 

(2017), also adopted a multiclass approach for CAN assessment, using HRV features 

from time, frequency, and nonlinear methods, and achieved good classification results. 

However, this study lacks important information about the dataset employed, such as 

the number of participants, identification of individuals with DM, types of DM, and 

demographic and clinical features. 

In summary, the methodology presented in this study differs from other studies 

in the literature in two significant ways. Firstly, it employs a multiclass approach to 

account for different levels of CAN. Secondly, it combines the EMD method for 

nonlinear HRV analysis, a technique not explored in prior studies on CAN assessment. 

It is also worth mentioning that the DM type was included in the models as a feature. 

Despite the distinct differences between DM types 1 and 2, the effects of CAN have 

similar impacts on cardiovascular autonomic control (Chowdhury et al., 2021; Pop-

Busui, 2012). 
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Table 21 - Studies conducted on cardiovascular autonomic neuropathy (CAN) 
classification based on HRV features.  

Authors Methods Classifier Type Performance 

(Hassan et 
al., 2022) 

Ewing tests results 
QT interval 

Time, frequency 
domain, and nonlinear 

DT multiclass 
Accuracy: 
88.959% 

AUC: 0.933 

     

(Nedergaard 
et al., 2023) 

Clinical measures and 
biochemistry 

Time and frequency 
domain 

SVM, DT, 
and RF multiclass F1-score: 60% 

(RF)  

     

(Abdalrada 
et al., 2017) 

Ewing tests results 
Time and frequency 

domain and nonlinear 
ensemble 
classifiers multiclass Accuracy: 95% 

ROC: 0.978 

     
(Alkhodari et 

al., 2021) 
Time and frequency 

domain and nonlinear SVM binary Accuracy: 98.3% 

     

(Wehler et 
al., 2021) 

Time and frequency 
domain (ultra short ECG 

time series) 

ROC 
curves binary 

AUC: 0.892 
(low-frequency 

FFT – 300s) 
AUC: 0.833 

(SDNN – 300s) 
 

(Carricarte 
Naranjo et 
al., 2017c) 

Time and frequency 
domain 

Shannon and 
Permutation entropy 

LDA binary Accuracy: 75% 

     
(Cornforth; 
Tarvainen; 

Jelinek, 2014) 

Time and frequency 
domain and nonlinear 

NB, SMO, 
KNN, and 

DT 
binary Accuracy: 71% 

(SMO) 

     

(Cornforth; 
Tarvainen; 

Jelinek, 2013) 

Time and frequency 
domain and nonlinear 

Renyi entropy 

1 - PCA 
with NB 
2 – GA 

with KNN 

binary 

1 – Accuracy: 
64.5% 

AUC: 0.713 
2 – Accuracy: 
68.1% AUC: 

0.734 
     

(Khandoker; 
Jelinek; 

Palaniswami, 
2009b) 

Time and frequency 
domain 

Poincaré plot and 
Sample entropy 

DT binary 

Accuracy: 
88.24% 

Se: 100% 
Spe: 75% 

Note: SVM – support vector machine; DT – decision tree; RF – random forest; LDA – linear 
discriminant analysis; NB – Naïve Bayes classifier; SMO – sequential minimal optimisation classifiers 

based on the support vector machine; KNN – K nearest neighbours; PCA – principal component 
analysis; GA – genetic algorithm.  
Source: Elaborated by the author. 
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 CONCLUSION 

 

In conclusion, this study indicated that combining HRV-based features derived 

from the decomposed HRV components using the EMD method with traditional HRV 

features (involving time, frequency, and nonlinear analysis) leads to improved 

accuracy in distinguishing between different levels of CAN severity in comparison to 

the methods assessed individually, resulting in a classification accuracy of 88.4% 

(AUC = 0.881). The importance of this study is further highlighted by its application of 

a multiclass classification method to identify and diagnose three levels of CAN: 

absence, subclinical, and established. This allows for the potential use of this method 

as an additional screening tool for cardiovascular complications arising from DM, 

allowing for the identification of asymptomatic patients in the early stages of the 

disease, during which CAN is still reversible. 

One limitation of this study is the imbalance in class distribution, where the 

representation of participants across various CAN severity levels may not be 

proportionate. The F1 score was chosen as an evaluation metric due to its 

consideration of this class imbalance. Nevertheless, future research could involve 

larger, more balanced datasets or the implementation of techniques to address class 

imbalance, such as employing oversampling approaches. 
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 FINAL CONSIDERATIONS 
 

This thesis’s main objective was to evaluate initial alterations in cardiac 

autonomic function among diabetic individuals. This assessment was performed using 

metrics obtained from conventional HRV analysis techniques and metrics calculated 

from decomposed HRV signals following the Empirical Mode Decomposition method. 

Considering this, two studies were proposed: the first one investigated the relevance 

of EMD-based parameters to differentiate among levels of CAN progression, while the 

second one assessed the performance of machine learning models in the multiclass 

classification of CAN. 

The main contributions of this thesis are as follows: (a) the significant relevance 

of EMD-based features extracted from HRV signals for distinguishing between 

progression levels of CAN, as demonstrated through statistical analysis and further 

supported by (b) the promising classification results achieved by machine learning 

models in multiclass CAN classification. The results of the studies also indicated that 

(c) the combination of conventional HRV measures with EMD-based features 

outperforms individual features in the classification of CAN; (d) features obtained from 

all HRV domain analyses, including time, frequency, nonlinear analyses, and EMD 

based are significant in CAN characterization, and; (e) as CAN progresses, a decrease 

in variability and power distribution is observed in the EMD decomposed components 

of the HRV signal. Additional contributions include (f) developing a signal processing 

tool for ECG and PPG data preprocessing, HRV-derived feature calculation, BRS and 

EMD analysis, and (g) developing a database to facilitate data management and 

subsequent analyses. 

CAN is widely acknowledged as a form of diabetic autonomic neuropathy that 

results in disruptions in heart rate control, as well as changes in central and peripheral 

vascular dynamics (Fisher; Tahrani, 2017). The autonomic nervous system imbalance 

occurs early in the progression of CAN and is associated with an elevated 

cardiovascular risk before the development of definitive CAN (Vinik et al., 2018). CAN 

is a condition characterized by a gradual deterioration, emphasizing the importance of 

assessing it in its early progressive stages and, ideally, identifying the initial alterations 

before symptoms become present, where autonomic balance can still be reversed 

(Vinik, 2012). The cardiovascular reflex tests measure heart rate and BP response to 

provocative physiological manoeuvres and still represent the gold standard in 
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autonomic testing and CAN diagnosis. Nevertheless, the most widely used diagnostic 

tests in clinical research are the conventional HRV indices derived from time- and 

frequency-domain and BRS (Spallone, 2019). The HRV signal is determined by 

combined inputs of the sympathetic and parasympathetic branches of the autonomic 

nervous system, divided as follows: the very low-frequency component representing 

the SNS, the low-frequency component representing a combination of SNS and PNS, 

and the high-frequency band corresponding to the function of the PNS  (Williams et al., 

2022). Thus, introducing the EMD technique into HRV analysis can improve CAN 

assessment. Firstly, because the extracted components can be correlated with HRV 

frequency components (Chen et al., 2019; Pan et al., 2019) and secondly, because 

this enables an individual assessment of the responses of the ANS branches, allowing 

the visualization and characterization of intrinsic changes that may not be apparent 

when analysing the composite HRV signal. 

To conclude, the results showed a promising use of the nonlinear EMD 

technique applied to HRV signals in evaluating the dynamic changes occurring in 

subclinical stages of DM patients with CAN. While this technique has been employed 

in other biomedical signals for assessing various conditions, it has not been employed 

in CAN assessment. Furthermore, most studies that evaluated CAN with other 

methods based on HRV have been limited by their binary methodology. In contrast, 

the methodology employed in this thesis adopted a multiclass approach, 

demonstrating the significance of EMD-based features in characterizing CAN and 

achieving a noteworthy classification accuracy of 88.4%. These results are consistent 

with the findings of a few relevant studies in the literature that also adopted a multiclass 

classification based on other HRV features. Given this perspective of CAN evaluation, 

a multidomain and multivariate approach is more appropriate for obtaining a 

comprehensive understanding of cardiac autonomic regulation.  

Future works can involve conducting a more thorough CAN analysis with more 

patients to enhance the study’s statistical power and overall reliability. Additionally, 

including more samples for machine learning models can further improve the accuracy 

and generalizability of the results. One important aspect of future studies evaluating 

CAN progression would be the continuous collection and analysis of data over time. 

This would enable more effective screening and help to identify which parameters have 

been altered and which ones have not, as well as assess whether treatment 

interventions have improved or even reversed CAN progression. 
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