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RESUMO

Na indústria de manufatura, o desenvolvimento de novos produtos frequentemente requer
a criação de processos complexos e caros. Esta tese visa criar um framework de Otimização
Bayesiana Antecipada Multiobjetivo (multiobjective Lookeahead Bayesian Optimization)
para otimizar o processo de moldagem de vidro não isotérmico (NGM) no Fraunhofer
IPT. O método NGM é utilizado para a fabricação de lentes a partir de material de
vidro maciço ou fino, moldando-o sob calor e força externa. A tecnologia é promissora
por sua capacidade de formar formatos complexos de maneira econômica e eficiente em
termos de energia. No entanto, devido à complexidade do processo de fabricação e aos
inúmeros fatores que podem impactá-lo, identificar os parâmetros ideais para alcançar
precisão exata no formato das lentes é desafiador. Métodos tradicionais para identificar
os parâmetros ideais são caros e dependem fortemente de experimentação extensiva, con-
sumo de material, possuem um extenso espaço de parâmetros e dependem do elemento
de acaso. A Otimização Bayesiana visa abordar essa complexidade conduzindo experi-
mentos sequenciais para encontrar os parâmetros ideais, reduzindo assim o número de
experimentos necessários através de um raciocínio preditivo sobre os possíveis resultados
de cada experimento e mantendo um equilíbrio entre exploration e exploitation. O estudo
escolheu um Processo gaussiano para a Otimização Bayesiana como modelo substituto, e
Expected Hypervolume Improvement (qEHVI) juntamente com Decaying Prior-Weighted
qEHVI foram selecionados como funções de aquisição após um benchmark. Um modelo de
aprendizado de máquina foi desenvolvido para avaliar o framework seguindo a metodologia
CRISP-DM, atuando como um substituto para o processo real. Este modelo empregou
um regressor Lasso e foi baseado em um conjunto de dados existente com muitos expe-
rimentos. O desenvolvimento do modelo de aprendizado de máquina envolveu etapas de
pré-processamento de dados, extração, engenharia, limpeza, seleção de características e
treinamento do modelo. Finalmente, o framework e o modelo substituto foram integrados
para realizar a otimização. A otimização levou a uma melhoria significativa nos valores
de pico a vale (PV), os quais indicam a precisão do formato, com um ligeiro aumento no
desvio do formato (RMS). Esses resultados foram alcançados com uma redução de mais
de 50% no número de experimentos em comparação com o conjunto de dados existente, e
identificou com sucesso os parâmetros ideais do processo.
Palavras-chave: Otimização Bayesiana Antecipada. Otimização de processos. Aprendi-
zado de máquina.



RESUMO

In the manufacturing industry, the development of new products often requires the cre-
ation of complex and expensive processes. This thesis aims to create a multiobjective
Lookahead Bayesian Optimization (BO) framework to optimize the non-isothermal glass
molding (NGM) process at Fraunhofer IPT. NGM is utilized for manufacturing glass optics
from bulk or thin glass material by shaping the glass under heat and external force. The
technology is promising for its ability to form complex shapes in a cost- and energy-efficient
manner. However, due to the complexity of the manufacturing process and the numerous
factors that can impact it, identifying the optimal parameters for achieving precise lens
shape accuracy is challenging. Traditional methods to identify the optimum parameters
are costly and rely heavily on extensive experimentation, material consumption, large
parameter spaces, and an element of chance. Bayesian Optimization aims to address this
complexity by conducting sequential experiments to find the optimal parameters, thereby
reducing the number of required experiments through better predictive reasoning about
future outcomes and maintaining a balance between exploration and exploitation. The
study chose a Gaussian process for the BO framework as the surrogate model, and paral-
lel Expected Hypervolume Improvement (qEHVI) along with Decaying Prior-Weighted
qEHVI were selected as acquisition functions after a benchmark. A Machine Learning
model was developed to evaluate the framework following the CRISP-DM methodology,
serving as a surrogate for the real-world process. This model employed a Lasso regressor
and was based on an existing dataset with a lot of experiments. The Machine Learning
model’s development involved stages of data preprocessing, feature extraction, engineering,
cleaning, selection, and model training. Finally, the framework and the surrogate model
were integrated to perform the optimization. The optimization led to a significant impro-
vement in peak-to-valley (PV) values, indicating form accuracy, with a slight increase in
shape deviation (RMS). These outcomes were achieved with more than a 50% reduction
in the number of experimental tests compared to the existing dataset, and successfully
identified the optimal process parameters.

Keywords: Lookahead Bayesian Optimization. Process Optimization. Machine Learning.
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1 INTRODUÇÃO

A tese desenvolve um framework de Otimização Bayesiana Antecipada (Lookahead
Bayesian Optimization) para otimizar o processo de moldagem de vidro não isotérmico
no Instituto Fraunhofer IPT. Ela aborda os desafios do processo de produção, visando
diminuir o tempo e recursos gastos para a identificação dos parâmetros ideais para a
produção das lentes. Além disso, um modelo de aprendizado de máquina foi utilizado
para simular o processo real (como se fosse um modelo substitutivo) e, posteriormente,
para a validação do framework, visto que o processo de avaliação e produção das lentes é
demorado e depende da disponibilidade.

O trabalho foi realizado no Instituto Fraunhofer, Alemanha, dentro do departa-
mento de produção inteligente. Ele abrange um estudo teórico de conceitos fundamentais
para a otimização bayesiana, aprendizado de máquina, desenvolvimento do framework
com funções de aquisição customizadas e modelos substitutos, modelo de aprendizado de
máquina para validação, e realização da otimização utilizando tanto o framework quanto
o modelo.

É importante ressaltar que a tese completa foi desenvolvida na língua inglesa e
está disponível, na íntegra, no ANNEX A – ENGLISH THESIS. A presente versão em
português é somente um resumo, ressaltando os principais pontos do trabalho.
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2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo aborda o embasamento teórico essencial para a moldagem de vidro,
amostragem, aprendizado de máquina e Otimização Bayesiana. Essas informações servem
como uma base para entender os conceitos e metodologias empregados na tese.

2.1 MOLDAGEM DE VIDRO

2.1.1 Visão geral da produção de ópticas complexas

O vidro é cada vez mais utilizado em relação aos polímeros devido às suas proprie-
dades superiores, como dureza e resistência a danos térmicos e por arranhões, melhorando
a qualidade óptica e durabilidade (VU; GRUNWALD; BERGS, 2020; VU; KREILKAMP;
DAMBON et al., 2016). A fabricação tradicional de ópticas é ineficiente devido ao desper-
dício de material e alto consumo de energia. A Moldagem de Vidro Não Isotérmica (NGM)
e a Moldagem de Vidro de Precisão (PGM) são dois métodos que abordam esses desafios,
com a NGM oferecendo vantagens em tempo de processamento e viabilidade econômica
para a produção de ópticas complexas de vidro (BLIEDTNER; GRÄFE, 2010; JIANG, C.
et al., 2022; VU; HELMIG et al., 2020).

2.1.2 Moldagem de vidro não isotérmica

A NGM emprega uma técnica de formação a quente onde as temperaturas do vidro
e do molde diferem, possibilitando tempos de processamento mais curtos e mantendo alta
precisão (VU; KREILKAMP; KRISHNAMOORTHI et al., 2016; NONISOTHERMAL. . . ,
2016). Este método é distinguido da PGM pela separação das longas etapas de aquecimento
e resfriamento do ciclo de moldagem, tornando-o uma opção econômica para a produção
de componentes ópticos complexos (VU; GRUNWALD; BERGS, 2020).

2.2 AMOSTRAGEM

2.2.1 Latin Hypercube Sampling

O método Latin Hypercube Sampling (LHS) de amostragem é projetado para superar
a amostragem aleatória simples, garantindo uma cobertura completa do intervalo das
variáveis de entrada (MCKAY; BECKMAN; CONOVER, 1979; DEUTSCH; DEUTSCH,
2012). O LHS é popular por sua capacidade de cobrir efetivamente espaços de design
pequenos e grandes e é adequado para otimizar designs para modelos sofisticados dentro
de um número fixo de execuções (LOH, 1996; HELTON; DAVIS, 2003; VIANA, 2016).
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2.3 APRENDIZADO DE MÁQUINA

2.3.1 Fundamentos do Aprendizado de Máquina

Aprendizado de máquina, um subconjunto da Inteligência Artificial (IA), é "a
ciência (e arte) de programar computadores para que eles possam aprender a partir de
dados"(GERON, 2019). Abrange vários domínios e é principalmente categorizado em
aprendizado supervisionado, não supervisionado e por reforço (GERON, 2019). Suas
aplicações abrangem vários domínios, incluindo robótica, jogos de computador, previsão
de tráfego, diagnóstico médico e recomendação de produtos (RAY, 2019).

2.3.2 Framework CRISP-DM

O framework CRISP-DM define seis fases para projetos de mineração de dados,
desde entender os objetivos de negócios até a implantação do modelo para benefícios
comerciais (CHAPMAN, 2000; MARTÍNEZ-PLUMED et al., 2021). Ele enfatiza o enten-
dimento dos aspectos de negócios e dados, preparação dos dados, modelagem, avaliação e
implantação, fornecendo uma abordagem estruturada para desenvolver soluções baseadas
em dados.

2.4 OTIMIZAÇÃO BAYESIANA

A Otimização Bayesiana (BO) tem suas raízes em métodos estatísticos do início do
século XX, evoluindo para uma ferramenta poderosa para otimizar funções desconhecidas
ou "black box". Ganhou impulso com a adoção de Processos Gaussianos (GPs) como
modelos substitutos, introduzidos por Kushner (1962), e expandiu-se ainda mais em
aplicações através do trabalho de Jones, Schonlau e Welch (1998). Apesar de sua eficácia
em otimização multidimensional e com restrições, a BO enfrenta limitações em espaços
de alta dimensão e sensibilidade a outliers.

Na Otimização Bayesiana, ocorre a melhoria iterativa do modelo substituto, prin-
cipalmente usando GPs, e a seleção estratégica de pontos de observação por meio de
funções de aquisição. Esse processo identifica eficientemente soluções ótimas, equilibrando
a exploração de novas áreas e a explotação de regiões promissoras conhecidas, também
conhecido como o equilíbrio entre exploration e exploitation. Funções de aquisição avança-
das, como a Expected Hypervolume Improvement (EHVI), são fundamentais para realçar a
capacidade da BO, especialmente para tarefas de otimização multiobjetivo. EHVI foca em
melhorar a frente de Pareto (em inglês, Pareto front), uma coleção de soluções ótimas em
cenários multiobjetivo, maximizando o indicador de hipervolume que mede a qualidade
dessas soluções.

Um avanço significativo na BO é a incorporação de estratégias de antecipação, que
consideram os benefícios de longo prazo de observações potenciais em vez de tomar decisões
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com base em ganhos imediatos. Essa abordagem, exemplificada por "Efficient Nonmyopic
Bayesian Optimization via One-Shot Multi-Step Trees"por Shali Jiang et al. (2020), usa
uma função de aquisição não míope que planeja vários passos à frente, otimizando a seleção
de pontos de observação futuros. Esse método, que pode prever a utilidade de amostras
futuras com mais precisão, representa um avanço significativo em tornar a BO mais eficaz
para problemas de otimização complexos, onde o custo e o tempo dos experimentos são
considerações críticas.

2.5 FUNÇÕES DE BENCHMARK

Funções de benchmark, como a família DTLZ e o problema de Segurança Veicular,
são utilizadas para avaliar métodos de otimização.
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3 METODOLOGIA

Este capítulo apresenta a metodologia para desenvolver um modelo de Otimização
Bayesiana Antecipatória e Aprendizado de Máquina para otimizar o processo de fabri-
cação de lentes. A abordagem começa com uma configuração experimental envolvendo
amostragem LHS para projetar experimentos e coletar dados sobre a qualidade das lentes
e os parâmetros do processo. Um modelo de regressão de aprendizado de máquina simula
o processo de fabricação, avaliando a eficácia da Otimização Bayesiana Antecipatória para
a otimização dos parâmetros do processo. A metodologia abrange a preparação de dados,
processamento, extração e seleção de características para garantir a prontidão dos dados
para o treinamento do modelo.

3.1 CONFIGURAÇÃO EXPERIMENTAL

Para a coleta e preparação de dados, os experimentos são projetados usando amos-
tragem LHS, focando na coleta de dados de qualidade das lentes e dados dos sensores do
processo. Os experimentos visam cobrir o espaço de parâmetros efetivamente, garantindo
uma cobertura representativa para o modelo de aprendizado de máquina.

3.2 PIPELINE DE APRENDIZADO DE MÁQUINA

A pipeline de aprendizado de máquina envolve o pré-processamento dos dados de
entrada e objetivo, incluindo extração, engenharia e limpeza de características. Logo após,
inclui a seleção de características significativas, treinamento do modelo com regressão Lasso
e ajuste de hiperparâmetros para minimizar erros de predição, garantindo treinamento
eficaz do modelo.

3.3 FRAMEWORK DE OTIMIZAÇÃO BAYESIANA ANTECIPATÓRIA

O framework de Otimização Bayesiana Antecipatória emprega um regressor de
Processo Gaussiano e várias funções de aquisição, incluindo funções personalizadas desen-
volvidas para incorporar conhecimento especializado no processo de otimização. Testes
de benchmark avaliam diferentes funções de aquisição e passos antecipatórios, determi-
nando estratégias eficazes para a otimização do processo real. O framework visa selecionar
experimentos altamente informativos para o processo de fabricação de lentes durante a oti-
mização, maximizando os insights sobre a função desconhecida representada pelo processo
real de fabricação.
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4 RESULTADOS E DISCUSSÃO

O capítulo apresenta os resultados da integração da Otimização Bayesiana Anteci-
patória com um modelo de Aprendizado de Máquina de Regressão Lasso para otimizar o
processo de fabricação de lentes.

4.1 MODELO DE APRENDIZADO DE MÁQUINA

O modelo de aprendizado de máquina alcançou Erros Absolutos Médios (MAEs)
para valores de pico a vale (PV) e desvio no formato (RMS) significativamente inferiores
ao objetivo de 80 micrômetros, indicando um excelente desempenho. A boa generalização
do modelo para dados não vistos foi destacada pela semelhança das métricas de erro entre
os conjuntos de validação e teste.

4.2 INTEGRAÇÃO DA OTIMIZAÇÃO BAYESIANA ANTECIPATÓRIA E MODELO DE
APRENDIZADO DE MÁQUINA

A Otimização Bayesiana Antecipatória, integrada ao modelo substituto de apren-
dizado de máquina, foi executada em 20 iterações, cada uma avaliando 10 candidatos.
Essa configuração, totalizando 220 experimentos, teve como objetivo minimizar tanto os
valores de PV quanto de RMS. A otimização alcançou com sucesso uma frente de Pareto
abrangente, indicando um conjunto diversificado de soluções ótimas com valores mínimos
de PV e RMS de menos de 32,5 micrômetros e 4,5 micrômetros, respectivamente.

Uma comparação com os melhores resultados de 500 experimentos usando amos-
tragem LHS mostrou que a Otimização Bayesiana melhorou significativamente os valores
de PV, embora os valores de RMS tenham aumentado ligeiramente. Notavelmente, essas
melhorias foram alcançadas com menos experimentos do que a LHS.
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5 CONCLUSÃO

Este capítulo demonstra que o framework de Otimização Bayesiana Antecipatória,
proposto nesta tese, melhora a fabricação de lentes de vidro no Fraunhofer IPT, requerendo
menos experimentos. Um modelo de regressão Lasso, treinado com dados da amostragem
LHS, simula o processo com alta precisão, atendendo aos padrões de desempenho. A
eficácia é confirmada por testes de benchmark e pela simulação do processo real usando
Processo Gaussiano e funções de aquisição específicas, como o qDecayWeightedEHVI. Isso
resultou em melhorias significativas nos valores de pico a vale (PV), com um pequeno
aumento nos valores RMS, em comparação com dados prévios. A otimização efetiva com
menos experimentos evidencia o sucesso da tese.
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ABSTRACT

In the manufacturing industry, the development of new products often requires the cre-
ation of complex and expensive processes. This thesis aims to create a multiobjective
Lookahead Bayesian Optimization (BO) framework to optimize the non-isothermal glass
molding (NGM) process at Fraunhofer IPT. NGM is utilized for manufacturing glass optics
from bulk or thin glass material by shaping the glass under heat and external force. The
technology is promising for its ability to form complex shapes in a cost- and energy-efficient
manner. However, due to the complexity of the manufacturing process and the numerous
factors that can impact it, identifying the optimal parameters for achieving precise lens
shape accuracy is challenging. Traditional methods to identify the optimum parameters
are costly and rely heavily on extensive experimentation, material consumption, large
parameter spaces, and an element of chance. Bayesian Optimization aims to address this
complexity by conducting sequential experiments to find the optimal parameters, thereby
reducing the number of required experiments through better predictive reasoning about
future outcomes and maintaining a balance between exploration and exploitation. The
study chose a Gaussian process for the BO framework as the surrogate model, and parallel
Expected Hypervolume Improvement (qEHVI) along with Decaying Prior-Weighted qE-
HVI were selected as acquisition functions after a benchmark. A Machine Learning model
was developed to evaluate the framework following the CRISP-DM methodology, serving
as a surrogate for the real-world process. This model employed a Lasso regressor and was
based on an existing dataset with a lot of experiments. The Machine Learning model’s
development involved stages of data preprocessing, feature extraction, engineering, clean-
ing, selection, and model training. Finally, the framework and the surrogate model were
integrated to perform the optimization. The optimization led to a significant improvement
in peak-to-valley (PV) values, indicating form accuracy, with a slight increase in shape
deviation (RMS). These outcomes were achieved with more than a 50% reduction in the
number of experimental tests compared to the existing dataset, and successfully identified
the optimal process parameters.

Keywords: Lookahead Bayesian Optimization. Process Optimization. Machine Learning.



RESUMO

Na indústria de manufatura, o desenvolvimento de novos produtos frequentemente requer
a criação de processos complexos e caros. Esta tese visa criar um framework de Otimização
Bayesiana Antecipada (Lookeahead Bayesian Optimization) para otimizar o processo de
moldagem de vidro não isotérmico (NGM) no Fraunhofer IPT. O método NGM é utilizado
para a fabricação de lentes a partir de material de vidro maciço ou fino, moldando-o sob
calor e força externa. A tecnologia é promissora por sua capacidade de formar formatos
complexos de maneira econômica e eficiente em termos de energia. No entanto, devido
à complexidade do processo de fabricação e aos inúmeros fatores que podem impactá-lo,
identificar os parâmetros ideais para alcançar precisão exata no formato das lentes é desa-
fiador. Métodos tradicionais para identificar os parâmetros ideais são caros e dependem
fortemente de experimentação extensiva, consumo de material, possuem um extenso espaço
de parâmetros e dependem do elemento de acaso. A Otimização Bayesiana visa abordar
essa complexidade conduzindo experimentos sequenciais para encontrar os parâmetros
ideais, reduzindo assim o número de experimentos necessários através de um raciocínio
preditivo sobre os possíveis resultados de cada experimento e mantendo um equilíbrio entre
exploration e exploitation. O estudo escolheu um Processo gaussiano para a Otimização
Bayesiana como modelo substituto, e Expected Hypervolume Improvement (qEHVI) junta-
mente com Decaying Prior-Weighted qEHVI foram selecionados como funções de aquisição
após um benchmark. Um modelo de aprendizado de máquina foi desenvolvido para avaliar
o framework seguindo a metodologia CRISP-DM, atuando como um substituto para o
processo real. Este modelo empregou um regressor Lasso e foi baseado em um conjunto
de dados existente com muitos experimentos. O desenvolvimento do modelo de aprendi-
zado de máquina envolveu etapas de pré-processamento de dados, extração, engenharia,
limpeza, seleção de características e treinamento do modelo. Finalmente, o framework e
o modelo substituto foram integrados para realizar a otimização. A otimização levou a
uma melhoria significativa nos valores de pico a vale (PV), os quais indicam a precisão do
formato, com um ligeiro aumento no desvio do formato (RMS). Esses resultados foram
alcançados com uma redução de mais de 50% no número de experimentos em comparação
com o conjunto de dados existente, e identificou com sucesso os parâmetros ideais do
processo.

Palavras-chave: Otimização Bayesiana Antecipada. Otimização de processos. Aprendi-
zado de máquina.
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1 INTRODUCTION

In the field of engineering, the process of developing a material or product is often
time-consuming, traditionally relying on a trial-and-error approach. This method can
significantly prolong the time required to identify optimal parameters. (LIU, 2017)

Bayesian Optimization has become popular in engineering due to its potential to
accelerate the process by intelligently selecting the right experiments sequentially. This
approach aims to optimize an otherwise complex and poorly understood function, often
referred to as a "black box" function (GREENHILL et al., 2020). The objective of this
thesis is to optimize a real production process of optical lenses using a Looakhead Bayesian
Optimization approach and assess its performance with a Machine Learning model, serving
as a surrogate for the actual experiment.

This initial chapter presents the motivation and context of the thesis, followed by
an introduction to the project’s background. It then outlines the objectives of the bachelor
thesis, including a description of the work’s scope, and concludes with an overview of the
document’s structure.

1.1 MOTIVATION AND CONTEXT

The demand for glass lenses has been steadily increasing, driven by their extensive
application across various industries and in numerous modern technologies. Glass lenses
are integral components in diverse optical systems, such as camera optics, LED lighting,
sensor devices, and interior components in automobiles (ZHU et al., 2012; VU; HELMIG,
et al., 2020).

Despite the widespread use, the production process remains costly and involves
extended experimentation cycles, This is primarily due to the limited understanding of how
different steps in the process influence model glass to shrink, as well as the behavior of glass
in terms of heat, flow, and physical changes (VU; KREILKAMP; KRISHNAMOORTHI,
et al., 2016). This complexity poses significant obstacles in comprehending how these
parameters affect the various phenomena involved in glass molding.

Traditionally, non-isothermal glass molding (NGM) technology has been used to
manufacture simple products without high requirements, such as drinking cups, ashtrays,
and salad bowls. However, at IPT, there is an ambition to push the NGM beyond its con-
ventional applications, aiming to achieve high precision and energy-efficient manufacturing
with small shape deviation, potentially revolutionizing the industry with a cost-effective
and highly accurate production method.

These challenges can be effectively addressed through the application of Bayesian
Optimization. This method progressively refines the production process and significantly
reduces the number of necessary experiments, demonstrating a sample-efficient approach.
It is utilized in various "black box" functions encountered in areas such as AI, engineering,
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and material science, thus becoming an increasingly attractive methodology for accelerated
materials research and optimizing material properties (SOLOMOU et al., 2018).

1.2 PROJECT CONTEXT

The thesis project was conducted at Fraunhofer IPT during a one-year internship
program, BRAACHEN. The necessary materials, machinery, and data were provided by
the institute.

1.2.1 Institute

1.2.1.1 Fraunhofer-Gesellschaft

The Fraunhofer-Gesellschaft is the world’s leading applied research organization.
It is based in Germany and is deeply committed to the development of new technolo-
gies through interdisciplinary research collaborations with partners and companies from
across the globe. Nowadays it operates with more than 80 research facilities, including 76
institutes, and more than 30.000 employees. (FRAUNHOFER, 2023c)

The name of the Gesellschaft was named after Joseph Von Fraunhofer, a successful
researcher, inventor, and entrepreneur, who was therefore chosen as the role model and
namesake of the organization. He is considered one of the founders of modern optics due
to his contributions to the development of new glass production and processing methods,
as well as manufacturing the best telescopes of his time. He was recognized as the first
German exponent of precision optics, and for his contribution to the research on the
spectral composition of light. (FRAUNHOFER, 2023a)

Established in Munich on March 26th, 1949, the organization has a rich history
of innovation, with several notable achievements. One of the most renowned Fraunhofer
developments is the MP3 audio data compression process, which has garnered widespread
recognition over the years (FRAUNHOFER, 2023b).

1.2.1.2 Fraunhofer IPT

The Fraunhofer Institute for Production Technology IPT is based on the premises
of the RWTH Aachen campus in Aachen, focusing on the development of systems solutions
for the sustainable, resilient, and digitalized production of resource-saving products. (IPT,
2024)

1.2.1.3 The Production Quality Department

The internship was realized within the Production Quality department, which
places a strong emphasis on consistent digitalization and cross-linking of production data,
as well as maximizing resource efficiency. During the internship, one of the focuses was on



Chapter 1. Introduction 13

projects in Machine Learning and Data Science, with an emphasis on applications relevant
to the manufacturing industry.

1.3 OBJECTIVE OF THE THESIS

1.3.1 General objective

The bachelor thesis aims to develop a Lookahead Bayesian Optimization framework
to optimize the production process of glass lenses. This method has distinct advantages
over traditional BO approaches. One of the key benefits of Lookahead BO is its ability to
anticipate the probable outcomes of future tests. By its anticipation, the framework can
selectively focus on those that are most likely to yield significant improvement, particularly
in scenarios where the number of experiments that can be conducted is limited. Another
benefit is the evaluation of multiple candidates in each iteration, allowing for the planning
of an entire set of experiments in a single optimization step. This is particularly valuable
as it saves time in the measurement and analysis phases required before proceeding to the
next set of candidates.

This framework involves integrating and selecting a Gaussian processes and an
Acquisition Functions to streamline the optimization process. As well as building a Ma-
chine Learning model to simulate real experiments and assess the performance of this
optimization technique. The ultimate goal is to improve shape deviation beyond what was
achieved in prior experiments.

The decision to build a Machine Learning model for simulating the actual process is
driven by practical considerations, such as providing flexibility for future experiments and
projects that extend beyond the scope of this thesis. Furthermore, the limited timeframe
for project development and the availability of machinery were key influencing factors.
Using this model provides a viable way to perform a comprehensive evaluation of the
optimization technique.

One of the major challenges of this work is ensuring that each component of the
framework functions efficiently and cohesively. This requires a lot of extensive research,
exploration, and development. Additionally, the final framework should be user-friendly,
facilitating its adoption in future experiments at Fraunhofer IPT.

1.3.2 Specific objectives

The specific objectives were outlined based on the main ones, and aim to define an
optimization that satisfies all requirements:

• Study the literature about Lookahead Bayesian Optimization and Machine Learning
and how they are applied.
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• Develop an efficient Lookahead Bayesian Optimization pipeline, validated through
benchmark testing, which includes a Surrogate Model and an Acquisition Function.

• Implementation of the Lookahead Bayesian Optimization framework into code.

• Develop a Machine Learning model to serve as a surrogate for validation, accurately
mimicking the production of real lenses.

• Realization of the optimization process and validation of the results.

It’s important to note that this thesis employs two distinct surrogate models. The first is
integrated into the Lookahead Bayesian Optimization framework, aiding in the optimiza-
tion process. The second surrogate developed independently, validates the framework by
mimicking real-world lens production.

1.4 DOCUMENT OUTLINE

This document is organized into five chapters, detailing the development of a
Lookahead Bayesian Optimization framework and its assessment through a Machine
Learning model.

Chapter 1 provides important information about the project, including its moti-
vation and context. It also outlines the objectives and scope of the student’s work.

Chapter 2 highlights the theoretical background necessary to understand the key
concepts utilized in this thesis. These concepts include the fundamentals of glass molding,
sampling techniques, Bayesian optimization, and Machine Learning.

Chapter 3 focuses on the methodology. It describes how the experimental data
was generated for the Machine Learning model, the steps involved in developing the model,
and the creation of the Lookahead Bayesian Optimization framework.

Chapter 4 is dedicated to presenting the results of the Machine Learning model
and evaluating the performance of the Lookahead Bayesian Optimization.

Finally, Chapter 5 concludes the thesis by discussing the results and assessing
the initial objectives of the work. This chapter also suggests future research direction in
modeling the lens manufacturing process and advancing Lookahead Bayesian Optimization
in production settings.
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2 THEORETICAL BACKGROUND

This chapter outlines the essential theoretical background of glass molding, sam-
pling, machine learning, and Bayesian Optimization. This information serves as a founda-
tion for understanding the concepts and methodologies employed in the thesis work.

2.1 GLASS MOLDING

2.1.1 Overview of the production of complex optics

Nowadays, glass is increasingly replacing polymers in many applications. This is
predominantly due to its superior hardness, enhanced thermal and scratch resistance
which together increase optical quality under any condition and extend durability (VU;
GRUNWALD; BERGS, 2020; VU; KREILKAMP; DAMBON, et al., 2016).

The market of LED-based products, encompassing automotive lighting, street illu-
mination, and sensor components, is projected to grow at a Compound Annual Growth
Rate (CAGR) of 11% from 2023 to 2030, as reported by Grand View Research (2023).
This growth represents a rising demand for these products in the coming years, being
important to be cost-efficient.

The conventional optics manufacturing is very old and remained the same for
years. These lenses pass through a process of grinding and polishing, leading to significant
material waste and high energy consumption, rendering them inefficient for large-scale
production. (BLIEDTNER; GRÄFE, 2010)

Furthermore, the industry’s demand for complex shapes necessitates a costly and
challenging manufacturing process with high requirements for form accuracy and surface
roughness. To address these demands, two primary methods are utilized: Precision Glass
Molding (PGM) and the focus of this thesis, Nonisothermal Glass Molding (NGM).

PGM is a specialized isothermal technique wherein the glass temperature is main-
tained uniformly during the pressing process (JIANG, C. et al., 2022). This method is
utilized to produce highly accurate optical components, such as lenses for digital cameras
and smartphones, benefiting from improved form and surface precision. However, PGM
requires advanced system technology, expensive high-precision equipment, and lengthy
processing time (VU; HELMIG, et al., 2020).

2.1.2 Non-isothermal glass molding

Non-isothermal glass molding, the method utilized in this thesis, employs a
replication-based hot forming technique for manufacturing. This method allows the
temperatures of the glass and the molding tools to differ during the process. This
technique allows the process to reduce the processing time per unit molded part, while
still maintaining high precision and good surface quality of the molded optics as reported
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in Vu, Kreilkamp, Krishnamoorthi, et al. (2016). This short processing time is possible
because it differs from the PGM method in the separation of the long heating and
cooling stages from the molding cycle (NONISOTHERMAL. . . , 2016). Additionally, it
is also an economically advantageous method for producing complex glass optics (VU;
GRUNWALD; BERGS, 2020), as it doesn’t need grinding and polishing.

The NGM process can be outlined in 10 steps, as depicted in Figure 1 and described
in Mende et al. (2023). In summary, the glass lens production process begins with heating
the furnace. The lens is then placed into the mold tool, and both are positioned inside
the furnace. During the homogenizing phase inside the furnace, the temperature within
the mold and the glass is evenly distributed. After this phase, the mold and glass are
removed from the furnace and moved to the forming stage. Here, the machine applies a
pressing force to bring the two halves of the mold together. Finally, the lens undergoes
rapid cooling, is unloaded from the mold, and then subjected to external annealing.

Figure 1 – Non-isothermal glass forming process.

Preheating Loading Heating Forming Fast
cooling

Unloading External
annealing

Source: Author, based on Fiorini (2023).

2.2 SAMPLING

In this work, the primary objective of designing samples is to carefully select a lim-
ited number of experiments for execution in the actual manufacturing process. The goal is
to ensure that these experiments capture all essential information and accurately represent
the system. This sampling will form the basis for creating the machine learning model, and
ensure good generalization capabilities. The chosen method must minimize the inclusion
of non-informative simulation points, thereby enhancing the model’s representatives of
the real-world process (LEVY; ADAMS; STEINBERG, 2010).

2.2.1 Latin Hypercube Sampling

The Latin Hypercube Sampling (LHS) was created with the objective of outperform-
ing other methods such as random sampling (SRS) by ensuring full coverage of the range
of the input variables (MCKAY; BECKMAN; CONOVER, 1979). It is a technique that
focuses on uniform sampling of the univariate distributions by stratifying the cumulative
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distribution function and randomly sampling within the strata (DEUTSCH; DEUTSCH,
2012).

This method is one of the most popular in research (LOH, 1996), and it is both
theoretically and experimentally proven that LHS is better than random sampling (HEL-
TON; DAVIS, 2003). Additionally, as mentioned in (VIANA, 2016), LHS offers several
benefits that make it a preferred choice in the design of experiments:

• LHS is capable of covering both small and large design spaces effectively.

• It is suitable for optimizing designs for sophisticated models within a fixed number
of runs.

• The method is flexible because the dimensions of the design space are independent.

It works by dividing the subspace into equally probable intervals, wherein some
points are chosen to have good coverage. It creates the samples by randomly combining
the chosen points without replacement, which won’t be chosen again in the next iteration.
Repeatedly doing this iteration, LHS would produce a set of samples that are representative
of the real variability (SHIELDS; ZHANG, 2016).

2.3 MACHINE LEARNING

2.3.1 Fundamentals of Machine Learning

Machine learning, a subset of Artificial Intelligence (AI), is "the science (and art)
of programming computers so they can learn from data" (GERON, 2019). Nowadays, its
applications span various domains, including robotics, computer games, traffic prediction,
medical diagnosis, and product recommendation (RAY, 2019).

It is primarily categorized into three types: supervised, unsupervised, and reinforce-
ment learning, though they can be combined when needed.

• Supervised Learning: This occurs when the training data includes the target solutions
or labels (GERON, 2019). It encompasses two tasks: classification for categorical
target data and regression for numerical target data.

• Unsupervised Learning: This takes place when the training data don’t have the
target solutions or labels.

• Reinforcement Learning: Here, a model (or agent) learns over time to develop an
optimal strategy (policy) for maximizing rewards (GERON, 2019). The learning
process involves receiving rewards or penalties based on its actions.
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2.3.2 CRISP-DM Framework

The CRISP-DM (Cross Industry Standard Process for Data Mining) framework,
introduced by Chapman (2000), guides and documents all the key steps in data mining
projects (MARTÍNEZ-PLUMED et al., 2021). In recent years, it has gained popularity in
data science for deriving insights from data. It is commonly employed in AI and machine
learning projects, where the goal is to develop high-quality, data-driven solutions.

The framework has six phases, outlined below based on Chapman (2000), and
illustrated in Figure 2.

Figure 2 – CRISP-DM steps.
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Data preparationEvaluation

Deployment

Modelling

Source: Author, based on Chapman (2000).

1. Business understanding: This initial step focuses on understanding the project’s
objectives and requirements from a business perspective.

2. Data understanding: It involves data collection, exploratory analysis, identifying
quality issues, and having first insights.

3. Data preparation: This stage finalizes the dataset, including data cleaning and
transformations.

4. Modeling: It entails creating and refining the model to achieve the desired perfor-
mance.

5. Evaluation: The model undergoes a business evaluation to ensure it meets the
specified requirements.
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6. Deployment: The final phase, where the model is utilized for business benefits, either
as a report or a software component.

Regarding the CRISP-DM framework, two steps are particularly relevant to this
thesis and will have their theoretical background outlined: modeling, and evaluation.

2.3.2.1 Modelling: linear regression

Linear regression is one of the simplest ways to determine the relationship between
two continuous variables. It is widely used for predictive analysis methods when the
outcomes of prediction can be quantified and modeled in connection to several independent
variables (LIM, 2019). There are two types: simple and multiple regression.

Simple regression, depicted in Figure 3, analyses the relationship between a de-
pendable y variable and an independent variable x (HOPE, 2020). The relationship is
expressed in Equation 1, where C is a constant number or "intercept", β the slope or
"coefficient", x the predictor, and ϵ represents the noise.

y = C + βx + ϵ (1)

Figure 3 – Simple Linear Regression.
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Multiple regression extends to multiple predictors (HOPE, 2020), as shown in Equa-
tion 2. In the Equation, β values are regression coefficients, representing the relationship
between input features xi and the output result y (LIM, 2019).

y = C + β1x1 + β2x2 + β3x3 + . . . + βnxn + ε (2)
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2.3.2.1.1 Linear Regression with Lasso regularization

In linear regression, regularization aims to reduce overfitting by constraining the
model’s weights. Overfitting occurs when a model performs well on the training data but
fails to generalize effectively. (GERON, 2019)

Lasso, or "Least absolute shrinkage and selection operator", adds a regularization
term based on the l1 norm of the weights to its cost function. This approach reduces
the weights of the less important features, effectively selecting a simpler model that may
prevent overfitting. (GERON, 2019)

2.3.2.2 Evaluation: performance metrics

Assessing regression model performance relies on various metrics, including the
Mean Squared Error, Root Mean Squared Error, and Mean Absolute Error.

2.3.2.2.1 Mean Squared Error

Mean squared error (MSE) measures the average squared difference between actual
and predicted values, as shown in Equation 3. The squaring of the differences makes this
metric sensitive to larger errors. (NASER; ALAVI, 2023)

MSE = 1
n

n∑

i=1
(yi − ŷi)2 (3)

2.3.2.2.2 Root Mean Squared Error (RMSE)

The root mean squared error (RMSE) metric is the square root of MSE, as depicted
in Equation 4. This metric has the same unit as the target values, making it more
understandable. (NASER; ALAVI, 2023)

RMSE =
√√√√ 1

n

n∑

i=1
(Yi − Ŷi)2 (4)

2.3.2.2.3 Mean Absolute Error

Mean absolute error (MAE) measures the average absolute difference between
actual and predicted values, as shown in Equation 5. (NASER; ALAVI, 2023)

MAE = 1
N

N∑

i=1
|yi − ŷi| (5)



Chapter 2. Theoretical Background 21

2.3.3 Challenges of Machine Learning

Machine Learning model development faces several key challenges, as outlined in
(GERON, 2019):

1. Insufficient quantity of data: Quality data is crucial for most models. Research by
Microsoft Banko and Brill (2001) found that various models can perform similarly
with enough data even in complex tasks like natural language disambiguation.

2. Non-Representative Training Data: The training dataset must include all necessary
cases for proper generalization. Effective sampling is important to guarantee great
coverage.

3. Poor-Quality data: Data cleaning, including removing outliers and noise, is essential
for quality training.

4. Irrelevant features: Feature engineering is critical for selecting, combining, or creating
features that a model can learn from. This step involves feature selection and feature
extraction.
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2.4 OPTIMIZATION

According to Greenhill et al. (2020), the goal of every optimization process is to
search in the domain one point x′ which has the globally maximal value of f ′. This concept
is mathematically represented in Equation 6 and visually depicted in Figure 4.

f(x′) = max
x∈X

f(x) = f(x′) (6)

Figure 4 – Optimization of the function f .

Source: Author.

Optimization problems are typically categorized as either single-objective or multi-
objective, depending on whether they involve optimizing a single function or multiple
functions, respectively. Additionally, these problems vary in dimensionality based on the
number of input variables involved (SHAN; WANG, 2010).

2.5 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) methods have significantly evolved and are funda-
mentally based on the principle that each experiment should be purposefully designed.
This principle traces back to the experimental design for polynomial regression in 1918,
as introduced by Smith (1918). These foundational ideas in statistical approaches and
experimental design paved the way for the advanced strategies utilized today.

The method resurfaced with a publication by Kushner (1962), who introduced the
Gaussian process model for the objective function and proposed the first optimization
policies based on Bayesian Decision Theory. At the beginning of the 2000s, the method
regained attention as evidenced in Jones, Schonlau, and Welch (1998), expanding its
application in computer experiments and global optimization.

Nowadays, BO is a useful tool for finding global maxima of unknown functions,
commonly referred to as "black box functions", where the underlying function is unknown,
as illustrated in 5. This method is powerful when dealing with multidimensional problems,



Chapter 2. Theoretical Background 23

multiple objectives, and constraints. Additionally, it is especially effective for expensive
black-box systems due to its sample-efficient optimization algorithm (GREENHILL et al.,
2020).

BO has its strengths, but it also comes with certain drawbacks and limitations.
One of the primary constraints of BO is that it is most suited to continuous problems with
fewer than 20 dimensions (FRAZIER, 2018). This limitation arises because BO does not
scale well to high-dimensional problems or situations where a large number of samples is
available (ERIKSSON et al., 2020). Another significant challenge with BO is its sensitivity
to outliers. Since BO relies on probabilistic inference to make decisions, the presence of
outliers can bias these inferences (MARTINEZ-CANTIN; TEE; MCCOURT, 2017).

Figure 5 – Black box function: a function where only the input and output values are
known, but not its expression.

?Input Output

Source: Author.

BO has been an important tool for decades, being considered one of the most
important statistical ideas of the past 50 years (GELMAN; VEHTARI, 2021). As stated
by Shahriari et al. (2016), Bayesian Optimization has working use cases in all parts of
engineering, such as A/B testing, Robotics, Reinforcement Learning, Natural Language
Processing, Automatic Machine Learning, and Hyperparameter Tuning.

Generally, the iterative procedure follows what is shown in the Algorithm 1, based
on Garnett (2023). With an initial dataset D, in each iteration, the optimization policy
selects the point for the next observation, which is then observed and appended to the
existing dataset. This iteration continues until a termination condition is reached, such
as achieving the objective or completing a set number of iterations.

Algorithm 1 Adaptive Sampling Algorithm
Require: initial dataset D ▷ can be empty

1: repeat
2: x← Policy(D) ▷ select the next observation location
3: y ← Observe(x) ▷ observe at the chosen location
4: D ← D ∪ {(x, y)} ▷ update dataset
5: until termination condition reached
6: return D

Specifically, the BO process involves several essential iterative steps, which are
outlined below. The flow of these steps is visualized in Figure 6. The process fundamentally
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relies on two main components: the Gaussian Processes and the Acquisition Function.

1. Step 1

Initially, with a dataset D from the black-box function, the initial prior distribution
is stored in a objective function prior, representing the probabilistic prior belief
about the objective function.

This step involves creating a Gaussian Process as the surrogate model to capture
beliefs about the behavior of the unknown function, and an observation model to
describe the data generation mechanism, which consists of noise and errors (SHAHRI-
ARI et al., 2016).

2. Step 2

The Bayesian optimization policies aim to select the next observation location,
defined indirectly by optimizing an acquisition function that identifies potential
observation locations, as stated in Garnett (2023).

The acquisition function is optimized, identifying the most promising points for
testing in the next experiment (GREENHILL et al., 2020).

3. Step 3

Finally, the selected testing points are experimentally evaluated on the real process.

Figure 6 – Iterative steps of Bayesian Optimization.
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Source: Author, based on Greenhill et al. (2020).

2.5.1 Surrogate Model

The surrogate model is employed in Bayesian Optimization to provide a stochastic
approximation of the expensive objective function. Gaussian processes (GP) are often
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chosen for this role due to their precise quantification of uncertainty (GRUVER et al.,
2021), and it has been chosen for this purpose of the thesis.

However, GPs sometimes struggle with complex spaces and have certain limita-
tions (EPPS et al., 2020). To address these challenges, alternative approaches are em-
ployed. One such alternative is the use of Random Forest, an ensemble of Decision Trees,
which offers the advantage of being more computationally efficient (HUTTER; HOOS;
LEYTON-BROWN, 2011). Another effective approach, especially for complex datasets,
is the utilization of neural networks as the surrogate model. Employing an ensemble of
neural networks can provide statistical properties similar to GPs, a method also known
as Bayesian neural network, as described in (LIM et al., 2021).

2.5.1.1 Gaussian Process

Gaussian process regression is a probabilistic supervised machine learning technique
used in both regression and classification tasks. As stated by Garnett (2023), it extends
the familiar multivariate normal distribution to model functions on infinite domains. It
assumes that the output y of a function f at input x can be described as y = f(x) + ϵ,
where ϵ ∼ N(0, σ2) represents normally distributed noise.

It is characterized by a mean function m(x), and a covariance function k(x, x′),
which encode the prior knowledge about the function’s expected value and variability,
respectively (SCHULZ; SPEEKENBRINK; KRAUSE, 2018). This model allows for predic-
tions that incorporate prior knowledge through kernels and provides uncertainty measures
over those predictions (RASMUSSEN; WILLIAMS, 2005).

Specifically, a Gaussian process is defined as shown in Equation 7.

f(x) ∼ GP(m(x), k(x, x′)). (7)

The covariance function, also called the kernel, represents the relationship between
function values at different points, as can be seen in Equation 7.

k(x, x′) = E [(f(x)−m(x))(f(x′)−m(x′))] . (8)

Many popular kernels exist in the literature, including radial basis, Matérn kernel,
and rational quadratic. For the specific use case of glass lens manufacturing, the Matérn
kernel is of particular interest and will be explained in detail. The Matérn kernel is a
widely-used class of kernels often favored in BO due to its ability to specify the smoothness
of the GP by controlling the differentiability of its sample paths, as stated in Borovitskiy
et al. (2023).

The Matérn kernel is mathematically defined by Equation 9, where x and x′

represent arbitrary input points.

K(x, x′) = 21−ν

Γ(ν)

(√
2ν|x− x′|

ω

)ν

Kν

(√
2ν|x− x′|

ω

)
, (9)
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This function has important hyperparameters that can be optimized, which are
outlined below:

• ν: smoothness parameter, which governs the smoothness of the GPy (SANTNER;
WILLIAMS; NOTZ, 2010).

• ω: scale parameter, which determines the spread of the correlation (RASMUSSEN;
WILLIAMS, 2005).

In practice, the Gaussian process can be illustrated as seen in Figure 7, which
illustrates a prior without any beliefs, usually starting with mean zero. It is expressed as
a Gaussian Distribution with mean m(x), and a covariance k(x, x′), shown in the graph
µ ± σ. At this stage, the sequential optimization begins, where each new observation
incrementally refines the model.

Figure 7 – Inital Gaussian Process Prior.
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After observing some data, the GP updates its predictions and uncertainty es-
timates. The optimization happens iteratively, selecting the most promising point for
observations based on the acquisition function, which will be explained in the following
section. This process converges the model towards the true objective, as each iteration
refines the mean and reduces uncertainty, illustrated in Figure 8.

Finally, Figure 9 illustrates the Gaussian Process after multiple iterations. It reached
a point of convergence, demonstrating its effectiveness in learning unknown functions.

2.5.2 Acquisition Function

The acquisition functions aim to provide a score to each potential observation
location (GARNETT, 2023) to help the optimization process, which can also be called
an optimization policy. They are invaluable because of being inexpensive to evaluate
compared to minimizing directly the objective function. As stated on Wilson, Hutter, and
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Figure 8 – Gaussian Process after Observing Data.
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(b) Iteration 2
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(c) Iteration 3
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(d) Iteration 4
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(e) Iteration 5
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Source: (SCHEWINSKI, 2024).

Figure 9 – Refined Gaussian Process after Multiple Iterations.
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Deisenroth (2018), this function amounts to integrals defined in terms of a belief p over
the unknown outcomes y = {y1, . . . , yq} revealed when evaluating a black box function f

at corresponding input locations X = {x1, . . . , xq}.
There are many acquisition functions with different goals and methods for selecting

the next sample. However, to achieve this with as few function evaluations as possible,
a balance between exploration and exploitation is required (GREENHILL et al., 2020).
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Exploitation aims to sample where the objective function is expected to be high, while
exploration intends to sample where there is uncertainty about the objective function, as
mentioned in Garnett (2023).

Most acquisition functions are myopic policies, decided based on a one-step looka-
head utility function (YUE; KONTAR, 2022), ignoring the long term impact of each
selected sample. In contrast, in the emerging scenario of Reinforcement Learning, non-
myopic methods have risen, creating multi-step lookahead algorithms that can perceive
the informative gains obtainable by looking ahead into future steps (FIORE; MAININI,
2022). Detailed information about multi-step lookahead in Bayesian Optimization will be
thoroughly examined in Section 2.5.2.3.

In this thesis, the focus is on multiobjective and nonmyopic acquisition functions,
particularly due to their relevance in optimizing the real production of lenses at IPT.
This emphasis is driven by the fact that the lens production process is costly and time-
consuming, necessitating a limited number of precisely selected experiments. The choice
of these specific types of acquisition functions is aimed at maximizing the efficiency and
effectiveness of each experimental iteration.

For example, consider the visualization in Figure 10, which has one objective
function and the acquisition function. The top graph represents the Gaussian Process of
the function sin(x). The bottom plot illustrates the acquisition function, showcasing a
peak, highlighted by an arrow, indicating the most promising new point to sample next.
This point represents the trade-off between exploration and exploitation, where the next
evaluation would yield the most valuable information.

2.5.2.1 Hypervolume-Based Acquisition

The Hypervolume indicator is a metric used to evaluate the quality of solutions in
multi-objective optimization, specifically known as the Pareto front.

The Pareto front is a collection of "best" solutions in a multi-dimensional space,
formally expressed as P = {y(1), . . . , y(n)} ⊂ Rd. Each point on this front represents a
solution that is not outperformed by any other in all objectives, known as non-dominated
solutions. (YANG et al., 2019)

In this context, a reference point r is used, typically representing a worst-case
scenario in the objective space. The Dominated Space refers to all points inferior to the
Pareto front solutions, effectively the space between each y(i) and r.

The Hypervolume Indicator is defined as the volume of the space that is not dom-
inated by the Pareto front and bounded below by the reference point. It is formally
represented in the Equation 10. This metric helps in the optimization process by quanti-
fying how much "better" the Pareto front is compared to the worst-case scenario with a
measurable quality of solution.

For example, consider the case in Figure 11 with the Pareto front as
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Figure 10 – Gaussian Processes and Acquisition Function.
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P = {y(1), y(2), y(3)} and a reference point r. The Hypervolume would then be the
region in light blue that lies above the reference point and below the Pareto front,
highlighting the extent of optimal solutions available.

HV (P ) = λd(
⋃

y∈P

[r, y]) (10)

2.5.2.2 Expected Hypervolume Improvement

The Expected Hypervolume Improvement (EHVI) is an acquisition function based
on hypervolume. It is designed to measure how much a new solution, y, can contribute to
the existing Pareto front, P . (YANG et al., 2019)

Initially, the Hypervolume Improvement (HVI) of a new solution y to the Pareto
Front P is calculated as the difference in hypervolume when y is included in P . It is
mathematically expressed in Equation 11.

The HVI process can be seen in Figure 12 where the current Pareto front is denoted
as P = {y(1), y(2), y(3)}, and r the reference point. When a new point y(+) is added, the
Hypervolume improvement HV I(y(+), P, r) is the area of the dark blue polygon.

HV I(y, p) = HV (P ∪ y)−HV (P ) (11)
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Figure 11 – Hypervolume.

Source: Author.

EHVI extends this concept by considering the predictive distribution (µ, σ) of
potential new solutions given by a surrogate model, as expressed in Equation 12. Here,
ξσ,µ(y) represents the probability density function of the predictive models’s output. By
integrating over all possible solutions, EHVI calculates the expected increase in hypervol-
ume given the current knowledge of the surrogate model. Thus, the optimization selects
regions expected to yield significant improvements to the Pareto front.

EHV I(µ, σ, P, r) :=
∫

Rd
HV I(y, P, r) · ξσ,µ(y) dy (12)

Figure 13 illustrates EHVI, where the probability density function ξσ,µ(y) of the
bivariate Gaussian distribution is shown as a 3D plot, indicating where new potential
solution might exist, as well as the current Pareto front P = {y(1), y(2), y(3)}, and the
reference point r. EHVI samples points from the probability distribution, for example,
sample y(+), and calculates the area of improvement indicated in the dark gray area. This
process is crucial as it samples points that are both probable and valuable in improving
the set of optimal solutions.

In one practice example, as shown in Figure 14, after three observations from
a multi-objective problem, two posterior beliefs are leveraged to calculate the EHVI,
quantifying the potential benefit of new observations to the Pareto front. The peak of the
EHVI curve indicates the most promising location for the next observation.
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Figure 12 – Hypervolume.

Source: Author.

2.5.2.3 Lookahead Bayesian Optimization

Lookahead Bayesian Optimization is a non-myopic auxiliary acquisition function
that is used in conjunction with another. In recent years, non-myopic acquisition functions
have been studied, and for this present thesis, the focus is on the "Efficient Nonmyopic
Bayesian Optimization via One-Shot Multi-Step Trees" method presented by Shali Jiang
et al. (2020), which is implemented by BoTorch (BALANDAT et al., 2020).

This method considers the expected improvement over a sequence of future samples.
As Shali Jiang et al. (2020) states, it begins with an initial set of observations D0 and
a probabilistic surrogate model p(Y |X, D0). At each step k, the set of observations Dk

is updated to maximize the utility function u(Dk) = max(x,y)∈Dk
y, indicative of the

highest peak of the function. This sequential process is guided by a policy, such as EHVI,
determining the next location to query based on the current data.

Using Bellman recursion, it’s possible to decompose the one-step marginal value,
which determines the expected benefit of querying, into a multi-step framework for t =
2, 3, ..., k (Equation 13). Consequently, the k-step lookahead acquisition function, vk(x|D),
guides the next query point arg maxx vk(x|D).

v1(x|D) = Ey [u(D ∪ {(x, y)})− u(D) | x, D] . (13)

vt(x|D) = v1(x|D) + Ey

[
max

x′
vt−1(x′|D ∪ {(x, y)})

]
. (14)
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Figure 13 – Hypervolume.

Computation of Expected Hypervolume Improvement Using Box Decomposition 9

In Equation (16), I(y impr P) = 1 means that y is an element of the non-dominated
space of P . In other words, y ∈ [r,∞d] \ dom (P) if I(y impr P) = 1. A reference point
r is not indicated in Equation (16) because r must be chosen as [−∞]d in PoI. Therefore,
PoI is a reference-free infill criterion.

Definition 8 (Expected Hypervolume Improvement) Given parameters of the multivari-
ate predictive distribution µ, σ and the Pareto-front approximation set P , the expected hy-
pervolume improvement is defined as:

EHV I(µ,σ,P, r) :=
∫

Rd

HVI(P,y, r) · ξσ,µ(y)dy (17)

Example 2 An illustration of the 2-D EHVI is shown in Figure 2. The light gray area is
the dominated subspace of P = {y(1) = (3, 1)>, y(2) = (2, 1.5)>, y(3) = (1, 2.5)>}
bounded by the reference point r = (0, 0). The bivariate Gaussian distribution has the
parameters µ1 = 2.5, µ2 = 2, σ1 = 0.7, σ2 = 0.8. The probability density function (ξ)
of the bivariate Gaussian distribution is indicated as a 3-D plot. Here y(+) is a sample from
this distribution and the area of improvement relative to P is indicated by the dark shaded
area. Variables y1 and y2 stand for the first and the second objective values, respectively.
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Fig. 2: Expected hypervolume improvement in 2-D (cf. Example 2).

For computing integrals of EHVI in Section 4, it is useful to define∆ and Ψ∞ functions.

Definition 9 (∆ function (see also [14,39])) For a given vector of objective function values
y ∈ Rd and y 6∈ P , ∆(y,P, r) is the subset of the vectors in Rd which are exclusively

Source: Yang et al. (2019).

The library and paper introduce a one-shot multi-step approach to solving the k-
step problem, vk(x|D), by solving a joint optimization problem, instead of other traditional
ones that require nested optimization problems. This is very beneficial due to its reduced
complexity and computational costs. (JIANG, S. et al., 2020)

2.6 BENCHMARK FUNCTIONS

Benchmark functions will be used to evaluate and select the most suitable acquisi-
tion function and its parameters to be used in the real-world lens optimization, as further
discussed in Section 3.3.3.

This process will involve comparing the performance of all acquisition functions
across various synthetic and non-synthetic functions to identify the optimal configuration.
Subsequently, this optimal configuration will be applied to real-world lens optimization.
Adopting this strategy is crucial, as it is impractical to test every possible configuration in
real-world scenarios. These benchmark functions include the multi-objective DTLZ family
and the Vehicle Safety function.
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Figure 14 – Hypervolume.
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2.6.1 DTLZ

The family of DTLZ test functions, developed by Deb et al. (2002), are designed to
be simple to construct, scalable, and capable of handling an arbitrary number of objectives.
Another advantage of DTLZ functions is their well-defined solutions with simple shapes,
such as spheres, curves, or simplices. A total of six test problems will be used, each testing
a specific aspect of optimization capability. Each function presents its own challenges for
optimization.

These test functions are constructed based on two main approaches: a test problem
generator, and a constraint surface approach. The test problem generator allows for the
creation of generic multiobjective test functions, where users can choose a h function
related to the objective function, as shown in Equation 15. Additionally, a g function is
chosen to construct the overall objective search space, as illustrated in Equation 16. (DEB
et al., 2002)
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Minimize f1(x1),
...
Minimize fM−1(xM−1),
Minimize fM(x) = g(xM)h(f1, . . . , fM−1, g),
subject to xi ∈ R|xi|, for i = 1, 2, . . . , M.

(15)

gj(f1, f2, . . . , fM) ≥ 0, for j = 1, 2, . . . , J. (16)

DTLZ1 through 3 are characterized by numerous local Pareto-optimal fronts, testing
the algorithm’s convergence ability (ZHANG et al., 2009). DTLZ4 analyses how the
optimization handles a non-uniform distribution of points on the Pareto front (ZHANG
et al., 2009). DTLZ5 challenges the optimization algorithm’s ability to converge to a
degenerated curve (LIU, 2017), while DTLZ7 complicates convergence by creating a
surface composed of a straight line and a hyperplane.

2.6.2 Vehicle Safety

Vehicle safety represents a real-world multiobjective optimization problem. Bench-
marks with real problems are also important, as synthetic test problems may include
unrealistic properties, leading to overestimation or underestimation, as noted in Tanabe
and Ishibuchi (2020). The vehicle safety optimization problem, proposed by Liao et al.
(2008), models a full-width crash test and offset-frontal crash test. The model is purely
mathematical and represents a real crash scenario. It involves a 5-dimensional parameter
space with three objectives.
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3 METHODOLOGY

In this chapter, the methodology and steps taken to develop a comprehensive
Lookahead Bayesian Optimization and Machine Learning model for the surrogate for the
validation will be detailed.

From a broader perspective, as depicted in Figure 15, the process begins with the
experimental setup (step A in the Figure). This involves designing and conducting a set
of experiments on the lens manufacturing machine, followed by measuring the lens quality
through peak-to-valley and RMS values, and gathering process sensor data. With the
experimental data and measurements in hand, a machine learning regression model (B)
is created to simulate the real manufacturing process. The primary aim of the model
is to evaluate the effectiveness of the Lookeahead Bayesian Optimization approach in
process parameter optimization. Subsequently, the Lookahead Bayesian Optimization
model (C) is configured, selecting the most suitable parameters and functions to optimize
its performance. Instead of utilizing the real manufacturing process for experimental
evaluations in the Bayesian Optimization step, it uses the predictive regression model.

Figure 15 – Thesis Methodology.
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3.1 EXPERIMENTAL SETUP

The experimental setup outlines all the necessary steps for data collection and
preparation, which will later be utilized in the Machine Learning model. This setup in-
cludes designing experiments with Latin Hypercube sampling, performing the experiments,
conducting measurements, and gathering sensor data.

3.1.1 Latin Hypercube Sampling

Latin Hypercube Sampling for the NGM process was implemented using the py-
DOE2 Python library, which is specifically designed for creating experimental designs,
alongside other fundamental ones such as numpy and smt. The objective is to develop a
design of experiments that relatively covers the entire parameter space, as a result, the
system will be accurately represented. Achieving representative coverage is crucial for
ensuring optimal performance in the machine learning model that will act as the surrogate
for validation. This is one of the challenges in machine learning, as discussed in Section
2.3.3.

The sampling had to meet specific parameter constraints and requirements that
were not inherently supported by the library and were custom developed. The essential
constraints included adhering to the predefined bounds and resolution for each parame-
ter, critical due to machine specifications. These parameters and their specifications are
detailed in Table 1.

Parameter Range/Bounds Resolution
Pressing Force 40-47 % 1 %
Press Time (Speed) 1-3s 0,5 s
Hold Time After Pressing 1,5-4s 0,5 s
Upper Tool Temperature 450-480 °C 10 °C
Lower Tool Temperature 460-510 °C 10 °C
Oven Temperature 900-1000 °C 25 or 50 °C
Heating Time at 900 190-255s 5 or 10 s
Heating Time at 950 175-215s 5 or 10 s
Heating Time at 1000 155-175s 5 or 10 s

Table 1 – Parameter Specifications

The sampling involved generating 500 samples across six dimensions for each of
the three heating times (900 °C, 950 °C, and 1000 °C) to maintain time efficiency and
machine constraints. Four optimization methods from the library were utilized to enhance
the sampling process, with selection based on best coverage performance.

The post-sampling experimental preparation took into account the parameter’s im-
portance, since pressing forces are easier to change, while others, like furnace temperature,
are more challenging, consuming significant time in the production process, and varying
greatly between the highest and lowest temperatures throughout the experiments. This
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Figure 16 – Progress over time of temperature within experiences samples
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is demonstrated in Figure 16, indicating minimal fluctuations in temperature throughout
the trials.

3.1.2 Lens Machine

The press machine utilized for the lens manufacturing process is manufactured
by Füller Glastechnologie, but it has been extensively customized by Fraunhofer IPT to
include additional sensors and actuators. These customizations enhance the machine’s
capabilities, allowing extensive research, understanding, and optimization of the lens
manufacturing process.

3.1.3 Lens Quality

The lens’s quality, as depicted in Figure 17(a), is evaluated using a form measure-
ment machine displayed in Figure 17(b). The machine utilized by IPT is "Form Talysurf",
manufactured by Taylor Hobson.

To accurately assess the lens, it undergoes two measurements across its diameters
at right angles, forming an orthogonal configuration. This dual orientation ensures a
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Figure 17 – Lens Quality

(a) Lens. (b) Lens Measurement.

Source: Author.

comprehensive evaluation, verifying the lens’s uniform curvature in all directions and
confirming its spherical symmetry.

3.1.3.1 Peak-to-Valley

The Peak-to-Valley (PV) measurement, provided by the machine, represents the
disparity between the highest and lowest points on the surface by comparing the actual
optic surface to an ideal standard (SPINA et al., 2012). This metric considers only the
extreme values, disregarding the intermediary points. Consequently, a lower PV value
indicates that the lens more closely aligns with the ideal lens design, signifying higher
quality, whereas a higher PV value suggests poorer quality. This method has a drawback
in that it does not consider the optics’ curvature, thus failing to adequately monitor their
performance (SPINA et al., 2012).

For instance, in a given experiment, each lens yields PV values for the 3D shape
and at 0°, 45°, 90°, and 135° angles. The 3D shape report, and consequently the PV values,
are illustrated in Figure 18.

Following this, the highest (and thus worst) PV value from each lens is manually
selected from a dataset similar to that in Table 2. This selection is part of the optimization
process, which aims to minimize the largest PV value for each lens.

Lens Number 3d 0.0° 45.0° 90.0° 135.0° Max PV
105114 33.3 µm 32.9 µm 31.8 µm 46.1 µm 32.6 µm 46.1 µm

Table 2 – Lens Measurement Data - PV

3.1.3.2 Root Mean Square

The Root Mean Square (RMS) value, derived from the lens measurements, quanti-
fies the deviation of the lens surface from the ideal form. It measures a large part of the
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Figure 18 – Lens’ 3D shape report.
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optical surface at many spots and calculates the standard deviation of the surface from
its optimal shape. (SPINA et al., 2012)

Ultimately, each lens is assigned a single scalar value that quantifies its RMS and
indicates the quality of its curvature. For instance, Table 3 presents the measurement for
one lens.

Lens Number RMS
105114 6.9 µm

Table 3 – Lens Measurement Data - RMS



Chapter 3. Methodology 40

3.2 MACHINE LEARNING PIPELINE

The machine learning pipeline, as depicted in Figure 19, initiates with the data
processing step. This phase encompasses feature extraction, engineering, and cleaning,
ensuring the data is prepared and refined for subsequent stages. Following data processing,
the pipeline proceeds to feature selection and model training, utilizing the entire dataset.

Figure 19 – Machine Learning pipeline.
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3.2.1 Objectives and Requirements

The objective of the Machine Learning model is to simulate the real lens manu-
facturing process. For a given set of input parameters, the model should predict two key
quality metrics of the manufactured lenses: peak-to-valley (PV) and root mean square
(RMS) values.

The specific requirements are as follows: the PV values must achieve a mean
absolute error of less than 80 microns m (equivalent to 80 ·10−6m). Similarly, for the RMS
values, the goal is to maintain a mean absolute error under 80 microns m (also 80 ·10−6m).
These standards were established by process experts.

3.2.2 Data Preprocessing

Before creating the model and doing all the other steps, both the input and target
data must undergo preprocessing. The input data includes recorded sensor information
and metadata from the process, while the target data comprises PV and RMS values.

3.2.2.1 Target Data Preprocessing

The PV data is initially stored in a dataframe, sourced from the measurement
machine as detailed in Section 3.1.3.1. This dataset has outliers resulting in measurement
problems. To remove them, all experiments with PV outliers were dropped, resulting in a
total of 12 experiments being excluded from the dataset.
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The RMS values, vital for this study, were calculated by Lukas Jäschke1. He
computed the RMS by doing a comparison between the experimental data points against
optimal ones. This involves a lens form correction to address any tilting of the lenses, as
well as the removal of outliers due to measurement errors. Outliers were removed from
the data when their values exceeded three standard deviations from the mean. This was
followed by manual inspection and analysis to ensure that important information was not
inadvertently eliminated. The original count of 489 data points was reduced to 455 after
outlier removal.

3.2.2.2 Input Data Preprocessing

The input data consists of two dataframes: metadata, representing the actual input
parameters used in lens manufacturing, and sensor data. The metadata, derived from the
LHS sampling, didn’t have any outliers or quality issues. However, the sensor data passed
through feature extraction, engineering, and cleaning. These steps aim to ensure data
quality and relevant features, which are discussed as challenges in machine learning in
Section 2.3.3.

3.2.2.3 Sensor Data Feature Extraction

The sensor data includes 122 time-series datasets for each lens produced. Non-
informative sensors, including those with insignificant standard deviation, were removed,
leaving 26 out of the original 122 sensors.

Before proceeding to subsequent stages, the sensor data undergoes a pre-cleaning
phase. This phase involves interpolating the signal for each of the process steps outlined
in Table 4. This step is crucial as it helps to smooth out the time series data, effectively
removing numerical noise (WANG; WANG, 2020).

The feature extraction was performed based on the time series of each sensor. This
process was elaborated by the author and Lukas Jäschke2. The time series has 9 process
steps (outlined in Table 4 and visualized in Figure 20), from which can be extracted the
actual duration of each process step as the first features. The steps 5 and 8 are not present
in the Figure since are not part of the temperature sensor.

These sensors are placed at strategic positions and stages to monitor the process.
In Figure 21, two important steps of this process are highlighted. The first step is the
heating phase, where the oven is heated to reach the desired temperature, and the mold
containing the glass is inserted. After the heating phase, the glass is then moved by a
robotic arm to the form stage, where the lens takes shape.

1 Lukas Jäschke, Fraunhofer IPT, lukas.jaeschke@ipt.fraunhofer.de.
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Process Step Description
1 Basic setting
2 Preheating
3 Loading
4 Heating
5 Measuring before forming
6 Forming
7 Demolding
8 Temperature measurement after forming
9 Moving the axis away

Table 4 – Process Steps

Figure 20 – Process Steps in Temperature Sensor 51.

0 100000 200000 300000 400000 500000

Time (unit of time)

100

200

300

400

500

600

700

S
en

so
r

R
ea

d
in

g

Process Steps in Temperature Sensor 51

Process Step 1

Process Step 2

Process Step 3

Process Step 4

Process Step 6

Process Step 7

Process Step 9

Sensor Readings

Source: Author.

Temperature Sensors
According to process experts, temperature sensors are crucial for ensuring lens

quality. These sensors, strategically positioned at various points within the molds, gather
essential data through thermocouples.

For Sensor 51, its role is to monitor the temperature during the heating process
step, as depicted in Figure 21, where it is labeled as Toven. Figure 22(a) displays the
analyzed time series data of the temperature. In the process of Step 1, an exponential
function f(x) = abx + k was fitted, and its slope and AUC (Area Under the Curve) were
recorded as features, indicating mold setting activities (22(b)). During Process Step 04
(22(c)), a linear function f(x) = ax + b was fitted, and its slope, along with the maximum
and minimum temperatures, rate, duration of temperature increase, and AUC, were saved
as features.



Chapter 3. Methodology 43

Figure 21 – Sensor locations.
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Sensors 50 and 52 are both responsible for measuring the temperature of the glass
during the forming process. They are responsible for monitoring the temperature from
the lower and upper parts of the glass, referred to as Tglass−upper and Tglass−lower. The
location of these sensors is illustrated in 21. Both sensors exhibit similar time series curves,
capturing the temperature dynamics during the forming process.

As shown in Figure 23(a), the full time series data for these sensors reveal a
characteristic curve. From this data, several key features were extracted. During Process
Step 9, the slope and AUC were determined and recorded as features. Additionally, metrics
such as the maximum temperature, the rate of temperature increase, and the duration of
this increase were also extracted, as depicted in Figure 23(b).

Additional temperature-related sensors, specifically Sensors 38, 39, and 119 for
monitoring the upper mold temperature (Tmold−upper), and sensors 40, 41, 119, and 120 for
the lower mold temperature (Tlower−upper) were also analyzed. These sensors, as indicated
in Figure 21, are responsible for regulating the mold temperature. Their time series data,
as shown in Figure 24, exhibit temperature fluctuations during the heating process due
to their role in temperature control. Several features were extracted, including average
temperature, and, through Fast Fourier Transformation, the mean rate of change during
temperature rises and falls, mean peak, and cycle duration.

Moreover, for all temperature sensors involved in the glass molding process, both
the mean and standard deviation of temperature values were extracted during Process
Step 4.

Actuator Sensors
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Figure 22 – Temperature Sensor 51.
(a) All steps.
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(b) Process Step 01.
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(c) Process Step 04.

275000 300000 325000 350000 375000 400000 425000 450000

Time

0

200

400

600

800

S
en

so
r

R
ea

d
in

g

Process Step 4 - Temperature Sensor 51

Sensor Reading

Fitted Line

AUC

Source: Author.

Figure 23 – Temperature Sensor 50 and 52.
(a) All steps
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Figure 24 – Temperature Sensor 38.
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Figure 25 – Pressure Sensors.
(a) Sensor 9.
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(b) Sensor 11.
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During the lens forming stage, sensors 9 and 11 capture the movement of the
actuator. These sensors enable the extraction of various features including the duration
and position of the actuator movement, as well as the pressure applied. As shown in Figure
25, a noticeable increase in the sensor’s measurement is observed during Process Step 6,
which corresponds to the lens forming stage and the actuator’s movement. This increase
is followed by a subsequent decrease. Key features derived from these sensors include the
position of the actuators, pressure, and the duration of pressing.
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Figure 26 – Vertical Lift Sensor.
(a) Sensor 13.
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Vertical Lift Sensors
Finally, Sensor 13 measures the vertical lift of the actuator, as depicted in Figure

21. This sensor monitors the actuators placing the glass in the heating stage, indicated
as hoven. Features extracted include the total duration that the workpiece spends in the
heating process (Figure 26), as well as the position of the actuator.

In total, 78 features were extracted to be used in the model.

3.2.2.4 Sensor Data Feature Engineering

Many of the features have non-linear relationships or non-normal distributions,
both of which are important considerations in linear regression. To address these issues,
transformations like logarithmic and power functions are applied to the features (BOX;
COX, 1964).

Automated feature engineering was employed due to the multitude of important
process features. For each feature, transformations including x2, x3, log(x), and

√
x were

calculated. Subsequently, supervised feature selection was applied among these transformed
variables to select those with the highest correlation to the target feature (QU; HARIRI;
YOUSIF, 2005). Given two targets in this use case, the PV value was prioritized for the
selection of the transformed features by correlation analysis.

Feature reduction was also performed to remove highly correlated features (correla-
tion greater than 0.8), addressing multicollinearity issues. Multicollinearity happens when
two different variables are highly correlated, being more efficient to consider only one to
describe the system (ZAMEE; HAN; WON, 2022). If not removed, these extra features
can cause inaccurate regression coefficients, inflate the standard errors, and degrade the
predictability of the model as mentioned by Hasan, Yusuf, and Faruque (2019). Figure 27
illustrates the most correlated features with both targets post-reduction.
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Figure 27 – Correlation between features and target.
(a) PV
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3.2.2.5 Sensor Data Cleaning

The composed features from the sensor data had a lot of outliers and inconsistencies,
possibly due to sensor faults or mathematical errors. The outlier removal reduced the
dataset count from 455 to 323, just affecting the ones with data exceeding three standard
deviations from the mean.

It is noteworthy that data cleaning was performed as the final step. The raw
data, initially in time series format, didn’t have issues like missing values or temporal
misalignments, but rather only contained outliers. This made it more practical to address
outlier removal at the end of the preprocessing sequence after having non-time-series data.

3.2.3 Feature Selection

All the available features underwent a selection process using Sequential Feature
Selector from Sklearn, with a Lasso model as the base estimator. The selector operates
in a backward direction, scores based on negative mean absolute error, and employs 5-
fold cross-validation. The primary objective was to identify the 10 most crucial features
that ensure optimal model performance without jeopardizing the Bayesian Optimization
with Gaussian Process, which struggles with high-dimensional data (YI et al., 2024). The
selected features are:

1. Minimum Temperature of sensor 51, with cubic transformation.

2. AUC Temperature of sensor 51, with cubic transformation.
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3. Standard deviation of Temperature of sensor 50, with logarithmic transformation.

4. Standard deviation 1 of Temperature of sensor 52, with cubic transformation.

5. Standard deviation 2 of Temperature of sensor 52, with logarithmic transformation.

6. Maximum upper pressure, with cubic transformation.

7. Maximum lower pressure, with cubic transformation.

8. Maximum duration of lower pressure, with logarithmic transformation.

9. Oven temperature, with cubic transformation.

10. Force, with cubic transformation.

3.2.4 Model training

The training and evaluation of the model are conducted using the Sklearn library
with a Lasso regression to mitigate overfitting. Given the presence of two targets, separate
models are developed for each.

Initially, the dataset for each target is divided into training and testing sets, with
the test size comprising 20% of the data. The features are scaled by removing the mean
and scaling to unit variance, a crucial step since Lasso Regression is sensitive to the scale
of input parameters. The data split helps to generalize the model, ensuring it is well on
both training and unseen test data. The model is only trained with the training data, and
the test data is utilized to evaluate the model performance using various metrics.

Hyperparameter tuning is applied through grid search to optimize the regression
model. Parameters tuned include the alpha coefficient (regularization strength of the
Lasso model), maximum number of iterations, and tolerance for optimization. Negative
mean absolute error is the chosen metric, evaluated through 5-fold cross-validation to
prevent overfitting and guarantee robustness. During the cross-validation step, the model
is evaluated in a number of splits (five in this case) using the validation data, and the
model that performs best in the k-fold is selected. This hyperparameter tuning process is
done for each target, allowing different optimal parameters of each model.

Finally, after finding the best hyperparameters, the selected model is evaluated in
the test set.
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3.3 LOOKAHEAD BAYESIAN OPTIMIZATION FRAMEWORK

3.3.1 Libraries

This work primarily utilizes Python, which became popular because of its versatility
and simplicity. Along with it, some other python libraries were employed, such as Pandas,
Numpy, SkLearn, and notably, Pytorch and Botorch.

3.3.1.1 PyTorch

As highlighted by Paszke et al. (2019), Pytorch is a Python library that performs
immediate execution of dynamic tensor computations with automatic differentiation and
GPU acceleration, and does so while maintaining performance comparable to the fastest
current libraries for deep learning. Its significance is amplified when employing the Looka-
head Acquisition function, an intensive task due to the exponential increase in problem
dimensionality with Lookeahead horizon k steps (JIANG, S. et al., 2020). The library’s
high performance is attributed to its C++ core, good integration with the Python ecosys-
tem, and its ability to run either on CPU or GPU.

3.3.1.2 BoTorch

Balandat et al. (2020) describe BoTorch as a modular, scalable Monte Carlo frame-
work for Bayesian Optimization, grounded in modern computation paradigms and recent
theoretical convergence results.

It is implemented on top of PyTorch, guaranteeing high performance and developer
efficiency with a modular interface for optimization components. The library aims to
bridge research and production, providing a reliable framework that is very flexible and
easily integrated into other platforms.

3.3.2 Lookahead Bayesian Optimization Pipeline

To establish the pipeline for the Lookahead Bayesian Optimization in a multi-
objective context, it is essential to define both the surrogate model and acquisition function
that are capable of handling multi-objective scenarios. These components are crucial for
the iterative steps of BO, which are shown in Figure 6 and explained in Section 2.5.

3.3.2.1 Surrogate Model

In this study, the Gaussian Process (GP) regressor serves as the surrogate model,
a common choice in Bayesian Optimization. The selected kernel to be used is Matérn,
configured with standard parameters of ν (smoothness parameters) and ω (length scale).
When dealing with multiobjective scenarios, one can either employ a separate GP for each
target or a single GP for all targets. In this thesis, due to the lack of correlation between



Chapter 3. Methodology 50

the targets and to enhance the GP’s performance, the approach of using a distinct GP
model for each target was adopted. Consequently, for each target—PV and RMS values

— a separate GP was employed for each.

3.3.2.2 Acquisition Function

For this multiobjective Bayesian Optimization, five different acquisition functions
were used, being two of them provided by BoTorch, and the rest tailored to improve the
optimization of this use case.

3.3.2.2.1 BoTorch Acquisition Functions

In this present work, two base acquisition functions will be used from BoTorch,
which are "parallel Expected Hypervolume Improvement (qEHVI)" and "parallel Noisy
Expected Hypervolume Improvement (qNEHVI)". Both of them are based on the principle
of the Expected Hypervolume Improvement explained in Section 2.5.2.2, with the difference
that the former also considers noisy settings.

3.3.2.2.2 Custom Acquisition Functions

One latent problem in Bayesian Optimization is the difficulty in incorporating
prior knowledge, such as process specifics and expert insights, into standard Bayesian
Optimization (WANG; MING, et al., 2019). This limitation is particularly relevant in
scenarios where there is initial domain knowledge available.

Furthermore, high-dimensional use cases, like the one addressed here, create a big
search space. As a result, as noted by Ramachandran et al. (2020), the algorithm visits
low function values regions more often before locating the optimum. This happens because
the algorithm always assumes equal probability to all search space to be the optimum.

To address this limitation in BO, incorporating expert knowledge early in the
optimization process can significantly enhance efficiency. Process experts often possess
valuable insights into the characteristics of "good" and "bad" regions within the process.
Leveraging these insights allows for the development of an informed acquisition function
that guides the optimization strategy, relying on the specialized knowledge of process
experts.

Incorporating custom acquisition functions aims to utilize process expert knowledge
in lens production to make more assertive decisions in the optimization process. Research,
such as that presented in Khatamsaz et al. (2023), demonstrates that this approach can
significantly accelerate convergence to the solution and potentially outperform traditional
methods.

Employing an informed Bayesian Optimization with a non-myopic approach, as
discussed by Astudillo and Frazier (2022), shows great potential. This approach also
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benefits significantly from considering multiple lookahead steps, rather than just a single
step.

At Fraunhofer IPT, process experts have an intuition of three crucial parameters for
lens quality: peak-to-valley, RMS values, and input parameters. After careful selection, the
chosen benchmarks for peak-to-valley and RMS are both 0.02. Consequently, the optimal
solution is defined as pareto_front_y = [0.02, 0.02]. Additionally, the best input process
parameters (pareto_front_x) for producing high-quality lenses were also determined
based on process expert knowledge and past experiments.

3.3.2.2.3 Custom Biased Expected Hypervolume Improvement (qBiasEHVI)

Developed by the author, this method aims to enhance the sampling process within
an acquisition function by introducing a reward mechanism for samples near the process
expert optimal solution beliefs. This strategy involves identifying promising areas in the
parameter space and creating bias in sampling new candidates toward these regions in
the early stages of optimization. The bias is implemented by assigning weights for each
sample generated by the posterior, based on its proximity to the ideal Pareto Front.

Formally, being S as the set of posterior samples, where each sample is a vector
Si ∈ Rn, l as the pareto_front_y ∈ Rn, and β as the bias strength. The custom
acquisition functions samples from the posterior, and calculate the Euclidean distance
between Si and l by di = ||si − l||2. It calculates the weight for each sample using an
exponential function based on the distance and bias strength wi = exp(−β · di). And in
the end, apply the weights to the original sample s′

i = wi · si.
The equation for this process is presented in Equation 17, and the methodology is

outlined in Algorithm 2.

s′
i = exp(−β · ||si − l||2) · si (17)

3.3.2.2.4 Custom Prior-Weighted Acquisition Function (qWeightedEHVI)

Based on Hvarfner et al. (2022), this approach seeks to improve an existing acquisi-
tion function heuristics α(x,Dn) (in this case, qEHVI) by integrating it with a weighting
scheme, forming a prior-weighted version. The weighting scheme denoted as π(x), high-
lights the favorable points of the prior based on their similarity, such as proximity, to
the pareto_front_x ∈ Rn, as identified by the process expert. The weighted version is
calculated as shown in Equation 18 and described in Algorithm 3.

xn = arg max
x∈X

α(x,Dn)π(x). (18)
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Algorithm 2 qBiasEHVI
Require: model, ref_point, partitioning, sampler, objective, constraints, X_pending,

eta, fat, iteration, pareto_front_y
Ensure: qBias Expected Hypervolume Improvement

1: function GetBiasedPosteriorSample(posterior, pareto_front_y, bias_strength)
2: Sample from posterior
3: Calculate weights based on distance from pareto_front_y
4: return Weighted samples
5: end function
6: function Forward(X)
7: Compute posterior using the model
8: Obtain biased samples from posterior using GetBiasedPosteriorSam-

ple(posterior, pareto_front_y, bias_strength)
9: return Biased qEHVI values

10: end function

Algorithm 3 qWeightedEHVI
Require: model, ref_point, partitioning, sampler, objective, constraints, X_pending,

eta, fat, iteration, pareto_front_x
Ensure: qWeighted Expected Hypervolume Improvement

1: function ComputeSimilarity(X)
2: Compute Euclidean distance from each point in X to pareto_front_x
3: Invert the distances to get similarity measure
4: Normalize similarities to have a maximum of 1
5: return normalized similarities
6: end function
7: function Forward(X)
8: Compute posterior using the model
9: Obtain samples from posterior

10: Compute qEHVI values using ComputeQEHVI
11: Compute expert values using ComputeSimilarity(X)
12: Compute Weighted qEHVI
13: return Weighted qEHVI values
14: end function
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3.3.2.2.5 Custom Decaying Prior-Weighted Acquisition Function (qDecayWeightedEHVI)

Expanding on the concept introduced by Hvarfner et al. (2022), this acquisition
function improves the custom Prior-Weighted Acquisition Function by incorporating a
decaying factor. This factor raises the prior to a power of γn ∈+, similar to the approach
in Souza et al. (2021). The decaying factor γn is defined as γn = β/n, where β ∈ R+ is
the decaying factor, and n the optimization iteration number.

It is a valuable method as it allows for increasing trust in the surrogate model
over the prior as optimization progresses. Being π(x) the weighting scheme, the weighted
version is presented in Equation 19 and Algorithm 4. In line with the findings of Hvarfner
et al. (2022), a decaying factor of β = 10 is recommended for optimal performance.

απ,n(x,Dn) = α(x,Dn)π(x)β/n. (19)

Algorithm 4 qDecayWeightedEHVI
Require: model, ref_point, partitioning, sampler, objective, constraints, X_pending,

eta, fat, iteration, pareto_front_x
Ensure: qDecayWeighted Expected Hypervolume Improvement

1: function ComputeSimilarity(X)
2: Compute Euclidean distance from each point in X to pareto_front_x
3: Invert the distances to get similarity measure
4: Normalize similarities to have a maximum of 1
5: return normalized similarities
6: end function
7: function Forward(X)
8: Compute posterior using the model
9: Obtain samples from posterior

10: Compute qEHVI values using ComputeQEHVI
11: Compute expert values using ComputeSimilarity(X)
12: Compute Weighted qEHVI
13: return Weighted qEHVI values
14: end function

3.3.2.2.6 Lookahead Bayesian Optimization Framework

This thesis does not delve into the specifics of the code implementation for the
Lookahead Bayesian Optimization framework, as it involves extensive detail. The imple-
mentation was carried out using an object-oriented approach, to create a user-friendly and
efficient package applicable to various projects.

To utilize the framework, users can configure initial settings in a file named con-
fig.json. This configuration includes specifying the initial data for the algorithm, process
experts’ opinions on the Pareto Front, and the bounds of the input parameters. The
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data and optimizer are then initialized using the command generate_initial_data() and
BayesianOptimization(), as shown in Listing 3.1. Following this initialization, the opti-
mization process can start to determine the next candidates for testing in the actual
manufacturing process. The optimizer.optimize method allows customization, including
the selection of the number of candidates, batch size (which influences the parallelization
of the algorithm), number of fantasies (indicating the number of lookahead steps and their
complexity), and the choice of acquisition function. Available acquisition functions include
qEHVI, qNEHVI, and custom ones.

1 # Initialize initial data
2 train_x , train_obj , train_obj_true , n, bounds , dim =

generate_initial_data ()
3

4 # Initialize Bayesian Optimization
5 optimizer = BayesianOptimization (
6 train_x , train_obj , train_obj_true , n, bounds , dim , config
7 )
8

9 # Optimize and get the next candidates
10 optimizer . optimize (
11 N_BATCH =1, q=10, q_batch_sizes =[5 , 2, 2, 2], num_fantasies

=[5, 5, 5, 5], aqf=" qehvi_lookahead_d ", iteration =1,
12 )

Listing 3.1 – Usage of Lookahead Bayesian Optimization Framework

3.3.2.2.7 Benchmark Acquisition Functions

This section evaluates various acquisition functions in test problems, aiming to
select the most effective one for real process optimization. Direct testing in real processes
is often impractical, so test functions are used to assess the quality in advance of these
acquisition functions.

Initially, a baseline acquisition for the acquisition functions was established. Two
benchmark tests involving "qEHVI" and "qNEHVI" were conducted to determine their
performance, and later choose the best one.

The setup of the tests was aligned with conditions similar to the Optics use case
which is the goal of the present thesis. It involves a 10-dimensional parameter space
with two objectives to optimize, specifically minimizing them. Each iteration includes
10 experimental runs, referred to as candidates. The tests were limited to 20 batches to
simulate scenarios where real experiments are costly. Additionally, different lookahead
steps for each function were examined.
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Figure 28 – Performance of Acquisition Functions over Test Functions.

Source: Author.

Figure 28 illustrates the performance of the acquisition function on both benchmark
functions. It is noticed that "qEHVI" outperforms "qNEHVI" in this setup, and its execution
time is radically faster, as shown in Figure 29.

Based on the insights from previous experiments, qEHVI has been chosen to be
the base acquisition function. Subsequent benchmark tests were conducted to compare
its performance with custom acquisition functions and various lookahead steps. These
comparative analyes are depicted in Figures 30, 31, and 32. The tests included the DTLZ1
through DTLZ7 functions, all configured similarly with 10-dimensional parameter spaces,
two objectives, and 10 candidate solutions per iteration.

In the DTLZ1 problem, qWeightedEHVI exhibited rapid convergence without the
need for lookahead steps. In contrast, qEHVI showed good performance by the end of 20
batches, effective in scenarios both with and without lookahead steps. For DTLZ2 and
DTLZ4, qDecayWeightedEHVI indicated promising results, demonstrating adaptability
both with and without lookahead steps. In DTLZ3, qEHVI achieved the best outcomes,
maintaining its effectiveness regardless of the use of lookahead steps. Finally, in both
DTLZ5 and DTLZ7, qEHVI and qDecayWeightedEHVI performed well.

The results lead to two conclusions:
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Figure 29 – Execution time.
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1. The most effective acquisition functions are qEHVI and qDecayWeightedEHVI qE-
HVI.

2. The lookahead feature in Bayesian Optimization improves convergence and leads to
a better Pareto front.

Other acquisition functions, such as Biased and Prior-Weighted, did not consistently
have satisfactory performance. The Biased function, while optimizing effectively over time,
sometimes overly concentrated on specific areas, failing to identify an optimal Pareto
front, especially in DTLZ3 and DTLZ7. Similarly, Prior-Weighted, though adequate, was
outperformed by the aforementioned functions.

Finally, tests on a real Vehicle Safety optimization problem were conducted, as
depicted in Figure 32. This problem, differing from the Lens use case, had a 5-dimensional
parameters space with three objectives. The performance of qEHVI, with and without
lookahead steps, reached the best optimization in the end.

3.3.3 Lookahead Bayesian Optimization in real process

The Lookahead Bayesian Optimization framework is set to be implemented in the
real lens manufacturing process. This process, typically conducted in batch operations,
requires a cooling period and manual quality assessment for each batch, making it time-
intensive. Given the long duration required to assess quality and prepare for subsequent
batches in a one-batch process, an optimization framework capable of handling batch
operations and incorporating lookahead strategies is essential.
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Figure 30 – Performance of Acquisition Functions over Test Functions.
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(d) DTLZ4
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Figure 31 – Performance of Acquisition Functions over Test Functions.
(a) DTLZ5
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Figure 32 – Performance of Acquisition Functions over real Vehicle Safety problem.
(a) Vehicle Safety
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The importance of this framework lies in its ability to manage processes that are
both costly and time-consuming. With a limited number of possible experiments, it’s
important to select and conduct only highly informative experiments that yield maximum
insights about the unknown function, which in this case is the real manufacturing process.
Lookahead strategies are employed to address this challenge, allowing for the careful
selection of an acquisition function, determination of the number of lookahead steps, and
choice of the number of experimental points for each batch.

For this particular implementation, it will be conducted 10 experiments in each
iteration. This number is reflective of a realistic manufacturing scenario, where time
is allocated for both the production and quality measurement of lenses. Drawing from
benchmark results presented in Section 3.3.2.2.7, qDecayWeightedEHVI have been selected
as the acquisition function for the real optimization of lenses. A 4-step lookahead has been
chosen for both functions, as they generally demonstrated the best performance.

To summarize, the optimization process involves the following steps: In each se-
quential iteration, 10 experiments will be selected for execution. The quality of each lens
will be inspected, and sensor data will be collected. This information will be used to
update the GP model for the next iteration. Additionally, each optimization will include
a 4-step lookahead to evaluate the expected hypervolume improvement of each candidate
point over the next four steps.
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4 RESULTS AND DISCUSSION

In this chapter, the results from the experiments will be presented, and a discussion
will follow, examining both the performance of the Machine Learning model and the
Lookeahead Bayesian Optimization. The focus will be on determining if the results satisfy
the previously established requirements.

4.1 MACHINE LEARNING MODEL

The Machine Learning model selected is the Lasso Regression, as detailed in Section
3.2.4. Table 5 displays the results for both targets. The Mean Absolute Errors values for
both targets meet the requirements, demonstrating excellent performance with values
significantly lower than 80 µm. The good performance can be attributed to the availability
of a lot of experimental data and thorough data preparation prior to training, surpassing
the previous requirements and models developed at Fraunhofer IPT. The Root Mean
Squared Error is notably low, indicating the algorithm’s effectiveness and the Mean
Squared Error is also low, suggesting that the model’s predictions closely align with the
true values.

Additionally, the error metrics from both the validation (used in model training)
and testing sets are similar, which indicates that the model is not overfitting. Notably, for
the PV values, the testing set performs better than the validation set, suggesting that the
model generalizes well to unseen data. In the case of RMS data, the testing set performs
slightly worse than the validation set. However, the small difference implies that the model
still generalizes effectively.

Metric PV RMS
Validation Testing Validation Testing

Mean Absolute Error 1.7 µm 1.5 µm 1.1 µm 1.5 µm
Max Absolute Error 5.5 µm 3.6 µm 3.6 µm 4.6 µm
Mean Squared Error 4.4× 10−6 3.2× 10−6 2.2× 10−6 3.5× 10−6

Root Mean Squared Error 2.1 µm 1.7 µm 1.4 µm 1.8 µm

Table 5 – Comparison of Lasso Regression Model Metrics: Training vs Testing for Targets
PV and RMS

4.2 INTEGRATION LOOKAHEAD BAYESIAN OPTIMIZATION WITH MACHINE LEARN-
ING MODEL

The Lookahead Bayesian Optimization, as specified in Section 3.3.2.2.7, was con-
ducted with 10 candidates for each iteration, looking four steps ahead at each iteration.
The optimization is integrated with the surrogate (machine learning model), so when the
optimization suggests the next points, the model promptly calculates their true values.
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Even though a model simulates the actual process, the optimization process aims
to mimic the real-world optimization, which is expensive, complex, and needs to achieve
effective optimization early on. Consequently, the optimization was structured to include
20 batches. Each batch would assess 10 candidates, beginning with an initial set of 20
random experiments to initiate the optimization. This totals 220 experiments, intending
to find the Pareto front of the complex process.

The optimization aimed to minimize both the PV and RMS values within these
220 experiments, continuously fine-tuning the Gaussian Process at each iteration.

Upon completing the 20 batches of optimization, Figure 33 illustrates the resulting
Pareto front. The optimization achieved a well-distributed and comprehensive Pareto
front, representing a diverse set of solutions. The progression of the Pareto front over the
iterations is also evident, with the framework yielding favorable results from the early
stages of optimization. Ultimately, the process succeeds in attaining minimum PV and
RMS values of less than 0.0325 and 0.0045, respectively.

From the Pareto front, the optimal point was selected where both objectives are
minimized effectively. This point had PV and RMS values of 31.4 µm and 4.7 µm, re-
spectively. The evaluation of these results was compared to the best lens produced from
500 experiments using Latin Hypercube Sampling, as shown in Table 6. The Lookahead
Bayesian Optimization framework demonstrated significant improvement in the PV val-
ues, indicating smoother peaks and valleys. However, the RMS value increased slightly,
suggesting a higher overall shape deviation. Notably, these results were also achieved with
less than 50% of the number of experiments originally performed using LHS.

In the end, the optimization of the NGM process at Fraunhofer IPT yielded posi-
tive outcomes. The PV value obtained is considered excellent, representing a significant
advancement. Meanwhile, the RMS value, though not as remarkable as the PV, is deemed
acceptable and contributes positively to the overall improvement efforts. These results
underscore the effectiveness of the optimization strategies employed, highlighting the
exceptional performance of the PV value in particular.

Method PV RMS
BO 31.4 µm 4.7 µm
LHS 36.2 µm 2.2 µm

Table 6 – Comparison of results from Bayesian Optimization and Latin Hypercube Sam-
pling.

Additionally, the progress of the hypervolume during training can be observed in
Figure 34. This figure highlights the improvement and development of the Pareto front
throughout the 20 batches. There were several stages where the hypervolume remained
constant, likely indicating exploration phases. Overall, there was significant progress across
the 20 batches.
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Figure 33 – Pareto front post optimization.
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Figure 34 – Hypervolume post optimization.
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5 CONCLUSION

The majority of industries involve significant trial and error to identify optimal
parameters for product manufacturing. This challenge is present in the production of
glass lenses using the non-isothermal process at Fraunhofer IPT, a method renowned for
its cost efficiency due to the ability to produce lenses with different temperatures in the
mold and glass. This thesis proposes a solution through the use of a Lookahead Bayesian
Optimization framework, designed to sequentially conduct experiments and optimize the
process with fewer experiments.

The effectiveness of this solution is assessed using a surrogate model that accurately
mimics the real process. This approach provides flexibility for evaluating the framework
and for future research. For the creation of the surrogate, a Latin Hypercube Sampling
is performed to design the experiments to be done in the machine which carefully will
represent how the process works. Following the completion of these experiments, lens
measurements were taken, followed by extensive data preprocessing. Due to the use of
time series data from sensors, it was crucial to extract important features, organize,
and finally clean the data by removing outliers. A machine learning model employing
Lasso regression was trained as the surrogate, surpassing performance requirements and
accurately representing the process.

The Lookahead Bayesian Optimization Framework aims to reduce the number of
experiments and accelerate production optimization. This is achieved by carefully selecting
experimental points, balancing exploration and exploitation, and calculating the probable
outcomes of each test. The framework requires the definition of two key components:
the surrogate model and the acquisition function. A Gaussian Process is chosen as the
surrogate model, and custom acquisition functions incorporating process expert knowledge
are developed and tested against standard functions in benchmark tests. The number of
lookahead steps for the optimization is also evaluated.

The optimization, conducted using the surrogate model for validation, involved
a total of 200 tests, initiated with an initial set of 20 tests to establish the model. The
chosen acquisition function for this test was qDecayWeightedEHVI, a custom function
detailed in the thesis. This strategy led to significant improvements in peak-to-valley (PV)
values, enhancing them from 36.2 µm to 31.4 µm. However, there was a slight increase in
shape deviation (RMS), from 2.2 µm to 4.7 µm, when compared to the existing dataset.
Notably, these results were achieved while reducing the number of experimental tests by
more than 50%.

In conclusion, this project successfully achieved its objectives by developing an effi-
cient Lookahead Bayesian Optimization framework, validated through benchmark testing
and functional code. Additionally, a Machine Learning model acting as a surrogate of the
process was created, demonstrating accurate performance. Ultimately, the real process
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was optimized, achieving better shape accuracy with significantly fewer experiments.
Future Work
With the framework now validated through benchmark tests and using a surrogate

model of the process, the next step could be to apply the framework to the actual process
and evaluate its performance. The framework can also be applied to various processes, such
as lens manufacturing using the PGM method, demonstrating its flexibility across different
applications. This versatility means the framework could significantly benefit various
industry sectors aiming to optimize products or processes. Potential areas of application
include material science, where it can enhance design and reduce the number of required
experiments; natural language processing, particularly in improving text extraction; and
recommendation systems.

This work focused on creating innovative acquisition functions that incorporate
process expert knowledge and using the Gaussian process as a surrogate model. Future
research could explore other types of acquisition functions and other types of surrogate
models that are not yet supported by BoTorch.

Additionally, while the current focus is on multiobjective optimization, the frame-
work and custom acquisition functions could be expanded and tested for single-objective
optimizations, opening new opportunities for research and development.
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