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RESUMO

Redes de Estado de Eco (Echo State Networks, ESNs) são redes neurais consolidadas como
modelos de identiĄcação de sistemas, com treinamento por mínimos quadrados e capazes de
representar diversos tipos de modelos. Porém, suas aplicações em controle são pouco estudadas
em comparação com outros modelos de redes neurais. O objetivo dessa tese de doutorado é
estudar aspectos de controle de sistemas dinâmicos modelados por Redes de Estado de Eco. A
rede de estado de eco demanda um número alto de estados para identiĄcar sistemas não lineares
apenas treinando os pesos de saída, o que naturalmente resulta em um problema computacional
quando se considera esse tipo de sistema em aplicações de controle, otimização e controle
preditivo baseado em modelo. Como a rede de estado de eco é um sistema não-linear, sua prova
de estabilidade em malha fechada não é trivial, o que torna interessante o desenvolvimento de
métodos de análise de estabilidade para a mesma. Levando esses fatores em conta, a pesquisa
segue em três frentes. A primeira consiste em aplicar experimentos com relação ao Practical

Nonlinear Model Predictive Control (PNMPC), explorando suas capacidades em diversos tipos
de aplicação, avaliando métricas tais como erro de seguimento e tempo computacional. Foram
considerados diversos casos de estudo simulados, como o sistema de quatro tanques, uma
plataforma de petróleo contendo dois poços e um riser, e um poço com produção por meio
de uma bomba elétrica submersível. O controlador demonstrou êxito em tarefas tanto de
rejeição de perturbação quanto de seguimento de referência, até mesmo em comparação
com outras estratégias de controle. Para resolver o problema do alto número de estados da
rede de estado de eco, essa tese estuda a possibilidade de se utilizar técnicas de redução de
ordem de modelo como Proper Orthogonal Decomposition e Discrete Empirical Interpolation

para reduzir o número de estados, assim tornando o modelo mais tratável para aplicações de
controle ótimo e controle preditivo baseado em modelo, porém tentando manter a precisão e a
representatividade. Foram feitas avaliações da capacidade de redução desses métodos perante
a ESN considerando a métrica de capacidade de memória, um sistema Nonlinear Autoregressive

with Moving Average (NARMA) de décima ordem, e a mesma plataforma com dois poços
e um riser dos experimentos com o PNMPC, demonstrando uma grande eĄciência em obter
um modelo aproximado com um número signiĄcativamente reduzido de estados. A pesquisa
desta tese também demonstra que é possível expressar o problema de controle de uma rede
de estado de eco via Linear Matrix Inequalities (LMI) através do problema de estabilidade
absoluta. A formulação é desenvolvida tanto para um controle de ganho linear, quanto para um
Nonlinear Model Predictive Control (NMPC) com considerações conservadoras. Esses métodos
são testados em uma ESN que identiĄca o modelo de um tanque como prova de conceito.
Desenvolver e efetuar demonstrações em estudos de caso para os métodos mencionados acima,
constitui contribuições ao estado da arte para controle com Redes de Estado de Eco.

Palavras-chaves: Redes de Estado de Eco. Redução de Ordem de Modelo. Análise de Esta-
bilidade. Controle Preditivo.



RESUMO EXPANDIDO

Introdução
Redes de Estado de Eco (ESN, Echo State Network) são redes neurais consolidadas como

modelos de identiĄcação de sistemas, com fácil treinamento e alta representatividade de

modelos, e uma gama diversiĄcada de aplicações em identiĄcação de sistemas e predição

de séries temporais. Em contrapartida, o uso dessas redes em aplicações de controle em

comparação com outros modelos de redes neurais é pouco estudado. A ESN como modelo

de identiĄcação possui potencial se aplicada como modelo de controle preditivo, tornando-se

interessante desenvolver ferramentas e executar experimentos nesse contexto. Dito isso, seu

número elevado de estados pode se apresentar como um empecilho computacional na execução

de algoritmos de otimização. Isso se deve à própria natureza da Computação por Reservatórios,

que exige um número elevado de estados por parte da ESN para poder representar uma

dinâmica. Além disso, como a ESN é um sistema não-linear, ainda não há um método simples

e computacionalmente aplicável de provar sua estabilidade, principalmente no contexto de

controle de malha fechada e controle preditivo baseado em modelo. Um método compreensível e

intuitivo de prova de estabilidade para controle com ESN seria benéĄco para a interpretabilidade

do modelo de identiĄcação.

Objetivos
O objetivo dessa tese é avaliar aspectos de controle de sistemas dinâmicos modelados por

Redes de Estado de Eco. A pesquisa segue em três frentes. A primeira se trata de aplicar

experimentos com relação ao Practical Nonlinear Model Predictive Control (PNMPC), melhor

explorando suas capacidades em diversos tipos de aplicação, avaliando métricas tais como erro

de seguimento e tempo computacional, e comparando com outros métodos. Isso se referindo

ao aspecto da inserção da ESN no contexto de controle preditivo. A segunda frente se trata da

possibilidade de utilizar técnicas de redução de ordem de modelo em Redes de Estado de Eco

para reduzir o número de estados, assim tornando o modelo ainda mais tratável para aplicações

de controle ótimo e controle preditivo, porém tentando manter a precisão e a representatividade.

É possível utilizar métodos de redução de ordem de modelo para reduzir o número de estados,

mas mantendo um perĄl dinâmico similar. Na terceira frente, se deseja obter uma prova de

estabilidade para diferentes controladores, como realimentação por ganho e Nonlinear Model

Predictive Control, utilizando redes de estado de eco como modelo de projeto, obtendo não

só uma garantia de estabilidade local, mas também uma estimativa de região de atração.

Metodologia
Para a primeira frente de pesquisa, se desenvolve um algoritmo para o PNMPC com ESN

como modelo de predição, e após isso o controlador desenvolvido é testado em diversos tipos

de aplicações com simulação. Dentre elas, um sistema de quatro tanques, uma plataforma de

petróleo contendo dois poços e um riser, e um poço de petróleo com elevação por bomba



submergida. Nesses experimentos, se avalia métricas como tempo computacional e erro com

relação à referência, além da comparação do controlador com outros métodos. Para a segunda

frente, se implementa o método de redução de ordem Proper Orthogonal Decomposition (POD)

na ESN, para Ąns de comparação com sua rede original. Como o POD para um sistema não-

linear reduz o número de estados mas não necessariamente reduz o número de computações,

também se analisa a implementação do Discrete Empirical Interpolation Method (DEIM), que

tenta diminuir o custo computacional da ESN reduzida por POD através de uma aproximação

por interpolação. Como caso de estudo se utiliza a avaliação da Memory Capacity da ESN

reduzida em comparação com a original, um sistema discreto não-linear de décima ordem com

uma entrada e uma saída, e uma plataforma de produção de petróleo com dois poços e um riser.

Para a terceira frente, emprega-se ferramentas de estabilidade absoluta para desenvolver Linear

Matrix Inequalities (LMIs) que descrevem, em forma de condição suĄciente, a estabilidade da

ESN, tanto realimentada por um ganho linear, quanto quando utilizada como modelo por um

algoritmo de Nonlinear Model Predictive Control (NMPC). Nesse caso, é utilizado o modelo

de um tanque como prova de conceito.

Resultados e Discussões
A ESN demonstrou ser um modelo viável para o uso em controle preditivo em todas a aplicações

propostas, com o quatro tanques sendo utilizado para avaliar seu desempenho geral, o sistema

de dois poços e um riser demonstrando sua viabilidade em aplicações mais complexas, e o poço

com elevação por bomba submergível oferecendo uma comparação entre NMPC e PNMPC,

avaliando os dois controles preditivos no contexto do uso de uma ESN como modelo. Também

se obteve excelente performance em comparação com o controle preditivo utilizando outros

métodos de identiĄcação, como a rede neural Long Short-Term Memory (LSTM) e uma rede

do tipo feedforward com dinâmica externa. O método POD conseguiu efetuar uma redução de

ordem de modelo com comportamento bastante próximo à ESN original, e ainda reduzir o tempo

computacional. Para a aplicação do DEIM, para surtir algum efeito na identiĄcação, foi preciso

adicionar um algoritmo para garantia de estabilidade. Foi possível desenvolver uma LMI para

análise de estabilidade de uma ESN controlada por uma lei de controle com ganho proporcional.

Também foi possível obter LMIs para estabilizar NMPC com ESN, desconsiderando o efeito

da variável de decisão na não-linearidade do sistema.

Considerações Finais
Ao desenvolver e efetuar demonstrações em estudos de caso para os métodos acima, a presente

tese gerou contribuições ao estado da arte para controle em Redes de Estado de Eco. Além de

uma implementação para PNMPC com ESN como modelo de predição, foi possível obter um

modelo de ordem reduzida com comportamento equivalente a uma ESN de ordem completa,

mesmo com essa possuindo um número de estados elevado por natureza. Através da obtenção

de LMIs de estabilidade para uma ESN, é possível fazer inferência da estabilidade de uma rede



de estado de eco, utilizando apenas os seus pesos.

Palavras-chaves: Redes de Estado de Eco. Redução de Ordem de Modelo. Análise de Esta-

bilidade. Controle Preditivo.



ABSTRACT

Echo State Networks (ESN) are a flavor of Recurrent Neural Networks widely applied as system
identiĄcation models, as they are easy to train and have high representation capacity. However,
their use in control applications is not widely studied in comparison to other neural network
models. This research aims to evaluate dynamic system control aspects for ESNs. ESNs have
an intrinsically high number of states, which leads to computation overhead when performing
heavy computation (i.e., optimization) with these networks. Also, stability proofs for closed-loop
control with ESNs are not intuitive, hence the need for an easy, systematic stability analysis
method. Considering these factors, this research follows three main fronts: the Ąrst one being
the experimentation of the so-called Practical Nonlinear Model Predictive Control (PNMPC)
with ESNs as a model. Three case studies were considered: a four-tank system, an oil and gas
platform considering two gas-lifted wells and one riser, and an ESP-lifted oil well. The resulting
ESN-PNMPC performed well in both trajectory tracking and disturbance rejection in all cases
compared with other controllers. The following research topic concerns employing model order
reduction techniques such as Proper Orthogonal Decomposition (POD) and Discrete Empirical
Interpolation in the ESN to reduce the number of states, rendering the model easier to compute
for MPC and Optimal Control applications. An experiment compares the memory capacity
of ESNs with their reduced counterparts, while two case studies were evaluated: a Nonlinear
Autoregressive with Moving Average (NARMA) system of 10th order and the same two wells
and one riser platform of the PNMPC experiment. The reduction effectively found an ESN
reduced-order model, behaving closely to the original but with signiĄcantly fewer states. The
third front led to the development of a Linear Matrix Inequality stability proof for feedback
control with Echo State Networks, showing that the stability of a controller with an ESN in
the loop can be expressed as an absolute stability problem. This result produced a stability
guarantee and an attraction region estimate for a linear gain controller and an NMPC, with
conservative considerations. A single tank model trained by a small ESN was considered a proof
of concept. Developing such methods, exploring these three research fronts, and demonstrating
their use in case studies contributes to expanding the state-of-the-art regarding Echo State
Networks for control applications.

Keywords: Echo State Networks. Model Order Reduction. Stability Analysis. Model Predictive
Control.



LIST OF FIGURES

Figure 1 Ű Plot of a hyperbolic tangent and a sigmoid function. . . . . . . . . . . . . 30

Figure 2 Ű Representation of a Feedforward Neural Network with 3 inputs, 2 hidden

layers with 4 neurons each, and 2 outputs. Each arrow represents a weighted

connection between each neuron, represented by a circle. . . . . . . . . . 31

Figure 3 Ű Representation of an Echo State Network. . . . . . . . . . . . . . . . . . 35

Figure 4 Ű Illustration of two topologies for deterministic reservoirs. On the left side,

the cyclic reservoir, and on the right side, the cyclic reservoir with internal

feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 5 Ű Block diagram representation of the ESN-PNMPC. The ESN block repre-

sents an ESN trained to mimic the plant, which is used by the Linearizer

block to compute G using the ESN Jacobian, and by the Free Response

Prediction block. The Error Correction block provides an integrated Ąlter

that computes the correction factor, while the QP Solver block handles the

resulting optimization problem. . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 6 Ű Representation of a four-tank system. Adapted from (BRANDÃO et al.,

2018). Description is given in the text. . . . . . . . . . . . . . . . . . . . 51

Figure 7 Ű Randomly generated reference signal href for the level of tanks h1 and

h2 to be used for control performance evaluation) with a duration of 200

timesteps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 8 Ű IAE as a function of spectral radius and leak rate, evaluated for an ESN

model with 100 units in the reservoir. A white point localized in the middle of

the darkest cell gives the minimum IAE. Test IAE between ESN’s prediction

and reference signal for 10,000 timesteps. . . . . . . . . . . . . . . . . . 55

Figure 9 Ű IAE as a function of spectral radius and leak rate, evaluated for an ESN

model with 100 units in the reservoir. A white point localized in the middle of

the darkest cell gives the minimum IAE. IAE between the plant’s measured

response during a MPC task and a randomly generated test reference signal

for 200 timesteps from Fig 7. . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 10 Ű Test RMSE as a function of reservoir size (50, 100, 400, 1000) and training

set (2500, 5000 and 10,000 instances). . . . . . . . . . . . . . . . . . . . 56



Figure 11 Ű Experimental results for the case where h3, max = h4, max = 9 in a 3000

time steps run where a disturbance is applied at k = 750. From upwards

to downwards: the Ąrst plot consists of the tracking response of tank levels

h1 (blue) and h2 (green) as solid lines, alongside their respective reference

signals (dashed lines, matching colors and thickness); the second plot con-

tains the voltage signal for pump 1 (blue) and 2 (green); and the third plot

showcases the upper levels (h3 and h4) over time, alongside their upper

(9 cm) and lower (0.5 cm) bounds. The dashed vertical line shows when

the disturbance ωdist,3 = 1.8 cm3/s is input to the system, at time step

number 750. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 12 Ű Effect of the error correction Ąlter for the case where h3, max = h4, max = 9

in a 3000 time steps run where a disturbance is applied at k = 750. The

topmost subplot gives the a priori ESN prediction errors of the four tank

levels h1,h2,h3,h4 (sorted by line thickness, with h1 as the thinnest), and

the bottom-most plot shows the relative error of the level predictions after

correction is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 13 Ű Comparison between the ESN-PNMPC and LSTM-PNMPC for the control

of the four-tank system, for 300 simulation time steps. The Ąrst and second

plots correspond to the levels of tank 1 and 2, respectively, while the third

plot shows the voltage for each pump. . . . . . . . . . . . . . . . . . . . 60

Figure 14 Ű Comparison between the ESN-PNMPC (solid blue line), a DMC controller

(dotted green line), and a PI controller (dotted-and-dashed red line) for the

four-tank problem for 500 time steps. The reference signal is given by the

dashed cyan line. The Ąrst two upper plots correspond to the levels of tank

1 and 2, respectively, while the third plot shows the corresponding pair of

control actions for each controller, with PNMPC in solid curve style. . . . . 62

Figure 15 Ű Representation of an oil platform containing two wells and one riser. From

(JORDANOU, Jean P.; ANTONELO, Eric Aislan; CAMPONOGARA, 2019). 63

Figure 16 Ű Results for a 1500 time steps run where the gas-lift source pressure of the

second well (Pgs,2) is depleting 10 bar at times k = ¶750,900,1100♢ as

disturbance. The topmost subplot depicts the tracking experiment, where

each well bottom-hole pressure (Pbh,1 as a blue, solid and thin line, and

Pbh,2 as a green, solid and thick line) is plotted together with their set-points

(dashed lines of matching color and thickness) over time; the second subplot

contains the control action of each well choke valve (uch,1 : blue and thin,

uch,2 : green and thick); and the third plot represents the disturbance at

the gas-lift source pressure Pgs,2 over time. . . . . . . . . . . . . . . . . . 66



Figure 17 Ű Correction Ąlter effect for a 1500 time steps run where the gas-lift source

pressure of the second well (Pgs,2) is depleting 10 bar at times k =

¶750,900,1100♢ as disturbance. The topmost subplot contains the a priori

ESN prediction errors of each well bottom-hole pressure (Pbh,1,Pbh,2), and

the bottom-most plot contains the relative error of the pressure predictions

after correction is applied. The vertical dashed lines mark each moment

when Pgs,2 changes value. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 18 Ű Comparison between the ESN-PNMPC, and a DMC-type MPC for the oil

production platform during pressure disturbances applied to the gas-lift

supply, between time steps 700 and 1100 of Fig. 16. The reference signal is

given by the dashed cyan line for the bottom-hole pressures Pbh,1 and Pbh,2

in the upper and lower plots, respectively. The IAE was (271.22,210.64)

(total: 481.86) for the ESN-PNMPC, and (289.68,429.16) (total: 718.84)

for the DMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 19 Ű ESP lifted well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 20 Ű APRBS excitation signal utilized to generate the dataset by inputting it into

the ESP-lifted well. Valve opening presented as a percentage instead of in

absolute value form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 21 Ű Prediction of the ESN, LSTM, and GRU on test data in comparison to

the ESP plant (blue dashed line) given the test excitation signal. The Ąrst

plot presents the bottom-hole pressure pbh, the second plot, the wellhead

pressure pwh, and the third plot, the flow. The fourth plot is the NRMSE

at the given time-step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 22 Ű Results of the experiment for the bottom-hole pressure tracking induced by

both the SS ESN-NMPC and the ESN-PNMPC. The Ąrst plot regards the

bottom-hole pressure, the second plot shows the oil flow q, and the third

plot presents the manipulated variable: the pump frequency f . . . . . . . . 77

Figure 23 Ű Results of the experiment for the bottom-hole pressure tracking with dis-

turbance rejection induced by both the SS ESN-NMPC and ESN-PNMPC.

The Ąrst and the second plots show the bottom-hole pressure tracking by

PNMPC and NMPC, respectively. Both plots have a blue, thick line repre-

senting the controller with a Ąlter, and a green line for the controller without

a Ąlter. The third and fourth plots are the pump frequency for PNMPC and

NMPC respectively. The time instant where disturbance on the reservoir

pressure pr takes place is shown as a vertical cyan dashed line at timestep

400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Figure 24 Ű Results for the bottom-hole pressure tracking while maximizing oil produc-

tion for both the ESN-NMPC and the ESN-PNMPC. The Ąrst plot shows

the controlled bottom-hole pressure. The second plot shows the oil flow q

with the target oil production given by the horizontal dashed red line. The

bottom plots present the manipulated variables choke opening z, and pump

frequency f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 25 Ű One-dimensional input signals for the reservoir energy contribution distri-

bution experiment. White noise (top), APRBS signals (usually used in

identiĄcation tasks): with a minimum period of 10, 100, 500, and 1,000

timesteps, respectively, from second topmost plot to bottom. . . . . . . . 91

Figure 26 Ű Mean and Standard deviation of the Ąrst ordered 10 singular values (with 0

corresponding to the highest and 9 to the lowest) obtained from the snap-

shots of 20 different ESN reservoirs. Each color corresponds to a different

input signal fed to the ESN reservoir, shown in Fig. 25. . . . . . . . . . . . 92

Figure 27 Ű Plot of the memory capacity as a function of the number of neurons of the

original network (upper plot), and as a function of the number of states

(lower plot). Each point is colored according to the energy cutoff of the

POD-ESN that obtained the MC shown (points in blue are the MC obtained

from full ESNs). EC means the energy cutoff of the applied POD. . . . . . 94

Figure 28 Ű Experiment comparing a POD-reduced ESN (blue dots) with an ESN of

equivalent size (to the reduced ESN) (orange triangles) for the 10th-order

NARMA task. The POD reduction is applied on an ESN with 1,400 units

in the reservoir. The horizontal axis is the number of states (units) of the

reduced (full) network, while the vertical axis is the R2 metric on the test

set. The plot’s blue horizontal line corresponds to the R2 of the 1,400 units

ESN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 29 Ű POD-ESN for a system identiĄcation task. The full ESN network has 1,400

neurons and was trained to model the platform with two wells and one riser.

The x axis is the number of states of the reduced network, whereas the y

axis is the R2metric on the test set for each output variable (bottom-hole

pressures). The bottom-hole pressure of the Ąrst well is represented in blue,

while the orange color denotes the bottom-hole pressure of the second well.

The R2 of the original network corresponds to the horizontal lines of the

respective colors for comparison. . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 30 Ű Single simulation run involving a POD with 92 states (0.01 energy cutoff)

and a DEIM interpolation with m = 1,073, put side by side with the original

data for the bottom hole pressure pbh of both wells (normalized), and the

original ESN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



LIST OF TABLES

Table 1 Ű Parameters values selected for the deterministic reservoir experiment. . . . . 38

Table 2 Ű Results for the deterministic ESN experiment, with the mean absolute vali-

dation taken over 5 training runs for each network. This number of runs was

selected because it was low enough to be easy for runtime, and high enough

so that data is skewed to the mean, with small standard deviation. . . . . . 38

Table 3 Ű Results for the semi-deterministic ESN experiment, with the mean absolute

validation taken over 5 training runs for each network. . . . . . . . . . . . . 39

Table 4 Ű Results for PNMPC with ESN or LSTM in the four-tank system. Computation

times are per time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 5 Ű Tracking error in relation to PI controller and Linear MPC (four-tank). . . . 62

Table 6 Ű Well dimensions and other known constants . . . . . . . . . . . . . . . . . 71

Table 7 Ű NRMSE on the validation set for varying reservoir sizes of the ESN . . . . 74

Table 8 Ű Hyperparameters used in the ESN . . . . . . . . . . . . . . . . . . . . . . 74

Table 9 Ű Comparison of ESN model with LSTM and GRU for ESP-lifted well identiĄ-

cation on test data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 10 Ű Metrics for each controller in the bottom-hole pressure tracking problem. . 77

Table 11 Ű Metrics for each controller in the problem of pressure tracking with target

production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 12 Ű Memory capacity evaluated for different energy cutoffs used in POD and

DEIM. Each table considers an original ESN with a different size N , to be

reduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 13 Ű Mean absolute error for the NARMA experiment obtained from the 3,000

test time steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 14 Ű Mean execution time for the NARMA experiment composed of 5,000 time

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 THESIS ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 DYNAMIC SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Linear Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 LMI-based Stability Analysis . . . . . . . . . . . . . . . . . . . . 27

2.1.3.1 Example: Closed-loop Stabilization of a Continuous Time

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.4 Absolute Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 ARTIFICIAL NEURAL NETWORKS (ANN) . . . . . . . . . . . . . . . . . 29

2.3 FEEDFORWARD NEURAL NETWORKS . . . . . . . . . . . . . . . . . . . 30

2.4 RECURRENT NEURAL NETWORKS . . . . . . . . . . . . . . . . . . . . . 32

2.5 ECHO STATE NETWORKS (ESN) . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.3 Deterministic Reservoir Computing . . . . . . . . . . . . . . . . 37

2.6 MODEL ORDER REDUCTION . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Davison Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.2 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . 40

2.7 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 ESN BASED PRACTICAL NMPC . . . . . . . . . . . . . . . . . . . . . . 42

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Practical Nonlinear Model Predictive Control (PNMPC) . . . 44

3.1.2 ESN-PNMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2.2 Linearizer Ű Forced Response Derivation . . . . . . . . . . 46

3.1.2.3 Error Correction . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2.4 QP Problem . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 CASE STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Four Tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1.2 System IdentiĄcation . . . . . . . . . . . . . . . . . . . . 53

3.2.1.3 Control Experiments . . . . . . . . . . . . . . . . . . . . . 57

3.2.1.4 Comparison with LSTM-PNMPC . . . . . . . . . . . . . . 58



3.2.1.5 Comparison with PI controller and Linear MPC . . . . . . . 61

3.2.2 Two Wells - One Riser . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2.2 System IdentiĄcation and Controller Setup . . . . . . . . . 65

3.2.2.3 Control Experiments . . . . . . . . . . . . . . . . . . . . . 66

3.2.3 Electrical Submersible Pump-lifted Oil Well . . . . . . . . . . . 68

3.2.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.3.2 System IdentiĄcation . . . . . . . . . . . . . . . . . . . . 73

3.2.3.3 Experiments Description . . . . . . . . . . . . . . . . . . . 76

3.2.3.4 Bottom-hole pressure tracking with pump frequency manip-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.3.5 Bottom-hole pressure tracking with target oil production . . 79

3.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 INVESTIGATION OF POD METHODS FOR ECHO STATE NETWORKS 82

4.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 MODEL ORDER REDUCTION . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . 85

4.3.2 Discrete Empirical Interpolation . . . . . . . . . . . . . . . . . . 86

4.3.3 Stability Loss in DEIM . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.3.1 Stabilizing DEIM on POD-ESN . . . . . . . . . . . . . . . 89

4.4 APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Preliminary Study: Energy contribution distribution in Echo

State Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.2 Memory Capacity Evaluation . . . . . . . . . . . . . . . . . . . . 92

4.4.2.1 POD Reduction . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.2.2 DEIM Reduction . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.3 NARMA System . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.3.1 DEIM Stabilization . . . . . . . . . . . . . . . . . . . . . 98

4.4.4 Two Wells and One Riser Platform . . . . . . . . . . . . . . . . 99

4.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 STABILITY ANALYSIS OF FEEDBACK CONTROL WITH ESN . . . . . 104

5.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 ABSOLUTE STABILITY OF ECHO STATE NETWORKS . . . . . . . . . . 105

5.3 CLOSED-LOOP STABILITY OF AN ESN-NMPC . . . . . . . . . . . . . . 108

5.4 ELLIPSOID OF ATTRACTION . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 NUMERICAL EXAMPLE: TANK SYSTEM . . . . . . . . . . . . . . . . . . 115



5.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.2 Case Study Description . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.3 IdentiĄcation and Linear Gain Stability Test . . . . . . . . . . . 115

5.5.4 ESN-NMPC Stability Test . . . . . . . . . . . . . . . . . . . . . 116

5.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 LIMITATIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 118

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



19

1 INTRODUCTION

1.1 MOTIVATION

Machine Learning (ML) and, more speciĄcally, Deep Learning are ascending areas that

have had a disruptive impact on relevant problems in both academia and industry (TORRES

et al., 2021). These Ąelds include computer vision (LIU, Y.; CHENG; WANG, W., 2018), image

classiĄcation (HE, 2020), natural language processing (OTTER; MEDINA; KALITA, 2019),

system identiĄcation (NELLES, 2020), and time series analysis. Those last two mentioned

areas are important in many applications such as control design, prediction, and simulation,

especially in the context of systems engineering (CAMACHO; BORDONS, 1999; NELLES,

2020).

There are many tools in ML for system identiĄcation. In particular, Recurrent Neural

Networks (RNNs) (GOODFELLOW; BENGIO; COURVILLE, 2016) have achieved excellent

results in that regard. They are a sort of bio-inspired, nonlinear dynamic system that, through

a suitable weight tuning (i.e., training process), can learn to reproduce the behavior of any

plant/real-life dynamic system, with arbitrary accuracy (NELLES, 2020) in principle, and

without prior physical information about the system in question.

The main issue with the original RNNs involves fading gradients during RNN training.

This hindrance to effective training of RNNs has led to specialized architectures aiming to

overcome this issue, such as the Long Short-Term Memory (LSTM) (HOCHREITER; SCHMID-

HUBER, 1997) network and the Gated Recurrent Unit (GRU) network. Fading gradient is a

numerical problem that emerges when computing the gradient of the cost function concerning

the RNN’s parameters (or any deep network for that matter), called Backpropagation Through

Time (BPTT) (MOZER, 1989). As BPTT works by propagating the error backward through

the time series using the chain rule, and as the activation function is generally the hyperbolic

tangent, the back-propagated error may tend to zero as it moves back in time. LSTMs and

GRUs change the neuron structure to avoid and diminish the fading gradient problem. However,

this work follows an alternative approach to RNN training, called Reservoir Computing (RC),

that circumvents not only the fading gradient issue but also the many local optima that happen

due to the nonlinearity of conventional RNN training.

Reservoir Computing (RC) (SCHRAUWEN; VERSTRAETEN, David; VAN CAMPEN-

HOUT, 2007) is a training method for RNNs that came about as a unifying paradigm for works

developed a few years back, such as Echo State Networks (ESNs) (JAEGER, 2001) and Liquid

State Machines (MAASS; MARKRAM, 2004). RC separates the RNN into a non-trainable,

recurrent network, referred to as a Reservoir, and a trainable static output layer representing

the output prediction as a linear combination of the reservoir states. The reason for the name

“ReservoirŤ (TANAKA et al., 2019) is that the static reservoir must have a large number of

states. A large number of recurrent neurons implies a sufficiently rich pool of dynamics for

correctly computing an output trajectory corresponding to the system being identiĄed. This
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work in question focuses on Echo State Networks, as they are a simple flavor of RC suitably

designed for engineering applications.

Echo State Networks have many interesting applications in the literature, such as

learning complex goal-directed robot behaviors (ANTONELO, Eric A; SCHRAUWEN, 2015),

grammatical structure processing (HINAUT; DOMINEY, 2012), short-term stock prediction

(LIN; YANG, Z.; SONG, 2009), speech emotion recognition in Metaverse (DANESHFAR;

JAMSHIDI, 2023) (working with octonions instead of real numbers), predicting stellar mass

accretion (BINO et al., 2023), and noninvasive fetal detection (LUKOŠEVIČIUS; MAROZAS,

2014). Also, in (CHEN, C.; LIU, H., 2021), the ESN serves as a basis for the prediction model

of a wind speed time series, where it is also coupled with tools such as reinforcement learning

and real-time wavelet packet decomposition.

Control applications beneĄt very much from system identiĄcation (NELLES, 2020), as

data-driven models can either be used as a basis to tune a controller or be implemented as part

of the controller itself, such as in Model Predictive Control (MPC) (CAMACHO; BORDONS,

1999). Although only a few, there are some instances in the literature of control applications

with Echo State Networks as the nominal plant model. For instance, Pan and J. Wang (2012)

apply a real-time linearization in an identiĄed ESN, which is thus in state-space form, while also

relaxing the resulting Quadratic Programming (QP) problem of the Model Predictive Control.

Armenio et al. (2019) work with full NMPC and ESN models, also developing a stability proof

for it. There are other instances of ESN control in the literature unrelated to MPC. Jean P.

Jordanou, Eric Aislan Antonelo, and Camponogara (2019), for example, employ ESNs in an

online learning control, where the controller infers an inverse model of the plant as data is fed

online to the network through time. Qiang Chen et al. (2018) utilize an ESN as a basis for the

design of a backstepping nonlinear controller.

One interesting approach that provides an efficient MPC when combined with ESN

comes from the Practical Nonlinear Model Predictive Control (PNMPC). In fact, this ESN-

PNMPC approach was initially developed in a previous work (JORDANOU, Jean P. et al.,

2018) and is further developed and tested in this research, considering three additional plants:

a four-tank system, an oil production system consisting of two gas-lifted oil wells and one

riser (JORDANOU, Jean Panaioti; ANTONELO, Eric Aislan; CAMPONOGARA, 2022), and

an ESP-lifted oil well (JORDANOU, Jean P. et al., 2022). In that preliminary work, PNMPC

uses an ESN as a prediction model and calculates the Jacobian according to a recursive rule

that gives an analytical derivative. This research explores further the properties of the so-called

ESN-PNMPC as one of the main topics, further expanding the experimental analysis regarding

the MPC method at hand, such as testing the ESN-PNMPC on mode complex plants, and

exploring properties related to the parameters, computation time, and comparison to other

types of controllers.

Naturally, Reservoir Computing inherently needs the number of states to be far larger

than the number of inputs and outputs. This fact alone directly impacts the computing time
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of any optimization problem employing an ESN model compared to a less complex counterpart.

Although some works in the literature seek to Ąnd the minimum complexity Echo State Network

to perform a speciĄc task (RODAN; TINO, 2010), they have not been designed for a control

scenario, i.e., they do not reduce the number of states, but the number of weight connections.

For MPC, a model with fewer states is desirable, as the number of states plays a sensitive part

in MPC employing state-space models (mainly due to the derivative chain rule when computing

gradients). Hence, there is a demand for an equivalent model to the ESN, however, with fewer

states.

There is an extensive literature for model order reduction (MOR) of large-scale dynamic

systems (SILJAK, 2007; FLOREZ; GILDIN, 2019; GHASEMI; IBRAHIM; GILDIN, 2014), with

special mention to the Proper Orthogonal Decomposition (MIJALKOVIC, 2006), the Discrete

Empirical Interpolation Method (CHATURANTABUT; SORENSEN, 2010), autoencoders (AN;

CHO, 2015), and the Embed-to-Control E2C (WATTER et al., 2015) strategy. The latter was

initially developed for time-series identiĄcation with data as a sequence of images (a video

stream) but is also utilized in oil and gas reservoirs. The hypothesis in this research is that

Echo State Networks can beneĄt from such MOR techniques to Ąnd an approximate ESN

with fewer states. In this way, this work hopes to advance the performance of an RC model

in control tasks, where not only the training of RNNs is efficient, but also the optimization

problem complexity is further reduced and easier to solve.

Another point of attention that might come to mind is that there are few comprehensible,

systematic proofs of stability involving ESNs, especially concerning control loops. Since the

traditional activation function for an ESN (the hyperbolic tangent) has a similar behavior to the

saturation function, a possibility is to Ąnd a proof that converts the ESN stability veriĄcation

problem into an absolute stability problem. The implication is reducing any open and closed-loop

stability proof into an LMI, which can be solved numerically through SemideĄnite Programming

(SDP) methods, with a formulation akin to Eugênio B. Castelan, Sophie Tarbouriech, and

Queinnec (2008), who considered a nonlinear system with saturated control action for the

absolute stability problem formulation.

Eugênio B. Castelan, Sophie Tarbouriech, and Queinnec (2008) also guide on performing

stability analysis for a saturated controller on a system with arbitrary nonlinearity. In parallel,

Cisneros and Werner (2018) provide a method to convert the process of solving a QP given its

linear term, into a nonlinear operation that obeys a particular so-called sector condition. Since

the ESN is already being reformulated into an absolute stability problem, an NMPC employing

it as a model could be represented as a QP, with the static nonlinearity as an exogenous input,

in the same vein as Cisneros and Werner (2018), separating the LPV model into a dynamic

LTI and a static LPV to solve its problem. The fact that such stability proof for QP MPC can

be demonstrated allows us to represent an ESN-NMPC stability as an LMI that provides a

sufficient stability condition proof.
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1.2 OBJECTIVES

The general objective of this research is to develop methods that advance the state-of-

the-art in the subject of Echo State Networks when applied in control loops, with a focus on

Model Predictive Control. With this direction in mind, this dissertation led to the following

original contributions:

• Analyzed ESN-PNMPC properties regarding its computational efficiency and per-

formance on different plants, comparing with alternative controllers such as ESN-

NMPC and PNMPC with LSTM.

• Studied MOR strategies to Ąnd approximate ESNs for control applications, such

as Model Predictive Control, with less computing overhead and more accuracy.

Several experiments were carried out to assess the application of Proper Orthogonal

Decomposition (POD) and Discrete Empirical Interpolation Method (DEIM) for

model order reduction of ESNs.

• Developed a stability proof for ESNs in a loop with different controllers that can

verify the closed-loop stability and estimate a region of attraction given an arbitrary

initial condition. The stability conditions provide interpretability and a systematic

way to obtain information about stability in control design problems such as the

state feedback gain controller. This work also contributed to the initial development

of a numerical procedure to calculate the stability of NMPC with ESNs as a model.

1.3 THESIS ORGANIZATION

The rest of this document is organized as follows:

• Chapter 2 is an overview of the theories that serve as a basis for this study.

• Chapter 3 introduces the ESN-PNMPC control strategy and shows the new experi-

ments performed, which are detailed in (JORDANOU, Jean Panaioti; ANTONELO,

Eric Aislan; CAMPONOGARA, 2022) and (JORDANOU, Jean P. et al., 2022).

• Chapter 4 describes the Model Order Reduction methods, which are based on a

published work (JORDANOU, Jean Panaioti et al., 2023).

• Chapter 5 showcases the fundamental elements and steps to assess the stability of

NMPC with ESNs as a model.

• Chapter 6 concludes the dissertation, discussing its limitations and suggesting future

works.
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2 THEORETICAL BACKGROUND

This chapter presents the theoretical background necessary to understand the concepts

involved in this research. Every content here is applied in one way or another in the developed

methods.

2.1 DYNAMIC SYSTEMS

This section gives an overview of dynamic systems. A system is dynamic if, to compute

the current system output, one needs to provide prior input and output information (CHEN,

C.-T., 1998). This feature sets them apart from static systems, which only depend on the

present input (as in the static linear system with input vector x and output vector y, y = Ax).

The dependency of the output with respect to a space of previous inputs and outputs is

captured by the concept of a state, which is by deĄnition an accumulation of all the previous

inputs that were applied into the system since the beginning of time (t = −∞). A dynamic

system can be either continuous or discrete time. As the continuous system response has a

continuous domain, differential equations depict the derivative of the state response. In discrete

systems, the time domain is countable, so a function that directly maps the previous step into

the next one (the so-called transition function) is available (CHEN, C.-T., 1998).

The generic mathematical representation of a continuous-time dynamic system in state

equations is:

ẋ(t) = f(x(t),u(t)) (1)

y(t) = g(x(t),u(t)) (2)

at any given time t, where the states are represent by x ∈ R
n, with n being the number

of states; the inputs by u ∈ R
m, with m being the number of inputs; and the outputs of

the system are y ∈ R
o, with o being the number of outputs. A dynamic system without

inputs is referred to as an autonomous system (KHALIL, 2018). The dynamic system’s initial

condition (x0 = x(t = 0)) must be known to fully be able to solve the differential equation (1)

and obtain a system response. The vector function f : (Rn × R
m) 7→ R

n is called the state

transition function, which computes the state gradient at time t based on the input and the

state. The function f is also referred to sometimes as the flow map, since it represents a flow

vector Ąeld in a state space. The vector function g : (Rn × R
m) 7→ R

o is a static mapping to

deĄne the output of the dynamic system. A discrete dynamic system, in turn, is represented

by the following equations:

x[k + 1] = f(x[k],u[k]) (3)

y[k] = g(x[k],u[k]) (4)

where the same notation of the continuous case is used, and k ∈ N is the discrete time

step. The notation x[k] is equivalent to x(t = Tsk), with Ts ∈ R being the sampling time
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of the system. Nonlinear differential equations (difference equations in the case of discrete

dynamic systems) do not have a uniĄed method of obtaining an analytical solution available,

therefore the most usual way to compute their response is through numerical simulation (or

direct computation of x[k + 1] given x[k] and u[k] in the case of discrete systems). Since it

is not possible to directly get analytical responses for nonlinear dynamic systems, qualitative

properties play an important part in system analysis. One such property is the equilibrium

point x̄, a state value where the system is stationary (limt 7→∞ x(t) = x̄ if x(0) = x0). For

continuous-time autonomous systems (without loss of generality as one can consider any Ąxed

input), this means that f(x̄) = 0, as the flow map gradient being null means the system

is stationary at point x̄. As for discrete-time autonomous systems, f(x̄) = x̄ at equilibrium,

which is a Ąxed point.

2.1.1 Stability Analysis

Equilibrium points can be either stable or unstable. A stable equilibrium point is a

state which the system converges to, from any given initial condition located at an arbitrarily

small distance from it (limt 7→∞ x(t) = x̄ for any x(0) = x0,∥x0 − x̄∥ < ϵ, ϵ being a small

scalar). The region that converges to a given equilibrium point is referred to as the region of

attraction of it.

The are two main forms to evaluate the stability of a nonlinear system (KHALIL, 2018):

• Linearizing the system by calculating the Jacobian of f at point x̄ and some ū in

the state equation:

∆ẋ =
∂f

∂x
(∆x) +

∂f

∂u
∆u (5)

the stability properties of the resulting system holds at least locally for the nonlinear

system, except for when the matrix ∂f
∂x has any Eigenvalue λ where ℜ(λ) = 0.

• The Lyapunov Stability, which was created based on energy properties of mechanical

systems (KHALIL, 2018). Given an energy scalar function V (x), the flow map of a

dynamic system is the vector Ąeld that dictates the system trajectory along V (x).

The Lyapunov function V (x) must be positive deĄnite for all x, except at an

equilibrium point x̄. The Lyapunov stability theorem for continuous systems states

that (KHALIL, 2018), given a Lyapunov function V (x) and a dynamic system as in

(1), if dV (x)
dt < 0, then the system is at least locally asymptotically stable. Applying

the chain rule shows that the derivative of V (x) is a directional derivative with the

system trajectory as the associated vector Ąeld:

dV (x)

dt
=

∂V (x)

∂x
ẋ =

∂V (x)

∂x
f(x,u) (6)

The flow map f is a vector Ąeld that dictates the trajectory of the state x along

the Lyapunov function V . As the function is positive deĄnite and the derivative
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is negative deĄnite, then any trajectory sequence converges to a local minimum

for V . Therefore, if one sees V as an energy function, a derivative over time that

is always negative means that the system will converge to the point of minimum

energy, and therefore present stability. Generally speaking, it is common practice to

use the quadratic Lyapunov function (KHALIL, 2018):

V (x) = xT Px (7)

with P ≻ 0. The Lyapunov function (7) has the nice property of having an easily

computable gradient:

dV (x)

dt
= f(x,u)T Px + xT Pf(x,u) (8)

For any nonlinear system, if the derivative over time of the Lyapunov function is

not positive deĄnite, then it does not imply absence of asymptotic stability, and

another Lyapunov function must be chosen.

Generally, the linearization of the system is the easiest path to check if the system is

stable or how the system behaves near the equilibrium point. However, the Lyapunov stability

approach also has its beneĄts in the form of being able to estimate an attraction region for

a given equilibrium point (KHALIL, 2018), and being a general tool for designing nonlinear

controllers. A nonlinear system may have many equilibrium points or none at all, and that

information is lost when it is linearized. Also, a property called limit cycle (a state trajectory that

repeats itself periodically (KHALIL, 2018), which is similar to an equilibrium point that can be

stable or unstable) can be, in certain cases, detected by the Lyapunov function. Unfortunately,

there is no available tool to easily detect limit cycles in a given system, and each particular

system has a particular method involved.

2.1.2 Linear Dynamic Systems

A particular case of dynamic systems is of interest because it is way more thoroughly

analyzed (CHEN, C.-T., 1998): linear systems. As shown in the previous sections, one way to

analyze stability is to linearize the nonlinear system. This is because, for linear systems, the

analytical solution of the differential equation is readily available, therefore one can easily know

how the system behaves based on its form. Consider the generic linear system without direct

transmission:

ẋ = Ax + Bu (9)

y = Cx (10)

The analytical solution of this differential equation has the following form.

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)u(τ)dτ (11)
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The matrix eAt has the following form:

V




eλ1t teλ1t

1!
t2eλ1t

2! · · · tneλ1t

(n−1)!
0 0 0

0 eλ1t teλ1t

1! · · · tn−1eλ1t

(n−2)!
0 0 0

...
...

. . . . . .
... 0 0 0

0 0 · · · eλ1t teλ1t 0 0 0

0 0 · · · 0 eλ1t 0 0 0

0 0 · · · 0 0 eλ2t 0 0

0 0 · · · 0 0 0
. . .

...

0 0 · · · 0 0 0 · · · eλmt




V−1 (12)

where V corresponds to the generalized Eigenvectors of A and the middle matrix is the inverse

Laplace transform of A in Jordan form. Here, it is assumed without loss of generality that A has

Eigenvalue λ1 with multiplicity n, and has m different Eigenvalues, where λi, i ∈ ¶2,3,4, . . . ,m♢
has multiplicity one. This implies that the Eigenvalues of matrix A hold precious information

about the dynamics of the system. Any exponential eat with positive a can imply a divergent

trajectory when t 7→ ∞, therefore a positive Eigenvalue indicates an unstable system. Along

this line, the Eigenvalues also hold information about convergence time (for a negative a, 1/a is

the time it takes for eat = e−1 ≈ 0.37, therefore the larger the a, the faster is the convergence

time) and damping (the system has no oscillation when all the Eigenvalues are real, otherwise

sinusoidal functions appear). The implication of the matrix Eigenvalue is that it is possible to

tune a controller that forces the closed-loop system to have certain Eigenvalues, thus making

the system behave in a certain desired way.

For the Lyapunov stability, the derivative over time dV
dt for a quadratic Lyapunov

function is:
dV

dt
= xT (AT P + PA)x = −xT Qx (13)

where Q is some positive deĄnite matrix. Contrary to the nonlinear case, when a quadratic

negative deĄnite derivative for the Lyapunov function is not found for the linear system, then it

can be affirmed that the system is unstable (CHEN, C.-T., 1998). Therefore, since the Lyapunov

function time derivative is negative if, and only if, the system is stable, the stability problem

can be solved through a matrix equation. The matrix Q is given and the matrix containing

the coefficients of the Lyapunov Function, P, is found through the following equation:

AT P + PA = −Q (14)

If a positive deĄnite P can be obtained, then the system is stable. Also, for linear systems, if

P is not positive deĄnite, then the system is unstable (CHEN, C.-T., 1998). This equation is

referred to as the Lyapunov equation and is used as one of the fundamentals for many robust

control and linear optimal control methods, since it presents itself as a way to place stability

in the form of matrix constraints for optimization problems.



Chapter 2. Theoretical Background 27

There are other important concepts related to linear systems, such as controlability,

observability, conversion to transfer function, state-space realization, and feedback control

through state feedback and output feedback (using observers), which will not be discussed in

this dissertation, but more information on then is found in (CHEN, C.-T., 1998).

2.1.3 LMI-based Stability Analysis

As seen in equation (13) and (14), the linear system stability is expressed in terms of a

matrix equation with P as the variable. The same stability condition can be expressed as:

xT (AT P + PA)x < 0 (15)

(AT P + PA) ≺ 0 (16)

with the symbol ≺ 0 denoting semideĄneteness of a matrix. Equations such as (16) are referred

to as Linear Matrix Inequalities (LMI). The variable in these equations is always a matrix, such

as P, and the equation is always linear in terms of P. As the objective is to Ąnd P such that

the LMI holds, and there is no unique solution for P, the solution of the LMI is always tied to

an SDP (semi-deĄnite programming) optimization problem.

2.1.3.1 Example: Closed-loop Stabilization of a Continuous Time System

Given a system in closed loop with a linear controller:

ẋ = Ax + Bu (17)a

u = Kx (17)b

The objective is to Ąnd K such that the closed loop system:

(A + BK)x (18)

is stable. The matrix inequality representing such system is:

(A + BK)T P + P(A + BK) ≺ 0 (19)

Such an equation would be classiĄed as an LMI if K were given, however the gain

is also included as a variable. To turn the stability equation into an LMI, the variables are

substituted. Consider the expansion of the above inequality:

AT P + PA + KT BT P + PBK ≺ 0

The Ąrst step is to deĄne a matrix Q = P−1, and then pre and post multiply the

matrix inequality as follows:

QAT + AQ + QKT BT + BKQ ≺ 0
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The next step is to do Y = KQ, so that:

QAT + AQ + YT BT + BY ≺ 0 (20)

The equation (20) is an LMI with variables Q and Y. P and K are then directly derived,

and a stabilizing gain is possible to be found.

It is possible to include extra conditions in the stability formulation, such as dynamic

constraints, and robustness terms, which are extensively explored in the literature.

2.1.4 Absolute Stability

Assume an autonomous nonlinear system in the following form:

x[k + 1] = Ax[k] + Bϕ(y[k]) (21)

y[k] = Cx[k] (22)

where ϕ(y) is a nonlinear map that follows a given sector condition.

A sector condition (TARBOURIECH, Sophie et al., 2011a) is an an inequality condition

where any value of ϕ(y) is inside an envelope of linear functions Ωminy and Ωmaxy, and the

inequality in question can be expressed as:

2(ϕ − Ωminy)T (ϕ − Ωmaxy) ≤ 0 (23)

The domain of the nonlinearity input y ∈ D must contain the origin (TARBOURIECH,

Sophie et al., 2011a).

Given the discrete-time system described in (21), the system is considered to have

absolute stability if it is open-loop stable assuming ϕ(y) as an external output that is

bounded by the sector condition. The absolute stability conditions for a discrete-time system

can be expressed in the following quadratic inequality:

x

ϕ




T 
AT PA − P AT PB

BT PA BT PB




x

ϕ


 ≤ 0 (24)

given the Lyapunov function V[k] = x[k]T Px[k] and the stability condition that it decreases

over time steps V[k + 1] − V[k] < 0.

Both (23) and (24) must hold at the same time to obtain absolute stability, therefore

(TARBOURIECH, Sophie et al., 2011a):

x

ϕ




T 
AT PA − P AT PB

BT PA BT PB




x

ϕ


+ 2(ϕ − Ωminy)T (ϕ − Ωmaxy) ≤ 0

By transforming the second term into matrix form, with y = Cx, one Ąnally obtains

the LMI that deĄnes the absolute stability of a system in the form (21):

x

ϕ




T 
AT PA − P + CT ΩminΩmaxC AT PB − CT (Ωmin + Ωmax)

BT PA − (Ωmin + Ωmax)C BT PB + 2I




x

ϕ


 ≤ 0 (25)
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Equation (25) is an example of a L’ure stability quadratic inequality, and Ąnding P

that makes such inequality hold ∀x,ϕ proves absolute stability for discrete systems in the form

of (21) and any nonlinearity ϕ under sector (Ωmin,Ωmax). Other derivations can be made for

continuous systems, and speciĄc nonlinearities for saturation.

Absolute stability is a subject for many applications, and can even be useful for proving

stability for nonlinear MPC (CISNEROS; WERNER, 2018).

2.2 ARTIFICIAL NEURAL NETWORKS (ANN)

ArtiĄcial Neural Networks (ANNs) have been coined as such from biological sciences,

as an attempt to Ąnd a mathematical model of the brain (BISHOP, 2006). In engineering,

they are mostly seen as a nonlinear powerful statistical model (NELLES, 2020). An ANN has

the following characteristics:

• large number of simple units;

• highly parallel units;

• densely connected units;

• fault tolerance of single units.

As the aforementioned characteristics imply, these networks are heavily distributed, so

the combination of each unit serves as an universal function approximator, which entails an

easy hardware implementation (NELLES, 2020).

The main unit of an ANN is the “neuronŤ. A neuron in this context is a mapping

between a linear combination of inputs and a given output, which is computed through a given

activation function f . In most tasks, it is usual to use activation functions such as tanh(·) or

the sigmoid(·), the latter deĄned as:

sigmoid(z) =
1

1 + e−z
(26)

Figure 1 shows the curves of a hyperbolic tangent and a sigmoid in a 2-d plot, re-

spectively. Both the hyperbolic tangent and the sigmoid function are bounded, which makes

them useful for logistic regression (BISHOP, 2006). Since both functions converge to asymp-

totes from both the negative and positive sides, their gradient becomes closer to zero as the

function input magnitude ♣z♣ increases, which is commonly referred to as a “fading gradientŤ

that can cause numerical problems in the gradient calculation. The deep learning literature

(GOODFELLOW; BENGIO; COURVILLE, 2016) proposes another activation function for the

neural networks to avoid the “fading gradientŤ: the RectiĄer Linear Unit (ReLU) (GLOROT;

BORDES; BENGIO, 2011), calculated as:

f(z) = max(0,z) (27)

Glorot, Bordes, and Bengio (2011) argue that the most important property of a biological

neuron is the retiĄcation (the diode effect of nullifying negative stimuli). Also, biological neurons
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Figure 1 Ű Plot of a hyperbolic tangent and a sigmoid function.

rarely reach the maximum Ąring magnitude. Both these facts explain the proposal of ReLU,

which is ubiquitous in image recognition and computer vision applications (GOODFELLOW;

BENGIO; COURVILLE, 2016).

Inside a neural network, the neurons are linked through weighted connections, as

each neuron receives as input a linear combination of the outputs from other neurons. The

distributed composition between activation functions, alongside the weight tuning, deĄnes a

feedforward neural network as a universal approximator of static functions (CYBENKO, 1989).

For regression applications, the weights are obtained by minimizing the quadratic error of some

desired values, solving a nonlinear least squares problem.

ANNs, overall, are ideal in some applications where a large amount of data is available

and the patterns are not trivial enough to be identiĄed through a linear regression model. The

neural network is a complex, nonlinear model, therefore prone to overĄtting, which welcomes

the implementation of regularization solutions. Viable strategies for regularization in an ANN

include the Tikhonov Regularization (BISHOP, 2006) or the LASSO (least absolute shrinkage

and selection operator) regularization (TIBSHIRANI, 1996). While Tikhonov utilizes ℓ2-norm,

LASSO utilizes ℓ1-norm which is able to obtain networks with sparse weights, signiĄcantly

reducing model complexity.

2.3 FEEDFORWARD NEURAL NETWORKS

The most basic type of neural networks are the Feedforward Neural Networks (also

known as Multilayer Perceptron (MLP). The main characteristic of these networks is that,

since the value of each neuron does not depend on itself in previous instants in time, they

lack dynamics, hence feedforward. To ease gradient calculation and function evaluation, the
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neurons are commonly organized in layers.

Input Layer Hidden Layers Output Layer

Figure 2 Ű Representation of a Feedforward Neural Network with 3 inputs, 2 hidden layers
with 4 neurons each, and 2 outputs. Each arrow represents a weighted connection
between each neuron, represented by a circle.

Figure 2 depicts a feedforward neural network, which is governed by the following

equations:

y = f(Wnl
znl

) (28)

zn = f(Wn−1zn−1) (29)

z1 = f(W0u) (30)

where the network has nl layers, and zn is a vector where each element is a layer-n neuron.

The index nl also doubles as the index of the Ąnal layer. u is the input and y is the output

vector. The matrix W0 deĄnes the weights between the input layer and the Ąrst hidden layer.

The matrix Wn gives the weights between layer n and layer n + 1. Consequentially, Wnl
is

the weight matrix of that maps the hidden neurons from the last layer znl
into the outputs.

The vector function f(·) is the element-wise activation function, which is unspeciĄed for this

analysis. For instance, in Figure 2, the network has nl = 2, and is described by the following

equations:

y = f(W2z2)

z2 = f(W1z1)

z1 = f(W0u)

Functions such as tanh(·) or the sigmoid(·) as presented in Equation (26) are common

activation functions. Bias can be added by concatenating the input vector u and each layer
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vector zn with 1 and adding a weight corresponding to the connection between the bias and

a given neuron. A neural network that has a large nl, that is, a large number of layers, is

considered a Deep Neural Network (GOODFELLOW; BENGIO; COURVILLE, 2016).

In a neural network, the trainable weights are the elements in each matrix Wn where

the index n ∈ ¶0,1,..., nl♢. To simplify the optimization process, consider a vector w that is

the flattened and concatenated form of a matrix Wn. In regression applications, the objective

is to minimize the quadratic error between the desired output ŷ and the expected output

y(w,u) (for simplicity, assume there is only one output in the following formulation):

E(w,u) =
1

2
(ŷ − y(w,u))2 (31)

Calculating the gradient in a neural network was an impeding task in the early years, up

until the error Backpropagation algorithm was invented (NELLES, 2020). Backpropagation is

essentially the chain rule calculation of the gradient, which is facilitated by the layered structure

of the network. The derivative of the cost function with respect to w is:

∂E

∂w
= (ŷ − y(w,u))

∂y

∂w
(32)

The value for ∂y
∂w depends on which layer the weights are. If the weights are at the

output layer, then the answer is trivial (since y, Wnl
is a row vector):

∂y

∂Wnl

= f ′(Wnl
znl

)znl

T (33)

For y with respect to an arbitrary hidden layer weight matrix Wn, the derivative is:

∂y

∂Wn
=

∂y

∂an
zn

T (34)

with an = Wnzn. The calculation of ∂y
∂an

is performed recursively:

∂y

∂an
=

∂an+1

∂an

T ∂y

∂an+1
= f ′(an)Wn+1

T ∂y

∂an+1
(35)

In fact, ∂y
∂anl

= f ′(anl
), so the derivative of the activation function is used to calculate

the gradient of the previous layer, so on and so forth. To initialize the algorithm, it is advisable

that the weights are started randomly, as the optmization problem has many different optimal

points. Starting the weights as 0 could bind the network to a bad local optimum (BISHOP,

2006).

2.4 RECURRENT NEURAL NETWORKS

RNNs are Neural Networks whose neurons depend on their own previous values in time.

They are necessary to predict time series (GOODFELLOW; BENGIO; COURVILLE, 2016) and

solve system identiĄcation problems (NELLES, 2020). Since these networks are dependent
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on time, their training is harder than feedforward networks, however as their feedforward

counterparts are universal function approximators, the RNN are universal dynamical systems

approximators. The general equation for a recurrent neural network is:

x[k + 1] = f(Wx[k] + Wuu[k] + b) (36)

ŷ[k] = Wox[k] (37)

with x[k] being the vector containing the hidden neurons, u[k] the input vector, and b the

bias vector. The function f is the activation function. It is needed to train each parameter

W, Wo, b and Wu to minimize a quadratic error over time. This problem is solved by the

Backpropagation Through Time algorithm (GOODFELLOW; BENGIO; COURVILLE, 2016),

which is the Backpropagation counterpart for RNN.

As in the case of the feedforward neural networks, the optimization problem minimizes

the following cost function (the output is assumed to be scalar):

E(w,u) =
1

2

N∑

k=1

(ŷ[k] − y[k])2 (38)

where w is a vector containing the parameter matrices W, Wu, and Wo flattened into a

column vector and further concatenated with b. The objective of Backpropagation through

time is to calculate ∂E
∂w . By using the chain rule:

∂E

∂w
=

N∑

k=1

∂x[k]

∂w

T ∂E

∂x[k]
(39)

The term ∂E
∂x[k]

represents the effect that the state of the network at a given time k

has at the quadratic error function. When k = N , x[N ] appears only once, so:

∂E

∂x[N ]
=

∂E

∂ŷ[N ]

∂ŷ[N ]

∂x[N ]
= (ŷ[N ] − y[N ])Wo

T (40)

For an arbitrary k, as the gradient for k = N is already given, it is convenient to

express the gradient in terms of ∂E
∂x[k+1]

. The algorithm starts evaluating from ∂E
∂x[N ]

and

backpropagates until k = 1.

∂E

∂x[k]
=

∂x[k + 1]

∂x[k]

T ∂E

∂x[k + 1]
+

∂E

∂ŷ[k]

∂ŷ[k]

∂x[k]
(41)

∂E

∂x[k]
= (ŷ[k] − y[k])Wo

T + WT f ′(a[k])
∂E

∂x[k + 1]
(42)

a[k] = Wx[k] + Wuu[k] + b (43)

Only the calculation of ∂x[k]
∂w is left. Since w corresponds to W, Wu, b and Wo

flattened into a column vector and concatenated, the respective gradients must be calculated
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separately. First, the bias weight vector b:

∂x[k]

∂b
=

∂a[k − 1]

∂b

T ∂x[k]

∂a[k − 1]
+

∂x[k − 1]

∂b

T ∂x[k]

∂x[k − 1]
(44)

∂x[k]

∂b
= f ′(a[k − 1]) +

∂x[k − 1]

∂b

T

WT f ′(a[k − 1]) (45)

when k = 2, the second term is dropped, since k = 1 is deĄned as the initial condition in this

formulation, and does not depend on b. The value for k = 2 would be:

∂x[2]

∂b
= f ′(a[1]) (46)

which is propagated forward until x[N ].

For an arbitrary input weight row vector wu(i), where i is the corresponding line in

Wu, the calculations are analogous:

∂x[k]

∂wu(i)
=

∂x[k]

∂ai[k − 1]

∂ai[k]

∂wu(i)
+

∂x[k]

∂x[k − 1]

∂x[k − 1]

∂wu(i)
(47)

∂x[k]

∂wu(i)
= f ′

i(ai[k − 1])uT [k] + WT f ′(a[k − 1])
∂x[k − 1]

∂wu(i)
(48)

where f ′
i is a column vector with only row i non-zero. For an arbitrary state row vector wx(i),

where i is the corresponding line in W, the following equations hold:

∂x[k]

∂wx(i)
=

∂x[k]

∂ai[k − 1]

∂ai[k]

∂wx(i)
+

∂x[k]

∂x[k − 1]

∂x[k − 1]

∂wx(i)
(49)

∂x[k]

∂wx(i)
= f ′

i(ai[k − 1])xT [k] + WT f ′(a[k − 1])
∂x[k − 1]

∂wx(i)
(50)

For the output weights, the calculation is trivial, as they do not depend on the state x:

N∑

k=1

(ŷ − y)x[k]T (51)

To Ąnally obtain ∂E
∂w , the weight vector and matrices are concatenated:

∂E

∂w
=




∂E
∂Wo

T

∂E
∂b

∂E
∂wu(1)

T

∂E
∂wu(2)

T

...
∂E

∂wu(nu)

T

∂E
∂wx(1)

T

∂E
∂wx(2)

T

...
∂E

∂wx(nx)

T




(52)

where nu is the number of inputs and nx is the number of states in the network.
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Input Layer Output Layer
u[k] y[k]

Reservoir
x[k]

Figure 3 Ű Representation of an Echo State Network.

2.5 ECHO STATE NETWORKS (ESN)

An ESN is a type of recurrent neural network with useful characteristics for system

identiĄcation (JAEGER et al., 2007), as it represents nonlinear dynamics well and the training

consists in solving a linear least-squares problem of relatively low computational cost when

compared to nonlinear optimization.

2.5.1 Model

Proposed by Jaeger and Haas (2004) and Jaeger (2001), the ESN is governed by the

following discrete-time dynamic equations:

x[k + 1] = (1 − γ)x[k]

+ γf(Wr
rx[k] + Wr

i u[k] + Wr
b + Wr

oy[k]) (53)

y[k + 1] = Wo
r x[k + 1] (54)

where the state of the reservoir neurons at time k is given by x[k]; the current values of the

input and output neurons are represented by u[k] and y[k], respectively; 0 < γ ≤ 1 is called

leak rate (JAEGER et al., 2007), which governs the percentage of the current state x[k] that

is transferred into the next state x[k + 1]. The weights are represented in the notation Wto
from,

with “bŤ, “oŤ, “rŤ, and “iŤ sub and superscript meaning the bias, output, reservoir, and input

neurons, respectively; and f = tanh(·) is an activation function widely used in the literature,

also called a base function in system identiĄcation theory (NELLES, 2020). Figure 3 depicts a

standard architecture of an echo state network. However, there are other more complex and

multi-layered architectures (MALIK; HUSSAIN; WU, Q. J., 2017).

The network has N neurons in the reservoir, which is the dimension of x[k] and is

typically orders of magnitude higher than the number of network inputs. As long as regulariza-
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tion is used in network training, N can be as large as needed, but at the expense of increased

computation time to update the reservoir states as deĄned in (53). According to Jaeger (2002),

the ESN with no output feedback connections (the output has no effect on the state), which

is given by Wr
o, has a memory capacity (MC) bounded by the number of neurons in the

reservoir (MC ≤ N), assuming that linear output units are used.

The recurrent reservoir should possess the so-called Echo State Property (ESP) (JAEGER,

2001), i.e., a fading memory of its previous inputs, meaning that influences from past inputs

on the reservoir states vanish with time. The ESP is guaranteed for reservoirs with tanh(·) as

the activation function, provided that the singular values of Wr
r < 1. However, this condition

limits the richness of the reservoir dynamical qualities, which discourages its use in practice.

Note that all connections going to the reservoir are randomly initialized, usually according to

the following steps:

1. Every weight of the network is initialized from a normal distribution N (0,1).

2. Wr
r is scaled so that its spectral radius ρ (Eigenvalue with the largest module)

characterizes a regime able to create reservoirs with rich dynamical capabilities. It

has been often observed that setting ρ < 1 in practice generates reservoirs with

the ESP (JAEGER et al., 2007). However, reservoirs with ρ > 1 can still have the

ESP since the effective spectral radius may still be lower than 1 (OZTURK; XU, D.;

PRÍNCIPE, 2007; VERSTRAETEN, David; SCHRAUWEN, 2009).

3. Wr
i and Wr

b are multiplied by scaling factors fr
i and fr

b , respectively, affecting the

magnitude of the input.

These scaling parameters, ρ, fr
i , and fr

b are crucial in the learning performance of

the network, having an impact on the nonlinear representation and memory capacity of the

reservoir (VERSTRAETEN, Davd et al., 2010). Also, low leak rates allow for higher memory

capacity in reservoirs, while high leak rates should be favored for quickly varying inputs and/or

outputs. The settings of these parameters should be such that the generalization performance

of the network (loss on a validation set) is enhanced.

2.5.2 Training

While in standard RNNs all weights are trained iteratively using gradient descent

(MOZER, 1989), ESNs restrict the training to the output layer Wo
r . Because the echo state

property is not insured with output feedback Wr
oy[k], this work favors reservoirs without

feedback from the output (i.e., Wr
o = 0). Also, the inputs do not interfere directly in the

output, as systems with direct transmission are less smooth and more sensitive to noise. To

train an ESN, the input data u[k] is arranged in a matrix U and the desired output d[k] in

vector D over a simulation time period, where each row uT of U corresponds to a sample time

k and its columns are related to the input units. For the sake of simplicity, assume that there

are multiple inputs and only one output. The rows of U are input into the network reservoir
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according to each sample time, thereby creating a data matrix X that contains the resulting

sequence of states. Then, what is left is to apply the Ridge Regression algorithm (BISHOP,

2006) by using X as the input data matrix and D as the output data matrix. Ridge Regression

results in solving the following linear system:

(XT X − λI)Wo
r = XT D (55)

where λ is the Tikhonov regularization parameter, which serves to penalize the weight magni-

tude, avoiding overĄtting. There are also methods to apply least squares training in an online

way (NELLES, 2020), however these algorithms are not used in this work.

2.5.3 Deterministic Reservoir Computing

In ESNs, the non-trainable weights are decided randomly through probability distribution.

Randomness can heavily affect the performance of a system identiĄcation. An investigation

of possible solutions is proposed by Rodan and Tino (2010), where different topologies are

proposed for the application.

One of the proposals of Rodan and Tino (2010) is to, instead of initializing Wr
r

randomly, to initialize the weights in a way that the neurons are connected to form a circle, as

in:

Wr
r(i + 1,i) = 1 (56)

Wr
r(1,N) = 1 (57)

and the undeĄned elements of Wr
r are zero. The notation A(i,j) means the element in row i

and column j of a generic A matrix. The work also proposes initializing Wr
i and Wr

b using a

single value for every element in each weight, and choosing the signal randomly.

It is of notice that this structure has no internal feedback of each neuron (the information

is passed cyclically). Another structure is proposed in Rodan and Tino (2010), where the non-

zero elements of the initial Wr
r are:

Wr
r(i + 1,i) = 1 (58)

Wr
r(i,i) = 1 (59)

Wr
r(1,N) = 1 (60)

which is basically the structure of the cyclic topology, but with internal feedback at each neuron

added, as clariĄed in Figure 4.

In a previous work, Jean P. Jordanou, Eric Aislan Antonelo, and Camponogara (2019)

implemented a two-wells one riser model to test a control structure involving Echo State

Networks. This two-wells one riser platform was employed as a case study to compare the

results of the conventional, random ESN with these 2 topologies. The experiment ran 5

simulation of 50000 time steps, where the 40000 Ąrst time steps are used as training data,
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Figure 4 Ű Illustration of two topologies for deterministic reservoirs. On the left side, the cyclic
reservoir, and on the right side, the cyclic reservoir with internal feedback.

and the remaining 10000 as test data. The error metrics in this case is deĄned as the mean

absolute error in the validation phase. The hyper-parameters are the same for each network,

being deĄned in Table 1. Since the purpose of this experiment was to compare the deterministic

with the random approach, the parameters were selected heuristically so that both ESNs can

perform system identiĄcation in the two wells and one riser plant with a small error.

Table 1 Ű Parameters values selected for the deterministic reservoir experiment.

Parameter
N : Reservoir size 400
γ: Leak Rate 0.9
ρ: Spectral Radius of Wr

r 0.999
fr

i : Scaling Factor of Wr
i 0.15

fr
b : Scaling Factor of Wr

b 0.1

The results are shown in Table 2. The performance of a random reservoir is superior

in both mean and considering the mean alongside the standard deviation with respect to its

deterministic counterpart, albeit by a small margin. The internal feedback has worsened the

performance in comparison to the original proposal by Rodan and Tino (2010), probably due

to the larger exchange of information, as there are more non-zero weights.

Table 2 Ű Results for the deterministic ESN experiment, with the mean absolute validation
taken over 5 training runs for each network. This number of runs was selected
because it was low enough to be easy for runtime, and high enough so that data is
skewed to the mean, with small standard deviation.

Validation Error
Mean Std

Random Reservoir 0.019 0.0033
Cyclic Reservoir 0.022 0.001

Cyclic Reservoir (Internal Feedback) 0.031 0.00018
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Another proposal is a middle ground between a deterministic and a random reservoir:

Utilizing a cyclic reservoir, however with the input and bias weights decided randomly, with a

normal distribution akin to the original ESN. This is coined as a semi-deterministic reservoir.

Using the same experimental conditions as the experiment for the deterministic reservoirs, the

results obtained with semi-deterministic networks are presented in Table 3. The result for the

cyclic reservoir does not differ much, however the cyclic reservoir with internal neuron feedback

has shown a better result than its deterministic counterpart. The main implication of this result

is that it is viable to mix both the deterministic and a random approach to form an ESN with

consistent performance.

Table 3 Ű Results for the semi-deterministic ESN experiment, with the mean absolute validation
taken over 5 training runs for each network.

Validation Error
Mean Std

Cyclic Reservoir 0.022 0.0017
Cyclic Reservoir (Internal Feedback) 0.027 0.0026

The purpose of this evaluation was to compare a deterministic to a nondeterministic

reservoir in terms of mean absolute error. For computational complexity, it is expected that

deterministic reservoir will perform better using sparse matrix operations, as these reservoirs are

sparse by deĄnition. However, it might also be interesting to perform experiments evaluating

computational time and number of float point operations to compare both reservoirs in those

aspects.

2.6 MODEL ORDER REDUCTION

This section makes a brief overview of Model Order Reduction (MOR) methods. Model

Order Reduction is a set of techniques employed to Ąnd a low order model that approximates

high order systems, and thus easy to compute and apply in optimization problems.

2.6.1 Davison Method

Model Order Reduction of linear systems is a well solved problem in the literature

(SIVARAMAKRISHNAN, 2013), which have many associated methods and algorithms to

calculate a smaller state-space model, approximating a given higher order system. One of such

methods is the simple truncation of the smallest Eigenvalues, by means of transforming the

system into Jordan form, truncating the matrix, eliminating the smallest Eigenvalues, and then

transforming back. This method is referred to as the Davison method.

Despite reproducing transient behavior well, the main disadvantage of the Davison

method is that nothing prevents the reduced order model from having a steady state error.

Another version of the Davison method (SIVARAMAKRISHNAN, 2013) proposes using a
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diagonal matrix to Ąx the steady state error, where, assuming an univariate system:

dj =





[A−1B]j
[Ar

−1Br]j
[Ar

−1Br]j ̸= 0

1 [Ar
−1Br]j = 0

(61)

where dj are the elements of a diagonal matrix D with size l, Ar and Br are the resulting

reduced order state space matrices from an arbitrary, linear state space system, and [·]j is the

jth element of the vector inside. Also, it is assumed that the states are sorted in terms of

Eigenvalue influence in the system, so that the j-element of the original system is the j-element

of the reduced system. Each diagonal element dj serves as a steady state error correction gain

(SIVARAMAKRISHNAN, 2013), and the resulting system has a similar steady-state response

while maintaining similar dynamic behavior.

There are, of course, other linear model order reduction variants in the literature

(SIVARAMAKRISHNAN, 2013), however they either involve Eigenvalue manipulation and

assessment on the frequency domain.

2.6.2 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a method to Ąnd a linear transfor-

mation (CHEN, C.-T., 1998) T for a given linear system that maps a high state space into a

smaller one, namely:

x = Tz (62)

where x is a vector of dimension n and z is a vector of dimension m ≪ n. Given a linear

system:

ẋ(t) = Ax(t) + Bu(t),

the reduced state space system would be computed by:

ż(t) = TT ATz(t) + TT Bu(t) (63)

This transformation is akin to a similarity transformation, with the main difference is

that T lacks an inverse matrix, however since T is orthonormal (TT T = I), the analogous

use of a transpose is justiĄed in this case.

A widely used method to Ąnd T is to gather snapshots of a given dynamical system

response, akin to gathering data in a machine learning problem. The columns of the snapshot

matrix X are the states x(t) at time t = Tsk, with Ts being the sampling time of the snapshot.

The notation x[k] represents x(Tsk), thus omitting the sampling time. Then, T must minimize

the error induced by projecting the original state onto the reduced space and back, which leads

to the following error function:

E(T) =
N∑

k=1

(x[k] − T TT x[k]
︸ ︷︷ ︸

z[k]

) (64)
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where N is the number of snapshots. The second term is x projected onto the reduced space

of z, and then projected back. In fact, the optimal way to calculate a transformation T that

minimizes E(T) is through singular value decomposition (SVD) (SUN; XU, M.-h., 2017).

By applying SVD, X is decomposed in the following matrices:

UΣVT = X (65)

where U contains the left singular vectors and has dimension n × n, Σ contains the singular

values and has dimension n × n, with only N non-zero rows. Consider that Σ is sorted from

the largest to the smallest singular value. The right singular vector matrix V is not used for

POD.

The linear transformation matrix T that minimizes E(T) corresponds to the Ąrst

columns of U associated with the largest singular vectors of the SVD. A truncation must

ensure that the reduced system energy is close to the original. The following equation measures

the effectiveness of the truncation in that regard:

ϵ =

nr∑
j=1

σj

N∑
j=1

σj

(66)

where σj is the j-highest singular value, and nr is the reduced state dimension. One then

Ąnally obtains an appropriate T for the space dimension reduction, which is different from the

Davidson method that directly uses the Eigenvalues of a given linear system.

While this very discussion holds for the model order reduction of linear systems, Chapter

4 elaborates on POD for nonlinear systems.

2.7 SUMMARY

In this chapter lies the description of the fundamental theory behind the rest of this

dissertation. The portion related to stability is important for understanding Chapter 5, and the

portion related to model order reduction is related to Chapter 4.
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3 ESN BASED PRACTICAL NMPC

This chapter describes the ESN-PNMPC methodology developed in (JORDANOU,

Jean P. et al., 2018), and further elaborated on (JORDANOU, Jean Panaioti; ANTONELO,

Eric Aislan; CAMPONOGARA, 2022) with updated results on new case studies, which serves

as a basis for this work. The results shown in this chapter were also published in (JORDANOU,

Jean Panaioti; ANTONELO, Eric Aislan; CAMPONOGARA, 2022).

3.1 INTRODUCTION

In the real world, the problem of controlling industrial plants without a known model is

very common, and also a challenging task, demanding efficient data-driven strategies, generally

involving black-box modeling.

Out of several possible control methods from the literature that can be applied to

systems without known models (HOU; WANG, Z., 2013), model predictive control (MPC) is

one technique that has become standard for multivariate control in industry and academia

(CAMACHO; BORDONS, 1999). Since its inception in the 1970s, MPC was successfully

applied in the oil and gas (JORDANOU, Jean P. et al., 2018), aerospace (EREN et al., 2017)

and process industries, as well as in robotics (NASCIMENTO; DÓREA; GONÇALVES, 2018).

MPC has the advantage of simplicity and intuitiveness in comparison with other approaches,

as little knowledge about control theory is required to apply the method in an industrial level

(CAMACHO; BORDONS, 1999). The core idea of MPC is to control a system by employing

a prediction model, using it to solve an optimization problem in a receding horizon approach

at every iteration. For linear models, the optimization problem to Ąnd the control action is a

Quadratic Programming (QP) problem, akin to efficient linear MPC strategies such as Dynamic

Matrix Control (DMC) and Generalized Predictive Control (GPC) (CAMACHO; BORDONS,

1999). On the other hand, complex industrial plants are better represented by nonlinear dynamic

models, for which MPC may be challenging to apply in a rapid straightforward manner, due

to the need to solve a Nonlinear Programming Problem (NLP) at each iteration.

RNNs are considered universal approximators of dynamical systems (SALEHINEJAD

et al., 2017) and can serve as black-box models for nonlinear MPC. System identiĄcation with

these RNNs is based on historical data, i.e., on a dataset of input-output pairs of the nonlinear

plant. Training RNNs to model the plant is equivalent to minimizing an error (cost) function

with respect to the weights of the network. For regression, this function is usually the mean

squared error between the true and predicted outputs. Traditional RNNs use the error function

gradient to iteratively update the network weights, which does not guarantee global optimality.

Besides, this learning procedure is prone to become disrupted by bifurcations (DOYA, 1992)

and is computationally costly.

An alternative way to model dynamic systems is by Reservoir Computing (RC) (SCHRAUWEN;

VERSTRAETEN, David; VAN CAMPENHOUT, 2007; JAEGER; HAAS, 2004). The basic as-
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sumption of RC is to Ąrst project an input space into a high-dimensional dynamic nonlinear

space, the reservoir space, and then use the resulting temporal features as new inputs in linear

regression tasks. The reservoir is usually given by a nonlinear RNN with Ąxed weights, while a

second linear readout output layer is subject to training (Fig. 3). As only the output layer of

the RNN is trained, the learning is fast and has a global optimum corresponding to the least

squares solution, overcoming previous limitations of gradient-based training for RNNs. When

the RNN is composed of tanh units forming an analog network, the resulting network is also

called an ESN (JAEGER, 2001; JAEGER; HAAS, 2004). This linear training also enables the

model to be updated online with new data through algorithms such as Recursive Least Squares

(RLS) (JORDANOU, Jean P.; ANTONELO, Eric Aislan; CAMPONOGARA, 2019).

Other approaches use Radial Basis Function (RBF) networks (AYALA et al., 2020) or

fuzzy logic (OUALI; LADJAL, 2020) for system identiĄcation. Although RBF nets have efficient

training, in order to model system’s dynamics, delayed signals need to be introduced in the input

layer since a RBF net has no inner dynamics as does the RC network. The beneĄt of RC here

is to automatically take into account the nonlinear dynamics of the process, neither requiring

to increase the input dimension, nor to Ąnd the right size of the time window. In general, fuzzy

systems also need the same sort of delayed signals to model dynamics and, although linguistic

rules can express operator knowledge, the size of the knowledge base increases exponentially

with the number of inputs.

To deal with the issue of solving a NLP per iteration, the Practical Nonlinear Model

Predictive Controller (PNMPC) framework (PLUCÊNIO, A. et al., 2007) employs a fully

nonlinear model to compute the free response of the system, while applying a Ąrst-order Taylor

expansion in the model to approximate the forced response, which is the sensitivity of the

response to the control action. This expansion allows full retention of model precision in relation

to the nonlinear system for the free response, unlike in (PAN; WANG, J., 2012), where the ESN

is linearized as a full state-space system, therefore losing model precision along the prediction

horizon. In addition, because the derivative with respect to the state has to be computed in

(PAN; WANG, J., 2012), the computational and memory demands are high when compared

to our proposal based on PNMPC. PNMPC was shown to perform well in several applications,

such as in the control of oil and gas processes (PLUCÊNIO, Agustinho, 2013), but with one

drawback: since the model gradient is either not stipulated or assumed very expensive to obtain,

a Ąnite difference method is necessary in order to compute the derivative terms involved. This

incurs a high computational cost when the number of process inputs and outputs is large, due

to the combinatorial nature of the Ąnite differences computation.

In this context, the ESN-PNMPC is a Reservoir Computing (RC)-based control frame-

work that speeds up the NMPC of processes by combining the PNMPC principle of splitting the

forced and the free responses, with a trained ESN as the dynamic system model, yielding the

so called ESN-PNMPC architecture. SpeciĄcally, our proposal substitutes the Ąnite difference

method of PNMPC for a fast analytical computation of the derivative in terms of the ESN.
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3.1.1 Practical Nonlinear Model Predictive Control (PNMPC)

Developed by (PLUCÊNIO, A. et al., 2007), the Practical Nonlinear Model Predictive

Controller (PNMPC) is a method that, through a Ąrst order Taylor expansion, separates a

nonlinear dynamic model into a free response and a forced response. An advantage of this

approximation strategy is that the free response has full precision in relation to the whole

nonlinear system. The separation between free response and forced response is normally a

characteristic of linear systems due to the homogeneity property. However, by obtaining the

Ąrst order Taylor expansion of a function with respect to an input u, one can better explain

the intuition behind the PNMPC:

y = f(u) ≈ f(ū) +
∂f(ū)

∂u
∆u (67)

where u = ū + ∆u, ū is a Ąxed point, and ∆u is a variation around that same point. The

nonlinear function f(u) is split into: (i) a zeroth-order term f(ū) which is analogous to the

PNMPC free response as it computes the current value of f with only ū as input; and (ii) a

Ąrst-order term which carries the same intuition as the forced response, as it is linear over ∆u.

Note that here f(ū) will be simulated by running ((53)) without any approximation in the

ESN-PNMPC method that will be presented, retaining full nonlinear precision for problems of

rich dynamics.

The PNMPC has a computational advantage over a standard Nonlinear MPC because

the resulting control problem to be solved per iteration is a quadratic program (QP), similar to

a linear MPC, whereas in the full nonlinear case a nonlinear program (NLP) would be solved.

This approach is advantageous when time constraints are in place. The PNMPC is more or

less akin to performing a one-step SQP in a quadratic cost function problem using a nonlinear

model. Assuming a dynamic system in the form:

x[k + i] = f(x[k + i − 1],u[k + i − 1]) (68)

y[k + i] = g(x[k + i]) (69)

u[k + i − 1] = u[k − 1] +
i−1∑

j=0

∆u[k + j] (70)

The vectors for output predictions are collected in Ŷ1. Here, the control increment

∆U, and free response F are deĄned in PNMPC as follows:

Ŷ = G · ∆U + F (71)

∆U =




∆u[k]

∆u[k + 1]
...

∆u[k + Nu − 1]




(72)

1 Ŷ is the notation for the model prediction in MPC theory.
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F =




g(f(x[k],u[k − 1]))

g(f(x[k + 1],u[k − 1]))
...

g(f(x[k + Ny − 1],u[k − 1]))




(73)

where Ny is the prediction horizon, Nu is the control horizon, and matrix G is the Jacobian

of the state equations at the free response.

The vector ∆U consists of the concatenation of each control increment applied to

the calculation of the predictions up to k = Nu. The vector Ŷ gives all of the predictions

performed by the model from k = 0 to k = Ny. Notice that for a given time k + i the free

response depends on the system state at that time, x[k + i], and only on the input at time

k − 1 because the control signals remain constant (∆U = 0). As the vector F contains all

the free responses, the term G · ∆U is the forced response over the prediction horizon.

The Jacobian of the state equations is deĄned as:

G =




∂y[k+1]
∂u[k]

0 . . . 0

∂y[k+2]
∂u[k]

∂y[k+2]
∂u[k+1]

. . . 0
...

...
. . .

...
∂y[k+Ny]

∂u[k]
∂y[k+Ny]
∂u[k+1]

. . .
∂y[k+Ny]

∂u[k+Nu−1]




The derivatives inside G are taken with respect to ∆u[k + i] = 0, ∀i < Nu, and u

represents the manipulated variable vector. This structure is a vectorized form of the prediction

along the horizon, which is similar to the vectorization of predictions in the DMC and GPC

(CAMACHO; BORDONS, 1999).

The equations above derive from the Ąrst-order Taylor series expansion in relation to

the manipulated variables, whereby the free-response F retains the nonlinearity, whereas the

forced-response is linearized so that the control increment is calculated via a QP. The matrix

G is a result of that linearization, as each line corresponds to the Ąrst order term of the Taylor

series w.r.t. the control increment at a certain instant in time.

As (PLUCÊNIO, A. et al., 2007) assumes a generic nonlinear system, estimates for

the derivatives are calculated with a Ąnite-difference method, which inherently suffers from

combinatorial explosion when multiple variables are involved. To this end, the following section

proposes the ESN-PNMPC scheme to overcome the aforementioned limitation, enabling fast

computation of linearized models on the fly.

3.1.2 ESN-PNMPC

3.1.2.1 Overview

The proposed ESN-PNMPC scheme consists of integrating an ESN as the state space

model for PNMPC (see Fig. 5). The ESN model allows the analytical computation of derivatives,

which drastically reduces the computation time by mitigating the limitations of Ąnite differences.
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Thus, the solution of the QP is the only computationally expensive aspect of the proposed

algorithm.

QP Solver Plant

Free Resp.

Prediction

Linearizer

Error 

Correction

Ref

ESN-PNMPC

ESN

ESN data

Figure 5 Ű Block diagram representation of the ESN-PNMPC. The ESN block represents an
ESN trained to mimic the plant, which is used by the Linearizer block to compute
G using the ESN Jacobian, and by the Free Response Prediction block. The Error
Correction block provides an integrated Ąlter that computes the correction factor,
while the QP Solver block handles the resulting optimization problem.

3.1.2.2 Linearizer Ű Forced Response Derivation

In order to compute the derivatives of the output y of the dynamical system with

respect to the input u, the chain rule is applied:

∂y[k + i]

∂∆u[k + j]
=

∂g

∂x[k + i]

∂x[k + i]

∂∆u[k + j]
(74)

∂x[k + i]

∂∆u[k + j]
=

∂f

∂∆u[k + j]
+

∂f

∂x[k + i − 1]

∂x[k + i − 1]

∂∆u[k + j]
(75)

The implication in Equation (75) is that G is recursively built by forward propagating

from i = 0 to i = Ny. Considering that the dynamic matrix is evaluated at ∆U = 0, all

the derivatives along the horizon can be evaluated with respect to the control input u[k − 1].

Therefore,

∂f(x[k + i])

∂∆u

∣∣∣∣∣
∆u=0

=
∂f(x[k + i])

∂u

∣∣∣∣∣
u=u[k−1]

.

As long as i > j (line i and column j of matrix G), the control increment ∆u[k + j]

has influence on the output at time instant k + i because the control signal was input in a

previous instant. From Eq. (70), the control increment ∆u[k + j] has equal influence on the

state equation for state x[k+ i] for all j, and therefore ∂f(x[k+i])
∂∆u[k+j]

has the same value regardless
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of j. Therefore the notation J(i) =
∂f(x[k+i])

∂∆u
can be used to represent any ∂f(x[k+i])

∂∆u[k+j]
. Further,

∂f(x[k+i])
∂x[k+i]

is denoted as S(i) to simplify the developments.

By adopting the above notation into Eqs. (74)-(75), the partial derivatives are recast

in a recursive form:

Gij =
∂g

∂x[k + i]

∂x[k + i]

∂∆u[k + j]
(76)

∂x[k + i]

∂∆u[k + j]
=





J(i − 1) + S(i − 1)∂x[k+i−1]
∂∆u[k+j] i > j

J(i − 1) i = j

0 i < j

(77)

where Gij represents the block element of G at row i and column j. The construction of G

starts with i = 1, where the initial condition ∂g
∂xJ(0) is input to G1,1. As i < j for the rest

of the row, all terms G1,(j ̸=1) = 0. For the subsequent rows, information used to calculate

the previous row is used for the next, until i = j, where Gi,j = ∂g
∂xJ(i − 1) and i < j, where

Gi,j = 0. This calculation ends when i = Ny.

Because an ESN is trained offline to serve as the prediction model, the model derivatives

are well deĄned (PAN; WANG, J., 2012; XIANG et al., 2016), being given as follows:

∂g

∂x
= Wo

r

J(i) =
∂f

∂zi
Wr

i

S(i) = (1 − γ)I + γ
∂f

∂zi
(Wr

r + Wr
oWo

r )

zi = Wr
ra[k + i] + Wr

i u[k − 1] + Wr
oWo

r a[k + i] + Wr
b

where the network state a[k] corresponds to the model state x[k], and zi is an auxiliary variable

representing the argument of the activation function in the ESN model. Since, in this work,

f = tanh(·) is a function applied to each entry of the vector zi (i.e., element-wise function),
∂f
∂zi

is a diagonal matrix with all nonzero elements being [1 − tanh2(zi)].

Summarizing, the trained ESN model is used to compute the free-response predictions

and analytically calculate the Taylor approximation to formulate the QP on the fly, which

is solved at every iteration. Besides errors inherent to disturbances and modeling, additional

errors are incurred in the predictive model by the Taylor expansion. In (PAN; WANG, J., 2012),

a supervised learning strategy is embedded in a NMPC to estimate the Taylor expansion error,

whereby the actual and predicted outputs are used as information. In the PNMPC, the Taylor

expansion error is considered part of the disturbance model.

3.1.2.3 Error Correction

To treat disturbances and modeling errors, (PLUCÊNIO, A. et al., 2007) advocates the

use of a low-pass discrete Ąlter on the error between the current measured output and the

current prediction, which is computed as part of the free response. If the model was identical
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to the plant and no disturbances were applied, the presence of the Ąlter and the proposed

closed-loop framework would be not different than an open-loop implementation. The Ąlter

serves to slow down the error response from the point of view of the controller, thus increasing

robustness but sacriĄcing response speed according to the Ąlter cutting frequency (CAMACHO;

BORDONS, 1999). In practice, this is merely a different perspective to the problem, since the

approach taken by (PAN; WANG, J., 2012) is equivalent to using a variable static gain as a

Ąlter.

Adding the Ąlter, the free-response becomes:

F =




g(f(x[k],u[k − 1]))

g(f(x[k + 1],u[k − 1]))
...

g(f(x[k + Ny − 1],u[k − 1]))




+ 1η[k] (78)

∆η[k] = (1 − ω)(ŷ[k♣k − 1] − ym[k]) + ω∆η[k − 1] (79)

η[k] = η[k − 1] + K∆η[k] (80)

ŷ[k♣k − 1] = g(f(x[k − 1],u[k − 1])) + η[k − 1] (81)

where ym[k] is the measured variable from the plant, K is the integrator gain, and ω is the

leak rate of the Ąlter, which is used to enhance the robustness capability of the controller,

ŷ[k♣k − 1] is the output prediction for time k calculated at time k − 1, using η[k − 1] as

correction factor, and η[k] is the currently calculated correction factor yielded by the Ąlter.

The work in (PLUCÊNIO, Agustinho, 2013) proposes a method on how to tune the

Ąlter parameters. To simplify this formulation, assume that the system being controlled has

only one output, however one can either use the same Ąlter for different outputs, or apply

different Ąlters with the same formulation. The deĄnition of the a priori error ϵ[k] is:

ϵ[k] = ym[k] − yesn[k♣k − 1] (82)

where yesn[k♣k −1]2 is the output computed by the ESN using information given at time k −1,

and ¶ym,yesn[k♣k − 1]♢ are not bold because they are assumed scalars. The a posteriori error

e[k] is deĄned as:

e[k] = ym[k] − ŷ[k♣k − 1] (83)

A transfer function between the a priori error and the a posteriori error dictates the

dynamics for the correction. To Ąnd it, the Ąrst step is to expand Eq. (83), and substitute Eq.

(82) inside, obtaining:

e[k] = ϵ[k] − η[k − 1] (84)

2 yesn is equivalent to the output y in equation ((54)).
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In terms of the a posteriori error, by putting Eq. (83) in (79) the equations that deĄne

the correction factor become:

∆η[k] = ω∆η[k − 1] + (1 − ω)e[k] (85)

η[k] = η[k − 1] + K∆η[k] (86)

Applying the z transform into Eqs. (84)-(86) results in the following equation:

e(z) = ϵ(z) − z−1η(z) (87)

η(z) =
K

1 − z−1 ∆η(z) (88)

∆η(z) =
1 − ω

1 − ωz−1 e(z) (89)

and joining the resulting equations into one forms the transfer function for e(z)
ϵ(z)

:

e(z)

ϵ(z)
=

z2 − (ω + 1)z + ω

z2 − (ω + 1 − K(1 − ω))z + ω
(90)

It is noticed that, since 1 is a zero in this transfer function, the steady state error is

guaranteed to be 0 for a constant a prior error (PLUCÊNIO, Agustinho, 2013). Our next step is

to deĄne K and ω so that the denominator of the transfer function is equal to a characteristic

polynomial, which is deĄned as:

p(z) = (z − a)2 = z2 − 2az + a2

where a = [0,1) is the root of the polynomial, and the desired location of the poles for the

transfer function. The polynomial root relates to the characteristic polynomial in the form of:

ω = a2 (91)

K =
a2 − 2a + 1

1 − a2 (92)

With these relations, K and ω are deĄned based only on the desired pole for the error

correction dynamics. Without a low pass Ąlter, or when ω = a = 0, then K = 1.

3.1.2.4 QP Problem

If the quadratic error is used as the cost function for the NMPC, the equations in matrix

form become:

J = (Yref − Ŷ)T Q(Yref − Ŷ) + ∆UT R∆U

in which Yref is the output reference over the prediction horizon, and Q and R are diag-

onal matrices with the output and control weighting, whose utility is to express a variable’s

importance in the cost function.
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Since the predicted output is stated in a form akin to the GPC and DMC strategies for

MPC (CAMACHO; BORDONS, 1999), the cost function is formulated as follows:

J = ∆UT H∆U + cT ∆U

H = GT QG + R

c = GT QT (Yref − F)

In receding horizon control problems, saturation and rate limiting constraints are typi-

cally introduced to the optimization problem to ensure a feasible operation. Such saturation

constraints are formulated as follows:

1umin − 1u[k − 1] ≤ T∆U ≤ 1umax − 1u[k − 1]

where 1 is a vector composed only of ones which matches the dimension and form of ∆U.

If the problem was structured as a SISO (Single-Input Single-Output), T would be a lower

triangular matrix. As our work concerns a MIMO (Multi-Input Multi-Output) system and the

prediction outputs for a sample time are stacked as vectors in Ŷ, the matrix T is deĄned as:

T =




Inin
0nin

0nin

Inin

. . . 0nin

Inin
Inin

Inin




where Inin
is a nin sized identity matrix and 0nin

is a nin sized square matrix of zeros,

with nin being the number of system inputs. Summarizing, T is a block triangular matrix of

nin-dimensional square matrices, where each column of the block matrix represents an instant

in the prediction horizon.

Likewise, rate limiting constraints are stated as follows:

∆Umin ≤ I∆U ≤ ∆Umax

where I is the identity matrix, with dimension ninNu.

Summarizing, the optimization problem solved per iteration is stated as follows:

min
∆U

J(∆U) = ∆UT H∆U + cT ∆U

s.t. I∆U ≤ ∆Umax

−I∆U ≤ −∆Umin

T∆U ≤ 1umax − 1u[k − 1]

−T∆U ≤ −1umin + 1u[k − 1]

(93)

which is a quadratic program. As long as Q and R contain only positive values, H = GT QG+

R is structurally positive deĄnite. This guarantees that the constraints and objective function

are convex and, with any other linear constraints, compose a convex QP problem, which can

be easily solved.
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3.2 CASE STUDIES

This section describes different case studies where the ESN-PNMPC was applied, namely

the benchmark four-tank system, an oil platform consisting of two wells and one riser, and

an electrical submersible pump-lifted oil well. The ESN-PNMPC was implemented using the

numpy toolkit from Python, with CVXOPT as the QP problem solver. Both models were

described and implemented with the help of the Modelica language.

3.2.1 Four Tanks

This section describes the Four-Tanks system and the experiments that were performed

considering it as the plant to be controlled by the ESN-NMPC.

3.2.1.1 Description

The four-tank system (JOHANSSON, 2000) is widely used as a benchmark of multivari-

ate and nonlinear control systems with coupled variables. The system consists of two pumps

j ∈ ¶1,2♢, two directional valves, and four tanks i ∈ ¶1,2,3,4♢ with levels hi. The four-tank

system (JOHANSSON, 2000) is depicted in Figure 6. Each pump has its rotation and flow

controlled by voltage uj , with j being the index of the pump. The flow of pump 1 enters both

tank 1 and tank 4, while the flow of pump 2 enters tanks 2 and 3, both distributed through

directional valves. As tanks 3 and 4 are positioned above tanks 1 and 2, respectively, and each

tank has a hole in its bottom, tank 2 (tank 1) is also influenced indirectly by pump 1 (pump 2).

This connection between the pumps and the tanks is the source of the coupling in the system.

Tank 1
Tank 2

Tank 3
Tank 4

Pump 1 Pump 2

Figure 6 Ű Representation of a four-tank system. Adapted from (BRANDÃO et al., 2018).
Description is given in the text.
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The four-tank system is described by the following equations:

ḣ1 =
γ1k1u1 + ω3 − ω1

A1
(94)

ḣ2 =
γ2k2u2 + ω4 − ω2

A2
(95)

ḣ3 =
(1 − γ2)k2u2 − ω3 + ωdist,3

A3
(96)

ḣ4 =
(1 − γ1)k1u1 − ω4

A4
(97)

where hi is the level and Ai is the area of the transverse section of tank i; kj is how much

voltage is converted to volumetric flow rate in pump j; γj is the opening of the directional valve

accompanying pump j related to the lower tanks; and ωi is the outflow of tank i, calculated

as:

ωi = ai

√
2ghi (98)

where ai is the bottom oriĄce area for tank i. The values of each parameter, as well as the

initial conditions to each state in the problem formulation, originate from (JOHANSSON,

2000), in a conĄguration that induces a non-minimum phase zero to the initial operating point.

The disturbance ωdist,3 is a flow disturbance applied in tank 3 at a given time, which is used

to test the disturbance rejection aspects of the controller.

The cost function for the predictive control problem in the four-tank system is as

follows:

J =
Ny∑

j=1

(q1e2
1[k + j♣k] + q2e2

2[k + j♣k]) +
Nu−1∑

j=1

(r1∆u2
1[k + i♣k] + r2∆u2

2[k + i♣k]) (99)

where q1 (q2) corresponds to the weight of the reference error e1 (e2); and r1 (r2) is the

control variation penalty for ∆u1 (∆u2). The errors are deĄned as follows:

e1[k + j♣k] = h1,ref [k + j♣k] − h1[k + j♣k] (100)

e2[k + j♣k] = h2,ref [k + j♣k] − h2[k + j♣k] (101)

with hi,ref being the reference for hi, i ∈ ¶1,2♢. The cost function in (99) is the widely

used quadratic penalization of the set point error and the control increment (CAMACHO;

BORDONS, 1999), and, if the system is linear in the input, constitutes a QP.

The optimization problem also imposes the following constraints in the system:

0V ≤ u1,u2 ≤ 5V (102)

♣∆u1♣,♣∆u2♣ ≤ ∆umax (103)

hi, min ≤ hi ≤ hi, max, i ∈ ¶3,4♢ (104)

where hi, min (hi, max) is the minimum (maximum) value that the upper tank levels (i ∈ ¶3,4♢)

can reach. Realistically, it might correspond to the tank height (hi, max) or the safe maximum
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of the liquid level to prevent pump damage. ∆umax is the maximum control increment possible

for each control action. For the PNMPC, it might be convenient to set this parameter at low

values, such as ∆umax = 1.0, as the function utilized is an approximation of the full nonlinear

ESN.

Since certain steady-state constraints in the tanks are not controlled, some combinations

of setpoints may not be reachable. For this reason, the experiments are performed in two

different optimization problems:

• One where h3, min = h4, min = 0.5 cm and h3, max = h4, max = 12 cm. In this case,

the constraints are innocuous to the extent that the constraints are not binding.

• The other where h3, min = h4, min = 0.5 cm and h3, max = h4, max = 9 cm.

Now, the possible output state is more tight, which can lead to infeasible set-point

combinations.

The Ąrst case is employed for ESN identiĄcation and hyperparameter analysis. The

second case is used in a disturbance rejection and tracking test, using the ESN with the

conĄguration that yields the lowest control error obtained in the Ąrst case.

3.2.1.2 System IdentiĄcation

The identiĄcation of the model is based on the training of the readout output layer of

the ESN according to ((55)), which Ąnds the weights Wo
r connecting the reservoir layer to

the output layer by solving the linear system in ((55)). A and D are found as follows. After

collecting input-output pairs (u[k], d[k]), for k = 1,...,N , where N is the number of samples

from the plant, ((53)) is applied using u[k] for all available timesteps, with the resulting

reservoir states being collected into a matrix A. Note that a warm-up drop of the Ąrst 100

initial states in a[k] is applied, eliminating the starting transient of the reservoir state. The

corresponding desired output d[k] is also collected in a matrix D.

For every randomly initialized ESN, deĄned by random matrices Wr
i , Wr

r, Wr
b, the

regularization parameter λ is found using cross-validation. Choosing suitable scalings for these

random matrices is necessary in order to optimize ESN prediction performance as well as

control performance. In this context, should the tuning of these scalings to achieve the best

control performance be based on ESN prediction performance? These experiments show that

there is a better, but more expensive alternative metric than the ESN prediction performance.

For system identiĄcation and validation purposes with respect to the four-tank system,

the input signal u[k], representing the pumps, consists of an Amplitude Modulated Pseudo-

Random Bit Sequence (APRBS) (NELLES, 2020) with range ui ∈ [0.1,5.0], i ∈ ¶1,2♢ (before

normalization) generated for 50,000 timesteps. Under a sampling time of 10 seconds, and

applying u[k] as input to the plant, a desired output d[k] is built by measuring the plant’s

response, that is, the level of the four tanks. Both u[k] and d[k] are normalized such that

they lie on the interval [0,1]. The Ąrst 40,000 timesteps were used for training the ESN and

for Ąve-fold cross-validation (5-fold CV) (BISHOP, 2006), while the latter 10,000 timesteps
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were used to measure the ESN’s test prediction performance using the Integral Absolute Error

(IAE) metric:

IAE =
Ntest∑

k=1

♣d[k] − yesn[k]♣ (105)

Control performance is computed in terms of IAE and using a randomly generated

reference signal hi,ref ∈ [5,15], i ∈ ¶1,2♢, for N = 200 timesteps to form href , shown in

Fig. 7. The IAE equation for the control experiment is:

IAE =
N∑

k=1

♣ym[k] − yref [k]♣ (106)

The 5-fold CV can be performed in the ESN even though the whole model is dynamic

because CV is being performed with respect to the state-to-output least squares. Although the

relation between input and output is dynamic (data would be a sequence), this is not the case

for the output computation from the ESN states, which is a static relation, therefore there is

no time dependence.

Although IAE weights all instances in time equally, it serves the purpose of providing

a sensitive comparison metric between different controllers, evluating both steady state and

transients equally, hence it is a decent metric to evaluate ESN-PNMPC in the context of this

work.

Our Ąrst experiment is explained as follows: each possible parameter setting for leak

rate and spectral radius (from a predeĄned list of values) is evaluated ten times. The input

scaling is Ąxed empirically at 0.1 and the number of units in the reservoir is set to 100 neurons.

Each trial considers a different randomly initialized ESN, and, thus, will perform a 5-fold

CV for Ąnding the best regularization parameter value. The mean IAE of these ten runs are

computed for the test set and shown in Fig. 8, while the mean IAE for the control task, while

applying the ESN-PNMPC on the plant, is shown in Fig. 9. Here, the correction Ąlter is not

used, and thus, the control is in open-loop. This is because the experiment aims to evaluate

the capacity of the ESN in helping the control performance, without the help of the error

correction Ąlter. The conĄguration of the spectral radius and leak rate that yields the minimum

IAE for the ESN’s prediction (Fig. 8) is given by the values of 0.4 and 0.2, respectively. Besides,

in the majority of the plot, there is a smooth transition from white to black when walking

through the parameter space. On the other hand, in Fig. 9, that conĄguration is 1.1 and 0.3 for

spectral radius and leak rate, respectively. This preliminary experiment shows that the control

performance does not match exactly to the ESN’s prediction performance, in terms of the IAE

surface dependent on the leak rate and spectral radius. Thus, it seems that the best coupling

of these hyperparameters should be found by looking at the control (tracking) error instead

of the ESN model’s error. The drawback is that evaluating MPC control is many orders of

magnitude more computationally expensive than just model evaluation.

The same type of grid search analysis was performed for reservoirs containing 400 units.

The IAE surface of the ESN’s prediction is somewhat different from what is shown in Figures 8



Chapter 3. ESN Based Practical NMPC 55

and 9, being more flat, that is, the black area where the error is lowest is wider. The following

results section considers the 400-unit reservoir with parameter conĄguration that yields the

lowest MPC tracking error, i.e., spectral radius of 0.99 and leak rate of 0.3, properly regularized

with a 5-CV for Ąnding the regularization parameter. The choice of a larger reservoir is due to

the observation of less oscillations in control when compared to the 100-unit reservoir.

0 50 100 150 200
simulation timesteps
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Figure 7 Ű Randomly generated reference signal href for the level of tanks h1 and h2 to be
used for control performance evaluation) with a duration of 200 timesteps.
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Figure 8 Ű IAE as a function of spectral radius and leak rate, evaluated for an ESN model with
100 units in the reservoir. A white point localized in the middle of the darkest cell
gives the minimum IAE. Test IAE between ESN’s prediction and reference signal
for 10,000 timesteps.

Another experiment evaluates the test error (RMSE) as a function of the reservoir size

and the size of the training set (Fig. 10). This is practically relevant for control of real-world

plants for which data collection time should be as short as possible. As expected from machine
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Figure 9 Ű IAE as a function of spectral radius and leak rate, evaluated for an ESN model with
100 units in the reservoir. A white point localized in the middle of the darkest cell
gives the minimum IAE. IAE between the plant’s measured response during a MPC
task and a randomly generated test reference signal for 200 timesteps from Fig 7.

learning literature, the error on the test set decreases as the training set increases. The same is

valid for bigger reservoirs whose training is always regularized. In the plot, each point represents

the mean of the test RMSE for ten runs with randomly generated reservoirs, where each run

includes a 5-CV for the search of the regularization parameter. Note that this is the error

on the model prediction and that the MPC control error will not necessarily follow the same

pattern.
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Figure 10 Ű Test RMSE as a function of reservoir size (50, 100, 400, 1000) and training set
(2500, 5000 and 10,000 instances).
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3.2.1.3 Control Experiments

An open-loop step test in the four-tank system showed that the slowest step response

of the system was of 35 time steps. This test led to a prediction horizon of 50 time steps

(500 seconds) for the PMNPC, so that the steady state is captured in one future prediction

and taken into account during optimization. The control horizon used was of 5 time steps,

a sufficiently small size to reduce the computational complexity of the execution, since the

control horizon directly dictates the number of decision variables optimized in the QP. The

Ąlter parameters K and ω were tuned so that the pole of the a priori-posteriori error dynamics

is a = 0.5 for each variable, which means that the a posteriori error shall converge to 0 at

70 seconds, once a bias appears in the a priori error. The identity matrix was used for both

error weights Q and control variation weights R, so the errors and the variations are equally

penalized (the system is normalized in the PNMPC point of view).

A tracking experiment is performed in this section where the system is more constrained

(h3 = h4 = 9 cm), using the 400-unit regularized ESN with best parameters obtained in

Section 3.2.1.2. Note that the results on this section were obtained with completely new

unseen data, as the reference signal for control is randomly generated once again.

The reference setpoint signal was set as an APRBS signal with range hi,ref ∈ [5,15],

i ∈ ¶1,2♢ over 3,000 time steps, and the step-type flow disturbance in Tank 3 (ωdist,3) was

injected in the system halfway the simulation to showcase disturbance rejection and robustness

to an abrupt change in the model. When the disturbance is applied, the ESN is expected to

not perform well, as the model has changed during the simulation run.

Fig. 11 is divided in three subplots: the topmost shows the level of the lower tanks (h1

and h2) and each associated reference signal, the second one shows each pump voltage, and

the third one shows the upper tank levels (h3 and h4) alongside the upper and lower bounds

imposed on them. The black dashed vertical line flags when the Tank 3 flow disturbance

ωdist,3 = 1.8 kg/s is injected into the system.

Although the presence of the disturbance has considerably diminished the prediction

accuracy of the ESN due to a parametric change in the plant model, the system still managed

to achieve reference tracking along all the 1500 time steps. In the third plot of Fig. 11, The

constraints are taken into consideration and are overall not violated despite: the disturbance

compromising the prediction capacity; the ESN being a proxy of the actual model; and the

constraints calculated by the predictive controller not matching perfectly the actual system

constraints. The reason of this success is shown in Fig. 12, where the a prior relative error

epre,% is compared to the a posteriori error epost,%. In accordance with the PNMPC framework,

the correction is able to Ąlter the integration error and compensate for the bias in the prediction

induced by the disturbance. Even with a severe modeling error provoked by the unmeasured

disturbance, tracking is still possible. As the level constraints are modeled as “hardŤ (instead

of appearing as a penalty in the objective function, imposed as a mathematical bound on the

function domain), the controller takes priority into obeying the constraints, therefore tracking
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Figure 11 Ű Experimental results for the case where h3, max = h4, max = 9 in a 3000 time
steps run where a disturbance is applied at k = 750. From upwards to downwards:
the Ąrst plot consists of the tracking response of tank levels h1 (blue) and h2
(green) as solid lines, alongside their respective reference signals (dashed lines,
matching colors and thickness); the second plot contains the voltage signal for
pump 1 (blue) and 2 (green); and the third plot showcases the upper levels (h3
and h4) over time, alongside their upper (9 cm) and lower (0.5 cm) bounds. The
dashed vertical line shows when the disturbance ωdist,3 = 1.8 cm3/s is input to
the system, at time step number 750.

is sacriĄced, which is the reason why at some points the reference is not tracked, as shown in

Fig. 11.

3.2.1.4 Comparison with LSTM-PNMPC

This experiment compares the ESN-PNMPC to a LSTM-PNMPC controller, where an

LSTM (HOCHREITER; SCHMIDHUBER, 1997) (Long Short-Term Memory) is used instead of

an ESN. The LSTM hyperparameters are the number of cells, and the hyperparameters related

to the algorithm that performs nonlinear optimization to train the network weights, such as the

learning rate, the batch size, the regularization coefficients, number of epochs, the dropout rate

among others. The ESN, in comparison, has more structural hyperparameters, but because of

the nonlinear optimization of the LSTM, the number of hyperparameters both networks have to

consider when tuning is roughly the same. In the case of the LSTM, the hyperparameters were

selected through grid search. The LSTM network was trained for 40 epochs with the ADAM

(KINGMA; BA, 2014) optimization algorithm using exactly the same dataset as the ESN

(40,000 samples, see Section 3.2.1.2), and implemented with the pytorch library. Its hidden

layer has 20 cells (other conĄgurations, e.g., 5 or 80 neurons, showed higher validation error).

The built-in automatic differentiation of pytorch (PASZKE et al., 2017) is used to calculate
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Figure 12 Ű Effect of the error correction Ąlter for the case where h3, max = h4, max = 9 in
a 3000 time steps run where a disturbance is applied at k = 750. The topmost
subplot gives the a priori ESN prediction errors of the four tank levels h1,h2,h3,h4
(sorted by line thickness, with h1 as the thinnest), and the bottom-most plot
shows the relative error of the level predictions after correction is applied.

the Jacobian matrix G. Note that the training time for an LSTM is orders of magnitude higher

that of an ESN, since it is based on (iterative) gradient descent. Fig. 13 shows the result of the

comparison, where the “unconstrainedŤ case is considered (h3, max = h4, max = 12 cm) and

the same reference signal is provided to both controllers for 300 timesteps. Both controllers

achieved smooth responses. Although both cases solve exactly the same optimization problem,

the ESN-PNMPC had a faster response than the LSTM-PNMPC. The ESN also achieved

superior performance over the LSTM in terms of prediction error for the controller run.

Table 4 summarizes the results, showing the IAE for h1 and h2, the reference signal, and

the time spent computing G, the QP, and the total time to compute a control action. Not only

the LSTM-PNMPC controller is performing worse in terms of IAE (around 92% worse) than

ESN-PNMPC, but also in terms of computation timeŮabout 500 times on average slower than

the proposed ESN-PNPMC scheme. The latter only took 0.662 seconds to calculate G in the

worst case (timestep requiring more computation time) during the 300 timesteps experiment,

while the autograd (PASZKE et al., 2017) routine for computing the Jacobian of the LSTM

took 170 seconds in the best case, proving unĄt to control the four-tank system, which has a

sampling time of 10 seconds. This is is surprising since the LSTM has only 20 cells (40 states),

and the ESN has 400 neurons, which naturally makes it have more weights connecting each

neuron. The time for computing G dominates the total time for calculating the control action.

Thus, the ESN-PNMPC scheme, which simpliĄes the Jacobian calculation due to the analytical

and recursive formulation, is very well suited to real time applications in general, unlike the
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Figure 13 Ű Comparison between the ESN-PNMPC and LSTM-PNMPC for the control of
the four-tank system, for 300 simulation time steps. The Ąrst and second plots
correspond to the levels of tank 1 and 2, respectively, while the third plot shows
the voltage for each pump.

Table 4 Ű Results for PNMPC with ESN or LSTM in the four-tank system. Computation times
are per time step.

Controller
ESN-PNMPC LSTM-PNMPC

IAE (h1) 73.84 139.4
IAE (h2) 69.82 137.0

mean G calc. time (s) 0.34 174.8
best G calc. time (s) 0.247 170.9
worst G calc. time (s) 0.662 197.8

mean QP time (s) 5.36 × 10−3 1.98 × 10−3

best QP time (s) 2.9 × 10−3 1.77 × 10−3

worst QP time (s) 3.85 × 10−2 4.025 × 10−2

mean total time (s) 0.35 174.8
best total time (s) 0.25 170.9
worst total time (s) 0.671 197.80

currently implemented LSTM. Using our available hardware (Intel Core i5, 3.10 GHz, 4 cores,

8 GC RAM, ran on Python), the ESN-PNMPC with its current conĄguration (reservoir size;

number of inputs and outputs; prediction and control horizon) is Ąt for systems of at least

1 second sampling, as the worst-case computation time of the controller is 0.671 s. Time as

a metric, serves its purpose when comparing runtimes of different controllers and prediction

models in the same machine, however it does not serve as a comparison metric for different

machines, or to evaluate the performance of ESN-PNMPC when employed in a microcontroler
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or other types of embedded systems.

3.2.1.5 Comparison with PI controller and Linear MPC

Here, this experiment evaluates ESN-PNMPC in relation to a Proportional-Integral

(PI) controller and a Linear MPC, speciĄcally the Dynamic Matrix Control (DMC) strategy

(CAMACHO; BORDONS, 1999), described as follows:

• A decentralized pair of PI controllers. The Ąrst PI controls the level of tank 1 (h1)

manipulating the voltage of pump 2 (u2), while the second one controls h2 using

u1. This topology was chosen by inspecting each transfer function steady-state gain

(JOHANSSON, 2000). Each discrete PI has the form:

U(z)

E(z)
= K

z − z0

z − 1
, (107)

where the pair (K,z0) was chosen for both PI as (0.02,0.85) for conservativeness,

as the system is highly coupled and very prone to non-minimum phase transmission

zeros (JOHANSSON, 2000), which is a property of the system as a whole, and not

of each individual transfer function.

• Dynamic Matrix Control (DMC) (CAMACHO; BORDONS, 1999). It consists of a

linear MPC around the operation point of u1 = u2 = 2.5 V, chosen for being at the

middle of the input range, and thus being a good step response model for the whole

operating range of the four-tank system, as the system equilibrium point grows

monotonically in function of positive pump voltages. Also, the four-tank system is

well-behaved dynamically, therefore the step response of one operating point is a

close estimate to other step responses. The DMC was obtained by applying a step

of magnitude 0.2 at the aforementioned operation point and recording Ny samples

of the step response to place it directly in the DMC G matrix, according to the

procedure in (CAMACHO; BORDONS, 1999). The optimization problem solved in

the DMC iteration is exactly the same as in the PNMPC, with the same normalized

variables.

Both controller were chosen because they are standard in the literature, performing well

without being much complex. Also, DMC has the advantage over GPC in that DMC assumes

any kind step response (while assuming the system to be stable), while GPC assumes a so

called CARIMA (CAMACHO; BORDONS, 1999) model.

Fig. 14 shows that the DMC was slightly slower than the ESN-PNMPC, which was more

aggressive for larger changes in reference, such as at k = 400. Table 5 shows the IAE for the

control task from Fig. 14, where ESN-PNMPC achieves the lowest tracking error, both in total,

and for each controlled variable. Also, the ESN-PNMPC had a lot more ease at adjusting to

the same set-point, parting from exactly the same initial condition, as seen at the beginning of

the plot. This result is expected theoretically, as the DMC depends on the step-response of one
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Figure 14 Ű Comparison between the ESN-PNMPC (solid blue line), a DMC controller (dotted
green line), and a PI controller (dotted-and-dashed red line) for the four-tank
problem for 500 time steps. The reference signal is given by the dashed cyan line.
The Ąrst two upper plots correspond to the levels of tank 1 and 2, respectively,
while the third plot shows the corresponding pair of control actions for each
controller, with PNMPC in solid curve style.

Table 5 Ű Tracking error in relation to PI controller and Linear MPC (four-tank).

ESN-PNMPC PI DMC
IAE 375.56 540.45 473

IAE (h1) 203.50 321.04 290.76
IAE (h2) 172.06 219.41 182.24

operating point (thus having the matrix G Ąxed (CAMACHO; BORDONS, 1999)), whereas

ESN-PNMPC updates these matrices at each time step. An unconstrained DMC is equivalent

to a PID controller (CAMACHO; BORDONS, 1999), just as an unconstrained PNMPC can be

seen as an adaptive controller (because G changes over time). Systems with more expressive

nonlinearities better expose the advantage of employing nonlinear controllers (for instance, a

Continuous Stirred Tank Reactor (CSTR) (CHEN, H.; KREMLING; ALLGÖWER, 1995)), but

this result from the four-tank system is a valid example. Also, the DMC performs well, almost

close to the PNMPC, due to the strategical operating point utilized, as mentioned earlier.

As for the PI controller, since it is linear by nature, the controller needs to be designed

regarding a (family of) linear system(s). In turn, a nonlinear controller such as the PNMPC can

ideally adapt to any operating point, which is a reason for the performance of the ESN-PNMPC

being superior.
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3.2.2 Two Wells - One Riser

3.2.2.1 Description

The considered platform application consists of two wells and one riser, being the

same one that was used in our previous work (JORDANOU, Jean P.; ANTONELO, Eric

Aislan; CAMPONOGARA, 2019). Another work that uses ESNs in oil and gas applications

is (ANTONELO, Eric A.; CAMPONOGARA; FOSS, 2017), which presents a soft sensor for

remote estimation in offshore production platforms.

This experiment a compositional model of two gas-lifted oil wells and one riser, con-

nected by a manifold. Figure 15 depicts the platform, whose components have the following

properties:

• Wells: Each well is modeled as the reduced order model in (JAHANSHAHI; SKO-

GESTAD; HANSEN, 2012). The model considers two fluid phases (gas and liquid)

and two control volumes: the annulus, containing the gas-lift; and the tubing, con-

taining the production fluid. These deĄne the three states of the well model: the

gas in the annulus ṁG,a, the gas in the tubing ṁG,t and the liquid in the tubing

gas-lift source gas-lift source

Well 2Well 1

Oil and Gas Reservoir

Manifold

Outlet

Riser

Riser Production Choke

gas-lift valve 1
gas-lift valve2

Well Production Chokes

z

Figure 15 Ű Representation of an oil platform containing two wells and one riser. From (JOR-
DANOU, Jean P.; ANTONELO, Eric Aislan; CAMPONOGARA, 2019).
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ṁL,t; each state is calculated by the following mass balance equations:

ṁG,a = ωG,in − ωG,inj (108)

ṁG,t = ωG,inj + ωG,res − ωG,out (109)

ṁL,t = ωL,res − ωL,out (110)

The gas flow ωG,in is injected into the annulus, and ωG,inj is the gas flow injected

from the annulus to the main tubing. The flow deĄned by ωres has its source on the

oil reservoir attached to the well, and ωout deĄnes the outlet flows. Each of these

flows is calculated through the Bernoulli oriĄce equation, which is a function of the

pressure at certain points in the well and the choke valves involved, which is the

gas-lift choke valve ugs for ωG,in and the wellhead choke valve uch for the outlet

flow ωout. The well model has 42 algebraic variables, 3 state variables, 2 input

variables, and 3 boundary conditions, which are the pressure at the gas-lift source

Pgs, the oil reservoir pressure Pres, and the well outlet pressure, which is connected

to the rest of the system through the manifold. As the dynamic model of the wells

are rather complex to be presented here, refer to (JAHANSHAHI; SKOGESTAD;

HANSEN, 2012) for more details on the well model.

• Riser: The riser is modeled as a reduced order model developed in (JAHANSHAHI;

SKOGESTAD, 2011). In the same vein as the well model, two control volumes are

considered: a horizontal and a vertical pipeline. The states of the system are the gas

and liquid mass that are present in each control volume. The system is calculated

using the modeling logic as the well: each state is modeled as a mass balance of an

input and an output flow. The input flow is a boundary condition, which in this case

has its source on the two wells below, as shown in Figure 15. The output flow is the

production of the whole system, being regulated by the riser production choke valve

opening z and the output pressure, which is also a boundary condition and generally

corresponds to the pressure at a separator of an FPSO (Floating Production Storage

and Offloading) vessel. The riser model possesses 4 state variables, 36 algebraic

variables, one input variable, and three boundary conditions.

• Manifold: The manifold is modeled as proposed in (JORDANOU, Jean P.; AN-

TONELO, Eric Aislan; CAMPONOGARA, 2019). In terms of modeling and equa-

tions, it corresponds to equating the riser inlet pressure to each well output pressure,

and ensuring the riser inlet flow to be the sum of both well flows, while disregarding

any load loss due to friction.

Overall, the whole system in Figure 15 has 120 algebraic variables, 10 state variables, 5

input variables, and exactly 5 boundary conditions: the reservoir pressure Pres,i, i ∈ W = ¶1,2♢
of each well i, the gas-lift inlet pressure Pgs,i of each well i, and the riser output pressure. The

exact same parameters as (JORDANOU, Jean P.; ANTONELO, Eric Aislan; CAMPONOGARA,



Chapter 3. ESN Based Practical NMPC 65

2019) are used, where the boundary conditions are Pgs,1 = Pgs,2 = 200 bar and the output

pressure is Po = 50 bar.

The problem for this case study is akin to a control problem addressed in (JORDANOU,

Jean P.; ANTONELO, Eric Aislan; CAMPONOGARA, 2019). The problem consists in manip-

ulating the choke valves of well 1 and well 2 (uch,1, uch,2) to track a setpoint signal in each

well bottom-hole pressure (Pbh). It is important to reiterate that any problem with a quadratic

cost function and linear constraints is solvable by the ESN-PNMPC, which also includes econo-

metric formulations (e.g., maximize the net present value). This tracking problem considers

the following quadratic cost function in the context of predictive control:

J =
Ny∑

j=1

(q1e2
1[k + j♣k] + q2e2

2[k + j♣k]) +
Nu−1∑

j=1

(r1∆u2
ch1, + r2∆u2

ch,2) (111)

where the errors are deĄned as:

e1[k + j♣k] = P̃bh,1[k + j♣k] − Pbh,1[k + j♣k] (112)

e2[k + j♣k] = P̃bh,2[k + j♣k] − Pbh,2[k + j♣k] (113)

and P̃bh,i is the setpoint for the corresponding bottom-hole pressure Pbh,i of well i.

In this speciĄc case, there are no output constraints. However, constraints related to

valve limitation and rate limiting are added to the formulation:

0.01 ≤ uch,1,uch,2 ≤ 1 (114)

−∆umax ≤ ∆uch,1,∆uch,2 ≤ ∆umax (115)

By default, just as in the four-tank experiment, ∆umax = 0.2. The ESN and the PNMPC

consider a sampling of 1 min for the platform, which is suitable for such applications.

3.2.2.2 System IdentiĄcation and Controller Setup

The datasets are generated by exciting the system with the APRBS (NELLES, 2020)

for both inputs uch,1,uch,2. The training dataset is composed of 10,000 instances in the form

of input-output pairs ¶((uch,1,uch,2), (Pbh,1, Pbh,2))♢. A validation set of 10,000 instances is

employed to empirically Ąnd the hyperparameter values for a 400-unit ESN with the lowest

RMSE validation error, yielding: a leak rate of 0.7, an input and bias scaling of 0.1, and a

spectral radius of 0.999. This parameter setting was not critical for this task, so a reĄned grid

search was not necessary. All the output variables were scaled from the interval [170,220] to

[0,1] before training. The prediction performance of the ESN was evaluated on 10,000 test

instances, presenting a RMSE of (0.031, 0.035) for both output variables. Note that the real

test of this trained model is done within the control task of ESN-PNMPC.

After training the ESN model, comes the tuning of the PNMPC for this application.

The prediction horizon was decided through the execution of an open-loop test which showed
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Figure 16 Ű Results for a 1500 time steps run where the gas-lift source pressure of the second
well (Pgs,2) is depleting 10 bar at times k = ¶750,900,1100♢ as disturbance. The
topmost subplot depicts the tracking experiment, where each well bottom-hole
pressure (Pbh,1 as a blue, solid and thin line, and Pbh,2 as a green, solid and thick
line) is plotted together with their set-points (dashed lines of matching color and
thickness) over time; the second subplot contains the control action of each well
choke valve (uch,1 : blue and thin, uch,2 : green and thick); and the third plot
represents the disturbance at the gas-lift source pressure Pgs,2 over time.

that the system reaches steady-state after 30 time steps (minutes). For each prediction window

to include a portion of steady-state time, the prediction horizon was set to 40 time steps.

The control horizon has length 5, chosen as a sixth of the prediction horizon (CAMACHO;

BORDONS, 1999). The Ąlter parameters K and ω tuning induced the pole a = 0.3 for each

variable, as a smaller value for a means a quicker error response while maintaining a certain

degree of robustness. As with the four-tank application, Q and R are the identity matrix.

3.2.2.3 Control Experiments

The executed identiĄcation of the ESN considers that the gas-lift source pressure of

the second well Pgs,2 remains static at 200 bar for all training samples. Note that this pressure

constancy does not happen in real-world oil platforms. Here, the controller has to track an

APRBS reference signal, besides rejecting disturbances that occurs in Pgs,2. This disturbance is

simulated as pressure drops of 10 bar that happen at times k ∈ ¶750,900,1100♢, which changes

the model drastically (and nonlinearly (JAHANSHAHI; SKOGESTAD; HANSEN, 2012)) when

compared to the four-tank system, where a disturbance is directly added to the state equation.

The simulation run lasts 1500 time steps.

In Fig. 16, the Ąrst plot shows the tracking results of the experiment, while the second

one shows the a priori and a posteriori errors of each well bottom-hole pressure. The model
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Figure 17 Ű Correction Ąlter effect for a 1500 time steps run where the gas-lift source pressure
of the second well (Pgs,2) is depleting 10 bar at times k = ¶750,900,1100♢ as
disturbance. The topmost subplot contains the a priori ESN prediction errors of
each well bottom-hole pressure (Pbh,1,Pbh,2), and the bottom-most plot contains
the relative error of the pressure predictions after correction is applied. The vertical
dashed lines mark each moment when Pgs,2 changes value.

changes more drastically as the pressure keeps dropping. This parametric change affects our

a priori prediction less than in the four-tank case. Even then, the prediction Ąlter manages to

decrease the prediction error to less than 4% through the whole simulation. Note that the third

pressure drop at k = 1100 results in a large perturbation manifested later (at setpoint change)

in the a priori error plot. In this scenario, the Ąlter efficiently corrects the model predictions,

reducing the a posteriori error. Additionally, the dynamics of the two wells during tracking

is well behaved, despite the influence of the disturbance. For the simulation in Fig. 16, the

ESN-PNMPC achieved a total IAE of 1918.83, which results from the IAE of (757.68, 1161.15)

for each well bottom-hole pressure.

The ESN-PNMPC was compared to a DMC for the control of the two wells in the

platform, designed with the same strategy of obtaining a step response at the operating point

uch,1 = uch,2 = 0.5, at the middle of the control range, and solving the same optimization

problem for both controllers. Both controllers were simulated under the exact same conditions

(reference signal and disturbance). The total IAE achieved by the DMC was 1961.4, corre-

sponding to the IAE of (682.9, 1278.5) for each well, which was slightly better for Pbh,1 and

slightly worse for Pbh,2 compared to our approach. Fig. 18 shows the results of both controllers

between time steps 700 and 1100. This region is depicted because it is exactly when the

changes in Pgs,2 happen, providing a disturbance to the controller. The Ąrst 50 time steps are

a good sample of what generally happens in the simulation, where disturbances are not present.

Even though the DMC is faster, it is also more oscillatory and aggressive, therefore more prone
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Figure 18 Ű Comparison between the ESN-PNMPC, and a DMC-type MPC for the oil produc-
tion platform during pressure disturbances applied to the gas-lift supply, between
time steps 700 and 1100 of Fig. 16. The reference signal is given by the dashed
cyan line for the bottom-hole pressures Pbh,1 and Pbh,2 in the upper and lower
plots, respectively. The IAE was (271.22,210.64) (total: 481.86) for the ESN-
PNMPC, and (289.68,429.16) (total: 718.84) for the DMC.

to overshooting. This cannot be expressed with IAE alone. The rest of the plot, which is when

the disturbances happen, showcase how our approach can reject disturbances more efficiently,

as Pgs,2 affects Pbh,2 more intensely. The qualitative differences in disturbance rejection be-

tween both controllers can be seen after k = 950 in Fig. 18. The theoretical explanation for

this improvement in ESN-PNMPC is that the DMC uses a single step response of a single

operating point as a model, while ESN-PNMPC updates G at each time step according to

the free response trajectory, better adapting to changes. Also, the presence of the Ąrst order

error correction Ąlter helps in rejecting any bias from disturbance, while this implementation

of DMC (CAMACHO; BORDONS, 1999) uses only the current modeling error to correct the

free response.

3.2.3 Electrical Submersible Pump-lifted Oil Well

The results shown in this section were also published in (JORDANOU, Jean P. et al.,

2022). The Electrical Submersible Pump (ESP) oil well besides being an interesting practical

problem for the ESN-PNMPC, also served as a case study to compare the performance of

ESN-PNMPC with a Ąltered NMPC using an ESN as a model (JORDANOU, Jean P. et al.,

2022).
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3.2.3.1 Description

The model of the ESP-lifted Oil Well employed for this work (depicted in Figure 19)

was developed by (PAVLOV, A. et al., 2014), with some improvements by (BINDER, Benjamin

J. T.; PAVLOV, Alexey; JOHANSEN, 2015). It employs the average flow of a mixture as state,

instead of taking into account each phase flow, which makes the model simpler to compute

and use in control applications.

The ESP-lifted well is characterized by the following dynamic equations:

ṗbh =
V1

β1
(qr − q) (116)a

ṗwh =
V2

β2
(q − qc) (116)b

q̇ =
1

M
(pbh − pwh − ρghw − ∆pf + ∆Pp) (116)c

where pbh is the well bottom-hole pressure, pwh is the wellhead pressure, q is the average liquid

flow rate in the well, qr is the input flow rate originated from the reservoir, qc is the flow rate

at the production choke, ρ is the fluid density, g is the gravity acceleration, and hw is the well

height. The volumes V1 and V2 are the pipe volumes below and above the ESP, respectively,

while β1 and β2 are the bulk modulus, which are fluid dynamics parameter that model the

fluid resistance to compression. The parameter M is the fluid inertia. The quantity ∆pf is the

pressure loss due to friction, and ∆Pp is the pressure increase due to pump dynamics.

The input flow rate qr and the output flow rate qc are calculated as follows:

qr = PI(pr − pbh) (117)a

qc = Ccz
√

pwh − pm (117)b

where PI is the production index calculated for the reservoir, pr is the pressure in the reservoir,

z ∈ [0,1] is the production choke opening, Cc is the choke valve constant, and pm is the

manifold pressure.

The load loss due to friction is calculated as:

∆pf = F1 + F2 (118)a

Fi = 0.158
ρLiq

2

DiA
2
i

(
µ

ρDiq

) 1

4

(118)b

where L corresponds to length, D to diameter, and A to the pipe cross-section area. The index

1 corresponds to the section between the reservoir and the ESP, whereas index 2 corresponds

to the section between the ESP and choke. The parameter µ is the viscosity of the fluid.
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Figure 19 Ű Schematic representation of an ESP lifted well, adapted from (BINDER, B. J. T.
et al., 2014), and obtained directly from (JORDANOU, Jean P. et al., 2022).

The ESP pressure increase is calculated as:

∆Pp = ρgH (119)a

H = CH(µ)


c0 + c1

(
q

CQ(µ)

f0

f

)
− c2

(
q

CQ(µ)

f0

f

)2 (
f

f0

)2

 (119)b

where c0,c1 and c2 are pump constants, CH and CQ are constants dependent on the viscosity,

f0 is the nominal frequency of the pump, and f is the pump rotation frequency.

The control inputs for this system are the production choke opening z and the ESP

frequency f . Table 6 presents the model parameters of the ESP-lifted oil well.

The model described by the system (116) is a lumped model for the ESP used as a

reference in this work. Models related to oil and gas production that accurately predicts the

dynamics of a system are hard to compute and may be lacking in accuracy (JAHN; COOK;

GRAHAM, 2008), however models such as (116) can capture the fundamental behavior of this

type of process.

The Ąrst step is to identify an ESN model that captures the behavior of (116). For the

ESP-lifted well case, the ESN must identify the manipulated variables of the well as inputs to

the model, to which end one must gather data from the pump rotation frequency f and the

valve choke opening z. The ESN outputs are the system states: the bottom-hole pressure pbh,

the wellhead pressure pwh, and the average flow rate of the fluid q.

The second step is to employ the trained ESN as the model for the MPC problem with

a quadratic tracking objective function. Due to physical limitations, the choke valve opening z

is constrained between 0% and 100% and the ESP frequency must range from 35 Hz to 65

Hz (PAVLOV, A. et al., 2014). The output constraints consist of bounds on the bottom-hole
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Table 6 Ű Well dimensions and other known constants

Symbol Name Value Unit
g Gravitational acceleration constant 9.81 m/s2

Cc Choke valve constant 2 · 10−5 *
A1 Cross-section area of pipe below ESP 0.008107 m2

A2 Cross-section area of pipe above ESP 0.008107 m2

D1 Pipe diameter below ESP 0.1016 m
D2 Pipe diameter above ESP 0.1016 m
h1 Height from reservoir to ESP 200 m
hw Total vertical distance in well 1000 m
L1 Length from reservoir to ESP 500 m
L2 Length from ESP to choke 1200 m

V1 Pipe volume below ESP 4.054 m3

V2 Pipe volume above ESP 9.729 m3

f0 ESP characteristics reference freq. 60 Hz
Inp ESP motor nameplate current 65 A
Pnp ESP motor nameplate power 1.625 · 105 W
β1 Bulk modulus below ESP 1.5 · 109 Pa
β2 Bulk modulus below ESP 1.5 · 109 Pa
M Fluid inertia parameter 1.992 · 108 kg/m4

ρ Density of produced fluid 950 kg/m3

Pr Reservoir pressure 1.26 · 107 Pa
PI Well productivity index 2.32 · 10−9 m3/s/Pa
µ Viscosity of produced fluid 0.025 Pa · s

Pm Manifold pressure 20 Pa

pressure, well-head pressure, and liquid flow, respectively 0 ≤ pbh, 1 bar ≤ pwh ≤ 60 bar, and

30 m3/h ≤ q ≤ 50 m3/h. The NMPC optimization problem to be solved at time k is:

min
∆U

J(y[k],u[k],∆U) (120)a

s.t. : 1Nu
⊗ (umin − u[k]) ≤ (TNu

⊗ Im)∆U ≤ 1Nu
⊗ (umax − u[k]) (120)b

1Ny
⊗ ymin ≤ Y ≤ 1Ny

⊗ ymax (120)c

where ⊗ is the Kronecker product, which is used in this formulation as a broadcast operator,

namely (1n ⊗ a) means that the resulting vector is a replicated n times, which corresponds

to the number of rows in 1n. The same holds for the Kronecker product (TNu
⊗ Im). As

TNu
is a lower triangular matrix of size Nu Ąlled with ones, the resulting matrix from the

Kronecker product is a block-triangular matrix with non-zero block-elements being equal to

Im, with m = 3 being the number of manipulated variables. In the formulation above, y[k]

is the system output at the current time k and u[k] is the initial control signal. The actual

control signal to be applied over the control horizon is a function of u[k] and the vector ∆U

of control increments. Notice that ∆U is the vector of decision variables.
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The remainder of the functions and variables in problem (120) are:

∆U =




∆u[k]

∆u[k + 1]

∆u[k + 2]
...

∆u[k + Nu − 1]




, Y =




y[k + 1] = g(x[k + 1])

y[k + 2] = g(x[k + 2])

y[k + 3] = g(x[k + 3])
...

y[k + Ny] = g(x[k + Ny])




, (121)a

u[k + 1] = u[k] + ∆u[k], u =


z

f


 , umin =


 0

35


 , umax =


100

65


 (121)b

y =




pbh

pwh

q


 , ymin =




0

1

30


 , ymax =




∞
60

50


 (121)c

which lead to the objective function

J(y[k],u[k],∆U) = (Y − Yref )T (INy
⊗ Q)(Y − Yref )

+ ∆UT (INu
⊗ R)∆U (121)d

with Q being weights for the reference tracking error and R weights imposed on the control

variation, to prevent abrupt changes in the control action. Vector x refers to the system state,

and g(·) is a static function that maps the states to the output. If the system deĄned in

(116) is used as the prediction model, then x = y, in which case g(·) is the identity function.

However, this is not always the case, as a reliable prediction is not always available.

For the remainder of this case study, the ESN-PNMPC is compared with an NMPC

controller that uses ESN as a model, and employs the prediction Ąlter in the exact same way as

the PMPC, which was implemented with the Single Shooting method (JORDANOU, Jean P.;

ANTONELO, Eric Aislan; CAMPONOGARA, 2019).

The ESP-lifted oil well was implemented using CasADi (ANDERSSON et al., 2019),

whereas the Python libraries numpy and scipy were used to implement both the Echo State

Networks and controllers (NMPC and PNMPC). NMPC was implemented with CasADi and

solved with IPOPT (MEHREZ, 2019), whereas PNMPC was coded in native Python and

solved with CVXOPT (DAHL; VANDENBERGHE, 2020). The results were displayed using

the Matplotlib library. A sampling time of Ts = 1/12 s was used for the application, based

on a simple step-test of the system. The experiment was done entirely in a personal desktop

possessing 8 GB RAM, with an AMD Ryzen 5 1400 Quad-Core Processor, that operates in

3.2 GHz. No GPU was used in the simulation and/or training.

Alongside other previously mentioned metrics, the experiments with the simulated

ESP-lifted well also employs the NRMSE (Normalized RMSE) metric:

NRMSE =

√√√√√ 1

N

N∑

k=0

∥∥∥∥∥
y[k] − yESN[k]

ymax − ymin

∥∥∥∥∥

2

(122)
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Figure 20 Ű APRBS excitation signal utilized to generate the dataset by inputting it into the
ESP-lifted well. Valve opening presented as a percentage instead of in absolute
value form.

where the real output y is compared to the ESN output yESN, and the total control variation

metric:

∆utot =
N∑

k=0

♣∆u[k]♣ (123)

3.2.3.2 System IdentiĄcation

The APRBS signal input to the system as excitation has a period of 5 time steps (5/12

s) at the Ąrst half of the dataset, and a slower minimum period of 40 (40/12 s) steps for the

rest of the simulation. The Ąrst half of the simulation is focused on identifying transients and

responses to subtle variations in the control action, while the second half focuses on lower

frequencies and the steady state.

Figure 20 depicts the APRBS excitation signal which generates the dataset. The

signal has 12,000 time steps (1,000 s) duration, ranging from (zmin,fmin) = (0.1,35) to

(zmax,fmax) = (1.0,65) for the choke opening and pump frequency values, respectively. The

system initial condition for the data gathering pbh = 70 bar, pwh = 20 bar, and q = 36 m3/h.

The output signal for pbh, pwh and q is obtained by simulating the well model with the input

sequence in Figure 20. An APRBS signal of 300 time steps was used as an excitation signal

for a separate validation set, distinct from the training dataset shown in Figure 20.

Table 7 showcases the results from an experiment that aimed to assess the impact of the
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Table 7 Ű NRMSE on the validation set for varying reservoir sizes of the ESN

Neurons NRMSE Average Runtime
50 0.129 0.39 s
100 0.116 0.40 s
150 0.112 0.45 s
200 0.109 0.51 s
250 0.107 0.60 s
300 0.106 0.63 s
350 0.107 0.69 s
400 0.106 0.73 s

number of neurons on ESN performance in terms of NRMSE. The performance improvement

achieved in ESNs with more than 300 neurons was not signiĄcant, while the computation time

increased almost linearly, which led to the selection of ESNs with 300 reservoir states, which

were selected by grid search.

Table 8 Ű Hyperparameters used in the ESN

Parameter Value
Leak rate (γ) 0.14
Size of the reservoir (N) 300
Spectral radius (ρ) 0.99
Input scaling (fr

i ) 0.1
Bias scale (fr

b ) 0.1
Warmup drop 200

The other parameters besides the number of neurons were decided using a grid search

procedure separately, with each conĄguration being simulated once, leading up to the values

for hyperparameters shown in Table 8. The leak rate γ is expected to be small because

of the system settling time is longer when compared to the sampling time. The warm-up

drop parameter is the number of training points, at the beginning of the dataset, that are

dropped so that the ESN least squares does not calculate the weights using transient states.

A regularization parameter of λ = 10−8 was found via a 10-fold cross-validation (CV) using

the training set.

Also, a 128-unit Long Short-Term Memory (LSTM) and a 64 Gated Recurrent Unit

(GRU) network were trained using the same training data as the ESN, to compare their

performance against the ESN in identifying the ESP-lifted oil well. Both networks were trained

with the Adam algorithm, with a batch size of only one timestep (where BPTT takes into

account the derivative calculation in the previous batch), and a learning rate of 0.001. These

parameters were the ones that performed best in the series of experimental tests done with both

networks. The stop criteria was the loss function (mean squared error) not decreasing for 10

epochs, indicating that the network weights had reached a local minimum in the optimization

problem.
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Figure 21 Ű Prediction of the ESN, LSTM, and GRU on test data in comparison to the ESP
plant (blue dashed line) given the test excitation signal. The Ąrst plot presents
the bottom-hole pressure pbh, the second plot, the wellhead pressure pwh, and the
third plot, the flow. The fourth plot is the NRMSE at the given time-step.

The test data consists of 1000 time steps. Figure 21 regards simulations on this test

data, showing both the solution of the differential equations that govern the ESP-lifted oil

well (desired output data) and the three identiĄed models. The simulations show that the

ESN captures best the system dynamics, which therefore can be used as a surrogate model

for the MPC strategies. Notice that the ESN response is the closest signal to the output data,

as illustrated by the NRMSE curves depicted in Figure 21. Also, Table 9 compares the three

networks in terms of execution time, NRMSE and epochs needed to conclude training. The

results there showcase that the ESN is a suitable choice as the training is faster (linear least

squares solution vs stochastic gradient descent for nonlinear least squares problem), and it

performs better in terms of NRMSE.

Table 9 Ű Comparison of ESN model with LSTM and GRU for ESP-lifted well identiĄcation
on test data.

NRMSE Training Epochs Training Time (s)
ESN 0.0135 - 106.89

LSTM 0.0295 20 1438.11
GRU 0.0508 33 1649.82
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3.2.3.3 Experiments Description

This experiment is about solving the following control problems using the ESN-PNMPC

and the previously mentioned NMPC with an ESN model and the PNMPC prediction Ąlter:

1. With the choke fully open (z = 1), the pump frequency f serves as a manipulated

variable to track reference signals for the well bottom-hole pressure (pbh), while

adhering to the constraints in (93). Also, this experiment considers a variation in

the reservoir pressure of ∆pr = −10 bar.

2. Both the choke opening z and pump frequency f serve as manipulated variables.

The controller tracks a reference signal for pbh, while maximizing the production

flow q. Instead of including the maximization of the flow q directly into the cost

function, the maximization appears in the form of a constant reference signal for q

at an infeasible value for the problem in steady state. This reduces the production

maximization to a reference tracking MPC problem such as in (93).

Notice that, when the controller must track the reference for a given variable, the constraint

associated with that variable does not hold for the problem at hand.

3.2.3.4 Bottom-hole pressure tracking with pump frequency manipulation

For the Ąrst problem, the PNMPC (and NMPC) parameters set were:

Q = 0.7 (124)a

R = 5 (124)b

K = 1/3 (124)c

ω = 0.25 (124)d

∆Umax = −∆Umin = 0.2 (124)e

Figure 22 presents the results associated with the tracking of the bottom-hole pressure

by manipulating the pump frequency. It shows the response of both controllers given a pbh

reference signal. Although the pure Single-Shooting NMPC shows slightly better performance

in terms of settling time, the PNMPC is more conservative in its control signal. For small

variations of the control action, both controllers generate similar outcomes, which can be

explained by the fact that the PNMPC can be seen as a quadratic approximation of the NMPC

solution. Also, the PNMPC requires considerably less time to run, which is remarkable given

that the standard NMPC relies on advanced software with automatic differentiation and an

NLP solver, whereas PNMPC uses just a QP solver and the simple recursive algorithm for

derivative calculation.

Table 10 better illustrates the results in terms of IAE, the total control variation, the

mean execution time of the control law calculation at a given time step, and the worst execution
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Figure 22 Ű Results of the experiment for the bottom-hole pressure tracking induced by both
the SS ESN-NMPC and the ESN-PNMPC. The Ąrst plot regards the bottom-hole
pressure, the second plot shows the oil flow q, and the third plot presents the
manipulated variable: the pump frequency f .

Table 10 Ű Metrics for each controller in the bottom-hole pressure tracking problem.

ESN-NMPC ESN-PNMPC
IAE (pbh) [bar] 553.97 712.46

∆utot [Hz] 34.29 31.72

Mean execution time [s] 1.19 0.35
Worst execution time [s] 1.73 0.87

time of a time step inside the simulation. The NMPC displays superior IAE, while the PNMPC

is more conservative (∆utot) and more efficient in terms of execution time, by a factor of

more than 3 on average. Seeing the PNMPC as an approximation to the NMPC, the relative

error between the control action of each controller REMPC (the solution to their respective

optimization problems) can serve as metric of how close the control action of both controllers

are:

REMPC =
N∑

k=1

∣∣∣∣∣
uPNMPC [k] − uNMPC [k]

uNMPC [k]

∣∣∣∣∣ = 0.06, (125)

where N is the total number of time steps. Such a value for REMPC demonstrates that the

trajectory linearization of the PNMPC serves well as an approximation to the NMPC for ESNs,

considering this speciĄc type of MPC problem where constraints are not being violated. Notice

that the decision variable in the PNMPC is the control increment, while in the NMPC it is
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Figure 23 Ű Results of the experiment for the bottom-hole pressure tracking with disturbance
rejection induced by both the SS ESN-NMPC and ESN-PNMPC. The Ąrst and
the second plots show the bottom-hole pressure tracking by PNMPC and NMPC,
respectively. Both plots have a blue, thick line representing the controller with a
Ąlter, and a green line for the controller without a Ąlter. The third and fourth plots
are the pump frequency for PNMPC and NMPC respectively. The time instant
where disturbance on the reservoir pressure pr takes place is shown as a vertical
cyan dashed line at timestep 400.

the control action itself. Therefore, the NMPC calculates a new control action at each time

step, and the PNMPC approximates the problem given the previous control action and outputs,

computing an incremental approximation to the whole NMPC.

This experiment also considers a disturbance for this control problem, by injecting a

disturbance ∆pr that decreases the reservoir pressure in 10 bar midway in the simulation. Each

controller performs reference tracking under the same reference signal as the no disturbance

simulation. Two cases were considered: both controllers with and without the presence of the

error correction Ąlter.

Figure 23 demonstrates the result of said experiment, where the effect of the prediction

Ąlter in the control loop is clearly shown. The −10 bar disturbance in the reservoir pressure

induces a modeling bias in the ESN, which is why a constant error is present in the non-Ąltered

counterpart of the controllers. Meanwhile, both controllers with the Ąlter managed to bring

the bottom-hole pressure to the desired reference, with a slightly lower peak for the NMPC. A

slight reference error is also present for the non-Ąltered controllers before the disturbance is

applied, as the ESN is not an exact model of the ESP-lifted oil well.
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Figure 24 Ű Results for the bottom-hole pressure tracking while maximizing oil production for
both the ESN-NMPC and the ESN-PNMPC. The Ąrst plot shows the controlled
bottom-hole pressure. The second plot shows the oil flow q with the target oil
production given by the horizontal dashed red line. The bottom plots present the
manipulated variables choke opening z, and pump frequency f .

3.2.3.5 Bottom-hole pressure tracking with target oil production

For the second proposed problem, where the controller tracks a reference signal for the

bottom-hole pressure while approaching an unattainable production flow target to maximize

oil production, the parameters utilized are:

Q =


0.7 0

0 0.1


 (126)a

R =


3 0

0 5


 (126)b

K = 1/3 (126)c

ω = 0.25 (126)d

∆Umax = −∆Umin = 0.21 (126)e

Notice that in this formulation, the parameters related to f and the error for pbh are the same

as in the previous problem. In this formulation, u = (z,f)T and yref = (p
ref
bh ,qref )T .

Figure 24 showcases the results of the experiments. The pbh tracking is hindered by

the need to bring the flow as close as possible to qref = 55 m3/h (red horizontal dashed line).

Besides, for this experiment, the control action of the controllers differs from each other more

signiĄcantly, i.e., PNMPC control action varies more than NMPC one. The NMPC seems to
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prioritize production more than the bottom-hole pressure, which explains the conservativeness

of the generated control action. Table 11 better illustrates this phenomenon with the results,

where PNMPC performed better with respect to the pbh tracking, while NMPC produced

slightly more oil since it showed lower IAE for q.

Table 11 Ű Metrics for each controller in the problem of pressure tracking with target produc-
tion.

ESN-NMPC ESN-PNMPC
IAE (pbh) [bar] 1724.65 870.78

IAE (q) [m3/h] 7222.01 8106.24
∆utot (z) 0.37 0.95

∆utot (f) [Hz] 21.45 25.34
Mean execution time [s] 1.07 0.45 s
Worst execution time [s] 1.23 1.11 s

The total relative error of the choke valve opening between each controller was

REMPC(z) = 47.12, while for the pump frequency it was REMPC(f) = 11.04. There

is a signiĄcant difference between each controller because the system is being driven into a

point at the limit of its own constraints, therefore provoking entirely different reactions from

each controller. From a qualitative point of view, the PNMPC calculates the control action

based on the current operating point of the optimization problem, deĄned by the initial free

response trajectory, while the NMPC prediction model must compose a whole trajectory from

scratch, which changes how both controllers handle constraint limits. The PNMPC model is

linear in terms of the control increment, therefore it will seek greedy solutions to handle the

constraints, whereas the NMPC handles the control trajectory more precisely. This explains

why the PNMPC prioritizes the bottom-hole pressure, since minimizing its tracking error is

easier from the controller’s point of view.

3.3 SUMMARY

This chapter presented the ESN-PNMPC, and report results from experiments using

the four-tank system, the two-wells one-riser oil and gas production platform system, and the

ESP-lifted well to experiment with various aspects of the controller application. There are

some remarks about future experimental work:

• All the parameters were decided through some form of grid search, however it is also

possible to utilize Bayesian optimization tools such as the Tree-Structured Paizen

Estimator (WATANABE, 2023).

• Using computation time as a time metric is flawed in the aspect that it is sensitive

to the machine that the simulation is being run. A proposal for a metric that can

be used instead in future works is the number of floating point operations, as it is

machine-independent.
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• The total control variation for each experiment with the exception of the ESP-

lifted well were omitted as the discussion for those cases was purely focused on the

tracking and disturbance rejection aspects. It is an important measure in directly

evaluating conservativeness of a controller, and it is recommended to be addressed

in future works.

• Other metrics instead of IAE could be employed, such as the integral time-weighted

absolute error, that penalizes transients more, or any type of squared error, which

were used for minimization but not as a metric. An integral squared error metric

is naturally more interesting for optimization than the IAE because of the easier

derivative calculation.

Although the ESN-PNMPC is shown to perform well for all the proposed applications,

as each model is able to be replicated with and ESN and there was data abundance, the

method still presents a few theoretical limitations:

• The ESN-PNMPC does not have an established stability analysis method. The

experiments were successful, but there is no way to analytically prove that an ESN-

PNMPC controller would be stable for a given control problem. Also, the industry

relies on simple, yet fast and reliable controllers such as the PI and DMC. Alongside

a systematic hyperparameter tuning method, methods to reduce the ESN complexity

might turn the ESN-PNMPC more indutry-friendly.

• Reservoir Computing requires by deĄnition that the number of states in an ESN

be magnitudes larger than the problem dimension. This might cause computational

overhead when solving optimization and optimal control problems using ESN models.

The next two chapters are dedicated to contributing on resolving each issue raised.
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4 INVESTIGATION OF POD METHODS FOR ECHO STATE NETWORKS

This chapter describes the development of model order reduction methods for ESNs.

It discusses POD, the Energy Contribution metric, DEIM, and the stability issues regarding

DEIM. The chapter showcases several experiments regarding the application of these tools in

an ESN identifying different kinds of systems.

4.1 OVERVIEW

In Reservoir Computing, the large number of dynamic states in the reservoir is an

essential characteristic, as the output, being a linear combination of them, can represent a

more extensive repertoire of dynamics. However, using ESNs as dynamic models for problems

such as optimization and MPC (Model Predictive Control) (CAMACHO; BORDONS, 1999)

may pose a problem, as the higher the number of states in the ESN is, the larger the optimization

problem. Because the number of states in the ESN inherently dominates the number of inputs

and outputs in such applications, a large reservoir size renders the optimization problem

inherently larger and harder to solve.

As ESNs are high-dimensional, model order reduction methods can Ąnd approximate

ESN models with a considerably smaller number of states but which still keep the properties

and performance of the original high-dimensional ESN. To that end, this problem counts on

Proper Orthogonal Decomposition (POD) (CHATURANTABUT; SORENSEN, 2010) as a

possible solution, which applies Singular Value Decomposition (SVD) to Ąnd an optimal linear

transformation that represents the state space of a large dynamical system in a more compact

form. POD is already widely used to reduce the number of states of large dynamical models,

especially phenomenological models such as a gas reservoir simulator (WANG, Yi; YU; WANG,

Ye, 2018) with tens of thousands of variables. However, POD has one disadvantage concerning

nonlinear systems: although the method can reduce the number of states, it does not reduce

the computation number of nonlinear functions. There are developments of interpolation

methods, such as the Discrete Empirical Interpolation Method (DEIM) (CHATURANTABUT;

SORENSEN, 2010), to mitigate the issue by pivoting and approximating the nonlinear portion

of the given model computation. Both POD and DEIM can Ąnd lower-dimensional networks that

are equivalent to the original ESN and, thus, have the potential to alleviate the computational

burden of simulations that depend on the size of the trained ESN.

The main purpose of this chapter is the experimentation of POD and DEIM so that

one can obtain a reduced-order model equivalent for an already-trained ESN. To such end,

the ESN reduction through POD is employed in three different contexts: a Memory Capacity

(MC) (JAEGER, 2002) evaluation experiment; a NARMA10 difference equation (SAKEMI

et al., 2020); and a simulated oil platform containing two gas-lifted oil wells and one riser

(JORDANOU, Jean P.; ANTONELO, Eric Aislan; CAMPONOGARA, 2019). Additionally, this

chapter shows results using DEIM-based reduction for the ESN in the Ąrst and last experiments
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mentioned above. This chapter compares the performance of the reduced ESN to the original

(non-reduced) ESN in the three experiments and another ESN with the same size as the

reduced ESN in the MC and NARMA experiments.

The main contributions depicted in this chapter are two-fold: (1) the development of

efficient computational frameworks for implementing large echo-state network models in a

variety of applications, achieved via model-order reduction (MOR) techniques; and (2) assess-

ing the trade-offs between low-complexity reservoir models, obtained from the application of

model order reduction (MOR), and the large baseline model in terms of numerical accuracy.

The low-complexity models, despite their relatively small state-space dimensions, demonstrate

comparable representation power to the large baseline model. As such, this chapter showcases

contributions to this nascent Ąeld of applications of MOR strategies to reservoir computing,

which can potentially improve computational performance in modeling, control, and optimiza-

tion. SpeciĄcally, the Ąndings of the work depicted in this chapter are the following:

• The memory capacity of an ESN reduced by POD is generally higher than that of

a non-reduced ESN of equivalent size. This difference in memory capacity is more

signiĄcant as the desired ESN gets smaller in size.

• Given two echo state networks with the same number of states, the ESN obtained

from POD reduction is likelier to perform better in a given task. This property is

more evident and relevant when the desired reservoir is small.

• By employing a MOR method on ESNs, this work shows that small ESNs are robust

and performant, improving their suitability for real-time or embedded applications

with memory limitations.

• DEIM reduction alone for ESNs does not achieve satisfactory results compared to

pure POD reductions.

In broader terms, the main implication of these Ąndings is that a smaller version of an

ESN, obtained by model order reduction, can achieve nearly equivalent behavior to the original

(and larger) ESN, thus making dynamic reservoirs more compact. The new model can serve

as a proxy model in optimization and predictive control, as an observer, and in other related

tasks, addressing the issue of computational cost in a reservoir consisting of a large number of

internal states (reservoir size), which can be orders of magnitude larger than the number of

inputs and outputs.

This chapter is organized as follows: Section 4.2 contains related works, Section 4.3

describes POD and DEIM, Section 4.4 reports on the case studies and experimental testing

for the reduced ESN, and Section 4.6 concludes the chapter.

The theory and results shown in this chapter are directly from (JORDANOU, Jean

Panaioti et al., 2023), a publication resulting from the research undertaken in this dissertation.
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4.2 RELATED WORK

The following works address the issue of reducing the model size in reservoir computing.

One of them is (SAKEMI et al., 2020), where they propose reducing the number of states

by considering the output as a linear combination of the states at different instants in time,

comparing to an original ESN through the Information Processing Capacity (IPC) metric, and

also applying the proposal to a NARMA system and the generalized Hénon-map. The solution

raises the effective number of states as a multiple of the delay or “drift-stateŤ number utilized.

The architecture is hardware-friendly, easing the computation compared to a standard ESN.

Another example is the work (WHITEAKER; GERSTOFT, 2022), where they propose

to employ the controllability matrix of the ESN as a means to Ąnd a so-called minimal ESN,

which would be the ESN with the smallest reservoir that could reproduce the task at hand.

They train the ESN for a particular task, obtain the controllability matrix at given points,

and deĄne its rank as a new candidate reservoir size. An extensive search procedure is then

performed to Ąnd the optimal ESN at that size; however, there is no direct connection between

the larger and the smaller ESN. In summary, the method in (WHITEAKER; GERSTOFT,

2022) proposes a useful way of Ąnding a minimal reservoir for a task. In comparison, our work

follows a different direction: reducing the size of the network through POD. Another work

(LIU, W. et al., 2022) proposes a different approach to reducing reservoir size, which calculates

the correlation between each neuron and eliminates the reservoir neurons with the highest

correlation.

The necessary large number of reservoir states in an ESN implies a complex computa-

tional model, therefore works such as (YANG, C.; WU, Z., 2022) employ methods of so-called

“network size reduction,Ť which perform multi-objective optimization on the output weights

and minimize not only the least-square error but also the number of non-zero elements in

the output weights. Enforcing sparseness is ideal for simplifying computations with the ESN.

Another work that follows this line of reasoning is (RODAN; TINO, 2010), where they enforce

a minimum complexity ESN by forcing the ESN reservoir to follow a deterministic form (i.e.,

a circular reservoir).

In (LØKSE; BIANCHI; JENSSEN, 2017), they propose to add the reservoir dimension-

ality reduction into the architecture via Principal Component Analysis (PCA) and calculate the

output layer based on the PCA output instead of the reservoir states. They affirm that this

enhances the dynamic properties of the resulting ESN concerning the system identiĄed and

improves the network generalization capabilities. Also, applying dimensionality reduction in the

states renders the ESN a tool for dynamic system analysis. In this sense, our POD-ESN method

is similar to PCA regarding obtaining the new state space but goes beyond (LØKSE; BIANCHI;

JENSSEN, 2017) by embedding the reduction achieved in the reservoir’s state update equation.

In other words, the reservoir recurrent simulation is executed in the reduced state space with

POD-ESN, which does not happen in (LØKSE; BIANCHI; JENSSEN, 2017).

Another approach of reduction in reservoir computing, not involving POD, is proposed in
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(HALUSZCZYNSKI et al., 2020). Their idea involves procedurally removing neurons according

to the output weight value, which they curiously discovered that the network performance

improves (given the Lorentz system as an application) by removing the neurons associated

with large output weights. They thoroughly analyze the effect of removing different types of

nodes in the ESN.

4.3 MODEL ORDER REDUCTION

This section proposes Model Order Reduction (MOR) methods for reducing the reservoir

dimensionality in ESNs, speciĄcally the Proper Orthogonal Decomposition (POD) and the

Discrete Empirical Interpolation Method (DEIM).

4.3.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition is a method to Ąnd a linear transformation

(CHEN, C.-T., 1998) T for a given system that maps a high-dimensional state space into a

reduced one, namely:

x = Tz (127)

where x is a vector of dimension n and z is a vector of dimension m ≪ n, so that T ∈ R
n×m.

The transformation itself is akin to a similarity transformation, with the main difference

being that T lacks an inverse for not being a square matrix. However, the T resulting from

POD is orthonormal (TT T = I), so the transpose is used in place of an inverse.

Finding T requires gathering snapshots of the states in a given dynamical system

response, akin to gathering data in a machine learning problem. The columns of the snapshot

matrix X ∈ R
n×N are the states x[k] ∈ R

n, where N is the number of snapshots such that

N ≥ n. Then, one wishes to minimize the error induced by projecting the original state onto

the reduced space and back, which leads to the following error function:

E(T) =
N∑

k=1

(
x[k] − T TT x[k]

︸ ︷︷ ︸
z[k]

2
(128)

The second term is x projected onto the reduced space of z, and then lifted back. The

optimal T is obtained through singular value decomposition (SVD) (SUN; XU, M.-h., 2017),

decomposing X in the following form:

UsvdΣVT = X (129)

where Usvd contains the left singular vectors and has dimension n×n, Σ contains the singular

values and has dimension n × N , with only n non-zero columns, and V contains the right

singular vectors and has dimension N × N . Consider that Σ is sorted from the largest to the

smallest singular value. POD does not use the right singular vector matrix V.
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The transformation T that minimizes E(T) is found by concatenating the columns

with the m largest corresponding singular values from Usvd. One seeks a truncation so that

the reduced system energy is close to the original, measured by:

ϵ =
m∑

j=1

ϵj ϵj = σj/
n∑

i=1

σi (130)

where ϵ is the total energy contribution of the singular values maintained in the reduced-order

model, σj is the jth highest singular value, ϵj is the energy contribution of that given singular

value, and m is the reduced state dimension. The energy contribution of the remaining singular

values in the reduction is a metric on how close the reduced-order model is to the original

system regarding information. This work considers measuring the energy contribution of each

singular value of the original signal and truncate Usvd to obtain T so that ϵ reaches a desired

energy contribution value (e.g., ϵ = 0.95, so that the reduced system has 95% of the original

system’s energy). In other words, the reduced-order model carries ϵ information of the original

system. After obtaining T for the dimension reduction through the process above, the reduced

ESN dynamics can be expressed as follows:

z[k + 1] = (1 − γ)z[k]

+ γTT f(Wr
rTz[k] + Wr

i u[k] + Wr
b) (131)a

y[k + 1] = Wo
r Tz[k + 1], (131)b

Observe, from the operation TT f(·), that the reduced-order ESN does not reduce the

number of computations by only performing POD on it. In fact, to compute the element-wise

tanh, T brings the dimension back to the original state-space size, which is to be reduced again

with TT , increasing the number of computations. This computational increase is inherent in

POD for nonlinear systems and will be dealt with by the method described in the next section.

4.3.2 Discrete Empirical Interpolation

The Discrete Empirical Interpolation Method (DEIM) is an approximation method to

circumvent the POD computation issue (CHATURANTABUT; SORENSEN, 2010), which

consists of state projection and lifting operations to compute state transitions in the reduced-

order model. The core idea of DEIM is to approximate the nonlinear term of a dynamic system

as a polynomial interpolation that resembles the strategy employed in POD. Given the following

discrete-time nonlinear system:

x[k + 1] = Ax[k] + f(x[k]), (132)

where the nonlinear function is elementwise, meaning that

f =
(
f(x), f(x), . . . , f(x)


(133)
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for a given function f such as tanh. Notice that the system is divided into linear and nonlinear

portions. Applying the POD (x = Tz) into such a system yields:

z[k + 1] = TT ATz[k] + TT f(Tz[k]) (134)

The nonlinear mapping f of the dynamic system can be approximated as follows:

PT f(Tz[k]) ≈ PT Uc[k] (135)

where U ∈ R
n×m, which is obtained from the same POD as T, however with a different

number m of singular vectors, with n being the number of states, and P being a a pivoting

matrix of the same dimension as U. DEIM interprets that a linear combination, with basis U

and the elements c[k] as function coefficients, approximates the elementwise function f .

After obtaining U from Usvd, one can then obtain P with the following procedure

(CHATURANTABUT; SORENSEN, 2010):

1. The index and value of the largest element of the Ąrst left-singular vector is stored

in a list. P starts as a column matrix with the only non-zero element being the

value 1 at the row corresponding to this index.

2. For each column l ≥ 2 of the POD left-singular vectors (where Ũl is a matrix with

the Ąrst l − 1 columns of U):

a) Ąnd c where (PT Ũl)c = PT ul, where ul is the left-singular vector

corresponding to the lth column of U.

b) Calculate r = ul − Ũlc and store the maximum absolute value and index

of r in a list. Add a new column to P according to the obtained index.

3. Output: Pivoting matrix P according to the order dictated by the index list obtained.

This procedure guarantees that PT Ũl is always nonsingular; thus c is the unique

solution to the linear system in step 2 (CHATURANTABUT; SORENSEN, 2010). Letting U

be the matrix of left singular values obtained from the procedure, it follows from (135) that:

c[k] = (PT U)−1PT f(Tz[k]) (136)

The result from (136) leads to the DEIM function interpolation:

f̂(Tz[k]) ≈ U(PT U)−1PT f(Tz[k]) (137)

This function approximation has an ℓ2 error bound of the following form (CHATU-

RANTABUT; SORENSEN, 2010):

eℓ2
(f) ≤ ∥(PT U)∥2∥(I − UUT )f(Tz[k])∥ (138)

where, in turn:

∥(PT U)∥2 ≤ (1 +
√

2n)m−1∥u1∥−1
∞ (139)
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with u1 being the Ąrst column of U and n being the number of original states.

The main advantage of DEIM is that, as f is an element-wise nonlinear function, the

following equality holds:

U(PT U)−1PT

︸ ︷︷ ︸
T1∈Rn×n

f(Tz[k])
︸ ︷︷ ︸
f :Rn→Rn

= U(PT U)−1

︸ ︷︷ ︸
T2∈Rn×m

f(PT Tz[k])
︸ ︷︷ ︸

f :Rm→Rm

(140)

The difference between the right-hand side and left-hand side of this equation is better

seen in a compact form,

T1f(Tz[k]) = T2f(PT Tz[k])

where T1 has n columns, which yields the same computation problem as the original Galerkin

projection, whereas T2 has m columns, which is the reduced state space. This simple difference

grants huge computational savings since the online calculations would be performed in terms

of the reduced dimension m, m ≪ n, which mitigates the computation issues regarding the

POD method.

The DEIM and POD model order reduction for the ESN is obtained by applying DEIM

from Eq. (140) into the already reduced POD-ESN at (131):

z[k + 1] = (1 − γ)z[k] + γTT T2f
(
PT Wr

rTz[k] + PT Wr
i u[k] + PT Wr

b


(141)a

y[k + 1] = Wo
r Tz[k + 1], (141)b

The property PT f(·) = f(PT ) holds for elementwise operations, which justify the matrix

placement in the DEIM reduced-order ESN.

4.3.3 Stability Loss in DEIM

According to (SELGA; LOHMANN; EID, 2012), a contractive linear system is guaran-

teed to retain stability when applying POD for model order reduction; therefore, if the ESN

is contractive, the POD-ESN is guaranteed to retain stability. However, DEIM has no such

property. Assume an equilibrium point xeq of the ESN, and a Ąxed input u,

xeq = f(Wr
rxeq + Wr

i u + Wr
b) (142)

and its reduced mapping zeq = TT xeq. The Jacobian of the full and reduced order model

are:

J(xeq) = (1 − γ)I + γf ′(g(xeq))Wr
r (143)

J(zeq) = (1 − γ)I + γTT f ′(g(Tzeq))Wr
rT (144)

where:

g(x) = Wr
rx + Wr

i u + Wr
b (145)

Since f ′ is a diagonal matrix where each element belongs to the interval (0,1] for being

the elementwise derivative of the tanh function, the stability of the ESN in both cases is
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governed by Wr
r at an equilibrium point. Also, as per (SELGA; LOHMANN; EID, 2012), the

POD reduction retains the stability of the ESN. Summing up, the original and reduced-order

ESNs are stable provided that the spectral radius of Wr
r is smaller than 1.

With DEIM, however, the stability is not retained, as shown by calculating the Jacobian

of an ESN reduced by both POD and DEIM:

JDEIM(z) = (1 − γ)I + γTT U(PT U)−1f ′(PT g(Tz))PT Wr
rT (146)

Notice that, when compared to the Jacobian of the POD-ESN, the term (PT U)−1 can

amplify the Jacobian to the point that the ESN dynamic system has an unstable Eigenvalue,

despite POD-ESN being stable. This term represents the pivoting of the truncated singular

vectors associated with DEIM. This stability discussion implies that pure DEIM may not apply

to ESN.

4.3.3.1 Stabilizing DEIM on POD-ESN

A method to stabilize DEIM was developed in (HOCHMAN; BOND; WHITE, 2011). A

similar and independent work on MOR for ESNs (WANG, H.; LONG; LIU, X.-X., 2022) applies

this very method to the case where ESNs are unbiased.

The idea behind the stabilization is straightforward. As the previous discussion shows,

DEIM ampliĄes the Jacobian of the interpolating function. The solution in (HOCHMAN;

BOND; WHITE, 2011) involves decomposing the function so that the interpolated terms are

forced to have a very small Jacobian near a given equilibrium point x0.

Given the dynamic system:

x[k + 1] = Ax[k] + f(x[k]) (147)

Decompose f as:

f(x[k]) = fp(x[k]) + J(x0)(x[k] − x0) (148)

where J is the Jacobian of f and:

fp(x[k]) = f(x[k]) − J(x0)(x[k] − x0) (149)

Note that the Jacobian of fp near x0 is very close to zero, because fp has the Jacobian

of f being canceled by the Jacobian of the second term (which is the Jacobian of f at the

equilibrium). Thus, if DEIM interpolation is performed for fp (with J(x0)(x − x0) treated

as a linear portion), the stability effect of DEIM would be minimal, as the method is being

performed over a portion of the dynamic system that has an almost insigniĄcant contribution

to the Jacobian.

By decomposing the f in POD-ESN (131) to obtain fp, and performing DEIM on fp

instead of f the result over POD-ESN is as follows:

z[k + 1] = (1 − γ)z[k] + γ(TT − TT T2PT )f ′(g(Tz0))Wr
rT(z[k] − z0)+

γTT T2f
(
PT Wr

rTz[k] + PT Wr
i u[k] + PT Wr

b


(150)
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Since (WANG, H.; LONG; LIU, X.-X., 2022) assumes the ESN to be unbiased, it is

easy to note that, for that speciĄc version of the ESN, x0 = 0 and J(x0) = Wr
r, making the

formulation of this solution for the ESN trivial, having the following form:

z[k + 1] = (1 − γ)z[k] + γ(TT − TT T2PT )Wr
rTz[k]+

γTT T2f
(
PT Wr

rTz[k] + PT Wr
i u[k]


(151)

However, in case there is bias present in the ESN, x0 would be the solution to the

equation:

x0 = f(Wr
rx0 + Wr

i u + Wr
b), (152)

or, alternatively, the ESN state at a steady state in a simulation. In comparison to the zero

bias result, the Jacobian value would be multiplied by f ′(x0), which is a diagonal matrix with

elements ∈ (0,1) as f = tanh(·).
Naturally, since x0 is the equilibrium state,

x0 = Tz0 (153)

4.4 APPLICATIONS

This section presents results from experiments with reduced-order ESNs for three case

studies, along with a preliminary analysis on the singular values of the ESN snapshots.

4.4.1 Preliminary Study: Energy contribution distribution in Echo State Networks

POD and DEIM originate from applying SVD into the ESN state response matrix,

obtained from exciting the ESN’s reservoir with an input signal. Thus, the SVD does not

depend on the output layer. To test the influence of input signals into the singular values of the

state snapshots, this experiment considers initializing 20 different single-input ESN reservoirs

and apply SVD into the snapshots of the response obtained from the reservoir, given as inputs

with 10,000 timesteps:

• A white noise following the normal distribution N (0,1).

• Four different APRBS (Amplitude-modulated Pseudo-Random Binary Signal) ran-

dom stair signals, deĄned by their minimum period, i.e., 10 timesteps, 100 timesteps,

500 timesteps, and 1,000 timesteps.

• A concatenation in time of all the signals above.

The input signals for the experiments are shown in Figure 25. Note that this discussion concerns

only the state dynamics of the reservoir; therefore, it is neither dependent on the identiĄed

system nor on the output weights.

After exciting the ESN with the signals mentioned above, one at a time, the next

step is to perform SVD of the resulting ESN state response snapshots and plot the energy
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Figure 25 Ű One-dimensional input signals for the reservoir energy contribution distribution
experiment. White noise (top), APRBS signals (usually used in identiĄcation tasks):
with a minimum period of 10, 100, 500, and 1,000 timesteps, respectively, from
second topmost plot to bottom.

contribution ϵj associated with each singular value, sorted from highest to lowest according to

Eq. (130). All the reservoirs employed for this experiment are fully leaked (γ = 1), have 500

neurons, a spectral radius ρ = 0.99, and a value 0.1 for both input scaling and bias scaling.

Since there is actually no system being identiĄed, the parameters were chosen heuristically so

that the ESN at least is stable and has echo state property, which are the requirements for

this discussion to hold.

Figure 26 showcases the mean and standard deviation of the energy contribution of the

10 highest singular values for each state snapshot considering 20 randomly initialized reservoirs.

The implication of this result is that the singular values become more evenly distributed

the higher the frequencies of the input signal are. As the white noise is a signal with heavy

high-frequency information, one expects the ESN state response to have a more even energy

contribution distribution among the singular values.

Meanwhile, the lower frequency signals have the energy contribution concentrated about

the highest magnitude singular value. In fact, real-life dynamic systems work as low pass Ąlters

(CHEN, C.-T., 1998) and, therefore, they are expected to have lower frequency information.

The slower the system dynamics are, the larger the minimum period of an APRBS signal needs

to be, which directly affects the singular value proĄle of the model order reduction.

This experiment implies that, since the distribution of the energy contribution depends
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Figure 26 Ű Mean and Standard deviation of the Ąrst ordered 10 singular values (with 0
corresponding to the highest and 9 to the lowest) obtained from the snapshots of
20 different ESN reservoirs. Each color corresponds to a different input signal fed
to the ESN reservoir, shown in Fig. 25.

entirely on the input signal frequency, the number of states pruned by MOR is higher for cases

with low-frequency dynamics. After all, since the energy contribution is more concentrated

on the Ąrst singular values, the number of columns pruned is higher than when the singular

values are more evenly distributed (as in the case of high-frequency signals like white noise).

As an easy example, the highest energy contribution singular value for the APRBS signal with

a minimum period of 1,000 timesteps contributes more to the total energy of the snapshots

than the sum of the 10 highest singular values for the white noise shown in the plot.

4.4.2 Memory Capacity Evaluation

Short-term Memory Capacity (MC) is a well-known metric for Echo State Networks

(JAEGER, 2002) that measures how well an ESN can remember past inputs and general

dynamic storage capacity. MC serves as a performance measurement for ESN reservoirs which

is obtained from the following procedure:

• For an arbitrary n, train a single-input, single-output Echo State Network so that

the input is a given white noise η[k], and the output is the same white noise delayed

n timesteps η[k − n]. In layman’s terms, the ESN is supposed to “memorizeŤ the

input from n timesteps ago.
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• Obtain the correlation coefficient Rn for the training with an arbitrary n,

Rn =
cov(yesn,η[k − n])

var(yesn)var(η[k − n])
(154)

where cov(·) is the covariance operator, yesn is the single ESN output, var(·) is

the variance operator, and, therefore, Rn is merely the determination coefficient for

a given delay n.

• The memory capacity is calculated, in theory, as:

MC =
∞∑

n=1

Rn (155)

The MC of an ESN was mathematically proven to have an upper bound in its number of

neurons N (JAEGER, 2002), which means that it is directly related to the number of network

neurons.

The point of this experiment is to compare the memory capacity of the reduced-order

model of the ESN, and the original ESN, since the number of neurons is the upper bound

for MC. Because it is impossible to run inĄnite training experiments, the memory capacity

computation for this experiment is limited as follows:

MC =
NMC∑

n=1

Rn (156)

where NMC = 100 is a sufficiently large number to measure the memory capacity of the

network. As preliminary tests show, after a given n, the determination coefficient converges to

a low value. Therefore, the information regarding memory capacity is more concentrated in the

lower n spectrum, endorsing the limited number of experiments (NMC = 100) for comparison

purposes.

4.4.2.1 POD Reduction

The memory capacity experiment runs considering different numbers of neurons (N =

¶400,600,800, 1000, 1200, 1400, 1600, 1800, 2000, 2200♢) with an Energy Cutoff (EC) of 1%,

5%, and 10%. After initializing the ESN reservoir at random, MOR is applied in 12 different

reservoirs for each conĄguration. Then, this experiment measures the mean and standard

deviation for the memory capacity of these twelve runs while also obtaining the range of

the reduced dimension for a given energy cutoff. This analysis allows us to measure the

memory capacity drop for the model order reduction and assess how reservoir-dependent the

order-reduction procedure is.

All reservoirs analyzed are fully leaked (γ = 1.0) and have input and bias scaling at 0.1.

Also, the reservoir spectral radius is ρ = 0.99.

Figure 27 showcases the results of the Memory Capacity experiments when performing

MOR at the tested ESNs given different energy cutoffs, depicting both mean and standard

deviation of the 12 runs.
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Figure 27 Ű Plot of the memory capacity as a function of the number of neurons of the original
network (upper plot), and as a function of the number of states (lower plot). Each
point is colored according to the energy cutoff of the POD-ESN that obtained the
MC shown (points in blue are the MC obtained from full ESNs). EC means the
energy cutoff of the applied POD.



Chapter 4. Investigation of POD Methods for Echo State Networks 95

The Ąrst plot depicts the number of ESN neurons before applying POD to a given

network. It shows the expected drop in MC resulting from applying MOR with more energy

cutoff.

Meanwhile, the second plot portrays the MC as a function of a given network’s exact

number of states after performing MOR through POD. As MC progresses monotonically, given

the number of states, either in an ESN or in a given MOR of that ESN, it becomes easy to

map a point of the second plot into the Ąrst one: for example, the last red point (from left

to right) of both plots (marked within a blue circle) have the same memory capacity since

they correspond to the same network/EC conĄguration. Thus, the MOR of an ESN with 2200

neurons (Ąrst plot) has roughly 750 states (second plot) at 1% energy cutoff.

As per the previous section, since this experiment traditionally employs a white noise

signal, the drop in the number of reduced states is not very signiĄcant; however, the drop in

MC is still small, given that a large number of states were still cut off (even in the case of

10% energy cutoff for the 2200 neuron network, the number of states was reduced to almost

a third). In fact, the second plot shows that a POD-reduced network ends up being more

powerful in terms of MC than a full (non-reduced) ESN with the same number of states: when

one compares an ESN with a given reservoir size to a POD-reduced network from a larger ESN

with the same number of states as that ESN reservoir size, the POD-reduced ESN consistently

achieves a higher MC. Of course, the better performance is justiĄable because a POD-reduced

ESN is still more structurally complex (originated from a larger ESN) than an ESN (randomly

generated) with the same number of neurons as the reduced network.

4.4.2.2 DEIM Reduction

DEIM is performed for each POD-reduced ESN to further reduce the number of tanh

in the computations and evaluate the drop in MC compared to the POD-reduced ESN. Four

different energy cutoff conĄgurations were considered for the DEIM: ¶1%,5%,10%,20%♢. This

choice of four values is justiĄed because they represent distinct magnitudes of energy cutoff,

testing how the DEIM behaves on four different approximation precision requirements.

Table 12 shows the results of applying these DEIM conĄgurations into each POD for

three original reservoir sizes N = ¶800,1400,2000♢ (from the topmost table to the bottom-

most one, respectively). It presents the results for the DEIM reduction, where the memory

capacity is evaluated for each conĄguration in energy cutoff for both POD and DEIM. The

number in parenthesis is the actual dimension resulting from the reduction. Each column

corresponds to a different energy cutoff conĄguration for DEIM, evaluated in the Ąrst row. In

contrast, each row represents a different energy cutoff conĄguration for POD, evaluated in the

Ąrst column. For instance, the MC of an ESN with a 1% energy cutoff POD (yielding 1,119

states when N = 1,400) and a 5% energy cutoff DEIM (yielding 748 tanh function evaluations

when N = 1,400) is 0.099, 0.03 and 0.02 for N = 800, 1400, 2000 respectively. Notice that

there was no POD reduction for the Ąrst row of each table and no DEIM reduction for the



Chapter 4. Investigation of POD Methods for Echo State Networks 96

Table 12 Ű Memory capacity evaluated for different energy cutoffs used in POD and DEIM.
Each table considers an original ESN with a different size N , to be reduced.

N = 800 Energy Cutoff (EC) for DEIM
EC (POD) 0% 1%(678) 5%(430) 10%(279) 20%(128)
0%(800) 19.88 ± 0.01 − − − −
1%(686) 19.87 ± 0.01 0.44 ± 0.20 0.099 ± 0.01 0.08 ± 0.04 0.54 ± 0.18
5%(445) 19.86 ± 0.01 16.48 ± 2.21 0.059 ± 0.026 0.096 ± 0.02 0.55 ± 0.17
10%(291) 19.84 ± 0.008 19.68 ± 0.03 0.99 ± 0.25 0.097 ± 0.02 0.54 ± 0.18

N = 1,400 Energy Cutoff (EC) for DEIM
EC (POD) 0% 1%(1,186) 5%(748) 10%(484) 20%(226)
0%(1,400) 19.93 ± 0.003 − − − −
1%(1,119) 19.93 ± 0.003 0.11 ± 0.03 0.03 ± 0.03 0.04 ± 0.02 0.17 ± 0.05
5%(772) 19.91 ± 0.003 3.189 ± 1.09 0.03 ± 0.02 0.04 ± 0.02 0.17 ± 0.04
10%(505) 19.90 ± 0.003 19.18 ± 0.50 0.19 ± 0.02 0.025 ± 0.02 0.17 ± 0.05

N = 2,000 Energy Cutoff (EC) for DEIM
EC (POD) 0% 1%(1,835) 5%(1,122) 10%(713) 20%(333)
0%(2,000) 19.96 ± 0.002 − − − −
1%(1,682) 19.95 ± 0.002 0.06 ± 0.01 0.02 ± 0.02 0.03 ± 0.01 0.03 ± 0.03
5%(1,045) 19.94 ± 0.002 1.2 ± 0.4 0.01 ± 0.02 0.02 ± 0.02 0.08 ± 0.03
10%(671) 19.92 ± 0.002 18.37 ± 0.90 0.09 ± 0.03 0.04 ± 0.01 0.07 ± 0.03

Ąrst column of each table. The empty cells indicate that DEIM can not be employed without

Ąrst applying the POD reduction.

The only time DEIM achieved an MC close to the MOR was when there was a 1%

energy cutoff for DEIM considering 10% energy cutoff for POD. That is, DEIM is performed

for smaller reduced-order models. Regarding the experiments, performance is generally mildly

better whenever DEIM has a higher number of states ratio than the POD states. For this

experiment, DEIM did not perform well as expected since the white noise signal does not allow

for a signiĄcant reduction of states, as it is a highly heavy information signal.

4.4.3 NARMA System

As an initial case study for the POD reduction of the ESN, this work considers a so-called

NARMA (Nonlinear Autoregressive Moving Average) difference equation system (SAKEMI et

al., 2020), equated as follows:

y[k] = 0.3y[k − 1] + 0.05y[k − 1]
m∑

i=1

y[k − i] + 1.5u[k − m + 1]u[k] + 0.1 (157)

where m = 10 is the order of the system.

As in (SAKEMI et al., 2020), the excitation signal applied in (157) is drawn from the

random uniform distribution with a value range of 0 ≤ u[k] ≤ 0.05. A simulation performs
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Figure 28 Ű Experiment comparing a POD-reduced ESN (blue dots) with an ESN of equivalent
size (to the reduced ESN) (orange triangles) for the 10th-order NARMA task.
The POD reduction is applied on an ESN with 1,400 units in the reservoir. The
horizontal axis is the number of states (units) of the reduced (full) network, while
the vertical axis is the R2 metric on the test set. The plot’s blue horizontal line
corresponds to the R2 of the 1,400 units ESN.

5,000 time steps where the Ąrst 2,000 samples are labeled as training data and the rest is

labeled as test data. This work employs the R2 metric to measure network performance:

R2 = 1 −
∑N

k=1 e2[k]

(y[k] − y[k])2 (158)

where e[k] is the residual between the prediction model and the real system, and y is the mean

of the data, while y[k] is the observed data at time k.

With the dataset mentioned above, the trained ESN has the following conĄguration:

1,400 neurons in the reservoir layer, high enough to show the MOR potential at work; a leak

rate of γ = 0.7; scaling of 0.1 for both bias and input connections; and spectral radius of

ρ = 0.99. In terms of R2, the network had a performance of 0.95949337 for the NARMA

model output. These parameters were chosen heuristically as for this study only an ESN that

performs sufficiently well for the NARMA is needed, and the objective of this experiment is to

assess the reduction properties of the POD in relation to the problem.

Figure 28 showcases the experiment regarding applying POD reduction so that the

number of states of the POD-reduced ESN appears in the x axis (blue dots). For comparison,

the plot shows the R2 for the same NARMA experiment with 10 runs of full (non-reduced)
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ESNs with the same reservoir size as the networks that underwent POD reduction (orange

triangles). The POD-ESN reduction generally achieved superior performance over the full ESN

at the same reservoir size, which is understandable, as the POD-reduced ESN is not only

supposed to be an emulation of a larger ESN behavior but also more complex in structure. The

NARMA experiment also shows that the R2 metric for ESNs reduced to at least 50 states is

very similar to the metric achieved by the original 1,400 units ESN, i.e., the blue dots are very

close to the horizontal blue line in the plot of Figure 28 when the number of states is higher

than 50.

4.4.3.1 DEIM Stabilization

This experiment tests the stabilization solution for DEIM. The Ąrst test considers a

biasless ESN, so that the solution in (WANG, H.; LONG; LIU, X.-X., 2022) can be applied.

The experiment measured the mean absolute error between the model (ESN, POD-

ESN,POD-ESN with DEIM (DEIM-ESN) and a DEIM-ESN stabilized by the method above

(stable DEIM-ESN)), and employed an energy cutoff for the POD at 1% (0.5% for the DEIM).

Since the ESN has random initialization, the experiment was done under the same dataset for

10 runs, measuring the mean and the standard deviation of the Mean Absolute Error for each

model. The result is depicted at Table 13.

Table 13 Ű Mean absolute error for the NARMA experiment obtained from the 3,000 test time
steps.

Mean Absolute Error St. Dev.
ESN (size=1400) 0.0497 0.0019

POD-ESN (ec=1%) 0.0636 0.00084
DEIM-ESN (dc=0.5%) 24 24

stable DEIM-ESN (dc=0.5%) 0.0887 0.0206

The method for DEIM stabilization manages to correct the inherent flaw in DEIM in-

volving stability loss, making the resulting ESN being able to coherently identify the NARMA10.

An energy cutoff of 0.5% for DEIM means that the system was interpolated around 200 points,

which means a very signiĄcant reduction in computation size in relation to the POD-ESN, with

small performance degradation.

Other experiments proved that even when bias is present, using the nonbiased solution

as an heuristic is more effective than calculating the equilibrium point and the associated

Jacobian. This is because the equilibrium point and Jacobian in the biased version depends on

the control action. In both cases, one considers the control action to be 0 when applying the

Jacobian, however since the Jacobian in the biased case depends on the control action, the

potential for error (and thus an fp Jacobian not close to zero in the interpolation) is larger.
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4.4.4 Two Wells and One Riser Platform

This experiment tests the MOR over the ESN for a physical problem: an oil production

platform consisting of two gas-lifted oil wells and one riser, as illustrated in Figure 15. The

model for this experiment was exactly the same one used in Chapter 3.

The experiment with the two-well production platform depicts how to achieve MOR

with ESNs from a system identiĄcation standpoint. First, one must train an ESN model for the

two-well one-riser platform. To that end, generate 50,000 timesteps of data from numerical

simulation of the platform model, yielding a dataset where the 2-dimensional input to the

ESN is composed of both well-production chokes uch,1 and uch,2. Further, the desired 2-

dimensional output of the network corresponds to each well bottom-hole pressure: Pbh,1, Pbh,2.

The training dataset consists of the Ąrst 10,000 timesteps, while the segment from k = 20,000

to k = 30,000 serves as a validation set, and the rest (k > 30,000) as a test set. The described

dataset is employed to train an ESN with 1,400 reservoir units (chosen this high for the sake

of demonstrating the MOR potential at work), a leak rate of γ = 0.7, scalings for both bias

and input equal to 0.1, and spectral radius ρ = 0.99. In terms of R2 metric, the network had

a test performance of (0.99881673,0.99900379) for each individual well bottom-hole pressure.

Figure 29 depicts an experiment where MOR of different state sizes was tested in

terms of R2 over the test data. One can infer that, after a given number of states (150), the

performance remains consistently close to the original network in terms of R2, despite having

only 10% of the original number of states.

POD reduction that resulted in 92 states also showcased good performance compared

to the original network of 1,400 neurons. However, with only POD, the computational problem

of computing TT f remains. What is left is to perform DEIM on the case where the reduced

network has 92 states (representing an energy cutoff of 1%). Figure 30 depicts a simulation

for the ESN, POD-ESN, and POD-DEIM ESN for the test data of the two-wells and one riser

platform. Even though there was a reduction from 1,400 to only 92 states, the behavior of the

ESN and the POD-ESN managed to be close in terms of dynamics. The application of DEIM

reduced the computation nodes from 1,400 to 1,073; however, some overshooting emerged,

which was not present in the ESN and POD-ESN. Concerning the simulation run in Figure

30, the R2 for the normalized bottom-hole pressure of each well was: (0.9988,0.9990) for

the ESN, (0.9979,0.9981) for the POD-ESN, and (0.9873,0.9671) for the DEIM-POD-ESN.

There is little drop in response quality from reducing the number of states from 1,400 to 92

through POD, but performing interpolation from a standard POD to a POD-DEIM framework

seems to affect the response more signiĄcantly. The small drop in response quality concerning

the POD-ESN is expected, as the POD was performed requesting a 1% energy cutoff. In

other words, the reduced-order model is 99% close to the original ESN regarding dynamic

information.
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Figure 29 Ű POD-ESN for a system identiĄcation task. The full ESN network has 1,400 neurons
and was trained to model the platform with two wells and one riser. The x axis is
the number of states of the reduced network, whereas the y axis is the R2metric
on the test set for each output variable (bottom-hole pressures). The bottom-hole
pressure of the Ąrst well is represented in blue, while the orange color denotes
the bottom-hole pressure of the second well. The R2 of the original network
corresponds to the horizontal lines of the respective colors for comparison.

4.5 DISCUSSION

POD-reduced ESN achieved a response close to the original ESN for the NARMA

and the two-well one-riser case study, while it incurred a minor performance loss in the MC

experiments. However, DEIM did not reach the same performance as POD in those experiments.

These Ąndings indicate that DEIM incurs more dynamic-information loss than POD, as the

latter retains the number of activation functions in the reduced model even though it reduces

the number of states. Thus, the capacity of a reservoir to represent a nonlinear system

accurately is shown to be more influenced by the combination of the nonlinear functions in

a high-dimensional space than by maintaining a high-dimensionality of the reservoir states

themselves. In the context of MOR, this function combination is given by lifting the reduced

states back to the original space just before applying the tanh nonlinearity.

The application of POD leads to some reduction in the memory required for storing and

using the POD-reduced ESN. First, the state-to-output linear combination matrix Wo
r T maps

the reduced space directly to the output, invariably reducing its size. Also, the computation

of the activation functions becomes slightly less expensive memory-wise because the resulting
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Figure 30 Ű Single simulation run involving a POD with 92 states (0.01 energy cutoff) and a
DEIM interpolation with m = 1,073, put side by side with the original data for
the bottom hole pressure pbh of both wells (normalized), and the original ESN.

matrix Wr
rT, which is a product computed offline, has fewer elements. Of course, the resulting

matrix is still large compared to an ESN with the same size as the reduction, rendering the

same-size ESN less complex than the POD-reduced one.

Even though POD computes the same number of activation functions as the original

ESN, the computation time is signiĄcantly reduced, as shown in Table 14. This table shows the

mean time it took to execute a step in the full ESN against the time it took to perform a POD-

ESN computation step for the NARMA experiment. For instance, when applying POD-ESN

to reduce from 1400 states to 66 states, the results show an 80% decrease in mean execution

time (from 0.767 ms to 0.147 ms) while still maintaining excellent performance, as this setup is

near the horizontal line in Figure 28. All experiments were performed under similar conditions

and with the same computer.

As shown in Table 14, even though there is no computation reduction in the nonlinear

nodes, the computational time for a POD-ESN to compute a time step is reduced, even if by a

small margin. This computation-speed gain happens precisely because the reduced-order ESN

has fewer states, despite the nonlinear node computation remaining unchanged.

As previously discussed, the poor performance of DEIM in the memory capacity exper-

iments corroborates the loss of stability incurred in the DEIM-reduced ESNs. Besides, even

when the DEIM-reduced ESN dynamic system remained stable, as in the two-well experiment

illustrated in Figure 30, the system experienced high overshoots translating into modeling
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Table 14 Ű Mean execution time for the NARMA experiment composed of 5,000 time steps.

Mean Execution Time (ms) St. Dev. (ms)
ESN (size=1400) 0.767 0.537

POD (size=3) 0.072 0.0498
POD (size=6) 0.078 0.0251
POD (size=7) 0.141 0.391
POD (size=8) 0.131 0.340
POD (size=9) 0.160 0.543
POD (size=10) 0.140 0.467
POD (size=11) 0.233 0.955
POD (size=13) 0.105 0.122
POD (size=17) 0.106 0.0738
POD (size=30) 0.135 0.0856
POD (size=66) 0.147 0.254
POD (size=73) 0.144 0.138
POD (size=82) 0.141 0.140
POD (size=92) 0.155 0.109
POD (size=106) 0.151 0.0744
POD (size=123) 0.149 0.0907
POD (size=149) 0.183 0.407
POD (size=186) 0.201 0.145
POD (size=248) 0.230 0.134
POD (size=375) 0.408 0.199

errors. The independent work (WANG, H.; LONG; LIU, X.-X., 2022) that also implements

POD/DEIM on ESN, which appeared in the literature during the writing of this research,

proposes a method to deal with the stability issue. However, the method is restricted to the

particular class of ESNs with dynamic equations without the bias term. That method relies

on expanding the nonlinear dynamics reduced by the DEIM so that the Jacobian contribution

of the terms affected by (PT U) becomes null concerning u = 0. In this context, generalized

methods (which account for the bias term as well) to guarantee stability retention of an ESN

interpolated by DEIM are an interesting topic for future works.

4.6 SUMMARY

In this investigation, the POD achieved exceptional results in reducing the number of

states of an ESN and maintaining performance. The reduced ESN performed nearly as well as

the original ESN, despite the drastic reduction of states in a typical system identiĄcation task.

This work also showcased how the nature of the excitation signal changes the singular value

proĄle of the SVD, concluding that lower-frequency input signals can result in more efficient

reductions. Ideally, the excitation signal should be as slow as necessary to identify a system.

However, despite performing MC tests considering signals that carry information from

all frequencies, the POD-reduced network performed better than an ESN of the same size
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trained on the data. Arguably, the superior performance of the POD-reduced ESN may be

attributed to its ability to emulate the behavior of the larger original ESN. Additionally, the

increased complexity of the reduced network, compared to an ESN of the same size, could

contribute to its enhanced performance.

These Ąndings imply that applying POD to reduce the number of states (reservoir

size) of an ESN obtains a smaller model that behaves almost equivalently to the original one.

However, some adaptation to the DEIM method may be necessary before it can be applied

to increase model efficiency further. Also, reducing the reservoir size using POD has the

advantage of interpretability since the states are sorted and pruned according to the energy

contribution metric. Finally, applying POD to an ESN can show which linear combination of

states contributes more signiĄcantly to the ESN dynamic behavior.

For possible future work, a suggestion is to test the developed POD-ESN model in

predictive control applications, comparing the performance of the reduced-order model to its

full-order counterpart. Further, there are applications in reservoir computing, such as time

series prediction problems, which could beneĄt from a reservoir reduction using the POD-ESN.

Another direction for future research is the study of ways to adapt DEIM to perform model

reductions more consistently. In comparison to (JORDANOU, Jean Panaioti et al., 2023), a

brief analysis on DEIM stabilization was added to this chapter, however further exploration of

the DEIM stabilization properties in ESNs is a nice subject for future works on the area.
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5 STABILITY ANALYSIS OF FEEDBACK CONTROL WITH ESN

This chapter concerns the theoretical development of a stability analysis method for

two types of feedback control using the ESN model: a linear feedback gain and an NMPC. The

methodology presented focuses on obtaining local stability conditions, as well as an estimate

of the attraction region.

5.1 OVERVIEW

While it is possible to obtain a stability proof for linear MPCs (CISNEROS; WERNER,

2018), especially for the unconstrained case where the controller can be converted/reduced to

a PID (CAMACHO; BORDONS, 1999), there is no systematic proof of stability for NMPC

with ESN as the prediction model in LMI form considering the current knowledge. Hence, the

motivation for developing an LMI-based method is to obtain such stability.

The strategy developed for this chapter is based on absolute stability, exploiting the

similar behavior of the tanh(·) function in an ESN and the saturation function, where certain

sector conditions hold (CASTELAN, E. B.; TARBOURIECH, Sophie; QUEINNEC, 2008).

Considering this similarity, one can obtain a sufficient condition for open-loop stability in

ESNs. The work of (CISNEROS; WERNER, 2018) showcases a method to prove stability

for constrained MPCs, where the solution of a quadratic programming problem reduces to a

nonlinear operator with an output that follows a given sector condition based on the K.K.T

conditions.

The core idea of the developed stability method is to combine both formulations in

a similar method as (CASTELAN, E.; MORENO; PIERI, 2006) and (CASTELAN, E. B.;

TARBOURIECH, Sophie; QUEINNEC, 2008), where absolute stability is proven for a system

with both saturation and an unrelated nonlinearity (which in the case of this chapter, is the

nonlinear operator function resulting from the NLP problem). The approach at hand is to cal-

culate absolute stability conditions for an ESN controlled by an NMPC, which is a conservative

approach; hence, it will provide a sufficient condition. However, one can systematically obtain

stability regions and explicit equations from the resulting LMIs, thus obtaining a method to

systematize the stability proof of such a nonlinear system and controller. Also, the Ąrst step

to obtain the NMPC proof, is to demonstrate the absolute stability analysis of an ESN under

feedback gain as an initial proof of concept for the stability analysis method.

5.1.1 Related Works

Discussion related to the stability properties of ESN is widely present in the literature,

which is formulated as a discrete-time dynamic system. For instance, the so-called Echo State

Property (JAEGER, 2001) is intimately related to the stability of a reservoir. Hence, any

investigation into the ESP is directly related to the investigation of ESN stability as a dynamic
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system. The initial strategy of enforcing the reservoir matrix to have eigenvalues inside the

unit circle is a necessary condition (YILDIZ; JAEGER; KIEBEL, 2012). However, this condition

would hold as necessary and sufficient if the activation function in the ESN was linear. The

work (YILDIZ; JAEGER; KIEBEL, 2012) provides different conditions while realizing that the

ones provided in (JAEGER, 2001) were insufficient to provide ESP. By declaring that the

Lyapunov stability of the linear portion of the ESN is a sufficient condition for ESP, (YILDIZ;

JAEGER; KIEBEL, 2012) makes a direct link between ESN stability and ESP. More recent

work discusses the ESN stability itself. (BIANCHI; LIVI; ALIPPI, 2018) establishes criteria to

evaluate the stability of an ESN, involving the use of tools such as recurrence analysis and the

so-called Recurrence QuantiĄcation Analysis (RQA) metrics.

As for the stability in MPC, this discussion is very well established in terms of linear un-

constrained MPC (CAMACHO; BORDONS, 1999). For the more general case, many proposals

exist for different NMPC. One such example (SIMON; LOFBERG, 2016) expresses the stability

problem of an MPC as a Mixed-Integer Linear Programming problem, where the problem

is directly derived from the Lyapunov function, considering stability concepts and a stability

condition for the system. However, such proof considers the system to be linear. Another work

(ALAMIR, 2018) deĄnes a method for ensuring stability in NMPC with a positive deĄnite cost

function. In MPC literature, it is normal to employ the so-called terminal constraints in the

formulations. However, they tend to enhance the problem size considerably. The main idea

of (ALAMIR, 2018) is to formulate a cost function with a stronger penalty further into the

horizon, proving that the progressing penalty ensures stability. A more recent work (KOHLER;

ZEILINGER; GRUNE, 2023) analyzes NMPC stability using Linear Programming (LP) problems

through Lyapunov derived stability conditions.

In contrast to the previously mentioned works, the stability problem for this chapter is

stated as an absolute stability problem, providing a stability checking method through LMIs

for speciĄc controllers considering the ESN as a model, such as a multivariable proportional

gain controller and a NMPC.

5.2 ABSOLUTE STABILITY OF ECHO STATE NETWORKS

The ESN structure is very similar to a saturated linear system, as the whole right-hand

side of the state equation is limited by −1 < tanh(·) < 1, and tanh(·) is considered an

approximation of the saturation function. Therefore, through algebraic manipulations, the

stability of the ESN (and the PNMPC controller employing it as a model) can be veriĄed

through reformulation into an absolute stability problem. For the absolute stability problem,

consider the following representation of the ESN:

x[k + 1] = (1 − γ)x[k] + γ(Wr
rx[k] + Wr

i u[k] + ϕ(z[k])) (159)a

z[k] = Wr
rx[k] + Wr

i u[k] (159)b

ϕ(z[k]) = tanh(z[k]) − z[k] (159)c
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or, in a more compact way to refer to this equation:

x[k + 1] = Ax[k] + γWr
i u[k] + γϕ(z[k]) (160)a

z[k] = Wr
rx[k] + Wr

i u[k] (160)b

ϕ(z[k]) = tanh(z[k]) − z[k] (160)c

where A = (1 − γ)I + γWr
r. Do note that, although they hold the same notation, z[k] from

this Chapter has no relation to the reduced state space, also named z from Chapter 4.

Based on the Lemma 1 in (TARBOURIECH, S.; PRIEUR; SILVA, 2006), for values of

z and w inside the set:

S = ¶(z,w) ∈ R
n × R

n : −1 ≤ z − w ≤ 1♢, (161)

The nonlinearity ϕ(z) satisĄes the following sector condition:

ϕ(z)T(ϕ(z) + w) ≤ 0 (162)

for some diagonal positive deĄnite matrix T with matching dimension.

In (TARBOURIECH, S.; PRIEUR; SILVA, 2006), the saturation function is considered.

However, the hyperbolic tangent is not only an approximation of the saturation function but

also a bounded and odd function. As with the case in (TARBOURIECH, S.; PRIEUR; SILVA,

2006), to prove that this sector also holds for the hyperbolic tangent function, one can prove

that 1 − z + w ≥ 0 and −1 − z + w ≤ 0, and both z and w belong to the set S.

Now, consider an element with index i of the sector condition:

(tanh(zi) − zi)T(i,i)(tanh(zi) − zi + wi) ≤ 0 (163)

which creates a transcendental product inequation where either:

tanh(zi) ≤ zi (164)

tanh(zi) ≥ zi − wi (165)

or

tanh(zi) ≥ zi (166)

tanh(zi) ≤ zi − wi (167)

because T(i,i) > 0. Solving the Ąrst inequalities reveals that:

0 ≤ zi (168)

tanh(zi) ≥ zi − wi (169)

or

0 ≥ zi (170)

tanh(zi) ≤ zi − wi (171)
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Both lower inequalities are always true inside −1 ≤ zi − wi ≤ 1, as per the bounds for

the tanh(·) function.

Following the suggestion of (CASTELAN, E. B.; TARBOURIECH, Sophie; QUEINNEC,

2008), deĄning w = E1x + z, where E1 is a matrix variable, makes the set S have the

following form:

S = ¶x ∈ R
n : −1 ≤ E1x ≤ 1♢ (172)

and also, the next step is to redeĄne the sector condition (162) of the absolute stability problem

as:

ϕ(z)T T(ϕ(z) + E1x[k] + Wr
rx[k] + Wr

i u[k]) ≤ 0 (173)

Or, in matrix form:



x[k]

ϕ[k]

u[k]




T 


0 (E1 + Wr
r)T T 0

∗ 2T TWr
i

∗ ∗ 0







x[k]

ϕ[k]

u[k]


 ≤ 0 (174)

Utilizing this absolute stability proof strategy, it is then possible to prove the ESN

stability when fed back by a linear control law u = Ky = KWo
r x. In this case, the sector

condition (173) becomes:

ϕ(z)T T(ϕ(z) + (E1 + Wr
r + Wr

i KWo
r )x[k]) ≤ 0 (175)

In parallel, considering the Lyapunov Function:

V (x) = xT Px (176)

The stability of a linear system treating ϕ as an exogenous input is:

V (x[k + 1]) − V (x[k]) < 0 (177)a

x[k]

ϕ[k]




T 
Af

T PAf γAf
T P

∗ γ2P




x[k]

ϕ[k]


−


x[k]

ϕ[k]




T 
P 0

∗ 0




x[k]

ϕ[k]


 < 0 (177)b

which translates directly to the following LMI, given the ESN in absolute stability-proof form:

Af

T PAf − P γAf
T P

∗ γ2P


 < 0 (178)

where Af = (A + γWr
i KWo

r ), Joining the stability condition with the sector condition leads
to the following matrix:

(
Af

T PAf − P γAf
T P − (E1 + Wr

r + Wr
i KWo

r )T T

∗ γ2P − 2T

)
< 0 (179)

However, the present matrix can not yet be considered an LMI. By deĄning S = T−1

and performing the following operation:

I 0

0 S




Af

T PAf − P γAf
T P − (E1 + Wr

r + Wr
i KWo

r )T T

∗ γ2P − 2T




I 0

0 S


 < 0 (180)
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The inequality presents itself in the following form:
(

Af
T PAf − P γAf

T PS − (E1 + Wr
r + Wr

i KWo
r )T

∗ γ2SPS − 2S

)
< 0 (181)

where the matrix variables are P, S, and E1, and the input gain matrix K is given.
To convert (181) into an LMI, it is necessary to perform the Schur’s Complement

(CASTELAN, E. B.; TARBOURIECH, Sophie; QUEINNEC, 2008), obtaining:



P−1 Af γS

∗ P (E1 + Wr
r + Wr

i KWo
r )T

∗ ∗ 2S


 > 0 (182)

To resolve the issue with the inversion of the Lyapunov matrix, one can consider
V = P−1, pre and post multiplying the second row and second column by it:




V Af V γS

∗ V V(E1 + Wr
r + Wr

i KWo
r )T

∗ ∗ 2S


 > 0 (183)

Instead of E1, declaring a new variable Z = E1W results in:



V Af V γS

∗ V ZT + V(Wr
r + Wr

i KWo
r )T

∗ ∗ 2S


 > 0 (184)

Finding a value for the positive deĄnite V, the diagonal matrix S and the real matrix Z

is a sufficient condition for the ESN stability given the linear control law, alongside the ellipsoid

condition, which will be further explored in Section 5.4.

Expressing the ESN in the form used in the absolute stability problem is convenient to

demonstrate the stability of the ESN-NMPC, as shown in the next section.

5.3 CLOSED-LOOP STABILITY OF AN ESN-NMPC

This section describes the derivation of the absolute stability problem for an NMPC

(Nonlinear MPC) using an ESN as the prediction model. The ESN model is used in its absolute

stability form, which enables a QP representation of the NMPC. However, the problem must

assume the dead zone non-linearity to be an exogenous input to the system. This analysis

assumes that the plant is exactly equal to the model, namely, also an ESN.

The bulk of the stability proof developed here is inspired by the work of (CISNEROS;

WERNER, 2018). The focus of (CISNEROS; WERNER, 2018) is to prove stability for MPCs

that utilize quasi-LPV (Linear Parameter Varying) systems as the prediction model. This work

employs the same MPC stabilization theory, but with the absolute stability representation of

the ESN instead of an LPV model.

In terms of stability analysis, (CISNEROS; WERNER, 2018) exploits that a QP is

a convex function and, as such, has only one minimum and abstracts the solution of the

optimization problem as a nonlinear operator, with the linear term of the QP cost function
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as the input, and the QP solution as the output. The linear term is chosen as input because

it is the only term that depends (linearly) on the quasi-LPV system state. The fact that the

output of the operator is a QP solution implies a sector condition based on the KKT necessary

conditions that must always hold for the nonlinear operator output. As a sector condition is

obtained and the QP is abstracted as a generic non-linearity, the MPC stability problem is

turned into an absolute stability problem over the QP solution (TARBOURIECH, Sophie et al.,

2011b).

The stability conditions for the NMPC are formulated by expressing the ESN in its

absolute stability form. The result of this transformation is being able to represent the stability

problem of the NMPC as a parameter-independent LMI, with the drawback of needing the

linear portion of the ESN model to be open-loop stable.

Referring to the cost function of a NMPC problem, that has the following general form:

J(x[k]) = min
U[k]

XT [k]ĈT QĈXT [k] + U[k]T RU[k] (185)

The result of the optimization problem, no matter the form of the constraints, must

obey the geometric necessary optimality condition:

∇U∗J(x[k]) · U∗ ≤ 0 (186)

By making the initial assumption (naive approach) that the absolute stability nonlin-

earity does not depend on the sector condition, the geometric optimality condition assumes

the following quadratic form:

τ(ψ(c)T Hψ(c) + cTψ(c)) ≤ 0 (187)

The solution of the NLP is represented by the nonlinear operator ψc[k]), with c[k] being the

linear coefficient of geometric optimality condition. The deĄnitions of H and c will be further

elaborated upon later, as the ESN in absolute stability form will be expanded in the prediction

and control horizons. The scalar τ > 0 is a variable that serves the same purpose as T in the

saturation sector condition.

In the context of closed-loop NMPC, ϕ(z[k]) is a free variable over the prediction

horizon, which implies an expansion of the saturation sector condition over the horizon. Also,

the reference signal Yref is considered 0, without loss of generality, as the unbiased ESN has

an equilibrium point at u = 0,y = 0. Other possible conĄgurations can be reduced to the one

at hand through coordinate changes.

By deĄning the following variable:

Φ(Z[k]) =




ϕ(z[k])

ϕ(z[k + 1])
...

ϕ(z[k + Ny − 1])




(188)
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and deĄning:

Z[k] =




z[k]

z[k + 1]
...

z[k + Ny − 1]




= ΛCx[k] + GCψ[k] + GDΦ (189)

GC =




Wr
i 0 . . .

γWr
rWr

i Wr
i . . .

...
... . . .

Wr
r[(1 − γ)I + γWr

r]Ny−2γWr
i Wr

r[(1 − γ)I + γWr
r]Ny−3γWr

i . . .




(190)

GD =




0 0 . . .

γWr
r 0 . . .

...
... . . .

Wr
r[(1 − γ)I + γWr

r]Ny−2γ Wr
r[(1 − γ)I + γWr

r]Ny−3γ . . .




(191)

ΛC =




Wr
r

Wr
r[(1 − γ)I + γWr

r]
...

Wr
r[(1 − γ)I + γWr

r]Ny−1




(192)

The null diagonal from GD comes from the fact that no z depends on ϕ at its current

time. Each row k of the matrices calculating Z[k] represents the contribution of each variable for

z[k], where the same logic of calculating prediction in MPC is applied (CAMACHO; BORDONS,

1999).

The revised sector condition is the sum of each saturation sector condition over the

prediction horizon, resulting in the expression:

Φ(Z[k])T T((I + GD)Φ(Z[k]) + (E1 + ΛC)x[k] + GCψ[k]) ≤ 0 (193)

where E1, in this case, has dimension NNy × N to match ΛC, and T ∈ R
NNy×NNy since

it composes all the saturation sectors.

Multiple saturation sets are considered to have the form (172), since it has the exact

same form for every instant in the prediction horizon.

The quadratic form of the sector condition, this time considering the whole horizon, is:




x

Φ

ψ




T 


0 (E1 + ΛC)T T 0

∗ TĜD + ĜT
DT TGC

∗ ∗ 0







x

Φ

ψ


 ≤ 0 (194)

where ĜD = I + GD.

The Ąrst step to deĄning matrix H and linear function c[k] is to state the absolute

stability ESN prediction model over the horizons, given initial state x[k]:

X[k] = Λx[k] + G1ψ(c[k]) + G2Φ(z[k]) (195)
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This means that the absolute stability problem considers Φ, the non-linearity computation along
the prediction horizon, independent from the control action. The assumption is conservative
because z clearly depends on u. The absolute stability problem is already sufficient by deĄnition
since the nonlinearity is being abstracted as a set of nonlinearities inside a sector, but considering
the nonlinearity as an independent variable all over the horizon makes the conservativeness of
the absolute stability problem stronger. Matrices Λ, G1, and G2 are deĄned as follows:

Λ =




[(1 − γ)I + γWr
r]

[(1 − γ)I + γWr
r]2

...

[(1 − γ)I + γWr
r]Ny




(196)

G1 =




γWr
i 0 . . .

[(1 − γ)I + γWr
r]γWr

i γWr
i . . .

...
... . . .

[(1 − γ)I + γWr
r]Ny−1γWr

i [(1 − γ)I + γWr
r]Ny−2γWr

i . . .




(197)

G2 =




γI 0 . . .

[(1 − γ)I + γWr
r]γ γI . . .

...
... . . .

[(1 − γ)I + γWr
r]Ny−1γ [(1 − γ)I + γWr

r]Ny−2γ . . .




(198)

To Ąnally obtain the sector condition associated with the NMPC, replace X[k] with its

deĄnition in the cost function (185), and derive the cost function with respect to the decision

variable, according to the "naive approach" axiom (sector nonlinearity does not depend on

decision variable). Then, the geometric optimality conditions present themselves in the quadratic

form (187), with H and c[k] deĄned as:

H = G1
T ĈT QĈG1 + R (199)

c[k] = Czx[k] + DzΦ(Z[k]) (200)

Cz = G1
T ĈT QĈΛ (201)

Dz = G1
T ĈT QĈG2 (202)

where Ĉ = INy
⊗ C and ⊗ is the Kronecker product. The matrix H is from the quadratic

term of the sector condition, and c[k] is the linear term.

The representation of the sector condition in terms of x and φ then becomes:



x[k]

Φ(Z[k])

ψ(c)




T 


0 0 τCz
T

∗ 0 τDz
T

∗ ∗ 2τH







x[k]

Φ(Z[k])

ψ(c)


 ≤ 0 (203)

which requires the center matrix of the condition to be negative semi-deĄnite. Joining with

the saturation-derived condition over the horizon, the full sector condition requirements of the

system are that the following matrix is negative semi-deĄnite:



0 (E1 + ΛC)T T τCz
T

∗ TĜD + ĜT
DT τDz

T + TGC

∗ ∗ 2H


 ≤ 0 (204)
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The full system to calculate the absolute stability is represented as:

x[k + 1] = (1 − γ)x[k] + γ(Wr
rx[k] + Wr

i Kcψ(c[k]) + KyΦ(z[k])) (205)a

Z[k] = ΛCx[k] + GCψ(c[k]) + GDΦ (205)b

c[k] = Czx[k] + DzΦ(Z[k]) (205)c

y[k] = Wo
r x[k] (205)d

Without loss of generality, assume that the bias Wr
b is zero for a simpliĄed proof. The gain

Kc is a block matrix that originates from ψ being the solution of the optimization problem.

The actual controller only submits the Ąrst result to the plant. Therefore, Kc = (I,0,0, · · · ,0).

The matrix Ky is analogous to Kc, but over the prediction horizon. Otherwise, in the point

of view of the computation of x, all ϕ are considered decoupled.

To measure the stability of a linear state space system, consider the Lyapunov function

in the form of:

V (x[k]) = x[k]T Px[k] (206)

where P is a symmetric, positive deĄnite matrix. For a dynamic system to be stable, the

Lyapunov function must be decreasing in terms of the system state progressing over time,

therefore:

x[k + 1]T Px[k + 1] − x[k]T Px[k] < 0 (207)

It is important to note that the state space system being analyzed represents the actual

system, represented by an ESN, that receives the input calculated by the NMPC, which means

that P has dimension R
N×N , with N being the number of ESN neurons.

Replacing x[k + 1] with the absolute stability ESN, results in the following matrix,

which must be negative deĄnite:



AT PA − P γAT PKy γAT PWr
i Kc

∗ γ2Ky
T PKy γ2Ky

T PWr
i Kc

∗ ∗ γ2Kc
T Wr

i
T PWr

i Kc


 < 0 (208)

Since both LMI (208) and LMI (204) must hold in an AND condition, the former
subtracts the latter to form:




AT PA − P γAT PKy − (E1 + ΛC)T T γAT PWr
i Kc − τCz

T

∗ γ2Ky
T PKy − TĜD − ĜT

DT γ2Ky
T PWr

i Kc − τDz
T − TGC

∗ ∗ γ2Kc
T Wr

i
T PWr

i Kc − 2τH


 < 0 (209)

With the effect of the S = T−1 operation performed for the linear feedback case, the
matrix becomes:




AT PA − P γAT PKyS − (E1 + ΛC)T γAT PWr
i Kc − Cz

T

∗ γ2SKy
T PKyS − ĜDS − SĜT

D γ2SKy
T PWr

i Kc − τSDz
T − GC

∗ ∗ γ2Kc
T Wr

i
T PWr

i Kc − 2τH


 < 0 (210)
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Performing the Schur’s Complement, in the same vein of the u = Kx case, results in:



P−1 A γKyS γWr
i Kc

∗ P (E1 + ΛC)T τCz
T

∗ ∗ ĜDS + SĜT
D SτDz

T + GC

∗ ∗ ∗ 2τH




> 0 (211)

Then, by deĄning V = P−1, and pre multiplying the second block row and post

multiplying the second block column of the matrix:



V AV γKyS γWr
i Kc

∗ V V(E1 + ΛC)T τVCz
T

∗ ∗ ĜDS + SĜT
D τSDz

T + GC

∗ ∗ ∗ 2τH




> 0 (212)

The next step is to deĄne Ze = E1V. In this case, Ze ∈ R
NyN×N , therefore:




V AV γKyS γWr
i Kc

∗ V Ze
T + VΛ

T
C τVCz

T

∗ ∗ ĜDS + SĜT
D τSDz

T + GC

∗ ∗ ∗ 2τH




> 0 (213)

To get rid of τ multiplying both S and V, pre and post multiply the fourth row and

column by α = τ−1I, Ąnally obtaining the LMI:



V AV γKyS γWr
i Kcα

∗ V Ze
T + VΛ

T
C VCz

T

∗ ∗ ĜDS + SĜT
D SDz

T + αGC

∗ ∗ ∗ 2αH




> 0 (214)

Finding a positive deĄnite V, a positive diagonal S, a positive α and a real Z that

solves LMI (214) is a sufficient condition of the ESN-NMPC stability.

5.4 ELLIPSOID OF ATTRACTION

As with saturation systems (CASTELAN, E. B.; TARBOURIECH, Sophie; QUEINNEC,

2008), there is a method to maximize the estimate of the region of attraction of a given

nonlinear system under saturation (in this case, tanh) constraints.

Given that the ESN is subject to an absolute stability analysis of a system with behavior

akin to a saturation nonlinearily, the ellipsoid deĄned by the Lyapunov matrix P serves as a

region of attraction estimate:

xT Px ≤ γ−1
2 (215)

where γ2 refers to the ellipsoid size, must be contained in the set deĄned by (172), which can

also be represented by the following inequation, in the u = Kx case:

♣E1x♣ ≤ 1 (216)
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Applying the squared norm on both sides implies the following inequality:

xT E1
T E1x ≤ N (217)

where N , the number of neurons in the ESN, is the total number of times the nonlinearity

appears in this formulation. Now, both sides are scalars. All the elements of the system have

the same upper and lower bound in (−1,1) and are repeated N times, which is this ellipsoid

representation considered for the saturation set.

That (215) is contained in (217) means that every x that solves (215) must also solve

(217). This means that, given P as a symmetric positive deĄnite matrix variable, the following

condition must hold ∀x:

1 ≥ γ2xT Px ≥ N−1xT E1
T E1x (218)

Which has as sufficient condition that the following matrix must be negative deĄnite:

1

Nγ2
E1

T E1 − P ≤ 0 (219)

Executing the Schur Complement on (219) results in:

 P E1

E1
T γ2NI


 ≥ 0 (220)

Since Ze = E1V, pre and post multiplying the Ąrst row and column by V results in:

 V Ze

Ze
T γ2NI


 ≥ 0 (221)

Both LMI (214) and LMI (221) are then solved as a system of LMI to obtain a stability

proof for the ESN-NMPC.

Do note that in the control gain case, Ze ∈ R
N×N , and in the NMPC case, Ze ∈

R
NNy×N . Also, for the NMPC, the LMI is as follows:


 V Ze

Ze
T γ2NNyI


 ≥ 0 (222)

Also, the region of attraction deĄned by the ellipsoid (215) is translated directly into the

variables P = V−1 and γ2 obtained by the system of LMIs.

A possible objective function for absolute stability LMI/SemideĄnite Programming

Problems is as follows:

min
P,T,γ2

β0γ2 + β1trace(P) (223)

where β0,β1 are parameters set by the user.

The interpretation for this objective function is that, by minimizing the trace of P, the

result maximizes the principal axes of the ellipsoid. However, since the problem is being deĄned

in terms of W,S,Z,γ2, some variable changes must be made to avoid an inverted matrix in the
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cost function. Instead of minimizing V−1, minimizing the trace of auxiliary positive deĄnite

variable Mw has the same effect (CASTELAN, E. B.; TARBOURIECH, Sophie; QUEINNEC,

2008), as long as the following LMI holds:

Mw I

∗ V


 > 0 (224)

Thus, the full SDP optimization problem becomes:

min
V,S,γ2,Z,Mw

β0γ + β1trace(Mw)

s.t. (214), (221) and (224)

W,Mw ≥ 0

S ≥ 0 and diagonal

(225)

To recover the original variables, one just needs to perform:

P = V−1 (226)

E1 = ZV−1 (227)

T = S−1 (228)

5.5 NUMERICAL EXAMPLE: TANK SYSTEM

5.5.1 Implementation

The optimization problems were implemented using the PICOS Python library, with

Mosek serving as the SDP problem solver.

5.5.2 Case Study Description

To exemplify the stability analysis method, this proof of concept experiment presents

the following simple tank system:

ḣ =
kinu − a

√
2gh

A
(229)

The cylinder tank with area A = 28 × 10−4 has water being pumped from an external pump

source with Voltage u (the control action) and gain kin = 3.14 × 10−6. An oriĄce at the

bottom of the tank with area a = 0.071×10−4 provides an outflow through gravity (g = 9.81).

The only state variable for this system is the tank level h, and the input variable is u. For

training, feature scaling was performed to scale the dataset from (0.02,32) for h and (0.1,5.0)

for u to (0,1) in the ESN point of view.

5.5.3 IdentiĄcation and Linear Gain Stability Test

The ESN uses the following parameter conĄguration N = 5, γ = 0.1, ρ = 0.99,

fr
i = fr

b = 0.1 to identify the ESN. Since the tank is a simple system, there is only a need
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for 5 neurons for the ESN to copy the tank behavior with relative accuracy. To generate the

dataset, the simulation applied an input signal of 50000 points, which is sufficiently high to

obtain an accurate model. From the simulation result, the Ąrst 40000 data points trained the

ESN, and the remaining 10000 were employed for testing, obtaining a testing error of 0.05,

which is sufficient to consider the ESN as a valid model for the tank.

Since the unbiased ESN has an equilibrium of x = 0 for a control action of the type

u = Kx, the actual equilibrium point where stability is being tested is at h = 0.02. For this

proof, the plant itself is irrelevant, as the stability analysis is performed only on the ESN model.

The control gain considered was K = −0.01

Solving Problem (225) reveals the following stability ellipsoid:

xT γ2Px ≤ 1 (230)

where

γ2 = 3.51 × 10−4 (231)

P = W−1 =




5.87 2.22 6.41 −1.73 1.09

2.22 5.42 −4.36 −1.83 0.55

6.41 −4.36 22.35 1.130 1.70

−1.73 −1.83 1.13 1.82 −0.0845

1.09 0.551 1.71 −0.0845 0.731




× 10−5 (232)

Since a positive deĄnite matrix was found, this proves that the ESN is stable under any

initial condition inside the given ellipsoid.

5.5.4 ESN-NMPC Stability Test

Now, the NMPC considers the following paramenters: Q = R = 1, Ny = 4, and

Nu = 2.

Solving the LMI for the NMPC case results in:

xT γ2Px ≤ 1 (233)

where

γ2 = 3.64 (234)

P = W−1 =




0.656 −0.268 −0.277 −1.24 −0.0899

−0.268 0.158 0.0998 0.527 0.0327

−0.277 0.0999 0.340 0.642 0.0694

−1.24 0.527 0.642 2.444 0.199

−0.0899 0.0327 0.0694 0.199 0.0383




(235)

Since an NMPC controller is less robust than a linear gain controller, it is expected that

the stability ellipsoid is smaller. Since a positive deĄnite P was found, it serves as mathematical
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proof that the system is stable. However, one thing to remember is that the version of the

NMPC being analyzed is more conservative than the real NMPC, hence why this estimation

serves only as a sufficient condition.

5.5.5 Summary

This chapter showed the development of stability proofs related to two different ESN

controllers. A linear gain regulatory controller and an NMPC controller. Both were successful in

proving stability conditions. In the case of the NMPC LMI, since the proof is more conservative

than the controller itself, it failed to converge for control horizons over 2 and prediction horizons

over 4. As long as the control horizon was 1, any prediction horizon value could be applied. This

may be due to the fact that the independence assumption for the controller is too conservative.

However, further investigation is needed, which is an interesting proposal for future work. The

method to prove stability for the PNMPC is also more elaborate because of the free and forced

response division, which also calls for future work in proving stability for the ESN-PNMPC.
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6 CONCLUSION

This dissertation showcased different contributions to the employment of ESN as a

model in the context of control engineering. The ESN-PNMPC was developed and further

analyzed in different applications while also being compared with an NMPC for the ESP-lifted

oil well. This comparison was relevant by showing how, while no constraints are being violated,

both controllers have a close behavior, with the computation performed by the PNMPC being

less complex and faster. Also, a method for recursively computing the PNMPC Jacobian was

established, a convergence proof for the prediction Ąlter was given, and the ESN-PNMPC

performed well in the case studies when compared to different types of controllers. While the

number of states in an ESN inherently dominates the number of inputs and outputs, the use

of POD and DEIM to provide a reduced order approximation of the ESN managed to mitigate

the problem by considerably reducing the number of model states while providing nearly-similar

behavior. Such reduction has implications for any situation where the ESN is used as a model

for optimization, optimal control, and MPC. The proposed absolute stability proof for the ESN

with the linear feedback gain and the NMPC might be useful, enhancing ESN interpretability

and providing a systematic way to ensure stability for such feedback systems numerically and

linearly, without any symbolic manipulation or non-linear programming problem-solving. All in

all, the developed methods can contribute to the ESN use as a model for control, with further

research to better investigate the methods.

6.1 LIMITATIONS AND FUTURE WORK

The developed methods still have limitations that should be addressed in future work.

While the PNMPC is already a well-established MPC method, the reduced order modeling

might need further testing in the context of PNMPC. For instance, how reducing the order

of the model through POD (and DEIM) affects the controller’s performance. Also, how does

the reduction affect the computational time, which might be useful when time is a limited

resource (for instance, in robotics applications)? It was shown how successful the reduced-

order modeling is in addressing the issue of the large number of states inherent in reservoir

computing. As mentioned in Chapter 5, not only does the proof for the stability of PNMPC

need further elaboration (preliminary formulations showed that other types of sector conditions

might need to be stated), but improvements could also be pursued so that the SDP can

converge using larger control horizons. If the problem is actually in the assumption, further

investigation is needed to Ąnd less conservative assumptions that retain the NMPC stability

proof as an LMI. However, assuming dependence between the deadzone nonlinearity over the

whole control horizon, naturally violates the linearity of the problem. Finding such a way to

relax the conservativeness of the stability condition might be a challenge.



119

REFERENCES

ALAMIR, Mazen. Stability proof for nonlinear MPC design using monotonically increasing

weighting proĄles without terminal constraints. Automatica, Elsevier BV, v. 87, p. 455Ű459,

Jan. 2018.

AN, Jinwon; CHO, Sungzoon. Variational Autoencoder based Anomaly Detection

using Reconstruction Probability. [S.l.], 2015.

ANDERSSON, Joel A E; GILLIS, Joris; HORN, Greg; RAWLINGS, James B; DIEHL, Moritz.

CasADi Ű A software framework for nonlinear optimization and optimal control.

Mathematical Programming Computation, v. 11, n. 1, p. 1Ű36, 2019.

ANTONELO, Eric A; SCHRAUWEN, Benjamin. On Learning Navigation Behaviors for Small

Mobile Robots With Reservoir Computing Architectures. IEEE Transactions on Neural

Networks and Learning Systems, v. 26, n. 4, p. 763Ű780, 2015.

ANTONELO, Eric A.; CAMPONOGARA, Eduardo; FOSS, Bjarne. Echo State Networks for

Data-driven Downhole Pressure Estimation in Gas-lift Oil Wells. Neural Networks, v. 85,

p. 106Ű117, 2017.

ARMENIO, L. B.; TERZI, E.; FARINA, M.; SCATTOLINI, R. Model Predictive Control

Design for Dynamical Systems Learned by Echo State Networks. IEEE Control Systems

Letters, v. 3, n. 4, p. 1044Ű1049, Oct. 2019. ISSN 2475-1456.

AYALA, Helon Vicente Hultmann; HABINEZA, Didace; RAKOTONDRABE, Micky;

SANTOS COELHO, Leandro dos. Nonlinear black-box system identiĄcation through

coevolutionary algorithms and radial basis function artiĄcial neural networks. Applied Soft

Computing, Elsevier, v. 87, p. 105990, 2020.

BIANCHI, Filippo Maria; LIVI, Lorenzo; ALIPPI, Cesare. Investigating Echo-State Networks

Dynamics by Means of Recurrence Analysis. IEEE Transactions on Neural Networks and

Learning Systems, Institute of Electrical and Electronics Engineers (IEEE), v. 29, n. 2,

p. 427Ű439, Feb. 2018.

BINDER, B. J. T.; KUFOALOR, D. K. M.; PAVLOV, A.; JOHANSEN, T. A. Embedded

Model Predictive Control for an Electric Submersible Pump on a Programmable Logic

Controller. In: IEEE Conference on Control Applications (CCA). [S.l.]: IEEE, 2014.

P. 579Ű585.



References 120

BINDER, Benjamin J. T.; PAVLOV, Alexey; JOHANSEN, Tor A. Estimation of Flow Rate

and Viscosity in a Well with an Electric Submersible Pump using Moving Horizon Estimation.

IFAC-PapersOnLine, v. 48, n. 6, p. 140Ű146, 2015.

BINO, Gianfranco; BASU, Shantanu; DEY, Ramit; AUDDY, Sayantan; MULLER, Lyle;

VOROBYOV, Eduard I. Predicting Stellar Mass Accretion: An Optimized Echo State Network

Approach in Time Series Modeling. The Open Journal of Astrophysics, The Open Journal,

v. 6, Apr. 2023. ISSN 2565-6120.

BISHOP, Christopher M. Pattern Recognition and Machine Learning (Information

Science and Statistics). New York: Springer-Verlag Inc., 2006.

BRANDÃO, Adriano Silva Martins; LIMA, Daniel Martins;

COSTA FILHO, Marcus Vinicius Americano da; NORMEY-RICO, Julio Elias. A

COMPARATIVE STUDY ON EMBEDDED MPC FOR INDUSTRIAL PROCESSES. In:

ANAIS do XXII Congresso Brasileiro de Automática. [S.l.: s.n.], 2018.

CAMACHO, Eduardo; BORDONS, Carlos. Model Predictive Control. London, UK:

Springer, 1999.

CASTELAN, E.B.; MORENO, U.F.; PIERI, E.R. de. Absolute stabilization of discrete-time

systems with a sector bounded nonlinearity under control saturations. In: 2006 IEEE

International Symposium on Circuits and Systems. [S.l.: s.n.], 2006. 4 pp.-.

CASTELAN, Eugênio B.; TARBOURIECH, Sophie; QUEINNEC, Isabelle. Control design for a

class of nonlinear continuous-time systems. Automatica, Elsevier BV, v. 44, n. 8,

p. 2034Ű2039, Aug. 2008.

CHATURANTABUT, Saifon; SORENSEN, Danny C. Nonlinear Model Reduction via Discrete

Empirical Interpolation. SIAM Journal on ScientiĄc Computing, Society for Industrial &

Applied Mathematics (SIAM), v. 32, n. 5, p. 2737Ű2764, Jan. 2010.

CHEN, Chao; LIU, Hui. Dynamic ensemble wind speed prediction model based on hybrid deep

reinforcement learning. Advanced Engineering Informatics, v. 48, p. 101290, 2021. ISSN

1474-0346.

CHEN, Chi-Tsong. Linear System Theory and Design. 3rd. New York, NY, USA: Oxford

University Press, Inc., 1998. ISBN 0195117778.



References 121

CHEN, Hong; KREMLING, H; ALLGÖWER, Frank. Nonlinear Predictive Control of a

Benchmark CSTR. Proceedings of the 3rd European Control Conference, Rome-Italy.,

p. 3247Ű3252, Jan. 1995.

CHEN, Qiang; SHI, Linlin; NA, Jing; REN, Xuemei; NAN, Yurong. Adaptive echo state

network control for a class of pure-feedback systems with input and output constraints.

Neurocomputing, Elsevier, v. 275, p. 1370Ű1382, 2018.

CISNEROS, P. S. G.; WERNER, H. A Dissipativity Formulation for Stability Analysis of

Nonlinear and Parameter Dependent MPC. In: 2018 Annual American Control Conference

(ACC). [S.l.: s.n.], 2018. P. 3894Ű3899.

CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals, and Systems (MCSS), Springer London, v. 2, n. 4, p. 303Ű314, Dec.

1989.

DAHL, J.; VANDENBERGHE, L. CVXOPT: A Python package for convex

optimization. [S.l.: s.n.], 2020. Available from: http://abel.ee.ucla.edu/cvxopt/.

DANESHFAR, Fatemeh; JAMSHIDI, Mohammad (Behdad). An octonion-based nonlinear

echo state network for speech emotion recognition in Metaverse. Neural Networks, v. 163,

p. 108Ű121, 2023. ISSN 0893-6080.

DOYA, K. Bifurcations in the learning of recurrent neural networks. In: PROC. of IEEE Int.

Symp. on Circ. and Syst. [S.l.: s.n.], 1992. v. 6, p. 2777Ű2780.

EREN, Utku; PRACH, Anna; KOÇER, Başaran Bahadır; RAKOVIĆ, Saša V.;

KAYACAN, Erdal; AÇIKMEŞE, Behçet. Model Predictive Control in Aerospace Systems:

Current State and Opportunities. Journal of Guidance, Control, and Dynamics, v. 40,

n. 7, p. 1541Ű1566, 2017. eprint: https://doi.org/10.2514/1.G002507.

FLOREZ, Horacio; GILDIN, Eduardo. Global/local model-order reduction in coupled flow and

linear thermal-poroelasticity. Computational Geosciences, p. 1, May 2019.

GHASEMI, Mohammadreza; IBRAHIM, Ashraf; GILDIN, Eduardo. Reduced Order Modeling

In Reservoir Simulation Using the Bilinear Approximation Techniques. SPE Latin American

and Caribbean Petroleum Engineering Conference Proceedings, v. 2, May 2014.



References 122

GLOROT, Xavier; BORDES, Antoine; BENGIO, Yoshua. Deep Sparse RectiĄer Neural

Networks. In: PROCEEDINGS of the Fourteenth International Conference on ArtiĄcial

Intelligence and Statistics. Fort Lauderdale, FL, USA: PMLR, Nov. 2011. v. 15. (Proceedings

of Machine Learning Research), p. 315Ű323.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. [S.l.]: MIT

Press, 2016. http://www.deeplearningbook.org.

HALUSZCZYNSKI, Alexander; AUMEIER, Jonas; HERTEUX, Joschka; RÄTH, Christoph.

Reducing network size and improving prediction stability of reservoir computing. Chaos: An

Interdisciplinary Journal of Nonlinear Science, AIP Publishing, v. 30, n. 6, p. 063136,

June 2020.

HE, Zhengyu. Deep Learning in Image ClassiĄcation: A Survey Report. In: 2020 2nd

International Conference on Information Technology and Computer Application (ITCA).

[S.l.: s.n.], 2020. P. 174Ű177.

HINAUT, Xavier; DOMINEY, Peter F. On-Line Processing of Grammatical Structure Using

Reservoir Computing. In: INT. Conf. on ArtiĄcial Neural Networks. Lausanne, Switzerland:

European Neural Networks Society, Sept. 2012. P. 596Ű603.

HOCHMAN, Amit; BOND, Bradley N.; WHITE, Jacob K. A stabilized discrete empirical

interpolation method for model reduction of electrical, thermal, and microelectromechanical

systems. In: 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.],

2011. P. 540Ű545.

HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long Short-term Memory. Neural

computation, v. 9, p. 1735Ű80, Dec. 1997.

HOU, Zhong-Sheng; WANG, Zhuo. From model-based control to data-driven control: Survey,

classiĄcation and perspective. Information Sciences, v. 235, p. 3Ű35, 2013.

JAEGER, Herbert. Short term memory in echo state networks. [S.l.], Mar. 2002.

JAEGER, Herbert. The ŚŚecho state’’ approach to analysing and training recurrent

neural networks Ű with an Erratum note. [S.l.], 2001.

JAEGER, Herbert; HAAS, Harald. Harnessing nonlinearity: predicting chaotic systems and

saving energy in wireless telecommunication. Science, v. 304, n. 5667, p. 78Ű80, Apr. 2004.



References 123

JAEGER, Herbert; LUKOSEVICIUS, Mantas; POPOVICI, Dan; SIEWERT, Udo.

Optimization and applications of echo state networks with leaky-integrator neurons. Neural

Networks, v. 20, n. 3, p. 335Ű352, 2007.

JAHANSHAHI, Esmaeil; SKOGESTAD, Sigurd. SimpliĄed dynamical models for control of

severe slugging in multiphase risers. IFAC Proceedings Volumes, v. 44, n. 1, p. 1634Ű1639,

2011.

JAHANSHAHI, Esmaeil; SKOGESTAD, Sigurd; HANSEN, Henrik. Control structure design

for stabilizing unstable gas-lift oil wells. IFAC Proceedings Volumes, v. 45, n. 15,

p. 93Ű100, 2012.

JAHN, Frank; COOK, Mark; GRAHAM, Mark. Hydrocarbon Exploration and Production.

2nd ed. [S.l.]: Elsevier, 2008. (Developments in Petroleum Science 55).

JOHANSSON, Karl. The Quadruple-Tank Process: A Multivariable Laboratory Process with

an Adjustable Zero. IEEE Transactions on Control Systems Technology, v. 8,

p. 456Ű465, May 2000.

JORDANOU, Jean P.; ANTONELO, Eric Aislan; CAMPONOGARA, Eduardo. Online

Learning Control with Echo State Networks of an Oil Production Platform. Eng. Appl. Artif.

Intell., v. 85, p. 214Ű228, 2019.

JORDANOU, Jean P.; CAMPONOGARA, Eduardo; ANTONELO, Eric Aislan;

AGUIAR, Marco Aurélio Schmitz. Nonlinear Model Predictive Control of an Oil Well with

Echo State Networks. IFAC-PapersOnLine, v. 51, n. 8, p. 13Ű18, 2018.

JORDANOU, Jean P.; OSNES, Iver; HERNES, Sondre B.; CAMPONOGARA, Eduardo;

ANTONELO, Eric Aislan; IMSLAND, Lars. Nonlinear Model Predictive Control of Electrical

Submersible Pumps based on Echo State Networks. Advanced Engineering Informatics,

v. 52, p. 101553, 2022. ISSN 1474-0346.

JORDANOU, Jean Panaioti; AISLAN ANTONELO, Eric; CAMPONOGARA, Eduardo;

GILDIN, Eduardo. Investigation of proper orthogonal decomposition for echo state networks.

Neurocomputing, v. 548, 2023. ISSN 0925-2312.

JORDANOU, Jean Panaioti; ANTONELO, Eric Aislan; CAMPONOGARA, Eduardo. Echo

State Networks for Practical Nonlinear Model Predictive Control of Unknown Dynamic



References 124

Systems. IEEE Transactions on Neural Networks and Learning Systems, v. 33, n. 6,

p. 2615Ű2629, 2022.

KHALIL, Hassan K. Nonlinear Systems. [S.l.: s.n.], Mar. 2018. ISBN 0130673897.

KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic Optimization.

[S.l.: s.n.], 2014. arXiv: 1412.6980 [cs.LG].

KOHLER, Johannes; ZEILINGER, Melanie N.; GRUNE, Lars. Stability and Performance

Analysis of NMPC: Detectable Stage Costs and General Terminal Costs. IEEE Transactions

on Automatic Control, Institute of Electrical and Electronics Engineers (IEEE), p. 1Ű16,

2023.

LIN, Xiaowei; YANG, Zehong; SONG, Yixu. Short-term Stock Price Prediction Based on

Echo State Networks. Expert Systems with Applications, Pergamon Press, Inc., v. 36,

n. 3, p. 7313Ű7317, 2009.

LIU, Wenjie; BAI, Yuting; JIN, Xuebo; WANG, Xiaoyi; SU, Tingli; KONG, Jianlei. Broad

Echo State Network with Reservoir Pruning for Nonstationary Time Series Prediction. Ed. by

Alexander Hošovský. Computational Intelligence and Neuroscience, Hindawi Limited,

v. 2022, p. 1Ű15, Feb. 2022.

LIU, Yuexia; CHENG, Yunfei; WANG, Wu. A survey of the application of deep learning in

computer vision. In: p. 68.

LØKSE, Sigurd; BIANCHI, Filippo Maria; JENSSEN, Robert. Training Echo State Networks

with Regularization Through Dimensionality Reduction. Cognitive Computation, Springer

Science and Business Media LLC, v. 9, n. 3, p. 364Ű378, Jan. 2017.

LUKOŠEVIČIUS, Mantas; MAROZAS, Vaidotas. Noninvasive fetal QRS detection using an

echo state network and dynamic programming. Physiological Measurement, v. 35, n. 8,

p. 1685Ű1697, July 2014.

MAASS, Wolfgang; MARKRAM, Henry. On the computational power of circuits of spiking

neurons. Journal of Computer and System Sciences, v. 69, n. 4, p. 593Ű616, 2004. ISSN

0022-0000.



References 125

MALIK, Z. K.; HUSSAIN, A.; WU, Q. J. Multilayered Echo State Machine: A Novel

Architecture and Algorithm. IEEE Transactions on Cybernetics, v. 47, n. 4, p. 946Ű959,

Apr. 2017. ISSN 2168-2275.

MEHREZ, Mohamed W. Optimization based Solutions for Control and State Estimation in

Dynamical Systems (Implementation to Mobile Robots) A Workshop. University Lecture.

[S.l.], 2019.

MIJALKOVIC, Slobodan. Truly Nonlinear Model-Order Reduction Techniques. In: p. 1Ű5.

MOZER, Michael C. A Focused Backpropagation Algorithm for Temporal Pattern

Recognition. Complex Systems, v. 3, n. 4, 1989.

NASCIMENTO, Tiago P; DÓREA, Carlos Eduardo Trabuco; GONÇALVES, Luiz Marcos G.

Nonlinear model predictive control for trajectory tracking of nonholonomic mobile robots: A

modiĄed approach. International Journal of Advanced Robotic Systems, v. 15, n. 1,

2018. eprint: https://doi.org/10.1177/1729881418760461.

NELLES, Oliver. Nonlinear System IdentiĄcation: From Classical Approaches to

Neural Networks, Fuzzy Models, and Gaussian Processes. [S.l.]: Springer International

Publishing, 2020. ISBN 9783030474393.

OTTER, Daniel W.; MEDINA, Julian R.; KALITA, Jugal K. A Survey of the Usages of

Deep Learning in Natural Language Processing. [S.l.: s.n.], 2019. arXiv: 1807.10854

[cs.CL].

OUALI, Mohammed Assam; LADJAL, Mohamed. Nonlinear Dynamical Systems Modelling

and IdentiĄcation Using Type-2 Fuzzy Logic. Metaheuristic Algorithms Based Approach. In:

IEEE. 2020 International Conference on Electrical Engineering (ICEE). [S.l.: s.n.], 2020.

P. 1Ű6.

OZTURK, Mustafa C.; XU, Dongming; PRÍNCIPE, José C. Analysis and Design of Echo

State Networks. Neural Computation, v. 19, n. 1, p. 111Ű138, 2007.

PAN, Y.; WANG, J. Model Predictive Control of Unknown Nonlinear Dynamical Systems

Based on Recurrent Neural Networks. IEEE Transactions on Industrial Electronics, v. 59,

n. 8, p. 3089Ű3101, 2012.



References 126

PASZKE, Adam et al. Automatic Differentiation in PyTorch. In: NIPS 2017 Workshop on

Autodiff. Long Beach, California, USA: [s.n.], 2017.

PAVLOV, A.; KRISHNAMOORTHY, D.; FJALESTAD, K.; ASKE, E.; FREDRIKSEN, M.

Modelling and model predictive control of oil wells with Electric Submersible Pumps. In: IEEE

Conference on Control Applications (CCA). [S.l.: s.n.], 2014. P. 586Ű592.

PLUCÊNIO, A.; PAGANO, D.J.; BRUCIAPAGLIA, A.H.; NORMEY-RICO, J.E. A

PRACTICAL APPROACH TO PREDICTIVE CONTROL FOR NONLINEAR PROCESSES.

IFAC Proceedings Volumes, v. 40, n. 12, p. 210Ű215, 2007.

PLUCÊNIO, Agustinho. Development of Non Linear Control Techniques for the Lifting

of Multiphase Fluids. 2013. PhD thesis Ű Federal University of Santa Catarina, Brazil.

RODAN, Ali; TINO, Peter. Minimum complexity echo state network. IEEE Trans Neural

Netw. IEEE transactions on neural networks / a publication of the IEEE Neural

Networks Council, v. 22, p. 131Ű44, Nov. 2010.

SAKEMI, Yusuke; MORINO, Kai; LELEU, Timothée; AIHARA, Kazuyuki. Model-size

reduction for reservoir computing by concatenating internal states through time. ScientiĄc

Reports, Springer Science and Business Media LLC, v. 10, n. 1, Dec. 2020.

SALEHINEJAD, Hojjat; SANKAR, Sharan; BARFETT, Joseph; COLAK, Errol;

VALAEE, Shahrokh. Recent Advances in Recurrent Neural Networks. [S.l.: s.n.], 2017.

arXiv: 1801.01078 [cs.NE].

SCHRAUWEN, Benjamin; VERSTRAETEN, David; VAN CAMPENHOUT, Jan. An overview

of reservoir computing: theory, applications and implementations. In: PROCEEDINGS of the

15th European Symposium on ArtiĄcial Neural Networks. [S.l.: s.n.], 2007. P. 471Ű482.

SELGA, Rosa Castañé; LOHMANN, Boris; EID, Rudy. Stability Preservation in

Projection-based Model Order Reduction of Large Scale Systems. European Journal of

Control, v. 18, n. 2, p. 122Ű132, 2012. ISSN 0947-3580.

SILJAK, Dragoslav D. Large-Scale Dynamic Systems: Stability and Structure (Dover

Civil and Mechanical Engineering). [S.l.]: Dover Publications, Nov. 2007. ISBN

0486462854.



References 127

SIMON, Daniel; LOFBERG, Johan. Stability analysis of model predictive controllers using

Mixed Integer Linear Programming. In: 2016 IEEE 55th Conference on Decision and Control

(CDC). [S.l.]: IEEE, Dec. 2016.

SIVARAMAKRISHNAN, Janardhanan. Model Order Reduction and Controller Design

Techniques. [S.l.: s.n.], Apr. 2013.

SUN, Xian-hang; XU, Ming-hai. Optimal control of water flooding reservoir using proper

orthogonal decomposition. Journal of Computational and Applied Mathematics, v. 320,

p. 120Ű137, 2017. ISSN 0377-0427.

TANAKA, Gouhei; YAMANE, Toshiyuki; HÉROUX, Jean Benoit; NAKANE, Ryosho;

KANAZAWA, Naoki; TAKEDA, Seiji; NUMATA, Hidetoshi; NAKANO, Daiju; HIROSE, Akira.

Recent advances in physical reservoir computing: A review. Neural Networks, v. 115,

p. 100Ű123, 2019. ISSN 0893-6080.

TARBOURIECH, S.; PRIEUR, C.; SILVA, J.M.G. da. Stability analysis and stabilization of

systems presenting nested saturations. IEEE Transactions on Automatic Control, v. 51,

n. 8, p. 1364Ű1371, 2006.

TARBOURIECH, Sophie; GARCIA, Germain; SILVA, João; QUEINNEC, Isabelle. Stability

and Stabilization of Linear Systems with Saturating Actuators. [S.l.: s.n.], Jan. 2011.

TARBOURIECH, Sophie; GARCIA, Germain; SILVA, João Manoel Gomes da;

QUEINNEC, Isabelle. Stability and Stabilization of Linear Systems with Saturating

Actuators. [S.l.]: Springer London, 2011.

TIBSHIRANI, Robert. Regression Shrinkage and Selection via the Lasso. Journal of the

Royal Statistical Society. Series B (Methodological), [Royal Statistical Society, Wiley],

v. 58, n. 1, p. 267Ű288, 1996.

TORRES, José F.; HADJOUT, Dalil; SEBAA, Abderrazak; MARTÍNEZ-ÁLVAREZ, Francisco;

TRONCOSO, Alicia. Deep Learning for Time Series Forecasting: A Survey. Big Data, Mary

Ann Liebert Inc, v. 9, n. 1, p. 3Ű21, Feb. 2021.

VERSTRAETEN, Davd; DAMBRE, Joni; DUTOIT, Xavier; SCHRAUWEN, Benjamin.

Memory versus non-linearity in reservoirs. In: INT. Joint Conference on Neural Networks.

Barcelona, Spain: IEEE, 2010. P. 18Ű23.



References 128

VERSTRAETEN, David; SCHRAUWEN, Benjamin. On the QuantiĄcation of Dynamics in

Reservoir Computing. In: ALIPPI, Cesare; POLYCARPOU, Marios; PANAYIOTOU, Christos;

ELLINAS, Georgios (Eds.). ArtiĄcial Neural Networks. Berlin: Springer, 2009. P. 985Ű994.

WANG, Hai; LONG, Xingyi; LIU, Xue-Xin. fastESN: Fast Echo State Network. IEEE

Transactions on Neural Networks and Learning Systems, 2022.

WANG, Yi; YU, Bo; WANG, Ye. Acceleration of Gas Reservoir Simulation Using Proper

Orthogonal Decomposition. Geofluids, Hindawi Limited, v. 2018, p. 1Ű15, 2018.

WATANABE, Shuhei. Tree-Structured Parzen Estimator: Understanding Its Algorithm

Components and Their Roles for Better Empirical Performance. [S.l.]: arXiv, 2023.

Available from: https://arxiv.org/abs/2304.11127.

WATTER, Manuel; SPRINGENBERG, Jost Tobias; BOEDECKER, Joschka;

RIEDMILLER, Martin A. Embed to Control: A Locally Linear Latent Dynamics Model for

Control from Raw Images. CoRR, abs/1506.07365, 2015. arXiv: 1506.07365.

WHITEAKER, Brian; GERSTOFT, Peter. Reducing echo state network size with

controllability matrices. Chaos: An Interdisciplinary Journal of Nonlinear Science, AIP

Publishing, v. 32, n. 7, p. 073116, July 2022.

XIANG, K.; LI, B. N.; ZHANG, L.; PANG, M.; WANG, M.; LI, X. Regularized Taylor Echo

State Networks for Predictive Control of Partially Observed Systems. IEEE Access, v. 4,

p. 3300Ű3309, 2016.

YANG, Cuili; WU, Zhanhong. Multi-objective sparse echo state network. Neural Computing

and Applications, Springer Science and Business Media LLC, Sept. 2022.

YILDIZ, Izzet B.; JAEGER, Herbert; KIEBEL, Stefan J. Re-visiting the echo state property.

Neural Networks, Elsevier BV, v. 35, p. 1Ű9, Nov. 2012.


	Title page
	Approval
	Acknowledgements
	Epigraph
	Resumo
	Resumo Expandido
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Motivation
	Objectives
	Thesis Organization

	Theoretical Background
	Dynamic Systems
	Stability Analysis
	Linear Dynamic Systems
	LMI-based Stability Analysis
	Example: Closed-loop Stabilization of a Continuous Time System

	Absolute Stability

	Artificial Neural Networks (ANN)
	Feedforward Neural Networks
	Recurrent Neural Networks
	Echo State Networks (ESN)
	Model
	Training
	Deterministic Reservoir Computing

	Model Order Reduction
	Davison Method
	Proper Orthogonal Decomposition

	Summary

	ESN Based Practical NMPC
	Introduction
	Practical Nonlinear Model Predictive Control (PNMPC)
	ESN-PNMPC
	Overview
	Linearizer – Forced Response Derivation
	Error Correction
	QP Problem


	Case Studies
	Four Tanks
	Description
	System Identification
	 Control Experiments
	Comparison with LSTM-PNMPC
	Comparison with PI controller and Linear MPC

	Two Wells - One Riser
	Description
	System Identification and Controller Setup
	Control Experiments

	Electrical Submersible Pump-lifted Oil Well
	Description
	System Identification
	Experiments Description
	Bottom-hole pressure tracking with pump frequency manipulation
	Bottom-hole pressure tracking with target oil production


	Summary

	Investigation of POD Methods for Echo State Networks
	Overview
	Related Work
	Model Order Reduction
	Proper Orthogonal Decomposition
	Discrete Empirical Interpolation
	Stability Loss in DEIM
	Stabilizing DEIM on POD-ESN


	Applications
	Preliminary Study: Energy contribution distribution in Echo State Networks
	Memory Capacity Evaluation
	POD Reduction
	DEIM Reduction

	NARMA System
	DEIM Stabilization

	Two Wells and One Riser Platform

	Discussion
	Summary

	Stability Analysis of Feedback Control with ESN
	Overview
	Related Works

	Absolute Stability of Echo State Networks
	Closed-Loop Stability of an ESN-NMPC
	Ellipsoid of Attraction
	Numerical Example: Tank System
	Implementation
	Case Study Description
	Identification and Linear Gain Stability Test
	ESN-NMPC Stability Test
	Summary


	Conclusion
	Limitations and Future Work

	References

		2024-02-08T15:10:49-0300


		2024-02-09T11:10:49-0300




