UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL

FABRÍCIO COSTA ABREU

ANÁLISE E DETALHAMENTO DE ESTRUTURA EM CONCRETO ARMADO

Florianópolis 2023 FABRÍCIO COSTA ABREU

ANÁLISE E DETALHAMENTO DE ESTRUTURA EM CONCRETO ARMADO

Trabalho de Conclusão do Curso de Graduação em Engenharia Civil do Centro Tecnológico da Universidade Federal de Santa Catarina como parte dos requisitos para a obtenção do título de Engenheiro Civil Orientador: Prof. Lourenço Panosso Perlin, Dr.

Florianópolis 2023 Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Abreu, Fabrício Costa Análise e Detalhamento de Estrutura em Concreto Armado / Fabrício Costa Abreu ; orientador, Lourenço Panosso Perlin, 2023. 192 p. Trabalho de Conclusão de Curso (graduação) -Universidade Federal de Santa Catarina, Centro Tecnológico, Graduação em Engenharia Civil, Florianópolis, 2023. Inclui referências. 1. Engenharia Civil. 2. Projeto Estrutural. 3. Estrutura de Concreto. 4. Análise Estrutural. 5. Estabilidade Global. I. Perlin, Lourenço Panosso. II. Universidade Federal de Santa Catarina. Graduação em Engenharia Civil. III. Título.

FABRÍCIO COSTA ABREU

ANÁLISE E DETALHAMENTO DE ESTRUTURA EM CONCRETO ARMADO

Este Trabalho Conclusão de Curso foi julgado adequado para obtenção do Título de Engenheiro Civil e aprovado em sua forma final pelo Departamento de Engenharia Civil da Universidade Federal de Santa Catarina

Florianópolis, 12 de dezembro de 2023

Profa. Liane Ramos da Silva Coordenadora do Curso

Banca Examinadora:

Prof. Lourenço Panosso Perlin, Dr. Orientador Universidade Federal de Santa Catarina

Prof. Jano d'Araujo Coelho Universidade Federal de Santa Catarina

Eng. Esp. João Batista da Silveira Filho Civile Engenharia de Estruturas

AGRADECIMENTOS

Agradeço a Deus pela vida, saúde e por todas as pessoas especiais que ele colocou na minha vida.

Agradeço a minha família pelo apoio durante todo o período da graduação e a todos aqueles que, de alguma maneira, contribuíram para a minha conquista.

Agradeço também a UFSC, pela formação gratuita e de qualidade e, em especial, aos professores do ECV, por terem transmitido seus conhecimentos de maneira tão clara.

Sou grato em especial ao professor Lourenço, por todas as orientações que forneceu durante a elaboração deste trabalho e pelo excelente trabalho como professor.

Por fim, sou grato a Engevix e a Civile, empresas de projetos estruturais nas quais estagiei e que me forneceram conhecimentos valiosos sobre a área.

RESUMO

O presente trabalho de conclusão de curso apresenta as etapas a serem seguidas para a elaboração de um projeto estrutural. A edificação escolhida é um prédio residencial multifamiliar de 20 pavimentos, com estrutura de concreto armado. Para a realização do projeto serão aplicados os conhecimentos adquiridos ao longo do curso, e assuntos relacionados a área que não são vistos em profundidade durante a graduação, em uma situação prática, voltada para a vida profissional do estudante como engenheiro civil. O trabalho envolveu a criação do projeto arquitetônico, concepção estrutural, análise estrutural e dimensionamento de elementos como lajes maciças e nervuradas, viga e pilar. O projeto foi calculado com métodos manuais usando planilhas eletrônicas (Excel) e softwares de análise estrutural (Ftool), bem como tabelas e ábacos. Ao final do projeto são apresentadas as plantas confeccionadas durante a elaboração do trabalho.

Palavras-chave: Projeto estrutural. Concreto armado. Análise estrutural. Cálculo estrutural. Dimensionamento. Detalhamento.

LISTA DE FIGURAS

Figura 1 - Arquitetônico Térreo	20
Figura 2 - Arquitetônico Pavimento Tipo	21
Figura 3 - Arquitetônico Cobertura	22
Figura 4 - Endereço da obra	23
Figura 5 - Arredores do Terreno	23
Figura 6 – Pavimento Tipo	29
Figura 7 - Cobertura	30
Figura 8 – Reservatório	30
Figura 9 – Corte AA (1/2)	31
Figura 10 – Corte AA (2/2)	32
Figura 11 – configuração de laje nervurada bidirecional	34
Figura 12 – Detalhe da geometria da laje nervurada	35
Figura 13 – Área de Influência dos pilares	38
Figura 14 – Planta de Formas do Pavimento Tipo	41
Figura 15 – Fôrma Cobertura	42
Figura 16 – Fôrma Reservatório	43
Figura 17 – Combinações últimas (ELU)	46
Figura 18 – Combinações de Serviço	47
Figura 19 – Casos de Vinculação das lajes	50
Figura 20 – Coeficientes α para o cálculo de flechas elásticas	51
Figura 21 – Amostra da tabela para obter coeficientes para o cálculo dos momentos	52
Figura 22 – Amostra da tabela dos coeficientes k's	54
Figura 23 – Lajes a serem dimensionadas	54
Figura 24 – Discretização das Lajes	55
Figura 25 – Obtenção dos coeficientes a1 e a2	56
Figura 26- Vinculação das lajes	58
Figura 27 – NBR 6120 – Cargas de Paredes	60
Figura 28 – Carregamentos acidentais	61
Figura 29 – Coeficientes γ	63
Figura 30 – Coeficientes ψ	64

Figura 31 – Esforços de momento por laje (Sem compatibilização) – Unid: kNm/m	66
Figura 32 – Legenda da compatibilização de momento negativos	67
Figura 33 – Compatibilização de momentos negativos	68
Figura 34 – Momentos compatibilizados	69
Figura 35 – Largura da mesa colaborante	70
Figura 36 – Valores mínimos para armaduras de lajes	74
Figura 37 – Valores de ρmin com base no fck	74
Figura 38 – Critérios para espaçamento máximo entre barras	76
Figura 39 – Momento máximo resistido pela nervura	79
Figura 40 – Relação entre momento negativo e comprimento do vão efetivo	80
Figura 41 – Verificação de momento negativo na interface maciço-nervura	80
Figura 42 – Comprimento da armadura de borda	82
Figura 43 – Reações nos apoios (em kN/m)	84
Figura 44 – Verificação de esforço cortante na interface maciço-nervura	85
Figura 45 – Momentos no ELS compatibilizados	87
Figura 46 – Deslocamentos-limites – Parte 1/2	92
Figura 47 – Deslocamentos-limites – Parte 2/2	93
Figura 48 – Velocidade básica do vento	97
Figura 49 – Parâmetros meteorológicos	100
Figura 50 – Valores mínimos do fator estatístico S3	101
Figura 51 –Ábaco de <i>Ca</i> para edificações retangulares em vento de baixa turbulência	102
Figura 52 – Pórticos em Planta	105
Figura 53 – Pórticos discretizados em x	106
Figura 54 - Pórticos discretizados em y	106
Figura 55 – Trechos rígidos	107
Figura 56 – Esforços axiais nos pórticos em x – Combinação Fd2	108
Figura 57 – Esforços axiais nos pórticos em y – Combinação Fd2	109
Figura 58 – Esforços Cortantes em x – Combinação <i>Fd</i> 2	109
Figura 59 – Esforços cortantes em y – Combinação Fd2	110
Figura 60 – Momentos fletores em x – Combinação Fd2	110
Figura 61 – Momentos Fletores em y – Combinação Fd2	111
Figura 61 – Momentos Fletores em y – Combinação <i>Fd</i> 2	111

Figura 62 – Estrutura deformada na direção x – Combinação Fd2	111
Figura 63 – Estrutura deformada na direção y – Combinação Fd2	112
Figura 64 – Efeitos de segunda ordem	112
Figura 65 – Casos abordados no Ftool	117
Figura 66 – Efeitos em elementos não estruturais – Movimento lateral de edifícios	118
Figura 67 – Pilar Selecionado	120
Figura 68 – Legenda de $\ell 0, \ell \in h$	121
Figura 69 – Orientação dos eixos	
Figura 70 – Obtenção de αb	
Figura 71 – Falta de retilineidade no pilar	125
Figura 72 – Envoltória mínima de primeira ordem	
Figura 73 – Envoltória mínima com segunda ordem	127
Figura 74 – Arranjos para utilização dos ábacos	128
Figura 75 – Exemplo de um ábaco para flexão composta oblíqua	129
Figura 76 - Somatório dos momentos fletores para cada seção	130
Figura 77 – Proteção contra flambagem das barras	134
Figura 78 – Ábaco utilizado - 1.º Lance P1 (25x65)	136
Figura 79 – Envoltórias da combinação analisada - 1.º Lance P1 (25x65)	138
Figura 80 – P1 com seção alterada	139
Figura 81 – Ábaco utilizado - 1.º Lance P1 (30x80)	140
Figura 82 – Envoltórias da combinação analisada - 1.º Lance P1 (30x80)	142
Figura 83 – Ábaco utilizado - 2.º Lance P1 (30x80)	144
Figura 84 – Envoltórias da combinação analisada - 2.º Lance P1 (30x80)	146
Figura 85 – Ábaco utilizado - 3.º Lance P1 (30x80)	148
Figura 86 – Envoltórias da combinação analisada - 3.º Lance P1 (30x80)	150
Figura 87 – Estribo complementar primeiro lance	151
Figura 88 – Estribo complementar segundo e terceiro lance	151
Figura 89 – Detalhe Lance 1	153
Figura 90 – Detalhe Lance 2 e 3	154
Figura 91 – V101	155
Figura 92 – V101 – Envoltória de momentos ELU (kN.m)	155
Figura 93 – V101 – Envoltória de cortantes ELU (kN)	155

Figura 94 – V101 – Deformada	
Figura 95 – gráfico do valor de Vc1	
Figura 96 – Decalagem do diagrama de momentos fletores	
Figura 97 – Envoltória de momentos fletores antes da decalagem	
Figura 98 – Decalagem do tramo P1-P2	
Figura 99 - Figura 100 – Decalagem do tramo P2-P3	
Figura 101 - Figura 102 – Decalagem do tramo P3-P4	
Figura 103 – Armadura transversal nas emendas tracionadas	
Figura 104 – Detalhamento da viga V101	
Figura 105 – Envoltória de momentos para ELS - CQP (kN.m)	
Figura 106 – Deslocamentos da viga em um dos andares (mm)	
Figura 107 – Valores limites para a abertura de fissuras e combinação utilizada	
Figura 108 – Envoltória de momentos para ELS - CF (kN.m)	
Figura 109 – Concreto de envolvimento da armadura	
Figura 110 – barra selecionada para a verificação da abertura de fissuras	

LISTA DE TABELAS

Tabela 1 – Classe de Agressividade Ambiental	25
Tabela 2 – Qualidade do concreto	25
Tabela 3 – Cobrimentos das armaduras	26
Tabela 4 – Parâmetros do Concreto	27
Tabela 5 – Parâmetros do Aço	28
Tabela 6 – Pré-dimensionamento das lajes maciças	33
Tabela 7 - Pré-dimensionamento das lajes Nervuradas	35
Tabela 8 – Altura equivalente entre laje nervurada e maciça	36
Tabela 9 – Pré-dimensionamento vigas	37
Tabela 10 – Coeficientes α	39
Tabela 11 – Pré-dimensionamento Pilares	40
Tabela 12 – Valores para cálculo dos vãos efetivos das lajes	56
Tabela 13 – Vãos efetivos	56
Tabela 14 – Direção das Lajes	57
Tabela 15 – Carregamento dos blocos amaciçados	59
Tabela 16 – Carregamentos Permanentes (com excessão das paredes)	59
Tabela 17 – Composição para cargas de Parede	60
Tabela 18 – Carga das paredes nas lajes	61
Tabela 19 – Carregamentos do elevador NBR 6120	62
Tabela 20 – Resumo de Carregamentos	63
Tabela 21 – Combinações de Ações para as Lajes	64
Tabela 22 – Coeficientes μ	65
Tabela 23 – Cálculo dos momentos do ELU sem compatibilização	66
Tabela 24 – Compatibilização de momentos ELU	69
Tabela 25 – Definição da largura colaborante das mesas de lajes nervuradas	71
Tabela 26 – Verificação da Linha neutra na laje nervurada	71
Tabela 27 – Valores de d, x e x/d para momentos positivos no menor vão	73
Tabela 28 - Valores de d, x e x/d para momentos positivos no maior vão	73
Tabela 29 - Valores de d, x e x/d para momentos negativos	73
Tabela 30 – Cálculo do momento mínimo para seções T	75

Tabela 31 – Cálculo de As min e de ρs para seções T	75
Tabela 32 – Área de aço – Região de momentos positivos na direção x	75
Tabela 33 – Área de aço – Região de momentos positivos na direção y	76
Tabela 34– Área de aço – Região de momentos negativos	76
Tabela 35 – Espaçamento e área de aço efetiva para cada laje (direção x)	77
Tabela 36– Espaçamento e área de aço efetiva para cada laje (direção y)	77
Tabela 37 - Espaçamento e área de aço efetiva para cada laje (Momentos negativos)	78
Tabela 38 – Momentos negativos na laje nervurada	81
Tabela 39 – Espaçamento e As efetiva das armaduras negativas - lajes nervuradas	81
Tabela 40 – Armaduras de borda	82
Tabela 41 – Coeficiente k para cálculo das reações de apoio	83
Tabela 42 – Reações de apoio	83
Tabela 43 – Verificação Cisalhamento na direção x	84
Tabela 44 – Verificação Cisalhamento na direção y	85
Tabela 45 – Momentos no ELS sem compatibilização	86
Tabela 46 – Momentos no ELS compatibilizados	86
Tabela 47 – Dados para o cálculo do momento de Fissuração – Menor vão	88
Tabela 48 – Dados para o cálculo do momento de Fissuração – Maior vão	88
Tabela 49 – Momentos de Fissuração no menor vão	89
Tabela 50 – Momentos de Fissuração no maior vão	89
Tabela 51 – Parâmetros para o cálculo de III 1/2	91
Tabela 52 - Parâmetros para o cálculo de III 2/2	91
Tabela 53 - Resultados de Ieq e de heq	92
Tabela 54 – Coeficientes α para cálculo das flechas	93
Tabela 55 – Cálculo da flecha imediata	94
Tabela 56 – flecha no tempo infinito e vibração	94
Tabela 57 – Comparação das flechas com os limites impostos	95
Tabela 58 – Parâmetros S2	.100
Tabela 59 – Coeficientes de arrasto para as direções x e y	.102
Tabela 60 – Carregamentos gerados pelo vento no edifício	.103
Tabela 61 – Módulo de elasticidade secante para pilares e vigas	.104
Tabela 62 – Resultados do coeficiente γz para o vento sendo a ação variável principal	.114

Tabela 63 - Resultados do coeficiente γz para o vento sendo a ação variável secundária	115
Tabela 64- Esforços de vento majorados	116
Tabela 65 – γz para os casos analisados	117
Tabela 66 – Verificação dos deslocamentos horizontais entre pavimentos	119
Tabela 67 – Verificação do deslocamento horizontal máximo	119
Tabela 68 – Esforços atuantes - 1.º Lance P1 (25x65)	135
Tabela 69 – Dados da seção - 1.º Lance P1 (25x65)	135
Tabela 70 – Armadura e dados de entrada do ábaco - 1.º Lance P1 (25x65)	136
Tabela 71 – Combinação, momentos mínimos e αb , $x \in \alpha b$, $y - 1$.º Lance P1 (25x65)	137
Tabela 72 - Verificação do efeito de segunda ordem - 1.º Lance P1 (25x65)	137
Tabela 73-Curvatura calculada - 1.º Lance P1 (25x65)	137
Tabela 74 – Curvatura adotada - 1.º Lance P1 (25x65)	137
Tabela 75 – Momento de segunda ordem - 1.º Lance P1 (25x65)	137
Tabela 76 – Situações de Cálculo - 1.º Lance P1 (25x65)	137
Tabela 77 - μx e μy e momentos resistentes- 1.º Lance P1 (25x65)	138
Tabela 78 – Esforços atuantes - 1.º Lance P1 (30x80)	139
Tabela 79 – Dados da seção - 1.º Lance P1 (30x80)	140
Tabela 80 – Armadura e dados de entrada do ábaco - 1.º Lance P1 (30x80)	140
Tabela 81 – Combinação, momentos mínimos e αb , $x \in \alpha b$, $y - 1$.º Lance P1 (30x80)	141
Tabela 82 - Verificação do efeito de segunda ordem - 1.º Lance P1 (30x80)	141
Tabela 83-Curvatura calculada - 1.º Lance P1 (30x80)	141
Tabela 84 – Curvatura adotada - 1.º Lance P1 (30x80)	141
Tabela 85 – Momento de segunda ordem - 1.º Lance P1 (30x80)	141
Tabela 86 – Situações de Cálculo - 1.º Lance P1 (30x80)	142
Tabela 87 - μx e μy e momentos resistentes - 1.º Lance P1 (30x80)	142
Tabela 88 – Esforços atuantes - 2.º Lance P1 (30x80)	143
Tabela 89 – Dados da seção - 2.º Lance P1 (30x80)	143
Tabela 90 – Armadura e dados de entrada do ábaco - 2.º Lance P1 (30x80)	143
Tabela 91 – Combinação, momentos mínimos e αb , x e αb , y - 2.º Lance P1 (30x80)	144
Tabela 92 - Verificação do efeito de segunda ordem - 2.º Lance P1 (30x80)	145
Tabela 93-Curvatura calculada - 2.º Lance P1 (30x80)	145
Tabela 94 – Curvatura adotada - 2.º Lance P1 (30x80)	145

Tabela 95 – Momento de segunda ordem - 2.º Lance P1 (30x80)	145
Tabela 96 – Situações de Cálculo - 2.º Lance P1 (30x80)	145
Tabela 97 - μx e μy e momentos resistentes - 2.º Lance P1 (30x80)	146
Tabela 98 – Esforços atuantes - 3.º Lance P1 (30x80)	147
Tabela 99 – Dados da seção - 3.º Lance P1 (30x80)	147
Tabela 100 – Armadura e dados de entrada do ábaco - 3.º Lance P1 (30x80)	147
Tabela 101 – Combinação, momentos mínimos e αb , $x \in \alpha b$, $y - 3$.° Lance P1 (30x80)	148
Tabela 102 - Verificação do efeito de segunda ordem - 3.º Lance P1 (30x80)	149
Tabela 103-Curvatura calculada - 3.º Lance P1 (30x80)	149
Tabela 104 – Curvatura adotada - 3.º Lance P1 (30x80)	149
Tabela 105 – Momento de segunda ordem - 3.º Lance P1 (30x80)	149
Tabela 106 – Situações de Cálculo - 3.º Lance P1 (30x80)	149
Tabela 107 - μx e μy e momentos resistentes - 3.º Lance P1 (30x80)	150
Tabela 108 – Resumo da armadura para cada lance	151
Tabela 109 – Cálculo do traspasse (1/2)	152
Tabela 110 – Cálculo do traspasse (2/2)	152
Tabela 111 – Resumo de momentos positivos	156
Tabela 112 – Resumo de momentos negativos	157
Tabela 113 – Dimensionamento da viga a flexão 1/3	157
Tabela 114 – Dimensionamento da viga a flexão 2/3	158
Tabela 115 – Dimensionamento da viga a flexão 3/3	158
Tabela 116 – Verificação das bielas de compressão	159
Tabela 117 – Armadura transversal mínima	160
Tabela 118 – Cálculo de <i>Vc</i> e de <i>Vsw</i>	161
Tabela 119 – Cálculo da armadura transversal	162
Tabela 120 – Espaçamentos máximos para os estribos	162
Tabela 121 – Armaduras de suspensão	163
Tabela 122 – Cálculo de <i>al</i>	164
Tabela 123 – Ancoragem das armaduras longitudinais 1/2	165
Tabela 124 – Ancoragem das armaduras longitudinais 2/2	165
Tabela 125 – Condição a), armaduras que chegam nos apoios 1/3	168
Tabela 126 – Condição a), armaduras que chegam nos apoios 2/3	168

Tabela 127- Condição a), armaduras que chegam nos apoios 3/3	
Tabela 128 – As necessária para a condição b)	
Tabela 129 Tabela 130 – As necessária para a condição c)	
Tabela 131 – área de aço dos apoios para a situação mais severa	
Tabela 132 – Diâmetros dos pinos de dobramento	
Tabela 133 – Comprimento de ancoragem apoios 1/2	
Tabela 134 - Comprimento de ancoragem apoios 2/2	
Tabela 135 – Coeficiente $\alpha 0t$	
Tabela 136 – Comprimento de traspasse das barras tracionadas	
Tabela 137 – Trecho do P1-P2 – Parte 1/4	
Tabela 138 – Trecho do P1-P2 – Parte 2/4	
Tabela 139 – Trecho do P1-P2 – Parte 3/4	
Tabela 140 – Trecho do P1-P2 – Parte 4/4	
Tabela 141 – Trecho do P2-P3 – Parte 1/4	
Tabela 142 – Trecho do P2-P3 – Parte 2/4	
Tabela 143 – Trecho do P2-P3 – Parte 3/4	
Tabela 144 – Trecho do P2-P3 – Parte 4/4	
Tabela 145 – Trecho do P3-P4 – Parte 1/4	
Tabela 146 – Trecho do P3-P4 – Parte 2/4	
Tabela 147 – Trecho do P3-P4 – Parte 3/4	
Tabela 148 – Trecho do P3-P4 – Parte 4/4	
Tabela 149 – Verificação das flechas imediatas 1/2	
Tabela 150 – Verificação das flechas imediatas 2/2	
Tabela 151 – Valor do coeficiente de aderência $\eta 1$	
Tabela 152 – Dados para o cálculo da abertura de fissuras 1/4	
Tabela 153 – Dados para o cálculo da abertura de fissuras 2/4	
Tabela 154 – Dados para o cálculo da abertura de fissuras 3/4	
Tabela 155 – Cálculo da abertura de fissuras 4/4	

SUMÁRIO

1	INTRODUÇÃO	
1.1	OBJETIVOS	18
1.1.1	OBJETIVO GERAL	
1.1.2	OBJETIVOS ESPECÍFICOS	18
1.2	LIMITAÇÕES DO TRABALHO	19
2	PROJETO ARQUITETÔNICO E INFORMAÇÕES TÉCNICAS	
3	DECISÕES TÉCNICAS	24
4	CONCEPÇÃO ESTRUTURAL	
5	PRÉ-DIMENSIONAMENTO	
5.1	LAJES	
5.1.1	LAJES MACIÇAS	
5.1.2	LAJES NERVURADAS	
5.2	VIGAS	
5.3	PILARES	
5.4	FÔRMAS PRÉ-DIMENSIONAMENTO	41
6	AÇÕES	
6.1	AÇÕES PERMANENTES	44
6.2	AÇÕES VARIÁVEIS	44
6.3	AÇÕES EXCEPCIONAIS	45
6.4	COMBINAÇÕES DE AÇÕES	45
6.4.1	COMBINAÇÕES ÚLTIMAS	45
6.4.2	COMBINAÇÕES DE SERVIÇO	47
7	LAJES	49
7.1	REVISÃO BIBLIOGRAFICA E ROTEIRO DE CÁLCULO	49
7.1.1	CÁLCULO DAS FLECHAS	51
7.1.2	ESFORÇOS – FLEXÃO	52
7.1.3	ESFORÇOS – CISALHAMENTO (REAÇÕES DE APOIO)	53
7.2	MODELAGEM DO PAVIMENTO	54

7.3	VÃOS EFETIVOS	55
7.4	TIPOS DE ARMAÇÃO	57
7.5	CONDIÇÕES DE APOIO E VINCULAÇÃO	57
7.6	CARREGAMENTOS	58
7.6.1	CARREGAMENTOS PERMANENTES	58
7.6.2	CARREGAMENTOS ACIDENTAIS	61
7.6.3	ELEVADOR	62
7.6.4	RESUMO E COMBINAÇÃO DOS CARREGAMENTOS PARA LAJES	62
7.7	ELU - FLEXÃO	65
7.8	DIMENSIONAMENTO DAS LAJES	70
7.8.1	CÁLCULO DA LINHA NEUTRA E DUTILIDADE	70
7.8.2	CÁLCULO DAS ARMADURAS	73
7.9	ELU – CISALHAMENTO	83
7.10	ELS – DEFORMAÇÕES EXCESSIVAS	86
8	FORÇAS DEVIDAS AO VENTO	96
8.1	OBTENÇÃO DOS EFORÇOS PELA NBR 6123:1980	96
8.2	VELOCIDADE BÁSICA DO VENTO (V0)	96
8.3	FATOR <i>S</i> 1	97
8.4	FATOR S2	98
8.4.1	RUGOSIDADE DO TERRENO	98
8.4.2	DIMENSÕES DA EDIFICAÇÃO	99
8.4.3	ALTURA SOBRE O TERRENO	99
8.5	FATOR <i>S</i> 3	101
8.6	COEFICIENTE DE ARRASTO (Ca)	101
8.7	CARREGAMENTOS CAUSADOS PELO VENTO	103
9	ANÁLISE ESTRUTURAL	104
9.1	CONSIDERAÇÕES	104
0.2	DIAGRAMAS DOS ESFORCOS E DEFORMADAS DA ESTRUTURA	108

9.3	ANÁLISE DOS EFEITOS GLOBAIS DE SEGUNDA ORDEM	112
9.3.1	COEFICIENTE γz	
9.4	ESTADO LIMITE DE SERVIÇO	118
10	PILAR	
10.1	REVISÃO BIBLIOGRAFICA E ROTEIRO DE CÁLCULO	
10.1.1	MÉTODO PILAR-PADRÃO COM CURVATURA APROXIMADA	
10.1.2	IMPERFEIÇÕES GEOMÉTRICAS LOCAIS	
10.1.3	MOMENTO MÍNIMO	
10.1.4	ENVOLTÓRIA DE MOMENTOS RESISTENTES	
10.1.5	SITUAÇÕES DE CÁLCULO	130
10.1.6	CRITÉRIOS DE DETALHAMENTO	131
10.2	APRESENTAÇÃO DE RESULTADOS	134
10.2.1	PRIMEIRO LANCE DO P1 (25X65)	
10.2.2	PRIMEIRO LANCE DO P1 (30X80)	
10.2.1	SEGUNDO LANCE DO P1 (30X80)	
10.2.2	TERCEIRO LANCE DO P1 (30X80)	147
10.2.3	DETALHAMENTO DO PILAR SELECIONADO	151
11	VIGA	
11.1	ARMADURAS LONGITUDINAIS NAS SEÇÕES CRÍTICAS	156
11.2	CÁLCULO DAS ARMADURAS TRANSVERSAIS	159
11.3	DECALAGEM DO DIAGRAMA DE MOMENTOS FLETORES	
11.3.1	ANCORAGEM NOS APOIOS	167
11.4	ESTADO-LIMITE DE DEFORMAÇÕES EXCESSIVAS	
11.5	ESTADO LIMITE DE ABERTURA DAS FISSURAS	
12	CONCLUSÃO	
13	REFERÊNCIAS BIBLIOGRÁFICAS	
14	ANEXOS	

1 INTRODUÇÃO

Este trabalho apresenta a concepção estrutural, incluindo o pré-lançamento e o prédimensionamento, a análise de um edifício de 20 pavimentos e o detalhamento das lajes, de uma viga continua e de um pilar. Para possibilitar a utilização de métodos manuais para criação do projeto a arquitetura foi concebida de maneira a tornar possível que a análise feita fosse em formato bidimensional, fazendo com o que a força do vento não gerasse efeitos de torção.

O modelo utilizado para a análise consiste na união dos pórticos na direção x e na direção y, fazendo uso do diafragma rígido proporcionado pelas lajes e que torna possível considerar o deslocamento horizontal como sendo o mesmo para qualquer ponto do pavimento. Para calcular a estabilidade global do edifício e os efeitos globais de segunda ordem foi utilizado o critério do gama z, sendo que, para calcular os efeitos locais de segunda ordem nos pilares, foi utilizado o método da curvatura aproximada.

Para conferir as flechas das lajes e vigas foi utilizada a fórmula de Branson, usada para corrigir a inércia dos elementos levando em conta as fissurações que ocorrem nos mesmos durante a utilização em serviço. As lajes, vigas e pilares deste trabalho foram detalhados usando as prescrições da NBR 6118/2023, sendo verificados os estados-limites últimos e de serviço.

1.1 OBJETIVOS

1.1.1 OBJETIVO GERAL

Utilizar os conhecimentos obtidos nas disciplinas de análise estrutural, resistência de materiais e concreto armado para fazer a análise global e dimensionamento/detalhamento da estrutura. O objetivo principal é consolidar esses conhecimentos com uma atividade que torna possível as suas aplicações num caso prático, envolvendo limitações impostas pelo projeto arquitetônico e decisões técnicas que aparecem apenas numa situação realista de projeto.

1.1.2 OBJETIVOS ESPECÍFICOS

- Criar o projeto arquitetônico de um prédio cuja análise possa ser feita de maneira manual (bidimensional);
- Fazer o lançamento e pré-dimensionamento da estrutura;

- Fazer o dimensionamento de todas as lajes, (com exceção das lajes do reservatório);
- Fazer a análise global da estrutura;
- Fazer o detalhamento de uma viga contínua e de um pilar.

1.2 LIMITAÇÕES DO TRABALHO

No presente trabalho o atendimento a NBR 15200:2012 (Projeto de estruturas de concreto em situação de incêndio) não foi verificado, assim como não foi feita a análise dinâmica da estrutura, para verificar o estado-limite de vibrações excessivas (ELS-VE).

2 PROJETO ARQUITETÔNICO E INFORMAÇÕES TÉCNICAS

Trata-se de um prédio residencial multifamiliar de padrão médio, com 20 pavimentos mais a torre da Caixa d`água, e uma altura de piso a piso de 3,20 metros. O projeto arquitetônico foi concebido visando possibilitar a análise bidimensional dos pórticos. Para isso, foi feito de maneira simétrica (com pequenas exceções nos acessos aos apartamentos). As medidas em projeção no terreno são de aproximadamente 20x21 metros. A seguir é possível visualizar uma versão básica das plantas (Figura 1, Figura 2 e Figura 3) e nos anexos o projeto completo.

Figura 1 - Arquitetônico Térreo

Fonte: (Do Autor)

Figura 2 - Arquitetônico Pavimento Tipo

Fonte: (Do Autor)

Figura 3 - Arquitetônico Cobertura

O prédio se localiza na Rua Presidente Coutinho, Centro, Florianópolis - SC, a cerca de 700 metros do mar, como pode ser visto na Figura 4. Os arredores do terreno são cercados por edificações baixas ao Sul e mais altas ao Norte (Figura 5).

Fonte: (Google Maps)

Figura 5 - Arredores do Terreno

Fonte: (Google Maps)

Foram usadas três espessuras de parede no projeto: 15, 20 e 25 centímetros. As paredes de 15 cm de espessura são compostas de bloco cerâmico vazado de 9 cm de largura com 3 cm de revestimento de cada lado. Nas paredes sujeitas a umidade (cozinha, banheiros, área de serviço) deve ser substituído o 3 cm de reboco de um dos lados por um revestimento de 2 cm de espessura mais a cerâmica de 1 cm de espessura (contando com a argamassa colante). As paredes de 20 cm são compostas por bloco cerâmico de 14 cm de largura com 3 cm de revestimento de cada lado. Já as paredes de 25 cm de espessura são compostas de bloco cerâmico vazado de 19 cm de largura com 3 cm de revestimento de cada lado.

Os tetos serão revestidos com forro de gesso. O contrapiso tem camada de 5 cm mais o piso de porcelanato com espessura de 1 cm. O telhado tem estrutura de madeira e telhas romanas, com inclinação de 30%.

A caixa d`água foi dimensionada da seguinte maneira:

- Consumo diário: 19 * 4 * 4 * 200 = 60800 l
- Reservatório Superior: 30400 + 12730 = 43130 l
- Reservatório Inferior: 304001
- Reserva de incêndio: 127301
- Altura da lâmina de água: $5,75m * 4,35m * h = 43,13 \text{ m}^3$; h = 1,72
- Altura interna do reservatório adotada = 2,20m.

O prédio contará com dois elevadores sociais com capacidade para 6 pessoas (450 kg) cada. As escadas terão seu acabamento em concreto aparente alisado com pintura.

O tempo de escoramento das lajes será de 28 dias, para cumprir os prazos do cronograma.

O agregado usado no concreto será o granito com dimensão máxima de 19 mm e a agulha do vibrador tem dimensão de 20 mm.

3 DECISÕES TÉCNICAS

Os parâmetros estruturais do projeto foram tomados usando as recomendações da NBR 6118/2023. Dado que a edificação se localiza no centro de Florianópolis e a uma distância de cerca de 700 metros do mar, foi considerado que a sua classe de agressividade é a III (Forte), seguindo a Tabela 1. Isso implica num risco de deterioração da estrutura grande, o que vai

impactar diretamente nas dimensões da estrutura, devido aos cobrimentos requeridos e num concreto com maior fck, como será visto a frente.

Tabela 1 – Classe de Agressividade Ambiental

Fonte: (ABNT NBR 6118:2023)

Com a classe de agressividade definida, utiliza-se a Tabela 2 para determinar a qualidade do concreto. Fica definido que a relação água/cimento deve ser menor ou igual a 0,55 e a classe do concreto C30, com fck de 30 Mpa, sendo esta a resistência característica do concreto à compressão aos 28 dias.

Concreto ^a	Time b.c	Classe de agressividade (Tabela 6.1)					
	Tipo ^{b, c}	1	11	III	IV		
Relação água/cimento em massa	CA	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45		
	CP	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45		
Classe de concreto (ABNT NBR 8953)	CA	≥ C20	≥ C25	≥ C30	≥ C40		
	CP	≥ C25	≥ C30	≥ C35	≥ C40		
^a O concreto empreg ABNT NBR 12655.	ado na execuç	ão das estrutura	s deve cumprir co	om os requisitos e	estabelecidos na		
b CA corresponde a c	omponentes e	elementos estru	turais de concreto	armado.			
c CP corresponde a c	omponentes e	elementos estru	turais de concreto	protendido.			

Tabela 2 – Qualidade do concreto

Fonte: (ABNT NBR 6118:2023)

Já pela Tabela 3, são definidos os cobrimentos dos elementos estruturais, que serão:

- Lajes = 35 mm de cobrimento inferior e 15 mm de cobrimento superior, conforme a nota b destacada na Tabela 3;
- \blacktriangleright Vigas = 40 mm;
- Pilares = 40 mm, exceto os trechos em contato com o solo, que terão cobrimento de 45 mm (*nota d* da Tabela 3);
- Elementos em contato com o solo (exceto pilar) = 40 mm.

		Classe de agressividade ambiental (Tabela 6.1)					
Tipo de estruturo	Componente ou	L	11	Ш	IV c		
ripo de estrutura	elemento	Cobrimento nominal mm					
	Laje ^b	20	25	35	45		
	Viga/pilar	25	30	40	50		
Concreto armado	Elementos estruturais em contato com o solo ^d		30	40	50		
Concreto	Laje	25	30	40	50		
protendido ^a	Viga/pilar	30	35	45	55		
^a Cobrimento nomin respeitar os cobrin	al da bainha ou dos fios, ca nentos para concreto arma	abos e cordoall ado.	has. O cobriment	o da armadura	passiva deve		
^b Para a face superior finais secos tipo or elevado desemper substituídas pelas	or de lajes e vigas que serão carpete e madeira, com a nho, pisos cerâmicos, pisos de 7.4.7.5, respeitado um	revestidas com rgamassa de r s asfálticos e o cobrimento no	argamassa de co revestimento e a utros, as exigêno minal ≥ 15 mm.	ontrapiso, com ro cabamento, co ias desta Tabel	evestimentos mo pisos de la podem ser		
^c Nas superfícies ex esgoto, condutos o agressivos, devem	postas a ambientes agress le esgoto, canaletas de eflu n ser atendidos os cobrime	ivos, como res ientes e outras ntos da classe	ervatórios, estaço obras em ambier de agressividade	ões de tratamer ntes química e i e IV.	nto de água e ntensamente		
^d No trecho dos pila cobrimento nomina	ares em contato com o so al ≥ 45 mm.	lo junto aos el	ementos de func	dação, a armad	lura deve ter		

Tabela 3 – Cobrimentos das armaduras

Fonte: (ABNT NBR 6118:2023)

O agregado graúdo selecionado é o granítico e é selecionada a brita 1 que possui 19 mm (1,9 cm) como maior dimensão. O tempo de escoramento será de 28 dias. O aço utilizado será o CA-50 e CA-60. Todas as imposições e limites estabelecidos de acordo com a NBR 6118/2023 serão utilizados no dimensionamento e detalhamento da estrutura e devem ser respeitados durante a execução da obra. Com todas essas definições, é possível calcular parâmetros estruturais do concreto e do aço, que serão apresentados a seguir.

Primeiro calcula-se a resistência de cálculo do concreto à compressão, fcd, a partir do valor fck aplicando a Equação (3.1).

$$fcd = \frac{fck}{1,4} = \frac{30}{1,4} = 21,43 MPa$$
(3.1)

27

Em seguida, é calculada a resistência média à tração (fct, m) com a equação (3.2), que é válida para concretos com $fck \le 50 MPa$.

$$fct, m = 0.3 * fck^{2/3} = 0.3 * 30^{2/3} = 2.89 \text{ MPa}$$
 (3.2)

Calcula-se também a resistência à tração inferior e superior característica e de cálculo, conforme apresentado a seguir:

$$fctk, inf = 0.7 * fct, m = 0.7 * 2.89 = 2.03 \text{ MPa}$$
 (3.3)

$$fctk, sup = 1,3 * fct, m = 0,7 * 2,89 = 3,76 \text{ MPa}$$
 (3.4)

$$fctd = \frac{fctk, inf}{1,4} = \frac{2,03}{1,4} = 1,45 MPa$$
(3.5)

Os módulos de elasticidade, inicial e secante, do concreto, são calculados pelas equações a seguir. O coeficiente α_E na Equação (3.6) vale 1, por causa do agregado granítico.

$$Eci = \alpha_E * 5600 * \sqrt{fck} = 1 * 5600 * \sqrt{30} = 30672 \text{ MPa}$$
(3.6)
$$Ecs = \alpha i * Eci = 0,875 * 30672 = 26838 \text{ MPa}$$
(3.7)

Onde αi é calculado pela Equação (3.8):

$$\alpha i = 0.8 + 0.2 * \frac{fck}{80} = 0.80 + 0.2 * \frac{30}{80} = 0.875$$
 (3.8)

A Tabela 4 apresenta um resumo de todos os dados calculados referentes ao concreto.

Característica do Concreto	Valor (MPa)		
fck	30		
fcd	21,43		

Tabela 4 – Parâmetros do Concreto

fct, m	2,89
fctk, inf	2,03
fctk, sup	3,76
fctd	1,45
Eci	30672
Ecs	26838

Fonte: (Do Autor)

Quanto ao aço, calcula-se a resistência de cálculo para os tipos especificados anteriormente utilizando os valores da resistência característica, que são para o aço CA-50 e CA-60, respectivamente, 500 MPa e 600 MPa.

$$fyd (CA - 50) = \frac{fyk}{1,4} = \frac{500}{1,4} = 434,78 MPa$$
 (3.9)

$$fyd (CA - 60) = \frac{fyk}{1,4} = \frac{600}{1,4} = 521,74 MPa$$
 (3.10)

Pela NBR 6118/2023, deve-se considerar para fins de dimensionamento o valor de 210 GPa ou 210000 MPa como módulo de elasticidade do aço (Es). A Tabela 5 apresenta um resumo dos parâmetros calculados referentes ao aço.

Característica do Concreto	Valor (MPa)
fyk (CA-50)	500
fyd (CA-50)	434,78
fyk (CA-60)	600
fyd (CA-60)	521,74
Es	210000

Tabela 5 – Parâmetros do Aço

Fonte: (Do Autor)

Com o projeto arquitetônico finalizado, foi possível realizar o lançamento dos elementos estruturais (pilares, vigas, núcleo rígido e lajes) que pode ser visto nas Figuras a seguir. O lançamento do pavimento Tipo é o mesmo da cobertura, sendo que a única diferença é a adição da Laje 23 na cobertura, por conta do maquinário do elevador. O pavimento Térreo terá somente as vigas para travamento das fundações e suporte das paredes que formam o Hall de entrada.

Figura	6 –	Pavimento	Tipo
--------	-----	-----------	------

Fonte: (Do Autor)

PILAR QUE MORRE

Fonte: (Do Autor)

Figura 9 – Corte AA (1/2)

Fonte: (Do Autor)

Figura 10 - Corte AA(2/2)

Fonte: (Do Autor)

5 PRÉ-DIMENSIONAMENTO

5.1 LAJES

Devido a grande diferença entre os valores dos vãos das lajes, sendo muito grandes ou muito pequenos, optou-se por fazer uso de dois tipos de laje: maciça para os menores vãos e nervuradas para os maiores vãos.

5.1.1 LAJES MACIÇAS

Todas as lajes são maciças, com exceção das lajes 7, 10, 12 e 13. Todas as lajes maciças desse projeto se encaixam no item b) da seção 13.2.4.1 da NBR6118/2023. Este item da norma trata das dimensões mínimas das lajes maciças, estabelecendo 8 cm para lajes de piso não em balanço, sendo assim, a espessura mínima a ser adotada será de 8 cm.

A equação (5.1) (retirada de Perlin, Pinto e Padaratz, 2018), foi usada para o prédimensionamento das lajes maciças.

$$h = \frac{l_{0x}}{40} \tag{5.1}$$

Onde:

 \triangleright l_{0x} é o comprimento do menor vão teórico.

Na tabela abaixo é exibido o pré-dimensionamento das lajes maciças:

Maciças						
Laje	lox (cm)	loy (cm)	lox/40 (cm)	h adotado (cm)		
L1, L6, L17, L22	365	372,5	9,1	8		
L2, L5, L18, L21	315	365	7,9	8		
L3, L4, L19, L20	272,5	365	6,8	8		
L8, L9, L15, L16	272,5	290	6,8	8		
L11	110	180	2,8	8		
L14	240	565	6,0	8		
L23	240	565	6,0	12		

Tabela 6 - Pré-dimensionamento das lajes maciças

Fonte: (Do Autor)

A laje L23 existe somente no pavimento da cobertura, como já foi comentado, por conta do maquinário do elevador. A altura adotada buscou respeitar os limites mínimos impostos pela NBR 6118/2023 e padronizar as fôrmas.

As lajes do Reservatório possuem espessura adotada de 15 cm, devido aos cobrimentos e cargas de água e paredes de concreto, mas essas lajes não serão dimensionadas nesse trabalho.

5.1.2 LAJES NERVURADAS

Abaixo será apresentada a configuração de uma laje nervurada bidirecional:

Figura 11 – configuração de laje nervurada bidirecional

Fonte: (Perlin, Pinto e Padaratz, 2018)

A laje escolhida possui altura total de 25 cm (5cm de capa e 20 cm de nervura) e respeita os critérios do item 13.2.4.2 da NBR 6118/2023:

- Espessura da mesa, quando não existirem tubulações horizontais embutidas deve ser maior ou igual a 1/15 da distância entre as faces das nervuras (3 cm no caso deste trabalho, em que $\ell nx = 45$ cm) e não inferior a 4 cm;
- Espessura das nervuras não pode ser inferior a 5 cm;
- Nervuras com espessura inferior a 8 cm não podem conter armadura de compressão.

Como a laje escolhida tem espaçamento entre eixos das nervuras menor que 65 cm, não é necessária a verificação de flexão na mesa.

Foi utilizada a equação (5.2) (retirada de Perlin, Pinto e Padaratz, 2018) para fazer o pré-dimensionamento das lajes nervuradas:

$$h = \frac{l_{0x}}{30} \tag{5.2}$$

Abaixo é possível ver a tabela com os resultados do pré-dimensionamento das lajes nervuradas:

Nervuradas					
Laje	lox (cm)	loy (cm)	lox/30 (cm)		h adotado (cm)
L7, L10, L12, L13	645	707,5		21,5	25

Tabela 7 - Pré-dimensionamento das lajes Nervuradas

Fonte: (Do Autor)

A altura adotada foi tomada como um múltiplo de 5. A espessura das nervuras foi definida como 10 cm (devido aos cobrimentos elevados da classe de agressividade III) e a altura da mesa foi definida como 5 cm. O espaçamento entre os eixos das nervuras (Sx e Sy) foi fixado em 55 cm nos dois sentidos. Foi escolhido o EPS como material de enchimento, devido a facilidade de execução e contribuição para o conforto acústico. O bloco de enchimento tem dimensões de 45 cm de largura e 20 cm de altura, com formato quadrado. A altura adotada levou em consideração os cobrimentos, que para essa classe de agressividade são maiores. Na figura abaixo é possível ver a geometria da laje:

Figura 12 – Detalhe da geometria da laje nervurada

Fonte: (Do Autor)
Como o espaçamento S < 65 cm, a laje nervurada será dimensionada com os mesmos critérios de laje maciça, sendo necessário somente encontrar a altura equivalente de uma laje maciça que possua a mesma rigidez a flexão que a laje nervurada escolhida. O procedimento para obtenção da altura equivalente será exibido abaixo, tendo sido retirado de Perlin, Pinto e Padaratz, 2018.

A rigidez da laje maciça (Dm) de altura he é dada por:

$$D_m = \frac{Eh_e^3}{12(1-\nu^2)}$$
(5.3)

Já a rigidez da laje nervurada (D_n) é resultado da ponderação entre a rigidez das nervuras (D_1) e da mesa (D_2) , sendo *h* a altura da nervura e *hf* a altura da mesa, como mostrado abaixo:

$$D_1 = \frac{Eh^3}{12(1-\nu^2)} \qquad D_2 = \frac{Eh_f^3}{12(1-\nu^2)}$$
(5.4)

Essa ponderação é dada por:

$$D_n = (1 - \xi)D_1 + \xi D_2 \tag{5.5}$$

Onde:

$$\xi = \frac{\ell_{nx}\ell_{ny}}{S_x S_y} \tag{5.6}$$

Na equação (5.6), $\ell_{nx} \in \ell_{ny}$ se referem ao espaçamento em x e y entre as faces internas das vigotas e $S_x \in S_y$ se referem aos espaçamentos em relação a x e y entre os eixos das vigotas. Igualando a rigidez da laje maciça com a rigidez da laje nervurada e simplificando a equação, chega-se em:

$$h_e = \sqrt[3]{(1-\xi)h^3 + \xi h_f^3}$$
(5.7)

Abaixo é possível ver os dados usados no cálculo e a altura equivalente resultante:

Tabela 8 - Altura equivalente entre laje nervurada e maciça

h (cm)	hf (cm)	<i>ℓn</i> x (cm)	<i>ℓn</i> y (cm)	Sx (cm)	Sy (cm)	ξ	<i>he</i> (cm)
25	5	45	45	55	55	0,67	17,38

Fonte: (Do Autor)

Para as vigas, foi adotada a base de 15 ou 20 cm, sendo maior que o mínimo admitido pela NBR 6118/2023 de 12 cm. Para o pré-dimensionamento das vigas foi usada a seguinte relação (retirada da apostila de concreto I e II – EPUSP, 2001):

$$h = \frac{L}{40} \tag{5.8}$$

Onde:

 \succ *h* é a altura da viga;

➢ L é o comprimento do vão efetivo.

Para cada viga foi adotado o L do seu maior vão, sendo assim, todos os tramos de cada viga contínua vão possuir a mesma seção. A tabela abaixo apresenta o pré-dimensionamento das vigas do pavimento tipo:

Viga	Maior vão (cm)	L/10 (cm)	Base adotada	Altura adotada	Viga	Maior vão	L/10 (cm)	Base adotada	Altura adotada
V101	617 F	61.0	((11))	(CIII)	1/112		26 5	(011)	(CIII)
V 101	017,5	01,0	20	60	V113	305,0	30,5	20	40
V102	602,5	60,3	20	60	V114	355,0	35,5	20	40
V103	108,0	10,8	20	40	V115	355,0	35,5	20	40
V104	515,0	51,5	20	100	V116	180,0	18,0	15	40
V105	692,5	69,3	20	70	V117	180,0	18,0	15	40
V106	692,5	69,3	20	70	V118	310,0	31,0	20	40
V107	515,0	51,5	20	100	V119	310,0	31,0	20	40
V108	180,0	18,0	20	40	V120	355,0	35,5	20	40
V109	602,5	60,3	20	60	V121	355,0	35,5	20	40
V110	617,5	61,8	20	60	V122	365,0	36,5	20	40
V111	555,0	55,5	20	60	V123	365,0	36,5	20	40
V112	365,0	36,5	20	40	V124	555,0	55,5	20	60

Tabela 9 - Pré-dimensionamento vigas

A altura adotada levou em conta o mínimo dado pela equação (5.8) e também as questões de contravento, cobrimentos da classe de agressividade e padronização das fôrmas a serem utilizadas.

Fonte: (Do Autor)

Todo o procedimento descrito a seguir foi retirado de retirado de Perlin, Pinto e Padaratz, 2018.

O primeiro passo para pré-dimensionar os pilares foi definir a área de influência de cada um deles, que podem ser vistas na figura 11.

. O método consiste em delimitar áreas com base na metade da distância entre cada pilar, depois classificar cada pilar como sendo de canto, extremidade ou centro. Também é necessário ter uma estimativa da carga distribuída no plano do pavimento e o número de andares da edificação. As áreas de influência podem ser visualizadas abaixo.

Figura 13 – Área de Influência dos pilares

A carga estimada é calculada com base na equação (5.9):

$$Nk = A * p * n \tag{5.9}$$

Em que:

- \blacktriangleright Nk é a força de compressão estimada que atua no pilar;
- ➢ A é a área de influência do pilar analisado;
- \triangleright p é a carga vertical estimada que atua no pavimento, sendo que foi adotado 12 kN/m²:
- \triangleright *n* é o número de pavimentos.

Para obter a carga final de pré-dimensionamento, Neq, é utilizado um coeficiente α que tem como objetivo corrigir a compressão em função da flexão composta que ocorre devido aos momentos fletores e que varia em função da posição do pilar. O valor de α com base na posição do pilar pode ser visto na Tabela 10.

Tabela 10 – Coefficientes u								
Posição do Pilar	α							
Canto	2,5							
Extremidade	2,2							
Centro	1,8							
Fonte: (Do Autor)								

Tabela 10 – Coeficientes a

Fonte: (Do Autor)

A equação abaixo mostra a obtenção de Neq:

$$Neq = Nk * \alpha \tag{5.10}$$

A área de concreto da seção transversal dos pilares pode ser obtida com a equação abaixo:

$$Ac = \frac{Neq}{0.85 * fcd + \rho * \sigma s}$$
(5.11)

Sendo que:

- \blacktriangleright fcd vale 21,43 MPa (Tabela 4);
- $\triangleright \rho$ é a taxa de armadura estimada, cujo valor varia entre 1,5% e 2,0%, sendo que para este pré-dimensionamento o valor adotado foi de 2,0%;
- \triangleright σs é a tensão do aço na armadura longitudinal (CA-50) correspondente a deformação ɛc2 do concreto, que pela NBR6118/2023 vale 0,2%, que é inferior a deformação do aço CA-50 ($\varepsilon yd = 0,207\%$).

Dessa forma, segue a Equação (5.12):

$$\sigma s = \varepsilon c^2 * \text{Es} = 210000 * 0,2\% = 420 \text{ MPa}$$
 (5.12)

Com a área da seção transversal calculada é possível fixar a menor dimensão do pilar. Para isso, é preciso seguir as recomendações da NBR 6118/2023, que estabelece a dimensão mínima do pilar como sendo 19 cm, podendo ser reduzida até 14 cm com majoração de esforços. Com a menor dimensão fixada e com a área necessária para a seção, é possível encontrar a maior dimensão (h). Vale notar que a área mínima estabelecida pela NBR6118/2023 é de 360 cm², sendo que qualquer valor de área no pré-dimensionando que resulte numa área menor do que essa será fixado como 360 cm².

A Tabela 11 apresenta o pré-dimensionamento efetuado para cada um dos pilares da edificação.

	1						-	1	
			Área			Área	b	h calc	h
Pilar	Posição	α	influência	Nk (kN)	Neq (kN)	Seção	adot.	(cm)	adot.
			(m²)			(cm²)	(cm)	(cm)	(cm)
P1	Canto	2,5	6,9	1651,2	4128,0	1551,05	25	62,0	65
P2	Extremidade	2,2	12,1	2896,8	6373,0	2394,56	30	79,8	80
P4	Extremidade	2,2	12,1	2896,8	6373,0	2394,56	30	79,8	80
P4	Canto	2,5	6,9	1651,2	4128,0	1551,05	25	62,0	65
P5	Extremidade	2,2	19,7	4728	10401,6	3908,28	35	111,7	110
P6	Centro	1,8	24,0	5762,4	10372,3	3897,28	30	129,9	130
Р7	Centro	1,8	24,0	5762,4	10372,3	3897,28	30	129,9	130
P8	Extremidade	2,2	19,7	4728	10401,6	3908,28	35	111,7	110
Р9	Centro	1,8	18,1	4336,8	7806,2	2933,10	25	117,3	115
P10	Centro	1,8	18,1	4336,8	7806,2	2933,10	25	117,3	115
P11	Extremidade	2,2	26,1	6264	13780,8	5177,97	40	129,4	130
P12	Centro	1,8	29,5	7080	12744,0	4788,41	25	191,5	210
P13	Centro	1,8	29,5	7080	12744,0	4788,41	25	191,5	210
P14	Extremidade	2,2	26,1	6264	13780,8	5177,97	40	129,4	130
P15	Centro	1,8	18,1	4336,8	7806,2	2933,10	25	117,3	115
P16	Centro	1,8	18,1	4336,8	7806,2	2933,10	25	117,3	115
P17	Extremidade	2,2	19,7	4728	10401,6	3908,28	35	111,7	110
P18	Centro	1,8	24,0	5762,4	10372,3	3897,28	30	129,9	130
P19	Centro	1,8	24,0	5762,4	10372,3	3897,28	30	129,9	130
P20	Extremidade	2,2	19,7	4728	10401,6	3908,28	35	111,7	110
P21	Canto	2,5	6,9	1651,2	4128,0	1551,05	25	62,0	65
P22	Extremidade	2,2	12,1	2896,8	6373,0	2394,56	30	79,8	80
P23	Extremidade	2,2	12,1	2896,8	6373,0	2394,56	30	79,8	80
P24	Canto	2,5	6,9	1651,2	4128,0	1551,05	25	62,0	65

Tabela 11 – Pré-dimensionamento Pilares

5.4 FÔRMAS PRÉ-DIMENSIONAMENTO

A seguir serão apresentadas as plantas de fôrmas da edificação:

Figura 15 – Fôrma Cobertura

Figura 16 – Fôrma Reservatório

6 AÇÕES

Durante o processo de análise estrutural, deve ser considerada a influência de todas as ações que possam produzir efeitos significativos para a segurança da estrutura projetada, levando em conta os estados limites últimos (ELU) e estados limites de serviço (ELS).

De acordo com a ABNT NBR 8681, as ações podem ser classificadas em permanentes, variáveis e excepcionais, sendo que a consideração dessas ações pode variar de acordo com o tipo de construção.

6.1 AÇÕES PERMANENTES

São aquelas que ocorrem com valor praticamente constantes durante toda a vida útil da edificação. Também se enquadram aquelas que aumentam no tempo e tendem a um valor limite. As ações permanentes são ainda classificadas em diretas e indiretas.

O peso próprio, o peso dos elementos construtivos fixos, das instalações e empuxos permanentes, são exemplos de ações permanentes diretas. No projeto deste TCC, somente o empuxo de terra não está presente. Temos a estrutura de concreto armado, paredes de alvenaria e esquadrias, elevador e torre de caixa d'água, somente para citar algumas.

Já as ações permanentes indiretas são compostas por deformações da estrutura impostas pela retração e fluência do concreto, deslocamentos de apoio, imperfeições geométricas, e protensão.

6.2 AÇÕES VARIÁVEIS

As ações variáveis também são classificadas em diretas e indiretas.

As diretas são as cargas previstas para o uso da construção, pela ação do vento e da água, sendo que é necessário consultar as normas brasileiras que fazem a prescrição dessas ações e trazem os valores recomendados. Também se encaixam nas ações variáveis diretas as ações variáveis que ocorrem durante a construção e que não tem a sua garantia somente pela verificação da obra pronta.

As indiretas incluem as variações uniformes e não uniformes de temperatura e ações dinâmicas (choques e vibrações).

6.3 AÇÕES EXCEPCIONAIS

Estruturas sujeitas a situações excepcionais de carregamento em que os valores dessas ações são definidos, em cada caso particular, por Normas Brasileiras específicas.

6.4 COMBINAÇÕES DE AÇÕES

Os carregamentos são definidos pelas combinações das ações que tem probabilidades não desprezíveis de atuarem simultaneamente sobre a estrutura, durante um período preestabelecido.

As combinações devem ser feitas de forma que os efeitos mais desfavoráveis para a estrutura sejam determinados. As verificações de segurança em relação aos estados-limites últimos e de serviço são realizadas em função destas combinações, sendo que é feita a combinação com os coeficientes adequados para cada estado-limite.

6.4.1 COMBINAÇÕES ÚLTIMAS

Estas combinações são usadas para o dimensionamento da estrutura no estado-limite último (ELU), que se refere diretamente a segurança da mesma.

São classificadas como normal, especial ou de construção e excepcional. A descrição de cada tipo de combinação, junto com a equação de cada caso, pode ser vista na figura a seguir, que foi retirada da tabela 11.3 da NBR6118/2023.

Combinações últimas (ELU)	Descrição	Cálculo das solicitações						
	Esgotamento da capacidade resistente para elementos estruturais de concreto armado ^a	$F_{d} = \gamma_{g}F_{gk} + \gamma_{\epsilon g}F_{\epsilon gk} + \gamma_{q}\left(F_{q1k} + \Sigma\psi_{0j}F_{qjk}\right) + \gamma_{\epsilon q}\psi_{0\epsilon}F_{\epsilon qk}$						
Normais	Esgotamento da capacidade resistente para elementos estruturais de concreto protendido	Deve ser considerada, quando necessário, a força de protensão como carregamento externo com os valores P _{kmáx} e P _{kmín} para a força desfavorável e favorável, respectivamente, conforme definido na Seção 9						
	Perda do equilíbrio como corpo rígido	$\begin{split} S\left(F_{sd}\right) &\geq S\left(F_{nd}\right)\\ F_{sd} &= \gamma_{gs}\;G_{sk} + R_d\\ F_{nd} &= \gamma_{gn}\;G_{nk} + \gamma_q\;Q_{nk} - \gamma_{qs}\;Q_{s,min}, \text{ onde: } Q_{nk} = Q_{1k} + \Sigma\;\psi_{0j}\;Q_{jk} \end{split}$						
Especiais ou de construção b	$F_{d} = \gamma_{g}F_{gk} + \gamma_{\epsilon g}F_{\epsilon gk} + \gamma_{q}\left(F_{q1k} + \Sigma\psi_{0j}F_{qjk}\right) + \gamma_{\epsilon q}\psi_{0\epsilon} F_{\epsilon qk}$							
Excepcionais b	F _d =	$F_{d} = \gamma_{g}F_{gk} + \gamma_{\epsilon g}F_{\epsilon gk} + F_{q1exc} + \gamma_{q}\Sigma\psi_{0j}F_{qjk} + \gamma_{\epsilon q}\psi_{0\epsilon}F_{\epsilon qk}$						

Figura 17 - Combinações últimas (ELU)

Fonte: (ABNT NBR 6118:2023)

No caso deste trabalho, para a verificação do estado-limite último (ELU), será usada a combinação última normal de esgotamento da capacidade resistente para elementos estruturais de concreto armado, cuja equação pode ser vista abaixo:

$$F_{d} = \gamma_{g}F_{gk} + \gamma_{\varepsilon g}F_{\varepsilon gk} + \gamma_{q}\left(F_{q1k} + \sum \Psi_{0j}F_{qjk}\right) + \gamma_{\varepsilon q}\Psi_{0\varepsilon}F_{\varepsilon qk}$$
(6.1)

Onde:

- ➢ Fd é o valor de cálculo das ações para combinação última;
- \succ *Fgk* representa as ações permanentes diretas;
- Fɛk representa as ações indiretas permanentes como a retração Fegk e variáveis como a temperatura Feqk;
- \blacktriangleright *Fqk* representa as ações variáveis diretas das quais *Fq1k* é escolhida principal;
- γg, γεg, γq, γεq são os coeficientes de majoração retirados da tabela 11.1 da NBR
 6118/2023;
- \blacktriangleright $\Psi 0j, \Psi 0\varepsilon$ são os coeficientes retirados da tabela 11.2 da NBR 6118/2023.

As ações indiretas variáveis e permanentes serão desprezadas para a execução deste trabalho, simplificando a equação (6.1), como pode ser visto a seguir:

$$F_d = \gamma_g F_{gk} + \gamma_q \left(F_{q1k} + \sum \Psi_{0j} F_{qjk} \right)$$
(6.2)

6.4.2 COMBINAÇÕES DE SERVIÇO

Essas combinações são usadas para fazer o dimensionamento e verificação da estrutura para o estado limite de serviço (ELS), que está relacionado com o conforto do usuário e à durabilidade da estrutura.

Estas ações são classificadas de acordo com a sua permanência na estrutura e são verificadas como quase permanentes, frequentes e raras.

A tabela 11.4 da NBR 6118/2023 traz a descrição de cada classificação das combinações de serviço, juntamente com a equação que rege cada uma. Essa tabela pode ser visualizada na Figura 18.

Combinações de serviço (ELS)	Descrição	Cálculo das solicitações		
Combinações quase permanentes de serviço (CQP)	Nas combinações quase permanentes de serviço, todas as ações variáveis são consideradas com seus valores quase permanentes ψ ₂ F _{qk}	$F_{d,ser} = \Sigma F_{gi,k} + \Sigma \psi_{2j} F_{qj,k}$		
Combinações frequentes de serviço (CF)	Nas combinações frequentes de serviço, a ação variável principal <i>F</i> q1 é tomada com seu valor frequente ψ ₁ <i>F</i> q1k e todas as demais ações variáveis são tomadas com seus valores quase permanentes ψ ₂ <i>F</i> qk	$F_{\rm d,ser} = \Sigma F_{\rm gik} + \psi_1 F_{\rm q1k} + \Sigma \psi_{\rm 2j} F_{\rm qjk}$		
Combinações raras de serviço (CR)	Nas combinações raras de serviço, a ação variável principal <i>F</i> _{q1} é tomada com seu valor característico <i>F</i> _{q1k} e todas as demais ações são tomadas com seus valores frequentes ψ ₁ <i>F</i> _{qk}	$F_{\rm d,ser} = \Sigma F_{\rm gik} + F_{\rm q1k} + \Sigma \psi_{\rm 1j} F_{\rm qjk}$		
onde		1		
F _{d,ser} é o va	alor de cálculo das ações para combinações de	e serviço;		
F _{q1k} éova	alor característico das ações variáveis principa	is diretas;		
ψ ₁ é o fa	tor de redução de combinação frequente para	ELS;		
ψ ₂ éofa	tor de redução de combinação quase perman	ente para ELS.		

Figura 18 – Combinações de Serviço

Fonte: (ABNT NBR 6118:2023)

As combinações quase permanentes são aquelas que atuam durante grande parte do período de vida da estrutura, e será utilizada na verificação do estado-limite de deformações excessivas.

As combinações frequentes se repetem muitas vezes durante o período de vida da estrutura e será utilizada na verificação dos estados-limites de formação de fissuras.

A aplicação da equação e escolha dos coeficientes será tratado no item 7.6.4, onde serão abordados os carregamentos e feitas as combinações para obtenção dos esforços para o estado-limite de serviço (ELS).

7.1 REVISÃO BIBLIOGRAFICA E ROTEIRO DE CÁLCULO

As lajes são elementos estruturais que tem a função de resistir aos esforços verticais, sejam permanentes ou acidentais, que atuam na estrutura. Após absorver os esforços eles serão transmitidos aos apoios, que no caso do projeto deste TCC, são vigas.

Além de resistir a esforços verticais, as lajes também têm a função de servir como diafragma rígido, transmitindo os esforços horizontais ao longo de toda a estrutura e garantindo assim que ela trabalhe por inteiro quando submetida a ação do vento, por exemplo.

Para a análise estrutural das lajes neste trabalho será utilizada a análise linear (com coeficiente de Poisson igual a 0,2, conforme o item 14.7.3 da NBR 6118/2023) baseada na teoria da elasticidade, que admite o comportamento elástico-linear dos materiais. Esses resultados podem ser usados para a verificação dos estados-limites de serviço e para o dimensionamento no estado-limite último, com a necessidade de ser respeitada a dutilidade mínima de $x/d \le 0,45$.

Sobre a Teoria da elasticidade aplicada no cálculo das lajes, é necessário fazer algumas simplificações:

- Não ocorre torção por parte das lajes nas vigas, somente existe a transferência de forças verticais;
- A ação da placa nas vigas é uniformemente distribuída, sendo que não ocorre transmissão direto da laje para os pilares, somente das lajes para as vigas e daí sim para os pilares;
- > As vigas são indeslocáveis na direção vertical quando comparadas as placas
- As condições de contorno são definidas como apoio simples ou engaste perfeito.

A equação que rege o comportamento das placas é demonstrada abaixo:

$$\frac{\partial^4 \mathbf{w}}{\partial \mathbf{x}^4} + 2 \frac{\partial^4 \mathbf{w}}{\partial \mathbf{x}^2 \partial \mathbf{y}^2} + \frac{\partial^4 \mathbf{w}}{\partial \mathbf{y}^4} = \frac{\mathbf{p}}{\mathbf{D}}$$
(7.1)

Em que:

- \blacktriangleright w(x, y) representa a função deslocamento vertical;
- > p(x, y) representa o carregamento;

D é o coeficiente que mede a rigidez da placa, que pode ser calculado conforme a equação (7.2):

$$D = \frac{Eh^3}{12 (1 - v^2)}$$
(7.2)

A determinação dos esforços numa laje pela teoria da elasticidade é um processo bem trabalhoso, sendo que uma solução analítica da equação diferencial que rege o comportamento de uma placa é possível somente para geometrias e carregamentos específicos, que não são usuais em lajes de concreto armado.

Entretanto, para lajes retangulares, existem diversas tabelas que permitem determinar os momentos fletores e os deslocamentos máximos. Neste trabalho, serão utilizadas as tabelas de Bares (1972) para encontrar os esforços de flexão, sendo necessário fazer a discretização do pavimento e calcular cada laje como sendo um elemento isolado. É necessário classificar a vinculação de cada laje em um dos nove casos demonstrados na Figura 19.

Figura 19 – Casos de Vinculação das lajes

Fonte: (Perlin, Pinto e Padaratz, 2018)

Essas tabelas de Bares fornecem os coeficientes de cálculo para flechas e esforços em função do caso em que a laje é classificada e da relação entre o maior e menor vão, definido por $\lambda = \ell_y/\ell_x$, sendo que nos casos em que λ não é múltiplo de 0,05 é realizada uma interpolação linear entre o valor inferior e superior.

O coeficiente para o cálculo das flechas é o α e dos esforços são μx , $\mu x'$, μy e $\mu y'$. Mais adiante serão calculados os coeficientes e demonstradas a sua aplicação para obtenção das flechas e esforços das lajes.

7.1.1 CÁLCULO DAS FLECHAS

As flechas elásticas máximas (flecha imediata) são calculadas com a seguinte fórmula:

$$f = \frac{p * \ell_x^4}{E * h^3} * \frac{\alpha}{100}$$
(7.3)

Onde:

 \blacktriangleright *p* é o carregamento uniformemente distribuído na placa;

 $\succ \ell_x$ é o menor vão da placa;

 \blacktriangleright E é o módulo de elasticidade secante do concreto (E_{cs});

➢ h é a espessura da placa.

> α é o coeficiente para cálculo das flechas que tem por base a relação $\lambda = \ell_y/\ell_x$.

Abaixo é possível visualizar um trecho da tabela dos coeficientes α:

λ	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7	Caso 8	Caso 9
1,00	4,67	3,20	3,20	2,42	2,21	2,21	1,81	1,81	1,46
1,05	5,17	3,61	3,42	2,67	2,55	2,31	2,04	1,92	1,60
1,10	5,64	4,04	3,63	2,91	2,92	2,41	2,27	2,04	1,74
1,15	6,09	4,47	3,82	3,12	3,29	2,48	2,49	2,14	1,87
1,20	6,52	4,91	4,02	3,34	3,67	2,56	2,72	2,24	1,98
1,25	6,95	5,34	4,18	3,55	4,07	2,63	2,95	2,33	2,10
1,30	7,36	5,77	4,35	3,73	4,48	2,69	3,16	2,42	2,20
1,35	7,76	6,21	4,50	3,92	4,92	2,72	3,36	2,48	2,30
1,40	8,14	6,62	4,65	4,08	5,31	2,75	3,56	2,56	2,37
4 46	0 64	7.00	4 70	4 00	E 70	2.00	0.70	2.62	2.45

Figura 20 – Coeficientes α para o cálculo de flechas elásticas

Fonte: (Perlin, Pinto e Padaratz, 2018)

Além da flecha imediata, é necessário calcular a flecha imediata considerando a fissuração na flexão (será utilizada a fórmula de Branson, na seção 7.10 deste trabalho) e por fim a flecha diferida no tempo, que ocorre por conta do fenômeno da fluência do concreto armado. Esta flecha é calculada de maneira aproximada pela multiplicação da flecha imediata por um fator α_f :

$$\alpha_f = \frac{\Delta\xi}{1+50\rho'} \tag{7.4}$$

Onde:

- > $\rho' = \frac{As'}{bd}$, (taxa de armadura de compressão, que equivale a zero pelo fato de as lajes não possuírem armadura de compressão)
- > $\Delta \xi = \xi(t) \xi(t0)$, sendo ξ um coeficiente em função do tempo que deve ser calculado da seguinte maneira:

$$\xi(t) = 0,68.(0,996^{t})t^{0,32}$$
 para t < 70 meses
 $\xi(t) = 2$ para t ≥ 70 meses (7.5)

Onde:

t é o tempo, em meses, quando se deseja o valor da flecha diferida e t0 é a idade, em meses, relativa à data de aplicação da carga de longa duração.

A flecha total será calculada multiplicando a flecha imediata por $(1 + \alpha_f)$:

. . .

$$f(t) = (1 + \alpha_f) f_0 \tag{7.6}$$

7.1.2 ESFORÇOS - FLEXÃO

A seguir é possível visualizar um trecho da tabela dos coeficientes para o cálculo dos momentos atuantes nas lajes:

3	Cas	Caso 1		Caso 2			Caso 3			
λ	μ_x	μ_y	μ_x	μ_y	μ_{y}'	μ_x	μ_{x}'	μ_y		
1,00	4,41	4,41	3,07	3,94	8,52	3,94	8,52	3,07		
1,05	4,80	4,45	3,42	3,78	8,79	4,19	8,91	2,84		
1,10	5,18	4,49	3,77	3,90	9,18	4,43	9,30	2,76		
1,15	5,56	4,49	4,14	3,97	9,53	4,64	9,63	2,68		
1,20	5,90	4,48	4,51	4,05	9,88	4,85	9,95	2,59		
1,25	6,27	4,45	4,88	4,10	10,16	5,03	10,22	2,51		
1 30	6 60	1 / 12	5 25	/ 15	10/11	5 20	10.48	2 / 2		

Figura 21 - Amostra da tabela para obter coeficientes para o cálculo dos momentos

Fonte: (Perlin, Pinto e Padaratz, 2018)

Os momentos máximos são calculados com as seguintes expressões:

$$M_{x} = \mu_{x} \frac{p \ell_{x}^{2}}{100}, \quad M_{y} = \mu_{y} \frac{p \ell_{x}^{2}}{100}, \quad M_{x}^{-} = \mu_{x}^{-} \frac{p \ell_{x}^{2}}{100}, \quad M_{y}^{-} = \mu_{y}^{-} \frac{p \ell_{x}^{2}}{100}$$
(7.7)

Onde:

- \blacktriangleright *p* é o carregamento uniformemente distribuído na placa;
- \triangleright ℓx é o menor vão da placa;
- > $\mu x, \mu x', \mu y e \mu y'$ são os coeficientes das tabelas de Bares para o cálculo dos momentos.

7.1.3 ESFORÇOS – CISALHAMENTO (REAÇÕES DE APOIO)

Para dispensar o uso de armadura transversal, é necessário atender ao seguinte critério:

$$V_{Sd} \le V_{Rd1} = \left[\tau_{Rd} * k * (1,2+40*\rho_1) + 0,15*\sigma_{cp}\right] * b_w * d$$
(7.8)

Onde:

- > Vsd é o esforço cortante de cálculo, medido a uma distância d da face do apoio;
- Vrd1 é o esforço cortante resistente de cálculo;
- \succ $\tau Rd = 0.25 * fctd, inf;$
- $\rho 1 = \frac{As_1}{bw*d}$ ≤ 2, sendo As1 a armadura de tração (considerada a armadura positiva efetiva que chega aos apoios em todos os casos);
- \succ k = 1 para armaduras com economia de ponta;
- > $k = 1,6 d \ge 1$ para os demais casos (em que este trabalho se enquadra);

Para calcular os esforços cortantes de cálculo, foram usadas as tabelas apresentadas em Carvalho e Figueiredo Filho (2016), que foram formuladas a partir do cálculo das áreas de influência dos diversos casos de lajes.

Com o coeficiente obtido relacionando o maior com o menor vão (λ) e com os casos de vinculação, é possível pegar os coeficientes k's nas tabelas e utilizar as seguintes equações:

$$q_x^+ = k_x^+ * p * \frac{l_x}{10}$$
 $q_x^- = k_x^- * p * \frac{l_x}{10}$ (7.9)

$$q_y^+ = k_y^+ * p * \frac{l_x}{10}$$
 $q_y^- = k_y^- * p * \frac{l_x}{10}$ (7.10)

Abaixo, é possível visualizar um trecho dessas tabelas:

	e								
1	Caso 1			Caso 2			Caso 3		
λ	k_x	k_y	k _x	k_y	k_y^-	k _x	k_x^-	k _y	
1,00	2,50	2,50	1,83	2,32	4,02	2,32	4,02	1,83	
1,05	2,62	2,50	1,92	2,37	4,10	2,38	4,13	1,83	
1,10	2,73	2,50	2,01	2,41	4,17	2,44	4,23	1,83	
1,15	2,83	2,50	2,10	2,44	4,22	2,50	4,32	1,83	
1,20	2,92	2,50	2,20	2,46	4,27	2,54	4,41	1,83	
1,25	3,00	2,50	2,29	2,48	4,30	2,59	4,48	1,83	
1,30	3,08	2,50	2,38	2,49	4,32	2,63	4,55	1,83	
1,35	3,15	2,50	2,47	2,50	4,33	2,67	4,62	1,83	
4 40	0.04	0.50	0.50	0.50	4 00	0 70	4 00	4 00	

Figura 22 – Amostra da tabela dos coeficientes k's

Fonte: (Perlin, Pinto e Padaratz, 2018)

7.2 MODELAGEM DO PAVIMENTO

Devido a simetria dos pavimentos, somente um pedaço do pavimento foi dimensionado, que pode ser visto na Figura 23. As lajes destacadas em vermelho se repetem em todos os pavimentos tipos e na cobertura e a laje destacada em verde (L23) só existe no pavimento cobertura, devido ao maquinário do elevador.

Fonte: (Do Autor)

Abaixo é possível ver a discretização usada para o cálculo das lajes do pavimento tipo e cobertura:

Figura 24 - Discretização das Lajes

Fonte: (Do Autor)

7.3 VÃOS EFETIVOS

De acordo com o item 14.7.2.2 da NBR 6118/2023, quando os apoios puderem ser considerados suficientemente rígidos quanto a translação vertical, o vão efetivo é calculado pela seguinte expressão:

$$\ell_{\rm ef} = \ell_0 + a_1 + a_2 \tag{7.11}$$

Onde:

- $\geq \ell 0$ é o vão teórico da laje, ou seja, a distância entre as faces internas dos apoios;
- a1 e a2 são os valores a serem adicionados ao vão teórico, sendo que tem como base a largura dos apoios.

Na Figura 25 é demonstrado o procedimento para obtenção de a1 e a2:

Figura 25 – Obtenção dos coeficientes a1 e a2

Fonte: (ABNT NBR 6118:2023)

Na tabela Tabela 12 são demonstrados os valores dos vãos teóricos e das larguras dos apoios, necessários para o cálculo de a₁ e a₂.

Lajes	Tipo de Laje	h (cm)	lox (cm)	loy (cm)	t1x (cm)	t2x (cm)	t1y (cm)	t2y (cm)
L1, L6, L17, L22	Maciça	8	365,0	372,5	20	20	20	20
L2, L5, L18, L21	Maciça	8	315,0	365,0	20	20	20	20
L3, L4, L19, L20	Maciça	8	272,5	365,0	20	20	20	20
L7, L10, L12, L13	Nervurada	17,38	645,0	707,5	20	20	20	20
L8, L9, L15, L16	Maciça	8	272,5	290,0	20	20	20	20
L11	Maciça	8	110,0	180,0	15	15	15	15
L14	Maciça	8	240,0	565,0	20	15	20	20
L23	Maciça	12	170,0	365,0	15	15	15	15

Tabela 12 - Valores para cálculo dos vãos efetivos das lajes

Fonte: (Do Autor)

Na Tabela 13 são demonstrados os valores de a_1 e a_2 , bem como os valores dos vãos efetivos para cada agrupamento de lajes.

Lajes	Tipo de Laje	a1x (cm)	a2x (cm)	a1y (cm)	a2y (cm)	lx (cm)	ly (cm)
L1, L6, L17, L22	Maciça	2,4	2,4	2,4	2,4	369,8	377,3
L2, L5, L18, L21	Maciça	2,4	2,4	2,4	2,4	319,8	369,8
L3, L4, L19, L20	Maciça	2,4	2,4	2,4	2,4	277,3	369,8
L7, L10, L12, L13	Nervurada	5,2	5,2	5,2	5,2	655,4	717,9
L8, L9, L15, L16	Maciça	2,4	2,4	2,4	2,4	277,3	294,8
L11	Maciça	2,4	2,4	2,4	2,4	114,8	184,8
L14	Maciça	2,4	2,4	2,4	2,4	244,8	569,8
L23	Maciça	3,6	3,6	3,6	3,6	177,2	372,2

Tabela 13 - Vãos efetivos

7.4 TIPOS DE ARMAÇÃO

As lajes têm duas possibilidades de armação: unidirecional ou bidirecional. Para definir o tipo de armação de cada laje é necessário encontrar a relação entre os seus comprimentos y e x, usando os valores dos vãos efetivos (Tabela 13). A relação é dada por:

$$\lambda = \frac{\ell_y}{\ell_x} \tag{7.12}$$

Sendo ℓ_y o maior vão e ℓ_x o menor vão.

No caso de $\lambda > 2$, a laje é armada no sentido do menor vão, visto que ela tem um comprimento muito maior que a sua largura e isso resulta em esforços desprezíveis no sentido do maior vão.

No caso de $\lambda < 2$, a laje é armada nas duas direções, já que os esforços em ambas as direções são significativos.

Na tabela abaixo é possível visualizar os valores de λ para cada laje e o tipo de armação resultante:

Lajes	lx (cm)	ly (cm)	λ	Direção
L1, L6, L17, L22	369,8	377,3	1,02	Biderecional
L2, L5, L18, L21	319,8	369,8	1,16	Biderecional
L3, L4, L19, L20	277,3	369,8	1,33	Biderecional
L7, L10, L12, L13	655,4	717,9	1,10	Biderecional
L8, L9, L15, L16	277,3	294,8	1,06	Biderecional
L11	114,8	184,8	1,61	Biderecional
L14	244,8	569,8	2,33	Uniderecional
L23	177,2	372,2	2,10	Uniderecional

Tabela 14 - Direção das Lajes

Fonte: (Do Autor)

7.5 CONDIÇÕES DE APOIO E VINCULAÇÃO

As lajes foram consideradas engastadas uma na outra quando:

- > A diferença de espessura entre as lajes foi menor ou igual a 2 centímetros;
- > 2/3 ou mais de continuidade ao longo de um apoio entre duas lajes adjacentes;
- > O vão da laje adjacente maior ou igual que 2/3 do vão da laje considerada;
- > O carregamento da laje considerada for semelhante ao da laje adjacente.

Abaixo é possível visualizar os casos em que cada laje foi classificada, sendo que os casos aplicados a cada laje foram tirados da Figura 19:

Figura 26- Vinculação das lajes

Fonte: (Do Autor)

É possível observar que as lajes maciças não foram consideradas engastadas na laje nervurada e que a L14 foi considerada não engastada na L23, para padronizar o pavimento cobertura com o pavimento tipo.

7.6 CARREGAMENTOS

7.6.1 CARREGAMENTOS PERMANENTES

Os carregamentos de peso próprio das lajes maciças foram obtidos multiplicando-se a espessura das lajes pelo peso específico do concreto (25kN/m³). Paras as lajes nervuradas foi necessário usar a seguinte expressão:

$$P = \frac{V}{S_x S_y} \gamma \tag{7.13}$$

Onde:

- P é o peso próprio por área de laje (kN/m²);
- ➢ V é o volume de concreto entre eixos de nervuras (m³);
- SxSy é a área entre eixos de nervuras (m²);

> γ é o peso específico do concreto armado (kN/m³).

Também é necessário adicionar o peso dos blocos de EPS que são retirados na região de engaste e substituídos por concreto, devido a compressão que ocorre nas nervuras por conta do momento negativo. Esse peso é distribuído pela área da laje nervurada, como pode ser observado abaixo:

Número de	Volume total	Carga
blocos (un)	(m³)	kN/m²
13	0,53	0,29

Tabela 15 - Carregamento dos blocos amaciçados

.os (un)	(111)	KI
13	0,53	

Fonte:	(Do	Autor)
--------	-----	--------

Para os revestimentos de piso, telhado e forro, foi usada a NBR 6120 para fazer as estimativas de peso específico e as espessuras fornecidas pelo arquitetônico para encontrar o carregamento. Na Tabela 16 é possível visualizar os carregamentos permanentes, sendo que para padronizar o cálculo e detalhamento da cobertura, foi usada a carga de contrapiso na cobertura ao invés da carga de telhado, já que esta era menor.

Tabela 16 – Carregamentos Permanentes (com excessão das paredes)

Tino	Peso		Carga
про	específico	espessura (cm)	(kN/m²)
Contrapiso	21	5	1,05
Revest. cerâmico	18	1	0,18
Forro			0,25
Telhado			0,85
total adotado (co	ontrapiso + reves	timento + forro)	1,48

Fonte: (Do Autor)

No projeto, existem cargas de paredes sobre lajes bidirecionais. Nesse caso, além de necessitar das informações de peso específico dos materiais que compõem a parede, é necessário distribuir este carregamento por toda a laje. Para isso, será usada a seguinte equação:

$$g_{par} = \frac{(\gamma_{alv} * e * h * l)}{A_{laje}} * k$$
(7.14)

Onde:

- → g_{par} é a carga de parede na laje (kN/m²);
- > γ_{alv} é o peso específico da alvenaria (kN/m³);
- ▶ e é a espessura da parede (m);
- \blacktriangleright *h* é a altura da parede (m);
- \blacktriangleright *l* é o perímetro da parede ao longo da laje (m);
- ➤ A_{laje} é a área da laje (m²) = lx * ly;

k é um coeficiente que depende do posicionamento das paredes nas lajes. No caso do projeto em estudo, adotou-se o valor de 1.

As lajes do projeto recebem carga de paredes de 25 cm e de 15 cm para ambientes molhados. Foram utilizados os valores da NBR 6120 para fazer as composições, sendo que foi utilizado o peso dos blocos cerâmicos mais o peso dos revestimentos (19 kN/m³ para argamassa e 18 kN/m³ para cerâmica). Na figura abaixo é possível visualizar a obtenção desses valores:

	17,5	2,0	5,2	5,0
ALVENARIA DE VEDAÇÃO				
	6,5	1,0	1,4	1,8
Place de esperate verade	9	1,1	1,5	1,9
Bioco de concreto vazado	11,5	1,3	1,7	2,1
(Classe C - ABIVT NBR 0130)	14	1,4	1,8	2,2
	19	1,8	2,2	2,6
	9	0,7	1,1	1,6
Bloco cerâmico vazado	11,5	0,9	1,3	1,7
(Furo horizontal - ABNT NBR 15270-1)	14	1,1	1,5	1,9
3	19	1,4	1,8	2,3
	7,5	0,5	0,9	1,3
	10	0,6	1,0	1,4
Bloco de concreto celular autoclavado	12,5	0,8	1,2	1,6
(Classe C25 – ABNT NBR 13438)	15	0,9	1,3	1,7
	17,5	1,1	1,5	1,9
	20	1,2	1,6	2,0
Bloco de vidro (decorativo, sem resistência ao fogo)	8	0,8		-
NOTA Na composição de pesos de alvenarias desta Tabela foi o argamassa de assentamento vertical e horizontal de cal, cin de 18 kN/m ³ ; revestimento com peso específico médio de 19 kN/m ³ ; proporção de um meio bloco para cada três blocos inteiros;	considerado o seguir nento e areia com 1 d	ite: cm de espes	sura e peso	especif

Figura 27 – NBR 6120 – Cargas de Paredes

Fonte: (ABNT NBR 6120:2019)

Na tabela abaixo é possível ver os pesos para cada tipo de parede:

peso das paredes			
Тіро	Peso (kN/m²)		
15 cm	1,84		
20 cm	2,24		
25 cm	2,54		
15 cm amb.	1,83		

Tabela 17 - Composição para cargas de Parede

Fonte: (Do Autor)

Na tabela abaixo é possível visualizar os carregamentos de paredes distribuídos nas lajes:

			-	-	-			
Lajes	Тіро	Peso (kN/m³)	Altura (cm)	Carga kN/m	Perímetro (m)	Carga kN	Área Iaje (m²)	Carga kN/m²
L2, L5, L18, L21	15 cm amb. molhado	1,83	312	5,71	6,1	34,8	11,5	3,03
L7, L10, L12, L13	15 cm amb. molhado	1,83	295	5,40	6,53	35,3	45,6	0,77
L7, L10, L12, L14	25 cm	2,54	295	7,49	3,3	24,7	45,6	0,54

Tabela 18 – Carga das paredes nas lajes

Fonte: (Do Autor)

7.6.2 CARREGAMENTOS ACIDENTAIS

Para definir os carregamentos acidentais do edifício, foi utilizada a tabela 10 da NBR 6120:2019, sendo que o trecho utilizado pode ser visualizado abaixo:

	Downikária	4.5	
	Dormitorios	1,5	1.57
	Sala, copa, cozinha	1,5	-
	Sanitários	1,5	
	Despensa, área de serviço e lavanderia	2	-
	Quadras esportivas	5 a	-
	Salão de festas, salão de jogos	3 a	-
	Áreas de uso comum	3 a	-
Edifícios	Academia	3 a	-
residenciais	Forro acessíveis apenas para manutenção e sem estoque de materiais	0,1 ^{a,r}	-
	Sótão	2 a	-
	Corredores dentro de unidades autônomas	1,5	_
	Corredores de uso comum	3	
	Depósitos	3	-
	Áreas técnicas (ver item nesta Tabela)		
	Jardins (ver item nesta Tabela)		

Figura 28 – Carregamentos acidentais

Fonte: (ABNT NBR 6120:2019)

Foi adotado 1,5 kN/m² para todas as lajes, com exceção das lajes onde ficam os corredores de uso comum para todos os apartamentos e para a laje em que fica posicionado o maquinário do elevador. Nas lajes nervuradas, devido a área da área de serviço ser muito menor que a área da cozinha e lavabo, foi adotado 1,5 kN/m² para toda a laje nervurada.

Devido à falta de informações por parte das fabricantes de elevadores para a definição dos carregamentos da laje que apoia o maquinário do elevador, foi utilizada a NBR 6120. O carregamento variável adotado foi de 30 kN/m². A tabela a seguir mostra os valores de carga variável para áreas técnicas da NBR 6120:2019:

0 01001100			
3	Barrilete	1,5	d
	Áreas técnicas em geral (fora da projeção dos equipamentos), exceto barrilete	3	
	Sala de ventiladores, pressurização, exaustores	3	
	Sala de ar-condicionado (fan coil)	4	943
Áreas técnicas	Sala de painéis elétricos de baixa tensão	4	
a,c As cargas	Sala de gerador e transformador (com leiaute)	3	
devem ser validadas	Sala de gerador e transformador (sem leiaute)	10	
caso a caso,	Sala de no-breaks	7,5	-
os valores	Sala de baterias	10	-
minimos	CPD (centro de processamento de dados)	5	-
indicados nesta Tabela.	Casa de máquinas de elevador de passageiros (v ≤ 1,0 m/s)	30 e.f	g
	Casa de máquinas de elevador de passageiros (v > 1,0 m/s)	50 ^{e,f}	g
	Poço de elevador de passageiros	50 f	
	Poço de plataforma de elevação motorizada para pessoas com mobilidade reduzida	2,5 ^h	_

Tabela 19 - Carregamentos do elevador NBR 6120

Fonte: (ABNT NBR 6120:2019)

7.6.4 RESUMO E COMBINAÇÃO DOS CARREGAMENTOS PARA LAJES

Na tabela a seguir é apresentado o resumo dos carregamentos:

Laios	Peso próprio	Permanente	Acidental
Lajes	(kN/m²)	(kN/m²)	(kN/m²)
L1, L6, L17, L22	2,00	1,48	1,5
L2, L5, L18, L21	2,00	4,51	1,5
L3, L4, L19, L20	2,00	1,48	1,5
L7, L10, L12, L13	3,19	2,79	1,5
L8, L9, L15, L16	2,00	1,48	1,5
L11	2,00	1,48	3
L14	2,00	1,48	3
L23	3,00	0	30,0

Tabela 20 - Resumo de Carregamentos

Fonte: (Do Autor)

Os carregamentos permanentes incluem as cargas de revestimento no piso e as paredes, com exceção da L23, que possui o carregamento do elevador.

Com os valores dos carregamentos determinados, foi possível fazer as combinações de ações usando o que foi explicado no item 6.4 deste trabalho. Abaixo serão reexibidas as equações utilizadas e as tabelas com os coeficientes utilizados:

ELU

$$F_d = \gamma_g F_{gk} + \gamma_q \left(F_{q1k} + \sum \Psi_{0j} F_{qjk} \right)$$
(7.15)

ELS

$$F_{d,ser} = \Sigma F_{gi,k} + \Sigma \psi_{2j} F_{qj,k}$$
(7.16)

	Ações								
Combinações de ações	Permanentes (g)		Variáveis (q)		Protensão (p)		Recalques d apoio e retração		
	D	F	G	Т	D	F	D	F	
Normais	1,4 a	1,0	1,4	1,2	1,2	0,9	1,2	0	
Especiais ou de construção	1,3	1,0	1,2	1,0	1,2	0,9	1,2	0	
Excepcionais	1,2	1,0	1,0	0	1,2	0,9	0	0	

Figura 29 – Coeficientes γ

Fonte: (ABNT NBR 6118:2023)

Acões			Yt2	
	Ações	Ψο	ψ_1^a	Ψ2
Locais em que não há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, nem de elevadas concentrações de pessoas ^b		0,5	0,4	0,3
acidentais de edifícios	Locais em que há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, ou de elevada concentração de pessoas ^c	0,7	0,6	0,4
	Biblioteca, arquivos, oficinas e garagens	0,8	0,7	0,6
Vento	Pressão dinâmica do vento nas estruturas em geral	0,6	0,3	0
Temperatura	Variações uniformes de temperatura em relação à média anual local	0,6	0,5	0,3

Figura 30 – Coeficientes ψ

Fonte: (ABNT NBR 6118:2023)

Fazendo as combinações para ELU e ELS, chegou-se em:

Lajes	Ύg	Ϋ́q	ψ2	ELU (kN/m²)	ELS (CQP) (kN/m²)
L1, L6, L17, L22	1,4	1,4	0,3	6,97	3,93
L2, L5, L18, L21	1,4	1,4	0,3	11,21	6,96
L3, L4, L19, L20	1,4	1,4	0,3	6,97	3,93
L7, L10, L12, L13	1,4	1,4	0,3	10,48	6,44
L8, L9, L15, L16	1,4	1,4	0,3	6,97	3,93
L11	1,4	1,4	0,3	9,07	4,38
L14	1,4	1,4	0,3	9,07	4,38
L23	1,4	1,4	0,3	46,20	12,00

Tabela 21 – Combinações de Ações para as Lajes

Fonte: (Do Autor)

É interessante destacar que a NBR 6118/2023 destaca, na página 95, que quando a carga acidental for de até 5 kN/m² e no máximo igual a 50% da carga total (caso do edifício deste trabalho), não é necessário fazer a análise estrutural com alternância de cargas.

Para as lajes unidirecionais (L14 e L23), os esforços de momento são calculados como se fosse uma viga com base de um metro. A equação (7.17) foi utilizada para encontrar o momento positivo máximo das lajes unidirecionais com dois apoios rotulados.

$$M^{+} = \frac{pl^2}{8} \tag{7.17}$$

Onde:

- > l é o vão efetivo no sentido em que a laje se apoia;
- > p é o carregamento que age na laje.

Para as lajes bidirecionais, como explicado na seção 7.1, foram usadas as tabelas de Bares para a obtenção dos coeficientes μx , $\mu x'$, $\mu y e \mu y$, que dependem do caso de vinculação das lajes e da relação entre vãos dada por λ . Na tabela a seguir é possível visualizar os coeficientes encontrados:

Laios	L1, L6,	L2, L5,	L3, L4,	L7, L10,	L8, L9,	111
Lajes	L17, L22	L18, L21	L19, L20	L12, L13	L15, L16	LII
Caso	2	6	8	3	4	1
λ	1,02	1,16	1,33	1,10	1,06	1,61
μ_{x}	3,21	3,53	3,52	4,41	3,12	8,39
μ_{x}^{-}	0,00	7,58	7,66	9,26	7,55	0,00
μ_v	3,71	1,88	1,74	2,77	2,81	4,13
μ_{y}^{-}	8,56	0,00	5,75	0,00	7,23	0,00

Tabela 22 – Coeficientes µ

Fonte: (Do Autor)

Calculados os coeficientes, foram usadas as equações de (7.7) para encontrar os momentos positivos e negativos no menor e maior vão das lajes bidirecionais. Os resultados dos esforços do ELU, sem compatibilização, para as lajes unidirecionais e bidirecionais podem ser visualizados na tabela a seguir:

Laje	Momentos (kNm/m) - ELU (Sem compatibilização)						
	Mx +	Mx-	My+	My-			
L1, L6, L17, L22	3,06	0,00	3,54	8,16			
L2, L5, L18, L21	4,05	8,69	2,15	0,00			
L3, L4, L19, L20	1,89	4,11	0,93	3,08			
L7, L10, L12, L13	19,84	41,71	12,46	0,00			
L8, L9, L15, L16	1,67	4,05	1,51	3,87			
L11	1,00	0,00	0,49	0,00			
L14	6,80	0,00	0,00	0,00			
L23	18,13	0,00	0,00	0,00			

Tabela 23 - Cálculo dos momentos do ELU sem compatibilização

Fonte: (Do Autor)

Na figura a seguir é possível observar os carregamentos obtidos e a sua orientação em cada laje.

Fonte: (Do Autor)

Após a obtenção dos esforços para cada laje, considerando que elas estão isoladas, é necessário compatibilizar esses esforços, já que as lajes são contínuas. Para a compatibilização dos momentos negativos foram utilizados os seguintes valores:

$$M^{-} \geq \begin{cases} 0.8 \ M_{A}^{-} \\ 0.8 \ M_{B}^{-} \\ \frac{M_{A}^{-} + M_{B}^{-}}{2} \end{cases}$$
(7.18)

Sendo que a maneira de obter os valores de M_A^- e M_B^- pode ser visto na figura abaixo:.

Figura 32 – Legenda da compatibilização de momento negativos

Fonte: (Perlin, Pinto e Padaratz, 2018)

Devido a essa correção dos momentos negativos, também é necessário que os momentos positivos sejam compatibilizados. Para isso são usados dois casos: vãos extremos e intermediários. Para os vãos extremos é adicionado metade da variação do momento fletor negativo ao momento positivo da direção considerada. Para os vãos intermediários, é adicionado a média das variações ocorridas nos momentos negativos dos apoios da direção considerada. A figura abaixo esclarece essa compatibilização:

Figura 33 - Compatibilização de momentos negativos

Fonte: (Perlin, Pinto e Padaratz, 2018)

Os resultados dos esforços do ELU, compatibilizados, para as lajes unidirecionais e bidirecionais podem ser visualizados na Tabela 24.

	NEGATIVOS		POSITIVOS			
Lajes que compartilham momentos negativos		M- (kNm/m)	LAJES	Mx+ (kNm/m)	My+ (kNm/m)	
L1, L6, L17, L22	L2, L5, L18, L21	8,42	L1, L6, L17, L22	3,06	3,54	
L2, L5, L18, L21	L3, L4, L19, L20	6,95	L2, L5, L18, L21	5,05	2,15	
L3, L4, L19, L20	L8, L9, L15, L16	3,48	L3, L4, L19, L20	1,89	0,93	
L7, L10	L12, L13	41,71	L7, L10, L12, L13	19,84	12,46	
l8, l9	L15, L16	4,05	L8, L9, L15, L16	1,67	1,70	
L3, L4	L19, L20	4,11	L11	1,00	0,49	
			L14	6,80	0,00	
			L23	18,13	0,00	

Tabela 24 - Compatibilização de momentos ELU

Fonte: (Do Autor)

Na Figura 34 é possível visualizar os esforços nas lajes, sendo que os esforços nas lajes nervuradas já foram transformados para cada nervura. Para isso, basta multiplicar o esforço por metro pelo espaçamento entre nervuras.

Figura 34 – Momentos compatibilizados

Fonte: (Do Autor)

7.8 DIMENSIONAMENTO DAS LAJES

7.8.1 CÁLCULO DA LINHA NEUTRA E DUTILIDADE

Para as lajes nervuradas, é necessário definir a largura colaborante da mesa, para poder converter os esforços obtidos por metro para as nervuras e para conseguir calcular o momento máximo que a mesa da laje nervurada consegue suportar. Na figura abaixo, é descrito o procedimento da NBR 6118/2023:

Figura 35 – Largura da mesa colaborante

Fonte: (ABNT NBR 6118:2023)

Onde:

- bf é a largura colaborante da mesa;
- \blacktriangleright a = 1,00l para vigas simplesmente apoiadas;
- \blacktriangleright a = 0,751 tramo com momento em uma só extremidade;
- \blacktriangleright a = 0,60l tramo com momento nas duas extremidades;
- \blacktriangleright a = 2,001 tramo em balanço, com l sendo o comprimento do tramo considerado.

Na Tabela 25 é possível perceber que a largura da mesa colaborante coincidiu com a distância entre eixos das nervuras.

Tabela 25 –	Definição	da largura	colaborante das	s mesas de lajes	nervuradas
	`	<i>L</i>)			

Direção	hf (cm)	bw (cm)	lx (cm)	a (cm)	b1(cm)	b3 (cm)	b2 (cm)	bf (cm)
x	5	10	645,0	483,75	22,5	22,5	45	55
у	5	10	707,5	645	22,5	22,5	45	55

Fonte: (Do Autor)

Definindo um diâmetro inicial para o cálculo, que não ultrapasse a relação h/8, e com os cobrimentos já definidos, é possível calcular as alturas uteis das seções. As fórmulas abaixo servem para calcular dx e dy, respectivamente:

$$dx = h - c - 0.5 * \emptyset x \tag{7.19}$$

$$d_y = h - c - \phi_x - 0.5 * \phi_y \tag{7.20}$$

Onde:

- \succ *h* é altura da laje;
- c é o cobrimento das armaduras e foi definido no item 3 deste trabalho;
- > $\phi_x e \phi_y s$ ão os diâmetros das armaduras x e y das lajes.

Para definir se as lajes nervuradas serão calculadas da mesma maneira que as lajes maciças, é necessário verificar se a linha neutra passa pela mesa da seção. Isso pode ser feito comparando o momento que atua na mesa quando a linha neutra vale 5 cm, que seria a mesma altura da capa, com o momento que está aplicado nela.

O momento que atua na mesa quando a linha neutra vale 5 cm pode ser calculado como mostra a equação a seguir:

$$Mdm = 0.85 * fcd * bf * hf * (d - 0.5 * hf)$$
^(7.21)

Direção	hf (cm)	bf (cm)	d armadura positiva (cm)	fcd (MPa)	Mdm mesa (kNm/Nervura)	M solicitante (kNm/nervura)
x	5	55	20,88	21,43	92,04	10,91
у	5	55	19,63	21,43	85,78	6,85

Tabela 26 – Verificação da Linha neutra na laje nervurada

(7.01)

Fonte: (Do Autor)
É possível perceber que a mesa suporta com folga os momentos solicitantes e será dimensionada da mesma forma que as lajes maciças.

Agora, com os esforços e geometrias definidos, é necessário calcular a armadura das lajes. A armadura obtida depende dos seguintes fatores:

- Valor dos momentos fletores;
- \succ *fck* do concreto;
- Espessura da laje.

O limite de dutilidade de $x/d \le 0.45$ também deve ser respeitado.

Para a posição da linha Neutra (x), é utilizada a seguinte equação:

$$x = \frac{d - \sqrt{d^2 - 2 \times \frac{Md}{bw \times ac \times fcd}}}{\lambda}$$
(7.22)

Onde:

- ➢ Md é o momento da combinação de ELU;
- *b* d é a altura útil da seção;
- fcd é a resistência de cálculo do concreto a compressão;
- α_c é o parâmetro de redução da tensão, sendo 0,85 para concretos de classe até C50;
- λ é o coeficiente de posição da linha neutra e vale 0,8 para concretos de classe até C50;
- *bw* é a largura da seção analisada (100 cm para lajes maciças e a largura da nervura para lajes nervuradas).

Para as lajes desse trabalho, podem ser analisados os valores obtidos para d, x e x/d nas direções x e y, tanto para os momentos positivos quanto para os negativos, nas tabelas a seguir:

Laje	Mx	Unidade Mx	h (cm)	Øx (cm)	cob (cm)	d (cm)	fcd (MPa)	x (cm)	x/d
L1, L6, L17, L22	3,06	kNm/metro	8	0,63	3,5	4,19	21,43	0,53	0,13
L2, L5, L18, L21	5,05	kNm/metro	8	0,80	3,5	4,10	21,43	0,93	0,23
L3, L4, L19, L20	1,89	kNm/metro	8	0,63	3,5	4,19	21,43	0,32	0,08
L7, L10, L12, L13	10,91	kNm/nervura	25	1,25	3,5	20,88	21,43	0,66	0,03
L8, L9, L15, L16	1,67	kNm/metro	8	0,63	3,5	4,19	21,43	0,28	0,07
L11	1,00	kNm/metro	8	0,63	3,5	4,19	21,43	0,17	0,04
L14	6,80	kNm/metro	8	0,80	3,5	4,10	21,43	1,30	0,32
L23	18,13	kNm/metro	12	1,00	3,5	8,00	21,43	1,70	0,21

Tabela 27 – Valores de d, x e x/d para momentos positivos no menor vão

Fonte: (Do Autor)

Tabela 28 - Valores de d, x e x/d para momentos positivos no maior vão

Laje	Му	Unidade My	h (cm)	Øy (cm)	cob (cm)	d (cm)	fcd (MPa)	x (cm)	x/d
L1, L6, L17, L22	3,54	kNm/metro	8	0,63	3,5	3,56	21,43	0,75	0,21
L2, L5, L18, L21	2,15	kNm/metro	8	0,63	3,5	3,39	21,43	0,46	0,14
L3, L4, L19, L20	0,93	kNm/metro	8	0,63	3,5	3,56	21,43	0,18	0,05
L7, L10, L12, L13	6,85	kNm/nervura	25	1,25	3,5	19,63	21,43	0,44	0,02
L8, L9, L15, L16	1,70	kNm/metro	8	0,63	3,5	3,56	21,43	0,34	0,10
L11	0,49	kNm/metro	8	0,63	3,5	3,56	21,43	0,10	0,03
L14	0,00	kNm/metro	8	0,63	3,5	3,39	21,43	0,00	0,00
L23	0,00	kNm/metro	12	0,63	3,5	7,19	21,43	0,00	0,00

Fonte: (Do Autor)

Lajes que compa neg	artilham momentos gativos	M -	Unidade M -	h (cm)	Ø (cm)	cob (cm)	d (cm)	fcd (MPa)	x (cm)	x/d
L1, L6, L17, L22	L2, L5, L18, L21	8,42	kNm/metro	8	0,63	1,5	6,19	21,43	1,00	0,16
L2, L5, L18, L21	L3, L4, L19, L20	6,95	kNm/metro	8	0,63	1,5	6,19	21,43	0,81	0,13
L3, L4, L19, L20	L8, L9, L15, L16	3,48	kNm/metro	8	0,63	2,13	5,56	21,43	0,44	0,08
L7, L10	L12, L13	22,94	kNm/Nervura	25	1,60	1,5	22,70	21,43	1,29	0,06
L8, L15	L9, L16	4,05	kNm/metro	8	0,63	1,5	6,19	21,43	0,46	0,07
L3, L19	L4, L20	4,11	kNm/metro	8	0,63	1,5	6,19	21,43	0,47	0,08

Tabela 29 - Valores de d, x e x/d para momentos ne	egativos
--	----------

Fonte: (Do Autor)

7.8.2 CÁLCULO DAS ARMADURAS

O cálculo da armadura necessária para cada laje usa a seguinte equação:

$$A_{s} = \frac{Md}{fyd * (d - 0.4 * x)}$$
(7.23)

O valor de *fyd* pode ser verificado na Tabela 5.

Calculada a área de aço pela equação (7.23), é necessário comparar esse valor com os valores da Figura 36, que são analisados caso a caso, e adotar o maior entre eles.

TABELA 3.13 – VALORES MÍNIMOS PARA ARMADURAS DE LAJES								
Armadura	Elementos estruturais sem armaduras ativas							
Armaduras negativas	$\rho_s \ge \rho_{min}$							
Armaduras negativas de bordas sem continuidade	$\rho_s \ge 0.67 \rho_{min}$							
Armaduras positivas de lajes armadas nas duas direções	$ \rho_s \ge 0,67 \rho_{min} $							
Armadura positiva (principal) de lajes armadas em uma direção	$ \rho_s \ge \rho_{min} $							
Armadura positiva (secundária) de lajes armadas em uma direção	$\begin{array}{l} A_{s/s} \geq 20 \% da armadura principal \\ A_{s/s} \geq 0.5 \rho_{min} \\ A_{s/s} \geq 0.9 cm^2/m \end{array}$							

Figura 36 - Valores mínimos para armaduras de lajes

Para as lajes maciças, o valor de ρmin da Figura 36 pode ser visualizado na Figura 37, sendo tomado como 0,15%.

	Valores de ρ _{mín} ^a (A _{s,mín} /A _c)													
%														
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90										90				
0,150	0,150	0,150	0,164	0,179	0,194	0,208	0,211	0,219	0,226	0,233	0,239	0,245	0,251	0,256

Figura 37 – Valores de ρmin com base no fck

Fonte: (ABNT NBR 6118:2023)

Para as lajes nervuradas, foi necessário utilizar a equação (7.24), retirada da NBR 6118/2023, que estabelece o momento mínimo para o qual a laje deve ser dimensionada.

$$Md, min = 0.8 * W_0 * f_{ctk,sup}$$
(7.24)

Onde:

W₀ é o módulo de resistência da seção transversal bruta de concreto, relativo à fibra mais tracionada;

 \blacktriangleright $f_{ctk,sup}$ é a resistência característica superior do concreto a tração.

Deve ser respeitado um $\rho min = 0,15\%$. A seguir é demonstrado o cálculo do momento mínimo bem como a área de aço e o ρmin resultante:

l (cm4)	y sup (cm)	y inf (cm)	fctk sup (MPa)	md min sup (kNm)	md min inf (kNm)
25331,69	7,76	17,24	3,77	9,83	4,43

Tabela 30 - Cálculo do momento mínimo para seções T

Fonte:	(Do	Autor)
--------	-----	--------

Tabela 31 - Cálculo de As min e de ps para seções T

M (kNm)	h (cm)	d (cm)	fcd (MPa)	x (cm)	x/d	As (cm 2)	Ac (cm²)	ρs %
9,83	25	22,70	21,43	0,30	0,01	1,00	475	0,211
4,43	25	19,63	21,43	0,16	0,01	0,52	475	0,110

Fonte: (Do Autor)

Os valores de ps para as armaduras positivas resultou em 0,11%, sendo arredondado

para 0,15% nas verificações a seguir

Nas tabelas a seguir é possível visualizar os valores calculados para cada laje:

Tabela 32 – Área de aço – Região de momentos positivos na direção x

Laje	h (cm)	As min	As (Eq 7.23)	As adotado
L1, L6, L17, L22	8	0,80 cm²/m	1,77 cm²/m	1,77 cm²/m
L2, L5, L18, L21	8	0,80 cm²/m	3,12 cm²/m	3,12 cm²/m
L3, L4, L19, L20	8	0,80 cm²/m	1,07 cm²/m	1,07 cm²/m
L7, L10, L12, L13	25	0,25 cm²/N	1,22 cm²/N	1,22 cm²/N
L8, L9, L15, L16	8	0,80 cm²/m	0,94 cm²/m	0,94 cm²/m
L11	8	0,80 cm²/m	0,56 cm²/m	0,80 cm²/m
L14	8	1,20 cm²/m	4,37 cm²/m	4,37 cm²/m
L23	12	1,80 cm²/m	5,70 cm²/m	5,70 cm²/m

Fonte: (Do Autor)

Laje	h (cm)	As min	As (Eq 7.23)	As adotado
L1, L6, L17, L22	8	0,80 cm²/m	2,50 cm²/m	2,50 cm²/m
L2, L5, L18, L21	8	0,80 cm²/m	1,55 cm²/m	1,55 cm²/m
L3, L4, L19, L20	8	0,80 cm²/m	0,62 cm²/m	0,80 cm²/m
L7, L10, L12, L13	25	0,25 cm²/N	0,81 cm²/N	0,81 cm²/N
L8, L9, L15, L16	8	0,80 cm²/m	1,15 cm²/m	1,15 cm²/m
L11	8	0,80 cm²/m	0,32 cm²/m	0,80 cm²/m
L14	8	1,20 cm²/m	0,00 cm²/m	0,90 cm²/m
L23	12	1,80 cm²/m	0,00 cm²/m	1,14 cm²/m

Tabela 33 – Área de aço – Região de momentos positivos na direção y

Fonte: (Do Autor)

Tabela 34- Área de aço - Região de momentos negativos

Laje	h (cm)	As min	As (Eq 7.23)	As adotado
L1, L6, L17, L22	8	1,20 cm²/m	3,35 cm²/m	3,35 cm²/m
L2, L5, L18, L21	8	1,20 cm²/m	2,73 cm²/m	2,73 cm²/m
L3, L4, L19, L20	8	1,20 cm²/m	1,49 cm²/m	1,49 cm²/m
L7, L10	25	1,00 cm²/N	2,38 cm²/N	2,38 cm²/N
L8, L9	8	1,20 cm²/m	1,55 cm²/m	1,55 cm²/m
L3, L4	8	1,20 cm²/m	1,57 cm²/m	1,57 cm²/m

Fonte: (Do Autor)

7.8.2.1.1 DETALHAMENTO DAS ARMADURAS POSITIVAS

Com a taxa de aço necessária para cada laje, é possível calcular os espaçamentos entre barras. Isso é feito dividindo a área de aço necessária para a faixa de um metro pela área de aço da barra adotada, resultando assim no espaçamento. Com o espaçamento calculado, é necessário conferir se atende os seguintes critérios:

Figura 38 - Critérios para espaçamento máximo entre barras

$$s \leq \begin{cases} 20 \ cm \\ 2h \end{cases}$$

Nas tabelas abaixo é possível visualizar os espaçamentos resultantes e a área de aço efetiva para cada seção.

Laje	Øx (cm)	As adotado	Espaçamento (cm)	As efetivo
L1, L6, L17, L22	0,63	1,77 cm²/m	16	1,95 cm²/m
L2, L5, L18, L21	0,80	3,12 cm²/m	16	3,14 cm²/m
L3, L4, L19, L20	0,63	1,07 cm²/m	16	1,95 cm²/m
L7, L10, L12, L13	1,25	1,22 cm²/N	55 (cada nervura)	1,23 cm²/N
L8, L9, L15, L16	0,63	0,94 cm²/m	16	1,95 cm²/m
L11	0,63	0,80 cm²/m	16	1,95 cm²/m
L14	0,80	4,37 cm²/m	11	4,57 cm²/m
L23	1,00	5,70 cm²/m	12	6,54 cm²/m

Tabela 35 – Espaçamento e área de aço efetiva para cada laje (direção x)

Fonte: (Do Autor)

Tabela 36– Espaçamento e área de aço efetiva para cada laje (direção y)

Laje	Øy (cm)	As adotado	Espaçamento (cm)	As efetivo
L1, L6, L17, L22	0,63	2,50 cm²/m	12	2,60 cm²/m
L2, L5, L18, L21	0,63	1,55 cm²/m	16	1,95 cm²/m
L3, L4, L19, L20	0,63	0,80 cm²/m	16	1,95 cm²/m
L7, L10, L12, L13	1,25	0,81 cm²/N	55 (cada nervura)	1,23 cm²/N
L8, L9, L15, L16	0,63	1,15 cm²/m	16	1,95 cm²/m
L11	0,63	0,80 cm²/m	16	1,95 cm²/m
L14	0,63	0,90 cm²/m	33	0,94 cm²/m
L23	0,63	1,14 cm²/m	25	1,25 cm²/m

Fonte: (Do Autor)

A quantidade de barras é obtida por:

$$Q = \frac{l_0}{s} - 1 \tag{7.25}$$

Sendo que o valor de Q deve ser arredondado para cima.

Já o comprimento da barra é calculado por:

$$C = 10\phi + l_0 + 10\phi \tag{7.26}$$

Onde:

- > l_0 é o vão livre entre as faces das vigas;
- \blacktriangleright *s* é o espaçamento entre os eixos das barras;
- $\blacktriangleright \phi$ é o diâmetro da barra.

Para o comprimento da armadura positiva, optou-se por ancorá-la no máximo que o cobrimento da viga permitia, para facilitar a montagem em obra.16

A planta de detalhamento das armaduras positivas pode ser vista no Anexo A

7.8.2.1.2 DETALHAMENTO DAS ARMADURAS NEGATIVAS DAS LAJES MACIÇAS

O Espaçamento e quantidade de barras para as armaduras negativas das lajes maciças é feita da mesma forma que para as armaduras positivas. O espaçamento das armaduras negativas das lajes maciças pode ser visto na Tabela 37.

Tabela 37 - Espaçamento e área de aço efetiva para cada laje (Momentos negativos)

Lajes maciças qu momento	es maciças que compartilham momentos negativos		As adotado	Espaçamento (cm)	As efetivo
L1, L6, L17, L22	L2, L5, L18, L21	0,63	3,35 cm²/m	9	3,46 cm²/m
L2, L5, L18, L21	L3, L4, L19, L20	0,63	2,73 cm²/m	11	2,83 cm²/m
L3, L4, L19, L20	L8, L9, L15, L16	0,63	1,49 cm²/m	16	1,95 cm²/m
L8, L15	L9, L16	0,63	1,55 cm²/m	16	1,95 cm²/m
L3, L19	L4, L20	0,63	1,57 cm²/m	10	3,12 cm²/m

Fonte: (Do Autor)

Já o comprimento, em razão da falta do diagrama exato dos momentos fletores negativos, será obtido utilizando a seguinte relação:

$$C = g_e + 10\phi + 2 * 0.25l_{x,max} + 10\phi + g_d \tag{7.27}$$

Onde:

- \succ *C* é o comprimento total da barra;
- \triangleright g_e é o gancho do lado esquerdo da barra;
- \triangleright g_d é o gancho do lado direito da barra;
- \blacktriangleright Ø é a bitola da armadura;

> $l_{x,max}$ é o maior dos menores vãos entre as duas lajes engastadas.

7.8.2.1.3 DETALHAMENTO DAS ARMADURAS NEGATIVAS DAS LAJES NERVURADAS

Para as lajes nervuradas, é necessário verificar se a região que foi amaciçada é suficiente para suportar a compressão gerada pelo momento negativo.

Para isso, é utilizada a seguinte equação:

$$Mdlim = \alpha c * fcd * bw * \lambda * x * (d - 0.5 * \lambda * x)$$
(7.28)

Onde:

- > αc vale 0,85 para concretos abaixo de 50MPa;
- > λ vale 0,80 para concretos abaixo de 50MPa.

Fixando a linha neutra no máximo de ductilidade permitida $({}^{x}/_{d} = 0.45)$ é possível isolar x e aplicar o seu resultado na equação (7.28). Com isso é possível calcular o momento máximo resistido pela parte comprimida da nervura. A equação isolada pode ser visualizada abaixo:

$$Mdm \ nervura = 0,251 * fcd * bw * d^2 \tag{7.29}$$

Figura 39 – Momento máximo resistido pela nervura

bw (cm)	d armadura negativa (cm)	Mdlim nervura (kNm/Nervura)
10	22,70	27,71

Fonte: (Do Autor)

O momento negativo no apoio é de 41,71 kNm/m, sendo que no apoio é 22,94 kNm/nervura, ou seja, a região de maciço não é necessária em vista dos momentos solicitantes, mas será usada para o cortante, como será demonstrado em breve. É necessário fazer uma "decalagem" dos momentos na nervura, para que parte fique na vigota e parte no maciço que

fica entre elas. Para calcular o ponto da vigota em que o momento é zero, foi usado a seguinte relação:

$$l = 0,25 * lx, máx$$
 (7.30)

A Figura 40 exemplifica essa distância.

Figura 40 - Relação entre momento negativo e comprimento do vão efetivo.

Fonte: (Perlin, Pinto e Padaratz, 2018)

Para as lajes em questão, esse comprimento é calculado abaixo:

$$l = 0.25 * 654.2cm = 163.55 cm \tag{7.31}$$

Com o diagrama da Figura 41, é possível perceber que a nervura vai absorver 26,32 kNm/m e que a mesa vai ficar com 15,39 kNm/m. Transformando a parcela absorvida de momento para nervura, tem-se: 14,48 kNm/nervura, que não supera o valor máximo que a nervura suporta (27,71 kNm/nervura). A quantidade de armadura já foi calculada na Tabela 34, sendo assim, vai ser atribuída a quantidade de aço efetiva para a nervura e o restante de aço necessário será distribuído na mesa, seguindo os limites de espaçamento estabelecido na Figura 38.

Figura 41 - Verificação de momento negativo na interface maciço-nervura

Fonte: (Do Autor)

Na Tabela 38 é possível ver a parcela de momento que foi absorvida pela nervura e pela mesa. A altura útil para ambas as bitolas de armadura foi calculada com a da barra de ϕ 16 mm.

Lajes nervuradas que compartilham		М -	Unidade M -	h (cm)	Ø (cm)	cob (cm)	d (cm)	fcd
momento	momentos negativos		Officiace M-	ii (eiii)	Ø (ciii)		u (ciii)	(MPa)
L7, L10 (Nervura)	L12, L13 (Nervura)	14,48	kNm/Nervura	25	1,60	1,5	22,70	21,43
L7, L10 (Maciça)	L12, L13 (Maciça)	8,46	kNm/Nervura	25	0,63	1,5	22,70	21,43

Tabela 38 - Momentos negativos na laje nervurada

Fonte: (Do Autor)

Na Tabela 39 é possível consultar o espaçamento entre as barras que ficam nas nervuras e nas mesas, sendo que a configuração ficou com uma barra de ϕ 16 mm por nervura e 3 barras de ϕ 6.3 mm distribuídos entre as faces das nervuras.

Tabela 39 – Espaçamento e As efetiva das armaduras negativas - lajes nervuradas

Lajes nervuradas momente	x (cm)	x/d	As calc.	s (cm)	As efetivo	
L7, L10 (Nervura)	L12, L13 (Nervura)	1 20	0.06	1,50 cm²/N	Ø16 C/N	2,01 cm²/N
L7, L10 (Maciça)	L12, L13 (Maciça)	1,29	0,06	0,88 cm²/N	18	0,93 cm²/N

Fonte: (Do Autor)

Com o momento que chega na nervura (14,48 kNm/nervura), foi possível calcular a área de aço necessária para ela (1,50 cm²). A barra de aço que atendeu a essa solicitação foi a de ϕ 16 mm. Para calcular a área de aço que seria necessária para a mesa, foi subtraída da área de aço calculada na Tabela 34 (2,38 cm²) a área de aço da barra de ϕ 16 mm, restando assim 0,37 cm², que foram distribuídos na mesa entre as nervuras com três barras de ϕ 6.3 mm (para respeitar espaçamento da norma). É possível perceber que a área total resultou maior que a necessária, com um total de 2,94 cm².

7.8.2.1.4 DETALHAMENTO DAS ARMADURAS DE BORDA

O item 19.3.3.2 da NBR 6118/2023 estabelece a necessidade da colocação de armaduras negativas na borda de laje em que há viga de apoio, mas não existe laje adjacente. É necessário respeitar os critérios de armadura mínima da Figura 36 e se estender até 0,15 * lx

da face de apoio, com espaçamento máximo de 33 cm. O comprimento dessa armadura é dado por:

$$C = 25\emptyset + b_w - c_v + 0.15 * l_x + h - c_s - c_i$$
(7.32)

Onde:

- Ø é o diâmetro da barra escolhida
- \succ b_w é a largura da viga em que a laje se apoia;
- > c_v é o cobrimento da viga em função da classe de agressividade ambiental;
- \succ l_x é o menor vão da laje;
- \succ *h* é a altura da laje;
- \succ c_s é o cobrimento superior da laje;
- \succ c_i é o cobrimento inferior da laje.

A figura abaixo demonstra visualmente a que se referem esses valores do comprimento:

Figura 42 – Comprimento da armadura de borda.

Fonte: (Perlin, Pinto e Padaratz, 2018)

Os resultados para essas armaduras de borda são apresentados na tabela a seguir:

Laio	Bw	cv	ly (cm)	0,15*lx	h	CS	ci	Comprimento	a (cm)	c (cm)	As calc.	As min
Laje	(cm)	(cm		(cm)	(cm)	(cm)	(cm)	(cm)	ø (cm)	s (cm)	(cm²)	(cm²)
L1, L6, L17, L22	20	4	369,8	55,47	8	1,5	3,5		0,63	25	1,25	1,20
L2, L5, L18, L21	20	4	319,8	47,97	8	1,5	3,5	91	0,63	25	1,25	1,20
L3, L4, L19, L20	20	4	277,3	41,595	8	1,5	3,5		0,63	25	1,25	1,20
L7, L10, L12, L13	20	4	655,4	98,31411	5	1,5	3,5	131	0,63	15	2,08	1,00
L11	15	4	114,8	17,22	8	1,5	3,5	47	0,63	25	1,25	1,20
L14	20	4	244,8	36,72	8	1,5	3,5	72	0,63	25	1,25	1,20
L23	20	4	177,2	26,58	12	1,5	3,5	66	0,63	17	1,83	1,80

Tabela 40 - Armaduras de borda

Fonte: (Do Autor)

Como explicado na seção 7.1.3, os coeficientes para as reações de apoio geradas pelas lajes nas vigas foram obtidos por tabelas. Na tabela abaixo é possível consultar esses valores de k:

Lajes	L1, L6,	L2, L5,	L3, L4,	L7, L10,	L8, L9,	L11	L14	L23
	[17, [22]	110, 121	115, 120	112, 113	110, 110			
Caso	2	6	8	3	4	1	1	1
λ	1,02	1,16	1,33	1,10	1,06	1,61	2,33	2,10
k _x	1,87	3,75	3,52	2,43	1,94	3,45	5	5
k_ ⁻	1,87	3,75	3,52	4,22	3,36	3,45	5	5
k _v	2,34	1,44	1,44	1,83	1,83	2,50	2,5	2,5
k _v ⁻	4,05	1,44	2,50	1,83	3,17	2,50	2,5	2,5

Tabela 41 - Coeficiente k para cálculo das reações de apoio

É importante ressaltar que, para a conferência do cisalhamento, as lajes unidirecionais foram tratadas da mesma forma que as bidirecionais, e os coeficiente *k* foram pegos por tabelas, para os casos em que $\lambda \ge 2$.

Com as equações (7.9) e (7.10) é possível obter as reações de apoio para cada laje. A seguir é apresentada a tabela com as reações nos apoios para todas as lajes:

Laje	qx (kN/m)	qx- (kN/m)	qy (kN/m)	qy- (kN/m)
L1, L6, L17, L22	4,81	4,81	6,03	10,45
L2, L5, L18, L21	13,44	13,44	5,16	5,16
L3, L4, L19, L20	6,81	6,81	2,78	4,83
L7, L10, L12, L13	16,72	28,99	12,57	12,57
L8, L9, L15, L16	3,75	6,49	3,54	6,13
L11	3,59	3,59	2,60	2,60
L14	11,10	11,10	5,55	5,55
L23	40,93	40,93	20,47	20,47

Tabela 42 – Reações de apoio

Fonte: (Do Autor)

Na figura abaixo é possível visualizar as forças distribuídas nos apoios:

Fonte: (Do Autor)

Fonte: (Do Autor)

Nas tabelas abaixo são demonstradas as verificações para a dispensa da armadura de cisalhamento para todas as lajes, sendo analisadas as direções x e y.

Laio	k = 1,6-d;	trd (MDa)	01	Vrd1	Ved	Unidade Vsd	Vrd1>
Laje	>=1	ti u (ivira)	μī	VIUI	vsu	e Vrd1	Vsd?
L1, L6, L17, L22	1,56	0,362	0,0047	32,73	4,81	kN/metro	Sim
L2, L5, L18, L21	1,56	0,362	0,0077	34,86	13,44	kN/metro	Sim
L3, L4, L19, L20	1,56	0,362	0,0047	32,73	6,81	kN/metro	Sim
L7-10-12-13 - Maciça	1,39	0,362	0,0032	139,78	28,99	kN/metro	Sim
L7-10-12-13 - Nervura	1,39	0,362	0,0032	13,98	15,95	kN/nervura	Não
L8, L9, L15, L16	1,56	0,362	0,0047	32,73	6,49	kN/metro	Sim
L11	1,56	0,362	0,0047	32,73	3,59	kN/metro	Sim
L14	1,56	0,362	0,0111	38,09	11,10	kN/metro	Sim
L23	1,52	0,362	0,0082	67,24	40,93	kN/metro	Sim

Tabela 43 - Verificação Cisalhamento na direção x

Fonte: (Do Autor)

Laie	k = 1,6-d;	trd (MPa)	01	Vrd1	Ved	Unidade Vsd	Vrd1>
Laje	>=1	ti u (ivir a)	рт	VIUL	vsu	e Vrd1	Vsd?
L1, L6, L17, L22	1,56	0,362	0,0073	30,05	10,45	kN/metro	Sim
L2, L5, L18, L21	1,57	0,362	0,0058	27,45	5,16	kN/metro	Sim
L3, L4, L19, L20	1,56	0,362	0,0055	28,58	4,83	kN/metro	Sim
L7, L10, L12, L13	1,40	0,362	0,0034	13,34	6,91	kN/nervura	Sim
L8, L9, L15, L16	1,56	0,362	0,0055	28,58	6,13	kN/metro	Sim
L11	1,56	0,362	0,0055	28,58	2,60	kN/metro	Sim
L14	1,57	0,362	0,0028	25,18	5,55	kN/metro	Sim
L23	1,53	0,362	0,0017	50,46	20,47	kN/metro	Sim

Tabela 44 - Verificação Cisalhamento na direção y

Fonte: (Do Autor)

Para a laje nervurada, a região mais crítica de apoio foi a da nervura chegando na viga e não a da região maciça. Mesmo com um valor de solicitação mais alto, devido à grande altura da região amaciçada, a relação Vrd1 sobre Vsd foi muito alta para a região amaciçada da laje nervurada. Para as lajes nervuradas também foi necessário verificar o esforço cortante na região em que a nervura chega no maciço. Para essa região, o Vrd1 considerado foi o da nervura (13,98 kN/nervura). Considerando uma carga distribuída e os valores de q_x e q_x^- nos dois apoios do menor vão, foi possível fazer um diagrama de cisalhamento estimado. A figura a seguir mostra o resultado, sendo que o valor de Vrd1 (13,98 kN/nervura) nessa interface é maior que o Vsd (13,801 kN/nervura).

Figura 44 - Verificação de esforço cortante na interface maciço-nervura

Fonte: (Do Autor)

7.10 ELS – DEFORMAÇÕES EXCESSIVAS

Antes de calcular as flechas, como descrito no item 7.1.1, é necessário verificar se ocorre fissuração nas lajes, ou seja, se ela permanece no estádio I ou no II. Essas fissuras aparecem quando a resistência a tração do concreto é ultrapassada. Para fazer essa verificação, é necessário calcular o momento de fissuração que as lajes resistem e comparar com os momentos solicitantes no estado limite de serviço. A seguir, serão demonstrados os momentos no ELS sem compatibilização e com compatibilização, sendo que o procedimento adotado foi o mesmo usado no item 7.7.

Laje	Momentos (kNm/m) - ELS (Sem compatibilização)							
-	Mx +	Mx-	My+	My-				
L1, L6, L17, L22	1,73	0,00	1,99	4,60				
L2, L5, L18, L21	2,52	5,39	1,34	0,00				
L3, L4, L19, L20	1,06	2,31	0,53	1,74				
L7, L10, L12, L13	12,19	25,61	7,65	0,00				
L8, L9, L15, L16	0,94	2,28	0,85	2,18				
L11	0,48	0,00	0,24	0,00				
L14	3,28	0,00	0,00	0,00				
L23	4,71	0,00	0,00	0,00				

Tabela 45 – Momentos no ELS sem compatibilização

Fonte: (Do Autor)

Tabela 46 – I	Momentos	no ELS	compati	bilizados
---------------	----------	--------	---------	-----------

	NEGATIVOS		POSITIVOS			
Lajes que compartilham momentos negativos		M - (kNm/m)	LAJES	Mx+(kNm/m)	My+ (kNm/m)	
L1, L6, L17, L22	L2, L5, L18, L21	5,00	L1, L6, L17, L22	1,73	1,99	
L2, L5, L18, L21	L3, L4, L19, L20	4,31	L2, L5, L18, L21	3,25	1,34	
L3, L4, L19, L20	L8, L9, L15, L16	1,96	L3, L4, L19, L20	1,06	0,53	
L7, L10	L12, L13	25,61	L7, L10, L12, L13	12,19	7,65	
L8, L9	L15, L16	2,28	L8, L9, L15, L16	0,94	0,96	
L3, L4	L19, L20	2,31	L11	0,48	0,24	
			L14	3,28	0,00	
			L23	4,71	0,00	

Na figura abaixo é possível visualizar os momentos compatibilizados no ELS:

Figura 45 - Momentos no ELS compatibilizados

Fonte: (Do Autor)

Para calcular o momento de fissuração, foi utilizada a seguinte equação:

$$M_r = \frac{\alpha * f_{ct} * I_c}{y_t} \tag{7.33}$$

Onde:

- α é o coeficiente que relaciona resistência do concreto a tração na flexão com a resistência a tração direta do concreto. Para lajes retangulares vale 1,5 e para seção T vale 1,2;
- *f_{ct}* é a resistência a tração do concreto, sendo que, segundo a NBR 6118/2023, para o estado-limite de deformação, que é o que está sendo tratado, deve ser usado o *f_{ct,m}*;

- \blacktriangleright *I_cé* o momento de inercia da seção bruta de concreto;
- \triangleright y_t é a distância da linha neutra até o centroide da seção.

Nas tabelas a seguir são exibidos os dados necessários para o cálculo dos momentos de fissuração, no menor e no maior vão. Vale destacar que, para as lajes nervuradas, o processo foi dividido em duas regiões, sendo que no menor vão existe a região maciça, cujo momento é o de uma seção retangular e no outro apoio e no centro é o momento de uma viga de seção T.

laio	a	fct	Ib,y	yt
Laje	u	(MPa)	(cm4)	(cm)
L1, L6, L17, L22	1,5	2,89	4266,667	4
L2, L5, L18, L21	1,5	2,89	4266,667	4
L3, L4, L19, L20	1,5	2,89	4266,667	4
L7, L10, L12, L13 - Maciça	1,5	2,89	130208,3	12,5
L7, L10, L12, L13 - Nervura	1,2	2,89	25331,69	17,2
L8, L9, L15, L16	1,5	2,89	4266,667	4
L11	1,5	2,89	4266,667	4
L14	1,5	2,89	4266,667	4
L23	1,5	2,89	14400	6

Tabela 47 – Dados para o cálculo do momento de Fissuração – Menor vão

Fonte: (Do Autor)

Tabela 48 - Dados para o cálculo do momento de Fissuração - Maior vão

Laio	a	fct	lb,y	yt
Laje	u	(MPa)	(cm4)	(cm)
L1, L6, L17, L22	1,5	2,89	4266,667	4
L2, L5, L18, L21	1,5	2,89	4266,667	4
L3, L4, L19, L20	1,5	2,89	4266,667	4
L7, L10, L12, L13	1,2	2,89	25331,69	17,2
L8, L9, L15, L16	1,5	2,89	4266,667	4
L11	1,5	2,89	4266,667	4
L14	1,5	2,89	4266,667	4
L23	1,5	2,89	14400	6

Fonte: (Do Autor)

Com os dados da Tabela 47 e da Tabela 48 é possível calcular os momentos de fissuração de cada laje, no menor e maior vão, usando a equação (7.33), e comparar esses valores com os momentos solicitantes no ELS, nos apoios e no centro do vão. Os resultados são demonstrados nas tabelas a seguir:

					5			
مندا	Mr	M1	M2	M3	Unidade Mr,	Apoio 1	Centro	Apoio 2
Laje	IVII	Apoio 1	Centro	Apoio 2	M1, M2 e M3	Fissura?	Fissura?	Fissura?
L1, L6, L17, L22	4,62	0,00	1,73	0,00	kNm/metro	Não	Não	Não
L2, L5, L18, L21	4,62	5,00	3,25	4,31	kNm/metro	Sim	Não	Não
L3, L4, L19, L20	4,62	4,31	1,06	2,31	kNm/metro	Não	Não	Não
L7, L10, L12, L13 - Maciça	45,16	Nervura	Nervura	25,61	kNm/metro			Não
L7, L10, L12, L13 - Nervura	5,10	0,00	6,70	Maciça	kNm/nervura	Não	Sim	
L8, L9, L15, L16	4,62	0,00	0,94	2,28	kNm/metro	Não	Não	Não
L11	4,62	0,00	0,48	0,00	kNm/metro	Não	Não	Não
L14	4,62	0,00	3,28	0,00	kNm/metro	Não	Não	Não
L23	10,40	0,00	4,71	0,00	kNm/metro	Não	Não	Não

Tabela 49 - Momentos de Fissuração no menor vão

Fonte: (Do Autor)

Tabela 50 - Momentos de Fissuração no maior vão

Laio	Mr	M1	M2	M3	Unidade Mr,	Apoio 1	Centro	Apoio 2
Laje	IVII	Apoio 1	Centro	Apoio 2	M1, M2 e M3	Fissura?	Fissura?	Fissura?
L1, L6, L17, L22	4,62	0,00	1,99	5,00	kNm/metro	Não	Não	Sim
L2, L5, L18, L21	4,62	0,00	1,34	0,00	kNm/metro	Não	Não	Não
L3, L4, L19, L20	4,62	0,00	0,53	1,96	kNm/metro	Não	Não	Não
L7, L10, L12, L13	5,10	0,00	4,21	0,00	kNm/nervura	Não	Não	Não
L8, L9, L15, L16	4,62	1,96	0,96	0,00	kNm/metro	Não	Não	Não
L11	4,62	0,00	0,24	0,00	kNm/metro	Não	Não	Não
L14	4,62	0,00	0,00	0,00	kNm/metro	Não	Não	Não
L23	10,40	0,00	0,00	0,00	kNm/metro	Não	Não	Não

Fonte: (Do Autor)

O próximo passo é calcular a inércia fissurada para as lajes que sofreram fissuração. Para isso, será usada a equação de Branson (7.34):

$$I_{eq} = \left(\frac{M_r}{M_a}\right)^3 I_c + \left[1 - \left(\frac{M_r}{M_a}\right)^3\right] I_{II} \le I_c$$
(7.34)

Onde:

- > I_{eq} é o momento de inercia equivalente da seção fissurada;
- > M_r é o momento de fissuração resistido pela seção;
- > M_a é o momento atuante no ELS;
- \succ I_c é momento de inércia da seção bruta;
- > I_{II} é o momento de inércia da seção fissurada.

O valor de I_c vai depender do tipo de laje, já que o presente trabalho possui lajes nervuradas e maciças. Sendo assim, será calculado o I_c para uma seção retangular (maciças) e para uma seção T (nervuradas).

Já o I_{II} é obtido com a seguinte expressão:

$$I_{II} = \frac{(b_f - b_w) * h_f^3}{12} + \frac{b_w * x_{II}^3}{3} + (b_f - b_w) * \left(x_{II} - \frac{h_f}{2}\right)^2 + \alpha_e * A_s * (x_{II} - d)^2 + (\alpha_e - 1) * A'_s * (x_{II} - d')^2$$
(7.35)

Onde:

- \succ b_f é a largura da mesa do elemento;
- \succ b_w é a largura da nervura;
- > h_f é a altura da mesa do elemento;
- > x_{II} é a posição da linha neutra no estádio II;
- $\succ \alpha_e = E_s/E_{cs};$
- > A_s é a área de aço tracionada;
- \succ A'_s é a área de aço comprimida;
- \succ d é a altura útil usada para o cálculo da armadura tracionada;
- \succ d' é a altura útil usada para o cálculo da armadura comprimida;

Para seções retangulares ($b_f = b_w e h_f = 0$) e nos casos de lajes nervuradas em que a linha neutra no estádio II (x_{II}) passa pela mesa ($x_{II} \le h_f$), é possível usar a equação abaixo para I_{II} :

$$I_{II} = \frac{b_f * x_{II}^3}{3} + \alpha_e * A_s * (x_{II} - d)^2 + (\alpha_e - 1) * A'_s * (x_{II} - d')^2$$
(7.36)

Para x_{II} , a equação usada é a seguinte:

$$x_{II} = \frac{-a_2 \pm \sqrt{a_2^2 - 4 * a_1 * a_3}}{2 * a_1} \tag{7.37}$$

Os coeficientes a_1 , a_2 e a_3 são obtidos com as seguintes expressões:

$$a_1 = \frac{b_w}{2} \tag{7.38}$$

$$a_{2} = h_{f} * (b_{f} - b_{w}) + (\alpha_{e} - 1) * A'_{s} + \alpha_{e} * A_{s}$$
(7.39)

$$a_{3} = -d' * (\alpha_{e} - 1) * A'_{s} - d * \alpha_{e} * A_{s} - \frac{h_{f}^{2}}{2} * (b_{f} - b_{w})$$
(7.40)

Com essas expressões foi possível calcular a inercia fissurada das seções das lajes que, no ELS, sofreram fissuração. A inércia final da laje é calculada fazendo uma ponderação da inércia nos apoios e no centro do vão, sendo que a contribuição de cada uma, adotada de maneira simplificada, é a seguinte:

$$I_{eq,laje} = 0.15 * I_{eq,1} + 0.7 * I_{eq,2} + 0.15 * I_{eq,3}$$
(7.41)

Onde:

- \succ $I_{eq,1}$ é a inércia no apoio 1;
- \succ $I_{eq,2}$ é a inércia no centro do vão;
- ▶ $I_{eq,3}$ é a inércia no apoio 2.

Nas tabelas a seguir são demonstrados os parâmetros de base para o cálculo de I_{II} :

Laje	h (cm)	bw (cm)	hf (cm)	bf (cm)	αe	As	d (cm)	Ma	Mr	Unidade Ma e Mr
L1, L6, L17, L22	8	100	0	100	7,825	3,46 cm²/m	6,19	5,00	4,62	kNm/metro
L2, L5, L18, L21	8	100	0	100	7,825	3,46 cm²/m	6,19	5,00	4,62	kNm/metro
L7, L10, L12, L13	25	10	5	55	7,825	1,23 cm²/N	20,88	6,70	5,10	kNm/nervura
				_						

Tabela 51 – Parâmetros para o cálculo de I_{II} 1/2

Fonte: (Do Autor)

Tabela 52 - Parâmetros para o cálculo de I_{II} 2/2

Laje	lc Tê (cm4)	lc retangular (cm4)	a1 (cm)	a2 (cm²)	a3 (cm³)	xii (cm)
L1, L6, L17, L22	-	4266,7	50	27,102	-167,62	1,58
L2, L5, L18, L21	-	4266,7	50	27,102	-167,62	1,58
L7, L10, L12, L13	25331,7	71614,6	5	234,602	-762,95	3,05
		_				

Fonte: (Do Autor)

Com esses parâmetros, é possível calcular o I_{eq} de cada seção com a equação (7.34) e fazer a ponderação com a equação (7.41). Uma vez calculado o I_{eq} , é possível isolar o *h* na equação que determina o momento de inércia de uma laje retangular do seguinte modo:

$$h_{eq} = \sqrt[3]{\frac{12*I}{b_f}} \tag{7.42}$$

Os resultados de I_{eq} e de h_{eq} podem ser visualizados na tabela a seguir:

Laia	lii (cm 4)	leq 1 cm4	leq 2 cm4	leq 3	leq seção	hag lais (cm)			
Laje	III (CIII4)	(apoio 1)	(centro)	cm4	fissurada	neg laje (cm)			
L1, L6, L17, L22	706,20	4266,67	4266,67	3528,37	4155,92	7,93			
L2, L5, L18, L21	706,20	3528,37	4266,67	4266,67	4155,92	7,93			
L7, L10, L12, L13	3571,71	25331,69	13140,42	71614,58	23740,23	17,30			
		Font	$\frac{1}{2}$ (Do Autor)						

Tabela 53 - Resultados	de Iea	e de h_{eq}
------------------------	--------	---------------

Fonte: (Do Autor)

Com as alturas das lajes definidas, é necessário calcular a flecha das lajes e comparar com os limites impostos, que são demonstrados nas figuras a seguir. Os limites que foram verificados estão destacados em vermelho:

Tipo de efeito	Razão da limitação	Exemplo	Deslocamento a considerar	Deslocamento-limite
Aceitabilidade Visual		Visual Deslocamentos visíveis em elementos estruturais		ℓ/250
	Outro	Vibrações sentidas no piso	Devido a cargas acidentais	ℓ/350
	Superfícies que devem drenar água	Coberturas e varandas	Total	ℓ/250 ^a
	Pavimentos	Ginásios e	Total	ℓ/350+ contraflecha ^b
Efeitos estruturais em serviço	que devem permanecer planos	pistas de boliche	Ocorrido após a construção do piso	ℓ/600
	Elementos que suportam equipamentos sensíveis	Laboratórios	Ocorrido após nivelamento do equipamento	De acordo com recomendação do fabricante do equipamento
		Alvenaria, caixilhos e revestimentos	Após a construção da parede	ℓ/500 ^c e 10 mm e θ = 0,0017 rad ^d
Efeites om		Divisórias leves e caixilhos telescópicos	Ocorrido após a instalação da divisória	ℓ/250 ^c e 25 mm
elementos não Paredes estruturais		Movimento lateral de edifícios	Provocado pela ação do vento para combinação frequente (ψ ₁ = 0,30)	<i>H</i> /1 700 e <i>H</i> _i /850 ^e entre pavimentos ^f
		Movimentos térmicos verticais	Provocado por diferença de temperatura	ℓ/400 ^g e 15 mm

Figura 46 – Deslocamentos-limites – Parte 1/2

Fonte: (ABNT NBR 6118:2023)

		Movimentos térmicos horizontais	Provocado por diferença de temperatura	<i>H</i> i/500		
For	Forros	Revestimentos colados	Ocorrido após a construção do forro	ℓ/350		
elementos não estruturais		Revestimentos pendurados ou com juntas	Deslocamento ocorrido após a construção do forro	ℓ/175		
Pontes rolantes		Desalinhamento de trilhos	Deslocamento provocado pelas ações decorrentes da frenação	<i>H</i> /400		
Efeitos em elementos estruturais	Afastamento em relação às hipóteses de cálculo adotadas	Se os deslocamentos forem relevantes para o elemento considerado, seus efeitos sobre as tensões ou sobre a estabilidade da estrutura devem ser considerados, incorporando-os ao modelo estrutural adotado.				

Figura 47 – Deslocamentos-limites – Parte 2/2

Para o cálculo das flechas, é utilizada a expressão (7.3). Abaixo, é possível visualizar a tabela com os coeficientes α para cada laje:

Lajes	L1, L6, L17, L22	L2, L5, L18, L21	L3, L4, L19, L20	L7, L10, L12, L13	L8, L9, L15, L16	L11	L14	L23
Caso	2	6	8	3	4	1	1	1
λ	1,02	1,16	1,33	1,10	1,06	1,61	2,33	2
α	3,37	2,49	2,46	3,61	2,73	9,60	15,35	15,35

Tabela 54 – Coeficientes α para cálculo das flechas

Fonte: (Do Autor)

É importante ressaltar que, para o cálculo das flechas, as lajes unidirecionais foram tratadas da mesma forma que as bidirecionais, e os coeficiente α foram pegos por tabelas, para os casos em que $\lambda \ge 2$.

Com todos os dados levantados, foi possível calcular a flecha imediata para cada laje, como pode ser visto na tabela a seguir:

Laje	h (cm)	lx (cm)	ELS	α	fo (cm)
	7.02	200.0		2 27	0 1 0 4 0
L1, L0, L17, L22	7,93	369,8	3,93	3,37	0,1848
L2, L5, L18, L21	7,93	319,8	6,96	2,49	0,1354
L3, L4, L19, L20	8	277,3	3,93	2,46	0,0416
L7, L10, L12, L13	17,30	655,4	6,44	3,61	0,3085
L8, L9, L15, L16	8	277,3	3,93	2,73	0,0462
L11	8	114,8	4,38	9,60	0,0053
L14	8	244,8	4,38	15,35	0,1757
L23	12	177,2	12,00	15,35	0,0392

Tabela 55 – Cálculo da flecha imediata

Fonte: (Do Autor)

Com a flecha imediata calculada, é possível calcular de maneira simplificada, a flecha infinita devido a fluência do concreto. As expressões utilizadas podem ser analisadas no item 7.1.1 do presente trabalho. O resultado pode ser visto na tabela abaixo:

Laje	t0	ξ(t)	ξ(t0)	Δξ	αf	f∞ (cm)	f vibração (cm)
L1, L6, L17, L22	0,933	2,000	0,663	1,337	1,337	0,432	0,071
L2, L5, L18, L21	0,933	2,000	0,663	1,337	1,337	0,317	0,029
L3, L4, L19, L20	0,933	2,000	0,663	1,337	1,337	0,097	0,016
L7, L10, L12, L13	0,933	2,000	0,663	1,337	1,337	0,721	0,072
L8, L9, L15, L16	0,933	2,000	0,663	1,337	1,337	0,108	0,018
L11	0,933	2,000	0,663	1,337	1,337	0,012	0,004
L14	0,933	2,000	0,663	1,337	1,337	0,411	0,120
L23	0,933	2,000	0,663	1,337	1,337	0,092	0,098

Tabela 56 – flecha no tempo infinito e vibração

Fonte: (Do Autor)

Com as flechas calculadas, é necessário comparar com os limites estabelecidos na NBR 6118/2023 e que estão destacados na Figura 46 e Figura 47. Essa comparação é demonstrada a seguir:

					c ~	
مندا	$f \infty (cm)$	limite	limite parede	limite forro	f vibraçao	limite
Laje		visual (cm)	(cm)	(cm)	(cm)	vibração (cm)
L1, L6, L17, L22	0,432	1,479	S/ PAREDE	2,113	0,071	1,057
L2, L5, L18, L21	0,317	1,279	0,64	1,827	0,029	0,914
L3, L4, L19, L20	0,097	1,109	S/ PAREDE	1,585	0,016	0,792
L7, L10, L12, L13	0,721	2,622	1,00	3,745	0,072	1,873
L8, L9, L15, L16	0,108	1,109	S/ PAREDE	1,585	0,018	0,792
L11	0,012	0,459	S/ PAREDE	0,656	0,004	0,328
L14	0,411	0,979	S/ PAREDE	1,399	0,120	0,699
L23	0,092	0,709	S/ PAREDE	1,013	0,098	0,506

Tabela 57 - Comparação das flechas com os limites impostos

Fonte: (Do Autor)

Percebe-se que todos os critérios foram atendidos.

8 FORÇAS DEVIDAS AO VENTO

Em edificações usuais, o vento é responsável pelos esforços horizontais de maior intensidade. A magnitude desses esforços depende basicamente da localização e geometria da edificação, pois uma está relacionada com as condições meteorológicas e obstáculos que o vento encontra até atingir a edificação e a outra se relaciona com a aerodinâmica do edifício.

Por ser um fenômeno de caráter aleatório, sempre deve ser considerada a pior condição possível para o desenvolvimento do projeto.

8.1 OBTENÇÃO DOS EFORÇOS PELA NBR 6123:1980

A seguinte expressão é utilizada para obtenção da pressão dinâmica do vento:

$$q = 0,613 * V_k^2 \tag{8.1}$$

Sendo que o valor de q é em N/m^2 e o valor de V_k em m/s. O valor de V_k é dado pela seguinte expressão:

$$V_k = V_0 * S_1 * S_2 * S_3 \tag{8.2}$$

Nos tópicos a seguir será demonstrada a obtenção de cada um dos valores V_0, S_1, S_2, S_3

8.2 VELOCIDADE BÁSICA DO VENTO (V_0)

Essa velocidade se refere a velocidade de uma rajada de 3 s, excedida em média uma vez em 50 anos, a 10 m acima do terreno, em campo aberto e plano. É admitido que o vento básico pode soprar de qualquer direção horizontal. A figura a seguir fornece o valor da velocidade básica do vento para as diferentes regiões do país:

Figura 48 – Velocidade básica do vento

Fonte: (ABNT NBR 6123:1988)

O valor de V_0 para este projeto foi definido em 43 m/s.

8.3 FATOR S_1

Esse fator leva em conta as variações do relevo do terreno e é determinado do seguinte modo:

Terreno plano ou fracamente acidentado: $S_1 = 1,0$; Taludes e morros: seguir marcha de cálculo descrita na página 5 da NBR 6123:1980; Vales profundos, protegidos de ventos de qualquer direção: $S_1 = 0,9$. O valor de S_1 para este projeto foi definido em 1,0, por estar localizado numa região de terreno plano ou fracamente acidentado.

8.4 FATOR S_2

Esse fator considera o efeito combinado da rugosidade do terreno, da variação da velocidade do vento com a altura acima do terreno e das dimensões da edificação ou parte da edificação em consideração.

8.4.1 RUGOSIDADE DO TERRENO

A NBR 6123:1980 estabelece 5 categorias de rugosidade do terreno:

- Categoria I: Superfícies lisas de grandes dimensões, com mais de 5 km de extensão, medida na direção e sentido do vento incidente;
- Categoria II: Terrenos abertos em nível ou aproximadamente em nível, com poucos obstáculos isolados, tais como árvores e edificações baixas, sendo que a cota média do topo dos obstáculos é considerada igual ou inferior a 1,0 m;
- Categoria III: Terrenos planos ou ondulados com obstáculos, tais como sebes e muros, poucos quebra-ventos de árvores, edificações baixas e esparsas, sendo que a cota média do topo dos obstáculos é considerada igual a 3,0 m;
- Categoria IV: Terrenos cobertos por obstáculos numerosos e pouco espaçados, em zona florestal, industrial ou urbanizada, sendo que a cota média do topo dos obstáculos é considerada igual a 10,0 m;
- Categoria V: Terrenos cobertos por obstáculos numerosos, grandes, altos e pouco espaçados, sendo que a cota média dos obstáculos é considerada igual ou superior a 25 m.

Por se localizar no centro de uma capital, com prédios altos ao redor, foi adotada a categoria V para este projeto.

8.4.2 DIMENSÕES DA EDIFICAÇÃO

A NBR 6123:1980 estabelece 3 classes de edificações:

- Classe A: Todas as unidades de vedação, seus elementos de fixação e peças individuais de estruturas sem vedação. Toda edificação na qual a maior dimensão horizontal ou vertical não exceda 20 m.
- Classe B: Toda edificação ou parte de edificação para a qual a maior dimensão horizontal ou vertical da superfície frontal esteja entre 20 m e 50 m.
- Classe C: Toda edificação ou parte de edificação para a qual a maior dimensão horizontal ou vertical da superfície frontal exceda 50 m.

Como o prédio desse projeto possui 68,35 m de altura, foi adotada a classe C para o projeto.

8.4.3 ALTURA SOBRE O TERRENO

Para a obtenção do fator S_2 , usado no cálculo da velocidade do vento em uma altura z acima do nível geral do terreno é obtido pela seguinte equação:

$$S_2 = b * F_r * \left(\frac{z}{10}\right)^p$$
 (8.3)

Onde:

- \succ F_r é sempre correspondente a categoria II;
- \succ z é a altura em que se deseja obter o S_2 ;

Os parâmetros b e p são obtidos pela figura apresentada a seguir:

Catagoria	Zg	Parâmetro		Classes	
Categoria	(m)	Parametro	A	В	С
	250	b	1,10	1,11	1,12
	250	р	0,06	0,065	0,07
		b	1,00	1,00	1,00
ii i	II 300	F,	1,00	0,98	0,95
12. (P		р	0,085	0,09	0,10
ш	350	b	0,94	0,94	0,93
		350	р	0,10	0,105
11/	400	b	0,86	0,85	0,84
IV	420	p	0,12	0,125	0,135
V	500	b	0,74	0,73	0,71
	500	р	0,15	0,16	0,175

Figura 49 - Parâmetros meteorológicos

Fonte: (ABNT NBR 6123:1988)

Para este projeto, os coeficientes S_2 para cada pavimento são descritos na tabela a seguir:

.

Pavimento	z (m)	S2
1	3,2	0,553
2	6,4	0,624
3	9,6	0,670
4	12,8	0,704
5	16	0,732
6	19,2	0,756
7	22,4	0,777
8	25,6	0,795
9	28,8	0,812
10	32	0,827
11	35,2	0,841
12	38,4	0,854
13	41,6	0,866
14	44,8	0,877
15	48	0,888
16	51,2	0,898
17	54,4	0,907
18	57,6	0,916
19	60,8	0,925
20	64	0,933
Telhado	66	0,938
Reservatório	68.35	0.944

Tabela 58 – Parâmetros S_2

Fonte: (Do Autor)

Este fator é baseado em conceitos estatísticos e considera o grau de segurança requerido e a vida útil da edificação. Para a obtenção do valor S_3 é utilizada a Figura 50.

Grupo	Descrição	S ₃
1	Edificações cuja ruína total ou parcial pode afetar a segurança ou possibilidade de socorro a pessoas após uma tempestade destrutiva (hospitais, quartéis de bombeiros e de forças de segurança, centrais de comunicação, etc.)	1,10
2	Edificações para hotéis e residências. Edificações para comércio e indústria com alto fator de ocupação	1,00
3	Edificações e instalações industriais com baixo fator de ocupação (depósitos, silos, construções rurais, etc.)	0,95
4	Vedações (telhas, vidros, painéis de vedação, etc.)	0,88
5	Edificações temporárias. Estruturas dos grupos 1 a 3 durante a construção	0,83

Figura 50 – Valores mínimos do fator estatístico S_3

Fonte: (ABNT NBR 6123:1988)

Para este trabalho, o valor de S_3 foi definido em 1,0.

8.6 COEFICIENTE DE ARRASTO (C_a)

Este coeficiente é utilizado para determinar a força de arrasto que atua na estrutura e é necessário verificar se a edificação está sujeita a ventos de alta ou de baixa turbulência. Essa classificação depende da altura do edifício analisado com relação as edificações vizinhas e da distância em que essas edificações vizinhas se estendem. Com base nesses critérios, definidos no item 6.5.3 da NBR 6123:1980, o projeto foi classificado como estando sujeito a ventos de baixa turbulência. Os coeficientes de arrasto foram obtidos por meio da figura 50. Esse coeficiente depende da altura do edifício e de suas dimensões em planta, como pode ser visto na figura a seguir:

Figura 51 – Ábaco de Ca para edificações retangulares em vento de baixa turbulência

Fonte: (ABNT NBR 6123:1988)

Para este trabalho, os valores dos coeficientes de arrasto nas direções x e y podem ser vistos na tabela abaixo:

	x	У
h/L1	68,35/21,2=3,22	68,35/20,6=3,32
L1/L2	21,2/20,6=1,03	20,6/21,2=0,97
Ca (baixa turb.)	1,34	1,32

Tabela 59 - Coeficientes de arrasto para as direções x e y

8.7 CARREGAMENTOS CAUSADOS PELO VENTO

Com os valores V_0, S_1, S_2, S_3 definidos, é possível definir o valor de V_k e por fim o valor de q, que é obtido com a equação (8.1). Para a definição dos carregamentos gerados pelo vento na estrutura, é necessário calcular a força de arrasto, definida por:

$$F_a = C_a * q * A_e \tag{8.4}$$

Onde:

 \succ C_a é o coeficiente de arrasto;

 \triangleright q é a pressão dinâmica do vento;

 \triangleright A_e é a área da região analisada perpendicular a direção do vento.

Na tabela abaixo são apresentados os valores de carregamento para cada pavimento.

Pavimento	z (m)	Vk (m/s)	q (kN/m²)	Ae x (m²)	Ae y (m²)	Fa (kN) x	Fa (kN) y
1	3,2	23,76	0,346	67,84	65,92	31,460	30,113
2	6,4	26,82	0,441	67,84	65,92	40,097	38,381
3	9,6	28,80	0,508	67,84	65,92	46,211	44,233
4	12,8	30,28	0,562	67,84	65,92	51,106	48,919
5	16	31,49	0,608	67,84	65,92	55,258	52,893
6	19,2	32,51	0,648	67,84	65,92	58,899	56,378
7	22,4	33,40	0,684	67,84	65,92	62,164	59,503
8	25,6	34,19	0,717	67,84	65,92	65,138	62,350
9	28,8	34,90	0,747	67,84	65,92	67,880	64,974
10	32	35,55	0,775	67,84	65,92	70,429	67,415
11	35,2	36,15	0,801	67,84	65,92	72,819	69,702
12	38,4	36,70	0,826	67,84	65,92	75,070	71,857
13	41,6	37,22	0,849	67,84	65,92	77,203	73,898
14	44,8	37,71	0,872	67,84	65,92	79,232	75,840
15	48	38,17	0,893	67,84	65,92	81,168	77,694
16	51,2	38,60	0,913	67,84	65,92	83,023	79,469
17	54,4	39,01	0,933	67,84	65,92	84,803	81,173
18	57,6	39,40	0,952	67,84	65,92	86,517	82,813
19	60,8	39,78	0,970	67,84	65,92	88,169	84,395
20	64	40,14	0,987	67,84	65,92	89,767	85,924
Telhado	66	40,35	0,998	42,40	41,20	56,712	54,284
Reservatório	68,35	40,60	1,010	10,93	14,22	14,796	18,963

Tabela 60 - Carregamentos gerados pelo vento no edifício

9 ANÁLISE ESTRUTURAL

O objetivo da análise estrutural, como descrito pela NBR 6118/2023, é determinar os efeitos das ações em uma estrutura, com a finalidade de efetuar verificações dos estados-limites últimos e de serviço.

Será feita uma breve explicação do modelo adotado e das considerações feitas para a análise estrutural, assim como a exibição dos diagramas resultantes. Por fim, serão exibidos os resultados da estabilidade global utilizando o coeficiente γz e será feita a verificação do deslocamento lateral referente ao estado limite de deformações excessivas. A primeira verificação será realizada com a geometria concebida durante o pré-dimensionamento, sendo que, dependendo dos resultados, a estrutura poderá ser enrijecida ou não.

9.1 CONSIDERAÇÕES

Para a análise estrutural desse edifício, foi utilizado o software Ftool na sua versão profissional, que inclui a possibilidade de criar as envoltórias de esforços com base nas combinações de carregamento criadas.

Foi empregada a análise linear para a obtenção dos esforços e deslocamentos, em que é admitido o comportamento elástico-linear dos materiais, sendo que as características geométricas foram determinadas pela seção bruta de concreto dos elementos estruturais. O coeficiente de Poisson usado foi de 0,2, adotado de acordo com o item 8.2.9 da NBR 6118/2023, e o módulo de elasticidade empregado para a análise foi o secante, com a correção descrita no item 15.7.3 da NBR 6118/2023 para levar em conta a não linearidade física do concreto. Para as vigas e pilares, o módulo de elasticidade secante foi multiplicado por 0,4 e 0,8, respectivamente, sendo que esses valores foram multiplicados por 1,1, de acordo com o descrito no item 15.5.1 da NBR 6118/2023. Os módulos de elasticidades utilizados podem ser visualizados abaixo:

Tabela 61 - Módulo de elasticidade secante para pilares e vigas

Ecs	31876	MPa
Pilares	28051	MPa
Vigas	14025	MPa

Essa consideração foi utilizada para determinar o coeficiente γz , para determinar os esforços de dimensionamento e verificar as deformações laterais do edifício.

Devido a simetria da edificação e a presença das lajes com o papel de diafragma rígido, foram adotados pórticos planos associados por elementos infinitamente rígidos e incapazes de transmitir momentos fletores, que representam a rigidez da estrutura nos sentidos x e y. Isso resulta em todos os pórticos trabalharem juntos e terem as mesmas deformações quando sujeitos aos carregamentos laterais impostos pelo vento. A análise com os pórticos associados é mais precisa que a análise dos pórticos considerando áreas de influência, pois o efeito da força do vento na estrutura vai se distribuir de acordo com a rigidez dos elementos, e facilita o cálculo manual do coeficiente γz , sendo esses os motivos da sua escolha neste trabalho.

Na Figura 52 podem ser visualizados os pórticos em x (vermelho) e em y (azul) e na Figura 53 e Figura 54 pode ser visualizada a discretização desses pórticos no Ftool.

Figura 52 – Pórticos em Planta

Fonte: (Do Autor)

Figura 53 – Pórticos discretizados em x

Fonte: (Do Autor)

A caracterização da geometria levou em conta a presença de trechos rígidos na ligação entre as vigas e pilares somente no sentido da dimensão h dos pilares. Os critérios usados foram retirados da NBR 6118/2023 e podem ser visualizados na imagem abaixo:

Fonte: (ABNT NBR 6118:2023)

Vale destacar que, durante o uso do software, por causa de alguns erros numéricos constatados ao utilizar a função de barra rígida do Ftool, optou-se por simular a barra rígida com um módulo de elasticidade e momento de inércia 10 vezes maior que o maior módulo de inércia e maior módulo de elasticidade presentes na análise.

Para as combinações últimas, foram utilizadas as seguintes combinações:

$$F_{d1} = 1,4F_{gk} + 1,4F_{qk} + 0,6 * 1,4F_{vk}$$
(9.1)

$$F_{d2} = 1,4F_{gk} + 1,4F_{vk} + 0,5 * 1,4F_{gk}$$
(9.2)

Para as combinações de serviço, foram utilizadas as seguintes combinações:

$$F_{d,serv} = F_{gk} + 0.3F_{vk} + 0.3F_{qk} \tag{9.3}$$

Onde:

 \succ F_{gk} representa o carregamento permanente;
- \succ F_{ak} representa o carregamento acidental;
- \succ F_{vk} representa o carregamento causado pelo vento;

O vento foi considerado em todas as quatro direções para cada uma das duas combinações.

9.2 DIAGRAMAS DOS ESFORÇOS E DEFORMADAS DA ESTRUTURA

Nas figuras a seguir, serão demonstrados os diagramas de esforços (axial, cortante e momento fletor) e deslocamento da combinação última descrita na equação (9.2), com o vento incidindo da direita para a esquerda, que resultou no maior deslocamento da estrutura. Devido às limitações do software na exibição dos resultados, serão apresentados somente os diagramas, com alguns valores chave, para que seja feita uma análise qualitativa quanto a forma dos diagramas.

Forças axiais:

Figura 56 – Esforços axiais nos pórticos em x – Combinação F_{d2}

Figura 57 – Esforços axiais nos pórticos em y
 – Combinação F_{d2}

Fonte: (Do Autor)

Forças Cortantes:

Fonte: (Do Autor)

Figura 59 – Esforços cortantes em y
 – Combinação F_{d2}

- Fonte: (Do Autor)
- ➢ Momentos Fletores:

Figura 60 – Momentos fletores em x
 – Combinação F_{d2}

Figura 61 – Momentos Fletores em y – Combinação F_{d2}

Fonte: (Do Autor)

Figura 62 – Estrutura deformada na direção x – Combinação F_{d2}

Fonte: (Do Autor)

Figura 63 – Estrutura deformada na direção y – Combinação F_{d2}

Fonte: (Do Autor)

9.3 ANÁLISE DOS EFEITOS GLOBAIS DE SEGUNDA ORDEM

Os efeitos de segunda ordem ocorrem em todas as estruturas sujeitas a cargas horizontais. No caso de edifícios altos, com uma relação entre altura e dimensões em planta grande, esses efeitos podem desencadear situações de instabilidade no edifício, pois os deslocamentos gerados causam esforços de momento significativos (Chust, 2009). Esse efeito pode ser visto na figura abaixo:

Fonte: (Zumaeta, 2016)

É possível perceber que, ao aplicar a carga horizontal, é gerado um deslocamento em x, que causa um braço de alavanca do apoio em relação ao ponto de aplicação da força vertical, gerando assim mais uma parcela de momento na reação de apoio.

O objetivo da análise que será realizada é, por meio do cálculo do coeficiente γz , determinar se os esforços gerados pelos efeitos de segunda ordem são grandes a ponto de ser necessário levá-los em conta no cálculo.

9.3.1 COEFICIENTE γz

Segundo o item 15.5.1 na NBR 6118/2023, o coeficiente γz é um processo aproximado, que permite verificar a possibilidade de dispensa da consideração dos esforços globais de segunda ordem, classificando a estrutura como de nós fixos ou nós móveis. Além de ser um processo simples e eficiente para classificar a magnitude dos esforços de segunda ordem, ele também permite a estimativa dos esforços de segunda ordem por meio de uma majoração dos esforços de segunda ordem. A seguir são explicadas as diferenças entre estruturas de nós fixos e de nós móveis:

Estrutura de nós fixos: são classificadas nesse critério as estruturas cujos deslocamentos horizontais dos nós são considerados pequenos e, por decorrência, os efeitos globais de 2ª ordem são desprezíveis (inferiores a 10% dos respectivos esforços de 1ª ordem). Para estes casos, basta considerar os efeitos locais e localizados de segunda ordem.

Estrutura de nós móveis: são classificadas nesse critério as estruturas cujos deslocamentos horizontais dos nós não são pequenos e, em decorrência, os efeitos globais de 2^a ordem são importantes (superiores a 10% dos respectivos esforços de 1^a ordem). Nessas estruturas devem ser considerados tanto os esforços de 2^a ordem globais como os locais e localizados.

O coeficiente γz é válido para estruturas reticuladas de no mínimo quatro andares e pode ser determinado a partir de uma análise linear de primeira ordem, adotando como valores de rigidez os descritos na Tabela 61, para o edifício em questão.

A expressão do γz é a seguinte:

$$\gamma z = \frac{1}{1 - \Delta M_{tot,d} / M_{1,tot,d}}$$
(9.4)

Onde:

- > $\Delta M_{tot,d}$ é a soma dos produtos de todas as forças verticais atuantes na estrutura, na combinação considerada, com seus valores de cálculo, pelos deslocamentos horizontais de seus respectivos pontos de aplicação, obtidos na análise de primeira ordem;
- M_{1,tot,d} é o momento de tombamento, ou seja, a soma dos momentos de todas as forças horizontais da combinação considerada, com seus valores de cálculo, em relação à base da estrutura.

Nas tabelas a seguir é possível analisar o coeficiente γz obtido para cada direção, junto com os dados utilizados para o cálculo. O valor das forças e deslocamentos foram tomados com base nas combinações últimas descritas nas equações (9.1) e (9.2), que resultou nos maiores coeficientes γz para cada direção. Vale destacar que, como o deslocamento em x para cada ponto do pavimento é o mesmo, por conta do diafragma rígido, bastou multiplicar o valor da carga vertical atuante em cada pavimento pelo deslocamento horizontal do pavimento.

Combinação: 1,4P + 0,7Q+1,4V											
		Vonto	Vento	Vento X	Vento Y	Ŷ	D	δhor.	δhor.	ΔMtot,d	∆Mtot,d
PAVIMENTO	z(m)			* z	* z	ı vonto	r (ala)(kNI)	Direção	Direção	Direção x	Direção y
		X (KIN)	T (KIN)	(kN.m)	(kN.m)	vento		x (cm)	y (cm)	(kN.m)	(kN.m)
Cobertura	68,35	14,80	18,96	1011,31	1296,15	1,40	450,00	16,92	17,89	76,14	80,51
Reservatório	66	56,71	54,28	3742,97	3582,75	1,40	736,00	16,59	17,57	122,10	129,32
Telhado	64	89,77	85,92	5745,06	5499,15	1,40	5296,00	16,35	17,29	865,90	915,68
20º Pavto	60,8	88,17	84,40	5360,70	5131,24	1,40	6100,00	16,04	16,87	978,44	1029,07
19º Pavto	57,6	86,52	82,81	4983,36	4770,05	1,40	6100,00	15,68	16,40	956,48	1000,40
18º Pavto	54,4	84,80	81,17	4613,29	4415,82	1,40	6100,00	15,26	15,89	930,86	969,29
17º Pavto	51,2	83,02	79,47	4250,76	4068,80	1,40	6100,00	14,76	15,31	900,36	933,91
16º Pavto	48	81,17	77,69	3896,08	3729,31	1,40	6100,00	14,19	14,66	865,59	894,26
15º Pavto	44,8	79,23	75,84	3549,58	3397,64	1,40	6100,00	13,55	13,95	826,55	850,95
14º Pavto	41,6	77,20	73,90	3211,65	3074,17	1,40	6100,00	12,84	13,17	783,24	803,37
13º Pavto	38,4	75,07	71,86	2882,70	2759,30	1,40	6100,00	12,06	12,33	735,66	752,13
12º Pavto	35,2	72,82	69,70	2563,21	2453,49	1,40	6100,00	11,22	11,42	684,42	696,62
11º Pavto	32	70,43	67,41	2253,74	2157,27	1,40	6100,00	10,31	10,46	628,91	638,06
10º Pavto	28,8	67,88	64,97	1954,93	1871,25	1,40	6100,00	9,34	9,44	569,92	575,60
9º Pavto	25,6	65,14	62,35	1667,54	1596,16	1,40	6100,00	8,32	8,37	507,52	510,45
8º Pavto	22,4	62,16	59,50	1392,47	1332,87	1,40	6100,00	7,25	7,26	442,01	442,68
7º Pavto	19,2	58,90	56,38	1130,86	1082,45	1,40	6100,00	6,13	6,11	373,87	372,89
6º Pavto	16	55,26	52,89	884,13	846,28	1,40	6100,00	4,98	4,95	303,60	301,95
5º Pavto	12,8	51,11	48,92	654,16	626,16	1,40	6100,00	3,81	3,78	232,23	230,82
4º Pavto	9,6	46,21	44,23	443,63	424,64	1,40	6100,00	2,65	2,65	161,47	161,41
3º Pavto	6,4	40,10	38,38	256,62	245,64	1,40	6100,00	1,55	1,58	94,43	96,38
2º Pavto	3,2	31,46	30,11	100,67	96,36	1,40	6100,00	6,04	6,55	368,14	399,25
	Totai	s		56549,42	54456,96			Totais		12407,82	12784,98
Υ ₇ γ·	1 186	Y7 V.	1 201								

Tabela 62 – Resultados do coeficiente γz para o vento sendo a ação variável principal

Fonte: (Do Autor)

combinação: 1,4P + 1,4Q+0,84V											
		Vonto	Vonto	Vento X	Vento Y	Y	D	δhor.	δhor.	∆Mtot,d	∆Mtot,d
PAVIMENTO	z(m)			* z	* z	vonto	г (ата)(kNI)	Direção	Direção	Direção x	Direção y
		A (KIN)	I (KIN)	(kN.m)	(kN.m)	vento	(8+4)(KN)	x (cm)	y (cm)	(kN.m)	(kN.m)
Cobertura	68,35	14,80	18,96	1011,31	1296,15	0,84	466,00	10,17	10,73	47,39	50,00
Reservatório	66	56,71	54,28	3742,97	3582,75	0,84	1594,00	9,97	10,54	158,87	168,01
Telhado	64	89,77	85,92	5745,06	5499,15	0,84	5468,00	9,81	10,38	536,63	567,58
20º Pavto	60,8	88,17	84,40	5360,70	5131,24	0,84	6557,00	9,63	10,12	631,44	663,57
19º Pavto	57,6	86,52	82,81	4983,36	4770,05	0,84	6557,00	9,41	9,84	617,21	645,34
18º Pavto	54,4	84,80	81,17	4613,29	4415,82	0,84	6557,00	9,16	9,54	600,49	625,73
17º Pavto	51,2	83,02	79,47	4250,76	4068,80	0,84	6557,00	8,86	9,19	580,95	602,26
16º Pavto	48	81,17	77,69	3896,08	3729,31	0,84	6557,00	8,52	8,80	558,53	576,82
15º Pavto	44,8	79,23	75,84	3549,58	3397,64	0,84	6557,00	8,13	8,37	533,35	548,82
14º Pavto	41,6	77,20	73,90	3211,65	3074,17	0,84	6557,00	7,71	7,90	505,35	518,20
13º Pavto	38,4	75,07	71,86	2882,70	2759,30	0,84	6557,00	7,24	7,40	474,66	484,96
12º Pavto	35,2	72,82	69,70	2563,21	2453,49	0,84	6557,00	6,73	6,85	441,42	449,29
11º Pavto	32	70,43	67,41	2253,74	2157,27	0,84	6557,00	6,19	6,27	405,68	411,32
10º Pavto	28,8	67,88	64,97	1954,93	1871,25	0,84	6557,00	5,61	5,66	367,59	371,26
9º Pavto	25,6	65,14	62,35	1667,54	1596,16	0,84	6557,00	4,99	5,02	327,33	329,23
8º Pavto	22,4	62,16	59,50	1392,47	1332,87	0,84	6557,00	4,35	4,35	285,10	285,49
7º Pavto	19,2	58,90	56,38	1130,86	1082,45	0,84	6557,00	3,68	3,67	241,10	240,51
6º Pavto	16	55,26	52,89	884,13	846,28	0,84	6557,00	2,99	2,97	195,79	194,74
5º Pavto	12,8	51,11	48,92	654,16	626,16	0,84	6557,00	2,28	2,27	149,76	148,91
4º Pavto	9,6	46,21	44,23	443,63	424,64	0,84	6557,00	1,59	1,59	104,13	104,13
3º Pavto	6,4	40,10	38,38	256,62	245,64	0,84	6557,00	0,93	0,95	60,89	62,15
2º Pavto	3,2	31,46	30,11	100,67	96 <u>,</u> 36	0,84	6557,00	0,36	0,39	23,74	25,75
	Totai	s		56549,42	54456,96			Totais		7847,39	8074,05
Yz x:	1,198	Yz y:	1,214								

Tabela 63 - Resultados do coeficiente γz para o vento sendo a ação variável secundária

É possível perceber que os efeitos de segunda ordem não podem ser desprezados na estrutura analisada, já que o valor de γz ficou maior que 1,1 no sentido x e y. Sendo assim, a estrutura será classificada como de nós móveis. Segundo o item 15.7.2 da NBR 6118/2023, uma solução aproximada para a determinação dos esforços globais de 2^a ordem consiste na avaliação dos esforços finais (1^a ordem + 2^a ordem) a partir da majoração adicional das ações horizontais da combinação de carregamento considerada por 0,95 * γz . Esse processo só é válido para $\gamma z \leq 1,3$.

Sendo assim, optou-se por majorar os esforços causados pelo vento por esse critério simplificado. O valor inicial e final dos esforços para a combinação última desses esforços horizontais podem ser visualizados a seguir:

PAVIMENTO	z(m)	Vento x	Vento Y	0,95*Yzx*Ve	0,95*Yzy*V
	· · /	(kN)	(kN)	nto x (kN)	ento y (kN)
Cobertura	68,35	14,80	18,96	16,84	21,88
Reservatório	66,00	56,71	54,28	64,54	62,62
Telhado	64,00	89,77	85,92	102,15	99,12
20º Pavto	60,80	88,17	84,40	100,34	97,36
19º Pavto	57,60	86,52	82,81	98,46	95,54
18º Pavto	54,40	84,80	81,17	96,51	93,64
17º Pavto	51,20	83,02	79,47	94,48	91,68
16º Pavto	48,00	81,17	77,69	92,37	89,63
15º Pavto	44,80	79,23	75,84	90,17	87,49
14º Pavto	41,60	77,20	73,90	87,86	85,25
13º Pavto	38,40	75,07	71,86	85,43	82,90
12º Pavto	35,20	72,82	69,70	82,87	80,41
11º Pavto	32,00	70,43	67,41	80,15	77,77
10º Pavto	28,80	67,88	64,97	77,25	74,96
9º Pavto	25,60	65,14	62,35	74,13	71,93
8º Pavto	22,40	62,16	59,50	70,74	68,64
7º Pavto	19,20	58,90	56,38	67,03	65,04
6º Pavto	16,00	55,26	52,89	62,88	61,02
5º Pavto	12,80	51,11	48,92	58,16	56,43
4º Pavto	9,60	46,21	44,23	52,59	51,03
3º Pavto	6,40	40,10	38,38	45,63	44,28
2º Pavto	3,20	31,46	30,11	35,80	34,74

Tabela 64- Esforços de vento majorados

Chamou a atenção durante a elaboração desta etapa o fato de a combinação que resultou no maior γz ser aquela no qual o esforço do vento é a ação variável secundária, por parecer contraintuitivo. Em vista disso, foram feitas algumas simulações para entender o processo um pouco mais a fundo.

Foram feitos seis casos de carregamento com uma estrutura simétrica de mesma seção transversal e módulo de elasticidade. Nos três primeiros casos a força vertical foi mantida constante e apenas a força horizontal foi aumentada. Nos três casos restantes a força horizontal foi mantida constante e a força vertical foi aumentada. Obtidos os deslocamentos, foram calculados os coeficientes γz para cada um dos casos. A seguir é possível observar todos os seis casos no Ftool e depois a planilha com o cálculo de γz para cada um dos casos analisados:

Fonte: (Do Autor)

Fonte: (Do Autor)

Tabela 65 – γz para os casos analisados

barra	z cm	fh kN	fv kN	deltax cm	Ϋ́z
1	500	10	10	0,926	1,001855
2	500	50	10	4,63	1,001855
3	500	100	10	9,26	1,001855
4	500	10	10	0,926	1,001855
5	500	10	20	0,926	1,003718
6	500	10	30	0,926	1,005587

Fonte: (Do Autor)

É possível perceber que, nos três primeiros casos, o acréscimo no módulo da força horizontal não alterou o coeficiente γz . Já nos casos 4, 5 e 6 é possível observar que manter a carga horizontal constante e aumentar a carga vertical gerou um γz maior. Para entender o que acontece, é necessário estudar a equação do coeficiente γz , especialmente a parte do denominador, apresentada abaixo:

$$\frac{\Delta M_{tot,d}}{M_{1,tot,d}} \tag{9.5}$$

Reescrevendo a equação, obtemos:

$$\frac{Fv * \delta}{Fh * y} \tag{9.6}$$

Onde:

- \succ *Fv* é a força vertical;
- $\triangleright \delta$ é o deslocamento gerado pela força horizontal;
- ➤ Fh é a força horizontal;
- \blacktriangleright y é o braço de alavanca da força horizontal.

Já que o δ depende de *Fh*, ao aumentar o valor da força horizontal por um fator α , acontece o aumento do deslocamento de maneira proporcional, da seguinte maneira:

$$\frac{Fv * \alpha * \delta}{\alpha * Fh * y} \tag{9.7}$$

É possível perceber que acontece o cancelamento do fator α , e o valor de γz permanece o mesmo. Por esse motivo, a combinação que gerou o maior γz foi a da equação (9.1).

9.4 ESTADO LIMITE DE SERVIÇO

Além da estabilidade global, é necessário verificar se o estado limite de deformações excessivas é atendido. Para isso, será usado a tabela 13.3 da NBR 6118/2023, que pode ser vista abaixo, junto com o item verificado que será destacado:

Figura 66 - Efeitos em elementos não estruturais - Movimento lateral de edifícios

15		1	C	2.2
Efeitos em elementos não estruturais		Alvenaria, caixilhos e revestimentos	Após a construção da parede	$\ell/500$ ^c e 10 mm e θ = 0,0017 rad ^d
		Divisórias leves e caixilhos telescópicos	Ocorrido após a instalação da divisória	ℓ/250 ^c e 25 mm
	Paredes	Movimento lateral de edifícios	Provocado pela ação do vento para combinação frequente (ψ ₁ = 0,30)	H/1 700 e H _/ /850 ^e entre pavimentos ^f
		Movimentos térmicos verticais	Provocado por diferença de temperatura	ℓ/400 ^g e 15 mm

Fonte: (ABNT NBR 6118:2023)

Abaixo serão apresentados os valores dos deslocamentos para a combinação descrita na equação (9.3):

		δhor.	δhor.	δhor. entre	δhor. entre	
PAVIMENTO	z(m)	Direção	Direção	pavimentos	pavimentos	Hi/850 (cm)
		x (cm)	y (cm)	Direção x (cm)	Direção y (cm)	
Cobertura	68,35	3,66	3,83	0,08	0,07	0,28
Reservatório	66	3,58	3,76	0,06	0,05	0,24
Telhado	64	3,52	3,71	0,07	0,09	0,38
20º Pavto	60,8	3,45	3,62	0,08	0,10	0,38
19º Pavto	57,6	3,37	3,52	0,09	0,11	0,38
18º Pavto	54,4	3,28	3,40	0,11	0,12	0,38
17º Pavto	51,2	3,17	3,28	0,12	0,14	0,38
16º Pavto	48	3,05	3,14	0,14	0,15	0,38
15º Pavto	44,8	2,91	2,99	0,15	0,17	0,38
14º Pavto	41,6	2,76	2,82	0,17	0,18	0,38
13º Pavto	38,4	2,59	2,64	0,18	0,19	0,38
12º Pavto	35,2	2,41	2,45	0,20	0,21	0,38
11º Pavto	32	2,21	2,24	0,21	0,22	0,38
10º Pavto	28,8	2,01	2,02	0,22	0,23	0,38
9º Pavto	25,6	1,79	1,79	0,23	0,24	0,38
8º Pavto	22,4	1,55	1,56	0,24	0,25	0,38
7º Pavto	19,2	1,31	1,31	0,25	0,25	0,38
6º Pavto	16	1,07	1,06	0,25	0,25	0,38
5º Pavto	12,8	0,82	0,81	0,25	0,24	0,38
4º Pavto	9,6	0,57	0,57	0,24	0,23	0,38
3º Pavto	6,4	0,33	0,34	0,20	0,20	0,38
2º Pavto	3,2	0,13	0,14	0,13	0,14	0,38

Tabela 66 - Verificação dos deslocamentos horizontais entre pavimentos

Fonte: (Do Autor)

Tabela 67 - Verificação do deslocamento horizontal máximo

		δhor.	δhor.		
PAVIMENTO	z(m)	Direção	Direção	H/1700 (cm)	
		x (cm)	y (cm)		
Cobertura	68,35	3,66	3,83	4,02	

Fonte: (Do Autor)

Percebe-se, pelas tabelas acima, que o estado-limite de deformações excessivas foi atendido.

Segundo a NBR 6118/2023, os pilares são elementos lineares de eixo reto, usualmente dispostos na vertical, em que as forças normais de compressão são preponderantes. Para o presente trabalho, foi selecionado um pilar (P1) de canto e feito o dimensionamento dos três primeiros lances. O pilar não foi dimensionado até o topo pois entende-se que o dimensionamento de apenas três lances seja o suficiente para demonstrar a compreensão do processo. Abaixo, segue a figura do pilar dimensionado:

Figura 67 – Pilar Selecionado

Fonte: (Do Autor)

Será apresentado a seguir uma revisão bibliográfica sobre o dimensionamento e detalhamento dos pilares. Depois, serão apresentados os resultados obtidos e o detalhe efetuado.

10.1 REVISÃO BIBLIOGRAFICA E ROTEIRO DE CÁLCULO

Por estarem sujeitos a compressão, os pilares podem sofrer instabilidades laterais. Em determinado ponto, ao se aplicar uma carga crítica, o pilar perde seu alinhamento com o eixo e sofre flambagem. Por ser um efeito repentino e com capacidade de levar a estrutura a ruína, O efeito de flambagem merece bastante atenção.

Segundo o item 15.7.4 da NBR 6118/2023, a análise global de segunda ordem fornece apenas os esforços nas extremidades das barras, sendo então realizada uma análise dos efeitos locais de segunda ordem ao longo dos eixos das barras comprimidas.

Os elementos isolados, para fins de verificação local, devem ser formados pelas barras comprimidas retiradas da estrutura, com comprimento ℓ_e , sendo este o menor entre os dois seguintes valores:

$$\ell_e = \ell_0 + h \tag{10.1}$$

121

$$\ell_e = \ell \tag{10.2}$$

O valor de ℓ_e representa o comprimento equivalente do elemento comprimido que é suposto como vinculado em ambas as extremidades. O modo de obtenção de ℓ_0 , $\ell e h$ é demonstrado na figura abaixo, lembrando que deve ser tomado nas direções x e y:

Figura 68 – Legenda de ℓ_0 , $\ell \in h$

(Perlin, Pinto e Padaratz, 2018)

O item 15.7.4 ainda menciona que devem ser aplicados as extremidades do elemento isolados os esforços obtidos através da análise global de segunda ordem. Isso foi feito e explicado no item 9 deste trabalho.

Com ℓ_e calculado, é possível calcular o índice de esbeltez do pilar (λ), que é dado por:

$$\lambda = \frac{\ell_e}{i} \tag{10.3}$$

Sendo *i* o raio de giração, dado por:

$$i = \sqrt{\frac{I}{A}} \tag{10.4}$$

$$\lambda_x = 3,46 \frac{\ell_{e,x}}{h_x} \tag{10.5}$$

$$\lambda_y = 3.46 \frac{\ell_{e,y}}{h_y} \tag{10.6}$$

Com o valor de λx e λy calculado, é possível classificar os pilares como:

- ➢ Pilares pouco esbeltos: $λ ≤ λ_1$;
- ▶ Pilares de esbeltez média: $\lambda_1 < \lambda \le 90$;
- ▶ Pilares esbeltos: $90 < \lambda \le 140$;
- ▶ Pilares muito esbeltos: $140 < \lambda \le 200$;

É importante ressaltar que a NBR 6118/2023 não permite que os pilares tenham esbeltez maior que 200, exceto nos casos de elementos pouco comprimidos com força normal menor que $0,10 * f_{cd} * A_c$.

Para verificar se a análise dos efeitos locais de segunda ordem pode ser dispensada, é necessário calcular o valor de λ_1 do pilar. Caso $\lambda < \lambda_1$, esses efeitos podem ser desconsiderados.

O valor de λ_1 pode ser calculado da seguinte maneira para a direção x e y, de acordo com a NBR 6118/2023 item 15.8.2:

$$\lambda_{1,x} = \frac{25 + 12.5 * (M_{Ad,x}/N_d) / h_x}{\alpha_{b,x}}; 35 \le \lambda_1 \le 90$$
(10.7)

$$\lambda_{1,y} = \frac{25 + 12,5 * (M_{Ad,y}/N_d) / h_y}{\alpha_{b,y}}; 35 \le \lambda_1 \le 90$$
(10.8)

A seguir é possível visualizar a orientação dos eixos:

Figura 69 - Orientação dos eixos

(Perlin, Pinto e Padaratz, 2018)

A tabela abaixo fornece as informações necessárias para o cálculo de $\alpha_{b,x}$ e $\alpha_{b,y}$:

Figura	70 -	Obtenção	de	α_h
0				· · D

Casos	Configuração	Valor de α_b
(a)	pilares biapoiados sem cargas transversais	$\alpha_b = 0.60 + 0.40 \frac{M_B}{M_A}$, onde $0.4 \le \alpha_b \le 1,0$ Obs: os momentos M_A e M_B são os momentos de 1 ^a ordem nas extremidades do pilar. M_A é o maior valor absoluto ao longo do pilar biapoiado. M_B terá sinal positivo se tracionar a mesma face que M_A , e negativo em caso contrário
(b)	pilares biapoiados com cargas transversais significativas ao longo da altura	$\alpha_b = 1.0$
(c)	para em pilares em balanço	$ \begin{aligned} \alpha_b &= 0.80 + 0.20 \frac{M_C}{M_A}, onde \ 0.85 \leq \alpha_b \leq 1,0 \end{aligned} $ Obs: M_A é o momento de 1ª ordem no engaste e M_C é o momento de 1ª ordem no meio do pilar em balanço.
(d)	pilares biapoiados ou em balanço com momentos menores que o momento mínimo	$\alpha_b = 1.0$

(Perlin, Pint	o e Padaratz	,2018)
---------------	--------------	--------

Nos casos em que $\lambda > \lambda_1$, é necessário determinar os efeitos locais de segunda ordem. A NBR 6118/2023 trata desse tema na seção 15.8.3. Esta seção traz alguns métodos para a determinação desses efeitos:

- ➢ Método geral;
- Método do pilar-padrão com curvatura aproximada;
- Método do pilar-padrão com rigidez k aproximada;
- Método do pilar-padrão acoplado a diagramas M, N, 1/r;

A aplicação de cada método depende da esbeltez do pilar. Essa seção também estabelece que a fluência deve ser obrigatoriamente considerada para pilares com $\lambda > 90$.

Para este trabalho, o método utilizado foi o do pilar-padrão com curvatura aproximada, que será explicado a seguir.

10.1.1 MÉTODO PILAR-PADRÃO COM CURVATURA APROXIMADA

Pode ser empregado apenas no cálculo de pilares com $\lambda \le 90$, com seção constante e armadura simétrica e constante ao longo de seu eixo.

Considera a não linearidade geométrica e forma aproximada, supondo que a deformação da barra seja senoidal.

A não linearidade física é considerada através de uma expressão aproximada da curvatura na seção crítica.

O momento de segunda ordem é dado por:

$$M_{2d} = N_d \frac{\ell_e^2 * 1}{10 * r} \tag{10.9}$$

Sendo 1/r a curvatura na seção crítica, que pode ser avaliada pela expressão aproximada:

$$\frac{1}{r} = \frac{0,005}{h * (v + 0.5)} \le \frac{0,005}{h} \tag{10.10}$$

Onde:

- \blacktriangleright *h* é a altura da seção na direção considerada;
- \succ v é a força normal adimensional, dada por:

$$v = N_d / (A_c * f_{cd}) \tag{10.11}$$

10.1.2 IMPERFEIÇÕES GEOMÉTRICAS LOCAIS

Esse assunto é abordado no item 11.3.3.4.2 da NBR 6118/2023. Esse item deixa claro que para o dimensionamento e verificação de um lance de pilar, deve ser considerado o efeito do desaprumo ou da falta de retilineidade do eixo do pilar, como é ilustrado na figura abaixo:

Figura 71 – Falta de retilineidade no pilar

Fonte: (ABNT NBR 6118:2023)

10.1.3 MOMENTO MÍNIMO

O item 11.3.3.4.3 estabelece que o efeito das imperfeições locais nos pilares e pilaresparede pode ser substituído, em estruturas reticuladas, pela consideração do momento mínimo de primeira ordem dado a seguir:

$$M_{1d,min} = N_d * (0,015 + 0,03 * h) \tag{10.12}$$

Esta foi a formulação utilizada para dimensionar o pilar do presente trabalho.

Sendo *h* a altura total da seção transversal na direção considerada, expressa em metros (m). A verificação do momento mínimo pode ser considerada atendida quando, no dimensionamento adotado, obtém-se uma envoltória resistente que englobe a envoltória mínima de primeira ordem, que, para pilares de seção retangular, pode ser tomada a favor da segurança, de acordo com a figura abaixo:

Figura 72 – Envoltória mínima de primeira ordem

Fonte: (ABNT NBR 6118:2023)

Caso seja necessário calcular os efeitos locais de segunda ordem em alguma das direções do pilar, a verificação do momento mínimo deve considerar também a envoltória mínima de com segunda ordem, que é tratada no item 15.3.2 da NBR 6118/2023.

Este item estabelece que, quando houver essa necessidade, a verificação do momento mínimo de segunda ordem pode ser considerada atendida quando, no dimensionamento adotado, obtém-se uma envoltória resistente que engloba a envoltória mínima de segunda ordem. Neste caso, os momentos totais são calculados a partir dos momentos mínimos de primeira ordem e de acordo com o item 15.8.3 da NBR 6118/2023

A construção dessa envoltória mínima pode ser realizada através de duas análises à flexão composta normal, calculadas de forma isolada e com momentos fletores mínimos de

primeira ordem atuantes nos extremos do pilar, nas suas direções principais, de acordo com a figura a seguir:

Figura 73 - Envoltória mínima com segunda ordem

10.1.4 ENVOLTÓRIA DE MOMENTOS RESISTENTES

O item 17.2.5 da NBR 6118/2023 traz uma aproximação para as situações de flexão composta obliqua, que é o caso do pilar analisado. A expressão é a seguinte:

$$\left[\frac{M_{\text{Rd},x}}{M_{\text{Rd},xx}}\right]^{\alpha} + \left[\frac{M_{\text{Rd},y}}{M_{\text{Rd},yy}}\right]^{\alpha} = 1$$
(10.13)

Onde:

 $> M_{Rd,x} \circ M_{Rd,y}$ são as componentes de momento resistente de cálculo em flexão oblíqua composta, segundo os dois eixos principais de inércia, x e y, da seção bruta, com uma força normal resistente de cálculo N_{Rd} igual à normal solicitante N_{Sd} . Estes são os valores que se deseja obter;

- \succ $M_{Rd,xx}$ e $M_{Rd,yy}$ são os momentos resistentes de cálculo segundo cada um dos referidos eixos em flexão composta normal, com o mesmo valor de N_{Rd} . Esses valores são calculados a partir do arranjo e da quantidade de armadura em estudo;

Para a obtenção dos valores de $M_{Rd,xx}$ e $M_{Rd,yy}$ foram utilizados os ábacos de Pinheiro para flexão composta oblíqua. Os arranjos de armadura disponibilizados são os seguintes:

Figura 74 - Arranjos para utilização dos ábacos

(Pinheiro, Baraldi e Porem, 2016)

Os seguintes valores são necessários como dados de entrada para utilizar os ábacos:

$$v = N_d / (A_c * f_{cd}) \tag{10.14}$$

$$\mu_x = M_{xd} / (A_c * f_{cd} * h_x) \tag{10.15}$$

$$\mu_y = M_{yd} / (A_c * f_{cd} * h_y) \tag{10.16}$$

$$\omega = (A_s * f_{yd}) / (A_c * f_{cd})$$
(10.17)

$$d'_y/h_y \tag{10.18}$$

$$d'_x/h_x \tag{10.19}$$

Abaixo é apresentado o formato do ábaco 1A, apenas como exemplo:

Figura 75 – Exemplo de um ábaco para flexão composta oblíqua

(Pinheiro, Baraldi e Porem, 2016)

Os ábacos são formados por 8 "fatias", que vão de v = 0,0 até v = 1,4. Para valores intermediários deve ser feita uma interpolação linear.

Para encontrar o valor de $M_{Rd,xx}$, primeiramente foi escolhido o arranjo, calculadas as relações das equações (10.31) e (10.19) e por fim selecionado o ábaco a ser utilizado. Após isso, foi fixado $\mu_y = 0$ e com o valor de ω , encontrou-se o valor de μ_x . Com o valor de μ_x , isolou-se M_{xd} na equação (10.22) para encontrar o momento resiste nessa direção. O mesmo procedimento foi utilizado para calcular M_{yd} . Tendo os dois valores para a flexão reta normal, foi possível traçar a envoltória de momentos resistentes com a equação (10.20).

Esse processo foi repetido sempre que a combinação analisada possui um v que caia em uma "fatia" diferente do ábaco.

10.1.5 SITUAÇÕES DE CÁLCULO

Por conta da armadura dos pilares ser simétrica, é necessário identificar a seção crítica a ser dimensionada. Sendo o esforço normal constante ao longo do pilar, é necessário definir as seções críticas em função da distribuição dos momentos fletores ao longo do pilar.

Na tabela abaixo é exibido o somatório dos momentos fletores para cada seção:

Seção	Eixo X	Eixo Y
Торо	$M_{x,topo,total} \geq \begin{cases} M_{1x,topo} \\ M_{1x,min} \end{cases}$	$M_{y,topo,total} \ge \begin{cases} M_{1y,topo} \\ M_{1y,min} \end{cases}$
Inter.	$M_{x,int,total} \ge \begin{cases} \alpha_{b,x} M_{A,x} + M_{2x} + M_{fx} \\ M_{1x,min} + M_{2x} + M_{fx} \end{cases}$	$M_{y,int,total} \ge \begin{cases} \alpha_{b,y} M_{A,y} + M_{2y} + M_{fy} \\ M_{1y,min} + M_{2y} + M_{fy} \end{cases}$
Base	$M_{x,base,total} \ge \begin{cases} M_{1x,base} \\ M_{1x,min} \end{cases}$	$M_{y,base,total} \ge \begin{cases} M_{1y,base} \\ M_{1y,min} \end{cases}$

Figura 76 - Somatório dos momentos fletores para cada seção

(Perlin, Pinto e Padaratz, 2018)

10.1.6 CRITÉRIOS DE DETALHAMENTO

O item da NBR 6118/2023 que trata do detalhamento dos pilares é o 18.4, que será abordado a seguir.

10.1.6.1 ARMADURAS LONGITUDINAIS

O item que aborda as armaduras longitudinais dos pilares é o de número 18.4.2 da NBR 6118/2023, sendo que os valores mínimos e máximos das armaduras longitudinais dos pilares são estabelecidos no item 17.3.5.3 da NBR 6118/2023, que são exibidos abaixo:

$$A_{s,min} = \left(0,15 * \frac{N_d}{f_{yd}}\right) \ge 0,004 * A_c \tag{10.20}$$

$$A_{s,max} = 0.08 * A_c \tag{10.21}$$

A armadura máxima deve ser respeitada inclusive nas regiões de emenda.

O diâmetro das barras longitudinais não deve ser inferior a 10 mm nem superior a 1/8 da menor dimensão transversal do pilar.

Quanto a sua distribuição na seção transversal, em seções poligonais, é necessária a colocação de pelo menos uma barra em cada vértice da seção. O espaçamento livre mínimo entre as faces das barras transversa deve ser igual ou superior ao maior dos seguintes valores:

$$s_{l} \geq \begin{cases} 20mm \\ \phi barra, \phi f eixe, \phi luva \\ 1,2 * d_{máx} \end{cases}$$
(10.22)

Sendo $d_{m \acute{a} x}$ a dimensão máxima do agregado graúdo.

Já o espaçamento máximo entre eixos das barras deve respeitar os seguintes valores:

$$e_l \le \begin{cases} 400 \ mm \\ 2 \ast b \end{cases} \tag{10.23}$$

Sendo *b* a menor dimensão do pilar.

10.1.6.1.1 EMENDAS DAS BARRAS

Este assunto é tratado no item 9.5 da NBR 6118/2023.

Para fazer a emenda das barras, o tipo escolhido foi o traspasse, pela facilidade de execução e por ser bem comum na região do projeto. Esse tipo de emenda não é permitido para barras com diâmetro maior que 32 mm.

O comprimento do traspasse de barras comprimidas é o seguinte:

$$\ell_{0c} = \ell_{b,nec} \ge \ell_{0c,min} \tag{10.24}$$

Onde:

$$\ell_{0c,min} \ge \begin{cases} 0,6 * \ell_b \\ 15\phi \\ 20 \text{ cm} \end{cases}$$
(10.25)

O valor de ℓ_b é obtido com a seguinte expressão, do item 9.4.2.4 da NBR 6118/2023:

$$\ell_b = \frac{\phi}{4} * \frac{f_{yd}}{f_{bd}} \ge 25\phi \tag{10.26}$$

O valor de f_{bd} é obtido por meio da equação no item 9.3.2.1 da NBR 6118/2023:

$$f_{bd} = \eta 1 * \eta 2 * \eta 3 * f_{ctd}$$
(10.27)

Os valores de η e a forma de calcular f_{ctd} são encontrados nesse mesmo item.

O valor de $\ell_{b.nec}$ pode ser obtido por meio da equação presente no item 9.4.2.5 da NBR 6118/2023, que é a seguinte:

$$\ell_{b.nec} = \alpha * \ell_b * \frac{A_{s,calc}}{A_{s,ef}} \ge \ell_{b.min}$$
(10.28)

Os valores de α são encontrados nesse mesmo item e o valor de $\ell_{b.min}$ também, sendo calculado da seguinte maneira:

$$\ell_{b.min} \ge \begin{cases} 0.3 * \ell_b \\ 10\phi \\ 10 \text{ cm} \end{cases}$$
(10.29)

10.1.6.2 ARMADURAS TRANSVERSAIS

O item que aborda as armaduras transversais dos pilares é o de número 18.4.3 da NBR 6118/2023. Esse item estabelece que a armadura transversal deve ser colocada em toda a altura do pilar, inclusive na região de cruzamento com vigas e lajes.

O diâmetro dos estribos (ϕ_t) não pode ser inferior a 5 mm nem a 1/4 do diâmetro das barras longitudinais. É possível utilizar um diâmetro menor que 1/4 do diâmetro das barras longitudinais somente se o aço usado para as armaduras forem do mesmo tipo e se for respeitado o espaçamento máximo dado pela equação:

$$s_{max} = 90000 * (\phi_t^2 / \phi_L) / f_{\nu k}$$
(10.30)

Sendo que f_{yk} entra na fórmula em MPa.

O espaçamento longitudinal entre estribos, quando respeitada a condição de que o diâmetro dos estribos não pode ser inferior a 5 mm nem a 1/4 do diâmetro das barras longitudinais, medido na direção do eixo do pilar, deve ser igual ou inferior ao menor dos seguintes valores:

$$s_{m\acute{a}x} \leq \begin{cases} 200mm \\ menor \ dimensão \ da \ seção \\ 24 * \phi_l \ para \ CA - 25 \\ 12 * \phi_l \ para \ CA - 50 \end{cases}$$
(10.31)

Nos pilares, devido a possibilidade de flambagem das barras da armadura longitudinal, o estribo é utilizado par impedir que isso aconteça. O item 18.2.4 da NBR 6118/2023 aborda esse assunto e expressa que, os estribos poligonais garantem contra a flambagem as barras longitudinais situadas em seus cantos e as por elas abrangidas, situadas a no máximo $20\phi_t$ do canto, se nesse trecho não houver mais de duas barras, não contando a de canto. Quando houver mais de duas barras nesse trecho ou barra fora dele, deve haver estribos suplementares. Abaixo uma figura da norma que exemplifica isso:

Figura 77 - Proteção contra flambagem das barras

Fonte: (ABNT NBR 6118:2023)

10.2 APRESENTAÇÃO DE RESULTADOS

10.2.1 PRIMEIRO LANCE DO P1 (25X65)

A seguir será apresentado o resultado obtido para o primeiro lance do P1. A primeira etapa para o dimensionamento foi obter os momentos atuantes no pilar por meio do Ftool. O pilar foi dimensionado levando em conta as seguintes combinações:

1)
$$F_d = 1,4F_{gk} + 1,4F_{qk} + 0,96F_{vk,x+} + 0,97F_{vk,y+}$$
 (10.32)

2)
$$F_d = 1.4F_{gk} + 1.4F_{qk} + 0.96F_{vk,x+} + 0.97F_{vk,y-}$$
 (10.33)

3)
$$F_d = 1.4F_{gk} + 1.4F_{qk} + 0.96F_{vk,x-} + 0.97F_{vk,y+}$$
(10.34)

4)
$$F_d = 1,4F_{gk} + 1,4F_{qk} + 0,96F_{vk,x-} + 0,97F_{vk,y-}$$
(10.35)

5)
$$F_d = 1,4F_{gk} + 0,7F_{qk} + 1,59F_{vk,x+} + 1,62F_{vk,y+}$$
(10.36)

6)
$$F_d = 1.4F_{gk} + 0.7F_{qk} + 1.59F_{vk,x+} + 1.62F_{vk,y-}$$
(10.37)

7)
$$F_d = 1,4F_{gk} + 0,7F_{qk} + 1,59F_{\nu k,x-} + 1,62F_{\nu k,y+}$$
(10.38)

8)
$$F_d = 1,4F_{gk} + 0,7F_{qk} + 1,59F_{vk,x-} + 1,62F_{vk,y-}$$
(10.39)

É importante salientar que não são somente essas combinações que devem ser levadas em conta ao se dimensionar os pilares, mas, devido à natureza acadêmica do trabalho, foram feitas algumas simplificações. Também, foram considerados os valores cheios do vento agindo de maneira inclinada nas fachadas, para simular esse tipo de situação. Vale destacar que esse procedimento é a favor da segurança, pois o vento máximo não ocorreria simultaneamente em duas fachadas. Os coeficientes do vento foram ajustados com $0,95 * \gamma z$, que foi abordado no item 9.3.1 deste trabalho.

Obtendo os esforços para cada combinação, foram traçadas as envoltórias e então foi verificado se a envoltória resistente envolvia a dos momentos mínimos de primeira e segunda ordem (caso existissem) e os momentos de cálculo. A seguir são apresentados os resultados:

Combinação	Nd (kN)	Mx topo (kN.m)	Mx base (kN.m)	My topo (kN.m)	My base (kN.m)
Combinação 1	3112	39,5	-50,1	42,6	81,18
Combinação 2	1801	-30	44,3	42,6	81,18
Combinação 3	3803	39,5	-50,1	58,7	-154,1
Combinação 4	2455	-30	44,3	58,7	-154,1
Combinação 5	3253	62,6	-81,6	34,8	159,8
Combinação 6	1003	-53,6	76	34,8	159,8
Combinação 7	4336	62,6	-81,6	61,4	-230,8
Combinação 8	2086	-53,6	76	61,4	-230,8

Tabela 68 – Esforços atuantes - 1.º Lance P1 (25x65)

Fonte: (Do Autor)

Tabela 69 – Dados da seção - 1.º Lance P1 (25x65)

fck MPa	30	fyk MPa	500
hx (cm)	25	hy (cm)	65
le x (cm)	285	le y (cm)	320
λx	39,49	λγ	17,05

ϕ L cm	3,2	qtd de ϕ L's	8
As min cm ²	14,9592	As máx cm ²	65
As calc. cm ²	64,34	As/Ac (%)	3,96
Cob (cm)	4	ϕ T cm	0,5
d' cm	6,1	v	1,245
d'y/hy	0,09	ω	0,803
d'x/hx	0,24	Ábaco n°	15

Tabela 70 – Armadura e dados de entrada do ábaco - 1.º Lance P1 (25x65)

Fonte: (Do Autor)

(Pinheiro, Baraldi e Porem, 2016)

Combinação	Nd (kN)	αb,x calculado
Combinação 7	4336	0,2931
Mx topo (kN.m)	Mx base (kN.m)	αb,y calculado
62,60	-81,60	0,4936
My topo (kN.m)	My base (kN.m)	αb,x adotado
61,40	-230,80	1,0000
M1d, min x (kN.m)	M1d, min y (kN.m)	αb,y adotado
97,56	149,59	1,0000

Tabela 71 – Combinação, momentos mínimos e $\alpha_{b,x}$ e $\alpha_{b,y}$ - 1.º Lance P1 (25x65)

Tabela 72 - Verificação do efeito de segunda ordem - 1.º Lance P1 (25x65)

λ1x calculado	λ1y calculado
25,94	26,02
λ1x adotado	λ1y adotado
35,00	35,00
Efeito de 2º x?	Efeito de 2º y?
Sim	Não

Fonte: (Do Autor)

Tabela 73-Curvatura calculada - 1.º Lance P1 (25x65)

ν	1/r x calculado	1/r y calculado
1,245	0,0115	0,0044

Fonte: (Do Autor)

Tabela 74 – Curvatura adotada - 1.º Lance P1 (25x65)

0,005/hx	0,005/hy	1/r x adotado	1/r y adotado
0,0200	0,0077	0,0115	0,0044

Fonte: (Do Autor)

Tabela 75 – Momento de segunda ordem - 1.º Lance P1 (25x65)

M2d,x (kN.m)	M2d,y (kN.m)	
40,36	0,00	
Fonte: (Do Autor)		

Tabela 76 – Situações de Cálculo - 1.º Lance P1 (25x65)

Mx topo (kN.m)	My topo (kN.m)	Mx Inter. (kN.m)	My Inter. (kN.m)	Mx base (kN.m)	My base (kN.m)
62,60	61,40	121,96	230,80	-81,60	-230,80

μγ = 0				
v abaixo =	1,200	μ x (v abaixo) =	0,13	
v acima =	1,400	μ x (v acima) =	0,07	
v =	1,245	μx (v)=	0,116	
	μ	x = 0		
v abaixo =	1,2	μ y (v abaixo) =	0,14	
v acima =	1,4	μ y (v acima) =	0,07	
v = 1,245		μx (v)=	0,124	
Momentos Resistentes				
Mxd (kN.m)	101,36	Myd (kN.m)	281,06	

Tabela 77 - μ_x e μ_y e momentos resistentes- 1.º Lance P1 (25x65)

Figura 79 – Envoltórias da combinação analisada - 1.º Lance P1 (25x65)

Fonte: (Do Autor)

É possível perceber que o dimensionamento não atende os requisitos, uma vez que os esforços não ficaram dentro da envoltória resistente. Como a % de aço está em quase 4%, para

evitar traspasses alternados, optou-se por aumentar a seção do pilar para 30x80 cm, como pode ser visto abaixo:

Figura 80 - P1 com seção alterada

Fonte: (Do Autor)

Com a alteração da seção, os esforços foram novamente calculados no Ftoll, mas o γz foi mantido o original, sendo em isso em favor da segurança, já que a estrutura se tornou mais rígida.

10.2.2 PRIMEIRO LANCE DO P1 (30X80)

A seguir será apresentado o resultado obtido para o primeiro lance do P1, com a seção alterada. A primeira etapa para o dimensionamento foi obter os momentos atuantes no pilar por meio do Ftool. O pilar foi dimensionado levando em conta as mesmas combinações anteriores. Serão apresentados somente os resultados da combinação que gerou a pior situação de cálculo.

Combinação	Nd (kN)	Mx topo (kN.m)	Mx base (kN.m)	My topo (kN.m)	My base (kN.m)
Combinação 1	3658	51	-82,9	85,4	124,6
Combinação 2	2083	-38	74,5	85,4	124,6
Combinação 3	4351	51	-82,9	22,2	-208,9
Combinação 4	2776	-38	74,5	22,2	-208,9
Combinação 5	3814	80,5	-135,5	103,6	234,5
Combinação 6	1183	-68,1	127,4	103,6	234,5
Combinação 7	4962	80,5	-135,5	-1,2	-317,9
Combinação 8	2331	-68,1	127,4	-1,2	-317,9

Tabela 78 – Esforços atuantes - 1.º Lance P1 (30x80)

fck MPa	30	fyk MPa	500
hx (cm)	30	hy (cm)	80
le x (cm)	290	le y (cm)	320
λχ	33,49	λγ	13,86

Tabela 79 – Dados da seção - 1.º Lance P1 (30x80)

Tabela 80 – Armadura e dados de entrada do ábaco - 1.º Lance P1 (30x80)

ϕ L cm	2,5	qtd de ϕ L's	20
As min cm ²	17,1189	As máx cm ²	96
As calc. cm ²	98,17	As/Ac (%)	4,09
Cob (cm)	4	ϕ T cm	0,63
d' cm	5,88	v	0,965
d'y/hy	0,07	ω	0,830
d'x/hx	0,196	Ábaco n°	14

Figura 81 – Ábaco utilizado - 1.º Lance P1 (30x80)

(Pinheiro, Baraldi e Porem, 2016)

Fonte: (Do Autor)

Combinação	Nd (kN)	αb,x calculado
Combinação 7	4962	0,3624
Mx topo (kN.m)	Mx base (kN.m)	αb,y calculado
80,50	-135,50	0,5985
My topo (kN.m)	My base (kN.m)	αb,x adotado
-1,20	-317,90	1,0000
M1d, min x (kN.m)	M1d, min y (kN.m)	αb,y adotado
119,09	193,52	1,0000

Tabela 81 – Combinação, momentos mínimos e $\alpha_{b,x}$ e $\alpha_{b,y}$ - 1.º Lance P1 (30x80)

Tabela 82 - Verificação do efeito de segunda ordem - 1.º Lance P1 (30x80)

λ1x calculado	λ1y calculado
26,14	26,00
λ1x adotado	λ1y adotado
35,00	35,00
Efeito de 2º x?	Efeito de 2º y?
Não	Não

Fonte: (Do Autor)

Tuberu 05 Curtuluru cureurudu 1. Lunee I 1 (50/100)	Tabela 83-Curvatura	calculada - 1	.º Lance	P1 (30x80)
---	---------------------	---------------	----------	------------

V	1/r x calculado	1/r y calculado
0,965	0,0114	0,0043

Fonte: (Do Autor)

Tabela 84 – Curvatura adotada - 1.º Lance P1 (30x80)

0,005/hx	0,005/hy	1/r x adotado	1/r y adotado
0,0167	0,0063	0,0114	0,0043

Fonte: (Do Autor)

Tabela 85 – Momento de segunda ordem - 1.º Lance P1 (30x80)

M2d,x (kN.m)	M2d,y (kN.m)
0,00	0,00

Tabela 86 – Situações de Cálculo - 1.º Lance P1 (30x80)

Mx topo (kN.m)	My topo (kN.m)	Mx Inter. (kN.m)	My Inter. (kN.m)	Mx base (kN.m)	My base (kN.m)
80,50	-1,20	135,50	317,90	-135,50	-317,90
Fonte: (Do Autor)					
Tabela 87 - μ_x e μ_y e momentos resistentes - 1.º Lance P1 (30x80)					

μy = 0				
v abaixo =	0,800	μ x (v abaixo) =	0,26	
v acima =	1,000	μ x (v acima) =	0,23	
v =	0,965	<i>μ</i> x (ν)=	0,235	
μx = 0				
v abaixo =	0,8	μ y (v abaixo) =	0,22	
v acima =	1,0	μ y (v acima) =	0,18	
v =	0,965	<i>μ</i> x (ν)=	0,187	
Momentos Resistentes				
Mxd (kN.m)	363,00	Myd (kN.m)	769,51	

Figura 82 – Envoltórias da combinação analisada - 1.º Lance P1 (30x80)

Fonte: (Do Autor)

É possível observar que o dimensionamento foi atendido, passando assim para o segundo lance.

10.2.1 SEGUNDO LANCE DO P1 (30X80)

A seguir será apresentado o resultado obtido para o segundo lance do P1, com a seção alterada. A primeira etapa para o dimensionamento foi obter os momentos atuantes no pilar por meio do Ftool. O pilar foi dimensionado levando em conta as mesmas combinações anteriores. Serão apresentados somente os resultados da combinação que gerou a pior situação de cálculo.

Combinação	Nd (kN)	Mx topo (kN.m)	Mx base (kN.m)	My topo (kN.m)	My base (kN.m)
Combinação 1	3472	55,1	59,7	51,5	32,6
Combinação 2	2017	-36,6	41,8	51,5	32,6
Combinação 3	4127	55,1	-59,7	67,6	-155,3
Combinação 4	2672	-36,3	41,8	67,6	-155,3
Combinação 5	3605	85,4	-93,3	42,7	98,3
Combinação 6	1176	-67,8	76,2	42,7	98,3
Combinação 7	4691	85,4	-93,3	69,3	-213
Combinação 8	2262	-67,8	76,2	69,3	-213

Tabela 88 – Esforços atuantes - 2.º Lance P1 (30x80)

Fonte: (Do Autor)

Tabela 89 – Dados da seção - 2.º Lance P1 (30x80)

fck MPa	30	fyk MPa	500
hx (cm)	30	hy (cm)	80
le x (cm)	290	le y (cm)	320
λχ	33,49	λγ	13,86

Fonte: (Do Autor)

Tabela 90 – Armadura e dados de entrada do ábaco - 2.º Lance P1 (30x80)

ϕ L cm	2	qtd de ϕ L's	20
As min cm ²	16,18395	As máx cm ²	96
As calc. cm ²	62,83	As/Ac (%)	2,62
Cob (cm)	4	ϕ T cm	0,5
d' cm	5,5	v	0,912
d'y/hy	0,07	ω	0,531
d'x/hx	0,18	Ábaco n°	14

Figura 83 – Ábaco utilizado - 2.º Lance P1 (30x80)

(Pinheiro, Baraldi e Porem, 2016)

Tabela 91 – Combinação, momentos mínimos e $\alpha_{b,x}$ e $\alpha_{b,y}$ - 2.º Lance P1 (30x80)

Combinação	Nd (kN)	αb,x calculado
Combinação 7	4691	0,2339
Mx topo (kN.m)	Mx base (kN.m)	αb,y calculado
85,40	-93,30	0,4699
My topo (kN.m)	My base (kN.m)	αb,x adotado
69,30	-213,00	1,0000
M1d, min x (kN.m)	M1d, min y (kN.m)	αb,y adotado
112,58	182,95	1,0000

Fonte: (Do Autor)

λ1x calculado	λ1y calculado
25,83	25,71
λ1x adotado	λ1y adotado
35,00	35,00
Efeito de 2º x?	Efeito de 2º y?
Não	Não

Tabela 92 - Verificação do efeito de segunda ordem - 2.º Lance P1 (30x80)

Tabela 93-Curvatura calculada - 2.º Lance P1 (30x80)

v	1/r x calculado	1/r y calculado
0,912	0,0118	0,0044

Fonte: (Do Autor)

Tabela 94 – Curvatura adotada - 2.º Lance P1 (30x80)

0,005/hx	0,005/hy	1/r x adotado	1/r y adotado
0,0167	0,0063	0,0118	0,0044

Fonte: (Do Autor)

Tabela 95 – Momento de segunda ordem - 2.º Lance P1 (30x80)

M2d,x (kN.m)	M2d,y (kN.m)
0,0000	0,00

Fonte: (Do Autor)

Tabela 96 – Situações de Cálculo - 2.º Lance P1 (30x80)

Mx topo (kN.m)	My topo (kN.m)	Mx Inter. (kN.m)	My Inter. (kN.m)	Mx base (kN.m)	My base (kN.m)
85,40	69,30	93,30	213,00	-93,30	-213,00

μγ = 0			
v abaixo =	0,800	μ x (v abaixo) =	0,17
v acima =	1,000	μ x (v acima) =	0,12
v =	0,912	<i>μ</i> x (ν)=	0,142
	μx = 0		
v abaixo =	0,8	μ y (v abaixo) =	0,16
v acima =	1,0	μ y (v acima) =	0,12
v =	0,912	<i>μ</i> x (ν)=	0,138
Momentos Resistentes			
Mxd (kN.m)	219,03	Myd (kN.m)	566,01

Tabela 97 - μ_x e μ_y e momentos resistentes - 2.º Lance P1 (30x80)

Figura 84 – Envoltórias da combinação analisada - 2.º Lance P1 (30x80)

Fonte: (Do Autor)

É possível observar que o dimensionamento foi atendido, passando assim para o terceiro lance.

10.2.2 TERCEIRO LANCE DO P1 (30X80)

A seguir será apresentado o resultado obtido para o terceiro lance do P1, com a seção alterada. A primeira etapa para o dimensionamento foi obter os momentos atuantes no pilar por meio do Ftool. O pilar foi dimensionado levando em conta as mesmas combinações anteriores. Serão apresentados somente os resultados da combinação que gerou a pior situação de cálculo.

Combinação	Nd (kN)	Mx topo (kN.m)	Mx base (kN.m)	My topo (kN.m)	My base (kN.m)
Combinação 1	3278	64,3	-68,9	29,3	11
Combinação 2	1959	-43	48,8	29,3	11
Combinação 3	3887	64,3	-68,9	91,3	-129,5
Combinação 4	2568	-43	48,8	91,3	-129,5
Combinação 5	3388	99,7	-107,8	5,5	60,4
Combinação 6	1185	-79,6	88,7	5,5	60,4
Combinação 7	4397	99,7	-107,8	108,2	-172,4
Combinação 8	2194	-79,6	88,7	108,2	-172,4

Tabela 98 – Esforços atuantes - 3.º Lance P1 (30x80)

Fonte: (Do Autor)

Tabela 99 – Dados da seção - 3	3.° Lance P1	(30x80)
--------------------------------	--------------	---------

fck MPa	30	fyk MPa	500
hx (cm)	30	hy (cm)	80
le x (cm)	290	le y (cm)	320
λχ	33,49	λγ	13,86

Fonte: (Do Autor)

Tabela 100 – Armadura e dados de entrada do ábaco - 3.º Lance P1 (30x80)

ϕ L cm	2	qtd de ϕ L's	20
As min cm ²	15,16965	As máx cm²	96
As calc. cm ²	62,83	As/Ac (%)	2,62
Cob (cm)	4	ϕ T cm	0,5
d' cm	5,5	v	0,855
d'y/hy	0,07	ω	0,531
d'x/hx	0,18	Ábaco n°	14

Figura 85 – Ábaco utilizado - 3.º Lance P1 (30x80)

(Pinheiro, Baraldi e Porem, 2016)

Tabela 101 – Combinação, momentos mínimos e $\alpha_{b,x}$ e $\alpha_{b,y}$ - 3.º Lance P1 (30x80)

Combinação	Nd (kN)	αb,x calculado
Combinação 7	4397	0,2301
Mx topo (kN.m)	Mx base (kN.m)	αb,y calculado
99,70	-107,80	0,3490
My topo (kN.m)	My base (kN.m)	αb,x adotado
108,20	-172,40	1,0000
M1d, min x (kN.m)	M1d, min y (kN.m)	αb,y adotado
105,53	171,48	1,0000

Fonte: (Do Autor)

λ1x calculado	λ1y calculado
26,02	25,61
λ1x adotado	λ1y adotado
35,00	35,00
Efeito de 2º x?	Efeito de 2º y?
Não	Não

Tabela 102 - Verificação do efeito de segunda ordem - 3.º Lance P1 (30x80)

Tabela 103-Curvatura calculada - 3.º Lance P1 (30x80)

v	1/r x calculado	1/r y calculado
0,855	0,0123	0,0046

Fonte: (Do Autor)

Tabela 104 –	Curvatura	adotada - 3	8.° Lance	P1	(30x80)
--------------	-----------	-------------	-----------	----	---------

0,005/hx	0,005/hy	1/r x adotado	1/r y adotado	
0,0167	0,0063	0,0123	0,0046	

Fonte: (Do Autor)

Tabela 105 – Momento de segunda ordem - 3.º Lance P1 (30x80)

M2d,x (kN.m)	M2d,y (kN.m)
0,0000	0,00

Fonte: (Do Autor)

Tabela 106 – Situações de Cálculo - 3.º Lance P1 (30x80)

Mx topo (kN.m)	My topo (kN.m)	Mx Inter. (kN.m)	My Inter. (kN.m)	Mx base (kN.m)	My base (kN.m)
99,70	108,20	107,80	172,40	-107,80	-172,40

μγ = 0				
v abaixo =	0,800	μ x (v abaixo) =	0,17	
v acima =	1,000	μ x (v acima) =	0,12	
v =	0,855	μx (v)=	0,156	
	μ	x = 0		
v abaixo =	0,8	μ y (v abaixo) =	0,16	
v acima =	1,0	μ y (v acima) =	0,12	
v =	0,855	μx (v)=	0,149	
	Momento	s Resistentes		
Mxd (kN.m)	241,08	Myd (kN.m)	613,05	

Tabela 107 - μ_x e μ_y e momentos resistentes - 3.º Lance P1 (30x80)

Figura 86 – Envoltórias da combinação analisada - 3.º Lance P1 (30x80)

Fonte: (Do Autor)

É possível observar que o dimensionamento foi atendido, passando assim para o detalhamento.

Seguindo os critérios abordados em 10.1.6, os três lances foram detalhados. Abaixo é apresentada uma tabela com o resumo dos resultados para cada lance:

P1	φL (mm)	Numero de φL's	φT (mm)	Espaçamento φT (cm)	AS, ef (cm²)	Trasspasse (cm)	
Lance 1	25	20	6,3	20	98,17	84	
Lance 2	20	20	5	20	62,83	67	
Lance 3	20	20	5	20	62,83	67	
	Fonte: (Do Autor)						

Tabela 108 – Resumo da armadura para cada lance

O espaçamento de ϕ_t do primeiro segue a equação (10.31). As armaduras complementares foram calculadas usando os critérios da Figura 77. Para o primeiro lance, o comprimento protegido resulta em 20 * 6,3 = 126 mm. Sendo assim, a segunda barra estava protegida, como pode ser visto abaixo:

Fonte: (Do Autor)

Para o segundo e terceiro lance, o comprimento protegido resulta em 20 * 5 = 100 mm. Sendo assim, a segunda barra não estava protegida, como pode ser visto a seguir:

Figura 88 - Estribo complementar segundo e terceiro lance

Fonte: (Do Autor)

O cálculo do traspasse para as duas bitolas utilizadas pode ser visto abaixo:

ϕ L(cm)	fck (MPa)	fyk (MPa)	Aço	η 1	η2	η3	fctd.inf (MPa)	fbd (MPa)
2,50	30	500	CA-50	2,3	1	1	1,45	3,26
2,00	30	500	CA-50	2,3	1	1	1,45	3,26

Tabela 109 – Cálculo do traspasse (1/2)

Fonte: (Do Autor)

Tabela 110 – Cálculo do traspasse ((2/2)
-------------------------------------	-------

ϕ L (cm)	lb (cm)	lb.min (cm)	α	AS cal. (cm ²)	AS ef (cm ²)	lb.nec (cm)	loc (cm)
2,50	83,39	25,02	1	98,17	98,17	83,39	83,39
2,00	66,71	20,01	1	62,83	62,83	66,71	66,71

Fonte: (Do Autor)

Com essas informações, foi possível detalhar os lances. A seguir é possível observar os detalhes:

Fonte: (Do Autor)

Fonte: (Do Autor)

Foi selecionada a viga contínua V101, do pavimento tipo, para realizar o dimensionamento. As dimensões da viga e sua posição na planta pode ser visualizada abaixo. Também é possível visualizar as envoltórias de momento e cortante, bem como a sua deformada na combinação que resultou nos maiores deslocamentos.

Fonte: (Do Autor)

É possível perceber que, em todos os três tramos, a viga cumpre o item 18.3.1 da NBR 6118/2023, tendo o vão teórico três vezes maior que a sua altura.

O roteiro para o dimensionamento da viga a flexão simples e cortante foi o seguinte:

- Cálculo das armaduras longitudinais nas seções críticas;
- Cálculo das armaduras transversais;
- Decalagem do diagrama de momentos fletores;
- Detalhamento da viga;
- Verificação do ELS-DEF;
- Verificação do ELS-W.

A seguir serão demonstradas cada uma das etapas:

11.1 ARMADURAS LONGITUDINAIS NAS SEÇÕES CRÍTICAS

Assim como foi feito para as lajes, é necessário obter os momentos máximos que agem em cada trecho. Esses esforços foram obtidos com a Figura 92 e foram resumidos nas tabelas a seguir:

Viga	Trecho	M máx (kN.m)
V101	P1-P2	95,2
V101	P2-P3	99,4
V101	P3-P4	95,2

Tabela 111 - Resumo de momentos positivos

Fonte: (Do Autor)

Viga	Trecho	M máx (kN.m)
V101	P1	264,5
V101	P2	270,2
V101	Р3	270,2
V101	P4	264,5

Tabela 112 – Resumo de momentos negativos

Fonte:	(Do Autor)	
1 01100.	(DOIIG001)	

Com esses valores, foi possível calcular a área de aço para cada seção. O dimensionamento é similar ao que foi feito para as lajes, usando as equações (7.22(7.22) e (7.23), que serão exibidas novamente:

$$x = \frac{d - \sqrt{d^2 - 2 \times \frac{Md}{bw \times ac \times fcd}}}{\lambda}$$
(7.22)

$$A_{s} = \frac{Md}{fyd * (d - 0.4 * x)}$$
(7.23)

Como foram dispostas armaduras em mais de uma camada, foi necessário conferir se o item 17.2.4.1 da NBR 6118/2023 foi atendido, para poder considerar a armadura como estando concentrada no centro de gravidade do conjunto. Nas tabelas a seguir são demonstrados os cálculos para cada seção:

Vigo	Tracha	M máx	1 máx h bw ØL (cm	() (cm)	(cm) $(dT(cm))$		Ø's	Ø's	
viga	Trecho	(kN.m)	(cm)	(cm)			camada 1	camada 2	camada 3
V101	P1-P2	95,2	60	20	1,25	0,50	2	2	0
V101	P2-P3	99,4	60	20	1,25	0,50	2	2	0
V101	P3-P4	95,2	60	20	1,25	0,50	2	2	0
V101	P1	264,5	60	20	2,00	0,50	2	2	1
V101	P2	270,2	60	20	2,00	0,50	2	2	1
V101	P3	270,2	60	20	2,00	0,50	2	2	1
V101	P4	264,5	60	20	2,00	0,50	2	2	1

Tabela 113 – Dimensionamento da viga a flexão 1/3

Viga	tracho cob e		espac.vert	ca (cm)	17.2.4.1 é	d (cm)	fed (MPa)	x (cm)	× \4
viga	necho	(cm)	ical (cm)		atendido?	u (cm)			x/u
V101	P1-P2	4,0	2,0	6,8	Sim	53,25	21,43	6,45	0,12
V101	P2-P3	4,0	2,0	6,8	Sim	53,25	21,43	6,75	0,13
V101	P3-P4	4,0	2,0	6,8	Sim	53,25	21,43	6,45	0,12
V101	P1	4,0	2,0	8,7	Sim	51,30	21,43	21,19	0,41
V101	P2	4,0	2,0	8,7	Sim	51,30	21,43	21,77	0,42
V101	Р3	4,0	2,0	8,7	Sim	51,30	21,43	21,77	0,42
V101	P4	4,0	2,0	8,7	Sim	51,30	21,43	21,19	0,41

Tabela 114 – Dimensionamento da viga a flexão 2/3

Viga	Trecho	As calc (cm ²)	As min (cm²)	As máx (cm²)	As ef (cm²)
V101	P1-P2	4,32	1,80	48,00	4,91
V101	P2-P3	4,52	1,80	48,00	4,91
V101	P3-P4	4,32	1,80	48,00	4,91
V101	P1	14,21	1,80	48,00	15,71
V101	P2	14,59	1,80	48,00	15,71
V101	P3	14,59	1,80	48,00	15,71
V101	P4	14,21	1,80	48,00	15,71

Tabela 115 – Dimensionamento da viga a flexão 3/3

Sendo assim, a armadura negativa resultou em 5 barras de 20 mm, sendo dispostas em três camadas e a positiva resultou em 4 barras de 12,5 mm, sendo dispostas em duas camadas. A verificação da armadura mínima também foi realizada usando a Figura 37

Os espaçamentos horizontais e verticais seguiram o prescrito no item 18.3.2.2 da NBR 6118/2023, sendo:

$$a_{h} \geq \begin{cases} 20mm \\ \phi barra, \phi f eixe, \phi luva \\ 1,2 * d_{máx} \end{cases}$$
(11.1)

$$a_{v} \geq \begin{cases} 20mm \\ \phi barra, \phi f eixe, \phi luva \\ 0,5 * d_{máx} \end{cases}$$
(11.2)

Fonte: (Do Autor)

Sendo assim, o espaçamento vertical adotado foi de 20 mm e o horizontal foi atendido tanto para a armadura negativa (7 cm) quanto para a positiva (8,5 cm).

11.2 CÁLCULO DAS ARMADURAS TRANSVERSAIS

O item que trata das armaduras transversais em vigas na NBR 6118/2023 é o 17.4.2. Esse item traz dois modelos de cálculo, sendo que, para a elaboração deste trabalho, foi escolhido o modelo de cálculo II, que é tratado no item 17.4.2.3.

Esse modelo admite que as diagonais de compressão podem estar inclinadas em um ângulo θ que pode variar entre 30 e 45 graus com relação ao eixo longitudinal do elemento estrutural. Esse modelo também admite que a parcela complementar *Vc* sofre redução com o aumento de *Vsd*.

O primeiro passo para a verificação do cisalhamento é conferir se ocorre o esmagamento da biela de concreto. Isso é feito a partir da seguinte expressão:

$$V_{Rd2} = 0,54 * \alpha_{\nu 2} * fcd * b_w * d * sen^2\theta * (cotg \alpha + cotg \theta)$$
(11.3)

Sendo:

 $\succ \alpha_{v2} = 1 - fck/250$, com *fck* em MPa;

> θ a inclinação das bielas de compressão;

> α a inclinação dos estribos, sendo usado nesse trabalho 90°.

Para cada tramo da viga foi feita essa verificação, sendo que os esforços foram pegos da Figura 93. As verificações são demonstradas abaixo:

Trecho-V101	fck (MPa)	(°)	bw (cm)	h(cm)	d(cm)	d/h	αν2	Vsd (kN)	VRd2 (kN)	Passa?
P1-P2	30	30	20	60	51,30	0,86	0,88	128	452,39	Sim
P2-P3	30	30	20	60	51,30	0,86	0,88	125	452,39	Sim
P3-P4	30	30	20	60	51,30	0,86	0,88	128	452,39	Sim

Tabela 116 - Verificação das bielas de compressão

É possível perceber que em todos os tramos a verificação é cumprida. Em seguida foi calculada a armadura mínima, que é tratada no item 17.4.1.1.1 da NBR 6118/2023.

O valor da armadura mínima é dado pela seguinte expressão:

$$\frac{A_{sw}}{s} \ge \frac{0.2 * b_w * sen \,\alpha * f_{ct,m}}{f_{ywk}} \tag{11.4}$$

Sendo:

- \succ A_{sw} a área da seção transversal dos estribos;
- \succ s é o espaçamento entre estribos, medido segundo o eixo longitudinal do elemento;
- > α a inclinação dos estribos, sendo usado nesse trabalho 90°;
- \succ b_w é a largura da alma da seção;
- > f_{ywk} é a resistência característica ao escoamento do aço da armadura transversal;
- \blacktriangleright $f_{ct,m}$ é a resistência média a tração do concreto.

Os resultados obtidos podem ser visualizados na tabela abaixo:

Trecho-V101	fct m (MPa)	fywk (MPa)	bw (cm)	Asw/s (cm²/m)	Øt (mm)	n ramos	s (cm)	Vd min (kN)
P1-P2	2,90	600	20	1,93	5,0	2	20,0	160,2
P2-P3	2,90	600	20	1,93	5,0	2	20,0	160,9
P3-P4	2,90	600	20	1,93	5,0	2	20,0	160,2

Tabela 117 – Armadura transversal mínima

Para fazer o dimensionamento dos estribos, é necessário calcular o valor de V_c , que é a parcela de força cortante resistida por mecanismos complementares ao modelo de treliça. Para o modelo II, este valor segue o seguinte gráfico, sendo $V_c = V_{c1}$ na flexão simples:

Fonte: (Do Autor)

Figura 95 – gráfico do valor de V_{c1}

Fonte: (Pinto, 2020)

A parcela V_{c0} é calculada por:

$$V_{c0} = 0.6 * f_{ctd} * b_w * d \tag{11.5}$$

Ou seja, se o valor de V_{sd} , que é a solicitação de cálculo, for menor ou igual a V_{c0} , $V_{c1} = V_{c0}$ e $V_{c1} = 0$ quando $V_{sd} = V_{Rd2}$. A norma frisa que deve ser feita uma interpolação linear para quando V_{sd} ficar entre V_{c0} e V_{Rd2} . Com o valor de V_c pode-se calcular o valor de V_{sw} , que é a parcela de cortante suportada pela armadura transversal. V_{sw} é calculado por:

$$V_{sw} = V_{sd} - V_c \tag{11.6}$$

O cálculo de V_c e V_{sw} pode ser visto na tabela abaixo:

Trecho-V101	Vsd (kN)	d (cm)	bw (cm)	Vc0(kN)	Vc1(kN)	Vc(kN)	Vsw (kN)
P1-P2	128	51,30	20	89,15	79,62	79,62	48,38
P2-P3	125	51,30	20	89,15	80,36	80,36	44,64
P3-P4	128	51,30	20	89,15	79,62	79,62	48,38

Tabela 118 – Cálculo de V_c e de V_{sw}

Fonte: (Do Autor)

Com o valor de V_{sw} é possível calcular a área de armadura transversal necessária por metro, através da seguinte equação:

$$\frac{A_{sw}}{s} = \frac{V_{sw}}{0.9 * d * f_{ywd} * (cotg \alpha + cotg \theta) * sen \alpha}$$
(11.7)

Abaixo é possível ver o dimensionamento para cada tramo da viga:

Trecho-V101	Vsw (kN)	As/s (cm²/m)	Øt (mm)	n ramos	s (cm)
P1-P2	48,38	1,16	5,0	2	33,87
P2-P3	44,64	1,07	5,0	2	36,70
P3-P4	48,38	1,16	5,0	2	33,87

Tabela 119 – Cálculo da armadura transversal

Fonte:	(Do	Autor)
--------	-----	--------

Percebe-se que será adotada a armadura mínima. Ainda é necessário calcular os espaçamentos máximos, descritos no item 18.3.3.2 da NBR 6118/2023. Esse item estabelece que o diâmetro mínimo do estribo é de 5 mm, sem exceder 1/10 da largura da alma da viga. Para o espaçamento máximo no sentido longitudinal são dadas as seguintes condições:

- Se $V_d \le 0.67 V_{Rd2}$, então $s_{max} = 0.6 * d \le 30 \ cm$; - Se $V_d > 0.67 \ V_{Rd2}$, então $s_{max} = 0.3 * d \le 20 \ cm$.

O espaçamento transversal máximo entre ramos sucessivos da armadura constituída por estribos não pode exceder os seguintes valores:

- Se
$$V_d \le 0,20 V_{Rd2}$$
, então $s_{t,máx} = d \le 80 \ cm$;
- Se $V_d > 0,20 \ V_{Rd2}$, então $s_{t,máx} = 0,6 \ *d \le 35 \ cm$

Os resultados são demonstrados abaixo:

Trecho-V101	smáx (cm)	stmáx (cm)
P1-P2	30	30,78
P2-P3	30	30,78
P3-P4	30	30,78

Tabela 120 – Espaçamentos máximos para os estribos

Fonte: (Do Autor)

Sendo assim, o dimensionamento ficou em estribos de 5 mm a cada 20 cm.

Ainda é necessário calcular a armadura de suspensão dos apoios indiretos causados pela V113, V119 e V123. As armaduras de suspensão são tratadas no item 18.3.6 da NBR 6118/2023, que estabelece que as mesmas, na viga de apoio, devem ser colocadas num comprimento igual a altura da viga, sendo metade para cada lado. Essa armadura é calculada como um tirante e é definida pela seguinte fórmula:

$$A_{susp} = R_d * \frac{h}{f_{yd} * H} \le R_d / f_{yd} \tag{11.8}$$

Sendo:

- \succ R_d a força a ser suspensa;
- ➢ h a altura da viga apoiada;
- ➢ H a altura da viga de suporte;

Os resultados são demonstrados abaixo:

Tabela 121 – Armaduras de suspensão

Viga	Rd (kN)	viga apoiada (cm)	viga apoio (cm)	As (cm²)	Øt (mm)	n ramos	n Øt	s (cm)
V113	66	40	60	0,84	5,0	2	3	30
V119	50	40	60	0,64	5,0	2	2	60
V123	66	40	60	0,84	5,0	2	3	30

Fonte: (Do Autor)

Como esse valor é inferior a armadura mínima adotada, será usado estribos de 5 mm a cada 20 cm para toda a viga, com exceção da região onde houver costuras.

11.3 DECALAGEM DO DIAGRAMA DE MOMENTOS FLETORES

Uma viga, no ELU, apresenta um comportamento similar ao de uma treliça. Sendo assim, é necessário corrigir o diagrama de momentos fletores, somando o valor de a_l , que seria o comprimento do banzo tracionado. Para o modelo II, a_l é calculado da seguinte maneira:

$$a_{l} = 0.5d \left[\frac{V_{Sd,m\acute{a}x}}{(V_{Sd,m\acute{a}x} - V_{c})} \left(\cot g \ \alpha + \cot g \ \theta \right) - \cot g \ \alpha \right] \le d \tag{11.9}$$

Sendo que $a_l \ge 0.5 * d$ no caso geral.

Abaixo são demonstrados os cálculos de a_l para cada um dos apoios e vãos:

Trecho	Vsd máx (kN)	Vc(kN)	Modelo II (°)	d (cm)	aℓ (cm)
P1-P2	128	79,62	30	53,25	53,25
P2-P3	125	80,36	30	53,25	53,25
P3-P4	128	79,62	30	53,25	53,25
P1	128	79,62	30	51,30	51,3
P2	128	79,62	30	51,30	51,3
Р3	128	79,62	30	51,30	51,3
P4	128	79,62	30	51,30	51,3

Tabela 122 – Cálculo de a_l

Fonte: (Do Autor)

Foi escolhido o valor de 53,25 para aplicar em todos os vãos. O procedimento de decalagem é feito seguindo o item 18.3.2.3.1 da NBR 6118/2023, que pode ser visualizado abaixo:

Figura 96 - Decalagem do diagrama de momentos fletores

Fonte: (ABNT NBR 6118:2023)

Abaixo é possível visualizar a envoltória de momentos fletores antes da decalagem:

Figura 97 - Envoltória de momentos fletores antes da decalagem

Fonte: (Do Autor)

Os comprimentos de ancoragem foram calculados para cada tramo e podem ser visualizados abaixo:

Trecho	ϕ L (cm)	fck (MPa)	fyk (MPa)	Aço	η 1	η2	η3	fctd.inf (MPa)	fbd (MPa)
P1-P2	1,25	30	500	CA-50	2,25	1	1	1,45	3,26
P2-P3	1,25	30	500	CA-50	2,25	1	1	1,45	3,26
P3-P4	1,25	30	500	CA-50	2,25	1	1	1,45	3,26
P1	2,00	30	500	CA-50	2,25	0,7	1	1,45	2,28
P2	2,00	30	500	CA-50	2,25	0,7	1	1,45	2,28
Р3	2,00	30	500	CA-50	2,25	0,7	1	1,45	2,28
P4	2,00	30	500	CA-50	2,25	0,7	1	1,45	2,28

Tabela 123 – Ancoragem das armaduras longitudinais 1/2

Fonte: (Do Autor)

Tabela 124 – Ancoragem das armaduras longitudinais 2/2

Trecho	ϕ L (cm)	lb (cm)	lb.min (cm)	α	AS cal. (cm ²)	AS ef (cm²)	lb.nec (cm)	lb.adot (cm)
P1-P2	1,25	41,70	12,51	1	4,32	4,91	36,71	37,00
P2-P3	1,25	41,70	12,51	1	4,52	4,91	38,42	39,00
P3-P4	1,25	41,70	12,51	1	4,32	4,91	36,71	37,00
P1	2,00	95,31	28,59	1	14,21	15,71	86,20	87,00
P2	2,00	95,31	28,59	1	14,59	15,71	88,53	89,00
Р3	2,00	95,31	28,59	1	14,59	15,71	88,53	89,00
P4	2,00	95,31	28,59	1	14,21	15,71	86,20	87,00

Com a decalagem, adicionando os comprimentos de a_l e de ancoragem, obtém-se o seguinte diagrama para cada tramo:

Figura 98 – Decalagem do tramo P1-P2

Fonte: (Do Autor)

Figura 101 - Figura 102 – Decalagem do tramo P3-P4

11.3.1 ANCORAGEM NOS APOIOS

Com a decalagem realizada, foi possível realizar a ancoragem nos apoios. Esse assunto é abordado nos itens 18.3.2.4 e 18.3.2.4.1. As armaduras de tração junto aos apoios devem satisfazer a mais severa das seguintes condições:

a) Em caso da ocorrência de momentos positivos, as armaduras obtidas através do dimensionamento da seção;

b) Em apoios extremos, armaduras capazes de resistir a uma força de tração como segue abaixo:

$$F_{sd} = \frac{M_d}{z} + \frac{a_l}{d} V_d + N_d$$
(11.10)

Sendo:

- > M_d é considerado somente se for positivo no apoio;
- \succ V_d é a força cortante, desde que atue aumentando a tensão nas barras tracionadas;
- \triangleright N_d é a força de tração eventualmente existente.

c) Em apoios extremos e intermediários, por prolongamento de uma parte da armadura de tração do vão $(A_{s,vão})$, correspondente ao máximo momento positivo do tramo $(M_{vão})$, de modo que:

- ➤ A_{s,apoio} ≥ 1/3(A_{s,vão}), se M_{apoio} for nulo ou negativo e de valor absoluto $|M_{apoio}| \le 0.5 M_{vão};$
- ➤ A_{s,apoio} ≥ 1/4 (A_{s,vão}), se M_{apoio} negativo e de valor absoluto $|M_{apoio}| > 0,5M_{vão}$;

Para a condição a) nos apoios do P1, P2, P3 e P4, o valor da armadura positiva de cada seção é a demonstrada a seguir, tendo sido calculadas com o valor do momento positivo que age no apoio:

Viga	Apoio	M máx (kN.m)	h (cm)	bw (cm)	ØL (cm)	ØT (cm)	Ø's camada 1	Ø's camada 2	Ø's camada 3
V101	P1	23,1	60	20	1,25	0,50	2	0	0
V101	P2 esq	31	60	20	1,25	0,50	2	0	0
V101	P2 dir	99,5	60	20	1,25	0,50	2	2	0
V101	P3 esq	99,5	60	20	1,25	0,50	2	2	0
V101	P3 dir	31	60	20	1,25	0,50	2	0	0
V101	P4	23,1	60	20	1,25	0,50	2	0	0

Tabela 125 – Condição a), armaduras que chegam nos apoios 1/3

Fonte: (Do Autor)

Tabela 126 – Condição a), armaduras que chegam nos apoios 2/3

Viga	Trecho	cob (cm)	espac.vert ical (cm)	cg (cm)	17.2.4.1 é atendido?	d (cm)	fcd (MPa)	x (cm)	x/d
V101	P1	4,0	2,0	5,1	Sim	54,88	21,43	1,46	0,03
V101	P2 esq	4,0	2,0	5,1	Sim	54,88	21,43	1,97	0,04
V101	P2 dir	4,0	2,0	6,8	Sim	53,25	21,43	6,75	0,13
V101	P3 esq	4,0	2,0	6,8	Sim	53,25	21,43	6,75	0,13
V101	P3 dir	4,0	2,0	5,1	Sim	54,88	21,43	1,97	0,04
V101	P4	4,0	2,0	5,1	Sim	54,88	21,43	1,46	0,03

Viga	Trecho	As calc (cm ²)	As min (cm²)	As máx (cm²)	As ef (cm²)
V101	P1	0,98	1,80	48,00	2,45
V101	P2 esq	1,32	1,80	48,00	2,45
V101	P2 dir	4,53	1,80	48,00	4,91
V101	P3 esq	4,53	1,80	48,00	4,91
V101	P3 dir	1,32	1,80	48,00	2,45
V101	P4	0,98	1,80	48,00	2,45

Tabela 127- Condição a), armaduras que chegam nos apoios 3/3

Na condição b), as armaduras necessárias são demonstradas abaixo:

Tabela 128 – As necessária	para a condição b)
----------------------------	--------------------

Apoio	Md kN.m	z (cm)	al (cm)	d (cm)	Vd kN	Fsd kN	As (cm²)	Ø's
P1	23,1	54,29	51,3	54,88	128	162,21	3,73	4Ø12,5
P4	23,1	54,29	51,3	54,88	128	162,21	3,73	4Ø12,5

Fonte: (Do Autor)

Para a condição c), a área de aço necessária pode ser visualizada abaixo:

Viga	Apoio	As vão (cm²)	Mapoio kN.m	Mvão kN.m	As apoio (cm²)
V101	P1	4,91	264,5	95,2	1,23
V101	P2 esq	4,91	270,2	95,2	1,23
V101	P2 dir	4,91	270,2	99,4	1,23
V101	P3 esq	4,91	270,2	99,4	1,23
V101	P3 dir	4,91	270,2	95,2	1,23
V101	P4	4,91	264,5	95,2	1,23

Tabela 129 Tabela 130 – As necessária para a condição c)

Fonte: (Do Autor)

Com esses resultados, foi calculada a área de aço para cada apoio, com a pior situação para cada apoio:

Viga	Apoio	As calc. (cm ²)	Ø's adotados
V101	P1	3,73	4Ø12,5
V101	P2 esq	2,45	4Ø12,5
V101	P2 dir	4,91	4Ø12,5
V101	P3 esq	4,91	4Ø12,5
V101	P3 dir	2,45	4Ø12,5
V101	P4	3,73	4Ø12,5

Tabela 131 – área de aço dos apoios para a situação mais severa

Como as barras estavam muito próximas nos diagramas decalados, optou-se por estender todas até os apoios, facilitando a execução.

Em seguida foram calculados os comprimentos de ancoragem para cada apoio, com base no item 18.3.2.4.1 da NBR 6118/2023. As armaduras devem ser ancoradas a partir da face do apoio com os comprimentos iguais ou superiores aos seguintes valores:

- l_{b,nec};

- $r + 5,5\phi$, sendo ϕ definido através da tabela abaixo:

	-						
Bitola	Tipo de aço						
mm	CA-25	CA-50	CA-60				
< 20	4 φ	5 φ	6 φ				
≥ 20	5 φ	8 φ	_				

Tabela 132 – Diâmetros dos pinos de dobramento

Fonte: (ABNT NBR 6118:2023)

- 60 mm.

Esse item também estabelece que, em apoios intermediários, o comprimento de ancoragem pode ser igual a 10ϕ , exceto quando houver a possibilidade de ocorrer momentos positivos nos apoios. Nesse caso, as barras devem ser contínuas ou emendadas sobre o apoio.

Os apoios extremos têm um comprimento de ancoragem disponível de 76 cm. O valor de $l_{b,nec}$ para cada tramo e apoio pode ser visualizado a seguir:

Trecho	ϕ L(cm)	fck (MPa)	fyk (MPa)	Aço	η 1	η2	η3	fctd.inf (MPa)	fbd (MPa)
P1-P2	1,25	30	500	CA-50	2,25	1	1	1,45	3,26
P2-P3	1,25	30	500	CA-50	2,25	1	1	1,45	3,26
P3-P4	1,25	30	500	CA-50	2,25	1	1	1,45	3,26
P1	2,00	30	500	CA-50	2,25	0,7	1	1,45	2,28
P2	2,00	30	500	CA-50	2,25	0,7	1	1,45	2,28
Р3	2,00	30	500	CA-50	2,25	0,7	1	1,45	2,28
P4	2,00	30	500	CA-50	2,25	0,7	1	1,45	2,28

Tabela 133 – Comprimento de ancoragem apoios 1/2

Tabela 134 - Comprimento de ancoragem apoios 2/2

Trecho	ϕ L (cm)	lb (cm)	lb.min (cm)	α	AS cal. (cm ²)	AS ef (cm²)	lb.nec (cm)	lb.adot (cm)
P1-P2	1,25	41,70	12,51	1	4,32	4,91	36,71	76,00
P2-P3	1,25	41,70	12,51	1	4,52	4,91	38,42	76,00
P3-P4	1,25	41,70	12,51	1	4,32	4,91	36,71	76,00
P1	2,00	95,31	28,59	0,7	14,21	15,71	60,34	76,00
P2	2,00	95,31	28,59	0,7	14,59	15,71	61,97	76,00
Р3	2,00	95,31	28,59	0,7	14,59	15,71	61,97	76,00
P4	2,00	95,31	28,59	0,7	14,21	15,71	60,34	76,00

Fonte: (Do Autor)

Para as armaduras positivas foi possível utilizar a barra reta para fazer a ancoragem. Já para as barras negativas foi preciso utilizar gancho. Em ambas as armaduras, optou-se por levar as barras até o final do comprimento de ancoragem disponível, de 76 cm. O gancho da armadura negativa foi calculado com o item 9.4.2.3 da NBR 6118/2023, onde é estabelecido que, nos ganchos com ângulo reto, o comprimento é de 8ϕ . O gancho é calculado levando em conta o pino de dobramento e o diâmetro da armadura, como segue abaixo:

$$8 * \frac{2}{2} + \frac{2}{1} + 8 * 2 = 25 \ cm \tag{11.11}$$

Devido a existência de momentos positivos nos apoios intermediários, é necessário fazer uma emenda sobre os apoios assim como é necessário emendar as barras da armadura negativa, devido ao comprimento do vão. O comprimento de traspasse das barras tracionadas é tratado no item 9.5.2.2 e o comprimento do traspasse é o seguinte:

$$\ell_{0t} = \alpha_{0t} \ell_{b,nec} \ge \ell_{0t,min} \tag{11.12}$$

Sendo que:

 \succ $\ell_{0t,min}$ é o maior valor entre:

$$\ell_{0t,min} \ge \begin{cases} 0.3 * \alpha_{0t} * \ell_b \\ 15\varphi \\ 20 \text{ cm} \end{cases}$$
(11.13)

> α_{0t} é o coeficiente em função da porcentagem de barras emendadas na mesma seção, dado pela tabela abaixo:

Tabela 135 – Coeficiente α_{0t}

Barras emendadas na mesma seção %	≤ 20	25	33	50	> 50
Valores de α_{0t}	1,2	1,4	1,6	1,8	2,0

Fonte: (ABNT NBR 6118:2023)

Duas barras negativas foram emendadas entre o P2 e P3 e as barras positivas foram emendadas nos apoios do P2 e do P3. O comprimento de traspasse dessas barras pode ser visualizado abaixo:

Tabela 136 - Comprimento de traspasse das barras tracionadas

Armadura	ϕ L(cm)	lb.nec (cm)	αOt		lot (cm)	lot adotado (cm)
positiva	1,25	38,42	1	,80	69,15	70
negativa	2,00	88,53	1	,60	141,64	142

Fonte: (Do Autor)

Também é necessário corrigir as armaduras transversais na região das emendas por traspasse. Como a emenda da armadura positiva foi feita no apoio, não houve necessidade de verificação, mas para a emenda na armadura negativa foi necessário. A figura a seguir demonstra como realizar esse procedimento:

Figura 103 – Armadura transversal nas emendas tracionadas

Fonte: (ABNT NBR 6118:2023)

Na página seguinte é possível ver o detalhe da viga:

Figura 104 – Detalhamento da viga V101

Fonte: (Do Autor)

11.4 ESTADO-LIMITE DE DEFORMAÇÕES EXCESSIVAS

Assim como feito para as lajes, no item 7.10 deste trabalho, é necessário conferir os deslocamentos para as vigas quanto a aceitabilidade sensorial e alvenaria. Esses limites podem ser visualizados na Figura 46. Também é necessário corrigir o momento de inércia das vigas, por causa do fenômeno de fissuração. Vale destacar que a combinação de serviço usada para as flechas foi a quase permanente (CQP), cujos esforços podem ser visualizados abaixo:

Fonte: (Do Autor)

Por mais que isso já tenha sido tratado no item 7.10, as equações para a verificação das flechas serão reapresentadas a seguir, junto o procedimento seguido.

Para calcular o momento de fissuração, foi utilizada a seguinte equação:

$$M_r = \frac{\alpha * f_{ct} * I_c}{y_t} \tag{11.14}$$

Onde:

- α é o coeficiente que relaciona resistência do concreto a tração na flexão com a resistência a tração direta do concreto. Para vigas retangulares vale 1,5;
- *f_{ct}* é a resistência a tração do concreto, sendo que, segundo a NBR 6118/2023, para o estado-limite de deformação, que é o que está sendo tratado, deve ser usado o *f_{ct,m}*, sendo o *f_{ctk,inf}* usado para o estado-limite de abertura de fissuras;
- \blacktriangleright I_c é o momento de inercia da seção bruta de concreto;
- > y_t é a distância da linha neutra até o centroide da seção.

O próximo passo é calcular a inércia fissurada para as lajes que sofreram fissuração. Para isso, será usada a equação de Branson (7.34):

$$I_{eq} = \left(\frac{M_r}{M_a}\right)^3 I_c + \left[1 - \left(\frac{M_r}{M_a}\right)^3\right] I_{II} \le I_c$$
(11.15)

Onde:

- \blacktriangleright I_{eq} é o momento de inercia equivalente da seção fissurada;
- > M_r é o momento de fissuração resistido pela seção;
- > M_a é o momento atuante no ELS;
- \blacktriangleright I_c é momento de inércia da seção bruta;
- \succ I_{II} é o momento de inércia da seção fissurada.

Para seções retangulares e sem armadura dupla, é possível usar a equação abaixo para I_{II} :

$$I_{II} = \frac{b_f * x_{II}^3}{3} + \alpha_e * A_s * (x_{II} - d)^2 + (\alpha_e - 1) * A'_s * (x_{II} - d')^2$$
(11.16)

Para x_{II} , a equação usada é a seguinte:

$$x_{II} = \frac{-a_2 \pm \sqrt{a_2^2 - 4 * a_1 * a_3}}{2 * a_1} \tag{11.17}$$

Os coeficientes a_1 , a_2 e a_3 são obtidos com as seguintes expressões:

$$a_1 = \frac{b_w}{2}$$
(11.18)

$$a_2 = \alpha_e * A_s \tag{11.19}$$

$$a_3 = -d * \alpha_e * A_s \tag{11.20}$$

Com essas expressões foi possível calcular a inercia fissurada das seções das lajes que, no ELS, sofreram fissuração. A inércia final da laje é calculada fazendo uma ponderação da inércia nos apoios e no centro do vão, sendo que a contribuição de cada uma, adotada de maneira simplificada, é a seguinte:

$$I_{eq,viga} = 0,15 * I_{eq,1} + 0,7 * I_{eq,2} + 0,15 * I_{eq,3}$$
(11.21)

Onde:

 \succ $I_{eq,1}$ é a inércia no apoio 1;

I_{eq,2} é a inércia no centro do vão;

 \succ $I_{eq,3}$ é a inércia no apoio 2.

Uma vez calculado a $I_{eq,viga}$, é possível isolar o h na equação que determina o momento de inércia de uma seção retangular do seguinte modo:

$$h_{eq} = \sqrt[3]{\frac{12 * I}{b}}$$
(11.22)

A seguir serão demonstrados os resultados obtidos para o trecho da V101 que vai do P1 ao P2:

Viga	Trecho	h (cm)	bw (cm)	αe	Ic (cm4)	As (cm²)	d (cm)
V101	Apoio P1	60	20	7,825	360000,0	15,71	51,30
V101	P1-P2	60	20	7,825	360000,0	4,91	53,25
V101	Apoio P2	60	20	7,825	360000,0	15,71	51,30

Tabela 137 – Trecho do P1-P2 – Parte 1/4

Fonte: (Do Autor)

Tabela 138 – Trecho do P1-P2 – Parte 2/4

Viga	Trecho	Ma (kN.m)	α	Mr (kN.m)	Fissura?
V101	Apoio P1	124,10	1,50	52,14	Sim
V101	P1-P2	60,60	1,50	52,14	Sim
V101	Apoio P2	83,30	1,50	52,14	Sim

Viga	Trecho	a1 (cm)	a2 (cm²)	a3 (cm³)	xii (cm)	lii (cm4)	leq (cm4)
V101	Apoio P1	10	122,909	-6305,21	19,71	173700,80	187514,8
V101	P1-P2	10	38,409	-2045,28	12,51	76801,28	257143,4
V101	Apoio P2	10	122,909	-6305,21	19,71	173700,80	219378,0

Tabela 139 - Trecho do P1-P2 - Parte 3/4

Tabela 140 - Trecho do P1-P2 - Parte 4/4

Viga	Trecho	leq (cm4)	% tramo	leq*% (cm4)
V101	Apoio P1	187514,8	0,15	28127,22
V101	P1-P2	257143,4	0,7	180000,39
V101	Apoio P2	219378,0	0,15	32906,70
			leq viga (cm4)	241034,31
			heq viga (cm4)	52,49

Fonte: (Do Autor)

A seguir serão demonstrados os resultados obtidos para o trecho da V101 que vai do P2 ao P3:

Tabela 141 – Trecho do P2-P3 – Parte 1/4

Viga	Trecho	h (cm)	bw (cm)	αe	Ic (cm4)	As (cm²)	d (cm)
V101	Apoio P2	60	20	7,825	360000,0	15,71	51,30
V101	P2-P3	60	20	7,825	360000,0	4,91	53,25
V101	Apoio P3	60	20	7,825	360000,0	15,71	51,30

Fonte: (Do Autor)

Tabela 142 – Trecho do P2-P3 – Parte 2/4

Viga	Trecho	Ma (kN.m)	α	Mr (kN.m)	Fissura?
V101	Apoio P2	86,30	1,50	52,14	Sim
V101	P2-P3	35,20	1,50	52,14	Não
V101	Apoio P3	86,30	1,50	52,14	Sim

Viga	Trecho	a1 (cm)	a2 (cm²)	a3 (cm³)	xii (cm)	lii (cm4)	leq (cm4)
V101	Apoio P2	10	122,909	-6305,21	19,71	173700,80	214778,1
V101	P2-P3	10	38,409	-2045,28	12,51	76801,28	997011,6
V101	Apoio P3	10	122,909	-6305,21	19,71	173700,80	214778,1

Tabela 143 – Trecho do P2-P3 – Parte 3/4

Tabela 144 – Trecho do P2-P3 – Parte 4/4

Viga	Trecho	leq (cm4)	% tramo	leq*% (cm4)
V101	Apoio P2	214778,1	0,15	32216,72
V101	P2-P3	360000,0	0,7	252000,00
V101	Apoio P3	214778,1	0,15	32216,72
			leq viga (cm4)	316433,44
			heq viga (cm4)	57,47

Fonte: (Do Autor)

A seguir serão demonstrados os resultados obtidos para o trecho da V101 que vai do P3 ao P4:

Tabela 145 – Trecho do P3-P4 – Parte 1/4

Viga	Trecho	h (cm)	bw (cm)	αe	Ic (cm4)	As (cm²)	d (cm)
V101	Apoio P3	60	20	7,825	360000,0	15,71	51,30
V101	P3-P4	60	20	7,825	360000,0	4,91	53,25
V101	Apoio P4	60	20	7,825	360000,0	15,71	51,30

Fonte: (Do Autor)

Viga	Trecho	Ma (kN.m)	α	Mr (kN.m)	Fissura?
V101	Apoio P3	83,30	1,50	52,14	Sim
V101	P3-P4	60,60	1,50	52,14	Sim
V101	Apoio P4	124,10	1,50	52,14	Sim

Fonte: (Do Autor)

Tabela 147 – Trecho do P3-P4 – Parte 3/4

Viga	Trecho	a1 (cm)	a2 (cm²)	a3 (cm³)	xii (cm)	lii (cm4)	leq (cm4)
V101	Apoio P3	10	122,909	-6305,21	19,71	173700,80	219378,0
V101	P3-P4	10	38,409	-2045,28	12,51	76801,28	257143,4
V101	Apoio P4	10	122,909	-6305,21	19,71	173700,80	187514,8
Viga	Trecho	leq (cm4)	% tramo	leq*% (cm4)			
------	----------	-----------	----------------	-------------			
V101	Apoio P2	219378,0	0,15	32906,70			
V101	P2-P3	257143,4	0,7	180000,39			
V101	Apoio P3	187514,8	0,15	28127,22			
			leq viga (cm4)	241034,31			
			heq viga (cm4)	52,49			

Tabela 148 – Trecho do P3-P4 – Parte 4/4

Fonte:	(Do	Autor)
--------	-----	--------

Figura 106 – Deslocamentos da viga em um dos andares (mm)

Fonte: (Do Autor)

Como o interesse é o deslocamento da viga em relação aos apoios, foi encontrado o deslocamento médio entre os dois apoios e então esse valor foi subtraído do deslocamento no meio do vão. Com esses valores foi possível calcular se as flechas atendiam aos critérios da NBR 6118/2023, item 13.3. As fórmulas usadas foram as mesmas usadas na seção 7.1.1, para calcular a flecha no tempo infinito. Abaixo são demonstradas as verificações feitas para cada tramo:

Tabela 149 - Verificação das flechas imediatas 1/2

Viga	Trecho	h (cm)	L (cm)	fo (cm)	t0	ξ(t)	ξ(t0)	Δξ	αf	f∞ (cm)
V101	P1-P2	52,49	610	0,1890	0,933	2,000	0,663	1,337	1,337	0,442
V101	P2-P3	57,47	520	0,0600	0,933	2,000	0,663	1,337	1,337	0,140
V101	P3-P4	52,49	610	0,0189	0,933	2,000	0,663	1,337	1,337	0,044

Fonte: (Do Autor)

Tabela 150 - Verificação das flechas imediatas 2/2

Viga	Trecho	f∞ (cm)	limite visual (cm)	limite parede (cm)
V101	P1-P2	0,442	2,440	1,00
V101	P2-P3	0,140	2,080	1,00
V101	P3-P4	0,044	2,440	1,00

Fonte: (Do Autor)

Os limites de deformação foram atendidos.

11.5 ESTADO LIMITE DE ABERTURA DAS FISSURAS

Os valores limites para a abertura de fissura são definidos no item 13.4 da NBR 6118/2023. Abaixo é possível visualizar a tabela exibida nesse item da norma:

Tipo de concretoTipo de protensãoClasse de agressividade ambiental (CA)		Classe de agressividade ambiental (CAA)	Exigências relativas à fissuração	Combinação de ações em serviço a utilizar				
Concreto simples	_	CAA I a CAA IV	Não há	_				
	-	CAAI	ELS-W $w_k \le 0,4 \text{ mm}$					
Concreto	-	CAA II e CAA III	ELS-W $w_k \le 0.3 \text{ mm}$	Combinação freguente				
	- /	CAA IV	ELS-W $w_k \le 0,2 \text{ mm}$					
Concreto protendido nível 1 (protensão parcial)	Pré-tração	CAAI		Combineeão				
	Pós-tração	CAA I e CAA II	ELS-W <i>w</i> _k ≤ 0,2 mm	frequente				
		_ //	Verificar as duas	condições abaixo				
Concreto protendido nível 2 (protensão	Pré-tração	CAA I e CAA II	ELS-F	Combinação frequente				
limitada)	Pós-tração	CAA I a CAA IV	ELS-D ^a	Combinação quase permanente				
Concreto protendido nível 3 (protensão completa)	Dró tração		Verificar as duas	condições abaixo				
	FIE-liaça0	CAATACAATV	ELS-F	Combinação rara				
	Pós-tração	CAA I a CAA IV	ELS-D ^a	Combinação frequente				

Figura 107 – Valores limites para a abertura de fissuras e combinação utilizada

Para as classes de agressividade ambiental CAA-III e IV, exige-se que as cordoalhas não aderentes tenham proteção especial na região de suas ancoragens.

No caso de pré-tração em estruturas de concreto pré-fabricado, devem ser atendidos os requisitos da ABNT NBR 9062.

NOTA 1 As definições de ELS-W, ELS-F e ELS-D encontram-se em 3.2.

NOTA 2 No projeto de lajes lisas e cogumelo protendidas, basta ser atendido o ELS-F para a combinação frequente das ações, em todas as classes de agressividade ambiental.

Fonte: (ABNT NBR 6118:2023)

Para a combinação de serviço frequente (CF) os esforços podem ser visualizados na figura a seguir:

Fonte: (Do Autor)

A marcha de cálculo para a abertura de fissuras pode ser encontrada no item 17.3.3 da NBR 6118/2023. Este item estabelece que, o valor característico da abertura de fissuras, w_k , determinado para cada parte da região de envolvimento, é o menor entre os obtidos pelas expressões a seguir:

$$w_{\rm k} = \frac{\phi_{\rm i}}{12,5\eta_1} \frac{\sigma_{\rm si}}{E_{\rm si}} \frac{3\sigma_{\rm si}}{f_{\rm ctm}}$$
(11.23)

$$w_{\rm k} = \frac{\phi_{\rm i}}{12,5\eta_1} \frac{\sigma_{\rm si}}{E_{\rm si}} \left(\frac{4}{\rho_{\rm ri}} + 45\right) \tag{11.24}$$

Onde:

- > σ_{si} , ϕ_i , E_{si} , ρ_{ri} são definidos para cada área de envolvimento em exame;
- > A_{cri} é a área de envolvimento protegida pela barra ϕ_i , como mostra a figura abaixo:

Fonte: (ABNT NBR 6118:2023)

- > E_{si} é o módulo de elasticidade do aço da barra considerada, de diâmetro ϕ_i ;
- > ρ_{ri} é a taxa de armadura passiva ou ativa aderente (que não esteja dentro de bainha) em relação à área de envolvimento (A_{cri});
- > σ_{si} é a tensão de tração no centro da armadura considerada, calculada no estádio II. Abaixo é demonstrada a fórmula utilizada para o cálculo:

$$\sigma_{si} = \alpha_e * M_{atuante} * (ybarra - x_{II})/I_{II}$$
(11.25)

η₁ é o coeficiente de conformação superficial da armadura considerada, dado na tabela abaixo:

Categoria do aço	η1
CA-25	1,00
CA-50	2,25
CA-60	1,00

Tabela 151 – Valor do coeficiente de aderência η_1

Fonte: (ABNT NBR 6118:2023)

O item 17.3.3.2 ainda estabelece que o cálculo no estádio II pode ser feito considerando a relação $\alpha_e = 15$. Devido à natureza acadêmica do trabalho, será feita apenas uma verificação, sendo destacada com hachura a barra escolhida na figura abaixo:

Figura 110 - barra selecionada para a verificação da abertura de fissuras

Fonte: (Do Autor)

Abaixo são demonstradas as contas:

Tabela 152 – Dados para o cálculo da abertura de fissuras 1/4

Viga	Trecho	h (cm)	bw (cm)	αe	Ic (cm4)	As (cm²)	d (cm)
V101	Apoio P1	60	20	15,000	360000,0	15,71	51,30

Fonte: (Do Autor)

Tabela 153 – Dados para o cálculo da abertura de fissuras 2/4

Viga	Trecho	Ma (kN.m)	Mr (kN.m)	Fissura?
V101	Apoio P1	125,20	36,50	Sim

Fonte: (Do Autor)

Tabela 154 – Dados para o cálculo da abertura de fissuras 3/4

Trecho	a1 (cm)	a2 (cm²)	a3 (cm³)	xii (cm)	lii (cm4)
Apoio P1	10	235,619	-12087,28	24,93	267138,43

Fonte: (Do Autor)

Tabela 155 – Cálculo da abertura de fissuras 4/4

ϕ (mm)	η 1	As (cm²)	Es (MPa)	fctm (MPa)	Acr (cm²)	ρri (%)	αe	y barra (cm)	σsi (kN/cm²)	w1	w2
20	2,25	3,14	210000	2,90	80	3,93	15	29,57	20,79	0,15	0,10

Fonte: (Do Autor)

O critério de $w_k \leq 0.3$ é atendido para a barra analisada.

12 CONCLUSÃO

A elaboração deste trabalho possibilitou ao estudante ter contato com uma série de assuntos relacionados com a área de projetos estruturais que não foram abordados durante a graduação, ou então que foram abordados de maneira muito sucinta. A verificação da estabilidade global e o cálculo da inércia fissurada são exemplos disso.

A concepção estrutural com os pré-dimensionamentos e posterior dimensionamento de alguns elementos, bem como a análise estrutural, forneceram para o estudante noções de magnitude dos esforços e do tamanho necessário dos elementos para resistir as solicitações, algo que não acontece numa disciplina de concreto armado, onde as seções e os esforços são fornecidos.

Conciliar a estrutura com a arquitetura também foi um desafio interessante e os aprendizados obtidos no processo serão levados para a vida profissional, por exemplo: talvez o ideal fosse ter usado um fck maior, para diminuir os cobrimentos e as seções dos pilares. Esse tipo de noção foi obtido no decorrer do trabalho, durante o dimensionamento do pilar, quando foi necessário aumentar a sua seção.

O contato com as lajes nervuradas também foi bem interessante, visto que não é estudada nas disciplinas do curso e é um modelo muito utilizado nas construções.

A constante consulta a NBR 6118/2023 fez com que o estudante criasse afinidade com a norma e aprendesse a utilizá-la. Os livros, apostilas e artigos consultados durante a elaboração desse trabalho acadêmico também forneceram muitos conhecimentos que serão levados para a vida profissional do aluno.

Acima de tudo, realizar o projeto de maneira "manual" propiciou para o estudante o entendimento do processo de forma bastante detalhada, proporcionando confiança para utilizar os softwares comerciais de análise e dimensionamento de estruturas de concreto armado sabendo verificar se os resultados obtidos são plausíveis e entendendo as suas limitações, para poder fazer um dimensionamento seguro da estrutura.

13 REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de Estruturas de Concreto – Procedimento. Rio de Janeiro, 2023.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8681: Ações e Segurança nas estruturas – Procedimento. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6120: Ações para o cálculo de estruturas de edificações.** Rio de Janeiro, 2019.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6123: Forças devidas ao vento em edificações. Rio de Janeiro, 1988.

ABNT NBR 6118:2014 Comentários e Exemplos de Aplicação. Ed.: IBRACON, 2015.

CARVALHO, Roberto Chust; FIGUEIREDO, Jasson Rodrigues de. **Cálculo e Detalhamento de Estruturas Usuais de Concreto Armado Segundo a NBR 6118:2014**. São Carlos: Edufscar, 2022.

CARVALHO, Roberto Chust; PINHEIRO, Libânio Miranda. Cálculo e Detalhamento de Estruturas Usuais de Concreto Armado: volume 2. São Paulo, 2009.

PERLIN, Lourenço Panosso; PINTO, Roberto Caldas de Andrade; PADARATZ, Ivo José. **APOSTILA DA DISCIPLINA ESTRUTURAS DE CONCRETO ARMADO II**. Notas de aula, Curso de Engenharia Civil, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, 2018.

PINTO, Roberto Carlos de Andrade. ECV5261: Estruturas de Concreto Armado I. Florianópolis, UFSC, 2020.

PINHEIRO, Libânio Miranda; BARALDI, Lívio Túlio; POREM, Marcelo Eduardo. Estruturas de concreto: Ábacos para flexão oblíqua. São Carlos, 2014.

Exemplo de um projeto completo de um edifício de concreto armado. Apostila de Concreto I e II, EPUSP, São Paulo, 2001.

ZUMAETA, Winston. Análise da Estabilidade de Edifícios com Estrutura de Concreto Armado. Manaus, 2016.

14 ANEXOS

Pavimento tipo escala 1:50

В

Histórico	número	data	descrição
		Projeto Arquite	etônico
ENDEREÇO Rua Pres	sidente Coutinho	Centro, Florianópolis - SC	PROJETO Residencial Multifamiliar
PROFESSOR			
Lour	enço Panosso Pe	rlin	
conteúdo Plant	tas do Térreo, Pav	to Tipo, Cobertura e Detalhamento	S
EQUIPE TÉCNICA			PRANCHA
Aluno: Fabrício (Costa Abreu		01/01
		DATA 05/2023	escala Indicada

1. NORMAS UTILIZIAS PARA A ELABORAÇÃO DO PROJETO. NER 6112.2023, NER 6120.2019, NER 6123.1988 E NER 8661:2003. 2. CAASSE DE AGRESSIVIDADE AMBIENTAL: III - FORTE CONCRETO ESTRUTURAL: CASSE C20 - txc = 300P2 RELAÇÃO AGUACIMENTO EM MASSA <= 0.55 DIMENÃO NO AGREGADO GAMONO = 18 mm MODULO DE ELASTICIDADE INCIAL DO CONCRETO = 30672 MPa 3. VUE = 50 ANOS: 4. O CONCRETO DE STRUTURAL: DO CONCRETO DE CIMENTO PORTLAND - PREPARO, CONTROLE. RECEBINICIÓN CE ALGEITAÇÃO DA NBR-12655.2015 - CONCRETO DE CIMENTO PORTLAND - PREPARO, CONTROLE. RECEBINICIÓN CE ALGEITAÇÃO - PROCEDIMENTO 5. COBRIMENTO NOMINAL DAS ARMADURAS: LALES = ARMADURAS NEGRITIVAS: Storm MARMADURAS NEGRITIVAS: Storm MARMADURAS NEGRITIVAS: Storm MARMADURAS NEGRITIVAS: Storm MARMADURAS NEGRITIVAS: Storm MARMADURAS NEGRITIVAS: Storm HELEMONTOS ESTRUTURAS EM CONTROLCOM O SOLO = 40mm 6. A EXECUÇÃO DE CONTROLEM ANDER LA 14931:2004 - EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO. 7. TODAS AS MEDIDAS E DIMENSOS DEVEM SER CONCRETOS AN ARBE. 14931:2004 - EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO. 7. TODAS AS MEDIDAS E DIMENSOS DE CONSTANTES NA NORMA NERF. 14931:2004 - EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO. 7. TODAS AS MEDIDAS E DIMENSOS DE DEVEM SER CONCRETOS AN ARBE. 14031:2004 - EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO. 7. TODAS AS MEDIDAS E DIMENSOS DE CONSTANTES NA NORMA NERF. 14931:2004 - EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO. 7. TODAS AS MEDIDAS E DIMENSOS DE DEVEM SER CONCRETIDAS NA DORMA. 7. TODAS AS MEDIDAS E DIMENSOS DE DEVEM SER CONCRETIDAS NA DORMA. 7. TODAS AS MEDIDAS E DIMENSOS DE DEVEM SER CONCRETIDAS NA DORMA. 7. TODAS AS MEDIDAS E DIMENSOS DE DEVEM SER CONCRETIDAS NA DORMA. 7. TODAS AS MEDIDAS E DIMENSOS DE DEM SER CONCRETIDAS NA DORMA. 7. TODAS AS MEDIDAS E DIMENSOS DE DEM SER CONCRETIDAS NA DORMA. 7. TODAS AS MEDIDAS E DIMENSOS DE DEM SER CONCRETIDAS NA DORMA. 7. TODAS AS MEDIDAS E DIMENSOS		Histórico	número	data	descrição
01/2024 IIIUICAUA	 NORMAS UTILIZADAS PARA A ELABORAÇÃO DO PROJETO: NBR-6118:2023, NBR-6120:2019, NBR-6123:1988 E NBR-8681:2003. CLASSE DE AGRESSIVIDADE AMBIENTAL : III - FORTE CONCRETO ESTRUTURAL : CLASSE C30 - fck = 30MPa RELAÇÃO ÁGUA/CIMENTO EM MASSA <= 0,55 DIMENSÃO DO AGREGADO GRAUDO = 19 mm MÓDULO DE ELASTICIDADE INICIAL DO CONCRETO = 30672 MPa VUP = 50 ANOS; O CONCRETO DEVE ATENDER AS ESPECIFICAÇÕES DA NBR-12655:2015 - CONCRETO DE CIMENTO PORTLAND - PREPARO, CONTROLE, RECEBIMENTO NOMINAL DAS ARMADURAS: LAJES = ARMADURAS POSTIVAS: 35mm ARMADURAS NEGATIVAS: 15mm VIGA/PILAR = 40mm PILAR EM CONTATO COM O SOLO = 45mm ELEMENTOS ESTRUTURAIS EM CONTATO COM O SOLO = 40mm A XECUÇÃO DEVE OBEDECER AS PRESCRIÇÕES CONSTANTES NA NORMA NBR-14931:2004 - EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO. A RECIQÃO DEVE OBEDECER AS PRESCRIÇÕES CONSTANTES NA NORMA NBR-14931:2004 - EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO. A SECUÇÃO DEVE OBEDECER AS PRESCRIÇÕES CONSTANTES NA NORMA NBR-14931:2004 - EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO. 	ENDEREÇO RU PROFESSOR LOUR CONTEÚDO FÔRI EQUIPE TÉCNICA Aluno: Fabrício (ua Presidente Coutint enço Panosso Perlin MAS Costa Abreu	Projeto Estruti no, Centro, Florianópolis - SC	Jral PROJETO Residencial Multifamiliar PRANCHA 02/02 ESCALA Indicada

DETALHAMENTO ARMADURAS POSITIVAS DAS LAJES - TIPO E COBERTURA ESCALA 1/50

ESCALA 1/50

DETALHAMENTO ARMADURAS NEGATIVAS DAS LAJES - TIPO E COBERTURA

DETALHAMENTO DA ARMADURA POSITIVA DA LAJE 23 - COBERTURA ESCALA 1/50

DETALHAMENTO DA ARMADURA NEGATIVA DA LAJE 23 - COBERTURA ESCALA 1/50

Positivos						
Pos.	Bit.	Q.	Comp (cm.)	Total (cm.)	CA-50 (kg)	
1	6,3	120	405	48600	119,1	
2	6,3	232	397	92104	225,7	
3	6,3	88	342	30096	73,7	
4	6,3	160	305	48800	119,6	
5	6,3	68	322	21896	53,6	
6	6,3	7	597	4179	10,2	
7	8	51	267	13617	53,8	
8	6,3	11	132	1452	3,6	
9	6,3	6	202	1212	3,0	
10	12,5	44	740	32560	313,6	
11	16	52	677	35204	555,5	
12	10	18	202	3636	22,4	
13	6,3	7	392	2744	6,7	
				Total (kg)	1560,4	

	Negativos						
Pos.	Bit.	Q. Comp (cm.)		Total (cm.)	CA-50 (kg)		
1	6,3	160	206	32960	80,8		
2	6,3	132	180	23760	58,2		
3	6,3	176	158	27808	68,1		
4	16	26	400	10400	164,1		
5	6,3	78	160	12480	30,6		
6	6,3	102	91	9282	22,7		
7	6,3	168	131	22008	53,9		
8	6,3	7	47	329	0,8		
9	6,3	18	72	1296	3,2		
10	6,3	33	66	2178	5,3		
				Total (kg)	487		

1 - NORMAS UTILIZADAS PARA A ELABORAÇÃO DO PROJETO: NBR-6118:2023, NBR-6120:2019, NBR-6123:1988 E NBR-8681:2003.

2 - CLASSE DE AGRESSIVIDADE AMBIENTAL : III - FORTE CONCRETO ESTRUTURAL : CLASSE C30 - fck = 30MPa

RELAÇÃO ÁGUA/CIMENTO EM MASSA <= 0,55

DIMENSÃO DO AGREGADO GRAÚDO = 19 mm MÓDULO DE ELASTICIDADE INICIAL DO CONCRETO = 30672 MPa

3 - VUP = 50 ANOS;

4 - O CONCRETO DEVE ATENDER AS ESPECIFICAÇÕES DA NBR-12655:2015 - CONCRETO DE CIMENTO PORTLAND - PREPARO, CONTROLE, RECEBIMENTO E ACEITAÇÃO - PROCEDIMENTO

5 - COBRIMENTO NOMINAL DAS ARMADURAS:

LAJES = ARMADURAS POSTIVAS: 35mmARMADURAS NEGATIVAS: 15mm

VIGA/PILAR = 40mmPILAR EM CONTATO COM O SOLO = 45mm

ELEMENTOS ESTRUTURAIS EM CONTATO COM 0 SOL0 = 40mm

6 - A EXECUÇÃO DEVE OBEDECER AS PRESCRIÇÕES CONSTANTES NA NORMA NBR-14931:2004 - EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO.

7 - TODAS AS MEDIDAS E DIMENSÕES DEVEM SER CONFERIDAS NA OBRA.

númerc

descrição

Projeto Estrutural	
NDEREÇO Rua Presidente Coutinho, Centro, Florianópolis - SC	PROJETO Residencial Multifamiliar
PROFESSOR	
Lourenço Panosso Perlin	
ARMADURAS DAS LAJES	
EQUIPE TÉCNICA	PRANCHA

Fabrício Costa Abreu

Indicada

01/01

Pos.	Bit.	Q.	Comp (cm.)	Total (cm.)	CA-50 (kg)	CA-60 (kg)
1	25	20	404	8080	317,5	
2	6,3	17	208	3536		8,7
3	6,3	102	37	3774		9,2
4	20	20	387	7740	190,9	
5	5	17	208	3536		6,6
6	5	136	35	4760		8,9
7	20	20	387	7740	190,9	
8	5	17	208	3536		6,6
9	5	136	35	4760		8,9
				Total (kg)	699,3	48,8