
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO TECNOLÓGICO

DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA
CIÊNCIA DA COMPUTAÇÃO

Anthony Bernardo Kamers

Homomorphic Encryption: Introduction and Applicabilities

Florianópolis
2023

Anthony Bernardo Kamers
Homomorphic Encryption: Introduction and Applicabilities

Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do Título de Bacharel
em Ciência da Computação e aprovado em sua forma final pelo curso de Graduação em Ciência

da Computação.

Florianópolis, 12 de dezembro de 2023.

Prof. Lúcia Helena Martins Pacheco, Dra

Coordenadora do Curso

Banca Examinadora:

Profa. Thaís Bardini Idalino, Dra.
Orientadora

Universidade Federal de Santa Catarina

Prof. Ricardo Felipe Custódio, Dr.
Avaliador

Universidade Federal de Santa Catarina

Prof. Daniel Panario, Dr.
Avaliador

Carleton University, Canada

Anthony Bernardo Kamers

Homomorphic Encryption: Introduction and Applicabilities

Trabalho de Conclusão de Curso submetido ao
Curso de Graduação em Ciência da Computa-
ção do Centro Tecnológico da Universidade
Federal de Santa Catarina como requisito para
obtenção do título de Bacharel em Ciência da
Computação.
Orientadora: Profa. Thaís Bardini Idalino, Dra.
Coorientador: Gustavo Zambonin

Florianópolis
2023

À minha família e à minha mulher perfeitas

ACKNOWLEDGEMENTS

Agradeço aos meus pais, Márcio e Márcia, por sempre acreditar em minhas capacidades,
me ajudando com muito mais do que precisava, e fazer de mim a pessoa que sou hoje. Agradeço
ao meu irmão Bruno, por sempre ser meu companheiro ao estudar, trabalhar, ir à academia, jogar,
ou fazer qualquer coisa juntos. Agradeço à minha namorada, por estar comigo nesta jornada e
me apoiar em todos os momentos, mesmo quando não encontrava forças dentro de mim para
continuar. Vocês são a minha família e os amo para sempre!

Agradeço à minha orientadora Thaís, por sempre demonstrar sua paixão pelo seu
trabalho e pesquisa, sempre me instigando a melhorar meu estudo e a buscar novos horizontes.
Agradeço aos meus companheiros de trabalho e pesquisa no LabSEC, em especial ao meu
coorientador, Zambonin, que não mede esforços por seus amigos, nem pela ciência; o agradeço
também por sempre poder contar com seu apoio e amizade, sempre compartilhando os fatos
mais inusitados, sobre as mais diversas áreas com seu jeito único e distinto. Agradeço também
ao prof. Daniel Panário por poder compartilhar um pouco de sua vasta experiência em prol deste
trabalho.

“Crypto will not be broken, it will be bypassed.”
Adi Shamir

RESUMO

A criptografia homomórfica é um mecanismo que permite fazer operações diretamente no
texto cifrado, ou seja, sem a necessidade de descriptografá-lo previamente. A propriedade
de homomorfismo em criptografia é de interesse na área desde que foi mencionada em 1978
(RIVEST; SHAMIR; ADLEMAN, 1978), onde foi proposto um possível esquema de encriptação
que continha a propriedade mencionada. Com isso, várias seriam as aplicações, pois não seria
mais necessário fazer um esquema de troca de chaves privadas, mascaramento de determinadas
informações no fluxo de transferência de dados, não haveria mais necessidade de descriptografar
o texto cifrado para fazer operações sobre ele, entre outras. Para se fazer isso, é necessário usar
o conceito matemático de funções homomórficas, dando assim origem ao nome “criptografia
homomórfica”. Como exemplo claro de utilização desse tipo de encriptação, pode-se citar o
processamento de informações por computação em nuvem, dado que, para fazer o cômputo
dos dados é necessário descriptografar os mesmos, podendo expor elementos sigilosos a algum
ataque. Esse problema seria sanado utilizando operações sobre o texto cifrado com criptografia
homomórfica. Este trabalho tem como objetivo fazer um estudo introdutório à criptografia
homomórfica, seus tipos mais básicos e suas aplicabilidades em diferentes áreas da computação.
Para isso, será feito um estudo de materiais científicos acerca do estado da arte, para entendimento
dos algoritmos de algumas variantes e suas principais aplicações na prática. Como resultado, terá
um material que permite a compreensão das versões mais básicas de criptografia homomórfica,
assim como suas aplicações, estimulando o uso em sistemas que manipulam dados pessoais.

Keywords: criptografia. criptografia homomórfica. homomorfismo. segurança da computação.
anonimização de dados.

ABSTRACT

Homomorphic encryption is a mechanism that allows people to operate directly over the ciphered
text, which means, without the need to decrypt it first. The property of homomorphic encryption
is very interesting for cryptography since it was first mentioned in 1978 (RIVEST; SHAMIR;
ADLEMAN, 1978), where was proposed a possible encryption scheme, containing the mentioned
property. Several applications would be possible, because it would not be necessary to make
a private key exchange scheme, masking some information on the flow of data transference,
needing to decrypt the ciphered text to make operations onto it, among other applications. To
make that, it is necessary to use the mathematical concept of homomorphic functions, giving
its name "homomorphic encryption". As a clear example of using this encryption scheme, it
is possible to cite the processing of information in cloud computing, given that, to make the
data computation possible, it is necessary to decrypt it, which can expose confidential elements
to an attack. This problem would be avoided by using operations over the ciphered text with
homomorphic encryption. This work has as a goal to make an introductory study of homomorphic
encryption, its basic variants, and applications in different fields of computation. In order to do
that, we will perform a study on scientific published material on the state of the art for some
variants, and their main applications in practice. As a result, we will have material that allows
the comprehension of basic versions of homomorphic encryption schemes, as their applications,
stimulating the usage of systems that manipulate personal data.

Keywords: cryptography. homomorphic encryption. homomorphism. computer security. data
anonymization.

LIST OF FIGURES

Figure 1 – Flow of information exchanged between servers using and not using homo-
morphic encryption . 20

Figure 2 – Homomorphic schemes and its variants over the years 20
Figure 3 – Bootstrap representation . 29
Figure 4 – SVP demonstration, where the blue arrow is the shortest vector to the origin

and the red arrows are other possible vectors 32
Figure 5 – Example ciphertexts of 0 . 45
Figure 6 – Example ciphertexts of 1 . 45
Figure 7 – FHE generation of schemes and explanations 66
Figure 8 – Visual representation of the PIR protocol using an additive PHE scheme.

Here it asks for the third element in the database, where n = 4 and i = 3. . . 76
Figure 9 – Web application implemented . 77

LIST OF ACRONYMS

PKI Public Key Infrastructure
HES Homomorphic Encryption Standard
PHE Partially Homomorphic Encryption
SHE Somewhat Homomorphic Encryption
LFHE Leveled Fully Homomorphic Encryption
FHE Fully Homomorphic Encryption
AGCD Approximate Greatest Common Divisor
GCD Greatest Common Divisor
LWE Learning With Errors
RLWE Ring Learning With Errors
NTRU Number Theory Research Unit
NIST National Institute of Standards and Technology
SVP Shortest Vector Problem
CVP Closest Vector Problem
MPC Multi-Party Computation
PIR Private Information Retrieval

CONTENTS

1 INTRODUCTION . 19
1.1 GOALS . 21

1.1.1 General goals . 21
1.1.2 Specific goals . 21

2 MAIN CONCEPTS . 23
2.1 CRYPTOGRAPHY . 23

2.2 HOMOMORPHIC ENCRYPTION . 25

2.2.1 Noise . 27
2.2.2 Bootstrap . 28
2.2.3 Leveled approach . 30
2.3 DIFFERENT CLASSES OF SCHEMES 31

2.3.1 Lattice . 31
2.3.2 AGCD . 33
2.3.3 LWE . 33
2.3.4 NTRU . 34

3 PARTIALLY HOMOMORPHIC ENCRYPTION 37
3.1 ENCRYPTION SCHEMES . 37

3.1.1 RSA . 38
3.1.2 Goldwasser-Micali . 38
3.1.3 ElGamal . 38
3.1.3.1 Additive variant . 39

3.1.3.2 Elliptic curve variant . 40

3.1.4 Benaloh . 41
3.1.5 Paillier . 42
3.1.6 Naccache-Stern . 42
3.1.7 Okamoto-Uchiyama . 43
3.1.8 Damgard-Jurik . 43
3.1.9 Kawachi-Tanaka-Xagawa . 44

4 SOMEWHAT HOMOMORPHIC ENCRYPTION 47
4.1 EVALUATING ANY OPERATION . 47

4.2 ENCRYPTION SCHEMES . 48

4.2.1 Pre-Gentry era . 49
4.2.1.1 Boneh-Goh-Nissim . 49

4.2.1.2 Sander-Young-Yung . 51

4.2.1.3 Ishai-Paskin . 51

4.2.1.4 Polly cracker schemes . 53

4.2.2 Post-Gentry era . 53
4.2.2.1 DGHV . 54

4.2.2.2 BV . 55

4.2.2.3 BFV . 56

4.2.2.4 Smart-Vercauteren . 58

4.2.2.5 GSW . 60

5 OTHER TYPES OF HOMOMORPHIC ENCRYPTION 63
5.1 LEVELED FULLY HOMOMORPHIC ENCRYPTION 63
5.2 FULLY HOMOMORPHIC ENCRYPTION 65

6 APPLICATIONS . 69
6.1 PARTIALLY HOMOMORPHIC ENCRYPTION 69
6.2 SOMEWHAT HOMOMORPHIC ENCRYPTION 70
6.3 LEVELED FULLY HOMOMORPHIC ENCRYPTION 71
6.4 FULLY HOMOMORPHIC ENCRYPTION 72

7 PRACTICAL IMPLEMENTATION . 75
7.1 PHE SCHEME IMPLEMENTATION AND COMPARISON 78

8 FINAL REMARKS . 81
8.1 FUTURE WORKS . 82

BIBLIOGRAPHY . 83

APPENDIX A – ARTIGO DO TCC . 89

19

1 INTRODUCTION

Technology is constantly present in people’s lives, making it necessary to provide
several personal information to computational systems, which will process this data, analyze and
execute operations on it. With personal data processing, comes the need for privacy-preserving
solutions. The problem is the lack of trust in the processing of this knowledge by third-party
applications. Several times newspapers around the world show countless examples of exposition
of confidential information. This information is usually transmitted using encryption such as
TLS, to guarantee data confidentiality. However in order to analyze this data (in machine learning,
for instance), it is necessary to operate it on clear text, needing to decrypt it first. At this moment,
the data is vulnerable and susceptible to attacks or leaks of private information (by the cloud
server), as will be explained hereafter.

To exemplify how homomorphic encryption could bring security benefits over private
user data, we can cite the processing of information by cloud computing. In a scenario where
there is no homomorphic encryption, the application receives encrypted data, decrypts it, and
then performs over clear text. At this moment, the information is unprotected, being subject to
attacks or even, malicious use of the data by the server that is doing the analysis. After the data
is processed, the result is encrypted and sent back to the user. Now, if we use homomorphic
encryption, there would be no need to decrypt the data at any moment in the flow of the data
analysis, since the operations of this type of scheme can be made directly on the encrypted text,
letting the data protected and safe all along the way. Figure 1 shows the difference between the
two possibilities.

Homomorphic encryption has the potential to solve many security and privacy issues,
in a variety of daily applications, such as cloud computing, data science, and zero-knowledge
proof, among others (ALAGIC et al., 2017). Besides that, it can help applications to operate in
conformity with data protection laws, such as the Brazilian LGPD (Lei Geral de Proteção dos
Dados) or the European GDPR (General Data Protection Regulation), because user data will not
be decrypted.

So, we can observe there are several benefits in using homomorphic encryption, nev-
ertheless, it is important to highlight that there are some limitations on the operations that can
be made on encrypted data (as addition and/or multiplication) and the number of times it can
execute on (depth). Therefore, different schemes have different properties. There are a few
classifications of homomorphic encryption:

• Partially Homomorphic Encryption (PHE): supports only one type of operation, such as
addition or multiplication. Does not have a restriction on the number of operations that
can be computed;

• Somewhat Homomorphic Encryption (SHE): supports two types of operation, but can
be operated only for a specific number of times (the most common case is an unlimited
number of additions and a small number, usually one, of multiplications);

20

Figure 1 – Flow of information exchanged between servers using and not using homomorphic encryption

Source: Translated from (KUNDRO, 2019)

Figure 2 – Homomorphic schemes and its variants over the years

Source: (ACAR et al., 2018)

• Leveled Fully Homomorphic Encryption (LFHE): allows any type of operation (addition
and multiplication) for a pre-established depth (the specific number of times it allows to
be made);

• Fully Homomorphic Encryption (FHE): allows any type of operation with unlimited
depth. This is the most difficult to achieve mathematically and, also, the one with more
applications.

In Figure 2, it is shown the timeline of homomorphic encryption over the years, since
the invention of the public key infrastructure (PKI) by Diffie-Hellman in 1976 (DIFFIE, 1976).
In this info graph, we see some traditional schemes like RSA (RIVEST; SHAMIR; ADLEMAN,
1978) (multiplicative homomorphic), Goldwasser-Micali (GOLDWASSER; MICALI, 1982) (ho-
momorphic over addition over binary numbers) and ElGamal (ELGAMAL, 1985) (multiplicative
homomorphic and, according to (KNIRSCH et al., 2020), there is a variant where it is additive
homomorphic). These schemes contain the properties of PHE. Only in 2009 it was created the
first FHE scheme, by Gentry (GENTRY, 2009), having several improvements in performance
and security ever since.

21

The concept of homomorphic encryption is recent, as well as its applications. It is also
important to say there is an effort to standardize homomorphic encryption (ALBRECHT et al.,
2018), the so-called Homomorphic Encryption Standard (HES). At this moment, the standard
has only some specifications of operations that a homomorphic encryption scheme must have,
to be considered as such, some secure parameters for well-known FHE schemes, such as BGV
(BRAKERSKI; GENTRY; VAIKUNTANATHAN, 2014) and BFV (FAN; VERCAUTEREN,
2012). These schemes can be transformed into FHE using Gentry’s proposal (GENTRY, 2009;
ALBRECHT et al., 2018). Both schemes are based on the Learning With Errors (LWE) or Ring
Learning With Errors (RLWE) problems, which will be explained in more detail later. The
standard also mentions some new approaches and some properties that future schemes must
contain, to make it more secure or functional.

1.1 GOALS

1.1.1 General goals

Our main objective is to perform a theoretical study of homomorphic encryption,
identifying the underlying security assumption of a variety of known schemes and possible
applications in several scenarios. Particularly, we focus on the study of PHE and SHE, and only
briefly discuss LFHE and FHE.

1.1.2 Specific goals

• Introduce the fundamental concepts of PHE and SHE schemes, as well as their theoretical
foundations;

• Explain the specifications of homomorphic encryption schemes, focusing on PHE and
SHE;

• Show applications for all variants;

• Implement a PHE scheme from those studied and presented;

• Implement a practical application for the selected PHE scheme.

23

2 MAIN CONCEPTS

In this chapter, we will present the necessary background to study homomorphic
encryption, as well as some important concepts necessary to understand specific HE schemes.

2.1 CRYPTOGRAPHY

The humankind has developed some very secure mechanisms to transmit data safely,
which means, keeping its integrity and confidentiality, from one point to another. Whereas
wars are horrible in so many ways, it is also a stage for the creation of multiple technologies
throughout history. Some more recent examples of such inventions in difficult times, over World
War II are the vaccines, jet engines, radar, and electronic computers (which were created, initially,
to break the German ciphering machine, the Enigma) (LITTLE, 2021).

One of the first encryption schemes proposed in history is the Caesar cipher, used in
ancient Rome, more than two thousand years ago, created by Julius Caesar himself. Because of
the war, he needed a way of communicating with his army with the intention that, if the message
could have been compromised somehow (obtained by the enemy, for example), the message
would still remain secure and only his army would be able to decrypt the real message.

The Caesar cipher is based on a very simple technique, in which the letters of the
alphabet are skipped a certain number of times. For example, if in the original message (usually
called clear text) is used the letter "A" and the "secret" to decrypt it is "plus 3", then we would
replace all the "A’s" in the message with the letter D. With an alphabet of 26 letters, we could
say that the ciphering C of a clear text m is given by the formula: C ≡ m+3 (mod 2)6.

The difficulty of finding the solution to this cipher technique is not so hard, because a
simple brute force algorithm that tries all 26 possibilities of shifts can decrypt the whole ciphered
message. Another interesting fact to notice about this cipher method is that the same secret key is
used to encrypt and decrypt it, which is called symmetric key encryption. That happens because
we encrypt using the idea of shifting n letters in the alphabet and, to decrypt we also use this
idea, but reversed.

As the years passed, humankind evolved its encryption schemes. Several ideas have been
used and improved over the years, using alphabetic substitution, transposition, rotor machines,
and one-time pad techniques. It is also important to say that our technology to create such
schemes has also evolved, enabling us to create schemes that are much more secure, using more
sophisticated techniques. The computers and electromechanical machines made that happen, as
well as our development in mathematics.

Although symmetric key encryption (also called private key encryption, because every-
thing relies on one secret key) is very effective, there is one major problem: the key distribution.
To communicate with one another in a secure way using a symmetric key, both parties need to
previously agree on the same secret key. But how to deliver this secret key over an insecure
channel? In order to solve that, public key cryptography was proposed.

24

In 1976, two mathematicians developed a new way of cryptography, changing the
modern technology world. In the official introduction to their theory, Diffie and Hellman
(DIFFIE, 1976) presented asymmetric encryption, also called public key cryptography, which
consists mainly of two types of keys: the public key (which is shared with everyone) and the
private one (only the owner of the key is supposed to have access).

The way this mechanism works is: anyone can encrypt some clear text using someone’s
public key and only the private key owner can decrypt it. In other words, all data encrypted with
one of the keys can be decrypted with the other key. The only mechanism required to implement
it is having one or many trusted servers, storing all the trusted public keys. It is very simple
and effective, not needing to worry about private key distribution anymore. As the public key is
public information, it should be infeasible to obtain any information about the private key from
it. It needs to be constructed mathematically and computationally hard to do so. With public
key cryptography, networks can communicate securely and effectively. Clients can trust servers
and vice-versa based on this assumption. It then, ensured confidentiality, integrity, and even
authentication, depending on how we use public key encryption.

On the Internet, both symmetric and asymmetric encryption are frequently used. One
example is TLS, which aims to guarantee safe communication between client and server by
exchanging all messages encrypted. In this application, both symmetric and asymmetric cryptog-
raphy are used. The client who wants to connect to the server sends a request with a symmetric
key in it (encrypted using the server’s public key). The server accepts the connection and saves
the symmetric key to send everything encrypted. This is used for both security and speed since
symmetric cryptography is much faster than the asymmetric one.

One of the first public key encryption schemes, and the most used nowadays, is RSA.
The scheme is based on the difficulty of finding any two prime numbers, that result in an arbitrary
integer when multiplied, known as the factorization problem. Because of its importance in
transmitting shared keys for symmetric-key cryptography (like TLS) and its homomorphic
properties, we present next the algorithms of this famous scheme. Normally an encryption
scheme consists of three algorithms: key generation, which generates the key to encrypt and
decrypt; the encryption algorithm, which takes the message, the key, and outputs the ciphertext;
and the decryption algorithm, which takes the ciphertext, the key (normally on the reverse way it
is done on encryption algorithm) and outputs the clear text. We will show these algorithms, and
also, the multiplicative homomorphic property.

Key generation Consider large prime numbers p,q, calculate n = pq and φ = (p−1)(q−1).
Take e as a small number, and its corresponding multiplicative inverse d such that ed ≡ 1
(mod φ). The public key is (e,n) and the private key is (d,n). Given n and e, it is
computationally infeasible to factor it and obtain p and q, and consequently φ and d.

Encryption Define ENC(m) = me mod n, where m is the message to be encrypted, with 0 ≤
m≤ n.

25

Decryption We can retrieve the original message m, from the ciphertext c with the following:
DEC(c) = cd mod n.

Homomorphic property We stated that RSA is multiplicative homomorphic and we can show
that. Multiplying two ciphertexts would generate the following:

ENC(m1)×ENC(m2) = (me
1 mod n)× (me

2 mod n)

= (me
1×me

2) mod n

= (m1×m2)
e mod n

= ENC(m1×m2)

(2.1)

With that, it can be observed that multiplying two ciphertexts is equivalent to raising the
product of the plaintexts to the power of the secret key (Yackel, Ryan, 2021). This means that if
we multiply two numbers that were encrypted using the same public key (of the same person)
with the RSA scheme, it is equivalent to multiplying the two numbers and then encrypting them.
More examples and properties of this definition will be provided in the next section.

2.2 HOMOMORPHIC ENCRYPTION

Homomorphism is, in mathematics, a mapping between two algebraic structures of the
same type, that preserves the operations of these structures. Consider the function f defined
as A→ B (being A the function’s domain and B the respective image), where A and B are sets
equipped with a binary operation ∗. The homomorphism preserves the operation of the structures,
meaning f (a∗b) = f (a)∗ f (b) for all elements a,b ∈ A. When we study homomorphic encryp-
tion, the function f is the encryption or decryption function, with the operation ∗ depending on
the scheme.

Although public key cryptography is very efficient and solves many of the problems
in today’s network communication, there are several cases where public key encryption on its
own is not enough. In all examples given, the data is encrypted throughout the whole flow, from
the client to the server and vice-versa. But whenever is necessary to perform any search or
operation in the data itself, it is required to decrypt it in the server and, if the server does not
have access to the private key, it is not possible to do so. In other words, if the server needs to
decrypt the data it needs to know the private key. More importantly, the computations performed
over this possible confidential information are done without cryptography at all. This means
that a malicious server could take that data and provide it to some other service or keep it on its
private database, without the user’s consent.

Nowadays with the need to expand and cheapen the services, several technology
companies appeal to the famous Cloud computing resources. When a cloud server is used to
handle data processing, such as in data mining and Big Data applications, the server needs to
have access to the data. Even having some agreement between the cloud service engaged with

26

the user, the user is not completely aware of what the server is going to do with the information
provided.

Even though distributed computing paradigms in general are very efficient and powerful,
such as Cloud computing, fog computing, or edge computing, there are some security issues
to be considered. When it comes to private and sensitive information, it is necessary to handle
it very carefully and, in the best scenario, not have access to unencrypted data at all. As the
information gets decrypted in some parts of the data flow, data breaches can occur. Applications
that use sensitive information cannot fully trust a server to analyze their data, because of the
aforementioned problem. Some of these applications are medical data processing, outsourcing
of financial operations, statistics over sensitive data, online voting, multi-party computations,
and machine learning (CHILLOTI, 2022; ROCHA; LÓPEZ; ROCHA, 2018).

In 1978, it was already foreseen by the people who invented the famous RSA cryp-
tosystem (RIVEST; SHAMIR; ADLEMAN, 1978), that some class of schemes could act on
the ciphered text without decrypting it. This class of schemes were called of homomorphic
encryption. The problem is that many researchers and mathematicians tried to reach such a
scheme and failed. It was found out that many earlier known and very common public key
cryptosystems such as RSA (RIVEST; SHAMIR; ADLEMAN, 1978), ElGamal (ELGAMAL,
1985), and Paillier (PAILLIER, 1999) already had homomorphic properties over specific op-
erations. However, it could only perform one type of operation over the ciphertext. This was
named partially homomorphic encryption (PHE). For instance, both RSA and ElGamal have a
homomorphism over multiplication and Paillier over addition.

So far we have seen RSA as an example of PHE, which accepts any number of multipli-
cations. However, we also have somewhat homomorphic encryption (SHE), that supports two
types of operations over the ciphertext, but only for a determined number of times; leveled fully
homomorphic encryption (LFHE), that supports a set of operations for a pre-determined depth
(by the user’s choice); fully homomorphic encryption (FHE), that supports any operations for
any depth. The last one was believed to be impossible, until 2009, when Gentry presented as his
doctoral proposal a fully homomorphic encryption scheme (GENTRY, 2009). After that, the
frontiers of homomorphic encryption were open, enabling it as a real use case.

The problem of making a scheme that supports a set of operations, for any number of
times, relies on one parameter of probabilistic encryption schemes: the noise. It is necessary
to add some noise into the encryption, so it remains "unique" and guarantees its security and
correctness. The encryption is generally not the problem, but when we decrypt into some modular
area, the noise becomes an issue, because it demands to be smaller than a certain value (a static
parameter from the scheme), and homomorphic operations increase that noise. More details will
be presented in the next subsection.

27

2.2.1 Noise

Noise is a parameter of encryption functions in probabilistic schemes, such as fully
homomorphic schemes. It is necessary to apply some randomness to the encryption channel,
so only the owner can remove it and obtain the original message. When we “include” some
random parameter in cryptographic functions, they end up not being deterministic, but rather
probabilistic. To that randomness, we call it error or noise. If the encryption of the same message
is always the same ciphertext, then we call it a deterministic scheme. This can result in numerous
attacks, as will be shown hereafter. In order to make these schemes more secure, we can add
some randomness to them, so the ciphertext for the same message is always different.

Over the years researchers were able to find possible attacks over deterministic schemes,
which depreciate the system security. In (HOVD, 2017), is explained how some attacks are
performed over deterministic schemes like RSA, making it insecure due to its deterministic
properties, and why noise is demanded in general encryption schemes. This happens, in part,
because the encryption of the same message is always the same, which does not happen in
probabilistic schemes.

Now that we know why noise is important to encryption schemes, the question is how
this can disturb the decryption over operated ciphertexts. The problem is that “classic” encryption
schemes do not change their ciphertext after it is encrypted, but homomorphic ciphertexts are
changeable, because of the possible operations over it. To exemplify that, we will show a SHE
scheme by Gentry and some other researchers in the field in 2010 (DIJK et al., 2010), called
DGHV. This was a simple arrangement made by them to show an application of Gentry’s doctoral
proposal, the bootstrap approach, which shall be explained in the next subsection. Next, we show
the main functions of the symmetric version of this cryptosystem, extracted from their work
(DIJK et al., 2010), where only one bit is encrypted, which means our message m ∈ {0,1}.

• Key generation: the key p is an odd integer, chosen from some interval p∈ [2n−1,2n),
where n is a security parameter;

• Encrypt(p,m): to encrypt a bit m ∈ {0,1}, set the ciphertext as an integer whose
residue mod p has the same parity as the plaintext. Namely, set c = pq+ 2r+m,
where the integers q,r are chosen at random in some other prescribed intervals, such
that 2r is smaller than p/2 in absolute value;

• Decrypt(p,m): output (c mod p) mod 2.

It can be shown that this scheme is a SHE scheme, given the fact we can make addi-
tions and multiplications between two different ciphertexts c1 and c2 generated with the same
private key p, and maintain the homomorphic encryption property over these operations. These
statements can be proved in the equalities below, being the symbol + the usual addition and the
symbol × representing the usual multiplication:

28

ENC(m1)+ENC(m2) = (pq1 +2r1 +m1)+(pq2 +2r2 +m2)

= p(q1 +q2)+2(r1 + r2)+(m1 +m2)

= pq3 +2r3 +(m1 +m2)

= ENC(m1 +m2)

r3 = r1 + r2

q3 = q1 +q2

(2.2)

ENC(m1)×ENC(m2) = (pq1 +2r1 +m1)(pq2 +2r2 +m2)

= pq4 +2r4 +(m1×m2)

= ENC(m1×m2)

r4 = 2r1r2 + r1m2 + r2m1

q4 = pq1q2 +q2m1 +q1m2

(2.3)

Here some mathematics were hidden to keep the general understanding, but what is
important to note is that the noise from addition (r3) or multiplication (r4) needs to be < p/2,
so decryption works. But taking the addition first, we have r1 and r2 that are very distant from
p/2, which would require many additions of ciphertext before 2r3 reaches p/2. This does not
happen with multiplication, because r1 and r2 are multiplied by all the other factors, growing
much faster, so r4 becomes larger than p/2 much faster.

This means that, at each operation made into the ciphertext, it will make the noise (ri)
to grow a little more. If the noise becomes somehow larger than the secret key p, the decryption
will be incorrect. This happens because we perform a modular operation to decrypt a ciphertext,
making the modular area to be incorrect, as shown below for a ciphertext c:

DEC(c) = (c mod p) mod 2

= ((pq+2r+m) mod p) mod 2
(2.4)

Because of that, this scheme is restricted to only a few operations over the ciphertext.
This is the reason why the scheme is considered a SHE. When the noise becomes larger than
the secret key, it is said the scheme becomes unmanageable. Otherwise, Gentry found a way to
surpass such problems, enabling almost all SHE schemes to become FHE (GENTRY, 2009),
which means, being able to make any amount of operations over the ciphertext, using what he
calls bootstrap technique, which will be presented next.

2.2.2 Bootstrap

As an old open problem until 2009, Gentry’s bootstrap proposal was a mark in the
world of cryptography. Besides creating an FHE, he also created a method to convert a SHE

29

Figure 3 – Bootstrap representation

Source: (CHILLOTI, 2022)

scheme into an FHE one. As we noticed from the previous subsection, the difficult problem in
making an FHE scheme is how to manage the noise growth, so, his approach is based on the idea
of shrinking the noise when it gets too large. To demonstrate that, first, we need to provide some
information about the whole process. To bootstrap some ciphertext, we need two new elements
in the encryption scheme, a public evaluation key (also called bootstrapping key) and a recrypt

function. The evaluation key is used in the recryption process, or in the relinearization process
(it will be explained later in this work). When the key is only used in the relinearization process,
we call it to be a relinearization key.

The recrypt function is used to reduce the noise when it gets too large. In order to do
that, it is necessary to re-encrypt the ciphertext with an evaluation key k, and this will reset
the noise. This process gives us a ciphertext of a ciphertext. To obtain the ciphertext of the
original message x, we use the evaluation key again, which is a public value. Let us take the
expression c = ENC(x,k) as the original ciphertext and c′ = ENC(c,k′) as the encryption of the
first ciphertext. Using the evaluation key, we can decrypt c′ and get the ciphertext of the original
clear text. More details are given in Figure 3, where we present an example of how the bootstrap
procedure is applied.

Taking an SHE scheme as presented previously, like DGHV we showed before as an
example, where is only possible to arrange some operations over the ciphertext because of its
noise growth, we show how the bootstrap works based on the analogy of Figure 3. Imagine the
last operation possible before exceeding the noise limit. At that moment it is not possible to
make any other homomorphic operation on the ciphertext, otherwise, the decryption will fail.
That is represented as the blue box, and the yellow bar next to it represents the noise growth, and
the red line is the limit of its growth, or it will get unmanageable.

The second step is the recrypt function, here represented as the green box. As can be
seen, the noise of the new encryption is reset as it is a new encryption. At this moment, we have
the encryption of the ciphertext of the original clear text. To get the encryption of the clear text,
we need to use the evaluation key to decrypt only what is inside the green box, which means,

30

decrypt only the blue box homomorphically. The operation of decrypting the blue box inside the
green box adds a small amount of noise, but now we have the encryption of the original clear text
inside our green box, with a smaller noise. This makes it possible to make some new operations
over the ciphertext and re-do this process as many times as necessary.

The biggest problem with bootstrapping is how expensive it is. Every time the noise
is about to get unmanageable we need to bootstrap (recrypt) it, and we need to make some
adjustments in the ciphertext before doing that. Imagine we want to perform one thousand
multiplications over an SHE scheme, that allows one multiplication before it gets unmanageable.
It would be necessary at each multiplication, to bootstrap it (DUCAS; MICCIANCIO, 2015;
CHILLOTTI et al., 2020; MARCOLLA et al., 2022). Some new research points out some
enhancements to this method, making it possible to use in real scenarios, otherwise, it would be
infeasible. This new line of research into homomorphic encryption is called fast bootstrapping,
which has the goal of making the recryption function faster, as well as all the operations involved
in it.

Despite all the efforts to make efficient FHE schemes, the sizes of the public and
evaluation keys are still too big and its operations and decryptions take too long. Therefore,
there is also another branch of the FHE, the LFHE, that competes with the bootstrap approach.
Some examples of LFHE involve the schemes FHEW (DUCAS; MICCIANCIO, 2015), TFHE
(CHILLOTTI et al., 2020), and CKKS (CHEON et al., 2017), the last being the fastest and most
popular.

2.2.3 Leveled approach

LFHE schemes can be very often related to more practical uses nowadays than the
bootstrap approach, due to its speed in performing operations over the ciphertext and decrypting
it. This happens because LFHE can only make a limited amount of operations, which the user
can specify. If we are aware of the amount of times we need to operate on the ciphertext, we can
make some improvements so the noise gets controlled. We need more mathematical background
to make the enhancements necessary to keep the noise contained. This is especially essential
when it involves costly operations, such as multiplications. Some schemes like CKKS involve
up to three additional steps in the process of multiplying two ciphertexts, for instance.

Because of the careful noise management, this HE variant is also related to different
public key sizes. Actually, its size is dependent on the depth the scheme must accept. Therefore
its operations speed is also related to that, which makes this type of scheme very useful when we
are aware of the number of operations we need over the ciphertext, and this amount is not very
large. Otherwise, we still need to use the bootstrapping technique. Further information will be
presented in the section regarding LFHE Section 5.1, but details on the schemes’ implementation
will not be presented, as it is out of the scope of this work.

31

2.3 DIFFERENT CLASSES OF SCHEMES

There are several ways we can achieve a fast and secure encryption scheme. One of the
most popular nowadays is lattice schemes, especially for its resistance to quantum computers. As
we cited in Section 2.1, RSA is derived from the factorization problem, which is computationally
difficult to solve when we do not have access to private information. Although this can be
difficult for today’s computers, with the arrival of quantum computers, this is about to change.
As this device can perform exponential calculations, creating a superposition of these, a powerful
quantum computer would be able to break RSA encryption in a couple of minutes, using the
famous Shor’s algorithm (SHOR, 1994).

After that demonstration, mathematicians decided to explore solutions that would be
resistant to quantum computers, known as post-quantum cryptography. The National Institute of
Standards and Technology (NIST), which is responsible for finding good practices on cryptogra-
phy schemes and other initiatives in the United States of America, has been making campaigns
to search for the best post-quantum schemes. Considering all submissions to this institute, the
great majority have used lattice-based schemes, proving to be one very versatile line of schemes
based on hard problems. A hard problem is also said to be NP-hard, which means, in short, that
a computer is not able to find a solution in polynomial time, with any tools known nowadays. It
has also been proved that this class of algorithms is average-case hard (LANGLOIS; STEHLÉ,
2015) adapting some parameters.

In cryptography, we have many different types of underlying problems we can use
to ensure the keys remain secure. Some mathematical problems we can arrange to create
cryptosystems such as factorization, discrete logarithms, LWE (Learning With Errors), hash
functions, code-correcting, multivariate functions, and lattice. Some types of mathematical
problems will be defined in the next subsections. We need to be aware that lattice problems
are very important, because as exposed by Gentry and in some surveys about homomorphic
encryption (MARTINS; SOUSA; MARIANO, 2017), the most important and reliable at the
moment is lattice-based, because of its post-quantum properties and arrangements that make
homomorphic encryption easier.

2.3.1 Lattice

Firstly, we need to define a lattice. According to (ALWEN, 2020), the main definitions
are as follow:

Lattice: A lattice can be thought of as any regularly spaced grid of
points stretching out to infinity.

Vector: A vector is a tuple of points called the coordinates of the
vector. So (2,3) is a particular 2-dimensional vector as it has 2
coordinates, and a lattice is a collection of evenly spaced vectors.
A special vector of interest is the origin which is the vector with

32

Figure 4 – SVP demonstration, where the blue arrow is the shortest vector to the origin and the red arrows are other
possible vectors

Source: (BRIGHT, 2013)

all coordinates set to 0. For example, in 3 dimensions, the origin
is (0, 0, 0). We say that a vector is long if it is far away from the
origin. Conversely, a vector is short if it is close to the origin.

Basis: Lattices are infinitely large objects but computers only
have a finite amount of memory to work with. So we will need a
succinct way to represent lattices if we are going to use them in
cryptography. For this, we use what is called a basis of a lattice. A
basis is a small collection of vectors that can be used to reproduce
any point in the grid that forms the lattice.

So we can say that a basis can form any vector from the lattice, which is very important
in lattice schemes. We can also call short vectors the ones whose lengths between one another
are relatively small compared to other vectors in the lattice. Long vectors are the opposite, being
long between one vector to another. A short basis is a set of short vectors. A long basis is a set
of long vectors. Now we can specify the two most important problems in lattice-based schemes,
the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP).

The SVP is based on the difficulty of finding the closest vector to the origin, given a
long basis for a lattice. The problem here is the complexity of managing basis in the order of
10 thousand vectors. The CVP lies in the difficulty of finding the closest vector to an arbitrary
point P in a long basis lattice. One illustrated example of the SVP and, as well as the CVP with
P = 0 can be viewed in Figure 4. Taking the origin in Figure 4 with some arbitrary basis, it
is shown some points of that basis. The SVP problem is based on the difficulty of finding the
shortest vector to the origin, here represented as the blue vector (blue arrow). Whereas it is easy
to be seen that way, it is not easy to compute it when we have a very large basis and several
dimensions.

In order to get clearer on how to read the representations of lattices and their mathematics
in the next chapters, we will show the representation and notation for lattices in general, using
(KAWACHI; TANAKA; XAGAWA, 2007) as a base. In this way, the length of a vector

33

x = (x1, . . . ,xn) ∈Rn is denoted by ∥ x ∥= (Σn
i=1x2

i)
1/2. The inner product of two vectors x and y

is denoted by ⟨x,y⟩, which is Σn
i=1xi× yi. The dimension of a lattice is, normally, taken as the

parameter n. Regarding the closest vector, we also have a representation for that, being ⌊x⌉ the
closest integer to x ∈ R and f rc(x) = |x−⌊x⌉|, being the distance from x to the closest integer.

We can define a n-dimensional lattice mathematically in Rn as the set L(b1, . . . ,bn) =

Σn
i=1αi× bi, αi ∈ Z, of all integral combinations of n linearly independent vectors b1, . . . ,bn,

which are called as the basis of lattice L. So, a basis can be represented as a matrix B =

(b1, . . . ,bn)∈Rn×n whose columns are the basis vectors. We are only using the matrix dimension
n× n, which is also called full-rank lattices, because it is what we are interested in for the
problems presented in this work, however, there are other constructions possible.

We say that two bases are equivalent if they span to the same lattice, i.e., they produce
the same lattice. Two bases B,B′ can be considered equivalent, if and only if there exists a matrix
U ∈ Zn×n, with det(U) =±1, such that B′ = BU . If any point from a lattice L(B′) belongs also
to another lattice L(B), we say that L(B′)⊆ L(B) and also that L(B′) is a sublattice of L(B). We
can consider the fundamental parallelepiped ρ(B) as ρ(B) = {Σn

i=0ai×bi |ai ∈ R,ai ∈ [0,1)}.
With this construction, we can “embrace” the whole lattice with the fundamental parallelepiped.
Another important property is the volume of ρ(B) = |det(B)|= det(L). Some further definitions
may be presented, as specific properties for each scheme.

2.3.2 AGCD

The Approximate Greatest Common Divisor (AGCD), also called the Approximate
Common Divisor (ACD) problem is based on the difficulty of determining a secret integer p

when it is given many fragments of the form ENC(ci) = pqi + ei, where the ciphertext is ci, the
noise is ei, and qi is some multiplication factor. These parameters are lattices with a very large
basis, in other words, a very large lattice.

It has been widely used in the HE since the first publication of the DGHV scheme
(DIJK et al., 2010), which was already described previously in this work, having many variations
of that and many other schemes based on that idea. This is done by the difficulty in finding the
Greatest Common Divisor (GCD), which means, the positive integer that divides two numbers
without a remainder in very large lattices. In HE, it is the most used alongside LWE schemes,
because of its simplicity and considerably fast execution to either encrypt or decrypt.

2.3.3 LWE

In 2005 a probabilistic encryption scheme was built by Regev (REGEV, 2010), called
Learning with Errors (LWE). The basic approach is the difficulty in retrieving the secret key s

and the noise e from the equation: t = gs+ e, where g is a given sequence of random numbers
and t is the public key, also being a sequence of numbers.

34

To explain this method in more detail, we provide an example where we can only
encrypt bit numbers, based on the example given in (BUCHANAN, 2023). For that, it is
necessary to generate a secret key s and a noise e. For the purpose of this example, we
choose s = 5, e = 12. Now we will generate a sequence of 10 random numbers, the g =

[5,8,12,16,2,6,11,3,7,10]. Now we have all the values in the formula to build our public
key t, generating [37,52,72,92,22,42,67,27,47,62]. To encrypt, we use the function: c =

∑
s
n=1 rand(t,s)+m, m ∈ 0,1 is the message to encrypt, and rand the function taking randomly

5 elements from the public key, since s = 5 and we have rand(t,s). To decrypt the ciphertext
and get the original message, we take m≡ c (mod s). The decryption is successful because the
error is small, and t is very large. In this way, the noise added does not interfere, as it is very
small, but it makes it computationally hard for an attacker.

Here we only show a toy example with integers, but we can construct encryption
schemes using matrices or lattices instead. It has been considered to be quantum-resistant
and can be combined with some other mechanisms. The Ring Learning With Errors (RLWE),
for instance, is one of the most important, which encapsulates the simple idea of LWE into
mathematical rings.

It is important to point out that the majority of FHE or LFHE schemes have been using
RLWE approaches to reach fast and secure schemes, being the most prominent ones: CKKS,
TFHE, BFV, and BGV. Also, there is some research on converting LWE schemes into AGCD
ones (CHEON; STEHLÉ, 2015), which can make the process of homomorphic operations faster.
Some more details about these schemes will be provided further in this work.

2.3.4 NTRU

NTRU is a public key cryptography system that allows not only encryption but also
digital signatures. It is one viable and very efficient option to overthrow quantum computers as
well, besides being five times as fast as RSA to encrypt and twice as fast to decrypt (HARJITO
et al., 2022). Its whole structure is based on the SVP in lattices combined with the difficulty of
factoring polynomials in a truncated polynomial ring.

This class of schemes has been a finalist in the post-quantum NIST standardization
process. In addition to that, it has been the only class that was able to provide multi-key
encryption (LÓPEZ-ALT; TROMER; VAIKUNTANATHAN, 2012), meaning two or more
people can encrypt the same message, so only they are able to decrypt it. This is very important
in Multi-Party Computations (MPC), in which multiple parties make calculations using their
combined data. Some possible MPC FHE applications combine anonymous data from medical
centers or blockchain usages.

NTRU is a class of schemes that is in constant development, with many variants and
security proofs, not only against quantum computers but also against classical cyber security
attacks. Despite all its usages, in HE we do not have many examples of schemes based on
NTRU. The first HE scheme based in NTRU by Lopez-Alt-Tromer-Vaikuntanathan (LÓPEZ-

35

ALT; TROMER; VAIKUNTANATHAN, 2012), where it is possible to encrypt and perform
computations using multiple private keys. Over the years, some researchers were able to
apply some attacks over FHE NTRU-based schemes, as we can check on (ALBRECHT; BAI;
DUCAS, 2016; CHEON; JEONG; LEE, 2016; KIRCHNER; FOUQUE, 2017), because of its
overstretched parameters of modular rings. Another problem they mentioned was the evaluation
key for bootstrapping it, which was leaking details of its private key.

Over the last years, new attempts to make an FHE scheme based on NTRU security
were performed as proposed in (MITTAL; RAMKUMAR, 2022). The attacks were solved, by
decreasing the size on the modulo Ring, changing the NTRU characteristic (using matrices, fields,
or algebra), and removing the evaluation key as in (DORÖZ; SUNAR, 2020). The multiplications
performed were faster, and no attacks have been performed over the new schemes so far, which
can be still considered a good approach for FHE schemes. The HES promised to look at its
security in the next round of meetings over the subject.

37

3 PARTIALLY HOMOMORPHIC ENCRYPTION

Partially homomorphic encryption are encryption schemes that allows only one type
of operation over encrypted data. In other words, we can apply one operation as many times
as needed into the ciphertext, and we will still be able to decrypt into the corresponding clear
text normally. It is important to notice that probabilistic schemes of this variant of HE also
need to handle noise, otherwise, the decryption can fail as explained (see Subsection 2.2.1), but
the structures are much simpler. As this is the simplest type of homomorphic variant, a brief
explanation of the properties of each scheme will be given, as well as the underlying problem.
We will explain the key generation, encryption, and decryption procedure for each PHE scheme
available nowadays, briefly showing their security assumptions, and describing the corresponding
homomorphic operation.

Table 1 summarizes each scheme and its respective properties. It is also important
to know whether a scheme is additive and/or multiplicative homomorphic by a scalar number,
since some applications may require it. It is worth mentioning that some schemes are only
homomorphic in theory, as the implementation must embrace many more layers of security and,
usually when we do that, we lose the homomorphic property. This is the case of RSA, presented
in Section 2.1.

3.1 ENCRYPTION SCHEMES

In this section, we present the main PHE schemes, denoting all the procedures necessary
to encrypt and decrypt some data.

Table 1 – Summary of PHE schemes

Scheme Underlying problem Op ×K +K ^ K Space
RSA Factorization × Zn

Goldwasser-Micali Quadratic Residuosity Problem XOR ✓ ✓ Z2
ElGamal classic Discrete Logarithm × ✓ Zp

ElGamal additive Discrete Logarithm + ✓ gm

ElGamal Elliptic Curve Elliptic Curve Discrete Logarithm + ✓
Benaloh Residuosity problem + ✓ ✓ Zn

Paillier Decisional Composite Residuosity + ✓ ✓ Zn2

Naccache-Stern Higher Residuosity + ✓ ✓ Zn

Okamoto-Uchiyama Factorization + p-Subgroup + ✓ ✓ Zn

Damgard-Jurik Decisional Composite Residuosity + ✓ ✓ Zns+1

Kawachi-Tanaka-Xagawa Lattice (SVP) + Zp

The “Op” column stands for which operation the scheme is homomorphic by. operation K means if a
scheme supports such operation between ciphertext and scalar. The space “column” means the ciphertext
space, where n, p,g are specific parameters from each scheme.

38

3.1.1 RSA

The RSA scheme (RIVEST; SHAMIR; ADLEMAN, 1978) was already introduced in
Section 2.1. We recall that RSA is a multiplicative homomorphic scheme, and until today, it is
the most used cryptosystem.

3.1.2 Goldwasser-Micali

Goldwasser-Micali (GOLDWASSER; MICALI, 1982) is the first probabilistic public
key encryption scheme. Although it has not been actually used in practice due to its large
ciphertexts, many other schemes are derived from it. The security is based on the difficulty of
retrieving p and q, of n = pq, given the Quadratic Residuosity. A number a is called quadratic

residue modulo n, if there exists an integer x such that x2 ≡ a (mod n) citeacar2018survey,
using the notation QR in the equation (QR[n]). The scheme is additive homomorphic for bits,
which means we can operate using XOR. Another homomorphic property relies on the addition
and multiplication over a scalar.

Key generation We compute n = pq, where p and q are primes. Choose an integer x, such that
x
n = x

p × x
q = (−1)× (−1) = 1, being this ratio the QR[n]. The public key is (x,n) and the

private key is (p,q).

Encryption The message is converted into a string of bits (m1,m2, . . . ,mk). For every mi, a yi is
produced as gcd(yi,n) = 1. The encryption is performed as follows, for each bit mi and yi:
ENC(mi) = y2

i × xmi (mod n).

Decryption Consider c as the ciphertext. We need to decide if each ci is a quadratic residue mod-
ulo n, or not. If it is, then the corresponding mi = 0, otherwise mi = 1. The concatenation
of each mi is the original clear text.

Homomorphic property Consider two on-bit messages m1 and m2. We can state the additive
property (modulo 2) by multiplying the ciphertexts, as follows:

ENC(m1)×ENC(m2) = (y2
1× xm1 (mod n))× (y2

2× xm2 (mod n))

= (y1× y2)
2× xm1+m2 (mod n)

= ENC(m1 +m2)

(3.1)

3.1.3 ElGamal

ElGamal (ELGAMAL, 1985) is a very popular scheme, whose underlying problem is
based on the discrete logarithm assumption. This means the hardness of finding x in gx = h,
where g,h are given elements of a finite cyclic group. The scheme is multiplicative homomorphic,
and it is also possible to make calculations power a scalar, due to its power in gx.

39

Key generation For two large prime numbers p and q, such that q|(p− 1). Take a cyclic
subgroup Gq of Z∗p of order q and generator g. Compute g≡ y(p−1)/q (mod p). Select a
random x ∈ Zq and set h = gx (mod p). The public key is (p,q,g,h) and the private key
is (x).

Encryption Generate a random number r ∈ Zq. As the output of the encryption function, a pair
of ciphertexts will be made, as ENC(m)→ (c1,c2). The encryption is calculated as:

ENC(m) = (c1,c2)

c1 = gr (mod p)

c2 = m×hr (mod p)

(3.2)

Decryption In order to decrypt the pair (c1,c2) we need an auxiliary s, which is calculated
as s = cx

1. Then, the decryption occur as: DEC(c1,c2) = c2× s−1 ≡ h−r× (m×hr)≡ m

(mod p), where s−1 is the inverse of s in the group Gq.

Homomorphic property Let ENC(m1) = (c1,c2) and ENC(m2) = (c′1,c
′
2). The property will

be shown by multiplying c1 with c′1 and c2 with c′2:

c1× c′1 = gr×gr′ (mod p)

= gr+r′ (mod p)

c2× c′2 = (m1×hr)× (m2×hr′) (mod p)

= m1×m2×hr+r′ (mod p)

ENC(m1)×ENC(m2) = (gr+r′,m1×m2×hr+r′) (mod p)

= ENC(m1×m2)

(3.3)

3.1.3.1 Additive variant

As a variant of the classic ElGamal scheme, it is possible to make the same classic
scheme to be PHE regarding addition (CRAMER; GENNARO; SCHOENMAKERS, 1997).

Key generation The same steps in the classic scheme can be followed, with the same public
and private keys.

Encryption It also outputs a pair (c1,c2), but here we need to transform the message m which
initially belongs to Zq, into a group element of gm. Generically, for encryption, we only
substitute the parameter m for gm, as follows:

ENC(m) = (c1,c2)

c1 = gr (mod p)

c2 = gm×hr (mod p)

(3.4)

40

Decryption The process is the same as for classic ElGamal, substituting m for gm in the original
equation, with DEC(c1,c2) = c2× s−1 ≡ h−r× (gm×hr)≡ gm (mod p).

Homomorphic property The multiplication of the ciphertexts now becomes the sum of the
clear texts, as we can see through the next expressions:

c1× c′1 = gr×gr′ (mod p)

= gr+r′ (mod p)

c2× c′2 = (gm1×hr)× (gm2×hr′) mod p

= gm1×gm2×hr+r′ (mod p)

= gm1+m2×hr+r′ (mod p)

ENC(m1)×ENC(m2) = (gr+r′,gm1+m2×hr+r′) (mod p)

= ENC(m1 +m2)

(3.5)

3.1.3.2 Elliptic curve variant

Almost the same procedures as classical ElGamal can be performed using Elliptic
curves over a finite field (KOBLITZ, 1994). It is analog to the additive homomorphic variant and
considers the group elements as points in the elliptic curve, multiplication is replaced by point
addition, whereas exponentiation is replaced by point multiplication. The following procedures
are presented in (KOÇ; ÖZDEMIR; ÖZGER, 2021).

Key generation For a large prime p, choose an elliptic curve E(Zp) over finite field of p

elements, such that the order of E(Zq) is divisible by prime q. Similarly, we choose a
generating point P, select a random d ∈ Zn, and set Q = [d]×P, where the operation × is
point multiplication in E. The public key is (P,Q, p,q) and the private key is (d).

Encryption Generate a random number r ∈ Zq and compute the pair (R1,R2), which are points
on the given curve. The ⊕ is the correspondent point addition on the curve.

ENC(m) = (R1,R2)

R1 = [r]P

R2 = [m]P⊕ [r]Q

(3.6)

Decryption In order to decrypt the pair (R1,R2), we need an auxiliary point S, which can
be calculated as S = [R1]d. Then, the decryption occur as: DEC(R1,R2) = −S⊕R2 ≡
−[Qr]P⊕ (m⊕ [Qr]) ≡ [m]P, where −S is the additive inverse of S, and −[Qr] is the
multiplicative inverse in the curve E.

41

Homomorphic property The point addition of two ciphertexts generates the sum of the clear
texts, as we can see on:

R1⊕R′1 = [r]P⊕ [r′]P

= [r+ r′]P

R2⊕R′2 = ([m1]P⊕ [r]Q)⊕ ([m2]P⊕ [r′]Q)

= [m1 +m2]P⊕ [r+ r′]Q

ENC(m1)⊕ENC(m2) = ([r+ r′]P, [m1 +m2]P⊕ [r+ r′]Q

= ENC(m1 +m2)

(3.7)

3.1.4 Benaloh

The work from (BENALOH, 1994) improved the Goldwasser-Micali scheme, presented
in Subsection 3.1.2. Rather than ciphering one bit at a time, it is possible to encrypt a block of
messages now. Their scheme is based on the difficulty of the residuosity problem (xr), which is
a generalization of the quadratic residuosity (x2), where it is hard to find an x such that z≡ xr

(mod n). It is an additive homomorphic scheme, being also homomorphic by addition and
multiplication over scalars. As it is possible to perform operations in blocks of size r, its ring’s
space is defined now in Zr and not over Z2.

Key generation Select two large prime numbers p and q; select r, which is the cipher block size,
such that r|(p−1) and (p−1)

r are relatively prime, and r and (q−1) are relatively prime. We
compute n= pq, and consider the usual Euler’s Totient φ function as φ(n) = (p−1)(q−1).
Select y ∈ Z∗n = x ∈ Zn | gcd(x,n) = 1 such that yφ(n)/r mod n ̸= 1, namely y must be
chosen from a multiplicative subgroup of integers modulo n, which includes numbers
smaller than r and relatively prime to r. The public key is (y,n) and the private key is
(p,q).

Encryption Generate a random number u ∈ Z∗n. For a message m ∈ Zr, the encryption is given
by: ENC(m) = ym×ur (mod n).

Decryption Consider c the received ciphertext. To decrypt the ciphertext, we need to run a
loop, to find an i ∈ Zr such that (y−i× c)φ/r ≡ 1. Once we find i to solve the equation, the
message will be the i itself, namely m = i.

Homomorphic property The multiplication of the ciphertexts results in the addition of the
clear texts, as we can check on the following, for messages m1,m2:

ENC(m1)×ENC(m2) = (ym1×ur
1 (mod n))× (ym2×ur

2 (mod n))

= ym1+m2× (u1×u2)
r (mod n)

= ENC(m1 +m2 (mod n))

(3.8)

42

3.1.5 Paillier

This scheme is based on a new approach called composite residuosity problem, rather
similar to the residuosity problem, where it is hard to find a y ∈ Z∗n2 such that z = yn mod n2. In
this case, z is said to be nth residue modulo n2, if such y exists. It is an additive homomorphic
scheme, being also homomorphic by adding and multiplying scalars to the ciphertext.

Key generation Calculate n = pq, being p and q large prime numbers, and the Euler’s Totient
φ = (p−1)(q−1), such that gcd(n,φ) = 1, and consider λ = lcm(p−1,q−1). Take a
random integer generator g ∈ Z∗n2 ; consider a function L(u) = (u−1)/n for every u in the
subgroup Z∗n2; g must be chosen such that gcd(n,L(gλ mod n2

)) = 1. The public key is
(n,g) and the private key is (p,q).

Encryption Choose a random integer r ∈ Z∗n2 . The encryption is given by: ENC(m) = gm× rn

(mod n2).

Decryption Consider c the received ciphertext. If c < n2, the decryption can be done as:
DEC(c) = L(cλ (mod n2)

L(gλ (mod n2))
mod n.

Homomorphic property The multiplication of two ciphertexts results in the addition of the
clear texts. The homomorphism for messages m1,m2 can be done as it follows:

ENC(m1)×ENC(m2) = (gm1× rn
1 (mod n2))× (gm2× rn

2 (mod n2))

= gm1+m2× (r1× r2)
n (mod n2)

= ENC(m1 +m2)

(3.9)

3.1.6 Naccache-Stern

As a generalization of Benaloh’s cryptosystem, Naccache-Stern (NACCACHE; STERN,
1998) present two version schemes: one probabilistic and one deterministic. We will only show
the probabilistic version, where they show improvements towards other previous homomorphic
schemes. It is an additive homomorphic scheme, where it is also possible to perform addition or
multiplication over an arbitrary scalar integer.

Key generation Select k numbers (being k an even number); then we select a family of k small
odd distinct primes pi. We set u = ∏

k/2
i=1 pi and v = ∏

k
(k/2)+1 pi, and σ = uv. We also need

two large prime numbers a and b, and calculate p = 2×a×u+1 and q = 2×b× v+1
are primes as well, and let n = pq. It is also necessary to find a random generator g ∈ Z∗n
such that the order of g is φ(n)/4. The public key is (n,g,σ) and the private key is (p,q).

Encryption Generate a random number x∈Zn. The message m∈Zσ is encrypted as: ENC(m)=

gm× xσ (mod n).

43

Decryption Let c = ENC(m). Consider the following list of congruence m≡ mi (mod pi) for
i = 1, . . . ,k. Calculate for each ciphered element ci the following: ci ≡ cφ(n)/pi (mod n).

Developing the mathematics, we arrive to the corresponding ci = g
mi×φ(n)

pi (mod n). By
doing it for each ci, we get the equivalent mi, composing the original message.

Homomorphic property By multiplying the ciphertexts, we get the encryption of the sum of
the original messages m1,m2:

ENC(m1)×ENC(m2) = (gm1× xσ
1 (mod n))× (gm2× xσ

2 (mod n))

= gm1+m2× (x1× x2)
σ (mod n)

= ENC(m1 +m2)

(3.10)

3.1.7 Okamoto-Uchiyama

The work of (OKAMOTO; UCHIYAMA, 1998) show a scheme, where the intractability
is given by the hardness of finding p and q, given n = p2×q. It is an additive homomorphic
encryption scheme, where it is also possible to add or multiply to a scalar integer.

Key generation Choose large prime numbers p,q with a fixed bit size k and calculate n= p2×q,
where gcd(p,q−1) = 1 and gcd(q, p−1) = 1. Choose a random generator g∈Z∗n with an
order gp = gp−1 mod p2. Let h = gn mod n. The public key is (n,g,h,k) and the private
key is (p,q).

Encryption Consider the message m ∈ [0,2k−1]; select a random r ∈ Z/nZ, then the encryption
is given as: ENC(m) = gm×hr mod n.

Decryption Let c= ENC(m). Define a function L(x)= x−1
p and an auxiliary Cp = cp−1 mod p2.

The decryption can be performed as following: DEC(c) = L(Cp)

L(gp)−1 mod p, where L(gp)
−1

is the modular inverse of the discrete logarithm function L.

Homomorphic property The function L and the encryption have the homomorphic property
from multiplication to addition. This process is shown for messages m1,m2:

ENC(m1)×ENC(m2) = (gm1×hr1 (mod n))× (gm2×hr2 (mod n))

= gm1+m2×hr1+r2 (mod n)

= ENC(m1 +m2)

(3.11)

3.1.8 Damgard-Jurik

As a derivation from the Paillier cryptosystem, Damgard-Jurik (DAMGÅRD; JURIK,
2003) show a new approach that is length-flexible, i.e., it can easily handle messages of arbitrary
length, not needing to change anything on the public or secret key. To show where it was
engineered to use primarily, we will briefly explain the concept of zero-knowledge proof.

44

It is a protocol where a prover can prove to a verifier that some statement is true, and not
provide anything else but the statement. Damgard-Jurik’s scheme allows several users to use the
same modulus, making it an efficient zero-knowledge proof for relations between ciphertexts
of different public keys. It is an additive cryptosystem, and it is also possible to perform
operations using scalars for both addition and multiplication. The original work shows two
cryptosystems designed specifically for zero-knowledge proofs and mix-nets, so we will show
here a generalization as shown in (KOÇ; ÖZDEMIR; ÖZGER, 2021).

Key generation Choose two large prime numbers p,q and compute n= pq and λ (n) = lcm(p−
1,q− 1). For a ring modulus s, choose a base g ≡ (n+ 1) j× x (mod ns+1) from Z∗ns+1 ,
where j is calculated as gcd(j,n) = 1, and x ∈ Z∗n. Choose d such that d (mod n) ∈ Z∗n
and d ≡ 0 (mod λ (n)). The public key is (n,g) and the private key is (d).

Encryption Convert the message m to integer values, where m ∈ Zns; take a random integer
u ∈ Z∗n. We can encrypt a message as: ENC(m) = gm×uns

(mod ns+1).

Decryption Let c = ENC(m). In order to decrypt c, we need to define a logarithmic function
L(z) = z−1

n (mod ns). We can then, decrypt the message as: DEC(c) = L(cd mod ns+1)×
(L(gd mod ns+1))−1 (mod ns).

Homomorphic property The multiplication of the ciphertexts generates the addition of the
plaintexts, as we can prove in the following, for messages m1,m2:

ENC(m1)×ENC(m2) = (gm1×uns

1 (mod ns+1))× (gm2×uns

2 (mod ns+1))

= gm1+m2× (uns

1 ×uns

2) (mod ns+1)

= ENC(m1 +m2)

(3.12)

3.1.9 Kawachi-Tanaka-Xagawa

In (KAWACHI; TANAKA; XAGAWA, 2007) it is shown the first PHE scheme being
based on hard lattice problems. It is the first to encrypt multi-bit messages. It considers a
pseudohomomorphism property, where we can apply operations using the algebraic mathematics
behind lattices and Gaussian distributions. This cryptosystem is based on the Shortest Vector
Problem (SVP) (see Subsection 2.3.1), but the homomorphic property here is also possible due
to Gaussian distributions. In that, we encrypt 0’s and 1’s using distributions. Whereas it is
based on the intractability of the SVP problem, we could define it to be quantum resilient, i.e.,
post-quantum safe.

A generic example of how the distributions of the encryption are given is represented in
Figure 5 and Figure 6, where the terms are explained hereafter. Consider u a normal vector and
the private key in this scheme. The difficulty relies, besides being over lattices, on the idea that
we do not know ∥ u ∥−1, to know where to search for 0’s and 1’s, because it is based on different
hyperplanes H0,H1, Consider each hyperplane Hi = {x ∈ Rn | ⟨x,u⟩= i}, where x ∈ Rn and

45

Figure 5 – Example ciphertexts of 0 Figure 6 – Example ciphertexts of 1

Source: (KAWACHI; TANAKA; XAGAWA, 2007)

i ∈ Z. Consider the following facts and why our secret key must contain u, from (KAWACHI;
TANAKA; XAGAWA, 2007):

We encrypt 0 into a vector distributed closely around hidden (n−
1)-dimensional parallel hyperplanes H0,H1, . . . for a normal vector
u of H0 and encrypts 1 into a vector distributed closely around their
intermediate parallel hyperplanes as H0 +

u
2×∥u∥2 ,H1 +

u
2×∥u∥2 , . . .

In order to understand the homomorphic property behind this scheme, we need to know
about one property of Gaussian distributions: it is closed and homomorphic under addition
operation. In this way, we represent a Gaussian distribution as N(m,s2) with mean m and
standard deviation s. For distributions X1 = N(m1,s2

1) and X2 = N(m2,s2
2), we can calculate their

sum as X1 +X2 = N(m1 +m2,s2
1 + s2

2), i.e., it is homomorphic.

Preparation Let N = nn = 2n logn. Define a n-dimensional hypercube C = {x ∈ Rn |0 ≤ xi <

N, i = 1, . . . ,n}, an n-dimensional ball Br = {x ∈ Rn | ∥ x ∥≤ n−r/4} for any constant
r ≥ 7. For u ∈ Rn, define the hyperplanes Hi = {x ∈ Rn | i = ⟨x,u⟩}. We must consider
that ∥ u ∥ should be in [1/2,1]. It is necessary to set a parameter p, being the size of the
clear text space. We consider the operation ⌊⌉ as the closest integer to the respective point,
and ρ as the fundamental parallelepiped of a lattice (see Subsection 2.3.1).

Key generation Take a security parameter and size of n and a variance controlling r; choose
the vector u uniformly at random from Br. Let M = n3. We need to sample M vectors
v1, . . . ,vM, by repeating M times the procedure:

• Choose ai ∈ {x ∈C | ⟨x,u⟩ ∈ Z} at random;

• Choose b1, . . . ,bn from Br uniformly at random;

• Make vi = ai +Σn
j=1b j as sample.

• Choose an index i1 uniformly at random from {i | ⟨ai,u⟩ ̸≡ (0 mod p)}

We take the minimum index i0 satisfying that the width of ρ(vi0+1, . . . ,vi0+n) is at least
n−2×N. The width of a parallelepiped ρ(x1, . . . ,xn) is defined as:

mini=1,...,n(Dist(xi,span(x1, . . . ,xi−1,xi+1, . . . ,xn)))

46

for a distance function Dist(·, ·) between a vector and an (n−1)-dimensional hyperplane.
Let w j = vi0+ j for every j ∈ {1, . . . ,n},V = (v1, . . . ,vM),W = (w1, . . . ,wn). We also need
some auxiliary decryption information, which will be k≡ ⟨ai1,u⟩ (mod p) The public key
is (V,W, i1) and the private key is (u,k).

Encryption We choose a uniformly random subset S of {0,1}M, then we encrypt a message
m ∈ {0, . . . , p−1} as follows: ENC(m) = m

p × vi1 +Σi∈Svi (mod ρ(W)).

Decryption Let c ∈ ρ(W) be the received ciphertext. We need to use our auxiliary decryp-
tion information to retrieve that, in the following manner: DEC(c) = ⌊p×⟨c,u⟩⌉× k−1

(mod p), where k−1 is the inverse of k ∈ Zp.

Homomorphic property The homomorphism in this scheme is possible because ciphertexts
are points in a Gaussian distribution. As we stated before, the sum of two points in this
distribution is homomorphic. We will show the additive homomorphism, for messages
m1,m2 and corresponding random subsets S1,S2:

ENC(m1)+ENC(m2) =
m1

p
× vi1 +Σi∈S1vi (mod ρ(W))+

m2

p
× vi1 +Σi∈S2vi (mod ρ(W))

=
m1 +m2

p
× vi1 +(Σi∈S1 +Σi∈S2) (mod ρ(W))

= ENC(m1 +m2)

(3.13)

47

4 SOMEWHAT HOMOMORPHIC ENCRYPTION

Somewhat Homomorphic Encryption allows one to perform two types of operations
into the ciphertext, yet for a limited amount of time. It is an important variant for HE schemes;
we can use it in many applications in the real world, and it is very practical. Although LFHE
and FHE schemes can evaluate an arbitrary number of operations over ciphertext, it is not yet
practical. LFHE schemes have a large size of public and private keys and take so long to evaluate
simple operations. On the other hand, SHE schemes have a reasonable size for keys while
allowing the evaluation of a limited number of operations efficiently.

The difference between SHE and LFHE is, mainly, focused on the amount of operations
we can perform upon each one. While in SHE schemes we can only operate with a fixed amount
of operations, LFHE schemes are specially made to perform an arbitrary number of operations,
which it is put in the parameters of key generation of each scheme. If we want to perform, for
instance, one thousand multiplications in LFHE, it must be possible, whereas it can become
large and impractical in reality, but it is possible, while not using the bootstrap technique. In
counter-proposal, SHE schemes are limited by default, and we cannot change the number of
operations unless we use the bootstrap technique.

In the next sections, we will give an introduction to how we can use homomorphisms
with operations that go beyond the addition and multiplication of ciphertexts. We also present
the literature on SHE and the importance of Gentry’s breakthrough work.

4.1 EVALUATING ANY OPERATION

An SHE is a scheme designed to perform one type of operation multiple times (mostly
the addition operation), and another operation for a limited number of times (usually multipli-
cation). One might wonder exactly how we can make any calculations apart from that, and the
answer is with Boolean circuits. In the explanation about the PHE scheme of Goldwasser-Micali
Subsection 3.1.2, we show it is homomorphic by XOR operations, and this also means it is
homomorphic by addition operations. It is necessary to understand Boolean algebra, to be aware
of the difficulty of implementing calculations over encrypted data.

We can denote the sum of two variables A and B in Boolean algebra as A OR B, or it
could be represented as A+B. The multiplication of the same two variables would be as A AND

B, or A ·B. Boolean algebra is based on truth tables, where for each variable we perform all the
calculations for a specific operation. The truth tables for the operations AND and OR can be
shown in Table 2 and Table 3, respectively. Another important operation is NOT , where we flip
each bit, so NOT 1 = 0 and NOT 0 = 1. To define this operation in a variable, like NOT A, we
denote it as A.

With that, we can make all other operators, like the famous NAND operator. We can
represent any Boolean expression by using only NAND operations, so NAND is said to be
functionally complete. So, the logical expression of a NAND, for variables A and B, can be given

48

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Table 2 – And truth table

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

Table 3 – Or truth table

as A NAND B ≡ A ↑ B ≡ A ·B. With that is possible to re-do all other Boolean functions, for
instance, NOTA can be represented in NAND operators as A ↑ A. But as we saw, it was necessary
to only use NOT , OR, and AND operators. In order to accomplish full-adder functions, which
allow us to sum multiple numbers taking the carry from one unit to another, it is necessary a
different operator, the XOR. This operator is represented as ⊕ in Boolean algebra, and it can be
performed using the following formula: A⊕B = A ·B+A ·B.

In this way, we can make all operations, as our first computers start performing, from
multiple additions we perform multiplications, from multiple subtractions we perform divisions
etc. It is very hard to think of a way to translate some complex functions to operators only
using additions and multiplications, but it is possible. With that in mind, we must know
that it is necessary to actually translate complex function equations to Boolean arithmetic, so
we can actually perform that using HE schemes. There is some research on this area, as in
(CHATTERJEE; SENGUPTA, 2015), where they show examples of transforming some usual
operations like conditionals, divisions, comparisons, and less/greater compatible to HE schemes
operations.

It is important to be aware of the necessity of transforming regular operations using
Boolean algebra to use in HE schemes. This increases the complexity involved in the process of
using HE for arbitrary calculations, as well as understanding the usage of some algorithms we
will introduce later, as they are based on some specific circuits. It is also important to notice that
the depth specified by these algorithms is related to the amount of circuit calculations it is going
to be performed. It is still an open research field to know exactly how many operations will need
to be performed upon some equation, whereas there are some techniques we can use to establish
the number of multiplications necessary, for instance. In (PATERSON; STOCKMEYER, 1973),
they show how we can make an upper bound of multiplications demanded. This is crucial to
estimate, because as we said before, in probabilistic cryptographic homomorphic schemes, the
noise grows after each operation over ciphertext, and with multiplication, this noise grows even
more (see Subsection 2.2.1). With that in mind, we can have a good approximation of the number
of operations that a SHE scheme can handle.

4.2 ENCRYPTION SCHEMES

The schemes related to SHE could be divided into two stages: the pre-Gentry era and
the post-Gentry era. In Subsection 4.2.1, we will present the former, where it is possible to have

49

Table 4 – Summary of pre-Gentry schemes

Scheme Underlying problem Op1 Qnt1 Op2 Qnt2 Ciphertext Space
BGN Subgroup Decision + * × 1 Constant Zn

SYY Quadratic Residuosity × (AND) * + (OR/NOT) 1 Grows expo. Zn

IP (Protocol algorithm) Branching programs Grows expo. Zn

∗ in operations means an unlimited number of times; Grows expo is the abbreviation for “Grows
exponentially”; Op stands for operation, and the index associated is to represent each operation over the
ciphertext, as well as its corresponding amount (qnt).

two different operations for a limited amount of time. In the former, the schemes were thought to
be FHE, using Gentry’s bootstrap technique, being different in their creation and computations
over ciphertext. Another point worth observing is the post-quantum assumption, where the
majority of the post-Gentry era is based on Lattices, LWE, or RLWE, which are proven to be
post-quantum secure. We will explain the main properties of each scheme, the difficulty it is
bounded by, the depth of calculation for each circuit evaluation it can be performed, and whether
the ciphertext grows for each operation or not.

4.2.1 Pre-Gentry era

We will present the main characteristics and procedures for each SHE of the pre-Gentry
era, while a summary of the main properties is given in Table 4.

4.2.1.1 Boneh-Goh-Nissim

The BGN scheme (BONEH; GOH; NISSIM, 2005) was a breakthrough regarding
operating with ciphertexts. It was the first that introduced, beyond multiple additions with
ciphertext, one multiplication. Not only that, but it keeps the ciphertext size constant. Regarding
the multiplication, it does not matter whether it is performed before or after the additions since it
is based on bilinear groups. BGN is also able to perform 2-DNF formulas on ciphertext; DNF
stands for Disjunctive Normal Form, i.e., a sum of products, or in-circuit evaluation notation,
OR of ANDs. The algorithm intractability relies on the Subgroup Decision Problem, where it is
hard to decide if an element is a member of a subgroup Gp of group G, with order n = pq, being
p,q large prime numbers. With this scheme, it is also possible to multiply and add by arbitrary
scalars.

Bilinear groups are used to make the one multiplication that can be performed over a
ciphertext. We will give the principles of a bilinear group, as it is proposed in the original work
(BONEH; GOH; NISSIM, 2005). Let G and G1 be two cyclic groups closed by multiplication
of finite order n; g is a generator for G. It is possible to calculate a bilinear map e, such that
e : G×G→G1, in other words, for all u,v ∈G and a,b ∈ Z, we have e(ua,vb) = e(u,v)ab. It is
required that e(g,g) is a generator for G1. In this case, G is a bilinear group.

50

Preparation We define the function G (τ) to generate two random large prime numbers p,q,
two bilinear groups G,G1 and a bilinear map e as a tuple, where τ is the number of bits
the prime numbers must have. We then generate a bilinear group with the parameters as
explained before (refer to (BONEH; GOH; NISSIM, 2005; KOÇ; ÖZDEMIR; ÖZGER,
2021) for details on the algorithm).

Key generation For a security parameter τ , we get the tuple (p,q,G,G1,e) from G (τ). Let
n = pq. Select two random generators g,u for G and set h = uq, such that h is a random
generator of the subgroup G of order p. The public key is (n,G,G1,e,g,h) and the private
key is (q).

Encryption The message m must be an integer such that m < q. Let r be a random generator
for Zn = {0,1, . . . ,n−1} and calculate ENC(m) = gm×hr ∈G.

Decryption Let c = ENC(m). We can retrieve the original message with the formulas: cp =

(gm×hr)p = (gp)m.

cp = (gm×hr)p

= (gm)p× (hr)p

= (gm)p× ((uq)r)p

= (gp)m× (upq)r

= (gp)m ∈G

(4.1)

Then we just need to calculate the discrete logarithm loggp cp.

Homomorphic property By multiplying the ciphertexts, we have the sum of the clear texts.
For messages m1,m2, we can do the following:

ENC(m1)×ENC(m2) = (gm1×hr1)× (gm2×hr2)

= gm1+m2×hr1+r2

= ENC(m1 +m2)

(4.2)

In order to perform the one multiplication, it is necessary to change the base and the range
of the encryption function once. Set g1 = e(g,g), h1 = e(g,h), being g1 of order n and
h1 of order p. We have h = gα×q for some α ∈ Z. To multiply the ciphertexts c1,c2 for
messages m1,m2, we need to pick a random r ∈ Zn and set c = e(c1,c2)×hr

1 ∈G1. We
can show the homomorphism in the following way:

c = e(c1,c2)×hr
1

= e((gm1×hr1),(gm2×hr2))×hr
1

= gm1m2
1 ×hm1r2+m2r1+α×q×r1r2+r

1

= gm1m2
1 ×hr′

1

= ENC(m1×m2)

(4.3)

51

4.2.1.2 Sander-Young-Yung

SYY brings the idea of Goldwasser-Micali into a SHE scheme (SANDER; YOUNG;
YUNG, 1999), so it is also based upon the Quadratic Residuosity Problem. It only allows
encryption of binary numbers and it is multiplicative homomorphic (through AND operation),
where it is also possible to perform one OR or one NOT operation. One downside of this scheme
involves the ciphertext that grows by a constant multiplier at each OR/NOT operation performed
over it. For simplicity of explanation, we will base our demonstration on the work of (KOÇ;
ÖZDEMIR; ÖZGER, 2021). This scheme is an encoding representation of messages, that utilizes
the Goldwasser-Micali encryption and decryption.

Key generation Let n = pq, for two large prime numbers p and q; choose a positive nonzero
integer l and a quadratic non-residue x∈Z∗n, with x

n = 1, as demonstrated in the Goldwasser-
Micali algorithm. The public key is (n,x, l) and the private key is (p,q).

Encoding The messages are bits, so the space is constrained to Z2 and, before the encoding
begins, we need to make a map E |Z2→ Zl

2. With that, we will encode 1 with the zero
vector in Zl

2 and encode 0 with a random nonzero vector in Zl
2. This is just a way of

encoding the messages, we can decode it by applying a map "of return", like D |Zl
2→ Z2,

which decodes any nonzero vector to 0 and decodes the zero vector to 1.

Encryption After we encode the m ∈ Z2 to a vector (v1, . . . ,vl) ∈ Zl
2, we can encrypt it nor-

mally by using the standard Goldwasser-Micali encryption: ENC(m) = ENC(E(m)) =

ENC(v1, . . . ,vl) = (ENC(v1), . . . ,ENC(vl)).

Decryption We can decrypt the ciphertext using the same algorithm of decryption of Goldwasser-
Micali (here represented as D), so we will only represent the vector encoded being
decrypted: D(ENC(v1), . . . ,ENC(vl)) = (v1, . . . ,vl). The vectors encoded can be converted
back to bits using the map D.

Homomorphic property Because of the encoding mechanism, we can check the AND-operation;
if both encodings are the zero vector, they are both encodings of 1; if we multiply (AND)
both, it will also result in the zero vector, that decodes to 1. The same can also be checked
for the nonzero vectors (encodings of 0). Somewhat likely can be checked for OR and
NOT operations. For more details on the proof, refer to (SANDER; YOUNG; YUNG,
1999).

4.2.1.3 Ishai-Paskin

The IP protocol (ISHAI; PASKIN, 2007) uses the encryption of the already explained
Damgard-Jurik cryptosystem (see Subsection 3.1.8), therefore its underlying problem is also
based on the Decisional Composite Residuosity problem. They proposed a special protocol,

52

that is able to evaluate branching programs based on representation models, such as circuits,
formulas, OBDD (ordered binary decision diagrams, which consist of representing Boolean
functions as directed acyclic graphs), finite automata, decision trees, and truth tables.

They propose the evaluation of a remote program P on an information x, such that
P(x) is only available to the owner of the information, and this person also cannot know any
information about the remote program P. Actually, the final user would like to perform over
a ciphertext of x, denoted as c. In that case, the server would perform the operations in a way
that P(c) solves to a solution c′, which is also encrypted and only the user owner of the private
key of the original c is able to decrypt it correctly. This approach would allow the evaluation
of the medical history (x) of someone and P could be a complex program to decide whether
the company would provide medical insurance or not. The same procedure could be used for
predicting price algorithms of finance institutions (where we cannot know the algorithm and
they should not know about our data); analogously, we could reference this to oblivious transfer
algorithms to build protocols for secure multiparty computation. Their protocol could also be
used to bind other protocols such as one-round keyword search and private information retrieval
(PIR). These applications will be presented in more detail in Chapter 6.

Their solution was elegant in a way it is not possible to know any information, besides
the size of the remote program P and the client’s work on evaluating values should not be
dependent on the size of P. With that, c′ would only be size-dependent of the input x and the
output of P(c). As the algorithm of encryption is the same for Damgard-Jurik, we will not make
the steps to produce the keys and ciphertexts, however, we will explain in a shallow way the
protocol and what they did to perform on encrypted data.

They define a deterministic branching program P as a directed acyclic graph in which
each node is represented as input variables and every nonterminal node has two outgoing edges,
labeled 0 and 1, which should direct to another node. So, given an input x ∈ {0,1}n we would
compute from an initial node to a terminal node, which would be the output of P(x). The size of
the program P is naturally the number of nodes in the graph and its length is defined as the longest
path from the initial node to the terminal node. With that representation, we would be able to
compute any problem in logarithmic space, or a P-problem, i.e., a family of polynomial-size
branching programs. So, if any function can be converted to a deterministic finite automaton
with s states, it can be computed by a branching program of length n and size sn+1. To explain
their protocol, we will cite themselves:

The ciphertext c is obtained by separately encrypting each bit
of x using a homomorphic public key encryption scheme. (For
efficiency reasons we rely on the Damgard-Jurik scheme; this
scheme was previously used in the context of PIR by Lipmaa).
To evaluate P on x we proceed in a bottom-up manner. Starting
from the terminal nodes, in the i-th iteration we handle all nodes
whose distance from the terminal nodes is i. For each such node,
we compute a ciphertext containing an (iterated) encryption of its
value. Using the homomorphic property, the encryption assigned

53

to every node can be computed from the encryptions assigned to
its children (which were computed in previous iterations) and the
encryption of the input bit labeling this node. The ciphertext c is
the (iterated) encryption assigned to the initial node. The client
can recover P(x) by applying iterated decryptions to c.

It must be noted that this protocol relies on the intractability of the cryptosystem used
on it. They mention the HE scheme can be exchanged by others with similar properties of
homomorphism, so as they use Damgard-Jurik, it is not post-quantum safe. Nevertheless, this
can be changed, if the cryptosystem used could be changed for a post-quantum one.

4.2.1.4 Polly cracker schemes

In a way of showing multiple constructions over homomorphic encryption schemes,
and for the sake of completeness, we will briefly show Polly-Cracker systems. It is given
Polly-Cracker the name of schemes whose encryption is based on elements of an ideal; the
intractability is based on the difficulty of computing Grobner bases (ALBRECHT et al., 2011),
which is a special set of ideals in a ring over a field, where it is possible to deduce the dimension
and the number of zeros of a finite ring.

With that in mind, the work of (FELLOWS; KOBLITZ, 1994) was the first attempt to
use this property in a public key cryptosystem. This turns out to be an SHE scheme, enabling
additions and multiplications over the ciphertext. Also, in (BARKEE et al., 1994) they proved
to be a bad idea to use this type of basis for encryption and decryption. Others tried to create
better schemes, hoping to overcome such difficulty, as proposed in (LY, 2006; ALBRECHT et
al., 2011); but they were all broken (HEROLD, 2012). It is important to keep in mind these
schemes were all homomorphic and considered to be SHE, for an unlimited number of additions
and a specific amount of multiplications.

4.2.2 Post-Gentry era

Now we focus on SHE created after 2009, i.e., after Gentry’s bootstrap proposal
(GENTRY, 2009). In his first attempt to create an FHE scheme, he first created a SHE and
turned it into an FHE with that approach. We recall that in Subsection 2.2.2, we explained briefly
how this process is performed, where Gentry used a third public key called evaluation key, to
transform a SHE scheme into a FHE one. Others after Gentry made the same process and we
detach these schemes from the pre-Gentry, because of the evaluation of ciphertexts. Before, it
was very clear how many operations, specifically the number of multiplications, could be done
into the ciphertext before it would become unmanageable. However, with these new schemes, it
may not be so simple to calculate this number. Because of rearrangements on the public and
private keys, compression of some parts during the encryption process, and the possibility of
having a new special key to perform computations over ciphertext (evaluation key), it is very hard

54

Table 5 – Summary of post-Gentry schemes

Scheme Underlying problem Relinearization key Noise
DGHV AGCD Grows exponentially
BV LWE Grows by a constant
BFV RLWE ✓ Grows by a constant
Smart-Vercauteren Ideal lattices
GSW LWE Grows doubly exponentially

Relinearization key indicates if there is a special key to handle the multiplication of ciphertexts
efficiently. The noise column indicates how the noise grows at each operation, being able to
analyze which scheme is more efficient.

to calculate the number of circuits necessary, before noise grows too much. The evaluation key in
these cases is often called relinearization key because it decreases the impact of multiplications.
One example of such usage is demonstrated in Subsubsection 4.2.2.3.

We are going to present the next schemes in a simpler way, highlighting their new
perspectives and what they improved from previous schemes. We will show the underlying
problem each scheme is based on and their special properties to handle operations over ciphertext.
It is worth mentioning that, despite these schemes being SHE, in literature, they are only used in
its “FHE mode”, which means, they only use them with the bootstrap technique from Gentry.
Nevertheless, we consider those schemes in the SHE section, because we can use them in their
“raw version”, i.e., without the usage of the bootstrap technique. In consequence, we will present
them here, and generalize how many operations we can make over encrypted data with these
schemes, by giving an expression based on some parameters of the scheme. A summary table of
these schemes is provided in Table 5. All the schemes presented here are bootstrappable, i.e.,
they can become FHE with or without the usage of an evaluation key, which is peculiar to each
scheme. Here we consider a relinearization key, which is used to reduce the noise growth in
multiplications, or an evaluation key to become FHE.

4.2.2.1 DGHV

Here we recall the scheme already introduced in Subsection 2.2.1, where we explained
the noise problem from probabilistic encryption schemes and how they are related to homo-
morphic encryption. There, we already explained how (DIJK et al., 2010) proposed a simple,
secure, and fast SHE scheme to perform simple operations over ciphertext, in order to test the
bootstrap approach after (see Subsection 2.2.2). They started creating a simple symmetric key
and expanded to an asymmetric key scheme, based upon the hardness of the AGCD problem
(see Subsection 2.3.2), which is considered to be post-quantum secure. Here, we do not need a
relinearization key to perform multiplications.

They also give an approximation of how many Boolean circuits their SHE scheme is
able to perform before it gets unmanageable, considering parameters of security for making the
keys and the noise. Let η be the bit-length of the secret key, ρ be the bit-length of the noise,

55

and γ be the bit-length of the integers in the public key. Consider a secondary noise parameter
ρ ′ = ρ +ωlogλ , where λ is a security factor and ω is the convention rough estimate of the order
of the growth.

The noise exceeds the capability of decryption, considering a polynomial form of
integer operations of degree/depth d from a function f and | f | be the l1 norm of the coefficient
vector of f , when

d ≤ η−4− log | f |
ρ ′+2

As mentioned earlier, it is a little difficult to calculate the amount of operations, but
we can check it is a small value. That’s why it is only considered applications with slow-depth
multiplications and degree of circuits for SHE schemes, as it is rather hard to stipulate the exact
amount.

4.2.2.2 BV

This was one of the first schemes to be practical, considering the bootstrap approach
for FHE schemes. The work of (BRAKERSKI; VAIKUNTANATHAN, 2011) is based on the
LWE problem in lattices, which was already explained in Subsection 2.3.3. This problem can
be reducible to the worst-case hardness of SVP, so it is considered to be quantum-safe. The
construction is very simple and yet very powerful. They were able to achieve key-dependent
message security (KDM), which is secure while encrypting polynomial functions of its own
secret key. Because of this property, they managed to make a scheme whose public key size does
not rely on the depth of the evaluation circuit. As in previous works, they made a SHE scheme
first, and then, with the squashing and bootstrapping technique, they were able to transform it
into an FHE.

We demonstrate the steps to make the symmetric version of this scheme, for the sake of
simplicity and full demonstration of the process.

Key generation Considering a polynomial ring Rq = Zq/⟨xn + 1⟩, where n is a power of 2,
i.e, all integer polynomials of degree up to (n− 1) and coefficients in Zq, so addition
and multiplication are performed modulo (xn +1,q). We also define a random Gaussian
distribution, denoted by χ . We sample s as our secret key from our distribution χ , denoted
as s $←− χ .

Encryption Let a $←− Rq and e $←− χ . The encryption of a message m, which must be in the ring
of polynomials R2 = Z2[x]/⟨xn +1⟩, is given by: ENC(m) = (c0,c1), where c0 =−a and
c1 = as+2e+m.

Decryption For given ciphertext (c0,c1), DEC(c0,c1) = c0 + c1× s (mod 2).

Homomorphic property Consider messages m1 and m2. Addition can be presented normally.
Multiplication, on the other hand, will need some tweaks, which are going to be explained

56

hereafter.

ENC(m1)+ENC(m2) = (−a1,a1× s+2e1 +m1)+(−a2,a2× s+2e2 +m2)

= ((−a1−a2),((a1 +a2)× s+2× (e1 + e2)+(m1 +m2)))

= ENC(m1 +m2)

ENC(m1)×ENC(m2) = (−a1,a1× s+2e1 +m1)× (−a2,a2× s+2e2 +m2)

= ((−a1×−a2),(a1×a2)× s2 +2(e1× e2)+(m1×m2))
∗
= ENC(m1)×ENC(m2)

(4.4)

Multiplication is not as simple as presented above, because it would take the secret
key s to the power of 2; in that way, in order to have homomorphic multiplication, we need to
add another element, to decrypt the ciphertext correctly. So, for ciphertexts c1,c2, we can make
c1× c2 = (cmult,0,cmult,1,cmult,2), being cmult,2 = c1c′1, cmult,1 = c0c′1 + c′0c1 and cmult,0 = c0c′0.
We would end up with cmult,0 + cmult,1s+ cmult,2s2, which we can decrypt correctly using a
ciphertext with the triple c = (c0,c1,c2) and decrypting like DEC(c1,c2) = c0 + c1s + c2s2

(mod 2).
The correct decryption is dependent on a polynomial function f with maximum co-

efficient M and degree D is given by M× ((t× r× n)1.5)D < q
2 , because of modular function

over a ring. It is a very good improvement, as the noise only grows at a constant M, whereas in
other schemes the noise grew exponentially. Although we showed the symmetric key scheme,
there is also an equivalent to the conventional public key system, where they used an approach
proposed from (LYUBASHEVSKY; PEIKERT; REGEV, 2010). Other schemes also transform
their equivalent symmetric key to public key with this approach, as it is considered ideal and fast
for LWE and RLWE schemes. It is worth mentioning that several improvements and techniques
make this scheme very efficient, compact, and secure, being very much tested and even being
proven to be standardized.

4.2.2.3 BFV

BFV cryptosystem (FAN; VERCAUTEREN, 2012) is one of the most famous schemes
quoted to be standardized by (ALBRECHT et al., 2018), as it inherits from the BGV cryp-
tosystem and improves some constructions. It translates BGV (BRAKERSKI; GENTRY;
VAIKUNTANATHAN, 2014) (and (LYUBASHEVSKY; PEIKERT; REGEV, 2010)) to the
RLWE problem, performing better relinearization (transforming a 3-ring element into a 2-ring
one). For the FHE case, it was the first scheme to propose a modulus switch technique, which
simplifies bootstrapping.

Modulus switch (MARCOLLA et al., 2022) converts a SHE into an FHE scheme, to
reduce the space of the ciphertext to be more efficient. It transforms a ciphertext c mod q into
another ciphertext c′ mod p, where p is sufficiently smaller than q. In this way, each element in

57

Zq is converted into an element in Zp by first multiplying it by p/q, and then taking the closest
integer. This is done mainly because the noise in the ciphertext decreases.

In order to perform the relinearization, required for multiplications, it is necessary the
special relinearization key. They also show two versions of how to compute that, and here we
will present only version 2, as it performs better and requires a smaller number of multiplications
and number of operations, which should be faster and more efficient.

Preparation We consider a distribution χ to be B-bounded limited by [−B,B]; also we consider
some expression [a+ b]q ≡ (a+ b) (mod q). We denote by a← χ that a is sampled
from a distribution χ . We consider the nearest integer of a number a, with the notation
⌊a⌉; the infinity norm ||a|| is defined as maxi |ai|; and the expansion factor of a ring R is
defined as δR = max{ ||a×b||

||a||×||b|| |a,b ∈ R}. We define Rq as the set of polynomials in R with
coefficients in Zq.

Key generation Consider s← R2, a← Rq, e← χ , for a B-bounded distribution χ . We consider
some integer p and calculate n = p×q. It is important to notice that q does not need to be a
prime number, due to the LWE assumption, and not the factorization intractability. Sample
a′← Rn, e′← χ ′. We also need a plaintext space, which we denote here as t, which also
does not need to be prime. Now we have three keys: the public key is ([−(a×s+e)]q,a, t),
the private key is (s), and the relinearization key is ([−(a′× s+ e′)+ p× s2]n,a′).

Encryption To encrypt a message m ∈ Rt , let (p0, p1) = publicKey, i.e., p0 = [−(a× s+ e)]q
and p1 = a. Also sample u← R2 and two noise terms e1,e2← χ . We calculate△= ⌊q/t⌋.
The encryption is given as follows: ENC(m) = ct = ([p0×u+e1+△×m]q, [p1×u+e2]q).

Decryption Let (c0,c1) be the received encrypted text. We have

DEC(c0,c1) = ⌊
t× [(c0 + c1× s) mod q]

q
⌉ (mod t)

Homomorphic property We show next the homomorphic addition of the ciphertexts (ct0,ct1),(ct2,ct3)

of two messages m1 and m2.

ENC(m1)+ENC(m2) = ([p0×u+ e1 +△×m1]q, [p1×u+ e2]q)+([p0×u′+ e′1 +△×m2]q, [p1×u′+ e′2]q)

= ([p0× (u+u′)+(e1 + e′1)+△× (m1 +m2)]q, [p1× (u+u′)+(e2 + e′2)]q)

= ENC(m1 +m2)

(4.5)

In order to show the multiplication of the ciphertexts, as it grows to a 3-ring-elements
ciphertext (like shown in BV Subsubsection 4.2.2.2), we will already split it into three

58

parts c0,c1,c2, as follows:

c0 = ⌊
t× (ct0× ct2)

q
⌉ mod q

c1 = ⌊
t× (ct0× ct3 + ct1× ct2)

q
⌉ mod q

c2 = ⌊
t× (ct1× ct3)

q
⌉ mod q

(4.6)

Now, we need to use the relinearization key to remove the term s2 from c2 (which is given
by (ct1× ct3), which is in another ring element (that is the reason why we make s2 in the
evaluation key, to remove it in this step). Let (ek0,ek1) be the tuple of the elements of the
evaluation key. Consider the following formula:

(c2,0,c2,1) = ([⌊c2× ek0

p
⌉]q, [⌊

c2× ek1

p
⌉]q) (4.7)

The final result of the multiplication of two ciphertexts can be now gathered and the output
is ENC(m1)×ENC(m2)≡ ENC(m1×m2)≡ ([c0+c2,0]q, [c1+c2,1]q). Note that the noise
from this relinearization process is smaller than the multiplication of the error terms.

The depth expected from this SHE scheme, for L levels of multiplications, is given as
follows:

4×δ
L
R × (δR +1.25)L+1× tL−1 < ⌊ q

B
⌋

It is a very good depth, as the limit of the distribution B can be greater and it will not affect the
number of multiplications that we can perform over the ciphertext.

4.2.2.4 Smart-Vercauteren

In (SMART; VERCAUTEREN, 2010; SMART; VERCAUTEREN, 2014), Smart and
Vercauteren give an ideal lattices-based scheme, where it is possible to use SIMD-like operations.
SIMD stands for Single-Instruction-Multiple-Data, usually addressed by computer architecture,
where with only one instruction, it is possible to perform parallel operations. With this approach,
the recryption function, a method necessary in the bootstrap technique to transform a SHE into
an FHE, becomes much faster and simpler. These improvements were also used in LWE-related
schemes, as the authors said would be possible. The message m is constrained to m ∈ {0,1}.

To understand the completeness of the scheme, we will explain some properties of
polynomials. A monic polynomial is a polynomial whose largest degree term is always one, i.e.,
in a polynomial of the form ax2 +bx+ c, a will be one. Also, we need to understand the concept
of irreducible polynomials. An irreducible polynomial cannot be factored in smaller polynomials.
Consider a non-constant polynomial p(x) over a field F. The polynomial p(x) is irreducible
if it does not exist p1(x), p2(x), . . . , pn(x) where each constant of pi has a degree smaller than
p(x). We also need to know about the function resultant(a,b), which is the resultant of two

59

polynomials. The resultant of two polynomials is a polynomial expression of their coefficients
that is equal to zero if and only if the polynomials have a common root (WOODY, 2016). It is a
discriminant of the coefficients of the polynomials, i.e., the roots of the polynomial.

Another important topic to discuss, to understand the complete scheme, is the extended
Euclidean algorithm XGCD. In XGCD, we use the Bézout identity, that states: for integers a

and b, whose gcd(a,b) = d, there exist integers x and y such that ax+by = d. The XGCD(a,b)

algorithm computes both GCD (d) and Bézout’s identity (x,y). Another property is the equiva-
lence between ax+by = gcd(a,b) and ax ≡ gcd(a,b) (mod b). Here if the gcd(a,b) = 1, the
numbers are coprime (correlatively prime).

Setup Consider a polynomial of degree N, and two positive integers to define the ball’s center:
η and µ . Consider η and µ as security parameters. For a positive value r, we define one
“ball” B centered at the origin as B∞,N(r) = {ΣN−1

i=0 aixi | − r ≤ ai ≤ r}.

Key generation Choose a monic irreducible polynomial F(x) ∈ Z[x] of degree N. Repeat the
following steps until p is prime:

• Select uniformly at random a polynomial S(x) from B∞,N(η/2).

• Calculate the polynomial G(x) = 1+2×S(x).

• Calculate the resultant p = resultant(G(x),F(x)).

Calculate D(x) = gcd(G(x),F(X)) over Fp[x]. Let α ∈ Fp denote the unique root of D(x).
Apply the XGCD algorithm over Q[x] to obtain Z(x) = Σ

N−1
i=0 zixi ∈ Z[x] |Z(x)×G(x) = p

(mod F)(x). Let B = z0 (mod 2p). The public key is (p,α) and the private key is (p,B).

Encryption Select uniformly at random a polynomial R(x) from B∞,N(µ/2). For a message m,
we have the function C(x) = m+2×R(x). The encryption is given as ENC(m) =C(α)

(mod p).

Decryption Let c be the received ciphertext. The decryption can be done as follows: DEC(c) =

(c−⌊c×B/p⌉) (mod 2).

Homomorphic property Consider ciphertexts c1,c2 for messages m1,m2, respectively. Con-
sider R1,R2 as the random polynomials and C1,C2 as the auxiliary function C(x) in the
encryption for c1,c2, respectively. The sum or multiplication of two ciphertexts must be
performed (mod p), as follows:

ENC(m1)+ENC(m2) = (c1 + c2) (mod p)

= (C1(α)+ (mod p))+(C2(α)+ (mod p))

= (m1 +2×R1(α) (mod p))+(m2 +2×R2(α) (mod p)) (mod p)

= (C1(α) (mod p))+(C2(α) (mod p)) (mod p)

= ((m1 +m2)+(2×R1(α)×R2(α))) (mod p)

= ENC(m1 +m2)

(4.8)

60

ENC(m1)×ENC(m2) = c1× c2 (mod p)

= (m1 +2×R1(α) (mod p))× (m2 +2×R2(α) (mod p)) (mod p)

= (C1 (mod p))× (C2 (mod p)) (mod p)

= (m1×m2 +2R′) (mod p)

= ENC(m1×m2)

R′ = (m1×R2(α))+(m2×R1(α))+(2R1(α)R2(α))

(4.9)

4.2.2.5 GSW

The work of (GENTRY; SAHAI; WATERS, 2013) shows some novel properties con-
cerning SHE and FHE schemes. The hard problem involving this scheme is the LWE problem
in lattices. Different from others, rather than performing additions and multiplications over
a ring, which can cause an expansion factor of the ring elements (which should be solved
using relinearization techniques), GSW is based on matrix additions and multiplications. As
in relinearization, it is necessary to address three ring elements. This is considered to have a
complexity of Ω(n3), while matrix operations can be roughly optimized using Strassen and
Williams, arriving at a complexity of O(n2.3727) (WILLIAMS, 2012). As it does not contain the
relinearization step, it does not need a relinearization key. The replacement for this procedure
is, what the authors called the approximate eigenvector method, where the secret key is an
approximate eigenvector of the ciphertext, while the original value is the eigenvalue. In linear
algebra, we have a similar concept, where an eigenvector of a linear transformation is a nonzero
vector that changes by a constant factor, where the eigenvalue is the multiplying factor.

Besides that, this is an Identity-based encryption (IBE) scheme, i.e., given a public ID
representation of the user, it is possible to encrypt data and perform homomorphic operations
over that. They also mention it is possible to extend this scheme to Attribute-Based encryption
(ABE), which is similar to IBE, but we can make attributes for the public ID representation; this
can be used for access control for determined authorization policies, namely, it is only possible
to decrypt some ciphertext if its encryption contains the attributes of the public key encrypted
altogether. There could be some rearrangements in the scheme to support multi-attributes for
ABE in homomorphic evaluations, for instance.

Setup Choose a modulus q of κ = κ(λ ,L) bits, where λ is a security parameter and L is
the maximum multiplicative depth supported, with lattice dimension n = n(λ ,L) and
error distribution χ = χ(λ ,L) (over Z and with maximum bound B), so that the LWE
problem achieves at least 2λ security. Choose parameter m = m(λ ,L) = O(n logq). Let
ℓ= ⌊logq⌋+1 and N = (n+1)× ℓ.

Functions As this scheme uses multiple ideas for different values in the process, we will present
some useful functions.

61

BitDecomp(⃗a) is the N-dimensional vector (a1,0, . . . ,a1,ℓ−1, . . . ,an,0, . . . ,an,ℓ−1), where
ai, j is the j-th bit in ai’s binary representation (LSB as Least Significant Bits);
consider the inverse BitDecomp−1(⃗a) = (Σℓ−1

j=12 j×a1, j, . . . ,Σ
ℓ−1
j=12 j×an, j).

Flatten(⃗a) = BitDecomp(BitDecomp−1(⃗a)).

Key generation Sample t⃗ ← Zn
q, s⃗← (1,−t1, . . . ,−tn) ∈ Zn+1

q , v⃗ = s⃗× s⃗ (consider this as the
eigenvector). Generate a matrix B← Zm×n

q uniformly and a vector e⃗← χm. Set b⃗ =

B× t⃗ + e⃗. Set A to be the (n+1)-column matrix consisting of b⃗ followed by n columns of
B (here, we can denote that A× s⃗ = e⃗). The public key is (A) and the private key is (⃗s).

Encryption To encrypt a message m∈Zq (eigenvalue), sample a uniform matrix R∈ {0,1}N×m.
Then, ENC(m)=Flatten(m×In+BitDecomp(R×A))∈ZNxN

q , where In is the N-dimensional
identity matrix.

Decryption Consider that q = 2ℓ−1 and the first l−1 coefficients of v⃗ are (1,2, . . . ,2l−2). Let
c be the ciphertext. So c× v⃗ = m× g⃗+ smallError, where v⃗ = (1,2, . . . ,2l−2). Then, for
each least significant bit from the message m from m×2l−2 + smallError, take the last
bits and re-make the original vector of the message m.

Homomorphic property We only need to show the homomorphism in the Flatten function. For
ciphertexts c1,c2 of original messages m1,m2, consider the following statements:

ENC(m1)+ENC(m2) = c1 + c2

c1 = Flatten(m1× In +BitDecomp(R1×A))

c2 = Flatten(m2× In +BitDecomp(R2×A))

bit1 = BitDecomp−1(m1× In +BitDecomp(R1×A))

bit2 = BitDecomp−1(m2× In +BitDecomp(R2×A))

bit1 +bit2 = BitDecomp−1(m1× IN +BitDecomp(R1×A))+(m2× IN +BitDecomp(R2×A))

= BitDecomp−1(m1× IN +m2× INBitDecomp(R1×A))+BitDecomp(R2×A)

c1 + c2 = BitDecomp(bit1 +bit2)

c1 + c2 = BitDecomp(BitDecomp−1((m1 +m2)× IN +BitDecomp(R1×R2×A)))

= ENC(m1 +m2)

(4.10)

ENC(m1)×ENC(m2) = c1× c2 = Flatten(c1× c2)

= c1× c2× v⃗

= c1× (m2× v⃗+ e⃗2)+m2× (m1× v⃗+ e⃗2)+ c1× e⃗2

= m1×m2× v⃗+m2× e⃗1 + c1× e⃗2

= ENC((m1×m2)× v⃗)

(4.11)

In order to know how many operations we can perform in the ciphertext, we consider
the multiplicative depth L of the circuit to be evaluated and a maximum bound B from the random

62

distribution used. For that, the error is considered to grow B2L
, so q must be smaller than this.

The authors also check the possibility of evaluating using the degree of functions to be evaluated
(and not the depth itself). So, if we consider a multivariate polynomial P(x1, . . . ,xt) of degree d,
the last ciphertext possible is bounded by |P|(N +1)d−1Bd .

63

5 OTHER TYPES OF HOMOMORPHIC ENCRYPTION

Previously, we discussed the basic types of homomorphic encryption, where it all began,
and how the schemes and implementations evolved throughout the years. First, we were only
able to perform one type of operation on the ciphertext, using PHE, whereas in SHE some
arrangements changed. In SHE, more complex applications were reached with some more
sophisticated mathematics behind reaching one type operation as many times as necessary and
another type for a limited pre-determined number, or even, a protocol that makes it possible to
evaluate branching programs (see Subsubsection 4.2.1.3).

In Chapter 6, we will present the main applications for each variant. There are many
applications achievable with HE nowadays using only PHE and SHE, with implementations that
are already being used today but may not be using their full power, and protecting people’s data
100% of the time. Although these variants are very important and were the beginning of HE,
there are more elaborated constructions, as is the case for LFHE and FHE. In this chapter, we
will present the main characteristics of general LFHE and FHE, however not showing specific
schemes’ constructions.

5.1 LEVELED FULLY HOMOMORPHIC ENCRYPTION

Leveled Fully Homomorphic Encryption is a very interesting and important variant
of HE because we can really apply it to real complex applications. Some very fascinating
privacy-preserving applications, at low depth of evaluation, have already been implemented by
multiple developers all over the world just using LFHE. We consider a scheme to be LFHE if we
can determine the depth we can reach of evaluations, so the decryption is still correct. As we do
not know exactly when and at which operation we will make noise greater than it should, some
heuristic models are applied, for the purpose of guessing this probability.

Because of that, some differences are found over other schemes that were presented
before, as the depth can be configured in the key generation process. The schemes of this variant
are faster than FHE in terms of operation evaluation and, for those that support bootstrapping,
are also considered to be faster and more efficient. It is important to mention that some schemes,
in order to become fast enough, use a precision evaluation of computations, so it might contain
an inaccuracy in the processing of operations over the ciphertext, which also is parameterized
at some moment in the scheme. The arithmetic operations then are only done on the most
significant bits (MSB), then the result may be rounded using some of LSB, to keep the bit size
(mantissa). One example of such a scheme is CKKS, which will be briefly presented hereafter.

As this variant is mainly based on a limit of depth, applications squeeze the amount of
operations necessary, to not grow the noise too much, and be able to still use some powerful
and fast LFHE schemes. As stated previously on Subsection 2.2.2, the main search for new,
more compact, and more efficient algorithms in HE now are based on, normally, two different
approaches: 1) fast bootstrapping and 2) leveled approach. In the former, we try to perform the

64

bootstrap technique faster with better data structures and algebra tricks. Some examples of fast
bootstrapping consider the already explained GSW (see Subsubsection 4.2.2.5), and two already
not referred to before, the FHEW (DUCAS; MICCIANCIO, 2015) and TFHE (CHILLOTTI et
al., 2020). Although FHEW and TFHE are specialized in fast bootstrapping, they are LFHE. The
last approach tries to get better approximation error, so the ciphertext does not get unmanageable.
Leveled Fully Homomorphic Encryption refers to the second approach.

A summary of some schemes and their properties can be seen in Table 6. It is worth
mentioning that all the LFHE schemes presented here are bootstrappable, which means, all
schemes can become FHE (with or without the usage of an evaluation key). A brief description
of each one is given next:

• Melchor-Gaborit-Herranz (MELCHOR; GABORIT; HERRANZ, 2010) is done by con-
structing a theoretical object by chaining different encryption schemes and combining
their homomorphic properties. In the work, it is shown how a combination of BGN (see
Subsubsection 4.2.1.1) and Kawachi (see Subsection 3.1.9) was able to perform a pre-
established amount of multiplications over the ciphertext. It is also possible to combine
different cryptosystems since some properties are satisfied.

• The CKKS scheme (CHEON et al., 2017) uses number approximation arithmetic and
also allows to perform operations over real numbers. In contrast, in previous schemes all
operations and rings were only made upon integers. This scheme is, in particular, very
important for LFHE, as it is very fast to make calculations upon and very powerful, showing
on their paper that it is computationally efficient to perform evaluations of multiplicative
inverse, exponential function, logistic regression, and discrete Fourier transform, besides
being able to evaluate a big amount of multiplications.

• FHEW (DUCAS; MICCIANCIO, 2015) was the first scheme to propose a fast-way for
bootstrapping technique, claiming to be able to bootstrap in half a second. The authors
first construct an LFHE scheme and make improvements on bootstrap through this.

• TFHE (CHILLOTTI et al., 2020) is an improvement of FHEW, by making the LWE
representation in a mathematical torus. Zama, which is a group of researchers that made
TFHE, has some very interesting and important applications as open-source on their
GitHub platform, which shall be described later on Section 6.3.

• Doroz-Sunar (DS) (DORÖZ; SUNAR, 2020) is an NTRU-based scheme, which is not
vulnerable to multiple attacks on these types of schemes. There is no evaluation key to
bootstrap, the noise grows linearly and the ciphertext is constant.

• Armknecht-Sadeghi (AS) (ARMKNECHT; SADEGHI, 2008) shows us a new way of
making homomorphic schemes, by using coding theory hard problems, and it can compute
over infinite fields (such as rational numbers). There is no evaluation key to perform

65

Table 6 – Summary of LFHE schemes

Scheme Underlying problem Evaluation key Noise growth Ciphertext
Melchor SVP Exponential Grows
CKKS RLWE ✓ Linear Depends on depth
FHEW LWE ✓ Constant Constant
TFHE LWE over Torus ✓ Constant Constant
DS NTRU Linear Constant
AS Reed-Solomon codes Limited to depth Grows exponentially
DK LWE with Multivariate polynomials Linear Constant

The column evaluation key marks if the scheme uses an evaluation key to reach FHE. Noise growth refers
to how the noise grows at each homomorphic evaluation. Similar to the ciphertext, where we denote
which schemes increase the size of the ciphertext at each homomorphic operation.

the bootstrap technique. The noise grows depending on the depth chosen, whereas the
ciphertext grows exponentially at each multiplication;

• Dowerah-Krishnaswamy (DK) (DOWERAH; KRISHNASWAMY, 2019) uses the hard-
ness of LWE, combined with retrieving multivariate polynomials, not requiring relin-
earization, nor an evaluation key. The ciphertext remains constant for each homomorphic
operation.

5.2 FULLY HOMOMORPHIC ENCRYPTION

FHE is considered to be the Holy Grail of calculations over encrypted data. With
FHE, it is theoretically possible to perform any calculation over any encrypted data, while still
preserving the ciphertext size. Gentry in 2009 (GENTRY, 2009) proposed the first FHE scheme,
with his bootstrap technique. However, until today we do not have a practical FHE scheme, that
is both compact and fast to perform calculations.

One way of following schemes’ evolution in FHE schemes is by the so-called generation
of the schemes. Since 2009, researchers have categorized each scheme, as some progress was
reached. Figure 7 shows a brief summary of the main improvements throughout the years and
generations. We recall that the presented post-Gentry (see Subsection 4.2.2) and LFHE (see
Section 5.1) schemes are bootstrappable, i.e., it is possible to make them FHE. In Figure 7, we
can check the second generation is mainly SHE schemes, while the third is focused on fast
bootstrapping, and the last is focused on the leveled approach. A succinct explanation of each
generation will be given next:

• The first generation contains only DGHV (see Subsubsection 4.2.2.1), being the first viable
example after Gentry’s bootstrap publication;

• The second generation comes with great improvements, containing BV (see Subsubsec-
tion 4.2.2.2), BGV (see (BRAKERSKI; GENTRY; VAIKUNTANATHAN, 2014)), BFV

66

Figure 7 – FHE generation of schemes and explanations

Source: (MARCOLLA et al., 2022)

(see Subsubsection 4.2.2.3), the multi-key NTRU-based scheme (LÓPEZ-ALT; TROMER;
VAIKUNTANATHAN, 2012), GSW (see Subsubsection 4.2.2.5), and Smart-Vercauteren
(see Subsubsection 4.2.2.4). They still follow Gentry’s construction of first developing
a SHE and transforming it into an FHE through bootstrap. Some optimizations in key
switching and modulus switching were proposed, as well as the parallel instructions
(SIMD);

• The third generation is based on the advances in making fast-bootstrapping procedures, as
the ones in FHEW (DUCAS; MICCIANCIO, 2015) and TFHE (CHILLOTTI et al., 2020).
The process of bootstrapping now can cost only half a second on desktop computers.

• The fourth generation represents today’s state of the art, as we port FHE to real appli-
cations. It is marked by the arrival of the CKKS scheme (CHEON et al., 2017), which
performs operations on rounded values, instead of exact numbers. This allows a better
management of the noise and allows the usage of machine learning, where it handles data
in approximation forms.

In (MARCOLLA et al., 2022), the authors describe libraries, compilers, and hardware
accelerators that implement and make all the optimizations described in the most recent literature.
Much progress has been made in key sizes (in the beginning was about 1GB, now we have
something around 10MB), time on performing operations on ciphertext, and bootstrapping. Also,

67

large companies like Microsoft (RESEARCH REDMOND, 2023), IBM (FULLY. . . ,), and
Google (GUEVARA, 2023) are making big efforts to make it happen, in order to get more
privacy for their users and be considered more reliable by the public.

69

6 APPLICATIONS

6.1 PARTIALLY HOMOMORPHIC ENCRYPTION

Applications for PHE schemes are limited, due to having only one type of operation
that can be performed over the ciphertext. Nevertheless, some important privacy-preserving
applications can make use of that. Some examples are online voting systems, which can calculate
the number of votes for each participant in the election by homomorphically adding all the votes;
blockchain ledgers, whose only operation needed to know the exact balance or the transaction
history is adding the past transactions, which can be made homomorphically; in (SAVIĆ et
al., 2018), they demonstrate that for some specific IoT areas, such as smart home sensors, it is
possible to perform transactions between cloud-computer-sensors using PHE encryption and
only call the sensor again after some server calculations and over scalars.

Applications mentioned in (BENALOH, 1994) consider verifiable secret sharing and
verifiable secret ballot elections. The first can be considered as a way to divide a secret into shares,
for different shareholders (where each one holds a secret key). The only way to reconstruct
the complete secret is by calculating a specific amount from n shareholders. The authors show
that for a determined polynomial, the only operation necessary to reconstruct the secret is by
performing the addition of each part of it, in this case, each part of the secret, i.e. the share of
each shareholder. It is verifiable, so one dishonest part cannot disrupt the reconstruction of the
secret, as it can only be reconstructed if a sufficient amount of trusted shareholders give their
own share. The verifiable secret-ballot elections are similar to the idea presented before, where a
central entity creates an additive probabilistic PHE and makes the public key, public. In that way,
each voter can compute, for a new random value, the encryption of yes (1) or no (0) and put it
into the ballot. Then, the central entity, which possesses the private key only needs to sum all the
votes and homomorphically decrypt it, revealing the result of the election.

In (NACCACHE; STERN, 1998; PFITZMANN; SCHUNTER, 1996), they propose to
put a watermark on some value or product. Aiming the software industry or illegal image and
music reproduction, it is possible to create a watermark, so that only the buyer knows the data
with the fingerprint. Still, if the merchant finds this copy somewhere else, he can identify the
buyer and prove that the determined buyer bought the copy and is, perhaps, illegally distributing
it. The computations can be made homomorphically and it only needs to perform additions over
the ciphertext.

In (CRAMER; DAMGÅRD; NIELSEN, 2001), it is proposed the usage of PHE like
Paillier’s for MPC. Multiparty computations rely on the multi-processing of data between differ-
ent peers, while the peers only know pieces of information about the original data. Originally,
it was proposed the use of Shamir’s secret sharing (SHAMIR, 1979) to divide the information
between n peers, in a way that can only be reconstructed together using a specific amount of
the shares. However, in MPC we can send one piece to each party, encrypted; then each party
performs a calculation; at the end, the encrypted result of all peers is added together homomor-

70

phically and then decrypted. Only the owner of the data possesses the secret key to decrypt it
and get the calculation together of the peers.

One other application of PHE is keyword search. The work of (AMORIM; COSTA,
2023) shows that there are several searchable schemes that use raw PHE schemes and they are
very efficient. They gathered multiple schemes that can do such computation efficiently and
classified what strategies each uses. They also showed that multiple strategies consider PHE to
reach keyword searches. However, they can execute only some raw operations such as single-
keyword search in sequential scanning for single users. In (SILVA, 2016), it is implemented a
file search application, using already established homomorphic libraries.

Yet another example is the private information retrieval protocol (PIR), which relies on
the problem that, given a public database and a user wanting to query some information on it, it
is difficult to hide that query from the database’s operator. The protocol defines a way for the
user to encrypt the query, and only the user has the public key to decrypt it. There are multiple
implementations of such protocol, where it is necessary to iterate the whole database to perform
a hidden query. Some of these arrangements can be constructed only by using an additive PHE
with support for scalar multiplications.

6.2 SOMEWHAT HOMOMORPHIC ENCRYPTION

We will give some ideas of projects, protocols, equations, and general applications
we could be using SHE. We need to keep in mind that with SHE, we cannot use so many
multiplications, because all schemes only support a small number of them. So we need to
think of ways to minimize the amount of this operation or substitute them with an equivalent
operation; for instance, if the user wants to perform a calculation that performs a low-depth
of multiplications, we can substitute them for multiple sums of the number (it is necessary the
interaction with the user); or, alternatively, if the user needs to multiply by a constant, that could
not affect the retrieval of whole information, we could use a scheme that allows to do it using
multiplication by a scalar.

In (NAEHRIG; LAUTER; VAIKUNTANATHAN, 2011), authors consider some sys-
tems that require many additions and only a small number of multiplication over ciphertexts.
They consider applications in some very important areas throughout the world, like medical,
financial, and advertisements. They consider both functions that should operate over sensitive
information and functions that are proprietary. They also mention some very important calcu-
lations that are used almost anywhere and could be performed only with SHE: average (which
requires no multiplication), standard deviation (only one multiplication required), and logistical
regression (only a small number of multiplications, depending on the precision required). If
we have logistical regression, we can evaluate a wide variety of applications that require Big
Data and artificial intelligence. One problem that is also mentioned is the constraint of not
knowing how to divide real numbers or take square roots with these schemes. All of the afore-
mentioned applications then should return the encryption of the numerator and the encryption of

71

the denominator, then the user decrypts it and makes the calculation herself.
Although not very practical, it is important to be aware of the existence of such possibil-

ities, so that in the future, we might resolve it somehow. In (ILIASHENKO; NEGRE; ZUCCA,
2021), they demonstrate some interesting applications using only SHE in some cases, such as
the parity function (checking if a number is odd or even), if a number is the power of another,
taking the modulo of a number, taking the Hamming weight (accounts the number of symbols
that are different from zero) and, also, the Hamming distance (number of positions different
from two strings), performing the conditional less-than function, and indicate how to perform
the operation c (mod 2), being c a ciphertext. These functions can be performed using much
fewer multiplications because some techniques are applied involving finite fields theory.

Some more complex applications can be formed, with many more operations and
function evaluations. We cannot forget that SHE schemes are a super-set of applications within
the context of PHE. So all the applications explained earlier can be combined with these, as
a way of making more elaborated utilization. Also, we cannot forget the branching programs
introduced by Ishai-Paskin (ISHAI; PASKIN, 2007) (see Subsubsection 4.2.1.3), which enables
us to a variety of domains.

As stated previously in PHE applications (see Section 6.1), we can make PIR protocols
using only PHE. There are multiple implementations using homomorphic encryption over whole
databases and performing queries over ciphertexts. Still, they are very inefficient and also need to
handle the whole database, with the additional overhead of HE for itself. In (PARK; TIBOUCHI,
2020) is proposed a small and contained way for PIR protocol, where it is only necessary
to iterate O(logn) items from the database, and it is very compact. They use compressing
techniques of ciphertexts in the database and over the user’s query using a SHE.

In the work of Ishai-Paskin (ISHAI; PASKIN, 2007) (see Subsubsection 4.2.1.3), it is
proposed a protocol that enhances the ability of keyword search (as it is already achievable with
PHE). With that, it is possible to completely hide from the client the original size of the database,
whereas it is also possible to hide from the database operator anything related to the client’s
query. They can perform these tasks in one round, i.e., it is not necessary to use a three-way
handshake as in the majority of other schemes.

6.3 LEVELED FULLY HOMOMORPHIC ENCRYPTION

There are many different applications for LFHE since we can evaluate a low depth of
multiplications, but larger than the ones available at SHE. It is worth mentioning that LFHE
embraces both PHE and SHE applications, and yet is able to perform others. One difficulty while
thinking about applications for LFHE, is the case where we need to calculate the exact parameters
for a determined scheme to have enough operations, without the noise to get unmanageable.
Also, we need to keep in mind that, after the noise gets too large, we would need to bootstrap
(which would be an FHE). So, applications that require a small (but higher than SHE, normally)
amount of multiplications can be used with this variant.

72

For the next example, we need to know what group testing is. This is a procedure to
identify different “objects”, using combinatorial mathematics, in a large number of objects by
grouping them into small groups and testing them. An example involving CKKS and group
testing can be found in (IBARRONDO et al., 2023), where they use CKKS for privacy-preserving
face identification. As this type of problem deals with people’s security, it is important to keep
all the information in the process hidden from potential attackers. The paper describes how
it is necessary to compare multiple data (the user’s input and the one registered), in order to
ensure face identification. As these operations are expensive to perform using only additions and
multiplications, they surpassed this problem by using group testing, and decreasing the amount
of multiplications necessary.

Sometimes we need to rely on other problem categories to decrease the amount of
operations necessary to handle encrypted data, using the multiple variants of HE. In (LOU;
JIANG, 2019), it is given an example of how to achieve a neural network on encrypted data using
leveled TFHE. The authors used a special type of operation called logarithmic quantizations,
to replace expensive multiplications, being able only to use native shift operation, already
implemented into the TFHE library. They also implemented a rectified linear (ReLU) activation
function, and max poolings using raw operations of the scheme. As we mentioned, this is also
another problem for HE schemes, to reimplement the already known algorithms, to have only
raw and supported operations.

6.4 FULLY HOMOMORPHIC ENCRYPTION

The range of applications that could be using FHE is enormous, as practically any
system that requires manipulating personal information. There are both theoretical and practical
applications. We can consider FHE as a superset of all other variants presented before, therefore
all the other applications are also possible here. As we mentioned before, FHE schemes are not
yet very practical. Still, we will show some applications that in the near future, we could be
using and applications that researchers or companies have already sampled some use cases.

Zama (HINDI, 2021) is a company that builds open-source code using FHE, mainly for
blockchain and artificial intelligence. The team is formed by the creators of (PAILLIER, 1999)
and (CHILLOTTI et al., 2020), and they have created several practical examples, showing their
advances in FHE. They make simple and practical applications, so the user can check the data
is confidential all the time, with a step-by-step system. In the systems, we generate the keys,
input some applications-specific information, encrypt it, send it to the server, and then, retrieve
the response and decrypt it with our generated private key. Some applications they made using
this step-by-step include a sentiment analysis based on some message a user types about his
feeling at the moment (the website can be accessed in link), an image filtering on encrypted
image (the website is in link), and a health prediction on the fulfillment of some questions about
the person’s health (the website is available at link). They made these applications to show how
we can combine machine learning training models with FHE, making the user’s data private all

https://huggingface.co/spaces/zama-fhe/encrypted_sentiment_analysis
https://huggingface.co/spaces/zama-fhe/encrypted_image_filtering
https://huggingface.co/spaces/zama-fhe/encrypted_health_prediction

73

the time.
We have already discussed PIR as an application for PHE and SHE, using simple

queries. An actual implementation of total discretion about the user’s query can be found in
(MENON; WU,) using FHE for complex queries with an organized database, using the PIR
protocol in (MENON; WU, 2022). With a database of 6GB of English Wikipedia, the user
can search through it and the database manager has no idea what resources were requested.
At the first access to the website, it is required to send 18MB of data (public key and other
parameters), while later queries require 28KB of upload. The server response is 250KB. This is
a very interesting and practical application we can check the slowness and network requirements
while using FHE nowadays.

We showed in Section 6.3 that we can make a deep neural network using LFHE. An
optimized version using plain FHE, with bootstrap and no need to calculate complex parameters
in advance, can be checked in (LEE et al., 2022). They used the fully homomorphic version of
CKKS for image classification and achieved 92.43% of accuracy. The problem is the time it
takes to infer one image: 3 hours.

Another improvement on some previous achievable applications from HE is MPC.
Previously we only considered the gathering of data calculated from each peer, using some
additive scheme. Nevertheless, one of the biggest concerns about MPC is about attackers, i.e.,
how do we know if some party is reliable or not? There are some constructions we can make to
overcome this situation, and using FHE now is possible, as shown in (SMART, 2023). They use
the fully homomorphic version of TFHE to make their construction, which is secure using a safe
oracle model, and efficient to the point of being able to be used in real-life scenarios.

In (MARCOLLA et al., 2022), they present the usage of FHE in data aggregation
for fog computing, considering the context of smart cities. Fog computing is a decentralized
infrastructure that gathers and process information from devices from the edge of the network,
process and transfer it to cloud computing (dedicated servers to store and process huge amount
of data). The devices used in fog computing must be event-driven (the device from the edge
triggers) and the processing must be packet-by-packet. Thus, it is delay-intolerant (must be
performed quickly) and the scope of the processing task is limited to the information contained in
a single packet. In this case, citizens’ devices could send encrypted data to the fog infrastructure,
so no external device would know the actual information. Some problems with this case rely
on the speed to process each operation in FHE, the computational complexity, and the possible
ciphertext expansion (depending on what scheme would be used). There is also the problem of
limited hardware capabilities.

In (SEN, 2013), there are more examples where we could be using FHE, such as:

Protection of mobile agents Homomorphic rings can lead to extensions of F2, and computer
architectures are based on binary strings, requiring only addition and multiplication. This
would offer the possibility to encrypt a whole program, so that it is still executable,
protecting against malicious hosts;

74

Oblivious transfer A protocol where the sender transmits information to the receiver, but it
stays oblivious, i.e., it does not know exactly what the receiver has actually received. It
can be applied to notions of PIR and MPC, where the senders are only a channel for
transferring information, but not be able to access that data;

Commitment schemes As a cryptographic primitive where a player makes a commitment,
where it is able to choose a value and can no longer change its mind. With FHE, the player
would not be demanded to reveal his choice at any moment.

Lottery protocols In a cryptography lottery, a winning number has to be randomly chosen
by all participants. Each player chooses a random number which each encrypts, then it
can sum the random values and can be efficiently computed. This must use multi-key
evaluations to remain secure, so does not have a “moderator” to get all the information
and encrypt with only one key;

Mix-nets Protocols that provide anonymity for senders, by collecting encrypted messages from
several users and sending them as a ballot. The final user will receive the information but
does not know where in the ballot is the information and, thus, it will not know anything
about the sender. A similar protocol of mixer is used in the crypto coin Monero, to keep
the sender of the money hidden.

Microsoft with its Seal implementation is trying to achieve some applications with FHE
(RESEARCH REDMOND, 2023). One of the already implemented applications is password
monitoring in their famous browser Edge (LAUTER et al., 2021). This feature compares the
ciphertext of users’ passwords through many websites and compares it with large password
leakage databases. All the passwords are encrypted using an FHE scheme, using their own
library Seal. The goal of this password monitoring is to identify weak passwords and alert the
user that such a password has already leaked.

75

7 PRACTICAL IMPLEMENTATION

As part of our work, it was implemented a PHE scheme and an interesting application for
PHE in practice. The scheme chosen to be implemented was Okamoto-Uchiyama (OKAMOTO;
UCHIYAMA, 1998), which was already studied and shown in Subsection 3.1.7. This scheme
was chosen due to its simplicity and efficiency. We also wanted to apply this scheme to our
application implementation. The application chosen was the PIR protocol. For that protocol,
we only needed an additive PHE scheme that also supports multiplication by scalars/clear texts.
Such schemes can be easily seen in Table 1, where Okamoto-Uchiyama is one of them. We recall
that the PIR protocol allows a user to retrieve information from a server handling a database, not
revealing any information about which data was retrieved.

Before we explain what was performed as a practical implementation for our theme, it
is important to show how such a protocol can be achieved with only an additive PHE scheme.
Consider a database with only one table that has one column with an integer as its value.
Consider one user who wants to access the i-th element to that database, without the backend or
the database owner to be aware of what i is. For that, we will use the following PIR protocol
using PHE, where the user tries to get the i-th element from a database through a server (a visual
representation of that description is given in Figure 8):

1. Consider a database d with n elements. The user encrypts the index i of the desired
result, using an additive PHE scheme, that supports the multiplication of clear texts. This
procedure is done by one-hot encoding encryption, where the index is represented as a
vector of encrypted zeros, except for the i-th index, which is the encryption of one. This
vector must be of size n, where only the i-th element is the encryption of one. Call this
encrypted vector of a.

2. The user sends a to the server.

3. The server runs through all elements of d and for each non-ciphered element d j of
index j, it multiplies with the corresponding a j element. Here we use the multiplication
between a ciphertext and a clear text. Then, we need to sum all of the multiplications,
homomorphically, which we call s. In other words, s = Σn

j=1d j×a j.

4. The server sends s back to the client.

5. The client decrypts s, and gets the desired element.

As it can be seen, it is an easy but powerful protocol. Some efficiency problems here
involve the necessity of encrypting a vector with the same size as the database and needing to
run through all the elements in the database. However, we are only considering a PHE scheme,
where there are some limitations. Perhaps for large databases, it is unfeasible, but for smaller
databases, it can be considered a great choice.

76

Figure 8 – Visual representation of the PIR protocol using an additive PHE scheme. Here it asks for the third
element in the database, where n = 4 and i = 3.

Source: (TEAM, 2022)

Now that we are aware of how the protocol works, we can share our implementation.
We made a web application, where the user can insert elements into a database. In order to use
the protocol, the user can choose between three different PHE encryption schemes and input the
index it wants to retrieve the information. Then, the application will guide to the aforementioned
steps, showing details like the public and private key details, the one-hot encoding in clear text
and the corresponding encrypted vector, and how much time each operation costs. The idea is to
provide an easy-to-use web application, where the PIR protocol is easily understood and where
we can check encryption facts visually.

The project is on GitHub at https://github.com/AnthonyKamers/phe-pir and has an MIT
license, which means any other person can take this project and use it as they wish, for any
means. For the web application, it was used Python 3.10.6, and the Flask framework (version
3.0.0) to provide a web client-server. Templates in order to show to the user were made using
Jinja2 (version 3.1.2), which Flask provides easy integration. For the database handling, it was
used a very simple table in SQLite, managed by the peewee library. The encryption schemes can
be chosen between three options: Paillier, Okamoto-Uchiyama, and Damgard-Jurik. The former
is managed using the phe library (version 1.5.0), while the last was managed using the damgard-

jurik library (version 0.0.3). As said previously, the Okamoto-Uchiyama was implemented for
this work, using the original work as reference (OKAMOTO; UCHIYAMA, 1998), as soon as
other auxiliary works to provide improvements in some calculations (KOÇ; ÖZDEMIR; ÖZGER,
2021). We consider the following bit sizes for each scheme: Okamoto-Uchiyama and Paillier:
512 bits; Damgard-Jurik: 64 bits with 3 thresholds.

https://github.com/AnthonyKamers/phe-pir

77

In order to provide an example of the running application, we will run an example in
it. Figure 9a shows the initial state of the web application. In the example, there are already 3
populated numbers in the database. We will add the number 250 in the database now, in order to
get 4 elements. For that procedure, it is necessary to put the value 250 into the input text next
to its label and click the button “Add”. Now, we have four elements in the database, where we
know the 4-th element.

(a) Web application initial state, already populated with
3 random numbers.

(b) Web application in step 1 of the PIR protocol, want-
ing to know the index 3 of the database.

(c) Web application in steps 2-3 of the PIR protocol. (d) Complete PIR protocol steps

Figure 9 – Web application implemented

Source: the author.

To continue demonstrating the behavior of the PIR protocol, let us select the imple-
mented scheme (okamoto-uchiyama-self) and put the value 3 (since in Python the index always
starts from 0) in the input text, next to the label “Index to retrieve” and click the button “Gen-
erate”. The result will be something similar to Figure 9b, since each time it is generated new
random numbers, and the encryptions are probabilistic. In this step, we generate the keys, where
it is possible to check the public value n, and the private values p,q. As it is only a system for
educational purposes, we expose sensitive information. The one-hot encoding for index 3 is
provided, as soon as its corresponding encrypted vector. Also, performance details are given,
which will be discussed later.

78

Now, in order to advance to steps 2-3, we click the button labeled “Retrieve”, where
the server will take only the encrypted vector and make the clear text multiplications, and the
sum of them homomorphically. The result is shown in Figure 9c, where only the encrypted sum
value is shown, and the corresponding time to generate it. The only remaining steps are 4-5,
where we need to decrypt the value. Only by clicking the button “Decrypt”, we get the result in
Figure 9d. Now, we got the value we wanted, i.e., it is showing results[3] = 250, i.e., that the
index 3 of “results” (database) is equal to 250. As this was the value we inserted before, we can
attest the efficiency of the PIR protocol, using only an additive PHE scheme with support for
scalar multiplications.

7.1 PHE SCHEME IMPLEMENTATION AND COMPARISON

As part of our work, we implemented a PHE scheme from those already studied and
shown in Chapter 3. The aim of this was to understand all the steps and functions in order to
make a PHE cryptosystem work. For that, we chose the Okamoto-Uchiyama scheme. Our focus
here is not to show all the functions again, as it was already shown in Subsection 3.1.7. Here, we
focus on what was implemented differently from what was explained before and show why.

We recall that for the Okamoto-Uchiyama scheme, we have a public key (n,g,h,k) and
a private key (p,q). Our key generation algorithm implemented does not consider the h element,
due to performance reasons. So our public key is (n,g,k). We remind that the encryption is given,
for a random r ∈ Z/nZ as ENC(m) = gm×hr mod n. In our implementation, it was very costly
to perform the computations of gm and hr in separate calculations, taking more than 20 seconds
to reach it. Instead, we concatenate them in only one calculation. So, our encryption is given as:
ENC(m) = gm+(n×r) mod n. It is the same procedure, but uses more parallel calculations in the
processor, reaching a plausible time for this computation.

Another interesting point about our implementation is the possibility of running the
PIR protocol for multiple PHE schemes and comparing the performance of each step. We have
statistics for three cases: key generation, vector encryption, and the multiplication of clear
texts and consequently sum of them. One endpoint provided from our application, refers to
a performance test between the three encryption schemes available: our Okamoto-Uchiyama
implementation, Paillier using an external library, and Damgard-Jurik also using an external
library.

If the user accesses the endpoint WebApplicationContext/performance, where WebAp-

plicationContext is where the web application is running, a performance test for 30 iterations
will be made for each scheme. In the end, the service will print in the terminal running the web
application, the average for each aforementioned case. The values for one call to this endpoint
were abstracted here in Table 7. The table is ordered by the total average time between the
three different steps. It is possible to check the disparity between the implementation from the
libraries, and the one made from this work.

The key generation step is the most disparate, considering our Okamoto-Uchiyama

79

Table 7 – Comparison of encryption schemes for the PIR web application implemented

Scheme Key generation Vector encryption Sum encrypted Total
Damgard-Jurik 0.0029 0.0002 0.0001 0.0031
Paillier 0.0021 0.0015 0.0003 0,0039
Okamoto-Uchiyama self 0.5117 0.0972 0.0009 0.6098

All the values are in seconds and are represented as the average after 30 iterations.

implementation. This fact is due mostly to our prime number generation function, where we
implemented a random prime generator, using the Miller-Rabin algorithm (RABIN, 1980). First,
we generate a number with k bits (in this case, 512) and check if it is a valid prime number by
the Miller-Rabin primality test. We repeat this procedure for p and q, until gcd(p,q−1) = 1 and
gcd(p−1,q) = 1. This process, as it was performed, is very costly. Nevertheless, the purpose
of the implementation of the PHE scheme was to fully understand the whole process of a HE
cryptosystem. Performance was not considered a worry for this implementation. We followed
the original paper instructions (OKAMOTO; UCHIYAMA, 1998), in order to make it work and
some small performance issues were fixed, as explained above.

81

8 FINAL REMARKS

In this work, we studied the basic principles of encryption in general, focusing the
attention on homomorphic encryption. In this type of encryption, we presented the concept, the
reason for using it in real-world applications, the different variants, and several applications. We
also showed how Gentry was able to make the first fully homomorphic scheme, while researchers
spent more than 30 years looking for that. Regarding this variant, we presented the noise problem
while computing on ciphertexts, and how Gentry’s bootstrap technique can surpass that. Several
hard mathematical problems were also explained, to understand the difficulty of an attacker in
retrieving someone’s ciphertext.

As partially homomorphic and somewhat homomorphic schemes are much more reliable
nowadays, we focused on them. We presented an evolution of schemes from its beginning,
until the most recent approaches. We showed a detailed explanation of many schemes from
these variants, as well as their basic functions and their homomorphic properties. A summary
of each variant’s schemes was presented, where we were able to easily find the underlying
problem regarding scheme security, the respective homomorphic property, and some additional
information.

Also, we gave some examples of theoretical and practical applications that we can
perform using HE. Some examples were not done in real life yet, due to performance reasons,
but it was explained how we could perform them. Also, already existing applications for each
variant were given. Additionally, we provided an implementation of a PHE scheme based on
the work of Okamoto-Uchiyama, which is additive homomorphic and can perform additions
and multiplications over clear texts. We also implemented a practical application where the
implemented scheme plays an important role. We chose to implement a private information
retrieval protocol using only additive schemes. It is possible to choose among three different
schemes to encrypt a query, with our implementation being one of them. A comparison between
our implementation and the other schemes was given.

With that in mind, we could check how homomorphic encryption could help improve
the privacy of people’s data around the world. With the advance of Cloud computing, this is
even more necessary, since external companies need to have access to our private key to make
modifications to the original data. We gave examples of how we can apply some techniques and
make some usages with today’s computational power, especially when it comes to applications
using a huge amount of additions and a small number of multiplications. PHE and SHE schemes
are based on similar underlying problems to the ones that are already being used nowadays,
and they have similar performance. This means that, if an application could be using of some
technique to be applying HE to protect people’s information, this should be done.

We mentioned the difficulty when it comes to processing large amounts of data using
more advanced HE variants, such as LFHE and FHE. However, we also presented some very
complex applications that handle multiple transformations and can use them nowadays. Applica-
tions using machine learning could migrate to HE, so all information about their users would be

82

preserved, keeping the same prediction accuracy. The sharing of information about HE must
be spread throughout the world, so developers know the importance of this strategy and how it
completely protects the information someone provides. Some companies are already struggling
to add some more functionalities so others can use it more easily, apply it to each time more
applications, and have faster performance. The process of migrating from classic cryptography to
homomorphic encryption will take a long time, but it is necessary to protect the world’s privacy.

8.1 FUTURE WORKS

As we only demonstrated more specific details about PHE and SHE, a more general
work, embracing LFHE and FHE schemes’ explanations could be done. Besides that, many
applications that can be performed with HE, considering any variant, have not yet been proposed
or do not have open-source code. A practical implementation of some of these protocols
or algorithms would be a great future work, enriching the knowledge about homomorphic
encryption, and making the data of users secure and safe, even though it is manipulated by other
entities.

83

BIBLIOGRAPHY

ACAR, A. et al. A survey on homomorphic encryption schemes: Theory and implementation.
ACM Computing Surveys (Csur), ACM New York, NY, USA, v. 51, n. 4, p. 1–35, 2018.

ALAGIC, G. et al. Quantum fully homomorphic encryption with verification. In: SPRINGER.
International Conference on the Theory and Application of Cryptology and Information
Security. [S.l.], 2017. p. 438–467.

ALBRECHT, M.; BAI, S.; DUCAS, L. A subfield lattice attack on overstretched ntru
assumptions: Cryptanalysis of some fhe and graded encoding schemes. In: SPRINGER. Annual
International Cryptology Conference. [S.l.], 2016. p. 153–178.

ALBRECHT, M. et al. Homomorphic Encryption Security Standard. Toronto, Canada, 2018.

ALBRECHT, M. R. et al. Polly cracker, revisited. In: SPRINGER. International Conference
on the Theory and Application of Cryptology and Information Security. [S.l.], 2011. p.
179–196.

ALWEN, J. What is lattice-based Cryptography & why you should care. Wickr
Cryptography, 2020. Disponível em: https://medium.com/cryptoblog/what-is-lattice-based-
cryptography-why-should-you-care-dbf9957ab717.

AMORIM, I.; COSTA, I. Leveraging searchable encryption through homomorphic encryption:
A comprehensive analysis. Mathematics, MDPI, v. 11, n. 13, p. 2948, 2023.

ARMKNECHT, F.; SADEGHI, A.-R. A new approach for algebraically homomorphic
encryption. Cryptology ePrint Archive, 2008.

BARKEE, B. et al. Why you cannot even hope to use gröbner bases in public key cryptography:
an open letter to a scientist who failed and a challenge to those who have not yet failed. Journal
of Symbolic Computation, Elsevier, v. 18, n. 6, p. 497–501, 1994.

BENALOH, J. Dense probabilistic encryption. In: Proceedings of the workshop on selected
areas of cryptography. [S.l.: s.n.], 1994. p. 120–128.

BONEH, D.; GOH, E.-J.; NISSIM, K. Evaluating 2-dnf formulas on ciphertexts. In: SPRINGER.
Theory of Cryptography: Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005. Proceedings 2. [S.l.], 2005. p. 325–341.

BRAKERSKI, Z.; GENTRY, C.; VAIKUNTANATHAN, V. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT),
ACM New York, NY, USA, v. 6, n. 3, p. 1–36, 2014.

BRAKERSKI, Z.; VAIKUNTANATHAN, V. Fully homomorphic encryption from ring-lwe and
security for key dependent messages. In: SPRINGER. Annual cryptology conference. [S.l.],
2011. p. 505–524.

BRIGHT, C. From the shortest vector problem to the dihedral hidden subgroup problem. In: .
[S.l.: s.n.], 2013.

BUCHANAN, W. J. Learning With Errors (LWE) and Ring LWE. 2023. Accessed:
November 12, 2023. Disponível em: https://asecuritysite.com/encryption/lwe-output.

84

CHATTERJEE, A.; SENGUPTA, I. Translating algorithms to handle fully homomorphic
encrypted data on the cloud. IEEE Transactions on Cloud Computing, IEEE, v. 6, n. 1, p.
287–300, 2015.

CHEON, J. H.; JEONG, J.; LEE, C. An algorithm for ntru problems and cryptanalysis of the
ggh multilinear map without a low-level encoding of zero. LMS Journal of Computation and
Mathematics, London Mathematical Society, v. 19, n. A, p. 255–266, 2016.

CHEON, J. H. et al. Homomorphic encryption for arithmetic of approximate numbers. In:
SPRINGER. International conference on the theory and application of cryptology and
information security. [S.l.], 2017. p. 409–437.

CHEON, J. H.; STEHLÉ, D. Fully homomophic encryption over the integers revisited.
In: SPRINGER. Annual International Conference on the Theory and Applications of
Cryptographic Techniques. [S.l.], 2015. p. 513–536.

CHILLOTI, I. Introduction to fhe and the tfhe scheme. In: . [S.l.]: Workshop on Foundations
and Applications of Lattice-based Cryptography ICMS, Edinburgh, 2022.

CHILLOTTI, I. et al. Tfhe: fast fully homomorphic encryption over the torus. Journal of
Cryptology, Springer, v. 33, n. 1, p. 34–91, 2020.

CRAMER, R.; DAMGÅRD, I.; NIELSEN, J. B. Multiparty computation from threshold
homomorphic encryption. In: SPRINGER. Advances in Cryptology—EUROCRYPT 2001:
International Conference on the Theory and Application of Cryptographic Techniques
Innsbruck, Austria, May 6–10, 2001 Proceedings 20. [S.l.], 2001. p. 280–300.

CRAMER, R.; GENNARO, R.; SCHOENMAKERS, B. A secure and optimally efficient
multi-authority election scheme. European transactions on Telecommunications, Wiley
Online Library, v. 8, n. 5, p. 481–490, 1997.

DAMGÅRD, I.; JURIK, M. A length-flexible threshold cryptosystem with applications. In:
SPRINGER. Information Security and Privacy: 8th Australasian Conference, ACISP 2003
Wollongong, Australia, July 9–11, 2003 Proceedings 8. [S.l.], 2003. p. 350–364.

DIFFIE, W. New direction in cryptography. IEEE Trans. Inform. Theory, v. 22, p. 472–492,
1976.

DIJK, M. v. et al. Fully homomorphic encryption over the integers. In: SPRINGER. Annual
international conference on the theory and applications of cryptographic techniques. [S.l.],
2010. p. 24–43.

DORÖZ, Y.; SUNAR, B. Flattening ntru for evaluation key free homomorphic encryption.
Journal of Mathematical Cryptology, De Gruyter, v. 14, n. 1, p. 66–83, 2020.

DOWERAH, U.; KRISHNASWAMY, S. Fully homomorphic encryption based on multivariate
polynomial evaluation. arXiv preprint arXiv:1910.06270, 2019.

DUCAS, L.; MICCIANCIO, D. Fhew: bootstrapping homomorphic encryption in less than a
second. In: SPRINGER. Annual international conference on the theory and applications of
cryptographic techniques. [S.l.], 2015. p. 617–640.

ELGAMAL, T. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE transactions on information theory, IEEE, v. 31, n. 4, p. 469–472, 1985.

85

FAN, J.; VERCAUTEREN, F. Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, 2012.

FELLOWS, M.; KOBLITZ, N. Combinatorial cryptosystems galore! Contemporary
Mathematics, American Mathematical Society, v. 168, p. 51–51, 1994.

FULLY Homomorphic Encryption. IBM. https://research.ibm.com/topics/fully-homomorphic-
encryption. Disponível em: https://research.ibm.com/topics/fully-homomorphic-encryption.

GENTRY, C. A fully homomorphic encryption scheme. [S.l.]: Stanford university, 2009.

GENTRY, C.; SAHAI, A.; WATERS, B. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: SPRINGER. Annual
Cryptology Conference. [S.l.], 2013. p. 75–92.

GOLDWASSER, S.; MICALI, S. Probabilistic encryption & how to play mental poker keeping
secret all partial information. In: Proceedings of the fourteenth annual ACM symposium on
Theory of computing. [S.l.: s.n.], 1982. p. 365–377.

GUEVARA, M. Expanding our Fully Homomorphic Encryption offering. Google, 2023.
https://developers.googleblog.com/2023/08/expanding-our-fully-homomorphic-encryption-
offering.html. Disponível em: https://developers.googleblog.com/2023/08/expanding-our-fully-
homomorphic-encryption-offering.html.

HARJITO, B. et al. Comparative analysis of rsa and ntru algorithms and implementation in the
cloud. International Journal of Advanced Computer Science and Applications, Science and
Information (SAI) Organization Limited, v. 13, n. 3, 2022.

HEROLD, G. Polly cracker, revisited, revisited. In: SPRINGER. Public Key Cryptography–
PKC 2012: 15th International Conference on Practice and Theory in Public Key
Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings 15. [S.l.], 2012. p.
17–33.

HINDI, R. People shouldn’t care about privacy. Zama AI, 2021. Disponível em:
https://www.zama.ai/post/people-should-not-care-about-privacy.

HOVD, M. N. The handling of noise and security of two fully homomorphic encryption
schemes. Dissertação (Mestrado) — NTNU, 2017.

IBARRONDO, A. et al. Grote: Group testing for privacy-preserving face identification. In:
Proceedings of the Thirteenth ACM Conference on Data and Application Security and
Privacy. [S.l.: s.n.], 2023. p. 117–128.

ILIASHENKO, I.; NEGRE, C.; ZUCCA, V. Integer functions suitable for homomorphic
encryption over finite fields. In: Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography. [S.l.: s.n.], 2021. p. 1–10.

ISHAI, Y.; PASKIN, A. Evaluating branching programs on encrypted data. In: SPRINGER.
Theory of Cryptography Conference. [S.l.], 2007. p. 575–594.

KAWACHI, A.; TANAKA, K.; XAGAWA, K. Multi-bit cryptosystems based on lattice problems.
In: SPRINGER. Public Key Cryptography–PKC 2007: 10th International Conference
on Practice and Theory in Public-Key Cryptography Beijing, China, April 16-20, 2007.
Proceedings 10. [S.l.], 2007. p. 315–329.

86

KIRCHNER, P.; FOUQUE, P.-A. Revisiting lattice attacks on overstretched ntru parameters.
In: SPRINGER. Annual International Conference on the Theory and Applications of
Cryptographic Techniques. [S.l.], 2017. p. 3–26.

KNIRSCH, F. et al. Comparison of the paillier and elgamal cryptosystems for smart grid
aggregation protocols. In: ICISSP. [S.l.: s.n.], 2020. p. 232–239.

KOBLITZ, N. A course in number theory and cryptography. [S.l.]: Springer Science &
Business Media, 1994. v. 114.

KOÇ, Ç. K.; ÖZDEMIR, F.; ÖZGER, Z. Ö. Partially Homomorphic Encryption. [S.l.]:
Springer, 2021.

KUNDRO, D. Criptografia homomórfica: um esquema de criptografia cada vez mais
usado. [S.l.], 2019. Disponível em: https://www.welivesecurity.com/br/2019/09/06/criptografia-
homomorfica-um-esquema-de-criptografia-cada-vez-mais-usado/. Acesso em: 18 jul. de
2022.

LANGLOIS, A.; STEHLÉ, D. Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography, Springer, v. 75, n. 3, p. 565–599, 2015.

LAUTER, K. et al. Password monitor: Safeguarding passwords in microsoft edge. Microsoft,
2021. Disponível em: https://www.microsoft.com/en-us/research/blog/password-monitor-
safeguarding-passwords-in-microsoft-edge/.

LEE, J.-W. et al. Privacy-preserving machine learning with fully homomorphic encryption for
deep neural network. IEEE Access, IEEE, v. 10, p. 30039–30054, 2022.

LITTLE, B. 6 World War II Inovations That Changed Everyday Life. [S.l.], 2021. Disponível
em: https://www.history.com/news/world-war-ii-innovations. Acesso em: 16 nov. de 2022.

LÓPEZ-ALT, A.; TROMER, E.; VAIKUNTANATHAN, V. On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the forty-fourth
annual ACM symposium on Theory of computing. [S.l.: s.n.], 2012. p. 1219–1234.

LOU, Q.; JIANG, L. She: A fast and accurate deep neural network for encrypted data. Advances
in neural information processing systems, v. 32, 2019.

LY, L. V. Polly two: A new algebraic polynomial-based public-key scheme. Applicable Algebra
in Engineering, Communication and Computing, Springer, v. 17, n. 3-4, p. 267–283, 2006.

LYUBASHEVSKY, V.; PEIKERT, C.; REGEV, O. On ideal lattices and learning with errors
over rings. In: SPRINGER. Advances in Cryptology–EUROCRYPT 2010: 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30–June 3, 2010. Proceedings 29. [S.l.], 2010. p. 1–23.

MARCOLLA, C. et al. Survey on fully homomorphic encryption, theory, and applications.
Proceedings of the IEEE, IEEE, v. 110, n. 10, p. 1572–1609, 2022.

MARTINS, P.; SOUSA, L.; MARIANO, A. A survey on fully homomorphic encryption: An
engineering perspective. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 50,
n. 6, p. 1–33, 2017.

87

MELCHOR, C. A.; GABORIT, P.; HERRANZ, J. Additively homomorphic encryption with
d-operand multiplications. In: SPRINGER. Advances in Cryptology–CRYPTO 2010: 30th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings
30. [S.l.], 2010. p. 138–154.

MENON, S. J.; WU, D. J. Spiral demo. IACR. Disponível em: https://spiralwiki.com/.

MENON, S. J.; WU, D. J. Spiral: Fast, high-rate single-server pir via fhe composition. In: IEEE.
2022 IEEE Symposium on Security and Privacy (SP). [S.l.], 2022. p. 930–947.

MITTAL, S.; RAMKUMAR, K. A retrospective study on ntru cryptosystem. In: AIP
PUBLISHING. AIP Conference Proceedings. [S.l.], 2022. v. 2451, n. 1.

NACCACHE, D.; STERN, J. A new public key cryptosystem based on higher residues. In:
Proceedings of the 5th ACM Conference on Computer and Communications Security. [S.l.:
s.n.], 1998. p. 59–66.

NAEHRIG, M.; LAUTER, K.; VAIKUNTANATHAN, V. Can homomorphic encryption
be practical? In: Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. [S.l.: s.n.], 2011. p. 113–124.

OKAMOTO, T.; UCHIYAMA, S. A new public-key cryptosystem as secure as factoring. In:
SPRINGER. Advances in Cryptology—EUROCRYPT’98: International Conference on the
Theory and Application of Cryptographic Techniques Espoo, Finland, May 31–June 4,
1998 Proceedings 17. [S.l.], 1998. p. 308–318.

PAILLIER, P. Public-key cryptosystems based on composite degree residuosity classes. In:
STERN, J. (Ed.). Advances in Cryptology — EUROCRYPT ’99. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999. p. 223–238.

PARK, J.; TIBOUCHI, M. Shecs-pir: somewhat homomorphic encryption-based compact and
scalable private information retrieval. In: SPRINGER. European Symposium on Research in
Computer Security. [S.l.], 2020. p. 86–106.

PATERSON, M. S.; STOCKMEYER, L. J. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM Journal on Computing, SIAM, v. 2, n. 1, p. 60–66,
1973.

PFITZMANN, B.; SCHUNTER, M. Asymmetric fingerprinting. In: SPRINGER. International
Conference on the Theory and Applications of Cryptographic Techniques. [S.l.], 1996. p.
84–95.

RABIN, M. O. Probabilistic algorithm for testing primality. Journal of number theory,
Elsevier, v. 12, n. 1, p. 128–138, 1980.

REGEV, O. The learning with errors problem. Invited survey in CCC, v. 7, n. 30, p. 11, 2010.

RESEARCH REDMOND, W. M. Microsoft SEAL (release 4.1). 2023.
https://github.com/Microsoft/SEAL. Microsoft Research, Redmond, WA. Disponível
em: https://github.com/Microsoft/SEAL.

RIVEST, R. L.; SHAMIR, A.; ADLEMAN, L. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, ACM New York, NY, USA, v. 21,
n. 2, p. 120–126, 1978.

88

ROCHA, V.; LÓPEZ, J.; ROCHA, V. F. D. An overview on homomorphic encryption algorithms.
UNICAMP Universidade Estadual de Campinas, Tech. Rep, 2018.

SANDER, T.; YOUNG, A.; YUNG, M. Non-interactive cryptocomputing for nc/sup 1. In: IEEE.
40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039). [S.l.],
1999. p. 554–566.

SAVIĆ, D. et al. An application of partial homomorphic encryption in computer system
with limited resources. Tehnički vjesnik, Strojarski fakultet u Slavonskom Brodu; Fakultet
elektrotehnike, računarstva . . . , v. 25, n. 3, p. 709–713, 2018.

SEN, J. Homomorphic encryption — theory and application. In: SEN, J. (Ed.). Theory and
Practice of Cryptography and Network Security Protocols and Technologies. Rijeka:
IntechOpen, 2013. cap. 1. Disponível em: https://doi.org/10.5772/56687.

SHAMIR, A. How to share a secret. Communications of the ACM, ACm New York, NY, USA,
v. 22, n. 11, p. 612–613, 1979.

SHOR, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In: IEEE.
Proceedings 35th annual symposium on foundations of computer science. [S.l.], 1994. p.
124–134.

SILVA, E. A. da. Practical use of partially homomorphic cryptography. 2016.

SMART, N. P. Practical and efficient fhe-based mpc. Cryptology ePrint Archive, 2023.

SMART, N. P.; VERCAUTEREN, F. Fully homomorphic encryption with relatively small key
and ciphertext sizes. In: SPRINGER. International Workshop on Public Key Cryptography.
[S.l.], 2010. p. 420–443.

SMART, N. P.; VERCAUTEREN, F. Fully homomorphic simd operations. Designs, codes and
cryptography, Springer, v. 71, p. 57–81, 2014.

TEAM, B. Private information retrieval using homomorphic encryption (explained from
scratch). Blyss dev, 2022. Disponível em: https://blintzbase.com/posts/pir-and-fhe-from-
scratch/.

WILLIAMS, V. V. Multiplying matrices faster than coppersmith-winograd. In: Proceedings of
the forty-fourth annual ACM symposium on Theory of computing. [S.l.: s.n.], 2012. p.
887–898.

WOODY, H. Polynomial resultants. GNU operating system, 2016.

Yackel, Ryan. What is homomorphic encryption? [S.l.], 2021. Disponível em:
https://www.keyfactor.com/blog/what-is-homomorphic-encryption/. Acesso em: 20 nov. de
2022.

89

APPENDIX A – ARTIGO DO TCC

Homomorphic encryption
Introduction and Applicabilities

Kamers, Anthony Bernardo1

1Departamento de Informática e Estatı́stica
Universidade Federal De Santa Catarina (UFSC)

Florianópolis – SC – 88040-900 – Brazil

anthony.kamers@grad.ufsc.br

Abstract. Since the invention of the RSA cryptosystem in 1978
[Rivest et al. 1978], it was imagined a world where we could operate only in
encrypted data. RSA itself is homomorphic by multiplication, meaning we can
make multiplications of ciphertexts, and still be able to decrypt it correctly.
This paper gives an introduction to homomorphic encryption, the difficulties
involved in the process of making such schemes, the different variants of it, and
the potential applications for some of the variants.

1. Introduction and motivation
Technology is constantly present in people’s lives, making it necessary to provide sev-
eral personal information to computational systems, which will process this data, analyze
and execute operations on it. With personal data processing, comes the need for privacy-
preserving solutions. The problem is the lack of trust in the processing of this knowledge
by third-party applications. Several times newspapers around the world show countless
examples of exposition of confidential information. This information is usually transmit-
ted using encryption such as TLS, to guarantee data confidentiality. However in order to
analyze this data (in machine learning, for instance), it is necessary to operate it on clear
text, needing to decrypt it first. At this moment, the data is vulnerable and susceptible to
attacks or leaks of private information (by the cloud server), as will be explained hereafter.

To exemplify how homomorphic encryption could bring security benefits over
private user data, we can cite the processing of information by cloud computing. In a
scenario where there is no homomorphic encryption, the application receives encrypted
data, decrypts it, and then performs over clear text. At this moment, the information is
unprotected, being subject to attacks or even, malicious use of the data by the server that
is doing the analysis. After the data is processed, the result is encrypted and sent back to
the user. Now, if we use homomorphic encryption, there would be no need to decrypt the
data at any moment in the flow of the data analysis, since the operations of this type of
scheme can be made directly on the encrypted text, letting the data protected and safe all
along the way. Figure 1 shows the difference between the two possibilities.

Homomorphic encryption has the potential to solve many security and privacy
issues, in a variety of daily applications, such as cloud computing, data science, and zero-
knowledge proof, among others [Alagic et al. 2017]. Besides that, it can help applications
to operate in conformity with data protection laws, such as the Brazilian LGPD (Lei Geral
de Proteção dos Dados) or the European GDPR (General Data Protection Regulation),
because user data will not be decrypted.

Figure 1. Flow of information exchanged between servers using and not using
homomorphic encryption. Translated from [Kundro 2019]

So, we can observe there are several benefits in using homomorphic encryption,
nevertheless, it is important to highlight that there are some limitations on the operations
that can be made on encrypted data (as addition and/or multiplication) and the number of
times it can execute on (depth). Therefore, different schemes have different properties.
There are a few classifications of homomorphic encryption:

• Partially Homomorphic Encryption (PHE): supports only one type of operation,
such as addition or multiplication. Does not have a restriction on the number of
operations that can be computed;

• Somewhat Homomorphic Encryption (SHE): supports two types of operation, but
can be operated only for a specific number of times (the most common case is
an unlimited number of additions and a small number, usually one, of multiplica-
tions);

• Leveled Fully Homomorphic Encryption (LFHE): allows any type of operation
(addition and multiplication) for a pre-established depth (the specific number of
times it allows to be made);

• Fully Homomorphic Encryption (FHE): allows any type of operation with unlim-
ited depth. This is the most difficult to achieve mathematically and, also, the one
with more applications.

2. Definitions
Some important definitions to handle precise information will be given in the next sub-
sections.

2.1. Homomorphism

Homomorphism is, in mathematics, a mapping between two algebraic structures of the
same type, that preserves the operations of these structures. Consider the function f
defined as A → B (being A the function’s domain and B the respective image), where
A and B are sets equipped with a binary operation ∗. The homomorphism preserves the
operation of the structures, meaning f(a ∗ b) = f(a) ∗ f(b) for all elements a, b ∈ A.
When we study homomorphic encryption, the function f is the encryption or decryption
function, with the operation ∗ depending on the scheme.

2.2. Noise
Noise is a parameter of encryption functions in probabilistic schemes, such as fully homo-
morphic schemes. It is necessary to apply some randomness to the encryption channel,
so only the owner can remove it and obtain the original message. When we “include”
some random parameter in cryptographic functions, they end up not being deterministic,
but rather probabilistic. To that randomness, we call it error or noise. If the encryption of
the same message is always the same ciphertext, then we call it a deterministic scheme.

Now that we know why noise is important to encryption schemes, the question
is how this can disturb the decryption over operated ciphertexts. The problem is that
“classic” encryption schemes do not change their ciphertext after it is encrypted, but ho-
momorphic ciphertexts are changeable, because of the possible operations over it. This
means that, if we operate on the ciphertext too many times, we will not be able to decrypt
it correctly. When this happens, we call the ciphertext to get unmanageable.

2.3. Bootstrap
As an old open problem until 2009, the proposal of Gentry called bootstrap [Gentry 2009]
was a mark in the world of cryptography. Besides creating an FHE, he also created a
method to convert a SHE scheme into an FHE one. As we noticed from the previous
subsection, the difficult problem in making an FHE scheme is how to manage the noise
growth. His approach is based on the idea of shrinking the noise when it gets too large.

To bootstrap some ciphertext, we need two new elements in the encryption
scheme, a public evaluation key (also called bootstrapping key) and a recrypt function.
The evaluation key is used in the recryption process. The recrypt function is used to
reduce the noise when it gets too large. To do that, it is necessary to re-encrypt the ci-
phertext with an evaluation key k, and this will reset the noise. This process gives us a
ciphertext of a ciphertext. To obtain the ciphertext of the original message x, we use the
evaluation key again, which is a public value. Let us take the expression c = ENC(x, k) as
the original ciphertext and c′ = ENC(c, k′) as the encryption of the first ciphertext. Using
the evaluation key, we can decrypt c′ and get the ciphertext of the original clear text.

2.4. Leveled approach
LFHE schemes can be very often related to more practical uses nowadays than the boot-
strap approach, due to its speed in performing operations over the ciphertext and decrypt-
ing it. This happens because LFHE can only make a limited amount of operations, which
the user can specify. If we are aware of the amount of times we need to operate on the
ciphertext, we can make some improvements so the noise gets controlled.

This is especially essential when it involves costly operations, such as multiplica-
tions. Some schemes like CKKS [Cheon et al. 2017] involve up to three additional steps
in the process of multiplying two ciphertexts, for instance. Because of the careful noise
management, this HE variant is also related to different public key sizes. The problem is
when we need a large number of multiplications, then it is probably better to use an FHE
scheme.

3. Applications
As we noticed, LFHE and FHE are very versatile and we could achieve practically any
application. The problem is the size of the keys and the time to make operations over

the ciphertext. Until today we do not have schemes from those variants that are fast
enough for real-world applications. Nevertheless, PHE and SHE schemes are very fast
and reliable until today. Although we can only perform one type of operation (or two
using SHE), there are many applications we can use, to fully protect the privacy of people.
For that reason, we shall explain some applications only for those two variants.

3.1. Partially Homomorphic Encryption

Applications for PHE schemes are limited, due to having only one type of operation that
can be performed over the ciphertext. Nevertheless, some important privacy-preserving
applications can make use of that. Some examples are online voting systems, which can
calculate the number of votes for each participant in the election by homomorphically
adding all the votes; blockchain ledgers, whose only operation needed to know the ex-
act balance or the transaction history is adding the past transactions, which can be made
homomorphically; in [Savić et al. 2018], they demonstrate that for some specific IoT ar-
eas, such as smart home sensors, it is possible to perform transactions between cloud-
computer-sensors using PHE encryption and only call the sensor again after some server
calculations and over scalars.

Applications mentioned in [Benaloh 1994] consider verifiable secret sharing and
verifiable secret ballot elections. The first can be considered as a way to divide a secret
into shares, for different shareholders (where each one holds a secret key). The only way
to reconstruct the complete secret is by calculating a specific amount from n sharehold-
ers. The authors show that for a determined polynomial, the only operation necessary to
reconstruct the secret is by performing the addition of each part of it, in this case, each
part of the secret, i.e. the share of each shareholder. It is verifiable, so one dishonest part
cannot disrupt the reconstruction of the secret, as it can only be reconstructed if a suf-
ficient amount of trusted shareholders give their own share. The verifiable secret-ballot
elections are similar to the idea presented before, where a central entity creates an additive
probabilistic PHE and makes the public key, public. In that way, each voter can compute,
for a new random value, the encryption of yes (1) or no (0) and put it into the ballot.
Then, the central entity, which possesses the private key only needs to sum all the votes
and homomorphically decrypt it, revealing the result of the election.

In [Naccache and Stern 1998, Pfitzmann and Schunter 1996], they propose to put
a watermark on some value or product. Aiming the software industry or illegal image and
music reproduction, it is possible to create a watermark, so that only the buyer knows the
data with the fingerprint. Still, if the merchant finds this copy somewhere else, he can
identify the buyer and prove that the determined buyer bought the copy and is, perhaps,
illegally distributing it. The computations can be made homomorphically and it only
needs to perform additions over the ciphertext.

In [Cramer et al. 2001], it is proposed the usage of PHE like Paillier’s for MPC.
Multiparty computations rely on the multi-processing of data between different peers,
while the peers only know pieces of information about the original data. Originally, it
was proposed the use of Shamir’s secret sharing [Shamir 1979] to divide the information
between n peers, in a way that can only be reconstructed together using a specific amount
of the shares. However, in MPC we can send one piece to each party, encrypted; then
each party performs a calculation; at the end, the encrypted result of all peers is added

together homomorphically and then decrypted. Only the owner of the data possesses the
secret key to decrypt it and get the calculation together of the peers.

One other application of PHE is keyword search. The work of
[Amorim and Costa 2023] shows that several searchable schemes use raw PHE schemes
and they are very efficient. They gathered multiple schemes that can do such computa-
tion efficiently and classified what strategies each uses. They also showed that multiple
strategies consider PHE to reach keyword searches. However, they can execute only some
raw operations such as single-keyword search in sequential scanning for single users. In
[da Silva 2016], it is implemented a file search application, using already established ho-
momorphic libraries.

Yet another example is the private information retrieval protocol (PIR), which
relies on the problem that, given a public database and a user wanting to query some in-
formation on it, it is difficult to hide that query from the database’s operator. The protocol
defines a way for the user to encrypt the query, and only the user has the public key to
decrypt it. There are multiple implementations of such protocol, where it is necessary to
iterate the whole database to perform a hidden query. Some of these arrangements can be
constructed only by using an additive PHE with support for scalar multiplications.

3.2. Somewhat Homomorphic Encryption

We will give some ideas of projects, protocols, equations, and general applications we
could be using SHE. We need to keep in mind that with SHE, we cannot use so many
multiplications, because all schemes only support a small number of them. So we need
to think of ways to minimize the amount of this operation or substitute them with an
equivalent operation; for instance, if the user wants to perform a calculation that performs
a low-depth of multiplications, we can substitute them for multiple sums of the number (it
is necessary the interaction with the user); alternatively, if the user needs to multiply by a
constant, that could not affect the retrieval of whole information, we could use a scheme
that allows to do it using multiplication by a scalar.

In [Naehrig et al. 2011], authors consider some systems that require many addi-
tions and only a small number of multiplication over ciphertexts. They consider applica-
tions in some very important areas throughout the world, like medical, financial, and ad-
vertisements. They consider both functions that should operate over sensitive information
and functions that are proprietary. They also mention some very important calculations
that are used almost anywhere and could be performed only with SHE: average (which
requires no multiplication), standard deviation (only one multiplication required), and lo-
gistical regression (only a small number of multiplications, depending on the precision
required). If we have logistical regression, we can evaluate a wide variety of applications
that require Big Data and artificial intelligence. One problem that is also mentioned is
the constraint of not knowing how to divide real numbers or take square roots with these
schemes. All of the aforementioned applications then should return the encryption of the
numerator and the encryption of the denominator, then the user decrypts it and makes the
calculation herself.

Although not very practical, it is important to be aware of the existence
of such possibilities, so that in the future, we might resolve it somehow. In
[Iliashenko et al. 2021], they demonstrate some interesting applications using only SHE

in some cases, such as the parity function (checking if a number is odd or even), if a
number is the power of another, taking the modulo of a number, taking the Hamming
weight (accounts the number of symbols that are different from zero) and, also, the Ham-
ming distance (number of positions different from two strings), performing the condi-
tional less-than function, and indicate how to operate c (mod 2), being c a ciphertext.
These functions can be performed using much fewer multiplications because some tech-
niques are applied involving finite fields theory.

Some more complex applications can be formed, with many more operations and
function evaluations. We cannot forget that SHE schemes are a super-set of applications
within the context of PHE. So all the applications explained earlier can be combined
with these, as a way of making more elaborated utilization. Also, we cannot forget the
branching programs introduced by Ishai-Paskin [Ishai and Paskin 2007], which enables
us to a variety of domains.

As stated previously in PHE applications (see 3.1), we can make PIR protocols
using only PHE. Multiple implementations use homomorphic encryption over whole
databases and perform queries over ciphertexts. Still, they are very inefficient and also
need to handle the whole database, with the additional overhead of HE for itself. In
[Park and Tibouchi 2020] is proposed a small and contained way for PIR protocol, where
it is only necessary to iterate O(log n) items from the database, and it is very compact.
They use compressing techniques of ciphertexts in the database and over the user’s query
using a SHE.

In the work of Ishai-Paskin [Ishai and Paskin 2007], the authors proposed a pro-
tocol that enhances the ability of keyword search (as it is already achievable with PHE).
With that, it is possible to completely hide from the client the original size of the database,
whereas it is also possible to hide from the database operator anything related to the
client’s query. They can perform these tasks in one round, i.e., it is not necessary to use a
three-way handshake as in the majority of other schemes.

4. Final remarks
In this paper, we studied the basic principles of homomorphic encryption and why it
should be used instead of classic encryption. We explained why it is superior in cloud
computing environments, giving examples and comparing it to classic cryptography. It
was given an introduction to the “noise” problem, explaining why it is hard to achieve
FHE. We explained the different variants of homomorphic encryption and focused on the
possible applications to the “basic” variants: PHE and SHE. It is possible to use schemes
from these variants nowadays, due to their speed and small key sizes.

References
Alagic, G., Dulek, Y., Schaffner, C., and Speelman, F. (2017). Quantum fully homo-

morphic encryption with verification. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 438–467. Springer.

Amorim, I. and Costa, I. (2023). Leveraging searchable encryption through homomorphic
encryption: A comprehensive analysis. Mathematics, 11(13):2948.

Benaloh, J. (1994). Dense probabilistic encryption. In Proceedings of the workshop on
selected areas of cryptography, pages 120–128.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Homomorphic encryption for
arithmetic of approximate numbers. In International conference on the theory and
application of cryptology and information security, pages 409–437. Springer.

Cramer, R., Damgård, I., and Nielsen, J. B. (2001). Multiparty computation from thresh-
old homomorphic encryption. In Advances in Cryptology—EUROCRYPT 2001: In-
ternational Conference on the Theory and Application of Cryptographic Techniques
Innsbruck, Austria, May 6–10, 2001 Proceedings 20, pages 280–300. Springer.

da Silva, E. A. (2016). Practical use of partially homomorphic cryptography.

Gentry, C. (2009). A fully homomorphic encryption scheme. Stanford university.

Iliashenko, I., Negre, C., and Zucca, V. (2021). Integer functions suitable for homomor-
phic encryption over finite fields. In Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, pages 1–10.

Ishai, Y. and Paskin, A. (2007). Evaluating branching programs on encrypted data. In
Theory of Cryptography Conference, pages 575–594. Springer.

Kundro, D. (2019). Criptografia homomórfica: um esquema de criptografia cada vez mais
usado. Technical report.

Naccache, D. and Stern, J. (1998). A new public key cryptosystem based on higher
residues. In Proceedings of the 5th ACM Conference on Computer and Communica-
tions Security, pages 59–66.

Naehrig, M., Lauter, K., and Vaikuntanathan, V. (2011). Can homomorphic encryption
be practical? In Proceedings of the 3rd ACM workshop on Cloud computing security
workshop, pages 113–124.

Park, J. and Tibouchi, M. (2020). Shecs-pir: somewhat homomorphic encryption-based
compact and scalable private information retrieval. In European Symposium on Re-
search in Computer Security, pages 86–106. Springer.

Pfitzmann, B. and Schunter, M. (1996). Asymmetric fingerprinting. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 84–
95. Springer.

Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126.

Savić, D., Trikoš, M., Veinović, M., and Simić, D. (2018). An application of partial
homomorphic encryption in computer system with limited resources. Tehnički vjesnik,
25(3):709–713.

Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11):612–613.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Introduction
	Goals
	General goals
	Specific goals

	Main concepts
	Cryptography
	Homomorphic encryption
	Noise
	Bootstrap
	Leveled approach

	Different classes of schemes
	Lattice
	AGCD
	LWE
	NTRU

	Partially Homomorphic Encryption
	Encryption schemes
	RSA
	Goldwasser-Micali
	ElGamal
	Additive variant
	Elliptic curve variant

	Benaloh
	Paillier
	Naccache-Stern
	Okamoto-Uchiyama
	Damgard-Jurik
	Kawachi-Tanaka-Xagawa

	Somewhat Homomorphic Encryption
	Evaluating any operation
	Encryption schemes
	Pre-Gentry era
	Boneh-Goh-Nissim
	Sander-Young-Yung
	Ishai-Paskin
	Polly cracker schemes

	Post-Gentry era
	DGHV
	BV
	BFV
	Smart-Vercauteren
	GSW

	Other types of homomorphic encryption
	Leveled Fully Homomorphic Encryption
	Fully homomorphic encryption

	Applications
	Partially Homomorphic Encryption
	Somewhat Homomorphic Encryption
	Leveled Fully Homomorphic Encryption
	Fully Homomorphic Encryption

	Practical implementation
	PHE scheme implementation and comparison

	Final remarks
	Future works

	Bibliography
	ARTIGO DO TCC

