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RESUMO

No cenário tecnológico em constante evolução de hoje, a ampla adoção do Aprendi-
zado Profundo tem inaugurado uma era de conquistas sem precedentes na inteligência
artificial. Conforme esses poderosos algoritmos continuam a permear vários aspec-
tos de nossas vidas, surge uma necessidade inerente de garantir a confiabilidade e
segurança de suas previsões. Esta dissertação explora o problema da classificação
seletiva para redes neurais profundas, permitindo que os modelos se abstenham de
fazer previsões de baixa confiança para evitar erros potenciais.

Especificamente, nosso foco está na otimização do estimador de confiança de um
classificador fixo para aprimorar o desempenho de detecção de erros de classificação.
Essa melhoria visa aprimorar a capacidade do modelo de distinguir entre previsões
corretas e incorretas, atribuindo valores de confiança mais altos às primeiras. Pes-
quisas anteriores indicaram que diferentes classificadores exibem níveis variados de
desempenho na detecção de erros de classificação, especialmente ao usar a probabi-
lidade máxima softmax (MSP) como medida de confiança. Argumentamos que essas
disparidades são resultado de estimadores de confiança subótimos sendo utilizados
para cada modelo. Para abordar esse problema, propomos um estimador de confi-
ança post-hoc simples e eficiente chamado p-NormSoftmax. Esse estimador envolve
a transformação dos logits por meio da normalização p-norma e do escalonamento
de temperatura (i.e., da multiplicação do logits por um escalar), seguida pelo cálculo
da MSP. Os valores de p e da temperatura são otimizados com base em um conjunto
de validação, tornando o estimador prontamente aplicável a modelos já treinados. Em
muitos casos, ele aprimora significativamente o desempenho de classificação seletiva
dos modelos.

Por meio de avaliação empírica em 84 classificadores pré-treinados do conjunto de
dados Imagenet, nosso método proposto p-NormSoftmax demonstra uma melhoria
média de 16% na área sob a curva risco-cobertura (AURC), com alguns modelos
exibindo melhorias de quase 50%. Além disso, observamos que, após a aplicação
do p-NormSoftmax, esses modelos alcançam níveis equivalentes de desempenho na
detecção de erros de classificação, sugerindo que o desempenho de classificação
seletiva de um modelo é predominantemente determinado pela acurácia global em
cobertura completa. Esta pesquisa contribui para avançar a compreensão da classifi-
cação seletiva em redes neurais profundas e oferece um método eficaz para aprimorar
suas capacidades de detecção de erros de classificação.

Palavras-chave: Aprendizado Profundo, classificação seletiva, detecção de erros, esti-
mação de incerteza



ABSTRACT

In today’s rapidly evolving technological landscape, the widespread adoption of Deep
Learning has ushered in an era of unprecedented achievements in artificial intelligence.
As these powerful algorithms continue to pervade various aspects of our lives, there
arises an inherent need to ensure the reliability and safety of their predictions. This
dissertation explores the problem of selective classification for deep neural networks,
allowing models to abstain from making low-confidence predictions to avoid potential
errors. Specifically, our focus lies in optimizing the confidence estimator of a fixed clas-
sifier to enhance its misclassification detection performance. This enhancement aims to
improve the model’s ability to distinguish between correct and incorrect predictions by
assigning higher confidence values to the former. Previous research has indicated that
various classifiers exhibit differing levels of misclassification detection performance, par-
ticularly when using the maximum softmax probability (MSP) as a confidence measure.
We argue that these disparities are largely a result of sub-optimal confidence estimators
being employed for each model. To address this issue, we propose a straightforward
and efficient post-hoc confidence estimator named p-NormSoftmax. This estimator in-
volves transforming the logits through p-norm normalization and temperature scaling,
followed by computing the MSP. The values of p and the temperature are optimized
based on a hold-out set, making the estimator readily applicable to already trained mod-
els. In many cases, it significantly improves the selective classification performance of
the models. Through empirical evaluation on 84 pretrained Imagenet classifiers, our
proposed p-NormSoftmax method demonstrates an average improvement of 16% in the
area under the risk-coverage curve (AURC), with some models exhibiting almost 50%
of enhancements. Moreover, we observe that after applying p-NormSoftmax, these
models attain equivalent levels of misclassification detection performance, suggesting
that a model’s selective classification performance is predominantly determined by its
overall accuracy at full coverage. This research contributes to advancing the under-
standing of selective classification in deep neural networks and provides an effective
method to improve their misclassification detection capabilities.

Keywords: Deep Learning. Classifiation. Selective Classification. Misclassification De-
tection. Uncertainty Estmation.



RESUMO EXPANDIDO

INTRODUÇÃO

Nos últimos anos, o Aprendizado Profundo emergiu como uma força revolucionária,
avançando significativamente as capacidades da inteligência artificial e revolucionando
diversos domínios. Desde visão computacional e processamento de linguagem natural
até cuidados de saúde e sistemas autônomos, os modelos de Aprendizado Profundo
têm demonstrado um notável sucesso ao realizar tarefas que antes eram consideradas
fora do alcance das máquinas. À medida que esses modelos continuam a permear
aplicações críticas, garantir sua confiabilidade se torna essencial para assegurar sua
integração segura em cenários do mundo real.

Um desafio inerente enfrentado pelos modernos algoritmos de Aprendizado Profundo
reside na capacidade de fornecer estimativas de incerteza para suas previsões. Em-
bora excelentes na produção de resultados precisos, esses modelos frequentemente
carecem de meios para quantificar e comunicar o nível de confiança associado às suas
saídas. Essa limitação é uma preocupação significativa, especialmente em domínios
de alto risco, como saúde, finanças e condução autônoma, onde decisões equivocadas
podem levar a consequências graves.

Abordar o problema da estimativa de incerteza em Aprendizado Profundo é fundamen-
tal para construir confiança e segurança em sistemas de IA. Ao quantificar a incerteza,
esses modelos podem expressar quando estão inseguros sobre um resultado, capaci-
tando os tomadores de decisão a fazer escolhas informadas e tomar ações adequadas.
Além disso, a estimativa de incerteza desempenha um papel crucial em melhorar a
robustez e segurança das aplicações de IA, permitindo que os modelos se abstenham
de fornecer previsões de baixa confiança, evitando assim potenciais erros.

Um resultado de destaque na literatura recente da área é que os modelos de classi-
ficadores de imagem apresentam desempenhos variados na estimativa de incerteza.
Essa disparidade suscita uma importante questão: o que causa tais diferenças e se
existem métodos capazes de aprimorar a capacidade de quantificar a incerteza em
um modelo já treinado. Esse fenômeno ainda é um mistério a ser desvendado, e
compreendê-lo pode abrir caminhos para o desenvolvimento de abordagens que aper-
feiçoem a estimativa de incerteza em aplicações de Aprendizado Profundo.

Nesta dissertação, focamos no desafio da classificação seletiva para redes neurais
profundas. A classificação seletiva envolve permitir que os modelos se abstenham de
fazer previsões de baixa confiança, o que pode melhorar significativamente seu desem-
penho e confiabilidade geral. Nossa pesquisa explora a otimização de estimadores de
confiança para classificadores fixos, com o objetivo de aprimorar suas capacidades de
detecção de erros de classificação. Propomos um novo estimador de confiança pós-
processamento, denominado p-NormSoftmax, que efetivamente transforma os logits
através da normalização com a norma p e do ajuste de temperatura, resultando em
um melhor desempenho na classificação seletiva.



OBJETIVOS

Neste trabalho, o objetivo geral é investigar o que torna um classificador de Apren-
dizado Profundo bom (ou ruim) em classificação seletiva e propor métodos para apri-
morar a capacidade de modelos treinados de alcançar um bom desempenho nesse
contexto.

Os objetivos específicos desta dissertação são:

1. Fornecer uma visão abrangente da importância da estimativa de incerteza no con-
texto de modelos de Aprendizado Profundo e suas aplicações.

2. Propor um estimador de confiança post-hoc simples e eficiente para classificação
seletiva;

3. Investigar por que alguns modelos são bons ou ruins em classificação seletiva.

METODOLOGIA

Neste trabalho foi apresentado um método para aumentar a habilidade de uma rede
neural de classificação de imagens em detectar possíveis erros. O método é construído
a partir de observações empíricas, e os resultados obtidos através da utilização de
redes pre-treindas disponibilizadas online e/ou treinando redes para alguns datasets.
As comparações foram feitas utilizando métricas de classificação seletiva e detecção
de erros de classificação. Ainda, são apresentadas propriedades relevantes para um
método como o proposto, como a eficiência de generalização e a robustez a datasets
de distribuições distintas ao treinamento.

RESULTADOS E DISCUSSÃO

Ao aplicar o método p-NormSoftmax como estimador de confiança post-hoc, observa-
mos uma melhoria média de 16% na área sob a curva risco-cobertura (AURC) entre
os classificadores testados. Além disso, para alguns modelos, as melhorias ultrapas-
saram 40%, demonstrando o potencial desse método para aprimorar substancialmente
o desempenho da classificação seletiva. Esses resultados promissores destacam a
importância das normas dos logits no papel de quantificar a incerteza.

Além disso, a análise do desempenho dos classificadores antes e depois da aplicação
do p-NormSoftmax revelou insights intrigantes sobre seu comportamento. Modelos
pré-treinados que apresentaram desempenhos diversos na detecção de erros de clas-
sificação ao depender da máxima probabilidade softmax (MSP) demonstraram uma
significativa convergência em seus níveis de desempenho após a utilização do p-
NormSoftmax. Isso sugere que o desempenho da classificação seletiva é amplamente
determinado pela precisão do modelo em cobertura total, e nosso estimador de con-
fiança proposto ajuda a preencher a lacuna entre a calibração dos modelos e suas
habilidades de classificação seletiva.



CONCLUSÃO

A efetividade e eficiência do método p-NormSoftmax tornam-no uma promissora adição
ao conjunto de técnicas de estimativa de incerteza para redes neurais profundas. Sua
implementação direta permite uma fácil aplicação pós-processamento em modelos
treinados, sem a necessidade de retreinamento. Essa praticidade é especialmente
vantajosa em aplicações do mundo real, onde retreinar um modelo pode não ser viável
ou prático.

Em geral, os resultados obtidos nesta tese contribuem significativamente para a com-
preensão da estimativa de incerteza em Aprendizado Profundo e suas implicações
para a classificação seletiva. O método p-NormSoftmax oferece uma valiosa solução
para abordar o problema de sobreconfiança exibido por alguns modelos, aprimorando
a confiabilidade dos sistemas de IA e promovendo sua integração mais segura em
domínios críticos. As percepções obtidas com esta pesquisa abrem caminhos para in-
vestigações futuras em aprendizado profundo consciente de incerteza e seu potencial
impacto em aplicações mais amplas de IA.



LIST OF FIGURES

Figure 1 – Examples of practical overconfident errors in Deep Learning classifi-
cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2 – Neural Networks schematics . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3 – Dropout method. For each iteration, a random group of parameters

is disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4 – Convolution Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5 – Visual Transformers architecture (DOSOVITSKIY et al., 2020) . . . . 26
Figure 6 – Types of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 7 – Calibration plots of a LeNet and a ResNet (GUO et al., 2017) . . . . 31
Figure 8 – Figures from (GALIL; DABBAH; EL-YANIV, 2023) comparing different

ImageNet classifiers in terms of uncertainty estimation. . . . . . . . 31
Figure 9 – Training an uncertainty estimator as a post-processing . . . . . . . . 33
Figure 10 – Variation of metrics with the Temperature). . . . . . . . . . . . . . . . 37
Figure 11 – RC curves for Temperature Scaling - VGG-19 for Cifar100. . . . . . . 38
Figure 12 – Histogram of the p-norms of logits for different p. . . . . . . . . . . . 39
Figure 13 – Comparison of AUROC between p-NormSoftmax and p-NormSoftmax*

for different values of p. Note that, for part (a), the optimum is obtained
for p = ∅. In this case, p-NormSoftmax reduces to the baseline, while
p-NormSoftmax* reduces to TS. . . . . . . . . . . . . . . . . . . . . 40

Figure 14 – RC curves of the proposed methods, the baseline and standard TS
for a ResNext101-32x8d . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 15 – A comparison of RC curves made by three models selected in (GALIL;
DABBAH; EL-YANIV, 2023), including examples of highest (ViT-L/16-
384) and lowest (EfficientNet-V2-XL) AUROC. After the application of
our post-hoc method, the apparent pathology in EfficientNet-V2-XL
completely disappears, resulting in significantly improved selective
classification performance. . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 16 – AURC and AUROC of all ImageNet models with respect to their ac-
curacy. ρ is the Spearman’s correlation between the metric and the
corresponding accuracy and the color indicates the valued of p that
optimizes each model. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 17 – Sample complexity curves: Average AUROC variation with number
of hold-out samples used, for a WideResNet50-2. Dashed lines rep-
resent the optimal AUROC for each method, i.e., the achieved value
when the optimization is made directly on the test set. Highlighted
regions (as well as the dotted lines) for each curve correspond to
percentiles 10 and 90. . . . . . . . . . . . . . . . . . . . . . . . . . . 46



Figure 18 – Gains of p-NormSoftmax (with optimal p) versus the mean of the logit
norms for each model. Colors represent the AUROC gain (×100). . 48



LIST OF TABLES

Table 1 – AUROC and AURC average gains for all considered ImageNet classi-
fiers. AURC gains are calculated as the reduction of AURC in relation
to the baseline. For both, the higher the better. . . . . . . . . . . . . . 42

Table 2 – Mean AURC (x1000) values for different confidence estimators (lower
is better; bold indicates the best result of each row) . . . . . . . . . . 44

Table 3 – Mean AUROC (x100) values for different uncertainty measures (higher
is better; bold indicates the best result of each row) . . . . . . . . . . 44

Table 4 – AUROC and AURC gains for ImageNet. AURC gains are calculated as
the reduction of AURC in relation to the baseline. For both, the higher
the better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 5 – p-NormSoftmax applied to a ResNet-50 under dataset shift. The target
accuracy is the one achieved for corruption level 0 (i.e., 80.86%). . . 47

Table 6 – Average AUROC and AURC gains for CIFAR-100. AURC gains are
calculated as the reduction of AURC in relation to the baseline. For
both, the higher the better. . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 7 – Results for all models evaluated on ImageNet . . . . . . . . . . . . . 61
Table 8 – Results for all models evaluated on CIFAR-100 . . . . . . . . . . . . . 65



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 THESIS STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1 CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 DEEP NEURAL NETWORKS . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 24
2.2.4 Visual Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 UNCERTAINTY IN DEEP LEARNING . . . . . . . . . . . . . . . . . . 26
2.3.1 Confidence estimation . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Selective Classification . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.4 Misclassification Detection . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 DO DNNS KNOW WHAT THEY DO NOT KNOW? . . . . . . . . . . . 30
2.5 IMPROVING UNCERTAINTY ESTIMATION . . . . . . . . . . . . . . 32
2.5.1 Temperature Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Sample Dependent Temperature Scaling . . . . . . . . . . . . . . . 33
2.5.3 Logits Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 PROPOSED METHODS . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 TEMPERATURE SCALING FOR SELECTIVE CLASSIFICATION . . 36
3.2 LOGITS NORMALIZATION . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 An heuristic for β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . 41
4.1 COMPARISON OF METHODS . . . . . . . . . . . . . . . . . . . . . . 41
4.2 COMPARISON OF MODELS . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 COMPARING UNCERTAINTY MEASURES . . . . . . . . . . . . . . 44
4.4 ABLATION FOR THE CENTRALIZATION STEP . . . . . . . . . . . . 44
4.5 DATA EFFICIENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 ROBUSTNESS TO DISTRIBUTION SHIFT . . . . . . . . . . . . . . . 46
4.7 RESULTS ON CIFAR-100 . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 WHEN—AND WHY—IS p-NORMSOFTMAX BENEFICIAL? . . . . . 48
5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



APPENDIX A – RESULTS . . . . . . . . . . . . . . . . . . . . . . . 60



14

1 INTRODUCTION

Over the last few decades, there has been a significant trend of computers
assuming roles that were previously exclusive to human. In recent years, a ground-
breaking technology, Deep Learning, has emerged as a pivotal driving force in this
paradigm shift. Demonstrating unprecedented capabilities, Deep Learning has proven
its ability to excel in exceptionally complex and critical tasks. Its achievements span a
wide array of domains, encompassing computer vision, natural language processing,
healthcare, and autonomous systems, among others. This surge in Deep Learning’s
accomplishments has effectively paved the way for a new era where machines actively
aid in accomplishing diverse tasks that were once solely reliant on human expertise.

As artificial intelligence models find their way into more and more critical appli-
cations, it becomes essential to know when we can truly rely on their outputs. Consider
a scenario where a patient visits a doctor seeking a diagnosis. In some cases, the
doctor might provide an inconclusive answer, prompting the need for further tests or a
second opinion. On the other hand, traditional machine learning algorithms tend to offer
definitive responses. This disparity underscores a vital aspect of a machine learning
algorithm: its capacity to express "I don’t know". Consequently, it becomes increasingly
crucial not only to obtain accurate predictions but also to quantify the level of uncertainty
associated with these predictions.

By being able to assess uncertainty, we gain valuable insights into the reliabil-
ity of the machine learning (ML) model’s predictions. This knowledge empowers us
to make more informed decisions and take appropriate actions, especially in critical
situations where erroneous or overly confident predictions could lead to detrimental
consequences. Uncertainty estimation in Deep Learning serves as a powerful tool,
bridging the gap between AI’s capabilities and human understanding, thus fostering
a safer and more dependable integration of AI technologies in real-world applications.
In summary, a reliable model must be able to identify cases where it is likely to make
an incorrect prediction and withhold the output to prevent a wrong decision(ZOU et al.,
2023; NEUMANN; ZISSERMAN; VEDALDI, 2018).

Unfortunately, it is well-known that modern deep neural networks often exhibit
overconfidence in their predictions (GUO et al., 2017; GOODFELLOW; SHLENS; SZEGEDY,
2014). In Figure 1, we can observe practical situations where real AI models demon-
strate overconfident errors. Particularly noteworthy is Figure 1a, which vividly exempli-
fies the potential disastrous consequences of misclassifications in critical applications
like autonomous driving. Furthermore, Figure 1b highlights that overconfidence is not
solely restricted to cases where the model should accurately predict classes seen
during training. It extends to situations where the model struggles to classify images
correctly, even for classes that were not encountered during training. This distinction
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(a) Semantic segmentation for au-
tonomous driving misclassification
(BLUM et al., 2021).

(b) Overconfident errors in image classifi-
cation (HENDRYCKS et al., 2021). The
true class is in black, while the predicted
class in red (with the associated confi-
dence).

Figure 1 – Examples of practical overconfident errors in Deep Learning classification.

becomes apparent as the top images in the figure correspond to classes seen in
the training data, while the bottom images represent samples from previously unseen
classes.

These findings emphasize the urgency of addressing the issue of overconfidence
in Deep Learning models and has motivated a lot of recent research in the general
subject of uncertainty estimation in deep learning (GAWLIKOWSKI et al., 2022; ZHANG,
X.-Y. et al., 2023; ABDAR et al., 2021). Nevertheless, the inherent complexity and non-
linear nature of deep neural networks make uncertainty estimation a challenging task.

The possibility of a model to abstain from likely wrong predictions is referred as
reject option (ZHANG, X.-Y. et al., 2023; MURPHY, 2022). In the literature, this prob-
lem is commonly addressed as the task of misclassification detection (HENDRYCKS;
GIMPEL, 2016), where the uncertainty estimator is treated as a binary classifier of
mistakes, or as selective classification (GEIFMAN; EL-YANIV, 2017), which refer to the
task of enhancing a classifier’s accuracy by abstaining from low-confidence predictions.
Although different metrics can be used, the problem is intrinsically the same.

In the case of neural networks with softmax outputs, which are by far the most
common framework of Deep Learning classifiers, the default approach is to treat the
outputs of the softmax function as probabilities and, from there, estimate the uncertainty.
Indeed, the natural baseline is to take the maximum softmax probability (MSP) as a
confidence estimator (GEIFMAN; EL-YANIV, 2017; HENDRYCKS; GIMPEL, 2016).

The vast majority of papers in the area attempt to improve upon this baseline by
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either modifying the training procedure or designing a specific architecture to provide
better uncertainty quantification. While such an approach is potentially optimal, the fact
that it requires retraining a model is a significant practical drawback. An alternative, less
explored approach is that of post-hoc learning a confidence estimator, which consists in
determining the confidence estimation method after the training and without changing
the prediction of the classifier. Papers that follow this approach typically construct a
meta-model that feeds on intermediate features of the base model and is trained to
predict whether or not the base model is correct on hold-out samples (CORBIÈRE et al.,
2022; SHEN et al., 2022). However, depending on the size of such a meta-model, its
training may still be computationally demanding.

Another very common approach is to make the use of ensembles (GAWLIKOWSKI
et al., 2022). Originally proposed to simply improve the general performance, ensemble
models have gained popularity in the field of uncertainty estimation as the variability
of predictions among different models can be used as an sign of uncertainty. More-
over, some ensemble techniques can be considered as post-hoc, such as Monte-Carlo
Dropout (GAL; GHAHRAMANI, 2016). However, the fact that multiple inference passes
need to be performed significantly increases the computational burden at test time.

In this work, we focus on simple post-hoc methods for confidence estimation that
can be computed directly from the network unnormalized logits (pre-softmax output).
This approach is practically appealing as it can be directly applied to any pre-trained
model with a Softmax activation function on the outputs. Such post-hoc methods are
common in the related (but fundamentally different) task of probability calibration, which
aims to provide probability estimates representative of the true likelihood of correctness.
The most prominent example is temperature scaling (TS) (GUO et al., 2017), a simple
and efficient logit-based method that requires tuning a single parameter and is shown to
be remarkably effective for calibration. The usefulness of TS for selective classification
has been investigated by (GALIL; DABBAH; EL-YANIV, 2023), who observed that,
depending on the model, TS may improve or harm selective classification performance.

1.1 OBJECTIVES

In this work, the general objective is to investigate what makes a Deep Learning
classifier good (or bad) at selective classification and propose methods to enhance the
ability of trained models to achieve good performance in this framework.

The specific objectives of this thesis are:

1. Provide a comprehensive overview of the importance of uncertainty estima-
tion in the context of deep learning models and their applications;

2. Propose a simple and efficient post-hoc confidence estimator optimized for
selective classification;
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3. Investigate why some models are good or bad at selective classification.

By addressing these objectives, this thesis aims to contribute to the existing
body of knowledge on uncertainty estimation in deep learning, providing insights and
practical guidelines for improving the reliability and interpretability of deep learning
models in various domains.

1.2 CONTRIBUTIONS

Inspired by (GALIL; DABBAH; EL-YANIV, 2023), we propose a post-hoc con-
fidence estimator that combines three previous ideas: temperature scaling, logit nor-
malization (WEI et al., 2022a) and logit centralization (JIANG; GU; PAN, 2023), the
latter two originally proposed as training techniques. We further extend these ideas by
considering a more general p-norm normalization and by optimizing the temperature
(as well as p) directly to improve selective classification performance. In addition, we
propose a simple heuristic to choose the temperature so that only p needs to be op-
timized. Our approach, named p-NormSoftmax, is practically appealing as it can be
applied to any existing model without retraining, requires tuning a single parameter, is
straightforward to implement, and is very data-efficient. Moreover, it can provide signifi-
cant gains in selective classification performance for a variety of existing models, with
the only considerable cost of having sufficient samples not used during training.

Our method apparently solves an intriguing problem reported in (GALIL; DAB-
BAH; EL-YANIV, 2023): some state-of-the-art ImageNet classifiers, despite attaining
excellent predictive performance, nevertheless exhibit appallingly poor performance at
misclassification detection. After applying our method, this issue completely disappears,
suggesting that such pathologies are fixable.

In summary, the contributions of this work are:
• We investigate the trade-off between calibration and selective classification

metrics in the context of temperature scaling and show that selective classifi-
cation performance can be improved by disregarding calibration and directly
optimizing a selective classification metric;

• We propose a simple and efficient post-hoc confidence estimator optimized
for selective classification;

• An experimental study of the selective classification performance of 84 Ima-
geNet classifiers, showing an average gain of 16% in AURC after the appli-
cation of our method;

• A comparison of these models showing that, after p-NormSoftmax, all mod-
els exhibit approximately the same level of misclassification detection perfor-
mance.
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1.3 RELATED WORKS

Selective prediction is also known as learning with a reject option (see (ZHANG,
X.-Y. et al., 2023; HENDRICKX et al., 2021) and references therein), where the rejector
is usually a thresholded confidence estimator. Essentially the same problem is studied
under the equivalent terms misclassification detection (HENDRYCKS; GIMPEL, 2016),
failure prediction (CORBIÈRE et al., 2022; ZHU et al., 2022), and (ordinal) ranking
(MOON et al., 2020; GALIL; DABBAH; EL-YANIV, 2023). Uncertainty estimation is a
more general term that encompasses these tasks (where confidence may be taken as
negative uncertainty) as well as other tasks where uncertainty might be useful, such
as calibration and out-of-distribution (OOD) detection, among others (GAWLIKOWSKI
et al., 2022; ABDAR et al., 2021). These tasks are generally not aligned: for instance,
optimizing for calibration may harm selective classification performance (DING et al.,
2020; ZHU et al., 2022; GALIL; DABBAH; EL-YANIV, 2023). Our focus here is on in-
distribution selective classification, although we also study robustness to distribution
shift. While most approaches consider the base model as part of the learning problem
(GEIFMAN; EL-YANIV, 2019; HUANG; ZHANG, C.; ZHANG, H., 2020; LIU, Z. et al.,
2019), we focus on simple post-hoc estimators that can be computed from the logits1.
Note that, from a post-hoc perspective, other tasks can be treated as independent
problems.

A popular tool in the uncertainty literature is the use of ensembles (LAKSHMI-
NARAYANAN; PRITZEL; BLUNDELL, 2017; GAL; GHAHRAMANI, 2016; TEYE; AZ-
IZPOUR; SMITH, 2018; AYHAN; BERENS, 2018). While constructing a confidence
estimator from ensemble component outputs may be considered post-hoc if the en-
semble is already trained, recent work has found evidence that ensembles may not be
fundamental for uncertainty but simply better predictive models (ABE et al., 2022; CAT-
TELAN; SILVA, 2022; XIA; BOUGANIS, 2022). Thus, we do not consider ensembles
here.

Applying TS to improve calibration (of the MSP confidence estimator) was pro-
posed in (GUO et al., 2017) based on the negative log-likelihood. Optimizing TS for
other metrics has been explored in (MUKHOTI et al., 2020; KARANDIKAR et al., 2021;
CLARTÉ et al., 2023) for calibration and in (LIANG; LI; SRIKANT, 2023) for OOD
detection, but had not been proposed for selective classification. A generalization of
TS is adaptive TS (ATS) (A. BALANYA; RAMOS; MAROÑAS, 2023), which uses an
input-dependent temperature based on logits. Our approach can be seen as a special
case of ATS, as logit norms may be seen as an input-dependent temperature; however
(A. BALANYA; RAMOS; MAROÑAS, 2023) investigate a different temperature function
than ours and focuses on calibration. Other logit-based confidence estimators proposed
1 Interestingly, (FENG, Leo et al., 2023) has found that, for some of these approaches, MSP is still the

best selective mechanism after the base model is trained.
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for calibration and OOD detection include (LIU, W. et al., 2020; TOMANI; CREMERS;
BUETTNER, 2022; RAHIMI et al., 2022; NEUMANN; ZISSERMAN; VEDALDI, 2018;
GONSIOR et al., 2022).

Normalizing the logits with the L2 norm before applying the softmax function was
used in (KORNBLITH et al., 2021) and later proposed and studied in (WEI et al., 2022a)
as a training technique (combined with TS) to improve OOD detection and calibration.
A variation where the logits are normalized to unit variance was proposed in (JIANG;
GU; PAN, 2023) to accelerate training.

Benchmarking of models in their performance at selective classification (and/or
misclassification detection) has been done in (GALIL; DABBAH; EL-YANIV, 2023; DING
et al., 2020), however these works mostly consider the MSP as the confidence esti-
mator. In the context of calibration, (WANG; FENG, Lei; ZHANG, M.-L., 2021) and
(ASHUKHA et al., 2020) have argued that models should be compared after simple
post-hoc optimizations, since models that appear worse than others can sometimes
easily be improved by methods such as TS. Here we advocate and provide further
evidence for this approach in the context of selective classification.

1.4 THESIS STRUCTURE

The organization of this thesis is the follow:
• In Chapter 2, a background together with a literature review on the important

topics to understand the proposed methods are presented;

• In Chapter 3, the proposed methods are introduced and discussed;

• Chapter 4 brings the results and discussion;

• Chapter 5 concludes the thesis.
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2 BACKGROUND

This chapter aims to revisit and introduce the theory and practice of deep learn-
ing and classification modern approaches.

2.1 CLASSIFICATION

The goal of classification is to take an input xxx and to assign it to one of the C
discrete possible classes. Let P be a distribution over X×Y, where X is the inputs space
and Y = {1,2,..,C} is the label space. A classifier is a prediction function h : X → Y. A
very common risk function associated to a classifier is the zero-one loss, defined as:

ℓ01(y ,h) = I(y ̸= h) (1)

where I denotes the indicator function and y ∈ Y is the true label. Note that the mean
zero-one loss is equivalent to 1 minus the accuracy. This risk can also be referred as
the Top-1 Error, as it measures the error when considering only one class predicted by
the classifier.

The bayesian optimal decision rule for choosing h(x) based on ℓ01 is given by
(MURPHY, 2022):

h(x) = arg max
c∈Y

p(c|x). (2)

Unfortunately, in general we do not know the distribution P and, consequently,
the posterior distribution p(y |x) = P(x ,y )/p(x). For that reason, our goal to construct a
parametric function pθ : X → [0,1]C that tries to emulate the real posterior distribution
and, consequently, achieves good classification performance.

In summary, we want to select the parameters θ that makes pθ (most as possible)
equal to p. Therefore, one approach is to minimize the Kullback-Leibler (KL) divergence
between both probabilities distributions:

KL(p||qθ) ≜
∫

x ,y∈X×Y
p(y |x)log

(
p(y |x)

pθ(y |x ,θ)

)
, (3)

θ
∗ = arg min

θ

KL(p||pθ). (4)

Generally, instead of the entire space X , one has access to N samples, forming
the dataset D = {(x i , yi )Ni=1} ∼ P(x ,y). Moreover, in supervised learning, the input is
generally associated with the truth label with probability 1, i.e., the vector of probabilities
is defined with one-hot encoding. From that, we can rewrite equation (3) and define
L(pθ(y |x ,θ),D), known as Negative Log Likelihood (NLL) or Cross Entropy Loss:

LNLL(pθ,D) ≜ –
N∑

i=1

log(pθ(y |x ,θ)). (5)
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Thus, minimizing L is equivalent to minimizing KL divergence in D. Furthermore,
we can rewrite Equation (5) as:

LNLL(pθ,D) = –log

 N∏
i=1

pθ(y |x ,θ)

 . (6)

Being the logarithm a monotonic function, minimizing LNLL is equivalent to the
method of Maximum Likelihood Estimation (MLE), i.e., choosing the parameters that
maximizes the probabilities of the correct labels or each input.

Note that, since pθ maps the input to a probability distribution over the C possible
labels, we must require that 0 ≤ pθ(c) ≤ 1 for each c and

∑C
c=1 pθ(c) = 1. To ensure

these constraints, it is common in Machine Learning to construct a function fθ : X → RC

and convert it outputs to probabilities using the Softmax function, defined as:

σ : RC → [0,1]C , σk (z) =
ezk∑C
j=1 ezj

, k ∈ {1, . . . , C} (7)

where σk (z) denotes the k th element of the vector σ(z).
Thus:

pθ(c|x) = σc(fθ(x)). (8)

The input of the Softmax function i.e., the “raw” outputs of the classifier, is re-
ferred as the logits vector.

2.2 DEEP NEURAL NETWORKS

The primordial of neural networks goes back to the invention of the computational
neuron, a.k.a. perceptron (ROSENBLATT, 1958), defined as f (x ; w ,b) = H(wT x + b),
where H is the Heaviside step function and w and b are learnable parameters. The
perceptron, which is represented in Figure 2a, was first introduced as a deterministic
binary classifier, attached to a derivative-free learning algorithm. However, (MINSKY;
PAPERT, 1969) showed some limitations of this algorithm; specially, they presented the
XOR problem as an impossible problem to be solved with the perceptron.

To approach more complex problems, the main idea is to stack multiple neurons
on top of each other. Moreover, in order to make the model differentiable, the Heaviside
function must be replaced by an differentiable activation function φ : R→ R. Thus, the
multilayer perceptron is defined as a system with L layer such that:

z l = φl (bl + W lz l–1) (9)

where z l is the output and W l and bl are learnable parameters of the layer l . Being z0
the input x , the multiplayer perceptron is thus defined as a model f (x ;θθθ) = zL, where
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Figure 3 – Dropout method. For each iteration, a random group of parameters is dis-
abled.

L(f ,D) =
1
N

N∑
i=1

ℓ(ŷ (xi ),yi ). (11)

Commonly, Deep Learning systems can have millions parameters. Therefore,
their optimization must be made with efficient procedures. The most common algorithm
is the Stochastic Gradient Descent (SGD), an iterative method that uses the gradient
information to minimize the loss function:

θθθ
k+1 = θθθ

k – η∇⃗θL(f
θk ,D) (12)

where k is the current iteration and η is the learning rate, a hyper-parameter. One
simple heuristic to improve SGD’s convergence is to add momentum, implemented as
follows:

mk = βmk–1 + ∇⃗θL(f
θk ,D) (13)

θθθ
k+1 = θθθ

k – ηmk (14)

where β is a hyperparameter. The gradients are calculated using the well known back-
propagation algorithm.

2.2.1 Dropout

Often, DNN’s have millions of parameters, possibly resulting in overfitting. One
popular heuristic for decreasing overfitting in dropout, in which parameters are radomly
omitted each time an inference is made during training time. More precisely, if θl ,i ,j is
an element of θl positioned in row i and column j (i.e., that connects node i in layer l – 1
to node j in layer j), we replace it by θ̃l ,i ,j = θl ,i ,jεl ,i , where εl ,i ∼ Ber (1 – p), where Ber
is the Bernoulli distribution and p is the drop probability. During test time, p is set to 0,
and thus all parameters are considered.



Chapter 2. Background 24

2.2.2 Batch Normalization

In order to turn training faster and more stable, it is common to add normalization
layers, which force the empirical mean and variance of groups of activations. The most
popular operator in this family is batch normalization, that ensures the distribution of the
activations within a layer has zero mean and unit variance, when averaged across the
samples in a mini-batch. Given a batch B, it first computes the mean μB and variance
σ2
B of activation z across the batch:

μB =
1

|B|

∑
z∈B

z (15)

σ
2
B =

1
|B|

∑
z∈B

(z – μB)2. (16)

From it, the activation layer z is replaced by z̃ , which is computed as follow:

z̃ = γ ⊙ z – μB√
σ2
B + ε

+ β (17)

where ε > 0 is a small constant and β and γ are learnable parameters for this layer.
Note that this normalization is defined across a batch, and thus it can be done only
during training. During test time inferences, the operation is made using fixed means
and variances. These values are estimated with a moving average over the training set.

2.2.3 Convolutional Neural Networks

When dealing with images, MLPs generally do not scale well. For an image
x ∈ RW ,H,C , where W is the width, H is the height and C is the number of input
channels (generally 3 for RBG color), we would need (W × H × C + 1) parameters
for each hidden unit in the first layer θ1. This is very inefficient. Moreover, one key
important property of common image applications is the translation equivariance, i.e.,
patterns must be recognized wherever they occur in the input. However, as the weights
of MLPs are not shared across locations, a pattern that occurs in one location may not
be recognized when it occurs in a different location. To solve these problems, (LECUN;
BENGIO, et al., 1995) proposed Convolutional Neural Networks (CNNs)1, in which the
matrix multiplications are replaced by convolution operations.

Convolution layers consist in applying the same weight matrix (called kernel or
filter) to each local patch of the image. This weight matrix is convoluted with the image.
For the l ’th layer, Dl kernel’s are independently convolved with the image. Thus, W l is
usually a 4d matrix (one dimension for each dimension of the image and one dimension
1 The core idea can be attributed to the previous work by (FUKUSHIMA, 1980)
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Input

Kernel

Output / Feature Map

Figure 4 – Convolution Process

corresponding d corresponding to the number of filters). The output z l is calculated as
z l = φl (z l–1 ⊛ W l + bl ), where the element zl ,i ,j ,d is calculated as:

z i ,j ,d = φl (bl ,d +
Hl–1∑
a=0

Wl–1∑
b=0

Dl–1∑
c=0

zl–1,si+a,sj+b,cwl ,a,b,c,d ) (18)

where s is called the stride.
In order to reduce the dimension of some feature maps and to provide location

invariance, a pooling layer (e.g., Max pooling) is generally applied.

2.2.4 Visual Transformers

The Transformer architecture (VASWANI et al., 2017) is based on the attention
operation. The main idea of Attention is to make the weights dependent on the input,
i.e., z = φ(W (x)x). Generally, this is made by defining three variables: the Query
Q ∈ RNq×Dk , the key K ∈ RNv×Dk and the value V ∈ RNv×Dv , calculated respectively
as W qx , W kx and W v x , where W q, W k and W v are trainable matrices. The attention
is then calculated as:

Attention(Q,K ,V ) = σ

(
QK T√

Dk

)
· V (19)

where the softmax function is applied row-wise.
After years of success and dominance of convolutional neural networks, (DOSO-

VITSKIY et al., 2020) proposed to apply the idea of Transformers, which was already
widely used for natural language processing, to images recognition. Since then, Visual
Transformers (ViTs) have achieved state of the art performance in these tasks. The
main idea of the ViT is to chop the input image into flattened patches, map it into a
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Figure 5 – Visual Transformers architecture (DOSOVITSKIY et al., 2020)
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Figure 6 – Types of Uncertainty

embedding space and then pass these set of embeddings to a transformer. Figure 5
show the basic architecture of a ViT.

2.3 UNCERTAINTY IN DEEP LEARNING

As discussed in chapter 1, there are many reasons for a model to be uncertain
about a sample during inference. Conventionally, uncertainty is divided in two forms:
epistemic uncertainty (a.k.a model uncertainty), when the model has limited knowledge
and would benefit of more training data, and aleatoric uncertainty (a.k.a data uncer-
tainty), the uncertainty intrinsically related to the data. Figure 6 illustrates these kinds
of uncertainty in a binary classification framework.

Although separating the origin of these uncertainties can be useful for some
applications (such as active learning), if our intention is just to infer how much we
should trust a prediction, this division is irrelevant. In other words, we are interested in
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knowing when a model is uncertain, and not why.
As described in Section 2.1, our intention in classification is to estimate p(y |x),

called predictive uncertainty. Ideally, pθ(y |x), should reflect the model’s total uncertainty.

2.3.1 Confidence estimation

As defined previously, Deep Learning Classifiers will have as output a layer
zL (from now one referred only as z or as the logits vector), corresponding to a vector
where each component correspond to a class, and from which the prediction is obtained
as the class with the maximum attributed value, i.e., h(x) = arg maxk∈Y zk . Besides the
prediction, we want to estimate how confident is the model on this classification based
on the values outputed. Based on the network construction and the training procedure
(where the minimization of the Cross Entropy Loss is equivalent to maximizing the
maximum value after the Softmax function), the most popular confidence estimator is
arguably the maximum softmax probability (MSP) (DING et al., 2020), also known as
maximum class probability (CORBIÈRE et al., 2022) or softmax response (GEIFMAN;
EL-YANIV, 2017)

g(x) = MSP(z) ≜ max
k∈Y

σk (z) = σŷ (z) (20)

where ŷ = arg maxk∈Y zk .
However, other functions of the logits can be considered. Some examples are the

softmax margin (SM)(BELGHAZI; LOPEZ-PAZ, 2021; LUBRANO et al., 2023), the max
logit (HENDRYCKS et al., 2022), the logits margin (LM) (STREETER, 2018; LEBOVITZ
et al., 2023), the negative entropy (NE)2 (BELGHAZI; LOPEZ-PAZ, 2021), defined,
respectively, as

SM(z) ≜ σŷ (z) – max
k∈Y:k ̸=ŷ

σk (z) (21)

MaxLogit(z) ≜ zŷ (22)

LM(z) ≜ zŷ – max
k∈Y:k ̸=ŷ

zk (23)

NE(z) ≜
∑
k∈Y

σk (z) logσk (z). (24)

2.3.2 Calibration

All the presented training framework for classification was considering the clas-
sifier’s outputs as probabilities distributions. Hence, we would like that these outputs
indeed reflect the true probability of a class.
2 Note that any uncertainty estimator can be used as a confidence estimator by taking its negative.
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Consider a classifier h : X → Y and a confidence estimator π : X → [0,1]. We
say that π is calibrated (GUO et al., 2017; GAWLIKOWSKI et al., 2022) if

P[h(x) = y | π(x) = p] = p, ∀p ∈ [0, 1], (x , y ) ∼ P. (25)

In practice, empirical measures of calibration are used, based on a test dataset
{(xi , yi )}Ni=1 drawn i.i.d. from P. The most popular one is arguably the expected calibration
error (ECE) (NAEINI; COOPER; HAUSKRECHT, 2015), which is computed by grouping
predictions into M equal-sized interval bins Bm = {i ∈ {1, . . . , N} : π(xi ) ∈ (m–1

M , m
M ]},

m = 1, . . . ,M, and then taking a weighted average of the difference between accuracy
and confidence in each bin:

ECE =
M∑

m=1

|Bm|
N

∣∣acc(Bm) – conf(Bm)
∣∣ (26)

where acc(Bm) = 1
|Bm|

∑
i∈Bm

I[h(xi ) = yi ] and conf(Bm) = 1
|Bm|

∑
i∈Bm

π(xi ).

2.3.3 Selective Classification

Let P be an unknown distribution over X × Y, where X is the input space and
Y = {1, . . . , C} is the label space, and C is the number of classes. A classifier is a
prediction function h : X → Y. The classifier’s (true) risk is R(h) = EP [ℓ(h(x), y )], where
ℓ : Y × Y → R+ is a given loss function, for instance, the 0/1 loss ℓ(ŷ , y) = I[ŷ ̸= y ],
where I[·] denotes the indicator function.

A selective classifier (GEIFMAN; EL-YANIV, 2017) is a pair (h, g), where h is
a classifier and g : X → R is a confidence estimator (also known as confidence
score function or confidence-rate function), which quantifies the model’s confidence
on its prediction for a given input. For some fixed threshold t , given an input x , the
selective model makes a prediction h(x) if g(x) ≥ t , otherwise it abstains from making
a prediction. We say that x is selected in the former case and rejected in the latter. A
selective model’s coverage φ(h, g) = P[g(x) ≥ t ] is the probability mass of the selected
samples in X , while its selective risk R(h,g) = EP [ℓ(h(x), y) | g(x) ≥ t ] is its risk
restricted to the selected samples. In particular, a model’s risk equals its selective risk
at full coverage (i.e., for t such that φ(h, g) = 1). These quantities can be evaluated
empirically given a given a test dataset {(xi , yi )}Ni=1 drawn i.i.d. from P, yielding the
empirical coverage φ̂(h, g) = (1/N)

∑N
i=1 I[g(xi ) ≥ t ] and the empirical selective risk

R̂(h,g) =
∑N

i=1 ℓ(h(xi ), yi )I[g(xi ) ≥ t ]∑N
i=1 I[g(xi ) ≥ t ]

. (27)

Note that, by varying t , it is generally possible to trade off coverage for selective
risk, i.e., a lower selective risk can usually (but not necessarily always) be achieved if
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more samples are rejected. This tradeoff is captured by the risk-coverage (RC) curve
(GEIFMAN; EL-YANIV, 2017), a plot of R̂(h,g) as a function of φ̂(h, g).

While the RC curve provides a full picture of the performance of a selective clas-
sifier, it is convenient to have a scalar metric that summarizes this curve. A commonly
used metric is the area under the RC curve (AURC) (DING et al., 2020; GEIFMAN;
UZIEL; EL-YANIV, 2019). However, when comparing selective models, if two RC curves
cross, then each model may have a better selective performance than the other depend-
ing on the operating point chosen, which cannot be captured by the AURC. Another
interesting metric, which forces the choice of an operating point, is the selective accu-
racy constraint (SAC) (GALIL; DABBAH; EL-YANIV, 2023), defined as the minimum
coverage required for a model to achieve a specified accuracy.

2.3.4 Misclassification Detection

Misclassification detection (HENDRYCKS; GIMPEL, 2016), which refers to the
problem of discriminating between correct and incorrect predictions made by a classi-
fier, is closely related to selective classification. Both tasks rely on ranking predictions
according to their confidence estimates, where correct predictions should be ideally
separated from incorrect ones. More precisely, if (x1, y1), (x2, y2) ∈ X ×Y are such that
ℓ(h(x1), y1) > ℓ(h(x2), y2), then we would like to have g(x1) < g(x2), i.e., an optimal g
orders samples in decreasing order of their losses. In the case of the 0/1 loss, a natural
metric of ranking performance (GALIL; DABBAH; EL-YANIV, 2023) is the area under
the ROC curve (AUROC) (FAWCETT, 2006) for misclassification detection. The ROC
curve is the plot of the true positive rate (TPR) against the false positive rate (FPR), at
various threshold settings. It can be shown that the AUROC can be calculated through
the following formula:

AUROC =

∑n+

i=1
∑n–

j=1 I [g+
i > g–

j ]

n+n– (28)

where g+ is the confidence of the samples where the prediction is correct, g+ the
confidence for the misclassification and n+ and n– are the number of samples for each
case. From this equation, we can write AUROC as the probability that the model give a
higher confidence for the correct classification than for the wrong ones:

AUROC = P[g1 > g2|ℓ1 < ℓ2]. (29)

Note that this metric is blind to the classifier performance and focuses exclu-
sively on the quality of the confidence estimates, i.e., given a fixed classifier h, different
confidence estimators g can be compared in their ranking performance. Thus, misclassi-
fication detection can also be seen as a proxy problem on which to evaluate confidence
estimators for selective classification. Indeed, (DING et al., 2020) propose the following
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theorem: For any two models A and B of the same accuracy and their uncertainties
measured by arbitrary methods (which can be different for A and B), the curve of A
dominates that of B in the ROC space, if and only if the curve of A dominates that of
B in the Risk-Coverage space. Thus, comparing in AUROC or AURC domain lead to
similar results.

2.4 DO DNNS KNOW WHAT THEY DO NOT KNOW?

The Bayesian framework discussed in Section 2.3 reveals that conventional
training of Deep Learning classifiers generally lacks explicit information regarding epis-
temic/model’s uncertainty. Consequently, there remains theoretical indeterminancy as
to whether and when p(y |x, θ∗) alone is sufficient or informative for uncertainty estima-
tion.

When employing Maximum Likelihood Estimation for training, neural networks
are typically trained to produce binary probabilities (1’s or 0’s) for the classes, often
resulting in near-zero loss values. As a consequence, such training procedures can lead
to an overconfident behavior in these systems. Additionally, theoretical findings indicate
that architectures employing ReLU as an activation function are prone to becoming
overconfident (HEIN; ANDRIUSHCHENKO; BITTERWOLF, 2019) for some regions out
of training distribution. Moreover, certain inputs can be intentionally modified to achieve
confident misclassifications, a technique known as adversarial attack (CHAKRABORTY
et al., 2018).

To investigate whether Deep Learning classifiers can quantify their uncertainty
in a proper way, multiple empirical results have been made over the last years. In
(GUO et al., 2017), the authors show that modern architectures are poorly calibrated.
Figure 7 shows the binned reliability diagram (as defined in Section 2.3.2) of a ResNet,
considered a modern CNN, and a LeNet, considered a primitive CNN. As it can bee
seen, while the probabilities predicted by the LeNet are calibrated, the ResNet returns
values higher than the real rate of correct predictions.

Following (GUO et al., 2017) analysis, (MINDERER et al., 2021) investigated the
calibration of newer Deep Learning classifier - more specifically, Visual Transformers.
The conclusions are that these models are actually well calibrated. Furthermore, several
recent works have pointed to Visual Transformers as being more robust and better at
uncertainty estimation than Convolutional Neural Networks (BHOJANAPALLI et al.,
2021).

The comparisons between different classification models were extended by
(GALIL; DABBAH; EL-YANIV, 2023), where the authors compared 523 classifiers of
ImageNet in the context of calibration and selective classification. The main conclusions
are:
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Figure 7 – Calibration plots of a LeNet and a ResNet (GUO et al., 2017)

(a) Comparison between the
RC curve of different 3
models.

(b) Relation between total ac-
curacy and SAC for accu-
racy 99%

(c) Relation between selective
classification and calibra-
tion.

Figure 8 – Figures from (GALIL; DABBAH; EL-YANIV, 2023) comparing different Ima-
geNet classifiers in terms of uncertainty estimation.

• Some models are innately best at selective classification;

• The correlations between ECE and the accuracy or the number of model
parameters are nearly zero;

• The best model in terms of AUROC or SAC is not always the best in terms of
calibration;

• Certain architectures are more inclined to perform better or worse at uncer-
tainty estimation, and the correlations between AUROC, ECE, accuracy and
the number of parameters are dependent on the architecture analyzed.

The first item is well exemplified by Figures 8a and 8b. As it can be seen, some
models can have best accuracy but worst uncertainty estimations, resulting in worst
performance for low coverages. Figure 8c is directly related to the last item. As it can
be seen, there is some negative correlation between AUROC and ECE.
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The trade-off between the model structure and size with the uncertainty estima-
tion capacity have been reported for other works as well (DING et al., 2020). Further-
more, it remains unknown the exact reasons of why some models are better or worse
in these tasks than others.

2.5 IMPROVING UNCERTAINTY ESTIMATION

As noticed, many Deep Learning models are bad in estimating uncertainty, both
for selective classification and calibration. Hence, multiple methods to mitigate these
issues have been proposed.

Maybe the most popular way to attack uncertainty estimation is with the use of
ensemble. Although these methods have shown good results in increasing robustness,
recent results indicates that the best selective mechanism in ensembles is to use their
probabilities response (CATTELAN; SILVA, 2022). Indeed, Deep Ensemble (LAKSHMI-
NARAYANAN; PRITZEL; BLUNDELL, 2017), usually considered as the state of the art
of uncertainty estimation, can be shown to achieve the same performance in estimating
confidence than simply a larger network (ABE et al., 2022; XIA; BOUGANIS, 2022).

In order to mitigate possible overconfidence due to the Cross Entropy Loss, some
works aim to develop alternative training recipes (ZHU et al., 2022) and/or loss functions
(MUKHOTI et al., 2020; WANG; FENG, Lei; ZHANG, M.-L., 2021). In fact, some of these
losses achieve success in calibrating the neural network; however, (WANG; FENG,
Lei; ZHANG, M.-L., 2021) show that these approaches can reduce the potential for
improvement of the models , i.e., when comparing the models with simple post-hoc
optimizations (such as Temperature Scaling), using alternative losses can lead to worst
results. Thus, the authors propose the concept of calibratable, i.e., instead of comparing
models by their calibration, one should compare it by how calibrated can it be after
simple post-hoc techniques. In practice, it follows (ASHUKHA et al., 2020) methodology:
“Comparison [...] should only be performed at the optimal temperature.”

For selective classification, one possible approach is to train a reject option in
parallel with the classifier (ZHANG, X.-Y. et al., 2023). Some works attempt to train
from scratch both heads together (GEIFMAN; EL-YANIV, 2019; DEVRIES; TAYLOR,
2018). However, recent results have shown that, for these networks, the best selective
mechanism is to use the classifier outputs and discard the trained g (FENG, Leo et al.,
2023). Thus, this approach becomes simply a new training loss approach.

As in general a model is trained to maximize its prediction performance, we
would like to, after training, train separately the uncertainty estimator (or enhance the
performance of the model’s one) without harming the classifier’s accuracy. This can
be done using what we call post-hoc methods. One line of work is to develop a MLP
exclusively for the selective mechanism (CORBIÈRE et al., 2022). Other approaches
apply simple and efficient optimizations in order to enhance the selective classification
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Figure 9 – Training an uncertainty estimator as a post-processing

performance. The most popular post-hoc method is called Temperature Scaling.
Figure 9 shows an illustration of this approach. Note that, although the figure

shows a MLP confidence estimator connected to a hidden layer of the classifier, the
connection and the architecture are arbitrary; indeed, in this work the only approach is
to consider methods with few parameters using only the logits vector.

2.5.1 Temperature Scaling

Temperature scaling (TS) (GUO et al., 2017) is a post-processing method that
consists in, for a fixed trained classifier, transforming the logits as z′ = z/T , before ap-
plying the softmax function. The parameter T , called the temperature, is then optimized
over a hold-out dataset {(xi , yi )}Ni=1 (not used during training of the classifier). An im-
portant property of this method is that it does not change the model’s predictions. The
conventional way of applying TS, as proposed in (GUO et al., 2017) for calibration and
referred to here as standard TS, consists in optimizing T with respect to the negative
log-likelihood (NLL) (MURPHY, 2022)

L = –
N∑

i=1

log
(

(σ(z i /T ))ŷ
)

(30)

where z i = f (xi ).

2.5.2 Sample Dependent Temperature Scaling

The Adaptive Temperature Scaling (ATS) method consists in, instead of a con-
stant temperature T , use a different temperature for each sample:
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z ′ =
z

T (z)
. (31)

With that, T (z) can be defined as a MLP Tθ(z) and trained as a post-hoc method
(JOY et al., 2023). Alternatively, (A. BALANYA; RAMOS; MAROÑAS, 2023) propose to
use analytical functions in terms of the logits directly.

2.5.3 Logits Normalization

Normalizing logits for training was first seen in (KORNBLITH et al., 2021), but
was proposed as a method to mitigate overconfidence in (WEI et al., 2022a). (WEI et al.,
2022a) argued that, as training progresses, a model will tend to become overconfident
on correctly classified training samples by increasing ∥z∥2, a phenomenon that they
confirmed experimentally. The authors, thus, propose to mitigate the issue of overconfi-
dence by normalizing (using L2 norm) the logits during the training, before applying the
Softmax function (and calculating the Cross Entropy Loss).

The reasoning in (WEI et al., 2022a) is that the predicted class depends only
on z̃ = z/∥z∥2, but the training loss on correctly classified training samples can still be
decreased by increasing ∥z∥2 while keeping z̃ fixed. Thus, the model would become
overconfident on those samples, since increasing ∥z∥2 also increases the confidence
(as measured by MSP) of the predicted class. Indeed, (WEI et al., 2022a) verified
experimentally that the average magnitude of logits (and therefore also the average
2-norm) tends to increase during training. Thus, the authors propose to redefine the
Cross Entropy Loss as:

ℓLN = –log
ezy /(τ||z ||2)∑C
i=1 ezi /(τ||z ||2)

where τ is an hyperparameter equivalent to the temperature. With this, the results
indicates considerable gain in OOD detection, which refers to the task of identifying
samples for neither of the possible classes (ZOU et al., 2023). It is worth noting that, in
inference time, the authors do not normalize the logits - i.e., the traditional MSP is used.
Additionally, the method allows better calibration after Temperature Scaling.

(JIANG; GU; PAN, 2023) proposed a similar idea to (WEI et al., 2022a), although
the goals of their work had no relation to uncertainty estimation. They propose a nor-
malization to the Softmax function in order to get better training:

NormSoftmax(z) = σ

( √
Cz

||z – μ(z)||2

)
where μ(z) is the logits mean over all classes. In (WEI et al., 2022b), the authors
propose to clip the Lp-norm of the logits by adding a constraint in the optimization
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function. Although the proposed idea use the norm order as a hyperparameter, the
authors just present results for the L1 and L2 norms.
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3 PROPOSED METHODS

Based on the relative success of post-hoc methods for calibration and OOD
detection, in this chapter we propose to apply post-hoc optimization seeking selective
classification performance directly.

3.1 TEMPERATURE SCALING FOR SELECTIVE CLASSIFICATION

As presented in Section 2.5.1, the standard TS consists in optimizing the tem-
perature T with respect to the NLL loss in a hold-out dataset. However, although
this method can improve misclassification detection for most cases, it can be harm-
ful (GALIL; DABBAH; EL-YANIV, 2023; ZHU et al., 2022). Thus, we propose to optimize
selective classification metrics directly, instead of NLL. Since a single parameter needs
to be tuned, this can easily be done via grid search. From now on, we will refer to
the standard TS as TS-NLL, while TS-AURC indicates optimizing the temperature with
respect to the AURC and TS-AUROC to the AUROC.

Figure 10 shows how the behavior of different metrics as a function of the tem-
perature T for a ViT-H-4 (DOSOVITSKIY et al., 2021) model evaluated in ImageNet. In
this case, optimizing NLL can lead to better, but not optimal, selective classification per-
formance, measured in terms of AURC and AUROC. Also, it can be seen that optimizing
ECE does not necessarily help, illustrating our point that these two problems should
be treated independently. In Figure 11, it can be seen an example where the Stan-
dard Temperature Scaling can harm selective prediction performance. Finally, it can
be seen that AURC and AUROC exhibit practically identical behavior with temperature,
suggesting that they are equally good to be used as the objective.

3.2 LOGITS NORMALIZATION

First, we note that, following (WEI et al., 2022a) argument that the norms are re-
sponsible for overconfidence, normalizing the logits can be used as a post-hoc process,
although being proposed originally as a training routine adaptation.

Additionally, we remark that (WEI et al., 2022a) argument holds unchanged
for any Lp normalization, as nothing in their analysis requires p = 2. On the other
hand, note that the argument in (WEI et al., 2022a) discussed above becomes more
compelling when the logit vector z has zero mean across components. After all, adding
an (input-dependent) constant to z has no impact on the training loss but affects the
p-norm. This fact has been recognized by (JIANG; GU; PAN, 2023) in their discussion
of LogitNorm. Thus, we apply centralization to the logits.

In conclusion, (WEI et al., 2022a) and (JIANG; GU; PAN, 2023) logits normaliza-
tion can be adapted to using the following sequence of transformations on the logits:
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Figure 10 – Variation of metrics with the Temperature).

centralization (z ← z – μ(z)), p-normalization (z ← z/∥z∥p) and temperature scaling
(z ← βz). From that, we propose to use the MSP as a confidence estimator:

z ′ = β
(z – μ(z))
∥z – μ(z)∥p

, g(x) = MSP(z ′) (32)

where
μ(z) ≜ (z1 + · · · + zC)/C (33)

and
∥z∥p ≜ (|z1|p + · · · + |zC |p)1/p (34)

and, thus, p can be optimized in a hold-out set similarly to temperature scaling method.
Note that, in (WEI et al., 2022a), β (in their work defined through τ = β–1) is defined
as a hyperparameter. Gathering with the idea of temperature scaling, we propose to
optimize β and p together.
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Figure 11 – RC curves for Temperature Scaling - VGG-19 for Cifar100.

As will be more detailed in the following section, some models appear to achieve
considerable gains in selective prediction when this operation is applied. However, for
other models, this operation can harm selective classification performance. Thus, p
must be determined for each model and, moreover, to ensure that our method can
never cause harm, we augment the definition of p-norm with

∥z∥∅ = 1 (35)

so that the allowed range for p is R ∪ {∅}.
The hyperparameters p and β are optimized (e.g., via grid search) based on a

hold-out set {(xi , yi )}Ni=1, using directly the AURC (or the AUROC) as the objective. In
practice, the logits z i = f (xi ) of all hold-out samples can be pre-computed and stored,
so that any metric based on them can be computed very quickly.

Note that, as p approaches infinity, ||z ||p → max(z). Indeed, it tends to converge
reasonable quickly. Thus, the grid search on p can be made only for small p. In our
experiments, we noticed that it suffices to evaluate a few values of p, such as p ∈
{∅, 2, 3, 4, 5, 6}.

3.2.1 An heuristic for β

One relevant fact about the Lp norms of the logits is that they in general assume
values considerably higher than 1 - Figure 12 shows a histogram for the Lp norms of a
ResNet-50 for ImageNet validation set. However, as a sample dependent temperature,
we would expect it to increase the confidence on correct predictions and to decrease it
for misclassifications. With that in mind, we propose to use as a reference point for β
the expected value of the norms (given p):
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Figure 12 – Histogram of the p-norms of logits for different p.

β =
1
N

N∑
i=1

∥z i∥p. (36)

Note that this implies E [T (z)] = 1 and ∥z ′∥p = β = E [∥z∥p]. This can be inter-
preted as trying to change the logits as little as possible, since most of the logits will
have their temperature approximately unchanged.

Fortunately, we note that, when utilizing this methodology, the selective perfor-
mance is already improved, reaching higher gains than temperature scaling. Indeed,
as will be shown and discussed in the next chapter, optimizing p and choosing β as in
Equation (36) leads to results almost as good as optimizing p and β jointly. Moreover,
optimizing p solely leads to a considerable faster method, since we can consider only a
few values in a grid search.

Our proposed method with the heuristic choice of β is named p-NormSoftmax,
while the method with full optimization of β is denoted p-NormSoftmax*.

Figure 13 brings examples of the efficacy of the heuristic. Note that, although
optimizing β can significantly improve the results for a considerable part of p, the
heuristic is just nearly optimal for the optimal p (note that, as we will be optimizing p,
this is the only value that will interest us).
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Figure 13 – Comparison of AUROC between p-NormSoftmax and p-NormSoftmax*
for different values of p. Note that, for part (a), the optimum is obtained
for p = ∅. In this case, p-NormSoftmax reduces to the baseline, while p-
NormSoftmax* reduces to TS.
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4 RESULTS AND DISCUSSION

All the experiments regarding the proposed method and the subsequent investi-
gations were conducted using the open-source library PyTorch (PASZKE et al., 2019)
and all of its provided pre-trained classifiers on ImageNet (DENG et al., 2009). Addi-
tionally, some models of the (WIGHTMAN, 2019) repository were utilized, particularly
the ones highlighted by (GALIL; DABBAH; EL-YANIV, 2023). The list of all models and
results is presented in Appendix A. In total, 84 ImageNet models were used for exper-
iments. The validation set of ImageNet was randomly split into 5000 hold-out images
for post-hoc optimization and 45000 for tests and comparisons. Investigations on the
stability of this split are presented in Section 4.5. All codes and experiments can be
found in https://github.com/lfpc/pNormSoftmax.

Additionally, experiments were conducted on CIFAR-100 dataset in order to
testify the efficiency of the method for more datasets. These results are presented
separately in the last section.

4.1 COMPARISON OF METHODS

In Figure 14, we shown an example of the RC curves of the proposed methods for
a ResNext101-32x8d (XIE et al., 2017) for ImageNet. It can be seen that, while standard
TS (TS optimizing NLL) outperforms the baseline, optimizing the AURC directly (TS-
AURC) achieves better results. Moreover, it can be noted that p-NormSoftmax leads to
even better performance which practically identical to that of p-NormSoftmax*.
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Figure 14 – RC curves of the proposed methods, the baseline and standard TS for a
ResNext101-32x8d

https://github.com/lfpc/pNormSoftmax
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Figure 15 – A comparison of RC curves made by three models selected in (GALIL;
DABBAH; EL-YANIV, 2023), including examples of highest (ViT-L/16-384)
and lowest (EfficientNet-V2-XL) AUROC. After the application of our post-
hoc method, the apparent pathology in EfficientNet-V2-XL completely dis-
appears, resulting in significantly improved selective classification perfor-
mance.

Table 1 – AUROC and AURC average gains for all considered ImageNet classifiers.
AURC gains are calculated as the reduction of AURC in relation to the base-
line. For both, the higher the better.

AURC [%] AUROC [x100]

Method Mean Max Mean Max

TS-AURC 12.65 44.32 1.7 9.32
p-NormSoftmax 15.9 48.46 2.61 10.60
p-NormSoftmax* 16.02 48.52 2.63 10.65

Indeed, the conclusion that full optimization of β is unnecessary when using the
proposed heuristic (while always optimizing p) was observed for all considered models.
The average AUROC gain of β optimization with respect to the heuristic is 0.0002,
while the maximum value across all the analyzed models is 0.0019. These gains are
imperceptible in the RC curve and may be considered negligible. The results for all
the evaluated models are summarized in Table 1 and presented with more details in
Appendix A.

4.2 COMPARISON OF MODELS

(GALIL; DABBAH; EL-YANIV, 2023) showed that some models are much better
than others in selective classification. An example is shown in the left figure of Figure 15.
Although the EfficientNet v2 XL (TAN; LE, 2021) has better accuracy than the ViTB/32
SAM (CHEN; HSIEH; GONG, 2022), the latter is better in identifying misclassification
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and, thus, in most of the RC curve. However, the figure in the right shows that, after
p-NormSoftmax optimization, the ViTs have negligible gain, while the EfficientNet has
a huge one, hence becoming better in the RC curve than the ViTB/32 SAM.

In Figures 16a and 16b, the AURC and AUROC are presented with respect to the
accuracy for each model. It can be seen that, while for the baseline there are models
with higher accuracy but worse (higher) AURC than others, this does not happen after
the models are optimized with p-NormSoftmax. The Spearman’s correlation between
the AURC and the accuracy goes from 0.9169 to 0.9992, indicating that, while this is
not the case for the baseline, the selective classification performance of the optimized
models is almost entirely determined by its accuracy at full coverage.

55 60 65 70 75 80 85 90
Accuracy [%]

0.025

0.050

0.075

0.100

0.125

0.150

0.175

AU
RC

Baseline (  = 0.9169)

p*

2
3
4
5
6

55 60 65 70 75 80 85 90
Accuracy [%]

Optimized (  = 0.9992)

(a) AURC

55 60 65 70 75 80 85 90
Accuracy [%]

0.78

0.80

0.82

0.84

0.86

0.88

AU
RO

C

Baseline (  = -0.1670)

55 60 65 70 75 80 85 90
Accuracy [%]

Optimized (  = 0.8989)

p*

2
3
4
5
6

(b) AUROC

Figure 16 – AURC and AUROC of all ImageNet models with respect to their accuracy.
ρ is the Spearman’s correlation between the metric and the corresponding
accuracy and the color indicates the valued of p that optimizes each model.

We can also observe that, after the optimization, the AUROC for all models lies
within the range [0.8421, 0.8859]. This small range suggests that all models are at
roughly the same level of misclassification detection, although we can still see some
dependency on accuracy (better predictive models are slightly better at predicting their
own failures).
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4.3 COMPARING UNCERTAINTY MEASURES

The p-NormSoftmax method is proposed as the MSP of the transformed logits
z ′ = β

z–μ(z)
∥z–μ(z)∥p

. However, instead of the MSP, this transformed logit vector can in
principle be combined with any confidence estimator that takes logits as input, mainly
the one proposed in Section 4.3. Then, the hyperparameters of the resulting estimator
(p and, if necessary, β) can be optimized for the desired metric. When our (optimized)
logit transformation is combined with the confidence estimator X, the resulting method
is denoted as p-Norm-X, e.g., p-Norm-MSP is the p-NormSoftmax.

Tables 2 and 3 show that, while the MSP can be surpassed by other methods
over the baseline, it still provides the best results after our logit transformation and
optimization. These results are obtained by averaging the AURC or AUROC across the
84 ImageNet classifiers evaluated.

Table 2 – Mean AURC (x1000) values for different confidence estimators (lower is bet-
ter; bold indicates the best result of each row)

Confidence estimator (X)

Method MSP NE SM MaxLogit LM

Baseline 73.46 87.74 70.50 107.27 66.85
TS-AURC 64.73 64.47 65.36 107.27 66.85
p-Norm-X 63.22 64.89 63.86 64.70 65.65
p-Norm-X* 63.09 63.77 63.79 64.70 65.65

Table 3 – Mean AUROC (x100) values for different uncertainty measures (higher is
better; bold indicates the best result of each row)

Confidence estimator (X)

Method MSP NE SM MaxLogit LM

Baseline 84.52 79.86 85.26 76.61 85.68
TS-AURC 86.63 86.75 86.31 76.61 85.68
p-Norm-X 87.13 86.57 86.82 86.87 86.15
p-Norm-X 87.16 86.93 86.85 86.87 86.15

4.4 ABLATION FOR THE CENTRALIZATION STEP

The first step of p-NormSoftmax method involves centralization of the logits. In
Table 4 we present numerical results justifying this choice. Temperature scaling is not
considered, since centralization does not change the confidence value in this case. It is
important to emphasize that, for most of the models evaluated, the logits have virtually
zero means, i.e., the logits are already almost centralized, in which case centralization
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Table 4 – AUROC and AURC gains for ImageNet. AURC gains are calculated as the
reduction of AURC in relation to the baseline. For both, the higher the better.

AURC [%] AUROC [x100]

Method Mean Max Mean Max

p-NormSoftmax (no centralization) 15.73 48.73 2.59 10.60
p-NormSoftmax* (no centralization) 15.74 48.98 2.60 10.65

p-NormSoftmax 15.90 48.46 2.61 10.60
p-NormSoftmax* 16.02 48.52 2.63 10.65

p-NormSoftmax (optional centralization) 15.90 48.73 2.61 10.60
p-NormSoftmax* (optional centralization) 16.02 48.98 2.63 10.65

cannot help. However, some models have their logits with comparatively large means.
For these cases, centralization can lead to better results (the most significant is MaxVit-
T, where it reaches 3.64 percentage points in additional AURC gain for p-NormSoftmax).
We also noticed that, for a few models, centralization slightly degraded performance (the
highest degradation was observed in EfficientNet-V2-XL-21k-ft1k, exactly the model for
which our method was most beneficial, corresponding to the Max column in Table 4).

On average, centralization appears to be positive and consequently it is used as
part of the proposed method. Using optional centralization as a hyperparameter (i.e.,
only when it improves performance) provided only negligible gains so we did not include
this possibility.

4.5 DATA EFFICIENCY

As mentioned, the experiments conducted in ImageNet used a hold-out dataset
of 5,000 images randomly sampled from the validation dataset, resulting in 45,000
images reserved for the test phase.

One important aspect of post-hoc methods is its data efficiency (ZHANG, J.;
KAILKHURA; HAN, 2020), i.e., the efficiency of the method in learning with few data.
The primary aim was to investigate the data efficiency of the methods, which indicates
their capacity to learn and generalize from limited data. To accomplish this, the opti-
mization process was executed multiple times, utilizing different fractions of the hold-out
set while keeping the test set fixed at 45,000 samples. Consequently, two distinct types
of random splits were implemented using the validation dataset. The first involved di-
viding the validation set into hold-out and test sets, while the second involved sampling
fractions from the hold-out set. To ensure the findings were generalizable and robust,
both of these random split procedures were repeated five times each, culminating in a
total of 25 experiments for each analyzed fraction of the hold-out set.

Figure 17 displays the outcomes of these studies for an WideResNet50-2 trained
on ImageNet. As observed, p-NormSoftmax demonstrates exceptional data efficiency,
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Figure 17 – Sample complexity curves: Average AUROC variation with number of hold-
out samples used, for a WideResNet50-2. Dashed lines represent the opti-
mal AUROC for each method, i.e., the achieved value when the optimization
is made directly on the test set. Highlighted regions (as well as the dotted
lines) for each curve correspond to percentiles 10 and 90.

reaching its maximum value with fewer than 2,000 samples.

4.6 ROBUSTNESS TO DISTRIBUTION SHIFT

Up to this point, the presented results have been evaluated utilizing the validation
set of ImageNet. Generally, this set is considered to have a data distribution similar to
that of the training set. However, a reliable model must also be robust for dataset
shifts (OVADIA et al., 2019). For evaluating a model’s performance under data shift,
we evaluate our methods on ImageNet-C (HENDRYCKS; DIETTERICH, 2018), which
consists in 15 different corruptions of the ImageNet’s validation set. We follow the
standard approach for evaluating robustness with this dataset, which is to use it only
for inference; thus, the post-hoc methods are optimized using only the 5000 hold-out
images from uncorrupted ImageNet validation dataset.

Generally, classifiers lose accuracy in the presence of data shift. Hence, we
use SAC as performance metric, with the target accuracy chosen as the accuracy of
the model on ImageNet validation data at full coverage. Table 5 shows these results
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when p-NormSoftmax is applied to a ResNet-50 (HE et al., 2016). We can see that
p-NormSoftmax enhances the model’s performance in selective classification under
data shift at all corruption levels.

Table 5 – p-NormSoftmax applied to a ResNet-50 under dataset shift. The target accu-
racy is the one achieved for corruption level 0 (i.e., 80.86%).

Corruption level

Method 0 1 2 3 4 5

Accuracy [%] - 80.86 68.56 60.03 51.85 39.44 27.09

Coverage
(SAC)
[%]

Baseline 100 75.97 56.79 41.43 21.65 9.09
TS-AURC 100 77.13 60.51 45.49 27.41 13.32

p-NormSoftmax 100 78.49 62.35 47.63 29.59 15.62
p-NormSoftmax* 100 78.52 62.39 47.76 29.67 15.66

4.7 RESULTS ON CIFAR-100

The hold-out set for CIFAR-100, consisting of 5000 samples, was taken from
the training set before training. All models were forked from github.com/kuangliu/

pytorch-cifar, and adapted for CIFAR-100 (KRIZHEVSKY, 2009). All of them were
trained for 200 epochs with Cross Entropy Loss, using a SGD optimizer with initial
learning rate of 0.1 and a Cosine Annealing learning rate schedule with period 200.
Moreover, a weight decay of 0.0005 and a Nesterov’s momentum of 0.9 were used.
Data transformations were applied, specifically standardization, random crop (for size
32x32 with padding 4) and random horizontal flip.

Table 6 summarizes the gains of the proposed methods on CIFAR-100 for all
the evaluated models, and Appendix A brings the results for all of them. It can be
seen that, while for fewer models, the same conclusions are taken in this dataset, with
p-NormSoftmax achieving high gains for some models.

Table 6 – Average AUROC and AURC gains for CIFAR-100. AURC gains are calculated
as the reduction of AURC in relation to the baseline. For both, the higher the
better.

AURC [%] AUROC [x100]

Method Mean Max Mean Max

TS-AURC 2.34 9.62 0.25 1.16
p-NormSoftmax 4.55 24.87 0.56 2.92
p-NormSoftmax* 5.10 25.26 0.67 3.06

github.com/kuangliu/pytorch-cifar
github.com/kuangliu/pytorch-cifar
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4.8 WHEN—AND WHY—IS p-NORMSOFTMAX BENEFICIAL?

In this section we investigate in which circumstances p-NormSoftmax yields high
gains. This is analogous to ask when a model’s baseline is already optimal (within the p-
normalization framework). In Figure 18 it is possible to see a relation between the gains
and the average norms (L2 and L4) of the logits of each models. It is straightforward
to see the relation; models with high norms tend to have already a good baseline,
while models with low norms have poor baselines and tend to achieve high gains when
normalized. Indeed, this relation between high and low norms appear to have clear
threshold for both norms.
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Figure 18 – Gains of p-NormSoftmax (with optimal p) versus the mean of the logit
norms for each model. Colors represent the AUROC gain (×100).
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5 CONCLUSION

In this thesis, we considered the problem of selective classification for deep neu-
ral networks. In order to improve the selective mechanism for a given trained model, we
proposed p-NormSoftmax, a post-hoc method for enhancing misclassification detection
of neural network classifiers. Our method achieves an improvement in AURC of 16%
on average when compared to the baseline for the evaluated classifiers trained on
ImageNet, reaching almost 50% for some specific models.

Furthermore, our analysis revealed that, after implementing p-NormSoftmax, the
models exhibited similar levels of misclassification performance. This finding results in
a model’s selective classification performance being almost completely determined by
its accuracy at full coverage, and suggests that the previous observations regarding
different performance between models’ selective performance are mostly due to the use
of sub-optimal confidence estimators. Additionally, p-NormSoftmax exhibit impressive
data efficiency, due to the fact that a single parameter needs to be tuned. Moreover, the
method achieves satisfactory gains for selective classification under data shift. It is also
worth mentioning that our method is compatible with classifiers constructed directly
for improving confidence estimation, including ensembles, specific architectures and
models with specific training routines.

Finally, we point out some possible reasons and initial investigations on why and
in which circumstances p-NormSoftmax achieves gains. For future work, we intend
to explore more deeply why post-hoc normalization can lead to improved selective
mechanisms and to evaluate our method on different tasks.
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