
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO DE JOINVILLE

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE SISTEMAS

ELETRÔNICOS

RAFAEL CANAL

MACHINE LEARNING APPLIED IN AUTOMOTIVE ECUS FOR REAL-TIME ENGINE

BEHAVIOR ANALYSIS

DISSERTAÇÃO DE MESTRADO

Joinville

2023

Rafael Canal

MACHINE LEARNING APPLIED IN AUTOMOTIVE ECUS FOR REAL-TIME ENGINE

BEHAVIOR ANALYSIS

Dissertação submetida ao Programa de Pós-
Graduação em Engenharia de Sistemas
Eletrônicos da Universidade Federal de Santa
Catarina para a obtenção do título de Mestre em
Engenharia de Sistemas Eletrônicos.
Supervisor:: Prof. Giovani Gracioli, Dr.

Co-supervisor:: Prof. Gustavo Medeiros de Araújo, Dr.

Joinville

2023

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Canal, Rafael
 Machine learning applied in automotive ECUs for real
time engine behavior analysis / Rafael Canal ; orientador,
Giovani Gracioli, coorientador, Gustado Medeiros de
Araújo, 2023.
 150 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Campus Joinville, Programa de Pós-Graduação em
Engenharia de Sistemas Eletrônicos, Joinville, 2023.

 Inclui referências.

 1. Engenharia de Sistemas Eletrônicos. 2. Aprendizado de
Máquina. 3. Análise do perfil de condução e previsão de
consumo de combustível. 4. Detecção de misfire. 5. Aquisição
de dados automotivos em tempo real via ECU. I. Gracioli,
Giovani. II. Medeiros de Araújo, Gustado. III.
Universidade Federal de Santa Catarina. Programa de Pós
Graduação em Engenharia de Sistemas Eletrônicos. IV. Título.

Rafael Canal

Machine learning applied in automotive ECUs for real-time engine behavior

analysis

O presente trabalho em nível de Mestrado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Prof. Mateus Grellert da Silva, Dr.

PPGCC/UFSC

Prof. Max Mauro Dias Santos, Dr.

PPGCC/UTFPR

Certificamos que esta é a versão original e final do trabalho de conclusão que foi

julgado adequado para obtenção do título de Mestre em Engenharia de Sistemas

Eletrônicos.

Prof. Lucas Weihmann, Dr.

Coordenador do Programa

Prof. Giovani Gracioli, Dr.

Orientador

Joinville, July 12, 2023.

I believe that the purpose of science and technology is

social and that innovation must exist for the development

of the collective so that everyone has a dignified and facili-

tated life. Therefore, I do not dedicate this work to anyone

in particular but treat it as a symbol of personal achieve-

ment, of someone who believes that making a difference

should be a premise, whether in the application and de-

velopment of technologies or our daily lives.

ACKNOWLEDGEMENTS

Thanks to all the members involved in the IASE project. To the professors, thank

you for the guidance, advice, and attention in these last two years of work. Without this,

the evolution I had during this period would not be possible and which I will certainly

take into my personal, professional, and academic life. Thank you to the other members

and colleagues for your dedication to their tasks. The commitment of each one made

the difference for us to obtain success as a collective and in our objectives.

Furthermore, I would like to thank the team at Renault do Brasil for the constant

exchange of knowledge and ideas and the Federal University of Santa Catarina for the

opportunity to study in a free and quality institution. I believe that a better country can

be built by joining the incentive of private initiative with the effort and human value of

public universities.

This research was supported by Fundação de Desenvolvimento da Pesquisa -

Fundep Rota 2030/Linha V 27192.02.01/2020.09-00.

RESUMO

A Unidade de Controle Eletrônico (ECU) centraliza a leitura de diversos sensores
que adquirem dados sobre o funcionamento do motor. A leitura desses dados da
ECU automotiva é capaz de gerar uma quantidade expressiva de dados. Quando
monitoradas e tratadas corretamente, essas informações podem auxiliar no
entendimento de padrões e problemas nos diversos subsistemas dos motores,
indicando pontos que devem e podem ser melhorados. Além disso, o
acompanhamento desses dados pode servir para diversos setores dentro da área,
como segurança, rastreamento, redução do número de protótipos de testes e por
consequência redução de custo, melhorar a interação com o motorista e ser mais
uma ferramenta na mão dos engenheiros para o desenvolvimento de novas
tecnologias. Neste trabalho, desenvolvemos modelos de aprendizado de máquina
para a construção de três análises inteligentes: detecção da falha de ignição,
classificação do perfil de condução do motorista e predição do consumo de
combustível. Para isso, utilizamos um hardware embarcado no veículo que se
comunica com a ECU, aquisitando as informações solicitadas e enviando elas para
um servidor na nuvem, enquanto o carro está em operação. Os modelos foram
treinados com variáveis fortemente relacionadas com a análise em questão, sendo
feito um processo extenso de seleção de atributos para a sua escolha. As análises
são feitas em tempo real e qualquer interessado pode fazer o acompanhamento por
meio de aplicações locais ou dashboards web. Comparado com os trabalhos
relacionados, os resultados obtidos são similares ou melhor, com a diferença de
serem obtidos por meio de algoritmos menos custosos computacionalmente, com
dados exclusivos da ECU e em tempo real.

Palavras-chave: Aprendizado de Máquina; detecção de falha de ignição; análise do
perfil de condução; previsão de consumo de combustível; unidade de controle
eletrônico (ECU); aquisição de dados automotivos; monitoramento do
comportamento do motor; análise em tempo real.

RESUMO EXPANDIDO

Introdução

Para garantir a eficiência e o desempenho de um veículo em operação é crucial
monitorar o motor de combustão para evitar problemas que possam causar danos,
diminuir a vida útil e aumentar as emissões de gases e o consumo de combustível.
Lendo dados da Unidade de Controle Eletrônico (ECU) do veículo, é possível
monitorar diferentes variáveis do motor em tempo real durante as fases de
desenvolvimento do carro, garantindo e melhorando sua qualidade. A ECU do motor
centraliza a leitura de vários sensores que adquirem dados sobre a operação do
motor, incluindo possíveis falhas. Nesse sentido, novas estratégias baseadas em
dados estão sendo aplicadas no estudo do motor e de suas peças, tanto para
melhorar a interatividade com o motorista, fornecendo feedback e informações
relevantes do carro, quanto para impulsionar processos industriais como calibração,
controle de emissões de gases e redução do consumo. Algoritmos de aprendizado
de máquina (ML) ganharam notoriedade em numerosas pesquisas e estudos devido
à sua capacidade de detectar anomalias, falhas ou mudanças no padrão de
comportamento do motor ou de um conjunto de variáveis. Entre os fenômenos que
podem ser analisados a partir dos dados da ECU usando ML, podemos citar: (1)
detecção de falhas de ignição, (2) classificação do comportamento de condução e
(3) previsão de consumo de combustível.
A falha de ignição acontece quando a combustão não ocorre corretamente devido a
erros na ignição ou no sistema de combustível e é uma das mais comuns em
motores de combustão, podendo ser causada por fatores mecânicos, elétricos e
ambientais. Além de interferir na operação do motor, reduz a economia de
combustível e aumenta a poluição devido à maior concentração de toxinas causadas
pela má combustão; esses problemas tornam necessária a redução da sua
ocorrência. No entanto, sua detecção é difícil devido ao grande número de variáveis
envolvidas no processo. Assim, algoritmos de ML podem contribuir identificando a
relação entre as variáveis envolvidas no problema e construindo um modelo para
detecção e diagnóstico de falhas, usando variáveis críticas e aplicando as melhores
técnicas para desenvolver um algoritmo capaz de integrar conhecimento e atender
às necessidades de detecção de maneira sustentável e prática.
O monitoramento e análise do perfil do motorista pode definir padrões para revelar
condutas inadequadas de condução que possam causar acidentes de trânsito ou
sinais de falha grave do motor, tornando possíveis ações preventivas para evitar
perigos mais significativos. Além disso, oferece a oportunidade de monitorar os
principais parâmetros e variáveis que afetam o controle de emissões de gases,
vazamento de substâncias e consumo excessivo de veículos.
A previsão de consumo de combustível apresenta benefícios potenciais, tanto para
fins econômicos quanto ambientais, principalmente relacionados ao transporte. Entre
eles, a minimização do consumo em si e a redução das emissões de gases de
compostos químicos tóxicos para o meio ambiente. A previsão de consumo também
ajuda a calibrar o motor e seus sistemas, um processo complexo que requer muitos
testes e protótipos físicos dos veículos. Algoritmos de ML podem fornecer uma
previsão mais precisa do consumo de combustível do mundo real com base em uma
gama mais ampla de variáveis do que os modelos tradicionais de regressão linear e
reduzir a necessidade de testes físicos sem novas calibrações.
Este trabalho aborda três aplicações de ML em dados da ECU automotiva para
análises inteligentes do motor de combustão e do motorista. A primeira com objetivo
de detectar falhas de ignição usando variáveis comuns a veículos e sem o uso de

sensores caros, como o sensor de vibração, para o qual foram usados seis modelos
de ML. A segunda aspira a classificar os perfis de direção dos motoristas,
econômicos ou não, usando três algoritmos (não supervisionados e
supervisionados). A terceira busca prever o consumo de combustível, aplicando três
modelos de regressores. As principais diferenças em nosso trabalho em
comparação com trabalhos relacionados é: (1) adquirimos dados em tempo real
diretamente da ECU do carro e os enviamos para um servidor na nuvem e (2)
aplicamos modelos de ML no servidor à medida que os dados chegam em tempo de
execução, fornecendo feedback instantâneo para engenheiros ou usuários.

Objetivos

O principal objetivo deste trabalho é monitorar o motor de combustão para detectar
falhas de ignição, analisar o perfil de condução e prever o consumo de combustível,
usando exclusivamente variáveis extraídas diretamente da ECU, aplicando técnicas
de ML para otimizar o desempenho dos sistemas atuais, gerar informações
relevantes para engenheiros e fornecer feedback aos motoristas

Metodologia

Para coletar dados reais para as análises propostas neste trabalho, utilizamos um
carro fornecido pela Renault do Brasil, um Sandero 2019, modelo 1.0, com um motor
a gasolina de quatro cilindros e quatro tempos com ignição por centelha. Um
hardware de aquisição desenvolvido no projeto Intelligent Acquisition and Analysis
System for ECUs (IASE) foi conectado à ECU do motor. Assim, com o carro
disponível, foi possível coletar uma quantidade significativa de dados reais, que foi
usada para treinar e validar os modelos de ML. Não utilizamos dados de simulação
ou conjuntos de dados públicos, um dos pressupostos que diferencia este trabalho
de trabalhos relacionados. O sistema de aquisição desenvolvido no IASE nos
permite selecionar e organizar as variáveis alvo da ECU por meio de uma interface
gráfica do usuário, criando um arquivo de configuração que chamamos de "ensaio",
que é carregado no hardware desenvolvido. Este hardware, responsável por coletar
os dados desejados diretamente da ECU, foi incorporado ao veículo por meio do
Protocolo de Calibração da Rede de Área de Controle (CAN). Sobre o barramento
CAN, as ECUs normalmente suportam o Protocolo de Calibração CAN (CCP) ou o
Protocolo Universal de Medição e Calibração (XCP), dependendo do modelo e
fabricante da ECU, para realizar a aquisição de dados. Assim, o ensaio para ler as
variáveis de uma ECU deve respeitar os limites de largura de banda impostos pelos
protocolos. Por exemplo, ao usar o protocolo CCP em nosso carro, a ECU do motor
se comunica com a placa a taxas de amostragem limitadas a 4, 5, 10 e 100ms. Cada
ensaio de aquisição também pode ler cerca de 160 variáveis usando as taxas de
amostragem disponíveis. Este dispositivo se comunica via 4G com o servidor do
LISHA na nuvem, para que os dados sejam processados e/ou aplicados diretamente
a modelos de ML ou qualquer outro tipo de tratamento e manipulação, em tempo
real, com maior capacidade de processamento disponível, e armazenados em um
banco de dados para uso posterior, incluindo em novos estudos e projetos. Em
nosso servidor, os algoritmos de ML são chamados de “workflows” e são
implementados em Python 3.8. Quando o dispositivo de hardware é configurado
para ler uma variável da ECU do motor, as variáveis são marcadas com workflows
que devem ser aplicados. Quando o servidor recebe os dados adquiridos, ele
identifica quais algoritmos devem ser aplicados para esses dados específicos. Além

disso, os dados também são salvos no banco de dados para análises e/ou
visualização posterior em um painel.
Ao longo de um período de dois anos, mais de cinquenta experimentos foram
conduzidos para construir os conjuntos de dados. Cada tipo de análise apresentado
neste trabalho tinha suas particularidades que exigiam um foco diferente, mas, em
geral, um dos principais objetivos de criação dos conjuntos de dados era obter um
grande número de variáveis diferentes. Isso permitiu que um processo de seleção de
características (FS, na sigla em inglês) identificasse as variáveis mais relevantes
para a análise em questão (detecção de falhas de ignição ou análise de consumo de
combustível). Ao incorporar uma ampla gama de variáveis, a construção do conjunto
de dados facilitou a identificação de relacionamentos-chave para essas análises,
possibilitando o treinamento e teste de vários modelos de ML. Para isso, foi seguida
uma metodologia de aquisição de dados usada em ambas as análises. Para iniciar o
processo de aquisição de dados, o hardware incorporado ao veículo deve ser
carregado com o arquivo de ensaio. Esse arquivo indica a localização do sinal na
ECU, incluindo a definição de Smartdata (Unidade, Dispositivo, X, Y, Z, Assinatura,
Tipo, Período, Fluxo de Trabalho) e os valores mínimo e máximo de limite dos sinais
(predefinidos para verificar se a medição está conforme o esperado). Os dados do
ensaio são enviados para o servidor. A aquisição de dados usada neste trabalho foi
acionada pelo tempo. Durante essa fase, os dados são armazenados em buffer e
preparados para upload serial via 4G para a plataforma IoT usando o formato
SmartData. Com o dispositivo incorporado ao veículo, inúmeros ensaios podem ser
carregados nele. Isso permite a realização de uma ampla gama de testes com
diferentes objetivos. Cada um desses ensaios pode levar em consideração
abordagens diferentes para a análise, o que é excelente para comparar e avaliar os
algoritmos desenvolvidos. Diferentemente da maioria dos trabalhos relacionados,
que realizam simulações de falhas em bancos de teste, as medições no projeto
ocorreram no carro em operação, dirigido pelos membros do projeto, na pista de
teste limitada dentro do Parque Industrial Ágora em Joinville, Brasil, onde está
localizada a Universidade Federal de Santa Catarina. Considerando o número
limitado de variáveis por ensaio, FS é importante para reduzir o conjunto de
variáveis que representa o fenômeno em análise. Além disso, ela evita o overfitting
dos modelos de ML, remove variáveis prejudiciais, redundantes ou ruidosas, gera
uma melhor generalização, reduz o custo computacional e melhora o desempenho.
Foram escolhidas estratégias para criar subconjuntos dos atributos disponíveis,
avaliando variáveis individuais de acordo com critérios predefinidos ou selecionando-
as diretamente. Em seguida, foi feita uma avaliação estatística para verificar quais
delas eram mais qualificadas; esse processo geralmente tem uma condição de
parada, e o melhor resultado é o que prevalece até uma avaliação adicional. Como
resultado, entre todos os subconjuntos ou variáveis testadas, algumas superaram o
conjunto completo e foram usadas em seu lugar para treinamento e teste dos
algoritmos relacionados a cada um dos objetivos de análise do trabalho.

Resultados e Discussão

Para avaliar os modelos de detecção de falha, todos os dados dos experimentos
foram reunidos em um único conjunto e balanceados. Isso ocorre devido ao fato de
o número de amostras com falhas de ignição ser muito menor do que o número de
amostras saudáveis, uma vez que a ocorrência de uma falha de ignição não pode
ser facilmente controlada e ocorre esporadicamente. Posteriormente, dividimos os
dados em conjuntos de treinamento e teste, embaralhando-os e dividindo-os em
70% para treinamento e 30% para teste, e em seguida, aplicamos os modelos de

ML. Essa técnica nos permite verificar a generalização dos modelos e comparar os
diferentes resultados dos modelos treinados. Para verificar o desempenho geral dos
modelos, calculamos sua precisão, recall e pontuação F1 no conjunto de teste. Em
geral, o Classificador XGBoost mostrou ser o melhor modelo para identificar falhas
de ignição, não apenas tendo o melhor resultado geral, mas também com uma
média melhor em diferentes conjuntos de recursos obtidos por meio dos métodos de
FS. O algoritmo alcançou uma precisão de até 92,40%, um recall de 96,16% e uma
pontuação F1 de 94,24%. Em média, ele alcança uma precisão de 87,55%, recall de
92,25% e uma pontuação F1 de 89,79%, com um desvio padrão de 7,38%, 4,30% e
5,90%, respectivamente. Portanto, o XGBoost é o algoritmo que, em média, obteve
a maior pontuação F1, que é a métrica escolhida para classificar os algoritmos.
Para avaliar os classificadores de perfil de condução, realizamos uma validação
cruzada, dividindo os conjuntos de dados em conjuntos de treinamento e teste. O
método de divisão escolhido considerou um experimento de uma "fase" como
conjunto de teste e os demais como conjunto de treinamento. Essa técnica nos
permite verificar a generalização dos modelos, além de aplicar as métricas de
precisão e recall. Dessa forma, obtivemos o desempenho geral dos modelos e
quantas classificações corretas foram feitas, visualizando o número de falsos
positivos e negativos. Para a avaliação, dividimos os experimentos em fases, nas
quais aplicamos mudanças nas variáveis selecionadas devido ao conhecimento
adquirido ao longo dos experimentos (ou seja, conhecimento específico do domínio)
e ao processo de FS feitos. Ao comparar as fases dos experimentos, a Fase 1
mostra desempenhos mais baixos, variando de 80% a 95% de precisão, enquanto
as segunda e terceira fases apresentam resultados melhores, variando de 81% a
99% de precisão. Além disso, a precisão dos experimentos mais recentes é
significativamente maior, chegando a 100% em alguns casos, embora um recall
menor seja obtido. Isso mostra uma melhoria no conjunto de variáveis atualizado
para classificar os níveis de consumo, mas ainda com bons resultados com o
conjunto mais antigo. No geral, os resultados obtidos mostraram que os métodos de
classificação tiveram boa precisão na determinação do nível de consumo a partir das
variáveis corretamente selecionadas, atingindo até 100% de pontuação para todas
as métricas em algumas divisões de treinamento e teste. Em geral, o XGBoost
mostra uma pontuação ligeiramente melhor do que a Regressão Logística. O
XGBoost teve desempenhos mais persistentes, variando entre médias elevadas e
baixos desvios padrão, mostrando médias de pontuação maiores e variações
menores, demonstrando persistência nelas.
Para avaliar os modelos de previsão de consumo de combustível, as métricas de
erro médio quadrático (MSE), erro médio absoluto (MAE) e coeficiente de
determinação (R2) foram utilizados, para permitir uma melhor comparação com
trabalhos relacionados e porque eles se complementam nas análises. Para avaliar
os algoritmos de regressão, realizamos uma análise semelhante com o mesmo
procedimento de validação cruzada explicado na classificação de perfil. Para as
duas primeiras fases, separamos em cada rodada um dos experimentos para testes
e o restante para treinamento. Para a terceira fase, realizamos validação cruzada
com 3 conjuntos de dados, onde os dados foram divididos aleatoriamente em 3
conjuntos. Realizamos a validação cruzada entre eles, selecionando um conjunto
para teste e o restante para treinamento. O modelo do XGBoost obteve os
resultados mais consistentes e bons em geral para todas as fases e conjuntos de
recursos. Ele manteve resultados semelhantes nas Fases 1 e 2, apresentando
médias de MAE e R2 acima de 0,9 e abaixo de 0,9, respectivamente. Além disso, na
Fase 3, ele mostrou um desempenho geral melhor em comparação com todos os
modelos (R2 acima de 0,96, média de MSE e MAE respectivamente abaixo de 0,5

(l/h)2 e 0,4 (l/h), com resultados consistentes mostrados pela pequena variação nas
pontuações). Isso indica a capacidade do modelo de obter boas previsões na
maioria dos casos.

Comparado a trabalhos relacionados, nos destacamos devido à abordagem
inovadora de realizar análises em tempo real usando dados diretamente da ECU.
Essa metodologia pode ser aplicada a outros veículos com as mesmas variáveis.
Além disso, mesmo obtendo resultados melhores, utilizamos algoritmos menos
complexos e mais fáceis de compreender, que são executados na nuvem.
Melhoramos os resultados globais, tendo métricas com valores superiores em todos
os objetos de análise, com um extenso trabalho de FS que identifica com precisão a
relação da falha de ignição, do motorista e do consumo de combustível com as
principais variáveis do motor, e garantindo a integridade dos dados usados.

Considerações Finais

Este estudo alcançou com sucesso seu objetivo principal de monitorar o motor a
combustão para detectar falhas, analisar perfis de condução e prever o consumo de
combustível por meio de técnicas de ML. Foram implementados seis modelos de ML
para detectar falhas de ignição, estabelecendo a eficácia desses modelos em
classificar com precisão essa falha específica, com precisão superior a 90%. Além
disso, foram validados dois cenários relacionados ao consumo de combustível,
comparando três modelos de ML para classificar o perfil de condução em relação ao
consumo de combustível e, comparando três modelos de regressão de ML para
prever o consumo de combustível, comprovando sua validade em ambos os
assuntos com resultados que indicam uma categorização correta do motorista em
econômico ou não econômico e uma previsão precisa do consumo. Nos
classificadores, obtivemos valores de até 100% de accuracy, precision e recall, em
modelos como o XGBoost e Regressão Logística. Representando uma melhoria em
relação a outros trabalhos, nos quais foram obtidas pontuações menores, apesar do
uso de modelos mais complexos e caros ou de dados não coletados pelos autores.
Além disso, em relação aos regressores, nossos modelos foram capazes de
apresentar pontuações R2 de até 0,99, um MAE de 0,23 (l/h), além de uma média de
MSE de 0,49 (l/h)2, chegando a 0,28 (l/h)2 em alguns testes. Comparados a trabalhos
semelhantes, esses resultados também representam avanços na obtenção de boas
pontuações com modelos semelhantes ou até mais baratos, além do uso de dados
reais coletados para treinamento e testes. A avaliação dos modelos, envolvendo
tanto as fases de treinamento quanto de teste, utilizou dados autênticos coletados
da ECU de um veículo, e a aplicação dos workflows ocorreu em um servidor em
nuvem. Com processamento de dados em tempo real, durante a operação do
veículo, as partes interessadas podem monitorar os resultados por meio de
aplicativos locais ou web. Portanto, esta pesquisa tem aplicabilidade prática em
diversos setores automotivos, incluindo indústria, engenharia e transporte em geral.
Dado a crescente ênfase na aquisição de dados e na multidisciplinaridade envolvida
no setor, espera-se que as ECUs e os componentes adicionais dos veículos gerem
ainda mais dados, criando assim mais oportunidades para análises baseadas em
ML.

Palavras-chave: Aprendizado de Máquina; detecção de falha de ignição; análise do
perfil de condução; previsão de consumo de combustível; unidade de controle
eletrônico (ECU); aquisição de dados automotivos; monitoramento do
comportamento do motor; análise em tempo real.

ABSTRACT

The automotive ECU data readout can generate a significant amount of data. When
properly monitored and processed, this information can help understand patterns and
problems in the various engine subsystems, highlighting areas for potential improve-
ment. Additionally, tracking this data can benefit multiple sectors within the field, includ-
ing safety, tracking, reducing prototype testing, and subsequently lowering costs. It can
also enhance driver interaction and serve as a valuable tool for engineers in developing
new technologies. In this work, we develop machine learning models for three intelligent
analyses: misfire detection, driver driving profile classification, and fuel consumption
prediction. To accomplish this, we use hardware embedded in the vehicle that commu-
nicates with the ECU, acquiring the requested information and transmitting it to a cloud
server while the car operates. The models were trained using variables strongly related
to each respective analysis, and an extensive feature selection process was conducted
to determine their relevance. Analyzes are performed in real-time, and interested par-
ties can monitor them through local applications or web dashboards. Compared with
related works, the obtained results are either similar or superior, differentiating by being
obtained through computationally less costly algorithms, utilizing data exclusively from
the ECU, and providing real-time analysis.

Keywords: Machine Learning. Misfire Detection. Driving Profile Analysis. Fuel Con-
sumption Prediction. Electronic Control Unit (ECU). Automotive data acquisition. Engine
Behavior Monitoring. Real-time Analysis

LIST OF FIGURES

Figure 2.1 – Engine cylinder schematic demonstrates a misfire failure and its

main parts and sensors. 38

Figure 2.2 – Misfire causes tree. 41

Figure 2.3 – A structure diagram of the factors affecting vehicle fuel consumption. 43

Figure 2.4 – Iris dataset classes. 48

Figure 2.5 – Illustration of the decision tree. 48

Figure 2.6 – The basic architecture of the perceptron. 54

Figure 2.7 – The basic structure of a feed-forward network with two hidden layers

and a single output layer. 54

Figure 2.8 – Schematic of a time-lagged autoencoder. 55

Figure 2.9 – The general structure of an autoencoder. 56

Figure 4.1 – Main parts of the communication structure. 85

Figure 4.2 – IoT Platform Overview. 87

Figure 4.3 – Input Workflow Diagram. 91

Figure 4.4 – Output Workflow Diagram. 92

Figure 5.1 – Best result for each trained model using F1 score (green) as pa-

rameter. 104

Figure 5.2 – ROC Curve. 105

Figure 5.3 – Fuel consumption (in blue) over time, with the classification of high

consumption periods (in red). 107

Figure 5.4 – Comparison between measured (blue) and predicted (orange) fuel

consumption levels over an experiment, through XGBoost Regressor.111

LIST OF TABLES

Table 2.1 – Summary of causes . 40

Table 3.1 – Summary of misfire detection techniques 69

Table 3.2 – Summary of related works that use classification techniques. 77

Table 3.3 – Summary of related works that use regression techniques. 83

Table 4.1 – Misfire FS . 96

Table 4.2 – Fuel consumption - FS . 97

Table 4.3 – Description of the acquisition datasets. 98

Table 4.4 – Algorithms parameterization. 99

Table 5.1 – Results evaluation metrics . 106

Table 5.2 – Classification results evaluation metrics. 108

Table 5.3 – Regression results in evaluation metrics. 112

LISTA DE ABREVIATURAS E SIGLAS

ECU Electronic Control Unit . 31

IASE Intelligent Acquisition and Analysis System for ECUs 34

LISHA Software/Hardware Integration Lab 34

IoT Internet of Thing . 34

FS feature selection . 34

CAN Controller Area Networks . 37

TDC Top Dead Center . 38

BDC Bottom Dead Centre . 38

CARB California Air Resources Board . 39

ML Machine Learning . 43

SVM Support Vector Machines . 47

ANN Artificial neural network . 52

MLP MultiLayer Perceptron . 53

AE Autoencoder . 54

NARX-NN Nonlinear AutoRegressive with Exogenous Inputs Recurrent Neural

Network . 56

CWT Continuous Wavelet Transform . 60

AFS Abnormal Fluctuation Signal . 61

PCA Principal Component Analysis . 61

PP Peak to Peak . 63

RMS Root Mean Square . 63

CTF Crest Factor . 63

K Kurtosis Factor . 63

FFT Fast Fourier Transform . 64

SVM Support Vector Machines . 64

ANN Artificial Neural Networks . 64

KNN K-Nearest Neighbor . 64

WPT Wavelet packet transform . 65

ANN Artificial Neural Network . 67

DTCNNMI Deep Twin Convolutional Neural Network with Multi-domain Input . 68

CF Clearance Factor . 68

CNN Convolutional Neural Network . 68

CAD Crank Angle Degree . 68

MCC Matthews Correlation Coefficient 68

SVM Support Vector Machine . 72

RF Random Forest . 72

INCA Integrated Calibration and Application Tool 93

CONTENTS

1 INTRODUCTION . 31

1.1 GOALS . 34

1.2 CONTRIBUTIONS . 35

1.3 STATEMENT OF CONTRIBUTION . 36

1.4 DOCUMENT ORGANIZATION . 36

2 BACKGROUND . 37

2.1 ELECTRONIC CONTROL UNIT . 37

2.2 COMBUSTION ENGINE . 37

2.3 MISFIRE . 39

2.3.1 Causes . 39

2.3.2 Symptoms . 42

2.3.3 Detection . 42

2.4 FUEL CONSUMPTION . 43

2.4.1 Driving and Consumption Profile . 44

2.4.2 Consumption Estimation . 45

2.5 MACHINE LEARNING . 46

2.5.1 Clustering and Classifiers Algorithm 48

2.5.2 Regression . 51

2.5.3 Artificial neural network . 52

2.6 FEATURE SELECTION . 56

2.7 PARTIAL CONSIDERATIONS . 57

3 RELATED WORK . 59

3.1 MISFIRE DETECTION . 59

3.1.1 Misfire Detection Summary and Comparison 68

3.2 MACHINE LEARNING CLASSIFIERS FOR DRIVING BEHAVIOR AND

FUEL CONSUMPTION CLASSIFICATION 70

3.2.1 ML Classification Summary and Comparison 77

3.3 ML REGRESSORS FOR FUEL CONSUMPTION PREDICTION 78

3.3.1 ML Regressors summary and Comparison 82

3.4 PARTIAL CONSIDERATIONS . 82

4 MACHINE LEARNING APPLIED IN AUTOMOTIVE ECUS 85

4.1 HARDWARE VALIDATION . 86

4.2 IOT PLATFORM AND WORKFLOWS . 87

4.3 DATA ACQUISITION AND EXPERIMENTS 92

4.4 FEATURE SELECTION AND ESSAYS . 93

4.4.1 Misfire Data Collection . 94

4.4.2 Fuel Consumption Data Collection . 95

4.5 ALGORITHM DEVELOPMENT AND PARAMETERS 98

4.5.1 Workflow example . 99

4.6 PARTIAL CONSIDERATIONS . 101

5 EVALUATION . 103

5.1 MISFIRE CLASSIFICATION RESULTS . 103

5.2 FUEL CONSUMPTION . 106

5.2.1 Driving Profile Classification Results 107

5.2.2 Fuel Consumption Prediction Results 110

6 CONCLUSION . 115

BIBLIOGRAPHY . 117

APPENDIX A – MACHINE LEARNING ALGORITHM APPLICATION 127

Chapter 1 31

1 INTRODUCTION

To guarantee the efficiency and performance of a vehicle in operation, as de-

manded by customers, market, and homologation, it is crucial to monitor the combustion

engine to avoid problems that can cause damage, decrease the lifetime, and increase

its gas emissions and fuel consumption. By reading data from the vehicle’s Electronic

Control Unit (ECU), it is possible to monitor different engine variables at runtime during

the car development phases, thus ensuring and improving its quality [Bedretchuk et al.

2023]. The engine ECU centralizes the reading of several sensors that acquire data

about the engine’s operation, including possible failures. This diagnostic unit has a solid

engineering foundation, crucial practical value, and deep theories.

In the current automotive sector, most of the market value of an auto is related to

the technology used by the industry, and 60% of its executives believe that companies

are well prepared for Industry 4.0 technologies, such as artificial intelligence [KPMG

2021]. In this sense, new data-based strategies are being applied in the study of the

motor and its parts, both to improve interactivity with the driver, providing feedback and

bringing relevant information from the car, as well as to boost industrial processes such

as calibration, gas emission control, and consumption reduction [Claßen et al. 2021].

Machine learning (ML) algorithms gained notoriety in numerous research and

studies due to their ability to detect anomalies, faults, or changes in the behavior pat-

tern of the engine or a set of variables [Ly, Martin e Trivedi 2013, Toledo e Shiftan

2016, Yang et al. 2022]. Among the phenomena that can be analyzed from the ECU

data using ML, we can cite: (1) misfire detection [Wu e Liu 2009], (2) classification of

driving behavior [Shahverdy et al. 2020], and (3) fuel consumption prediction [Katreddi

e Thiruvengadam 2021].

1. An engine can suffer from several problems and failures, such as a misfire, which

happens when combustion does not occur correctly due to ignition or fuel system

errors. When a misfire occurs, the engine’s balance is destroyed, and its center

of gravity is shifted [Hmida et al. 2021]. This failure is one of the most common

in combustion engines and can be caused by mechanical, electrical, and environ-

mental factors. Besides interfering with engine operation, it reduces fuel economy

and increases pollution because of the higher concentration of toxins caused

by poor fuel combustion; these problems make reducing the occurrence of this

fault necessary. However, its detection is difficult due to the number of variables

involved in the process [Sharma, Sugumaran e Devasenapati 2014]. Even the

detection made by the onboard computer is still tricky, given the complexity of

the fault. In general, a misfire can not be analyzed from a single point of view, as

explained further (in Section 2.3.1), either from a single variable or just one engine

component. Several sensors and different techniques are required, often making

32 Chapter 1

fault detection more expensive or consuming much computational power, which

is limited in the ECU. Thereby, it is not feasible to build a simple physical model to

represent this phenomenon, given all the factors that can cause the failure.

The detection of engine misfire is a requirement of the Onboard Diagnostics II

(OBDII) standard [Merkisz, Bogus e Grzeszczyk 2001], present in the legislation

of several countries, including Brazil. According to [Ye 2009], fault diagnoses have

produced enormous benefits since they were developed, whether economic or

environmental and have become an object of research in many countries. In this

sense, machine learning algorithms can contribute by identifying the relationship

between the variables involved in the problem and building a model for fault

detection and diagnosis [Chen et al. 2018,Liu et al. 2013], using critical variables,

and applying the best techniques to develop an algorithm capable of integrating

knowledge and meeting the detection needs sustainably and practically.

Previous studies of misfire detection have used various methods precisely be-

cause of their different causes. Mechanically, [Kiencke 1999] analyzed signals

related to the angular velocity of the motor, and [Tinaut et al. 2007] looked at the

difference in kinetic and potential energy in samples with failure conditions. On the

other hand, observing vibration signals, [Jafarian et al. 2018] performed frequency

analysis, and [Rath et al. 2019] used harmonic vibrations to extract relevant infor-

mation from the engine under fault conditions. [Wu e Liu 2009] applied artificial

intelligence techniques in multi-resolution analysis, and [Qin et al. 2021] devel-

oped a method for automatically extracting time-domain, time-frequency-domain

information, and hand-craft time-domain statistical features to classify read data

into fault or regular condition classes.

2. Driver profile monitoring can identify vehicle thefts, which is interesting for in-

surers and transport companies regarding security and personalized insurance

plans [Händel et al. 2014, Huang e Meng 2019]. Selling data to insurance com-

panies is a growing market. 43% of automakers will sell driver and vehicle data

to insurance companies in a short time [KPMG 2021]. Furthermore, profile analy-

sis can define patterns to reveal improper driving conduct that may cause traffic

accidents or signs of severe engine failure, making preventive actions possible

to avoid more significant dangers [Hamed, Khafagy e Badry 2021]. In addition,

it provides the opportunity to monitor the main parameters and variables that

affect the control of gas emissions, substance leakage, and excessive vehicle

consumption [Kalogirou 2003,Rahnama, Arab e Reitz 2020,Wang et al. 2021].

Related works have been proposed to identify and classify driving conduct by

labeling driving habits as safe or unsafe [Lattanzi e Freschi 2021], applying cluster

algorithms to classify the driver as eco-friendly or not [Ly, Martin e Trivedi 2013,

Chapter 1 33

Peppes et al. 2021], and verifying the impact of monitoring on fuel consumption

[Liimatainen 2011,Toledo e Shiftan 2016].

3. Fuel consumption prediction has potential benefits, whether for economic or en-

vironmental purposes, mainly in works related to transport [Katreddi e Thiruven-

gadam 2021], which has been using ML to develop predictive models widely in

recent years [Hamed, Khafagy e Badry 2021,Yao et al. 2020,Kanarachos, Mathew

e Fitzpatrick 2019]. AI-based model’s benefits include the minimization of fuel con-

sumption regarding the drop of gas emissions of toxic chemical compounds to

the environment. Moreover, the fuel consumption prediction can help calibrate

the engine and its systems, a complex process that requires many tests and

physical prototypes of the vehicles [Claßen et al. 2021]. This is an expensive and

time-consuming step in building/testing new engines, making it difficult to com-

ply with legislation. ML has several strengths over traditional methods, including

its ability to handle large amounts of data and complex relationships between

variables [Ziółkowski et al. 2021]. ML algorithms can provide a more accurate pre-

diction of real-world fuel consumption based on a broader range of variables than

traditional linear regression models [Pavlovic et al. 2020] and reduce the need for

physical testing without new calibrations [Ma, Shahbakhti e Chigan 2023].

For fuel consumption regression, studies proposed models based on driving be-

havior data collected by smartphones and OBD terminals [Yao et al. 2020], applied

Support Vector Machine [Hamed, Khafagy e Badry 2021], and developed Deep

Neural Network models [Kanarachos, Mathew e Fitzpatrick 2019] to predict fuel

consumption. In general, the works obtained good results. However, with issues

that can be improved. Whether in the sets of variables used, which may not be

present in all vehicles [Lattanzi e Freschi 2021], not associating the models with

factors of intrinsic fuel consumption, such as acceleration [Ly, Martin e Trivedi

2013], in the training data, which were not collected by the authors [Lattanzi e

Freschi 2021, Yang et al. 2022], using equipment with lower sampling frequen-

cies [Yao et al. 2020], such as OBD terminals, developing algorithms that require

more computational power [Kanarachos, Mathew e Fitzpatrick 2019], or in the

execution time, that not occur at runtime [Liimatainen 2011].

The project on which this thesis was developed resulted from a partnership be-

tween Renault and the Federal Government’s Rota 2030 program. Called Intelligent

Acquisition and Analysis System for ECUs (IASE), the project was a joint effort of the

Software/Hardware Integration Lab (LISHA) and Renault, and its main goal is to explore

the potential of applying AI within the context of the Internet of Things (IoT) to optimize

the operation of Combustion Engines, mainly in matters related to the calibration of con-

troller parameters and anomaly detection. The project team developed an embedded

34 Chapter 1

system that was added to a vehicle provided by Renault do Brasil, and experiments

were carried out on it to capture data in natural and non-simulated conditions.

In this work, data was captured from the ECU through experiments generated

over two years, acquiring a considerable amount of data and enabling this work and

also future works since the data was saved in the cloud. Furthermore, feature selection

(FS) techniques were applied to define the main variables in each analysis addressed

in this document. Having the data available, several machine learning algorithms were

developed (Gradient Boost, Logistic Regression, Support Vector Regression, Multilayer

Perceptron, Autoencoder, among others) based on the related works and also on the

understanding of the engine to analyze these data and generate information, and appli-

cations relevant to the project and to Renault. In this way, the data of interest is taken

directly from the ECU and applied to the ML algorithms. The results were compared

and explored to understand which models best adapt to the proposed problems and

how they contrast with the literature.

This work deals with three approaches to applying ML algorithms in automotive

ECU data for intelligent analyses of the combustion engine and the driver. The first aim

was to detect misfires using variables common to vehicles and without using expensive

sensors such as the vibration sensor, for which six ML models were used. The second

aspires to classify drivers’ driving profiles, whether economical or not, using three

ML algorithms (unsupervised and two supervised). The third seeks to predict fuel

consumption, applying three ML models of regressors. The main difference in our work

compared to related work is twofold: (1) we acquire real-time data directly from the car’s

ECU and send it to a cloud server, and (2) we apply ML models on the server as data

arrives at runtime, providing instant feedback to engineers or users.

1.1 GOALS

The main objective of this work is to monitor the combustion engine to detect

misfires, analyze the driving profile and predict fuel consumption, using exclusively

variables taken directly from the ECU, applying different machine learning techniques

to optimize the performance of current systems, generate relevant information for en-

gineers and provide feedback to drivers. The following specific objectives have been

defined to assist in the development of the main goal:

1. Study the operation of internal combustion engines;

2. Understand the causes and symptoms of the misfire and how to identify it through

the data collected from the ECU;

3. Identify variables strongly related to fuel consumption, both for driving profile

analysis and for consumption regression;

Chapter 1 35

4. Collect and build datasets with real data applying data engineering to validate and

optimize them;

5. Implement machine learning algorithms for misfire detection, profile classification,

and fuel consumption regression, evaluating and comparing their performance

with related work;

6. Develop a complete flow for real-time fault detection, driving profile classification,

and fuel consumption prediction in running cars.

1.2 CONTRIBUTIONS

In summary, we make the following contributions:

1. We developed and compared six ML-based models (Xgboost, Gradient Boosting,

K-Means, K-Neighbors, Logistic Regression, and Support Vector Classification),

representing different classes of algorithms, to detect misfires at runtime. [Shahid,

Ko e Kwon 2022, Qin et al. 2021] also used ML algorithms and obtained similar

results. However, the authors implemented computationally more expensive algo-

rithms, such as neural networks with multi-domain input and convolutional neural

networks [Dreiseitl e Ohno-Machado 2002];

2. We implemented and compared three ML-based algorithms (K-Means, Logistic

Regression, and XGBoost), representing different classifiers, to categorize driving

behavior as fuel-friendly or not. Likewise, [Peppes et al. 2021] compared algo-

rithms and obtained similar results. However, implemented computationally more

expensive algorithms, such as neural networks [Dreiseitl e Ohno-Machado 2002];

3. We developed and compared three algorithms (Ridge Regression, Support Vector

Regression, and XGBoost) for fuel consumption prediction. [Yao et al. 2020, Ka-

narachos, Mathew e Fitzpatrick 2019] also worked on predicting consumption.

However, they used neural networks and smartphones, requiring more resources

and greater computational power [Dreiseitl e Ohno-Machado 2002];

4. We trained all models with real data captured from a test vehicle and compared the

performance of the algorithms with changes in driving and environment. Our re-

sults indicate that we can detect misfires with a precision of 92.4%, recall of 96.16

%, and F1 Score of 94.24%. Furthermore, we can classify the driving behavior

with up to 100% accuracy, recall, and precision, besides predicting consumption

with an average of the square of errors between predicted and measured values

of 0.28 (l/h2), mean absolute error of 0.23 (l/h) and coefficient of determination of

0.99;

36 Chapter 1

5. We conducted a comprehensive literature review and compared existing works

in terms of resources used, techniques applied, and results obtained, summa-

rizing this in three tables of related works (3.1.1 Summary of misfire detection

techniques, 3.2.1 Summary of related works that use classification techniques,

and 3.3 Summary of related works that use regression techniques).

1.3 STATEMENT OF CONTRIBUTION

The content of this thesis is based on the work presented in the following articles:

[Canal, Riffel e Gracioli 2023]: Rafael Canal, Felipe Kaminsky Riffel, and Giovani

Gracioli. "Driving Profile Analysis Using Machine Learning Techniques and ECU Data".

32nd International Symposium on Industrial Electronics (ISIE), 2023, IEEE.

[Bedretchuk et al. 2023]: João Paulo Bedretchuk, Sergio Arribas García, Thiago

Nogiri Igarashi, Rafael Canal, Anderson Wedderhoff Spengler, and Giovani Gracioli.

"Low-Cost Data Acquisition System for Automotive Electronic Control Units". v. 23, n. 4,

2023.

[Canal et al. 2023]: Rafael Canal, Felipe Kaminsky Riffel, João Paulo Araujo

Bonomo, Rodrigo Santos de Carvalho, and Giovani Gracioli. "Misfire Detection in Com-

bustion Engines Using Machine Learning Techniques". XIII Brazilian Symposium on

Computing Systems Engineering (SBESC), 2023, IEEE.

[Canal, Riffel e Gracioli 2023]: Rafael Canal, Felipe Kaminsky Riffel, and Giovani

Gracioli. "Machine learning for real-time fuel consumption prediction and driving profile

classification based on ECU data". Submitted for publication.

Due to the relationship to published work, this thesis contains significant material

from [Canal, Riffel e Gracioli 2023, Canal, Riffel e Gracioli 2023, Canal et al. 2023,

Bedretchuk et al. 2023]. We thank all co-authors for their precious help in completing

this research. In particular, we would like to thank Felipe Kaminsky Riffel for his help

in applying the feature selection algorithms and in refining the algorithms developed in

the work to improve the results.

1.4 DOCUMENT ORGANIZATION

The document is organized as follows. Section 2 grounds the theory needed to

understand the work. The 3 section reviews, summarizes, and compares related works.

The section 4 describes the data acquisition methodology we used in this work, detailing

each step of the process from designing experiments, algorithms and parameters used,

training and testing steps, to real-time analysis. The section 5 presents the results

achieved, comparing them with the literature. Finally, Section 6 concludes the work,

showing its relevance for the automotive area.

Chapter 2 37

2 BACKGROUND

The following subsections discuss the main theoretical concepts important for

understanding and developing this work.

2.1 ELECTRONIC CONTROL UNIT

The ECU is a critical component in modern electronic systems used in various

applications, including automotive, aerospace, industrial automation, and consumer

electronics. The ECU serves as the central processing unit that manages and controls

the operations of different subsystems within a more extensive system [Bedretchuk et

al. 2023].

The electronics present in automobiles include, among other components, trans-

mission and engine controls, safety systems, measurement, and diagnostic modules.

The ECU is a microprocessor responsible for calibrating and controlling the essential

functions of the engine and its components [Kruse, Kurz e Lang 2010]. It is a critical sys-

tem that regulates vehicle gas emissions, improves average fuel economy, increases

reliability, and reduces costs. The ECU allows monitoring of various mechanical and

electrical systems in the vehicle, where each part of the vehicle communicates internally.

In general, the Controller Area Network(CAN) performs the vehicle communication net-

work due to the advances in this technology related to communication speed and data

transmission [Nguyen, Cheon e Jeon 2014].

As technology advances, ECUs evolve, enabling more sophisticated functionality

and addressing challenges associated with software complexity [Nag, Ghanekar e

Harmalkar 2019] and system integration. The future of ECUs lies in their integration

with emerging technologies, such as artificial intelligence and connectivity, to enhance

performance, efficiency, and user experience in a wide range of applications [Weber et

al. 2019, Hafeez et al. 2021]. Integration like the one proposed in this work, applying

machine learning techniques in an industrial scenario for real-time analysis to help

engineers optimize the engine’s performance and its components and drivers to improve

their driving style.

2.2 COMBUSTION ENGINE

Most automobiles are equipped with a 4-stroke combustion engine, so called be-

cause its operation is based on four different stages: intake, compression, combustion,

and exhaust, where combustion occurs once every two revolutions [Lilly 1999]. Figure

2.1 demonstrates the combustion process in one cylinder. In the first revolution, the first

stage (1) begins at the top dead center (TDC); the engine piston moves down and pulls

the fuel and atmospheric air mixture through the intake valve. The fuel is injected by the

Chapter 2 39

2.3 MISFIRE

A misfire occurs when the burning process is not done correctly in the combus-

tion chamber, either with the delay in combustion or the lack of it. In this case, the

engine suffers from energy loss, unbalancing its operation until a new combustion cycle

begins. The California Air Resources Board (CARB) [Board 1991] regulations define

engine misfire as a lack of combustion in the cylinder due to the absence of spark, poor

fuel metering, poor compression, or any other cause.

Misfire is one of the common failures of multi-cylinder engines [Qin et al. 2021].

It affects the engine’s output power, which can reduce its power capacity by up to

25% [Sharma, Sugumaran e Devasenapati 2014], and save engine operation, leading

to problems of weak acceleration, increased fuel consumption, and pollutant emissions,

due to higher concentration of unspent hydrocarbons present in the exhaust gases. Con-

sequently, and supported by the OB-DII legislation, many companies and researchers

have proposed practical methods to detect and avoid misfires, as shown in section 3.

2.3.1 Causes

As the combustion process involves many other parts, be they mechanics, envi-

ronment, driver experience, maintenance, and fuel quality, the source of misfires can be

challenging to find. The failure can also occur constantly or intermittently due to ignition

system failure, unbalanced air-fuel ratio, faulty spark plug, blown head gasket, clogged

catalytic converter, lack of compression, or even failure of the gas re-circulation system

of escape [Boguś e Merkisz 2005]. Next, studies that analyzed the causes of misfires

are described, and at the end of the subsection, a table is presented summarizing the

principal causes of failure.

The ignition system failure occurs from failures in sensors related to pressure

in the suction manifold, crankshaft position, cooling liquid temperature, sucked-in air

temperature, throttle position, lambda, and other work elements like the valve of fuel

vapor absorbent, fuel pump, inertial switch, and pintle injectors [Dziubinski et al. 2017].

A foul or a bad spark plug can be coated with a material like tar, gasoline, or

carbon, and a misfire could be caused by pre-ignition from the spark plug gap fault. For

optimal engine performance, the spark plugs must be clean (with the electrodes intact);

otherwise, the engine’s running would be changed [Azrin et al. 2021].

A blown head gasket can be caused by the compression in the cylinder because

of the use of aluminum rather than iron cylinder heads [Komorska 2011]. Aluminum

has a higher thermal expansion rate than iron, causing much more stress on the head

gasket, which can cause compression leakage between the cylinders if damaged.

An imbalance air-fuel ratio occurs if the mixture in one or more cylinders is

different from the others [Nakagawa, Fukuchi e Numata 2012]. This malfunction can

40 Chapter 2

be caused by a problem with the fuel injector, an intake leak in one of the cylinders, or

even a flow problem in the exhaust gas re-circulation of a cylinder.

A clogged catalytic converter happens when the engine temperature rises

above 1000°C [Klenk et al. 1993]. Under normal conditions (without misfire), even at

high speed, the engine reaches up to about 950°C. If it reaches a higher temperature,

the catalytic converter can melt and clog due to overheating.

A lack of compression can be caused by sloughing off piston and piston rings,

damaged valve seals, defect in the hydraulic lifter, camshaft re-synchronization, or by

penetration of the air/fuel mixture into the crankcase [Ting e Mayer J. E. 1974].

An exhaust gas re-circulation system failure occurs when gas flow is insuffi-

cient [Wei et al. 2012]. It can be caused by airflow obstruction, valve sticking, a differen-

tial pressure feedback sensor, or a vacuum-switch valve failure.

Table 2.1 provides a summary of the causes described above and, in addition,

Figure 2.2 illustrates the misfire tree and the failure chain of each of these causes,

according to the revised literature.

Table 2.1 – Summary of causes

Misfire Causes Engine conditions

Ignition system failure Faulty sensors and working elements that are part of the injection
system [Dziubinski et al. 2017].

Faulty spark plug Spark plug electrode wear [Azrin et al. 2021].
Blown head gasket Compression in the cylinder due to use of incorrect material [Ko-

morska 2011].
Imbalanced air-fuel ratio Faulty oxygen sensor, faulty mass air flow sensor, fuel injector

malfunction, or intake leak in a cylinder [Nakagawa, Fukuchi e
Numata 2012].

Clogged catalytic converter Too high temperature [Klenk et al. 1993].
Lack of compression Piston rings and pistons have worn out, or air/fuel mixture reaches

crankcase [Ting e Mayer J. E. 1974].
Exhaust gas re-circulation sys-
tem failure

Glued or charred exhaust gas re-circulation valves [Wei et al.
2012].

Source: Author (2023).

42 Chapter 2

2.3.2 Symptoms

The symptoms caused by misfires are subtle and often imperceptible. Detect-

ing the failure by perceiving the macro symptoms alone is difficult, but it is important

for the general understanding of the failure that they are known. Thus, based on the

aforementioned authors, the following list was made.

• Brute acceleration: the car moves in a jolt when stepping on the acceleration

pedal; it is possible to feel a strong tremor coming from the engine. The most

common situation to detect misfires is in high gear, low rotation, and the throttle

on the ground. Raw throttle is a typical sign that the engine is failing;

• Rough Idle: a very irregular idle, which can cause the engine to shut down.

Therefore, the engine sensors will have faulty values, and the fuel mixture will be

confused;

• Vibrations: when one or more engine cylinders do not fire correctly, the engine be-

comes unbalanced, causing strong vibrations inside the cabin when accelerating

or idling.

• Engine light: if a sensor has failed or detected something wrong with the engine,

it will send the information to the ECU. Thus, it is up to the unit to decide whether

the problem is serious. Also, if the problem occurs repeatedly, the ECU will turn

on the check light. When the ECU detects misfires, it is widespread for it to turn

on the engine light and store a fault code relating it to the cylinder in which it

occurred;

• Slow Acceleration: O2 sensors can receive incorrect information and generate

either very lean or very rich mixtures, which can cause a decrease in acceleration;

• Strong smell of not burnt fuel in the exhaust;

• Change of engine sound.

2.3.3 Detection

The literature includes different approaches for the detection of misfires in com-

bustion engines, such as linear and non-linear analysis of engine vibration [Syta,

Czarnigowski e Jakliński 2021], automatic diagnosis based on torsional vibration and

block rotation [Chen et al. 2012] or based on simulation models [Chen e Bond Randall

2015], crank speed monitoring [Wang et al. 2022] and even real-time torque estima-

tion [Zheng et al. 2019].

In addition to external approaches, the ECU can detect some faults. The first

information the ECU provides is the anomaly light flashing on the car’s dashboard at

Chapter 2 43

the time of failure. To identify the defective cylinder, it is necessary to connect a reader

to the diagnostics connector (Data Link Connector), which is used to access onboard

diagnostics and live data streams from the ECU. Using it, it is possible to access the

vehicle’s ECU and capture the fault codes recorded during the event. P0301 is an

example code for misfire or combustion failure. Where P stands for power-train and is

related to power-train system failures, 030 indicates misfire, and 1 indicates cylinder

one has or has had the fault [McCord 2011].

It is possible to apply techniques using the crankshaft angular velocity measured

at the flywheel, brake torque, engine vibrations, combustion chamber pressure, exhaust

gas pressure, and ionic current between spark plug electrodes, among others, to detect

the misfire fault. However, based on what has been seen so far (2.3, 2.3.1, 2.3.2 and

2.3.3), it is possible to use information from the cylinder/engine sensors generated at

run-time, to detect a misfire. Moreover, new techniques are being implemented, mainly

due to their high failure prediction accuracy, such as the application of machine learning

(ML) algorithms [Singh, Potala e Mohanty 2018].

2.4 FUEL CONSUMPTION

Environmental sustainability and energy security are concerns that have grown

considerably. Therefore, understanding fuel consumption in the transport sector be-

comes increasingly important. Fuel consumption affects transport systems’ economic

viability and has significant environmental impacts, including greenhouse gas emissions

and air pollution [Ali et al. 2022,Abokyi et al. 2019].

Figure 2.3 represents the main factors that impact fuel consumption [Zhou, Jin e

Wang 2016].

Figure 2.3 – A structure diagram of the factors affecting vehicle fuel consumption.

Source: [Zhou, Jin e Wang 2016]

44 Chapter 2

Travel-related factors significantly impact vehicle energy consumption and emis-

sions. The distance traveled directly affects fuel consumption, with longer trips generally

resulting in higher energy usage. Also, urban driving can be less efficient compared

to highway driving. Moreover, driving at higher speeds increases aerodynamic drag

and engine workload, leading to higher fuel consumption and emissions. Therefore,

considering trip distances and optimizing driving routes can help minimize energy con-

sumption and emissions.

Weather-conditions play a crucial role in vehicle energy consumption. Temper-

ature can significantly impact fuel efficiency due to more extended engine warm-up

times. Additionally, strong headwinds encountered during windy conditions can create

higher aerodynamic drag, resulting in more energy required to maintain speed.

Vehicle-related factors encompass various aspects that influence fuel consump-

tion and emissions. A vehicle’s weight, size, and shape play a role in determining its

aerodynamic efficiency. The type and size of the engine, quality of parts, monitoring

of components, and embedded technology exhibit varying fuel consumption rates and

can positively impact energy efficiency. Additionally, regular vehicle maintenance is

essential.

Roadway-conditions significantly influence vehicle energy consumption. Un-

even or poorly maintained roads increase rolling resistance, requiring more energy to

overcome; well-maintained roads and planning routes with minimal congestion can help

optimize energy efficiency.

Traffic-related factors impact both fuel consumption and emissions. Smooth traf-

fic flow at a constant speed is more efficient than frequent stops and starts. Congested

traffic, with high vehicle density, can lead to lower average speeds and increased fuel

consumption.

Driver-related factors can significantly influence vehicle energy consumption

and emissions. Driving behavior plays a crucial role, as aggressive driving habits such

as rapid acceleration, harsh braking, and excessive speeding can significantly increase

fuel consumption. Drivers can optimize fuel efficiency by practicing smooth and gradual

acceleration, gentle braking, and adhering to speed limits.

As most of the factors mentioned above cannot be easily controlled in a research

environment, our work focuses on two of the main ones: related to the vehicle and

the driver. Thus, subsequent sections will explore fuel consumption, examining some

of its determinants and consequences, mainly related to vehicle technology, engine

monitoring, and driver behavior.

2.4.1 Driving and Consumption Profile

A vehicle’s driving and consumption profile encompasses the driving behavior

attributes and fuel consumption patterns demonstrated by a car [Lois et al. 2019].

Chapter 2 45

Monitoring and finding critical aspects of the driving and consumption profile is essential

to assess the vehicle’s efficiency and environmental impact and identify possible paths

for improvement. This section details the fundamental components of a driving and

consumption profile, including driving style, driving conditions, and fuel consumption

patterns.

Studies have emphasized the importance of driving style as a determinant of fuel

consumption variations between vehicles [Weller et al. 2019, Yao et al. 2020, Holden,

Gilpin e Banister 2019]. Aggressive driving behaviors such as rapid acceleration, abrupt

deceleration, and excessive speed have been found to increase fuel consumption and

emissions significantly. On the other hand, adopting a more eco-friendly driving style,

characterized by smoother accelerations, gradual deceleration, and compliance with

speed limits, can generate substantial fuel savings [Gao et al. 2019]. Driving condi-

tions also have a considerable influence on a vehicle’s fuel consumption. For example,

stop-and-go traffic conditions can increase idling and frequent braking, increasing fuel

consumption [Huang et al. 2019].

Analyzing fuel consumption patterns is vital to understanding a vehicle’s effi-

ciency and performance. This involves monitoring fuel consumption rates at specific

intervals or during different driving modes (e.g., city or highway driving, dry or wet

weather, high or low temperature). Allows the identification of trends, anomalies, and

areas for improvement. Advanced technologies such as onboard fuel consumption

gauges and more technological cloud-based systems can provide real-time data and

analytics on fuel usage [Moradi e Miranda-Moreno 2020,Zheng et al. 2020], enabling

drivers and fleet operators to optimize fuel efficiency.

By understanding driving and consumption profiles, researchers and policymak-

ers can formulate targeted strategies to increase fuel efficiency, reduce emissions and

promote green driving practices. This knowledge can guide the development of train-

ing programs, eco-driving campaigns, and policy interventions to promote sustainable

transport systems [Li et al. 2021,Tsakalidis et al. 2020,Holden, Gilpin e Banister 2019].

2.4.2 Consumption Estimation

In automotive and engineering fields, regression models and fuel consumption

forecasting are vital in optimizing the efficiency of various systems such as combustion

engines, vehicles, and industrial machines. These models provide insight into fuel

consumption patterns, allowing engineers to make informed decisions about design

improvements, operating strategies, and energy management. This section presents

an overview of fuel consumption regression and prediction models, focusing on their

applications and methodologies.

Modeling fuel consumption in combustion engines is crucial to understanding

and optimizing routine. Multiple regression techniques have been used to develop em-

46 Chapter 2

pirical fuel consumption models [Slavin et al. 2013,Miri, Fotouhi e Ewin 2021], consid-

ering various engine parameters such as engine speed, load, air-fuel ratio, and ignition

timing [Çapraz et al. 2016]. These models, often based on experimental data, allow

engineers to estimate fuel consumption under different operating conditions and guide

the development of efficient engine designs.

In the automotive industry, predicting fuel consumption is essential for evaluating

vehicle performance, optimizing energy efficiency, and meeting regulatory standards

[Wang et al. 2018]. Statistical regression models such as multiple linear regression and

artificial neural networks [Xie et al. 2023] are commonly employed to predict vehicle fuel

consumption based on speed, weight, aerodynamics, and driving conditions [Chen et al.

2017,Moradi e Miranda-Moreno 2020]. These models help in the design of fuel-efficient

vehicles, in the development of eco-driving techniques, and in the evaluation of new

technologies such as hybrid and electric engines [Zhang et al. 2020, İnci et al. 2021].

Regression models and fuel consumption prediction are also employed in me-

chanical engineering for energy management in industrial machines [Rahman e Smith

2017, Yao et al. 2020]. By analyzing historical factors such as fuel consumption data

and considering equipment load, operating time, and maintenance schedules, engi-

neers can develop models to optimize energy use, reduce fuel waste and improve the

system’s overall efficiency.

As automotive engineering advances, several trends and challenges arise in the

regression and prediction of fuel consumption. Integrating real-time data acquisition

systems, advanced sensors, and machine learning algorithms allows the development

of more accurate and adaptive fuel consumption models. Furthermore, incorporating

emerging technologies such as the Internet of Things (IoT) and big data analytics

offers new opportunities for data-driven fuel consumption optimization in mechanical

systems [BULUT e ILHAN 2019,Hawkins et al. 2021].

2.5 MACHINE LEARNING

In recent years (as can be seen from the dates of the related works (3), ML algo-

rithms have been extensively explored in the field of research related to fault detection

and have developed rapidly. Compared to algorithms with human-designed indicators,

ML algorithms extract more failure features from a signal and can process more signals

simultaneously [Wang et al. 2022].

ML use in fault detection is interesting because many techniques do not re-

quire a lot of computational resources or affordably have these resources, having great

accuracy and being reliable [Sharma, Sugumaran e Devasenapati 2014]. In addition,

the algorithms can be trained numerous times to follow the system changes, either

manually, where external data sets are applied to the algorithm, or automatically, imple-

menting algorithms capable of updating themselves continuously as the car’s engine

Chapter 2 47

conditions change.

ML algorithms adapt their attributes to become more effective in performing

the applied task. This adaptation is initially achieved in training, an important part of

the algorithm learning process. The algorithm can respond to training in a few ways,

either with variable parameters adjusted through iterative optimization, with possible

classification paths, or with the probability distribution, from the input data. These al-

gorithms must generally be oriented to learning by studying, experimenting, or being

taught. Among these forms are two broad classifications: supervised and unsupervised

learning, defined by Murata et al. 2002 and Zhao e Liu 2007 as described below.

• Supervised: the training includes the input data and the expected results so that

the algorithm learns to make this association. In this type of learning, examples

are passed to the program with the data and the expected answer. The main

objective is for it to learn and make a good generalization of the relationship

between input and output so that it can classify correctly when it receives new

data never seen before. This method is commonly used in classification problems,

where algorithms try to categorize data (decision trees, support vector machines

(SVM), and many distance-based algorithms), and regression, in which algorithms

understand the relationship between independent and dependent variables of the

data (linear regression and also FS.

• Unsupervised: training does not include expected results. It is mainly used in

clustering algorithms to group input data into classes using more statistical infor-

mation. The purpose of this type of training is to make the model learn the patterns

among the data by itself and is mostly used in clustering algorithms, which group

data into categories according to their similarity; association algorithms, which

make the association of data precisely by some defined base rule, and dimension-

ality reduction, where the number of dimensions of the data is reduced in terms

of complexity or number of characteristics or input data

Next, the most applied ML algorithms in failure detection found in the literature

are briefly explained. Also, in order not to clutter the background section with code

examples, an application example of each algorithm explained below was added to

Appendix A, demonstrating how programming is made easier with the help of Python

libraries, the dataset used was the Iris Data Set from Dua e Graff 2017. The dataset

consists of 4 attributes plus 3 classes of 50 samples each, which refers to a type of iris

plant (setosa, versicolor, or virginica). Among them, one class is linearly separable, and

the others are not separable from each other (Figure 2.4).

Chapter 2 49

sification, establishing the relationship between the class and the attributes. In machine

learning, the root is a database attribute, and the leaf node is the class or value that will

be generated in response. They are used to extract statistical features (bias, variance,

mean, etc.), selecting those that most contribute to identifying fault classes. They can

be used to predict discrete categories (yes or no, for example) and to predict numerical

values (estimated expenses for the month, for example) [Russell 2010]. They fit into

a group of well-developed machine learning algorithms that efficiently implement the

obtained ruleset as fuzzy logic in many systems [Lei et al. 2020]. This algorithm is

simpler to understand than other machine learning techniques because it is possible

to know what happens in each part of the process, unlike the black boxes formed in

neural networks.

If-then rules exist in the links between nodes to understand how this algorithm

works. For example, when data arrives at node X, the algorithm applies a defined rule,

such as: if the characteristic of the analyzed data is greater or equal to Y. If it is, then it

goes to one side of the tree. Otherwise, it goes to another. This logic is applied to the

following nodes until it reaches the leaf node and has a final result. The tree’s primary

function is to find the nodes that will be fitted in each position, who will be the root node,

then who will be the left node, the right node, and so on.

Although it is significant to know how a decision tree works and how to build one,

it is interesting to use the libraries provided by the language in which the code is being

written to optimize time and resources.

K-Means is an unsupervised clustering algorithm that divides the data into

classes or clusters, with a number K of clusters informed as a parameter. In this

method, the clusters are determined by centroids, K points in the data space, where a

point belongs to a cluster if the respective centroid is the closest from it [Aggarwal et al.

2015].

K-means determines its clusters through an iterative optimization process, start-

ing with the K centroids initially randomized. In each step, the centroids are updated to

the mean array in each cluster. Formally defining, given clusters S1, . . . , SK , and points

x(1), . . . , x(n), it aims to minimize the total variance:

K
∑

i=1

♣Sk♣
∑

x(i)∈Sk

∥x(i) − x(k)∥2 (2.1)

where x(k) = (x
(k)
1 , . . . , x(k)

m) is the array with means of each input xi respective to

the k-th cluster. This is done by replacing the centroids in each step with the respective

mean array, repeating it until the centroids no longer change positions, which has

guaranteed convergence [Hastie, Tibshirani e Friedman 2009].

In this work, we used the Python SKLearn implementation of K-Means, choosing

K = 2 as a parameter, as also used in related works [Yang et al. 2018, Peppes et al.

50 Chapter 2

2021].

Logistic Regression Classifier is a supervised regression method used for

classification, as the obtained function is a sigmoid, which returns real values within an

interval between 0 and 1. Given inputs x = (x1, . . . , xm), the predictor have the form:

p̂(x) =
1

1 + e−g(x)
(2.2)

where g(x) = xT θ, being θ = (θ1, . . . , θm) a parameter array. These parameters

are obtained through the minimization of the loss function:

L(θ) = −
1

n

n
∑

i=1

[

y(i) log(p̂(i)) + (1 − y(i)) log(1 − p̂(i))
]

, (2.3)

where p̂(1), . . . , p̂(n) are the predicted values, y(1), . . . , y(n) are the actual values

(0 or 1). In the logistic regression, the predictor outputs probabilities, values in a range

between 0 and 1, of the actual class being true. This can be used for binary classifica-

tion, where the classes are determined if the function returns a value under or above

0.5 [Aggarwal et al. 2015].

K-Nearest Neighbors (KNN) classifier is an algorithm for classification tasks.

It assigns a class label to a new data point based on the majority class label of its

nearest neighbors in the training dataset. The algorithm involves selecting a value for

K, finding the K nearest neighbors using a distance metric (usually Euclidean distance),

and predicting the class label based on the majority of votes among the neighbors.

KNN is an intuitive approach that assumes that similar data points tend to belong to the

same class. SKLearning’s KNeighborsClassifier is an example implementation of KNN,

where K=5 by default.

Support Vector Classification (SVC) algorithm is a supervised learning method

that aims to find an optimal hyperplane that separates different classes in the data. It

works by mapping the data points into a higher-dimensional feature space and find-

ing the hyperplane that maximizes the margin between the classes [Abe 2005]. The

support vectors, the data points closest to the decision boundary, are crucial in deter-

mining the optimal hyperplane. SVC effectively handles non-linearly separable data

using the kernel trick to transform the data into a higher-dimensional space implicitly.

During prediction, SVC assigns new data points to classes based on which side of the

decision boundary they fall. The key goal of SVC is to achieve a good generalization by

finding the hyperplane that minimizes the classification error and maximizes the margin

between classes in the transformed feature space.

Gradient Boosting is a supervised method that joins classification and regres-

sion trees, predictors which classify data through certain binary conditions upon thresh-

olds and value ranges to determine the class it belongs to, associating it with some

predicted score. This method works by joining trees in sequence, where a tree is trained

Chapter 2 51

with the previous residual error, summing up their outputs to final results [Aggarwal et

al. 2015].

Each tree can be written as a predictor in the form ŷk = fk(x), where x is the

inputs array, fk represents the k-th tree, and ŷk represents the output score. In ensemble

methods, as in the case of Gradient Boosting, the final outputs are determined by:

ŷ =
K

∑

k=1

fk(x), (2.4)

being f1, f2, . . . , fK the trees obtained by the algorithm. Gradient boosting ob-

tains the trees and their parameters θ through the minimization of an objective function

in the form:

obj(θ) =
n

∑

i=1

l(yi, ŷi) +
K

∑

k=1

ω(fk). (2.5)

In this objective function, the first sum is a loss term, where x1, . . . , xn are the train

inputs, y1, . . . , yn the target values, ŷ1, . . . , ŷn the predicted values, and l(y, ŷ) a convex

loss function between predicted and actual values. The second sum is a regularization

term, being f1, . . . , fK the tree structures and ω(f) some measure of tree complexity.

Gradient Boosting is distinguished from other ensemble methods by using a gradient-

based approach, training each tree iteratively with the previous results.

2.5.2 Regression

Ridge Regression is a type of regularized linear regression. It consists of a

linear estimator trained with a regularized loss function, using the called Ridge or

Tikhonov Regularization technique, which aids in avoiding over-fitting and influence

from outliers [Hastie, Tibshirani e Friedman 2009]. Given inputs x = (1 x1 x2 · · · xm)T ,

the technique aims to obtain a regressor in the form:

ŷ =
m

∑

i=0

θixi = θT x, (2.6)

where θ = (θ0 θ1 · · · θm)T are numerical parameters. Given x(1), ..., x(n) train

feature arrays and y1, ..., yn train target values, these parameters θ are obtained through

minimization of the Loss Function:

L(θ) =
n

∑

j=0

♣yj − θT x(j)♣2 +
1

2
α∥θ∥2 (2.7)

The first term in Equation 2.7 represents the usual least-squares linear regres-

sion loss function, and the term 1
2
α∥θ∥2 is called regularization term, being α > 0 a fixed

parameter and ∥θ∥ =
√

∑

θ2
i the usual Euclidean Norm.

52 Chapter 2

Support Vector Regression (SVR) is a method that implements ideas from the

Support Vector Machines into regression problems. The final estimator is in the form

ŷ = θ0 +
∑m

i=1 θixi = θT x, being x = (1 x1 · · · xm) the input, ŷ the predicted value and

θ = (θ0 · · · θm) an array of numerical parameters. In this model, instead of fitting an

estimator which minimizes the error ♣y − ŷ♣, the algorithm tries to fit an estimator such

that the maximum possible inputs are in a specified ε > 0 error margin: the estimator

fits a maximum quantity of x(j) inputs respecting ♣yj − θT x(j)♣ ≤ ε. The θ parameters are

obtained by solving the minimization problem:

min
θ,ζ

1

2
∥θ∥2 + C

∑

ζi (2.8)

s.t. ♣yj − θT x(j)♣ ≤ ε + ζj, (2.9)

where C > 0 is a fixed regularization parameter, and ζi ≥ 0 are called slack

variables, implemented to consider margin violation points.

Gradient boosting, used for the classification task, can be adapted for the

regression. It applies the same principle of tree ensembles and training, but instead of

a score related to a classification task, the prediction consists of the actual value for

regression itself [Chen e Guestrin 2016].

2.5.3 Artificial neural network

Artificial neural network (ANN) was developed to copy the human brain’s

ability to process information in an attempt to make an algorithm capable of self-learning

with what it has already analyzed. They can be used to analyze large amounts of data

collected during the testing process and identify patterns or anomalies that may indicate

faulty products or performance issues to assist in predicting product quality, estimating

failure rates, and optimizing industrial procedures [Lei et al. 2020].

In an overview, an ANN is essentially conceived by two components: its archi-

tecture and its learning algorithm. The first is based on the number of attributes that

will be analyzed and the desired outputs. The second has the function of generalizing

the input data, memorizing what was understood within the adaptive parameters of the

network (its weights). In this way, the developer must define which type of network is

suitable to solve the problem in question and the best algorithm to train the network,

which best adapts to the network weights.

An ANN is composed of neurons, but the amount and type of combination be-

tween them vary according to the chosen network, which may have one or several

layers of neurons. The network topology can be composed by combining all inputs

with all neurons from the subsequent layer, passing through the network weights, or by

partially combining inputs with some neurons from the next layer, followed by passing

the combination through an activation function.

Chapter 2 53

Typically, the problem to be solved defines the constraints on the types of net-

works and possible learning algorithms. Networks can propagate information forward

(data flows through the network from the input layer to the output layer performing

computations and passing the results to the next layer) and/or backward (the network

adjusts its internal parameters recurrently, with feedback from outputs to inputs). Con-

versely, algorithms can be divided into the supervised and unsupervised types previ-

ously described at 2.5. It is customary to initialize the network weights randomly, so the

learning algorithm is responsible for updating them by going through a fixed number of

iterations and/or until reaching a stop condition. Among the types of neural networks,

the most used networks in the related works (3) and in this dissertation are explained

in more detail below.

Each dataset has its peculiarity. For example, in the Iris Data Set, one of its three

classes is linearly separable from the other two, while the others are not. In cases like

this, if the linearly separable class is analyzed exclusively with one of the other two,

it is possible to develop a neural network with a single layer, such as a perceptron. A

larger number of layers in the network is necessary to separate the other two classes,

such as a multilayer perceptron (MLP). The similarity between the two networks is that

the neurons of the layers after the input have a direct relationship with all the neurons

of the previous layer. The output of a neuron considers the values of all neurons in

the previous layer, and each neuron produces only one output. Based on Haykin e

Network 2004 and Aggarwal et al. 2018, the difference between the two networks is

described below:

Perceptron: is the most simplified form of an ANN. It is formed by only one layer

responsible for calculating the synaptic weights and the bias related to the dataset, as

shown in Figure 2.6. It can classify only linearly separable datasets, and the number

of output neurons is intrinsically related to how many classes the network can classify.

In this network, the inputs (X) represent the information of the process to be mapped

(which may contain a bias), and each of the inputs will have a synaptic weight (W) that

represents the importance of each input concerning the output value desired (y). The

sum of the weighted inputs will be added to the activation threshold and then passed

as an argument of the activation function, resulting in the desired output. For binary

classification (0 or 1), normally, the activation function used is the step function.

As seen before, the perceptron can only be used in binary classification problems

with linearly separable classes, and the Iris dataset consists of three different classes

with only one separable (Figure 2.4).

MultiLayer Perceptron: is a natural evolution of the perceptron. Its network

contains one or more hidden layers, making it difficult to visualize its learning process.

The architecture of multilayer neural networks is feed-forward; they successively feed

each other in the direct direction from input to output (Figure 2.7). In its structure, each

Chapter 2 57

applied algorithms, to reduce the computational cost and improve overall performance

[Zebari et al. 2020] [Kiktova et al. 2014].

Like machine learning algorithms, FS algorithms must also be able to make a

relationship between data. For this, the learning techniques (supervised and unsuper-

vised) seen above also apply to these algorithms [Li et al. 2017].

The selection process is cyclic. First, a strategy is chosen for creating subsets of

the available attributes. This can be done by evaluating individual variables according

to pre-defined criteria or directly subsets [Kumar e Minz 2014]. A statistical evaluation

takes place to verify which one is more qualified, this process usually has a stop

condition, and the best result is the one that prevails until further evaluation. As a

result, among all tested subsets or variables, one or more is expected to outperform

the complete set to be used instead.

In this work, this process was implemented. It showed tangible differences, allow-

ing the identification of the most relevant features for accurate predictions and providing

valuable information about the underlying patterns and relationships in the data.

2.7 PARTIAL CONSIDERATIONS

The topics covered in this chapter make it possible to connect them and raise

some considerations about what is treated during the work. The ECU is the control

center for the vehicle’s electronic systems, critical in managing engine performance,

emissions, and overall functionality. Understanding its internal operations and utilizing

the ECU’s ability to present engine behavior is essential to reaping its benefits.

Combustion engines continue to be the predominant energy source in auto-

mobiles, and their efficiency and performance directly impact fuel consumption and

emissions. By studying combustion engine fundamentals such as ignition processes

and fuel combustion characteristics, valuable information can be gained to optimize fuel

efficiency, reduce environmental impact, extend vehicle life, and ensure excellent safety

for drivers.

Integrating machine learning algorithms in the automotive domain has immense

potential to optimize various aspects such as fuel efficiency and fault detection. Taking

advantage of the applicability of algorithms and including ECU data, models can be

developed to improve the capabilities of automotive systems, mainly related to engine

performance and driver driving.

Misfires can harm engine performance, fuel consumption, and emissions. Investi-

gating the causes and methods of detecting misfires is crucial, and developing machine

learning algorithms that can accurately identify and diagnose these problems in real

time is a relevant alternative. This knowledge can lead to immediate maintenance and

mitigation strategies to prevent further damage.

Fuel consumption is a significant concern for both economic and environmen-

58 Chapter 2

tal reasons. Developing predictive models using machine learning algorithms allows

accurate estimates and fuel consumption optimization. By considering various factors

such as driving conditions, engine load, and vehicle characteristics, these models can

suggest strategies to improve fuel efficiency and reduce carbon footprint.

In conclusion, integrating machine learning algorithms with a deep knowledge

of automotive systems, considering ECU data, engine operation, misfire peculiarities,

and fuel consumption, offers excellent potential to improve vehicle performance, reduce

emissions and optimize fuel efficiency. By leveraging the insights gained from these

considerations, further research and development can be undertaken to reap the full

benefits of machine learning in the automotive industry, such as the work presented

below.

Chapter 3 59

3 RELATED WORK

ML algorithms have been explored in automotive-related research recently,

mainly because of their relevance in developing fuel consumption models based on

real-world driving data, which can improve the accuracy of engine-related parameters

and reduce the need for physical tests [Pavlovic et al. 2020, Claßen et al. 2021, Ma,

Shahbakhti e Chigan 2023].

In the following subsections, we review the literature considering three main

related topics: (i) misfire detection [Qin et al. 2021, Devasenapati, Sugumaran e Ra-

machandran 2010, Rath et al. 2019]; (ii) classification of the driver’s driving profile in

terms of fuel consumption [Zheng et al. 2022,Yang et al. 2022,Peppes et al. 2021]; and

(iii) regression models to estimate the fuel consumption, including analyses of related

factors (environmental, traffic, driving behavior) [Li et al. 2019, Liu e Jin 2023, Rios-

Torres, Liu e Khattak 2019]. Compared to human-designed analyses of engine data,

ML algorithms speed up the processing with a greater amount of data [Ping et al. 2019].

3.1 MISFIRE DETECTION

Most mechanical methods use an angular velocity of the crankshaft or deriva-

tives to detect misfires. A Kalman filtering can be applied to a signal from conven-

tional angular speed sensors used by engine management systems in a 4-cylinders

engine [Kiencke 1999]. These techniques require a state-space model of the signal and

second-order statistics. Based on the premise that at high engine orders, the pressure

amplitudes and load torque decrease, that the load of the cylinders affects the power

density of the pressure torque, and that at each TDC of the engine, the pressure torque

has vanished, a torque fluctuation was obtained in the application of this filter. The

obtained model shows that during a deceleration phase, the engine has no differences

in the pressure torque between the cylinders, and the engine’s first-order inertia torque

is zero. In the results, it was observed that in the case of a misfire, the drive-train os-

cillations were excited, and the torque fluctuations stimulated by this component were

effectively suppressed. The approach estimation limit of engine speed is between 3000

and 4000 rpm because the oscillation of mass torques is bigger at higher speeds.

An algorithm based on analyzing the crankshaft speed fluctuation signal pro-

duced by a magnetic sensor placed on the engine shaft was used to detect misfire in

a 4-stroke engine [Montani e Speciale 2006]. Four components related to the torque

are expected to balance the engine, one positive corresponding to the cylinder that had

expanded, one negative related to the compression phase, and two associated with the

intake and exhaust phases. When a misfire happens, the positive one becomes smaller

than usual, provoking an imbalance and reducing the engine speed suddenly. The pro-

posed method is divided into some parts. First, a Continuous Wavelet Transform (CWT)

60 Chapter 3

filter is used to suppress frequency components unrelated to the event and emphasize

the misfire; in this way, a threshold value can be defined to determine the misfire. All

the signal and their respective wavelet transforms are in the angular domain. However,

the principal oscillation frequency is almost the same in the time domain. In the Wavelet

domain, the engine speed and load are sufficient to categorize a post-misfire pattern.

Considering the maximum amplitude of the signal that passes through the threshold,

a normalization parameter can be obtained, and it represents the attenuation of the

post-misfire transitory. A maximum correlation is made by comparing the post-misfire

transitory and the calculated one to detect multiple misfires. The analysis of the delay of

this maximum, respecting the first misfire instant, determines if and when a second mis-

fire happened. The method was tested in a speed range between 1500 and 4000 rpm

because the overall detection of the previously developed method was usually good

at low speeds but difficult at high speeds. In this case, the algorithm was also good at

high speeds, separating the misfire easily and unambiguously. For single misfires, 94%

of the cases were detected, and the two types of multiple misfires tested succeeded in

over 90% of the cases, independent of engine speed.

Considering the difference in kinetic and potential energy between samples and

deriving the torque that causes the acceleration and deceleration of the crankshaft, an

algorithm to detect misfire and compression fault through an energy model by estimating

the indicated torque of the engine from instantaneous angular velocity was implemented

[Tinaut et al. 2007]. It is important to highlight that the energy state of the pistons and the

connecting rods are determined by the angular positions of the crankshaft and the mean

angular speed, so changes in the pressure affect the instantaneous angular speed of

the crankshaft and the pressure waveform can be obtained from this information. The

kinetic energy from pistons, connecting rods, crankshaft, and load is explained and

considered in the development of the energy model, and a deterministic function of the

angular position and the total kinetic energy of the system becomes proportional to the

square, angular speed to estimate the torque. The changes in kinetic energy should

be equal for each cylinder in a perfect engine, and in a faulty cylinder, such as the one

with a misfire, the energy was directly affected in it and the next cylinder in firing order.

The model was evaluated with two indicators: one evaluating the relative change in

kinetic energy at the compression stroke and the other at the expansion stroke. In a

healthy engine, these indices should be equal to one for all cylinders, while in a faulty

condition, the combustion energy index would decrease, and the compression index

of the next cylinder in the firing sequences would increase as a result of less energy

release in the combustion of the faulty cylinder. The energy indices were tested on a

4-cylinders engine by simulation of fault cases, and the proposed method was tested

on a 4-cylinder 4-stroke engine at 1500 rpm. The influence of the misfire was clearly

noticed at low mean angular speed, but at high mean angular speed, it was a lot more

Chapter 3 61

complicated. Misfire was induced by decreasing the fuel quantity in the cylinder. This

event decreases the energy index in the cylinder and increases the energy in the next

one; this effect is seen in the greater use of the kinetic energy available for compression

in the next cylinder. This result was also achieved in a simultaneous misfire in two

consecutive cylinders and two alternative cylinders. The system behavior showed that

in normal conditions, the expansion indices oscillate around 1, suggesting no significant

loss of power in the cylinder, and, in an engine misfiring, the corresponding expansion

index indicated the fault clearly. The algorithm could detect the faults correctly in an

engine at low mean angular speed and at high mean angular speed or under transient

conditions.

In perfect conditions, all cylinders operate identically, and the engine speed is

a periodic function of crank angle, resulting in a waveform composed of the firing fre-

quency and its harmonics, which are the major orders. In this way, a 6-cylinders diesel

engine, with firing sequence 1-5-3-6-2-4 and 4-strokes, at a speed of 1200 rpm, was

used for misfire analysis [Hu, Li e Zhao 2011]. Using two magnetic pickups, the instan-

taneous engine speed was used by measuring the time between consecutive pulses

generated by a cycle reference signal. Other components result from the difference

in the correct operation of all cylinders and can be filtered out to identify a fault, such

as a misfire. Experiments were implemented, and misfire was simulated in cylinders 2

and 5. The idea was to observe the abnormal fluctuation signal (AFS) and the filtering

process result. AFS showed concave trends where the misfire occurred, indicating that

the torque was smaller than normal. It implemented an algorithm for misfire detection

by partitioning the AFS into Z-dimensional vectors. These vectors were processed by

multivariate statistical analysis methods, principal component analysis (PCA),) and the

information obtained reveals the signal’s N principal components (PCs), which explain

the total variance of the vectors mentioned above. If the engine operates in normal

conditions, the AFS would be just random noise, and the total variance would be dis-

tributed equally among the N PCs. Otherwise, under misfire occurrence, the variance

would be explained by only the first PC, representing the most important trend of the

vectors. To test the algorithm, two different multiple misfires were stimulated by slacking

off the connector of the injection pump and the high-pressure fuel line and introducing

a leakage in the fuel supply: a separated misfire (in cylinders 2 and 5) and an adjacent

misfire (in cylinders 5 and 3). The results showed that if the cylinder does not completely

work or the external load is high, almost all misfire events can be located correctly by

the method, but in high speed and low loads, this percentage decrease to 90% since

it becomes more difficult to identify adjacent misfiring cylinder events because it gets

hidden by the second misfire. It is important to note that this method was established

only for steady-state operating conditions.

A 4-cylinder inline 4-strokes engine model was mounted to simulate and under-

62 Chapter 3

stand the misfire [Xu et al. 2019]. Four cases were tested at a 2000 rpm speed engine:

normal conditions, single misfire, intermittent double-cylinder misfire, and continuous

double-cylinder misfire conditions. The generalized force at the gravity center of an

engine was calculated with information about gas explosion force, reciprocating inertial

force, and rotating inertia force parameters, and the frequency, amplitude, and phase

of the acceleration signals were found through the interpolation method of the discrete

spectrum (Hanning window method). Having a firing order of 1, 3, 4, and 2, all cylinders

should contribute equally to the engine torque. In this way, only the main harmonic

orders would remain in the harmonic structure of the resultant torque, and when a

misfire occurs, these harmonic orders change. The fault was simulated by setting the

cylinder pressure so that an explosion did not occur. In this instance, when a misfire

happens, the balance of the engine is destroyed, changing the corresponding harmonic

and its multiples. In the experimental phase, three triaxial acceleration sensors were

used to measure the vibration above the mounts, and three other uniaxial acceleration

sensors were used to measure the vibration under the mounts. The result demonstrated

similarity with the simulation, evincing the aptitude of the method to identify the misfire

by analyzing the main harmonic orders of the generalized force.

Several authors approach the problem by having as the main analyzed charac-

teristic of the engine vibration caused by the misfire. A locomotive engine vibroacoustic

signals underwent a nonlinear analysis to detect misfire [Boguś et al. 2003]. The data

was collected using a piezoelectric sensor, and the misfire was simulated by discon-

necting one of the locomotive engine’s cylinders. Three rotational velocities were used

in the experiments with three measurement phases: normal conditions (all cylinders

working), simulated misfire with cylinder 1 disconnected, and simulated misfire with

cylinder 4 disconnected; the sensor was always in cylinder 1. The signal was mea-

sured in three channels, representing the parallel to main locomotive axis direction, the

horizontal-transversal direction, and the vertical-transversal to main locomotive axis

direction, and was processed with spectral analysis and nonlinear analysis, based on

deterministic chaos theory, different from the previous studies that used Fourier analysis.

The Lyapunov exponents were used to measure the system’s trajectory to determine

in which phase space it would converge and diverge, parameters that, when applied,

can differ from one system state from another. The results show that, generally, in the

scenario with all the cylinders working normally, the exponents are bigger than in the

scenarios with a disconnected cylinder, which confirms the presence and the correct

identification of chaotic components and their use to diagnose the misfire. Just as an

addendum, in the cases that the tendency was not applied, the main problem was the

influence of noises and the difficulty of eliminating them without damaging important

signal components.

A 6-cylinder in-line 4-stroke diesel engine was mounted on a testing bench for

Chapter 3 63

monitoring 7 vibration positions on the engine block and cylinder head with a piezo-

electric accelerometer [Ftoutou e Chouchane 2008]. The fuel was injected directly into

the combustion chambers in the order: 1-5-3-6-2-4, and a misfire was caused by dis-

connecting the fuel supply of cylinder 1, simulating a blockage in the injector hole. The

statistical features Peak to Peak value (PP), Root Mean Square value (RMS), Crest

factor (CTF), and Kurtosis factor (KF) were selected to analyze how misfire affects

the vibration signal directly. In addition, the Distributions Overlapping was calculated

to extract the maximum information of the averaged features variation and their ability

to detect and isolate the simulated fault. The results were analyzed by calculating the

averaged features PP, RMS, CTF, and KF at 700 and 1300 rpm. In the first one, the PP

features better detected and isolated misfires at positions 5 and 6. RMS could isolate

the fault in positions 1, 2, 3, 4, and 6; features CTF and KF failed in this scenario. In

the second case, it was noticed that the variation of the features increased, and the

isolation of the misfire was possible in positions 1,2, 3, and 4, with all features except C.

Otherwise, in positions 5 and 6, only PP and RMS features could isolate the fault.

Discrete wavelet transformation was applied to decompose the signal of a piezo-

electric accelerometer positioned on the top of the cylinders into low and high-frequency

[Aihua et al. 2008]. The engine used in the experiments was a diesel 4-cylinders in

line 4 stroke (sequences 1, 3, 4, and 2 of combustion). The misfire occurred in three

different forms: single cylinder fault, double cylinders faulting continuously, and double

cylinders faulting alternately, all simulated interrupting the diesel flow. The misfire signal

is difficult to distinguish direct from a normal signal, but the experiments showed that

this segregation is facilitated after 3-level decomposition with a db3 wavelet. Also, it was

possible to identify the difference between the fault signal and the normal one in high-

frequency. The outcome indicates that the combustion causes high-frequency vibration

on the top of the cylinder. However, the wave crest fades from the high-frequency signal

when a misfire happens. Therefore, the failure can be effectively detected by comparing

the wave crest of the high-frequency signal and the low-frequency signal.

A statistical method, Z-freq, was formulated to detect misfires in a 4-cylinders

in line 4-strokes hybrid electric vehicle (HEV), exploring the application of standard

deviation and KF [Ngatiman e Nuawi 2018]. This method provides a two-dimensional

graphical representation of the measured signal frequency distribution, calculating the

distance of each data point from the signal centroid. In the first phase, the study focused

on collection data under normal and faulty conditions from four piezo-film sensors

located at each engine cylinder wall when the data was filtered and decomposed using

Fast Fourier Transform (FFT) into two main categories: affix (low frequency) and anmex

(high frequency), categories which can show the patterns of the studied conditions. In

the second phase, it performed a signal analysis with the measured data to prove the

method’s effectiveness, calculating the Z-freq coefficient and a 2D representation graph

64 Chapter 3

correlating the categories for a better understanding. Features like RMS, peak, and PP

measurements of acceleration, velocity, and displacement were inputs to the monitoring

machine. In conclusion, it was observed that the value of the Z-freq coefficient dropped

by half when a misfire occurred, showing that the vibration behavior is altered, being

greatly reduced in these situations.

Using an integrated approach to observe four accelerometers, adopting fre-

quency analysis as a mechanism to extract features, using Fourier Transform to convert

a signal from a time domain to a frequency domain and extract information like fre-

quency and amplitude from the original signal, misfire was observed in a 4-cylinders in

line 4-strokes engine [Jafarian et al. 2018]. Only the unique features related to the fault

were selected to be applied in the classifier, so it could find patterns to predict three

different faults: the slight misfire, the severe misfire, and abnormal valve clearance. The

k-fold cross-validation method was used to train three classification techniques: Artifi-

cial Neural Networks (ANN), Support Vector Machines (SVM), and K-Nearest Neighbor

(KNN). A fourth-order low-pass filter was used to eliminate high-frequency noises, cut-

ting the frequency at 100 Hz, getting 16 features extracted from the sensors and 4

eigenvalue processed features from the multi-channel signal. Accuracy, sensitivity, and

specificity were used as performance metrics in six scenarios of binary classification for

fault diagnosis. The classification results showed that the SVM had better performance

in all cases of test with a 98% accuracy. In addition, when analyzing only one cylinder

each time, the accuracy was 100% in all three techniques, confirming the suitability of

vibration signals for fault detection.

Mechanical rotating systems have a base frequency proportion to the engine

speed and can cause harmonic vibrations. Misfire was introduced into a 2-cylinder

4-strokes motorcycle engine by interrupting the signal to the ignition coil and taking

samples from a broadband piezoelectric vibration sensor (a knock sensor) at a 0.1º

crank angle resolution [Rath et al. 2019]. In this way, the vibration signal was acquired

without a discrete high-pass filter, unlike it would happen if the knocking noise were

analyzed because the lower frequency components are useful to misfire detection.

Knock noise introduces vibrations in the engine operation, while misfire can influence

the amplitude of existing vibration, and it is impractical to map these influences to a

physical model in an ECU, although a signal model focused on the knock sensor signal

can be used to monitor changes in engine behavior or parameters, like the lack of

increase in the cylinder pressure at the engine’s power stroke, which was considered

the ground truth to define whether a misfire event happened or not. An auto-regressive

model was constructed to reduce the number of parameters to describe the knock

sensor signal. A linear combination of the previous values was expressed as polynomial

filter coefficients with the signal’s properties estimated from the measured knock sensor

signal by solving the Yule-Walker equations and a stochastic noise term. As a result,

Chapter 3 65

the analyses of these coefficients, on average, allow the distinction between a normal

engine operation and a misfire event, but it can not be done with a simple threshold in

the coefficient because it has a high variance, not avoiding wrong misfire detection.

Artificial intelligence and its tools have been increasingly used in detecting mis-

fires, applied in various ignition engines, and exploring variables already mentioned

and many others. Wavelet packet transform (WPT) was used to make a multi-resolution

analysis, all resolutions with the same frequency bandwidth, breaking up detail and

approximation versions [Wu e Liu 2009]. WPT generalizes the wavelet transform, and it

also has a time-frequency function. The sound signal measured was broken into four

resolutions, producing sixteen sub-spaces to be computed. To decompose the signal,

db4, db8, and db20 were applied. After the data reprocessing of WPT, Shannon entropy

was used to extract features from the signal. The low frequencies were discarded, given

its large quantity of noise. A neural network algorithm was used to classify the fault,

receiving the feature vector resulting from Shannon entropy as input. In the same way

as the previous work, a back-propagation algorithm with three layers was developed,

but due to its uncertain convergence, a general regression neural network was also

constructed. The main difference is that the general regression is not similar to the re-

gression analysis that needs to suppose an exact function. It only needs the method of

probability density function to be presented. The experiments were done in a 6-cylinder,

4-stroke gasoline engine, a microphone was used to measure the sound, and the en-

gine’s revolution was captured by an optical encoder close to the crankshaft. Six events

were tested to estimate the fault diagnosis: an engine without any fault, air leakage

of the intake manifold, camshaft sensor fault, electronic control thermal sensor fault,

one cylinder misfiring, and two cylinders misfiring. The WPT proved to provide a good

resolution when the signal changed unexpectedly. Both back-propagation and general

regression algorithms were tested in the experiments, and all the recognition rates were

over 95%, showing that the WPT is useful in fault classification.

A decision tree algorithm identified a misfire in a 4-cylinder 4-stroke gasoline

engine [Devasenapati, Sugumaran e Ramachandran 2010]. The misfire was simulated

by cutting off the high-voltage electrical supply from the spark plug of one or more

cylinders. An accelerometer mounted on the center of the engine head was used to

capture vibration signals, and a DACTRON FFT analyzer converted the signal from

analog to digital and fed computer software to process and extract features. At the

1500 rpm rated speed of the engine, five types of conditions were measured: normal

condition and with all the cylinder misfiring, one per time. Initially, statistical features

were selected: standard deviation (a measure of the energy content of the vibration

signal), standard error (the standard deviation of the sampling distribution, revealing

how much sampling fluctuation the statistic has), sample variance (variance of the sig-

nal points), KF (the flatness or the spikiness of the signal), Skewness (the degree of

66 Chapter 3

asymmetry of a distribution around its mean), the sum of all signal points, range, mini-

mum value and maximum value of the signal. Not all of these features were obligatorily

occupied; a decision tree was used to select the most relevant. The C4.5 Algorithm

was the decision tree used. It played two different roles in the method. First, it was

used to select the features and, afterward, to classify them. Before it could be used, the

tree went through a construction phase. The training sample is partitioned recursively

until all records in a partition have the same class and a pruning phase, removing the

least reliable branches for better classification performance. In general, features well in

discriminating stay in the decision tree. Using the optimized parameters in the tree, the

classification performance of the tested data set at 1500 rpm was 94.14%. However, up

to a maximum speed of 2000 under extreme conditions, the misfire classification has an

accuracy of 68%. These results are particular to this application, and its generalization

to other applications is impossible.

An artificial neural network (ANN) was implemented to detect the misfire of a

turbocharged diesel engine on a dynamometer test bench [Liu et al. 2013]. Engine

running parameters at normal and misfire conditions were measured to compose a

data set that could be used as data inputs to train the ANN. Most of the information was

collected directly from the engine sensors, and some with the input of other sensors. An

ANN is a mathematical model that functions like a human brain to learn and generalize

data. The network was used given its affinity for handling data with non-linearity and

its capacity to work with multi inputs and output data. A backpropagation algorithm

was used to detect the misfire, and it was composed of three layers: the input, hidden,

and output layers. The network works in two ways, the input layer receives the data

vector and feeds the hidden layer to the outputs; in the other direction, the calculated

error from the comparison of the output value and the expected value is propagated

backward so that the network parameters can be adjusted so in the next iteration

the error becomes smaller, repeating until an acceptable error is found. The study’s

main objective was to select the most relevant parameter to build the training vector, a

misfire fault topology was built to support this idea, facilitating the understanding of the

chain reaction caused by the misfire and allowing the definition of variables that can

be considered in experiments. Initially, six variables (engine speed, intake temperature,

intake pressure, exhaust temperature, coolant temperature, and fuel consumption) were

selected for the tests, and randomly 80% of the data measure were used to train the

network, while the rest were used to verify its correct operation. The result shows that

the ANN could detect all normal condition engines, but some misfire detection was

wrong. It was noticeable that the input vectors were not good enough, so, analyzing

the fault again, the in-cycle speed variation was added because of its difference during

normal and misfire conditions. The ANN has trained again with this new vector, and

the results improved as expected. The detection of misfire and normal events were

Chapter 3 67

all correct, without any misdetection, showing that the neural network can be used for

this purpose, also indicating that the choice of the training vectors may be even more

important than the method used or the structure of the network.

Two acquisition systems were built to evaluate two different methods of misfire

detection, one using vibration signals and another using acoustic signals [Firmino et al.

2021]. The experiments were developed with a 4-cylinder 4-strokes gasoline/ethanol

engine. To detect misfires, the vibration and the sound emission were measured to test

both methodologies. For the acoustic analysis, a sound acquisition device, made with

an Arduino Due board and a MAX4466 microphone, was placed 30 cm from the engine

block to record the sound emission from the engine. The vibration acquisition system,

made with an Arduino UNO and an MPU6050 accelerometer, was placed in the middle

of the engine block. The misfire was simulated by disconnecting the spark plug from

each cylinder, causing five failure scenarios plus one of the normal conditions. It is

important to emphasize that both acquisitions were performed simultaneously so that

they could have the same conditions. Since the problem was a non-linearly separable

pattern, an ANN was chosen because it could be constructed with more than one layer.

A multilayer perceptron was developed with three layers: an input layer (in which was

performed a linear transformation), a hidden layer (when a hyperbolic tangent function

was applied, limiting the range of the data between -1 and 1), and an output layer (with a

softmax function). FFT was used for both vibration and acoustic analysis, transforming

the time-domain signal into a frequency-domain signal and extracting features to the

ANN. The vibration data had 8 features (4 dominant frequencies and their amplitudes),

and the acoustic data had 20 features (10 frequencies and their amplitudes). In addition,

the signal energy was calculated and considered as another feature for both. One ANN

for each analysis was built and trained, and some tests to validate the model were done

using different data. Both methodologies were efficient for fault detection, vibration with

an accuracy of 100% and acoustic with 87.5%.

A new method called deep twin convolutional neural network with multi-domain

input (DTCNNMI) was created for misfire detection in a diesel engine [Qin et al. 2021].

The framework was composed of many layers; the most important ones were: convo-

lution, batch normalization, pooling, flatten, concatenated, and fully connected layers.

This structure combined automatically extracted time-domain, time-frequency-domain

information, and hand-craft time-domain statistical features. Following are some of the

features: rectified mean value, mean value, peak value, RMS value, K, PP value, clear-

ance factor (CF), shape factor, and margin factor, among others. Based on the premise

that the working state of an engine is reflected in the vibration signal and also that the

misfire event should affect this vibration directly, the vibration signal of cylinders heads

under different working conditions (single misfire of all cylinders, combinations of mul-

tiple misfire and normal condition) were recorded to feed the input layers, for analysis

68 Chapter 3

and to create 4 data sets (A, B, and C with single misfire and D with multiple misfires)

for testing. The model was tested in all data sets, A at 1300 rpm, B at 1800 rpm, C at

2200, and D also at 1800, and achieved an accuracy of 79.922%, 85.333%, 82.196%,

and 94.275%, respectively. The DTCNNMI proved to be adaptive to different engine

conditions, managing to extract the necessary characteristics for misfire detection, with

good results in all scenarios.

A real-time abnormality detector developed with a convolutional neural network

(CNN) was proposed [Shahid, Ko e Kwon 2022]. A magnetic pickup sensor was used

to measure the angular speed of the engine and to represent the sensor signal better;

it was transformed into a crank angle degree (CAD) signal that translates the behav-

ior of the combustion strokes. The CNN was designed to detect irregularities in this

CAD signal in each cycle of the internal combustion diesel engine. For this purpose,

the CAD signal was filtered to remove some noise components. The CNN required a

simple array as input and low computational power. A constructive approach was used

to define the number of kernels (filters) in convolution and fully connected layers to

optimize the network’s generalization. Other parameters were defined according to the

training results. The CNN has five layers: a convolution layer (convolves the input data

and extracts the features from it), an activation layer (generates the output features,

determining which neurons from the network should be activated), and a max pooling

layer (reduces the complexity and avoid over-fitting) for feature extraction and also a

flatten layer (transform the feature matrix into a vector to fed the next layer) and a

fully connected layer (get the output out of the network) for classification. In addition,

a softmax function is used to convert the final output to a probability for each class

of the classification options. The method accurately detected and classified multiple

irregularities in real-time. To evaluate the CNN, metrics like accuracy, Matthews Cor-

relation Coefficient (MCC), and cross-entropy loss were used. The experiments were

run in a 4-stroke marine diesel engine at a speed of 720 rpm under different loads, and

three classes were considered: normal state, change in engine load, and fault condition

(misfire). From almost 500 samples divided into these classes, the trained CNN was

able to predict all samples from classes 1 and 2, while only one sample from class 3

was labeled as class 2, with an accuracy, MCC, and cross-entropy loss of around 0.998,

0.997 and 0.019, respectively.

3.1.1 Misfire Detection Summary and Comparison

The analyzed literature is diverse, and monitoring and detecting misfires is a

topic that has advanced over the last decades. The latest studies focused on applying

technologies and computational power for a better understanding of it. Table 3.1 sum-

marizes the above studies most related to this work. We can note several scenarios

regarding this failure; various engine components and external factors such as environ-

Chapter 3 69

ment and drivability can cause its occurrence. Different types of analysis were observed

(mechanical, vibration signals, and machine learning analyses).

Table 3.1 – Summary of misfire detection techniques

Source Main Features Used Techniques Evaluation Metrics

[Shahid, Ko e Kwon
2022]

CAD signal A five layers 1D
CNN

Accuracy (%) 99.7

[Qin et al. 2021] Time-domain statistical features (rectified mean
value, mean value, peak value, RMS, KF, P, CF,
shape factor, and margin factor) and wavelet
packet energy features

Deep twin con-
volutional neural
networks with
multi-domain input

Accuracy (%) 79.922-
94.275

[Firmino et al. 2021] 4 dominant frequencies and their amplitudes
from vibration signal and 10 frequencies and their
amplitudes from the acoustic data, plus the signal
energy from both

A three-layer back
propagation neural
network

Accuracy (%) vibration
with 100 and acoustic with
87.5

[Liu et al. 2013] Engine speed, intake temperature, intake pres-
sure, exhaust temperature, coolant temperature,
fuel consumption, and in-cycle speed variation

A three-layer back
propagation neural
network

Not applicable

[Devasenapati, Sugu-
maran e Ramachandran
2010]

Statistical features (standard deviation, standard
error, sample variance, K, Skewness, sum of all
signal points, range, minimum value, and maxi-
mum value of the signal)

Decision tree (C4.5
Algorithm)

Accuracy (%) 94.14 at nor-
mal speed and 68 over
2000 rpm and under ex-
treme conditions

[Wu e Liu 2009] Shannon entropy features extracted from sound
emission signal

Wavelet packet
transform and
artificial neural
network

Not applicable

[Rath et al. 2019] Autoregressive coefficients and mean knock sen-
sor signal power

Autoregressive Co-
efficients Analysis

Not applicable

[Jafarian et al. 2018] 8 frequencies and 8 amplitudes FFT as a feature
extraction methodol-
ogy

Accuracy (%) 97.18-98.40,
Sensitivity(%) 95.57-97.44
and Specificity (%) 99.06-
99.47

[Ngatiman e Nuawi
2018]

Amplitude, frequency, phase, energy variation,
statistical features (PP, RMS, CTF, and K) from
the signal and the Z-freq coefficients

Z-freq analysis Not applicable

[Aihua et al. 2008] High-frequency and low-frequency signals and
their wave crest signal from a cylinder-head vi-
bration

Wavelet analysis Not applicable

[Ftoutou e Chouchane
2008]

Statistical features (PP, RMS, CTF, and K) from
the vibration signal

Vibration analysis in
the time domain

Not applicable

[Boguś et al. 2003] Vibroacoustic exhaust locomotive engine Nonlinear analysis
with Lyapunov expo-
nents

Not applicable

[Xu et al. 2019] Gas explosion force, reciprocating inertial force,
rotating inertia force parameters, frequency, am-
plitude, and phase of the acceleration signals

Generalized force at
the gravity center

Not applicable

[Hu, Li e Zhao 2011] Abnormal fluctuation signal Multivariate statisti-
cal Analysis

90% partial misfire loca-
tion

[Tinaut et al. 2007] Change in kinetic energy at the compression and
at the expansion stroke

Energy model Not applicable

[Montani e Speciale
2006]

Crankshaft speed fluctuation Wavelet-based anal-
ysis

94% single misfire recogni-
tion

[Kiencke 1999] Torque fluctuation and pressure torque Kalman filter Not applicable
[Author, 2023] Basic engine components, air Control, fuel and

richness control, ignition advance, engine torque,
alternator, and battery management

ML algorithms (XG-
Boost, Gradient
Boosting, K-Means,
K-Neighbors, Lo-
gistic Regression,
and Support Vector
Classification)

Precision (%), Recall (%),
and F1-Score (%), best re-
sults: 92.40, 96.16, and
94.24, respectively

Source: Author (2023).

Compared to the models found in the literature, the machine learning models

developed in this work offer a simpler computational approach, using classifiers instead

of complex neural networks or sound/vibration analysis. A notable advantage of these

70 Chapter 3

models is their consistent accuracy, reduced variability, and greater resilience to en-

vironmental changes such as vehicle speed or engine speed. Notably, the developed

models were exclusively trained using authentic, real-world data from a dedicated test

vehicle, avoiding reliance on publicly available datasets or simulations, as most related

works do. Although the performance metrics align with the models presented in the

literature, the models developed in this document are stable in different environments,

resulting in more reliable accuracy and F1 score outputs with computational efficiency,

requiring less computational resources. One aspect that draws attention in this work

is that the best-performing model uses the XGBoost algorithm, which is less prevalent

in the existing literature, and a solid application for it has been discovered. Another

point of comparison with the literature is that the training process of the models in

this work involved a meticulous resource selection procedure covering thousands of

variables, different from what we found in other works that use a limited number of vari-

ables. Therefore, we found a strong relationship between some of them, which further

minimizes the variability of the results when subjected to substantial input changes.

Furthermore, unlike the literature, the developed models suggest that fault detection

can be effectively achieved through classification algorithms, eliminating the exclusive

reliance on anomaly analysis, the need for engine sound/noise data, or more complex

algorithms. In summary, the models proposed in the work use variables commonly

present in the ECUs of most vehicles on the market from the most diverse subsystems

involved. In this way, we managed to reduce the costs of sensors and components

related to fault detection, reducing the dependence on specific sensors, such as vibra-

tion sensors, using algorithms that are easily interpretable when compared to neural

networks and using data acquired in real-time and directly from the ECU for analysis.

3.2 MACHINE LEARNING CLASSIFIERS FOR DRIVING BEHAVIOR AND FUEL

CONSUMPTION CLASSIFICATION

Driver behavior is one of the biggest factors determining vehicle fuel consump-

tion; therefore, driver profile analysis can make a difference in the car’s economy when

coupled with accurate feedback. The difference in fuel consumption reaches up to

30%, depending on the driver [Liimatainen 2011]. The works discussed below explored

different techniques for analyzing the driver’s profile and classification.

The classification of driver styles and behaviors can be made from vehicle-

obtained data. Sometimes, it is desirable to make the classifier decision based on

a short time window. A trained algorithm able to classify new observed drivers in differ-

ent driving styles, inferring the style and comparing it to existing classes determined by

previous analysis and clustering was suggested [Zheng et al. 2022]. Divided into two

phases: a training one, where previous data is pre-processed and used to determine

clusters or classes, and an inference one, where the real-time processed vehicle data

Chapter 3 71

fits in one of the previously determined classes. After processing the data with filtering

and dimension reduction, the k-means clustering algorithm was chosen to perform in

the training phase. Data taken from the NGSIM, an open data set of cars and drivers on

United States roadways, was used in this study for the algorithm test. Vehicle positions,

velocity, and acceleration variables were selected for clustering. Using the data, three

different clusters taken from the Calinski–Harabasz Score were founded and classified

by the researchers as conservative, aggressive, and experienced drivers. The inference

of which driver belongs to each class was made by a softmax function of vehicle data

to cluster center distances, comparing the ratio belonging to some class probability and

the sum of all belonging to each class probability. Based on k-folds cross-validation met-

rics, where some parts of data were used as a test set, and the remaining as training,

accuracies between 70-90% were found relative to each k-size chosen, based on the

f1-score, precision, and recall metrics.

The driver’s habits mainly influence safe driving behaviors but also may be iden-

tified and classified by the results of reactions observed on the vehicle. [Lattanzi e

Freschi 2021] proposes in their study an objective way of labeling driving habits as

safe or unsafe, based on the relationship between vehicle’s accelerations and velocity,

and develop learning tools for classifying the driving behavior through only in-vehicle

sensors data. For the experiments, using data from an open dataset, selected variables

usually available in most car OBD-II interfaces, such as vehicle speed, engine speed,

engine load throttle position, and less common available variables, such as steering

wheel angle and brake pedal pressure. The classifying tools were developed using

the Support Vector Machine and simple feedforward neural network techniques, which

were tested using different combinations of used variables, taking into account the OBD

available variables alone and later combined with the non-standard variables. Applying

a 5x2 cross-validation, the most prominent results were shown by combining all of the

explored variables, and no significant differences were found in comparing the different

trainers. The obtained results show an accuracy of around 90% in both techniques.

Vehicle consumption and pollutant emissions are related to the driving profile.

With this premise [Peppes et al. 2021] created an interface able to gather car sensor

data and use it in Machine and Deep Learning algorithms, classifying the driver behavior

as pro or non-eco-friendly, comparing the results and algorithms performances. It made

an interface where the obtained data is sent to an OBD-II decoder, which transmits by

Bluetooth communication to a smartphone. The smartphone then sends the collected

data to a cloud platform, processing and analyzing it. The cloud platform has two main

components: a streaming module and a big-data analysis and management module.

The streaming module manages the data flow and communication between the cars

and the data consumers, using the Apache Kafka platform to assist. The hybrid big

data management and analysis module hosts both a relational and a non-relational

72 Chapter 3

database and an analytic engine. After the data preprocessing through the PySpark

module, an unsupervised clustering ML algorithm is applied to the current data set, with

the view to adopt a data-labeled approach, based on the rpm and speed OBD values.

The selection of these two attributes from the data available was performed because the

vehicles deployed in this study are equipped with fueled-powered internal combustion

engines (either gasoline or diesel), as it is widely known the fuel consumption of such

engines is highly reliant on speed and rpm. The K-means algorithm was selected for

clustering and classifying data. Three traditional machine learning algorithms were

implemented and compared, i.e., logistic regression, Support Vector Machine (SVM)

and Random Forest (RF) as well as two deep learning methods, and more specifically

the MLP and the RNN algorithms. The aforementioned algorithms were benchmarked

using the following metrics: loss, validation loss, accuracy, validation accuracy, F1 score,

the area under the ROC curve, precision, recall, and execution time. It was found that

all explored algorithms show similar results in the used metrics, getting near 100%

accuracy, being the more explicit difference noted in the execution time, whereas the

Deep Learning algorithms show far slowest times.

In-vehicle data recorders (IVDRs) installed on 155 military vehicles of 8 different

types were used in the analysis over a period of one year and with over 350 drivers,

exploring the influence of IVDR-based feedback on driving behavior in three experi-

mental phases [Toledo e Shiftan 2016]. The first stage (no feedback) lasted 16 weeks,

and drivers did not receive any information or guidance about the device or any feed-

back. This step served to identify the drivers’ driving characteristics, which provided

a baseline for comparison. The second stage (feedback limited to the worst drivers)

was active for 18 weeks, where only the least cautious drivers received initial guidance

on the functioning of the IVDR and received feedback on their performance. The third

stage (full feedback) lasted 16 weeks, during which feedback was provided to all drivers.

Thirteen driving-related events with different severity levels were measured: extreme

and intermediate acceleration, extreme, intermediate, and moderate braking, left and

right turns, and speeding events. The two thresholds that differentiate moderate, inter-

mediate, and extreme severity levels were determined based on the intensity of the

measurements. Data was collected to analyze safety performance and fuel consump-

tion. With these events, a scoring system was developed to evaluate each driver based

on a risk index developed according to the frequency and severity of the events and on

periodic individual driving reports. The score had three levels: green for good drivers,

yellow for intermediate drivers, and red for unsafe drivers (demanding attention). As a

result, the relationship between fuel consumption and event rate was estimated. Fuel

consumption was measured using the total monthly duration of trips taken by each

vehicle as recorded by the device. A linear regression model incorporates vehicle type

and event rate as explanatory variables. Events are assigned different weights accord-

Chapter 3 73

ing to severity level, and various combinations of event types were tested to examine

which events are the best fuel consumption indicators. The impact of event rates on

fuel consumption significantly differed between small and large vehicles, but there were

no significant differences between vehicles of the same size. Different vehicle models

have their engine, mass, and design differences taken into account. The results of

the estimates showed that the ratio between the coefficients of extreme and interme-

diate events is above four. Overall event rates dropped from 4.12 events per hour to

3.30 from Stage One to Stage Two, a considerable reduction of 20%, while for Stage

Three, it dropped to 3.01, another 7%. The results suggest that IVDR events can be

used as risk and fuel consumption indicators. The differences between the first and

second stages were explored with paired statistical tests based on 314 participating

pilots, demonstrating a significant decrease in the event rate. However, a similar test

between the second and third stages showed no significant difference. Regarding fuel

consumption, a reduction between 2-6.5% was observed from the First to the Second

phase and between 3-10% from the First to the Third phase, with greater reductions

obtained for large vehicles. The percentages showed that the work is valid and that

monitoring and feedback help and encourages drivers to improve their driving attitudes,

directly influencing fuel consumption and driving safety.

In the same way, a fair measure of driver performance was developed to use

the information in an eco-driving incentive system [Liimatainen 2011]. Driver perfor-

mance measurement equipment was installed on 12 buses, six of which are two-axle

buses with a capacity for 81 passengers and six two-axle buses, three with a capacity

of 94 and three with a capacity for 98 people. The article tested three hypotheses:

first, that driver-independent factors have a considerable effect on the fuel consump-

tion of buses; second, that the effect of these factors can be isolated to allow a fair

comparison of drivers based on fuel consumption; and finally, that fuel consumption

can be used as a performance indicator in an eco-driving incentive system for drivers if

driver-independent factors are isolated. The information was collected by a data logger

connected to the vehicle’s CAN bus. Data were recorded by the data logger asyn-

chronously with a recording every 1-2 s, collecting data such as vehicle identification

number, fuel consumption, braking incidents, engine speed, vehicle speed, distance

traveled, and time of operation. These raw data were collected for each run. Firstly,

buses were mainly used on two routes, and approximately 26,000 km/month were

traveled on both. In the second phase, the two routes were divided into six directions.

With this subdivision, the differences in fuel consumption became greater. For some

directions, consumption is up to 25% higher than for others. The differences are due

to different road geometries (mountains/plains), road types (main roads/small streets),

and bus types (two axles/tandem axle), confirming that the first hypothesis is true. In

the third phase, the data were divided into time groups according to the beginning of

74 Chapter 3

each route. Fuel consumption varies considerably during the hours, with a difference

of up to 20 L/100 km between the less busy early morning hours and the afternoon

rush hour. Differences in the number of passengers, stops, traffic lights, and other vehi-

cles on the road cause variation. During large-scale tests, routes were assigned to 82

directions, ten-time groups, and two types of buses, forming 1640 comparison groups

from November 2007 to May 2009. of 200 km per month were used to increase the

reliability of the analysis, a total of almost 74 drivers per month. Two correlations of

interest were highlighted. The first is between the reference consumption of each driver

and the percentage of savings for the month under analysis. The correlation was weak

(-0.15), indicating no considerable relationship between these variables. This means

that the analysis method isolated the driver’s effects on fuel consumption from the

effects of external factors, confirming the second hypothesis. The second correlation

was between a month’s savings percentage and the mileage-weighted average of the

previous 3 months. Pearson’s correlation was high (0.79), indicating that an individual

driver’s savings percentages were fairly continuous at the same level. Average monthly

consumption has decreased each year by 1.4-4.6%, suggesting that just awareness

that fuel consumption is monitored can make drivers drive more economically. After

analyzing the data for a large-scale test period, it can be stated that differences in

driver savings percentages are based on driver behavior and not on external factors,

suggesting that the third hypothesis is also true.

[Yang et al. 2018] developed an adaptive driving-style-oriented equivalent con-

sumption minimization strategy for HEV. HEV usually has available management sys-

tems responsible for optimizing energy consumption by switching between fuel and

battery. In most cases, this change is made by referencing an equivalent factor of con-

sumption, which is a constant in most of these vehicles. Knowing that driving style

influences energy consumption for each source type, the authors suggest adapting

this equivalent factor based on the driver’s behaviors. They first propose a statistical

pattern recognition based on kernel density estimation and entropy theory to classify

the driver’s style from the instantaneous way of driving. It tests the probability that each

driving style belongs to some level of aggressiveness based on prior and posterior

probabilities calculated after training the parameters with previous data. For their stud-

ies, an experiment was done where drivers with different styles were invited to test a

simulator in a virtual scenario, being only oriented to follow a specific car shown in the

simulation, programmed to perform a usual Chinese bus track. Vehicle speed, throttle

position, and vehicle acceleration data were chosen for the training and tests dataset,

recognized by literature as usual parameters for classifying driving styles. Then, the

obtained data in the experiments were analyzed to identify the factors and relations

between driving styles and fuel consumption. The analysis showed that an aggressive

driving style is more related to higher fuel and battery spending. The authors interpreted

Chapter 3 75

this as caused by higher demand for hybrid driving mode use and switching from driving

charging mode, which leads to high battery consumption, less use of the electric motor,

and more use of fuel to compensate and charge. Yet, higher demand for acceleration

and deceleration leads to more switches of engine ON/OFF state, requiring more fuel

use. Moderate drivers, on the other hand, have more low power requirements and

lead to optimal use of the driving charging mode of the vehicles. Considering these

factors, the researchers proposed an adaptive Equivalent Factor method based on the

actual style classification of the driver as more aggressive or moderate. Basically, the

designed adaptive management system sets a higher Factor for a more aggressive

style, which represents a higher cost of the electric motor energy use, and a lower

factor, representing a low cost for electric energy. This leads the engine and electric

motor to operate together optimally and more efficiently. Compared with the simulation

patterns, benchmark tests made with a functioning test rig show that for moderate driver

styles, the adaptive strategy reduces more than 10% of the fuel consumption for a low

battery cost. For aggressive styles, the improvement is slower due to the higher energy

demand but still succeeds in a better fuel economy performance and charging mode

balance.

[Yang et al. 2022] suggests estimating the influence of penetration rate and

position of aggressive drivers in the fuel consumption and emission means of each

traffic setting. In the study, the authors collected data from an open dataset to classify

driving styles as aggressive or moderate, using the K-means unsupervised learning

method. The classification was made based on car-following modeling, where the cho-

sen parameters are concerning the forward vehicle: relative distance, time-to-collision,

time headway, and a safety margin coefficient. With the driving style classifications, an

Long Short-Term Memory (LSTM) algorithm was used as Recurrent Neural Network

to predict the velocities and positions of each vehicle based on the driving style, using

the dataset parameters as the training set. These predictions were destined to perform

simulations of different traffic settings in a single-lane scenario, where a leading vehicle

was set with fixed settings, and the remaining were permuted in different arrangements.

To simplify, the selected arrangements were the ones with aggressive-style vehicles

always in adjacent positions, changing their penetration rate and positions related to

the remaining moderate drivers. The resulting Fuel Consumption and Emissions rate

was taken as the average calculated in the 50 simulated experiments, based on a so-

called VT-Micro model of individual vehicle consumption and emission rate calculation.

The simulated data analysis found that the leading vehicle state is an important factor

in determining the correlation of aggressive vehicle positions and penetrations with

Fuel Consumption and Emissions. When the leading vehicle has a positive Cumulative

Speed Change, there is a strong positive correlation between the Fuel Consumption

and Emission, and the effect is reversed with a negative Cumulative Speed Change,

76 Chapter 3

with a strong negative correlation between the variables. Compared with a fixed bench-

mark, the penetration rate of aggressive drivers can result in up to 3% absolute changes

in the emission, and the position results in up to 1.5% absolute change in the emissions.

[Ping et al. 2019] proposes two machine learning methods to classify and predict

fuel consumption based on driver behavior and dynamic traffic data, using a spectral

clustering algorithm and an LSTM recurrent neural network. In an experiment with fixed

vehicle type, route, and weather conditions, 202 drivers were selected to drive with no

additional task beyond tracing the specified route. Data was collected from 30 passen-

ger cars, each with a gasoline engine and a six-speed automatic transmission. Different

parameters were extracted from the vehicles and compared with the fuel consumption

through the Pearson correlation coefficient to select the most relevant and influential

ones for the clustering. In the end, data of speed, positive and negative accelerations

showed the strongest correlations with a Pearson coefficient greater than 0.7; speed

and acceleration variances show intermediate, with around 0.5 correlation coefficient,

which have been selected for clustering. Data of gas pedal position, brake pedal posi-

tion, and steering angle showed the lowest correlation with fuel consumption and were

discarded for posterior analysis. The total fuel consumption calculation was used to in-

tegrate the instantaneous fuel consumption data obtained from the ECU, getting results

with less than 6% estimated difference from real consumption. After treatments and

processing to standardize dataset sizes, the obtained data were used for the unsuper-

vised data feature extraction. The selected method was a Parallel Spectral Clustering

Algorithm based on clustering data as a graph partitioning problem, where each data

point (in this case, each driver per course) is an edge, and the connections between

each point are weighted based on the distance, using parallel processing to improve the

performance. Three clusters were found, with a 79.31% clustering accuracy, one of the

drivers with low average speed and acceleration/power demand, a second with drivers

showing low average speed but higher acceleration rates, and a last one with high

speed and acceleration. These clusters, in the mentioned order, showed growing fuel

consumption averages. As the clustering algorithm depends on long-term time windows

data, an LSTM process is proposed to predict fuel consumption from short-time driving

behavior observations. In addition to the driving behavior data obtained from vehicles,

data gathered from visual sources with help from deep learning processes were used,

providing information on on-road traffic factors, such as in-lane vehicles and pedestrian

positions, and road structures, such as curves and intersections. Different algorithms

and node quantities were compared with cross-validation training and testing with the

used dataset. The LSTM with 150 nodes showed the best overall performances, getting

an average of 81% prediction accuracy. The results showed that the suggested algo-

rithms might have interesting results in predicting fuel consumption based on drivers’

behavior and the surrounding information.

Chapter 3 77

3.2.1 ML Classification Summary and Comparison

Table 3.2 summarizes the strategies used and the variables monitored in related

works. In the present work, clustering and classification algorithms were developed

and compared, and the results point to a correct division between the measured driv-

ing data, separating economical and non-economical drivers with accuracy, precision,

and recall around 100%, varying between the experiments done. In general, we devel-

oped a work that combined the best practices noted above, correcting flaws such as

data inconsistency, less accurate results, communication with the cloud, and real-time

execution.

Table 3.2 – Summary of related works that use classification techniques.

Source Main Features Used Techniques Evaluation Metrics

[Lattanzi e
Freschi 2021]

Vehicle speed, engine speed, engine
load, throttle position, steering wheel an-
gle, and brake pedal pressure

Support vector machine
and feedforward neural
network

Accuracy(%): 90

[Peppes et al.
2021]

Altitude, bearing, speed, RPM, intake air
temperature, engine temperature, throt-
tle position, fuel, and engine runtime

Logistic regression, sup-
port vector machine, ran-
dom forest, multilayer
perceptron, and long
short-term memory (re-
current neural network)

Accuracy(%): 98.2, 100, 100, 99.8, and
100 (respectively)

[Liimatainen
2011]

Fuel consumption, braking, RPM, speed,
distance, and time operating

Correlation analysis and
hypothesis testing

Not applicable

[Toledo e Shif-
tan 2016]

Braking, lateral acceleration, speeding,
safety-related events, and fuel consump-
tion

Feedback based on In-
Vehicle Data Recorders

Reduction of 8% in safety incidents,
and 3–10% in fuel consumption with
feedback, a larger reduction obtained
for large vehicles

[Yang et al.
2022]

Position, speed, acceleration, time-to-
collision, time headway and safety mar-
gin

K-means (classifying),
LSTM (prediction/simu-
lation), and correlation
analysis (fuel consump-
tion/traffic settings)

Pearson Correlation Coefficient (Pos-
itive/Negative lead speed change):
fuel consumption rate: 0.997/-0.997,
fuel emission rate: 0.999/-0.965, and
fuel emission of aggressive drivers: -
0.99/0.9932

[Zheng et al.
2022]

Vehicle positions, velocity, and accelera-
tion

Short-term observations
algorithm

Based on K-folds cross-validation met-
rics, accuracies between 70-90% were
found

[Yang et al.
2018]

Speed, throttle position, and acceleration Density Estimation and
Entropy Theory (prob-
ability estimation) and
Rate Comparison

Fuel consumption Reduction (%): ag-
gressive driving style: 1,8 - 4 and mod-
erate driving style: 2,5 - 12

[Ping et al.
2019]

Speed, acceleration, brake pedal posi-
tion, throttle position, and steering

Spectral Clustering Al-
gorithm (clustering) and
RNN - LSTM (predict-
ing)

Clustering accuracy rate (%): 79.31
and Prediction Accuracy (%): 83,6

[Author, 2023] Speed, acceleration, engine speed, en-
gine temperature, engine air load, torque,
throttle valve position, accelerator pedal
position, battery voltage, clutch pedal po-
sition

K-means (clustering),
Logistic Regression,
and XGBoost (classi-
fiers)

Accuracy (%), precision (%), and recall
(%): 93.55, 100, and 91.70 in cluster-
ing; 100, 100, and 100 in regression;
and 100, 100, and 100 in boosting.

Source: Author (2023).

Compared to the models described in the literature, the ML models for driver

profile classification developed in this work demonstrate notable distinctions. While the

selected algorithms for classification are commonly used in the field, the key differences

lie in the variable selection process and the real-time application using the onboard

ECU, ensuring data integrity. One significant advantage of my models is their slightly su-

78 Chapter 3

perior performance, with some models achieving 100% accuracy, precision, and recall.

Moreover, the main advantage is the real-time application, allowing classification while

the vehicle is in motion. Unlike some literature approaches that rely on synthetic data or

publicly available datasets, our models were trained exclusively with data acquired by

the author, directly from the automotive ECU. Additionally, the variables used were care-

fully selected through an exhaustive FS process, encompassing thousands of variables

from various engine subsystems. In terms of computational efficiency, we developed

algorithms that are computationally less demanding compared to certain models found

in the literature, such as neural networks or algorithms that analyze data over time.

In addition to providing real-time analysis, execution of models on a cloud server. A

noteworthy finding is that the majority of variables identified through the FS process,

strongly related to driver behavior, are common across a wide range of vehicles. This

eliminates the need for additional sensors. Additionally, the ability to classify driver be-

havior in real-time provides instant feedback to the driver, enabling them to improve

their driving habits. In contrast, a significant portion of the literature primarily focuses

on offline analysis and provides feedback or classification after the driving session.

3.3 ML REGRESSORS FOR FUEL CONSUMPTION PREDICTION

To predict a specific value in the form of classification or regression, Support

Vector Machine (SVM) algorithm can be used. [Hamed, Khafagy e Badry 2021] devel-

oped two methods applying SVM, one based on Revolution Per Minute-Throttle Position

Sensor (RPM_TPS) and another based on Vehicle Speed-Mass Air Flow (VS_MAF),

both based on a legacy dataset containing Onboard Diagnostic (OBD) data with 18

variables. The proposed model consists of four phases: data pre-processing, feature

weighting, FS, and SVM prediction model. The performance of the proposed model is

evaluated using the R2 metric, where the VS_MAF had an R2 of 0.97, and RPM_TPS

had 0.96.

[Liu e Jin 2023] proposed a model using support vector regression (SVR) to

predict fuel consumption by adopting a steady-state estimation and transient correction,

using a dataset originated from the D3 database of the Advanced Powertrain Research

Facility at Argonne National Laboratory [ANL 2022]. They constructed a model divided

into two modules, first to reflect the transient state of the vehicle, using Vehicle Speed

and Vehicle Acceleration, and second to reflect the impact of vehicle inclination and

load on fuel consumption, using Engine RPM and Engine Torque. SVR was used

to predict fuel consumption, and the modeling data was analyzed using the Gaussian

Mixture Model (GMM) [Reynolds et al. 2009] to classify the driving conditions accurately.

The results show the model’s Root Mean Squared Error (RMSE) of 0.2137, the Mean

Absolute Percentage Error (MAPE) of 13.6896%, and the Mean Absolute Error (MAE)

of 0.1526.

Chapter 3 79

Predicting vehicular fuel consumption by driving cycles can be helpful in economy

strategies, especially for optimizing the Energy Management Systems of HEVs. Based

on that premise, [Rios-Torres, Liu e Khattak 2019] investigates how much-predicted

consumption can change between conventional vehicles and HEV in standard and

personalized driving cycles, determined considering driver and vehicle information.

Furthermore, the study seeks to evaluate how much these predictions can help to

minimize HEV consumption by adjusting their energy management systems. For these

purposes, 12 personalized driving cycles in certain routes were generated using a tool

developed in previous work called Case-Based System for Driving Cycle Design. This

tool uses driver demographic information and their driving style category, determined by

a score based on the proportion of high acceleration changes and the route and vehicle

data. The generated driving cycles have been separated into two categories of route,

highway and urban, and three categories of driving style, divided into calm, normal,

and volatile. Two standard driving cycles were selected for comparison, the Federal

Urban Driving Schedule (FUDS) and the Federal Highway Driving Schedule (FHDS),

both provided by the U.S. Environmental Protection Agency (EPA). Given each driving

cycle, the fuel consumption prediction was made through physical and polynomial

models for both conventional and hybrid vehicles, which accounts for data such as

vehicle speed, acceleration, engine speed, torque, and battery power. The authors

adjust the equivalent consumption minimization strategy to optimize HEV consumption,

responsible for an optimal balance between battery and fuel usage. This is done by

optimizing the called “equivalent factor”, a parameter that establishes how much the

battery electrical energy converts to fuel-provided energy, by a model that considers

the driving cycle patterns. Results show that in conventional combustion vehicles, only

the calm driver personalized cycles showed consumption lower than the standards. In

comparison, all personalized HEV cycles had lower consumption rates on the urban

ones, besides an overall better performance than the conventional vehicles. However,

the FHDS cycle still showed better performances than all three HEV driving styles

personalized cycles. Prediction analysis on the optimized HEV shows that adjustments

based on driving cycles can save up to 12% of fuel usage, with higher savings for urban

scenarios.

Considering the potential benefits of estimating fuel consumption in transporta-

tion jobs for economic and environmental purposes, [Katreddi e Thiruvengadam 2021]

compares different machine learning regression models in the task of consumption pre-

diction using experimental data collected in heavy-duty trucks. They installed portable

emissions monitoring system sensors in two trucks of the same model, used in several

trips by drivers with distinct driving styles, driving through various routes and condi-

tions. The sensors collected data with over 100 registered features by a 1 Hz frequency,

totalizing over 600 thousand data records. After a primary selection based on previ-

80 Chapter 3

ous studies, the remaining variables included trip number, engine speed, trip distance,

vehicle speed, fuel temperature, fuel rate, accelerator pedal position, actual torque,

power, and engine load. Total fuel consumption was determined by summing up the in-

stantaneous recorded rates. Still, they performed a correlation analysis between these

remaining features to avoid correlated independent variables on prediction and reduce

the complexity of the training models. Finally, after applying an RFE FS method, engine

load, vehicle speed, and engine speed were used for the model training. A Feedforward

Artificial Neural Network (ANN), a Multiple Linear Regression, and a Random Forest

(RF) algorithms were the selected models implemented and tested for comparison.

They used a backpropagation optimization for tuning neuron parameters of ANN, us-

ing cross-validation with 70% of data for training and remaining for validation beyond

a setting of 100 trees for the Random Forest model. Measuring the instantaneous

consumption prediction in a test set data, ANN was capable of an R2 score of 0.78.

Concerning cumulative fuel consumption, ANN showed slightly better results than the

other models, with a 0.78 R2 and an RMSE of 0.0025 L, while Multiple Linear Regres-

sion showed 0.73 R2 and 0.0029 RMSE, and RF had a 0.72 R2 and RMSE of 0.0030

L. With another approach, [Yao et al. 2020] proposed three fuel consumption prediction

models based on driving behavior data collected by smartphones and OBD terminals.

The developed models were RF, SVM, and Back Propagation (BP) Neural Network. The

data used in the article was collected from taxis and mobile phone terminals with a sam-

pling interval of 1 second, 75% of the collected data was randomly selected as training

samples, and the remaining data were used as test samples to evaluate the accuracy

of the developed models. To evaluate the accuracy and efficiency of the models, they

used RMSE, mean absolute percentage error (K), coefficient of determination (R2), and

model running time. The RF model obtained an RMSE of 0.783, K of 0.069, R2 of 0.635,

and a running time of 0.140 seconds. The SVM model obtained an RMSE of 0.888,

K of .073, R2 of 0.519, and a running time of 0.933 seconds. The BP Neural Network

model obtained an RMSE of 0.872, K of 0.075, R2 of 0.547, and a running time of 0.724

seconds. Additionally, the article highlights that using smartphones to collect data can

reduce costs associated with installing OBD devices, which does not have much impact

because using OBD in vehicles is mandatory. Compared to our work, [Katreddi e Thiru-

vengadam 2021] made a limited selection of features while we applied several different

algorithms to find the common variables most closely related to fuel consumption. [Yao

et al. 2020], however, used ODB data, which has a reduced sampling frequency when

compared to the acquisition directly from the ECU, in addition to using data from the

cell phone, which creates a dependence on one more extra component to those found

in the vehicle.

[Ziółkowski et al. 2021] focused on the performance of MLP models in pre-

dicting fuel consumption using 12 variables (7 quantitative and 5 qualitative) as input

Chapter 3 81

parameters. The methodology involves collecting data on the technical parameters of

passenger cars fabricated between 2010 and 2020, creating a database for training

the ANN, and setting input and output variables based on a literature review. The data

used was obtained from international tests conducted by automotive factories. The

work reports a high rate of training, testing, and validation for the MLP model with an

accuracy of 0.93-0.95, RMSE values of 0.40–1.15, MSE of 0.2249-0.4010, and MAPE

of 5%–11.5%. While the work reports high accuracy for the MLP model in predicting

fuel consumption, it does not directly compare MLP and other ML models. Another work

applied an MLP model for predicting real-world fuel consumption rates of light-duty vehi-

cles [Li et al. 2019]. The model considers input parameters like external environmental

factors, vehicle company manipulations, and drivers’ habits. To train and test the MLP

model, the authors used a dataset of real-world fuel consumption rates for light-duty

vehicles, splitting it into training and testing sets by 70% and 30%, respectively. They

also performed k-fold cross-validation. Overall, they tried to demonstrate that the article

provides a valuable contribution to the field of ML to predict real-world fuel consumption

rates, but it does not show any comparison or numerical evaluation that guarantees this

compared to other works found in the literature.

[Kanarachos, Mathew e Fitzpatrick 2019] develop an estimation model of instan-

taneous fuel consumption in vehicles using data measured by smartphone sensors.

The proposed model consists of a Deep Neural Network, using an approach called soft

sensors, that returns estimations of measure through modeling based on other sensor’s

measures. The fuel consumption data were obtained from the OBD via the vehicle’s

CAN-bus. To construct the estimation model, the authors compared two existent types

of Deep Neural Networks: Long Short-Term Memory (LSTM) and Nonlinear Autore-

gressive with Exogenous Inputs (NARX) networks. The second showed smaller errors

and was chosen for the final model test, where they performed cross-validation and

compared several training algorithms to test the optimization methods that better fit the

data, including different gradient-based, population-based, and large-scale population-

based methods. In general, all of them showed good results, with average errors below

1 km/l, but the contrast-based Fruit Fly Optimization presented better scores, with me-

dian squared errors down to 0.35 km/l, with variance between predicted and measured

data showed scores up to 96%. Finally, they tested the model with different sets of

available features to find the set that best predicts consumption. Although the complete

set showed far better scores, which may indicate a very strong relationship between

the model and the dataset, not necessarily a relationship between the variables and

fuel consumption.

82 Chapter 3

3.3.1 ML Regressors summary and Comparison

Table 3.3 summarizes the methods and variables used and the results obtained

in related works. In our work, regression algorithms were developed and compared,

and the results point to a correct prediction of fuel consumption, with metrics MSE (l/h)2,

R2, and MAE (l/h) of 0.28, 0.99, and 0.23, respectively, varying between the models and

experiments carried out. Overall, our work merged the best practices pointed out above,

improving the FS, using data exclusively from the vehicle’s ECU, and avoiding data

inconsistency, so that the results have been improved or maintained, but communicating

with the cloud, running in real-time and without the need to add more devices.

Compared to the models found in the literature, the fuel consumption predic-

tion models developed in this work demonstrate significant differences. Firstly, we use

algorithms that are easier to describe and require less computational cost than spe-

cific literary works that rely on neural networks. One key advantage of this work is

establishing transparent relationships between automotive engine variables and fuel

consumption. It explicitly identifies the variables that have a stronger or weaker influence

on instant fuel consumption prediction when comparing different datasets for training

and validation of the models. Compared with the literature, the models show superior

results in some cases, particularly in the coefficient of determination (R2).

In contrast, in other cases, it achieves comparable performance with the ad-

vantage of algorithm simplicity. It was also observed that some works do not bring

many evaluation metrics, unlike this one. Moreover, in this project, the models were

exclusively trained and validated using real-world data acquired by the author from an

automotive ECU, a departure from a substantial portion of the literature that relies on

publicly available datasets. This distinction ensures that the models are grounded in the

intricacies of real-world fuel consumption patterns. In terms of computational efficiency,

compared to neural network algorithms, my models require less computational power

and a smaller volume of training data, in addition to enabling real-time instant fuel con-

sumption prediction provided by the cloud server. One notable observation is that the

XGBoost algorithm, despite being less prevalent in similar applications, proves to be

highly effective for both classifications (as seen earlier) and regression tasks (includ-

ing fuel consumption prediction). The developed models can also predict instant fuel

consumption without relying on historical data analysis, providing accurate predictions

based solely on the data received during the vehicle’s operation.

3.4 PARTIAL CONSIDERATIONS

This chapter presented an extensive review of relevant works in the application

of machine learning in the automotive context, serving as a solid foundation for the

development and validation of the study developed and presented in this document.

Chapter 3 83

Table 3.3 – Summary of related works that use regression techniques.

Source Main Features Used Techniques Evaluation Metrics

[Hamed,
Khafagy e
Badry 2021]

Vehicle’s work period, latitude, longi-
tude, altitude, barometric pressure, en-
gine coolant temperature, fuel level, am-
bient, air temperature, engine rotation
per minute, intake manifold pressure,
amount of air entering the engine, air
intake temperature, speed, ECU signal-
ing response according to the chances
of oxygen levels, throttle position, timing
advance, air/fuel ratio

Support vector machine The vehicle Speed-Mass Air Flow
equation and Revolution Per Minute-
Throttle Position Sensor equation had
an R2 of 0.97 and 0.96, respectively.

[Liu e Jin
2023]

Vehicle speed, vehicle acceleration, en-
gine speed, and engine torque

Support vector regres-
sion

MAPE less than 14%, MAE less than
0.16 cc/s, R2 0.97, and RMSE 0.1164
cc/s

[Rios-Torres,
Liu e Khattak
2019]

Vehicle mass, aerodynamic drag coef-
ficient, vehicle frontal area, rolling re-
sistance coefficient, tire radius, engine-
rated power, torque, continuous power
output, max torque output, max speed,
battery-rated voltage, and battery capac-
ity

Used physical models
for estimating fuel con-
sumption

Adjusts based on driving cycles can
save up to 12% of fuel usage, with
higher savings for urban scenarios

[Katreddi
e Thiruven-
gadam 2021]

Engine load, vehicle speed, and engine
speed

Feedforward artificial
neural network, multiple
linear regression, and a
random forest

Artificial Neural Network, Multiple Lin-
ear Regression, and Random Forest:
R2 0.78 and RMSE of 0.0025 L, R-
square 0.73 and RMSE 0.0029, and
R-square 0.72 and RMSE 0.0030 L, re-
spectively.

[Yao et al.
2020]

Vehicle speed, engine load, coolant tem-
perature, fuel consumption rate, and
GPS location

Random Forest, Sup-
port Vector Machine,
and Back Propagation
Neural Network

Random Forest, Support Vector Ma-
chine, and Back Propagation Neural
Network: RMSE of 0.783, K of 0.069,
R2 of 0.635, and a running time of
0.140 seconds; RMSE of 0.888, K of
0.073, R2 of 0.519, and a running time
of 0.933 seconds; RMSE of 0.872, K of
0.075, R2 of 0.547, and a running time
of 0.724 seconds; respectively

[Ziółkowski et
al. 2021]

Cubic capacity, the number of cylinders,
the number of valves, maximum power,
maximum torque, compression rate, the
kerb weight of the vehicle, type of engine,
fuel injection, type of charge, gearbox,
and drivetrain

Multilayer Perceptron Accuracy of 0.93-0.95, RMSE of
0.40–1.15, MSE of 0.2249-0.4010, and
MAPE of 5%–11.5%.

[Li et al.
2019]

The specific inputs used in the model are
not explicitly listed but include external
environmental factors, vehicle company
manipulations, and drivers’ driving habits

Multilayer perceptron Not applicable; evaluation metrics
were not used.

[Kanarachos,
Mathew e Fitz-
patrick 2019]

Time, GPS position (latitude, longitude,
altitude), speed, acceleration (longitudi-
nal, lateral, vertical), and the number of
visible satellites

NARX Recurrent Neural
Network

MSE of 0.43 kpl, correlation (predict-
ed/measured) of 0.96

[Author, 2023] Speed, acceleration, engine speed, en-
gine temperature, engine air load, torque,
throttle valve position, accelerator pedal
position, battery voltage, clutch pedal po-
sition

XGBoost, Ridge Regres-
sion, and Support Vector
Regression

MSE (l/h)2, R2, and MAE (l/h): 0.37,
0.99, and 0.25 for XGBoost; 0.28, 0.99
and 0.23 for Ridge; and 0.38, 0.99, and
0.30 for Support Vector Regression, re-
spectively.

Source: Author (2023).

Exploration of the literature that applies machine learning techniques to mis-

fire detection, driver behavior classification, and fuel consumption regression provides

valuable insights (e.g., variables, algorithm, methodologies) for our work, focusing on au-

tomotive ECU data analysis. Reviewing similar studies gives us insight into the method-

ologies, algorithms, and approaches used before, which can inform and guide our

84 Chapter 3

research.

The positive aspects of related work are considered to improve our work. By iden-

tifying successful techniques, robust algorithms, and effective methodologies employed

by previous studies, we incorporated and adapted these approaches to our specific

goals to save time and effort by leveraging existing and proven knowledge.

In addition to the positive aspects, it is essential to consider and learn from the

limitations and disadvantages identified (e.g., use of synthetic data, offline analyses, lim-

ited variables) in related works. By critically reviewing the past researchers’ challenges,

we can proactively address these issues in our work and develop strategies to overcome

potential shortcomings. Understanding the limitations of previous approaches helps us

create more effective solutions and design experiments to validate the performance

and generalizability of our models.

Research gaps (e.g., identification of engine subsystems correlated with the

analyses, changing in the set of variables) not adequately addressed or explored are

identified by studying related works. These gaps present opportunities for contributing

to the field by developing new techniques, proposing alternative methodologies, or

applying machine learning algorithms in new ways. Understanding the current state of

the art allows us to identify areas where this work can significantly impact and advance

the existing knowledge base.

Related works provide a foundation (e.g., a background of the misfire and fuel

consumption, influencing factors, and techniques) for validating and comparing the

results obtained in the project with those of other researchers and, thus, evaluating the

effectiveness and performance of our models compared to existing approaches. This

validation process helps establish the robustness and reliability of the developments of

this research, contributing to the credibility of the work in the application of machine

learning in the automotive domain.

In conclusion, the insights gained from studying related work on misfire detec-

tion, driver behavior classification, and fuel consumption regression are invaluable in

informing and guiding our research. By leveraging the strengths, addressing limita-

tions, identifying research gaps, and validating our outcomes against existing work, we

can contribute to creating new knowledge and advancing the field based on previous

research.

86 Chapter 4

example, when using the CCP protocol in our car, the engine ECU communicates with

the board at sample rates limited to 4, 5, 10, and 100ms. Each acquisition essay can

also read about 160 variables using available sample rates.

This device communicates via 4G with the LISHA cloud server so that the data

is processed and/or applied directly to ML models or any other type of treatment and

manipulation, in real-time, with a greater computing power available, and stored in a

database for later use, including in new studies and projects.

In our server, the ML algorithms are called workflows and are implemented in

Python 3.8. When the hardware device is configured to read a variable from the engine

ECU, the variables are marked with the workflows that must be applied. When the

server receives the acquired data, it identifies which algorithms must be applied for that

specific data. Furthermore, the data is also saved in the database for further analyses

and/or visualization in a dashboard.

4.1 HARDWARE VALIDATION

One of the points that differ this study from most related works previously pre-

sented (3) is that all data used in the experiments were exclusively taken from the ECU,

with the sampling rate limited by its capacity, which is lower than that of the sensors.

A communication architecture involving software and hardware was structured and

validated for this.

The IASE project’s initial part was to build a device capable of communicating

with the ECU through protocols such as the CAN Calibration Protocol and the Universal

Measurement and Calibration Protocol. Throughout the evolution process, the work pre-

sented here has been developed in parallel with hardware advancements and upgrades.

Every modification made to the hardware required rigorous testing using workflows (a

definition that will be explained in the following topics). These tests covered several es-

sential aspects: sampling frequency, data integrity, continuity, transmission time, latency,

and data buffering.

In this way, this work not only fulfilled its purpose of data analysis but also

played a crucial role in the industrial project involved, helping validate the hardware

system integrated into the vehicle. This validation process ensured the accuracy of the

hardware in terms of communicating with the automotive ECU and the cloud server,

reliably delivering data with integrity and availability in real time. In addition to hardware

validation, data acquisition experiments, carried out over a period of two years, played

a vital role. They served to test specific features of the ECU and communication with

the hardware, including data acquisition for different numbers of variables and time

dimensions, further reinforcing its reliability and effectiveness.

Nevertheless, the validation process, combined with intelligent analysis, im-

proves the project’s value proposition, both from an engineering and market point of

88 Chapter 4

show where and when SmartData was produced, created, captured, sampled, etc.

Stored on the Platform, it is a data point in a SmartData time series. The SmartData

stored and processed by the platform has the following JSON representation:

SmartData 4.1 – SmartData structure.

1 {

2 " version " : unsigned char

3 "unit" : unsigned long

4 "value" : double

5 " uncertainty " : unsigned long

6 "x" : long

7 "y" : long

8 "z" : long

9 "t" : unsigned long long

10 "dev" : unsigned long

11 " signature ": string

12 }

And have the following structure:

• version: the SmartData version:

"1.1": version 1, Stationary (.1), representing data from a device that is not

moving;

"1.2": version 1, Mobile (.2), representing data from a device that is moving;

• unit: the type of the SmartData (see the SmartData documentation and typical

units);

• value: the data value (e.g., the temperature measured by a thermometer);

• uncertainty: a measure of uncertainty, usually transducer-dependent, expressing

Accuracy, Precision, Resolution, or a combination thereof;

• x, y, z: the absolute coordinates of the location where the data originated;

• t: the instant the data originated (in UNIX epoch microseconds).

• dev: a disambiguation identifier for multiple transducers of the same Unit and

space-time coordinates (e.g., 3-axis accelerometer), "0" otherwise (i.e., if a single

transducer is present);

• signature: a cryptographic identifier for mobile devices producing SmartData

(only for version 1.2 / mobile).

Chapter 4 89

SmartData series are classified based on the mode of operation: time-triggered

or event-triggered. The former must define a period, while the others are considered

event-triggered. The start of a series can be specified by time (by giving t0), by event,

or manually (by not giving t0, which is then assumed to be the current time). Thus, the

start of a time-driven series can be an event, and similarly, event-driven series can

start at a certain time. The end of a series can be specified by time (by giving tf), by

event, manually (with the finish method, which makes tf equal to the current time), or

in terms of event count (by giving count). Events are internal (stored on the platform)

or external SmartData, arithmetic, and logical operators. The SmartData Series stored

and processed by the platform has the following JSON representation:

SmartData 4.2 – SmartData Series

1 " Series " : Object {

2 " version " : unsigned char

3 "unit" : unsigned long

4 "x" : long

5 "y" : long

6 "z" : long

7 "r" : unsigned long

8 "t0" : unsigned long long

9 "tf" : unsigned long long

10 "type" : char [3]

11 " period " : unsigned long

12 "count" : unsigned long

13 "event" : string

14 " accuracy " : unsigned long

15 " workflow " : unsigned long

16 }

• version: the version of the SmartData in the series (a series does not contain

mixed versions SmartData);

• unit: the type of the SmartData in the series (see the SmartData documentation

and typical units);

• x, y, z: the absolute coordinates of the center of the sphere containing the data

points in the series (from a SmartData Interest);

• r: the radius of the sphere containing the data points in the series (initially from a

SmartData Interest; is automatically adjusted with data point insertion);

• t0: (optional) a timestamp representing the time in which the series begins, in

UNIX epoch microseconds;

90 Chapter 4

• tf: (optional) a timestamp representing the time in which the series ends, in UNIX

epoch microseconds;

• type: (optional) ’TTH’ specifies high-frequency data (KHz sampling) with a fixed

sampling rate. Some storage optimizations are applied.

• period: (optional) only defined for time-triggered series representing the period

of data points (usually from a SmartData Interest, but also method create);

• count: (optional) specifies the number of data points to be captured before closing

the series (tf is captured when counting data points are collected);

• event: (optional) a SmartData expression designating an event that marks the be-

ginning of the series (tf is derived from the time the expression becomes/became

true, representing the occurrence of "event");

• workflow: (optional) specify server-side algorithms to be applied on the series:

input workflows: are executed during insert operations.

output workflows: are executed with query operations.

The SmartData can be directed to a specific Workflow for data processing before

its definitive insertion into the platform or its manipulation afterward. Workflows are used

by the IoT platform to execute server-side algorithms related to the received series,

which can be defined as input or output. The SmartData concept adds metadata to the

read data to make it semantically complete, with a spatial location and reliability. In this

way, it is possible to identify different devices in different locations, in this case, vehicles,

without adjusting the settings of each one. Also, being a common data format, there is

no need to adapt for each ECU so that the same algorithms can be used in all cars.

An input workflow can be specified during the creation of the series, and its

execution occurs during insertions (PUT method) of SmartData in this Series, being

applied to each SmartData individually and persisting through daemons. It can be

used to pre-process data, execute algorithms, fix data points, generate notifications,

and interact with other series. Daemons are sub-processes that receive data from the

workflow, do the processing, and return it to the workflow or insert the processed data

into a new series, preserving the original data. Figure 4.3 illustrates the flow with a

diagram.

Chapter 4 93

the dataset facilitated the identification of key relationships for these analyses, enabling

the training and testing of various ML models. For this, a data acquisition methodology

was followed and used for both analyses.

To start the data acquisition process, the hardware embedded in the vehicle

must be loaded with the essay file. Which indicates the location of the signal in the

ECU, including the definition of Smartdata (Unit, Dev, X, Y, Z, Signature, Type, Period,

Workflow) and the minimum and maximum threshold values from the signals (pre-set

to check if the measurement is as expected). The data from the essay are sent to the

server. The data acquisition used in this work was time-triggered. During this phase,

data is buffered and prepared for serial upload via 4G to the IoT platform using the

SmartData format.

With the device embedded in the vehicle, numerous essays can be loaded onto

it. This allows a wide range of tests with different objectives to be performed. Each

of these essays can take into account different approaches for the analysis, which is

excellent for comparing and evaluating the developed algorithms.

In the first experiments carried out, while the project hardware was being devel-

oped, most of the ECU data acquisition was done using the Integrated Calibration and

Application Tool (INCA) from ETAS, which is used by Renault. This software allowed

misfire, for example, to be forced into the engine by decalibrating system variables

related to it. Subsequently, the tool created by IASE was used throughout the process,

loading the essays in the vehicles, searching for the selected variables, and making

the link between the ECU data and the server in the cloud. At that moment, the under-

standing of the misfire and other analyzes were already bigger, and with that, we were

able to force the car through driving to generate failures or, in a way, manipulate fuel

consumption. Remembering that the occurrence of misfires in the experiments ranged

from none to more than one hundred, because of its unpredictability, it is impossible

to control when the failure occurs and in what amount; we can only make the test

environment more conducive for it to occur.

Unlike most of the related works, which carry out simulations of failures on test

benches, the measurements in the project occurred at the car in operation, driven by

project members, on the limited test track within the Ágora Industrial Park in Joinville,

Brazil, where the Federal University of Santa Catarina is located. Next, it is discussed

in detail how the acquisition and selection of features for each analysis were made.

4.4 FEATURE SELECTION AND ESSAYS

Considering the limited number of variables per essay, FS is important to reduce

the set of variables that represents the phenomenon under analysis [Francis et al.

2022,Silva, Gracioli e Araujo 2022]. Also, it avoids overfeeding of ML models, removes

harmful, redundant, or noisy variables, generates better generalization, reduces the

94 Chapter 4

computational cost, and improves the performance [Zebari et al. 2020, Kiktova et al.

2014].

Strategies were chosen to create subsets of the available attributes, evaluating

individual variables according to predefined criteria or directly sub-setting them. Then, a

statistical evaluation was made to verify which of them was more qualified, this process

usually has a stop condition, and the best result is the one that prevails until further

evaluation [Kumar e Minz 2014]. As a result, among all subsets or variables tested,

some outperformed the full set and were used instead.

The selection made for each analysis is treated separately below, but in general,

the FS methods applied were:

• SelectPercentile: selects resources with a higher scoring percentage specified

as parameters, 10%, 15% and 20% were used;

• SelectKBest: selects the features with the highest score according to the function

chosen as a parameter. The Pearson correlation coefficient was used to find the

best attributes of a dataset;

• Sequential Feature Selector: is a greedy procedure that finds the best feature

to add to the subset of features that starts empty. First, finds the feature that

maximizes a cross-validation score when an estimator is trained with a single

feature. Once the first feature is selected, the procedure is repeated, adding a

new feature to the subset and stopping when the desired number of selected

features is reached;

• Recursive Feature Elimination: Select features recursively considering smaller

and smaller sets. Initially, it is trained on the complete set where the importance

of each feature is obtained concerning a specific attribute. Subsequently, the less

important features are removed from the set, a procedure that is repeated until

the desired number of features to be selected is reached. A version of this method

in a cross-validation loop to find the optimal number of features was also used,

called Recursive Feature Elimination with Cross-Validation.

• SelectFromModel: is a meta transformer used with any estimator that assigns im-

portance to each resource about a specific attribute. The random forest regressor

was used as an estimator with a square error criterion. Resources are removed if

their importance is below the given threshold parameter. Also, the process ends

when a desired number of features to be selected is reached.

4.4.1 Misfire Data Collection

To obtain different data sets with and without failure for training the algorithms,

the experiments in the vehicle took place on different days and more than once a day,

Chapter 4 95

with 1 to 3 experiments of 8 to 15 minutes being generated. The practices were limited

to that time due to overload in the engine; the test car showed signs of degradation

when being forced for longer periods, precisely because the failure can harm the engine

and its functioning, as seen before (2).

Several experiments were conducted to understand the misfire in different sce-

narios (engine in fault and normal conditions, car in stationary and moving state, high

and low gear, and different speeds). The experiments were performed with variables

that describe basic car components and systems, such as engine status and others

related to misfire, initially taken from the bibliography of causes (2.3.1) and related

works (3). Numerous machine-learning algorithms were applied to analyze each set of

variables, such as those described in the background (2.5). The algorithms training was

done with the data collected in the experiments; for the supervised training, the misfire

counter variable of the ECU was used; for the other cases, it was disregarded. Varying

according to the algorithm, the training parameters were defined during its execution,

observing metrics such as cross-entropy and squared error loss, among others, and

observing the convergence of the loss. A general explanation of the parameters of the

algorithms that obtained good performances and were considered for the results of the

work are presented in subsection 4.5

Subsequently, to confirm the understanding of the causes of the failure and

to improve the performance of the misfire detection algorithms, the FS algorithms

developed were applied in the construction of new data sets. Having more than twenty

thousand variables available in the ECU, it is necessary to analyze their importance and

choose the essential ones for misfire detection. It is noteworthy that the fault counter

generated by the ECU was used as a reference parameter to confirm whether the data

read was a fault or not and also used to label the data so that the FS algorithms could

be trained with the variables that symbolize failure over time and also for supervised

machine learning training. Thus, after selecting the variables and forcing the car to fail,

it was possible to obtain large data sets to analyze the failure identification algorithms.

Among the most selected features, which were used in fault detection, the follow-

ing systems and their respective variables stand out (4.1):

4.4.2 Fuel Consumption Data Collection

We applied FS for driver profile classification and fuel regression in this analysis.

In the classification context, the target variable was the consumption level label, and

the predictors used for evaluation were the Logistic Regression and XGBoost Classifier

models. For the regression problem, the target variable was the actual fuel consumption,

and the evaluated models were Ridge, SVR, and XGBoost regressor. Table 4.3 shows

the number of features selected at each Stage.

For this selection, the variables of the engine subsystems related to fuel con-

96 Chapter 4

Table 4.1 – Misfire FS
Engine systems Variables

General Engine coolant temperature, engine speed, vehicle speed, current gear
engaged, dead center counter;

Air Control Engine air load, atmospheric pressure, intake manifold pressure, intake
air temperature, throttle valve position, intake manifold temperature;

Fuel And Richness Control Final alcohol adaptive, injection time - cylinder 1 - 1st injection, injection
time - cylinder 2 - 1st injection, injection time - cylinder 3 - 1st injection,
injection time - cylinder 4 - 1st injection, air/Fuel Ratio, richness regula-
tion status, richness adaptation factor, catalyst Diagnosis Criteria (OSC
Level), catalyst exhaust gas upstream oxygen sensor voltage, catalyst
exhaust gas downstream oxygen sensor voltage

Ignition Advance Intake camshaft phaser position, ignition advance
Engine Torque Engine torque without gearbox request, estimated effective engine

torque, effective engine torque target requested by real (pedal) and
virtual (ACC/CC/SL) drivers, engine torque losses, final indicated torque
raw, final indicated torque target.

Alternator and Battery Man-
agement

Alternator load, battery voltage, alternator power, battery state of charge,
filtered alternator rotor current.

Source: Author (2023).

sumption were initially separated. Subsequently, the algorithms SelectPercentile, Se-

lectKBest, SequentialFeatureSelector, SelectFromModel, RFE, and RFECV, available

in the python library Scikit-Learn [Pedregosa et al. 2011], was used to separate the

variables with a greater relationship with the problem, being selected a total of 46

unique variables (listed in Table 4.2), joining the result of each algorithm applied in all

Stages. These algorithms are designed to operate with supervised learning methods,

ranking and selecting features by statistical measures between them and the target, as

in the case of SelectPercentile and SelectKBest, or evaluating the predictor’s perfor-

mances using different combinations of features, such as SequentialFeatureSelector,

SelectFromModel, RFE, and RFECV.

The amount of obtained data varies according to the variables selected in the

essay (in the GUI) and the time spent driving the vehicle. All data acquired while driving

the vehicle is manipulated in real-time by the workflows, resulting in feedback to the

stakeholders at runtime or is available for further offline analyses and reports (through

the database).

The essays varied in set and quantity of variables, intending to explore several

subsets of the engine to make an adequate and comprehensive selection of features.

The tests took place in different environmental conditions, running from September

2022 to March 2023, taking periods of heavy rain, high and low temperatures, and dry

and wet weather. With this differentiation, we expected to observe changes in the profile

of consumption variables, even in the same route. The limiting variation is precisely the

route because our test vehicle is not licensed to run on public roads. In this way, all

tests occurred within the Ágora Industrial Park in Joinville.

Chapter 4 97

Table 4.2 – Fuel consumption - FS

Engine Subsystem Variable Description

Filtered engine speed
Engine coolant temperature
Engine speed
Vehicle speed
Total vehicle distance

Basic Accelerator pedal position
Component Brake pedal - switches consolidation state

Acceleration or deceleration vehicle state
Relative throttle position in percent of the sensor supply voltage
Value of applied offset correction
Clutch pedal - minimum travel switch state - wire
Instantaneous engine speed (tooth to tooth engine speed)
Ambient air temperature
Engine air load 1, 2, 3, and 4 TDC earlier
Engine air load using predicted pressure

Air Setpoint of the mass air flow pumped into cylinder
Control Intake air temperature

Throttle valve position setpoint
Throttle valve position
Intake manifold pressure
Mass of air trapped in the cylinder for next ignition
Final alcohol adaptive
Injected fuel mass for ADAC [fuel consumption]
Gas consumption for the mux
Sum of fuel mass injected on the cylinder

Fuel And Injection time - cylinder 1, 2, 3, and 4 - 1st injection
Richness Catalyst warm-up is confirmed as necessary
Control C factor

Injected fuel mass setpoint disregarding cylinder
Average injected fuel mass disregarding cylinder number or injection phase
Effective time injection
Offset applied on richness closed loop
Richness close loop injection time factor applied

Ignition Advance Maximum ignition advance
Torque efficiency corresponding to minimum static ignition advance
Estimated indicate engine torque
Effective engine torque requested by real and virtual drivers
Effective engine torque setpoint requested by real and virtual drivers

Engine Effective engine torque setpoint requested by real and virtual drivers
Torque Estimated effective engine torque

Final torque target after modulation action
Torque efficiency for idle speed controller
Torque correction calculated
Final torque setpoint after modulation action

Alternator and Battery voltage
Battery Management Alternator power

Source: Author (2023).

The first experiments were conducted in September, October, and November

2022 and had 30 acquisition variables, initially taken from the related works, summa-

rized in Tables 3.2 and 3.3, for comparison. We refer to these datasets as "Stage 1".

The main objective of the Stage 1 data sets was to understand the relationship between

98 Chapter 4

Table 4.3 – Description of the acquisition datasets.

Stage Total /
Selected

features

Duration

of exper-

iments
(min)

Driver’s behavior

Stage 1 30 / 13 13 - 27 Varied between ag-
gressive and nor-
mal driving in the fi-
nal half of the ex-
periment

Stage 2 152 / 31 18 - 40 Varied between ag-
gressive and nor-
mal driving through-
out the experiment

Stage 3 141 / 28 10 - 15 Ordinary driver
steering, not forced

Source: Author (2023).

the variables with fuel consumption. To do so, we forced a division in the experiments to

make it evident in the data, where a part drove the car normally and then more aggres-

sively, thus with higher fuel consumption. In later experiments, in January and February

2023, we monitored more variables to apply FS and improve training inputs. The ex-

periments were done by forcing the vehicle randomly during the route; this alternation

was not so explicit in the data. These datasets had more than 150 variables measured,

and we refer to them as "Stage 2". Finally, we ran more experiments in February 2023

with a dataset that grouped the selected variables by the FS algorithms applied to the

previous stages. In this phase, the vehicle was driven normally, as if it was an ordinary

driver, so that we could validate the created ML models. We refer to it as "Stage 3".

Table 4.3 compiles information about each stage. The focus of the analysis was

short-term driving, representing the day-to-day of a common driver without traffic, with

an execution time of up to 40 minutes.

4.5 ALGORITHM DEVELOPMENT AND PARAMETERS

In this section, the general choice of algorithms that were selected for the eval-

uation is explained, and that will be presented in the results section (5), along with an

example of the parameters used. A more detailed explanation of each tested algorithm

can be found in the background section (2.5)

During the project, several machine learning algorithms with a diverse range of

algorithm types, in an attempt to explore their effectiveness in solving fuel consumption

and misfire detection problems, were implemented and evaluated. The tested algo-

rithms included decision trees, different types of clustering, classifiers, regressors, and

various types of neural networks (perceptron, MLP, autoencoder, NARX, etc). The de-

Chapter 4 99

cision to test all these algorithms was based on their prominence in the field, where

we reviewed the models present in the related works and literature (3), as well as

understanding their suitability to the nature of the dataset and the design goals.

Throughout the test phase, the performance of each algorithm, based on cri-

teria such as accuracy, precision, recall, f1-score, and R2, was monitored. It became

evident that certain algorithms outperformed others regarding predictive accuracy and

generalizability. Consequently, most of the algorithms were eliminated from the analysis

because they could not perform or had results far below the others.

Overall, the classification algorithms proved to be better for detecting misfires

and classifying the driving profile. The XGBoost algorithm, in particular, excelled in

terms of performance, serving very well for both analyses, including its adaptation to a

regressor, which also had the best performance in the task of instantaneous prediction

of fuel consumption.

For the implementations, we used Python version 3.8.10, the Sci-kit Learn

library version 1.2.1 (for the models where it is mentioned), and the XGBoost

version 1.7.0. All algorithms are available online at <https://github.com/canalrafael/

Fuel-Consumption-Analysis.git>. The key parameters utilized in the algorithms are

outlined in the table below (Table 4.4).

Table 4.4 – Algorithms parameterization.

Algorithm Parameter Analysis

Gradient Boosting default
K-Means default
KNN k=1 Misfire
Logistic Regression maxiter=100 Detection
SVC default
XGBoost default xgboost.XGBClassifier()
XGBoost default xgboost.XGBClassifier() Driver
Logistic Regression maxiter=100 Profile
K-Means K=2 Classification
XGBoost default xgboost.XGBRegressor() Fuel
Ridge Regression default Consumption
SVR LinearSVR() with epsilon=1.0, and maxiter=10000 Prediction

Source: Author (2023).

4.5.1 Workflow example

The following code snippets exemplify parts of the workflow code. Initially, the

workflow (Alg. 4.3) starts and prepared the structure to read and treat the SmartData,

which validates the reading made by the server to be applied to machine learning mod-

els. Next, the workflow daemon (Alg. 4.4) receives the data points and starts its routine

100 Chapter 4

of consuming the data, predicting the data point and sending the prediction (to a file or

to the server). Each of these routines executes its part of the code asynchronously.

Algorithm 4.3 – Workflow.

1 if __name__ == " __main__ ":

2 # +++++++++++++++++ DO NOT CHANGE THIS LINE

+++++++++++++++++

3 try:

4 smartdata = datamodel . read_smartdata (sys.argv [1],

PATH_DIR + "/" + FILE_NAME)

5 # +++++++++++++++++ DO NOT CHANGE THIS LINE

+++++++++++++++++

6 #try:

7 df = datamodel . smartdata_to_df (smartdata)

8 df = datamodel . add_label_col (df , labels_map)

9 df = datamodel . add_uuid_col (df)

10 handle_label_not_found (df)

11

12 for uuid in df["uuid"]. dropna (). unique ():

13 content_df = df[df["uuid"] == uuid]

14 first_row = content_df .iloc [[content_df ["t"].

idxmin ()]]. squeeze ()

15 t = first_row ["t"]

16 entry = f"{ QUEUE_DIR }/{t}_{uuid}"

17 contents = content_df . to_json (None , orient ="

records ", lines=True)

18 try:

19 queue. add_entry (entry , contents)

20 except Exception as err:

21 unit = first_row ["unit"]

22 dev = first_row ["dev"]

23 x = first_row ["x"]

24 y = first_row ["y"]

25 z = first_row ["z"]

26 write_log (

27 f"(Unit ,Dev) {str(err)} for: ({ unit },{ dev

}) at {t} with uuid {uuid} at ({x}, {y},

{z}).\n"

28)

29 except Exception as err:

30 write_log (f"{err }\n")

31

Chapter 4 101

32 # +++++++++++++++++ DO NOT CHANGE THIS LINE

+++++++++++++++++

33 print (json.dumps(smartdata)) # Send smartdata back to

PHP

34 # +++++++++++++++++ DO NOT CHANGE THIS LINE

+++++++++++++++++

Algorithm 4.4 – Daemon.

1 async def main ():

2 logging .debug(" DAEMON STARTED ")

3 done , pending = await asyncio .wait(

4 [

5 # Main functions for

6 asyncio . create_task (consume_data_queue_routine ()),

7 asyncio . create_task (predict_df_row ()),

8 asyncio . create_task (send_prediction_routine ()),

9],

10 timeout = DAEMON_LIFETIME ,

11)

12 logging .debug(" BEFORE GLOBAL_FLAGS TO TRUE")

13 GLOBAL_FLAGS ["EXIT"] = True

14 logging .debug("AFTER GLOBAL_FLAGS TO TRUE")

15 try:

16 await asyncio . wait_for (asyncio . gather (* pending), 30)

17 except :

18 return

The results of the analysis performed by the workflow can be observed through

a dashboard of a web tool such as Grafana, directly on the server or through local

applications that communicate with the server (saving or reading data).

4.6 PARTIAL CONSIDERATIONS

This section summarizes the essential findings and contributions related to the

communication structure, data acquisition methodology, dataset construction, feature

selection, data validation, developed algorithms, and parameterization aspects dis-

cussed in the chapter.

This study’s extensive experimentation and analysis thoroughly tested and vali-

dated the communication between the developed hardware and ECU and server. This

validation ensured the integrity and availability of data, allowing for real-time analysis in

the cloud.

102 Chapter 4

The ability to monitor misfire classifications, driving profile analyses, and fuel

consumption predictions in real time has provided stakeholders with valuable insights.

The FS process was crucial in obtaining meaningful results by identifying variables

strongly related to the analyzed aspects. This process demonstrated that despite differ-

ent focuses, common variables significantly influence the engine’s overall functioning

and subsystems.

The attribute selection and system integrity validation lend credibility to the ap-

plicability of this work in the industry, particularly for Renault. The outcomes highlight

the possibility of performing intelligent analyses comparable to or even outperforming

the ECU’s analyses, leveraging commonly available vehicle data without needing costly

production sensors such as vibration or sound sensors. Furthermore, the speed of anal-

ysis and real-time monitoring facilitate prompt adjustments by engineers, expediting the

engine calibration process and addressing concerns such as gas emissions and fuel

consumption.

The developed algorithms provided valuable insights into the data nature and

specific analysis objectives, highlighting their compatibility with supervised machine

learning algorithms. However, in the case of misfire analysis, the data imbalance posed

challenges for anomaly-detection neural network algorithms, resulting in accuracy levels

below 60%. As a result, these algorithms were excluded from the subsequent chapter

(5). All algorithms can be applied in workflows; for that, it is necessary that the models

are loaded in the prediction routine and that the data entry (input) is adjusted for it.

In the following chapter, the evaluation of the developed models is treated with

the explanation of the main results compared to the analyzed literature. The values

obtained by the classification algorithms make their applicability to the project objectives

clear, not requiring complex algorithms that are more difficult to understand and explain.

The regression algorithms also showed relevant results, presenting a prediction of

instantaneous consumption with precision for real-time use. Thus, temporal algorithms

were not used; the real-time analysis was performed without the need for monitoring

over time to bring consistent results.

Chapter 5 103

5 EVALUATION

In the following subsections, we present the results obtained in the misfire de-

tection and fuel consumption analyses. Additionally, we make comparisons with related

works that are close to ours (described in Section 3).

5.1 MISFIRE CLASSIFICATION RESULTS

To evaluate the model, all the experiment’s data were gathered into a single set

and balanced it. This is due to the fact that the number of samples with misfires is much

smaller than the number of healthy samples since the occurrence of a misfire cannot

be easily controlled, and it occurs sporadically.

Subsequently, we divided the data into training and testing sets, shuffling the

data and dividing them into 70% for training and 30% for testing, then applied the

ML models. This technique allows us to verify the generalization of the models and

compare the different results of the trained models. To check the overall performance

of the models, we calculated their precision, recall, and F1-score on the test set so

that we have metrics to compare with related works as [Devasenapati, Sugumaran e

Ramachandran 2010,Firmino et al. 2021].

Figure 5.1 illustrates the best results obtained with an FS method for each model

trained on the same dataset. The Y axis, which contains the percentage (%) of hits,

starts at 80%, given the difference between the results, and the X axis contains the ML

model name. The blue columns are the precision of the ML model, the orange is the

recall, and the green is the F1-score.

Figure 5.2 illustrates the ROC curve’s plot. The higher the curve, i.e., the greater

the area under the curve, the better the model can do a binary classification in terms of

having a high true positive rate against a low false positive rate. In this case, XGBClas-

sifier is clearly the better model.

In general, the XGBoost Classifier proved to be the best model for identifying

misfires, not only in the best-case scenario as illustrated in Figure 5.1, but also in the

average case of different features sets obtained through the FS methods, as demon-

strated in Table 5.1, presenting the average precision, recall, and F1-score obtained

by the models. The algorithm had a precision of up to 92.40%, a recall of 96.16%,

and an F1-score of 94.24%. On average, it achieves a precision of 87.55%, recall of

92.25%, and an F1-score of 89.79%, with a standard deviation of 7.38%, 4.30%, and

5.90%, respectively. Therefore, XGBoost is the algorithm that, on average, achieved the

highest F1 score, which is the metric chosen to rank the algorithms. However, it is worth

noting that the standard deviation for XGBoost is larger than that of other algorithms,

such as Gradient Boosting, indicating that it is less consistent compared to these other

algorithms.

Chapter 5 105

Figure 5.2 – ROC Curve.

results and the most consistent results because it has a smaller standard deviation.

Continuing the analysis of Table 5.1, Logistic Regression demonstrates precision

of up to 83.85%, recall of 92.33%, and an F1 score of 87.23%. On average, it achieves

a precision of 79.95%, recall of 84.89%, and an F1 score of 82.21%, with a standard

deviation of 3.06%, 6.79%, and 3.59%, respectively. SVC presents a precision of up

to 85.62%, a recall of 95.68%, and an F1 score of 90.37%. The average precision is

82.17%, recall is 93.05%, and F1 score is 87.27%, with standard deviations of 3.06%,

2.29%, and 2.71%, respectively.

Finally, the K-Means clustering has inferior results than the other models as it is

possible to see in Table 5.1: the algorithm demonstrates precision ranging from 6.90%

to 35.95%, recall ranging from 6.06% to 60.00%, and an F1 score ranging from 9.97%

to 35.95%. On average, it achieves a precision of 23.64%, a recall of 34.00%, and an

F1 score of 19.43%. The standard deviations for precision, recall, and the F1 score

are 15.02%, 27.02%, and 14.36%, respectively. Because of this discrepancy, it is not

represented in Figure 5.1.

While accuracy is commonly used in various studies such as [Shahid, Ko e Kwon

2022,Qin et al. 2021,Jafarian et al. 2018,Firmino et al. 2021], it is not the most suitable

106 Chapter 5

Table 5.1 – Results evaluation metrics

Algorithm Information Precision Recall F1 Score

Range 73.03%-92.40% 84.41%-96.16% 78.31%-94.24%
XGBoost Average 87.55% 92.25% 89.79%

Std dev. 7.38% 4.30% 5.90%
Range 72.51%-88.91% 87.29%-95.68% 79.22%-91.50%

Gradient Average 84.48% 92.73% 88.37%
Boosting Std dev. 6.05% 3.05% 4.62%

Range 6.90%-35.95% 6.06%-60.00% 9.97%-35.95%
K-Means Average 23.64% 34.00% 19.43%

Std dev. 15.02% 27.02% 14.36%
Range 85.62%-86.59% 91.37%-91.85% 88.40%-88.91%

KNN Average 86.03% 91.53% 88.69%
Std dev. 0.50% 0.28% 0.26%
Range 76.60%-83.85% 76.02%-92.33% 77.04%-87.23%

Logistic Average 79.95% 84.89% 82.21%
Regression Std dev. 3.06% 6.79% 3.59%

Range 79.79%-85.62% 91.61%-95.68% 85.40%-90.37%
SVC Average 82.17% 93.05% 87.27%

Std dev. 3.06% 2.29% 2.71%

Source: Author (2023).

metric for classification tasks similar to ours. So, we adopted precision, recall, and

F1-score as they provide a more comprehensive assessment in scenarios where the

class distribution is imbalanced, or the cost of misclassification varies across classes,

also complemented with the ROC curve. By employing these metrics, we were able to

capture the nuanced performance of our classification model more accurately.

Compared to related works like [Qin et al. 2021] and [Jafarian et al. 2018], our

work stands out due to its innovative approach of performing real-time analysis using

data directly from the Electronic Control Unit (ECU). This methodology can be applied to

other vehicles with the same variables. Moreover, even getting similar results, our work

utilizes simpler and more easily understandable algorithms [Dreiseitl e Ohno-Machado

2002], which are executed in the cloud.

5.2 FUEL CONSUMPTION

This Section presents the results of classifying the driver’s driving profile and

predicting instantaneous fuel consumption separately and in detail.

108 Chapter 5

Table 5.2 – Classification results evaluation metrics.

Algo. Info. Accuracy Precision Recall

S
ta

ge
1

Range 80.60%-94.80% 76.30%-97.40% 72.30%-99.40%
XGBoost Average 88.09% 85.43% 89.98%

Std dev. 5.47% 6.26% 10.22%
Range 20.39%-92.72% 29.38%-100.00% 0.61%-100.00%

Logistic Average 75.63% 78.86% 77.34%
Regre. Std dev. 22.63% 20.23% 28.23%

Range 26.29%-79.31% 29.27%-100.00% 46.60%-53.40%
K-Means Average 66.63% 75.30% 52.13%

Std dev. 18.16% 21.77% 2.48%

S
ta

ge
2

Range 81.21%-99.59% 92.82%-100.00% 40.54%-98.53%
XGBoost Average 95.42% 96.86% 88.07%

Std dev. 6.41% 2.77% 21.27%
Range 70.64%-97.93% 53.52%-100.00% 35.14%-95.68%

Logistic Average 88.94% 86.17% 78.44%
Regre. Std dev. 9.33% 15.71% 22.71%

Range 6.45%-93.55% 7.94%-98.07% 19.76%-91.70%
K-Means Average 60.41% 52.32% 61.92%

Std dev. 31.36% 30.63% 24.53%
Range 95.00%-

100.00%
93.33%-100.00% 93.33%-

100.00%

S
ta

ge
3

XGBoost Average 97.30% 96.82% 96.11%
Std dev. 1.00% 3.18% 3.29%
Range 85.00%-

100.00%
76.47%-100.00% 80.00%-

100.00%
Logistic Average 92.67% 90.92% 90.56%
Regre. Std dev. 10.13% 14.11% 11.85%

Range 6.83%-90.68% 6.85%-100.00% 8.33%-75.00%
K-Means Average 45.65% 45.42% 39.72%

Std dev. 34.05% 39.93% 23.83%

Source: Author (2023).

obtained. This shows an improvement in the updated variable set for classifying levels

of consumption, but still with good results with the older set. Analyzing the distributions

and value range of consumption records for some experiments, there were cases where

a lower variety in the data, which combined with the wrong selection of features, led

to a weaker performance. Overall, the obtained results showed that the classification

methods had good precision in determining the consumption level from the right se-

lected features, reaching up to 100% of scoring for all metrics in some of the train and

test splits.

Regarding the classifier methods, in general, XGBoost shows a slightly better

scoring than the Logistic Regression. This changed in some stages and for certain

Chapter 5 109

features selected sets, but overall, XGBoost had more persistent performances, ranging

between high averages and low standard deviations. Besides, it had better prevalent

results, as highlighted in green in Table 5.2, showing greater average scores, and lower

variations, showing persistence in them. In contrast, Logistic Regression shows higher

scores in some cases, but also has lower averages and higher standard deviations

on the results, reaching accuracies and recalls under 30% for some specific tests and

feature sets, which did not occur with XGBoost, although had fair results in general.

The K-Means clustering presented inferior results in comparison with the clas-

sification algorithms, trained specifically for the given classes. It got lower accuracy,

precision, and recall averages in all steps, ranging from 40% to 75%. The reason can

be found in visualizing the standard deviation in Table 5.2, with values greater than the

ones obtained in the other algorithms. K-Means proved to be more sensitive to the set

of variables used in training, having precision values below 10%, bringing the average

down. Even with this issue of having wider variations with the wrong resource sets

that negatively affect its performance, in general, K-means was capable of getting a

reasonable scoring, showing accuracy, precision, and recall up to 90% in some tests.

This indicates that the specific threshold used for comparison was not perfect or that

it can be adjusted for the identified clusters, reinforcing that the driving styles clusters

given by K-Means may also capture a division in consumption levels, not only a binary

division. It is also notable that no specific FS was applied for K-Means, using for some

tests the same features selected for the classification algorithms and the related works

common features, which also have contributed to lower and less persistent results.

Besides, in our work, we performed the comparison of the clusters with real data of

the instantaneous consumption levels, in contrast to [Peppes et al. 2021,Zheng et al.

2022], where simulated data or no fuel consumption were observed.

Compared to related works, we improved the overall results, having metrics with

superior values, an extensive FS work that accurately identifies the driver’s relationship

with key variables of fuel consumption, and ensuring the integrity of the data used. One

of the observed advances, when compared to similar models and analysis [Ping et al.

2019], is obtaining similar or superior metrics using lower-cost methods. In the referred

work, the authors got an accuracy of 80% to 83% with more complex methods such

as Neural Networks, using visual information in addition to the vehicle-gathered data,

while in this work, by using only vehicle-observed features, we reach 100% accuracy in

some scenarios through computationally less expensive models as Logistic Regression

[Dreiseitl e Ohno-Machado 2002] and Gradient Boosting [Taghavi e Shoaran 2019],

besides they are not a black-box. This would allow the execution of classification within

the ECU and not on a cloud server, for instance.

Furthermore, in this work, we predicted a consumption level with high accuracy

and precision using directly a level of measured consumption as a basis. Similar works

110 Chapter 5

obtained equivalent or lower accuracy and precision, from 80% to 100%, using labels

generated by clusters for classification, as in [Peppes et al. 2021, Zheng et al. 2022],

while in this work, we managed to obtain the same or better performance, up to 90%

and 100%, using direct reference consumption for training and testing classifiers.

5.2.2 Fuel Consumption Prediction Results

To evaluate the predictive models for fuel consumption, various metrics can be

used, such as mean squared error (MSE), mean absolute error, root mean squared

error, and coefficient of determination (R2), among others [Ziółkowski et al. 2021]. For

allowing a better comparison with related works and, because they complement each

other in the analyses, we evaluated the following ones in each set of algorithms: MSE,

R2 score, and MAE.

Mean Squared Error (MSE) is a metric that shows an average of the square

of errors between predicted and measured values, using the squared term that gives

higher penalties for higher error values. For each set of measured values y1, . . . , yn and

predicted values ŷ1, . . . , ŷn, the MSE is determined by

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2. (5.1)

Mean Absolute Error (MAE) is a metric that measures the average of the errors

using the absolute error value, which stands for a slightly moderate average, without

distinction from higher or lower penalties. From some set y1, . . . , yn of measured values

and ŷ1, . . . , ŷn predicted values, the MAE is obtained by:

MAE =
1

n

n
∑

i=1

♣yi − ŷi♣. (5.2)

R2 is a metric that evaluates how much of the data variance is explained by the

predicted values given by the model. It has a maximum value of 1, where the score

closer to 1 represents a better fit. Given y1, . . . , yn real values, y their mean value and

ŷ1, . . . , ŷn predicted values, R2 is obtained by the following equation

R2 = 1 −

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2

(5.3)

To assess the regression algorithms, we executed a similar analysis with the

same cross-validation procedure as explained in the previous subsection. For the first

two Stages, we separated in each round one of its experiments for testing and the

remaining for training. For the third Stage, we performed 3-fold cross-validation, where

data was randomly split into 3 sets. Where we performed cross-validation between

them, selecting one for testing and the remaining for training.

To illustrate, Figure 5.4 shows the predicted fuel consumption levels estimated

by XGBoost Regressor (in orange) compared to the actual measured consumption (in

112 Chapter 5

Table 5.3 – Regression results in evaluation metrics.

Algo. Info. MSE ((l/h)2) R2 MAE (l/h)

S
ta

ge
1

Range 0.89-11.73 0.54-0.91 0.55-1.02
XGBoost Average 4.49 0.78 0.73

Std dev. 3.64 0.12 0.17
Range 2.58-4255.82 -434.42 -0.84 0.97-65.19

Ridge Average 414.35 -40.58 9.55
Regres. Std dev. 1219.00 124.99 18.66

Range 3.36-16.66 0.35-0.81 0.96-2.09
SVR Average 6.31 0.62 1.27

Std dev. 3.53 0.14 0.32

S
ta

ge
2

Range 0.93-16.12 0.49-0.97 0.46-1.74
XGBoost Average 7.41 0.77 1.01

Std dev. 6.79 0.22 0.52
Range 0.94-164.08 -4.19-0.97 0.61-9.88

Ridge Average 26.40 0.17 2.66
Regres. Std dev. 45.52 1.44 2.53

Range 1.63-15.41 0.51-0.95 0.79-2.25
SVR Average 7.01 0.78 1.39

Std dev. 4.94 0.16 0.46
Range 0.37-0.68 0.96-0.99 0.25-0.42

S
ta

ge
3

XGBoost Average 0.49 0.98 0.32
Std dev. 0.08 0.01 0.05
Range 0.28-1.80 0.75-0.99 0.23-1.35

Ridge Average 0.91 0.91 0.66
Regres. Std dev. 0.57 0.09 0.42

Range 0.38-0.71 0.95-0.99 0.30-0.58
SVR Average 0.58 0.97 0.44

Std dev. 0.10 0.01 0.08

Source: Author (2023).

in comparison to all models (R2 scores above 0.96, average MSE and MAE respectively

below 0.5 (l/h)² and 0.4 (l/h), among with consistent results shown by the slight deviation

in the scores). This indicates the model’s capability to get overall good predictions

in most cases. In comparison, SVR was also capable of showing promising results,

reaching up to 0.95 and 0.99 R2 scores in Stages 2 and 3, and the average MSE and

MAE not above 7 (l/h)2 and 1.4 l/h respectively. Finally, the Ridge Regression model

has shown by far the most lower performances, in some cases having far higher errors,

as in Stages 1 and 2, with negative R2 and extreme MSE and MAE values. This shows

that, in general, yet having some good scores in some cases, as the highlighted MAE

and MSE range scores in Stage 3, it may not generalize well for most cases.

Regarding the results of the NARX-NN, a model adapted from [Kanarachos,

Mathew e Fitzpatrick 2019], we performed tests with different sets of features and

Chapter 5 113

settings for the model, using the same proceeding and similar settings described by the

authors with some adjustments for our data. However, the algorithm did not show good

scores in comparison to the other explored algorithms, not being possible to replicate

the results achieved in their application. Among all the validations, the higher R2 score

obtained was below 0.21, with most cases getting negative scores, besides the high

MSE and MAE, showing that the model did not perform well with our data.

Compared to the related works, we achieved results similar to or better than

other explored models. For example, in [Hamed, Khafagy e Badry 2021,Liu e Jin 2023],

similar algorithms were explored for the regression problem getting an R2 score of 0.96

and 0.97, while we could obtain up to 0.99 of R2 in the observed tests with XGBoost

and SVR. It is noticeable that in our case, the consumption data was provided by ECU

sensors instead of using physical models or database-provided data. Furthermore,

the presented results show advancements also in comparison to [Yao et al. 2020],

which using even more complex Neural Network models, reached R2 scores from 0.5

to 0.6, while using computationally less expensive models, we could reach scores

between 0.8 and 0.99, besides of an MSE of 0.49 (l/h)2, corresponding to an RMSE

of 0.7 l/h in comparison to the 0.87 l/100km RMSE obtained in their work. Finally,

although we applied similar tests and settings, as mentioned above, the model explored

by [Kanarachos, Mathew e Fitzpatrick 2019] could not show promising results in our

dataset. Still, with less expensive models as XGBoost and SVR, we were able to reach

an average MSE of 0.49 (l/h)2 and 0.58 (l/h)2 respectively, or even down to 0.28 in

Ridge Regression and 0.37 in XGBoost, compared to the 0.43 (kpl)2 obtained by these

authors with use of the Recurrent Neural Network.

Chapter 6 115

6 CONCLUSION

This study effectively accomplished its primary objective of monitoring the com-

bustion engine to detect misfires, analyze driving profiles, and predict fuel consumption

through machine learning techniques. It utilized variables extracted directly from the

electronic control unit (ECU). It employed a variety of machine learning models, aiming

to enhance the efficiency of existing systems, prolong the lifespan of engine compo-

nents, and furnish valuable insights to both engineers and vehicle operators.

The present work implemented six ML models to detect misfires, thereby estab-

lishing the effectiveness of these models in accurately classifying this particular fault

with a precision superior of 90%. Also, two scenarios related to fuel consumption were

validated. First, comparing three ML models to classify the driving profile concerning

fuel consumption, and second, comparing three ML regression models to predict the

fuel consumption, proving its validity on both subjects with results that indicate a correct

categorization of the driver in economic or non-economic and an accurate prediction

of consumption. In the classifiers, we could obtain values up to 100% accuracy, preci-

sion, and recall, with an average of around 97% in models like XGBoost and similar

results with Logistic Regression. This shows an improvement over other works, where

lesser scoring was obtained, despite using more complex and expensive models or

not real collected data. Furthermore, in the regressors, our models were able to show

R2 scores up to 0.99, an MAE of 0.23 (l/h), besides an average MSE of 0.49 (l/h)2,

reaching down to 0.28 (l/h)2 in some tests. Compared to similar works, these results

also show advancements in reaching good scores with similar or even less expensive

models, besides using real data collected for the training and tests.

The evaluation of the models, involving both training and testing phases, utilized

authentic data collected from a vehicle’s ECU, and the application of the workflows

takes place on a cloud server. With real-time data processing during vehicle operation,

engineers or other interested parties can monitor the results through local or web ap-

plications. Consequently, this research has practical applicability in several automotive

sectors, including industry, engineering, and transport in general. Given the increasing

emphasis on data acquisition and the multidisciplinary involved in the sector, ECUs

and additional vehicle components are expected to generate even more data, so other

opportunities for ML-based analysis will be created.

For future efforts, we intend to focus on complementing the analysis with different

models so that more failures can be detected to decrease the risk of damage to the

engine and increase passenger safety. Another possible analysis is related to the useful

life of engine components, which can be monitored in the medium and long term to

verify the wear caused by failures and how their monitoring can extend the life of the

components. In addition, it would be interesting to verify the loss of accuracy of the

116 Chapter 6

sensors and their acquisitions so that it is possible to adapt the models so that the

analyzes carried out remain accurate and do not lose their integrity.

Due to the multidisciplinarity of the automotive industry and the demand for more

data, we expect vehicle ECUs and other automotive components to generate more

information, creating the opportunity for more complex data-based analyses with ML.

BIBLIOGRAPHY

ABE, S. Support vector machines for pattern classification. [S.l.]: Springer, 2005. v. 2.

ABOKYI, E. et al. Industrial growth and emissions of co2 in ghana: The role of financial
development and fossil fuel consumption. Energy Reports, v. 5, p. 1339–1353, 2019.
ISSN 2352-4847.

AGGARWAL, C. et al. Data mining: the textbook. [S.l.]: Springer, 2015. v. 1.

AGGARWAL, C. C. et al. Neural networks and deep learning. Springer, Springer, v. 10,
p. 978–3, 2018.

AIHUA, J. et al. Detection ofenginemisfire bywaveletanalysisofcylinder-
headvibrationsignals. International Journal of Agricultural and Biolog-

ical Engineering, v. 1, n. 2, 2008. ISSN 1934-6344. Disponível em:
<https://ijabe.org/index.php/ijabe/article/view/4/30>.

ALI, M. U. et al. Co2 emission, economic development, fossil fuel consumption
and population density in india, pakistan and bangladesh: A panel investigation.
International Journal of Finance & Economics, v. 27, n. 1, p. 18–31, 2022.

ANL, A. N. L. Downloadable Dynamometer Database (D3) testing results for vehicles

that run on gasoline or diesel. 2022.

AZRIN, A. A. et al. An overview of the spark plug engine profile in a spark
ignition engine. IOP Conference Series: Materials Science and Engineering,
IOP Publishing, v. 1092, n. 1, p. 012030, mar 2021. Disponível em: <https:
//doi.org/10.1088/1757-899x/1092/1/012030>.

BEDRETCHUK, J. P. et al. Low-cost data acquisition system for automotive electronic
control units. Sensors, v. 23, n. 4, 2023. ISSN 1424-8220.

BOARD, C. A. R. Technical status update and proposed revisions to malfunction
and diagnostic system requirements applicable to 1994 and subsequent california
passenger cars, light-duty trucks, and medium - duty vehicles – (obdii). CARB Staff

Report, 1991.

BOGUŚ, P. et al. Nonlinear analysis of combustion engine vibroacoustic signals for
misfire detection. SAE International, p. 8, 3 2003. ISSN 0148-7191. Disponível em:
<https://www.sae.org/publications/technical-papers/content/2003-01-0354/>.

BOGUś, P.; MERKISZ, J. Misfire detection of locomotive diesel engine by non-linear
analysis. Mechanical Systems and Signal Processing, v. 19, n. 4, p. 881–899, 2005.
ISSN 0888-3270. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0888327004000883>.

BULUT, I. S.; ILHAN, H. Cloud based vehicle and traffic information sharing application
architecture for industry 4.0 (iot). In: 2019 International Conference on Information and

Telecommunication Technologies and Radio Electronics (UkrMiCo). [S.l.: s.n.], 2019.
p. 1–7.

CANAL, R. et al. Misfire detection in combustion engines using machine learning
techniques. In: IEEE. XIII Brazilian Symposium on Computing Systems Engineering

(SBESC). [S.l.], 2023.

CANAL, R.; RIFFEL, F. K.; GRACIOLI, G. Driving profile analysis using machine
learning techniques and ecu data. In: 2023 IEEE 32nd International Symposium on

Industrial Electronics (ISIE). [S.l.: s.n.], 2023. p. 1–6.

CANAL, R.; RIFFEL, F. K.; GRACIOLI, G. Machine learning for real-time fuel
consumption prediction and driving profile classification based on ecu data. Elsevier,
v. 232, 2023. ISSN 0957-4174.

CHEN, J.; Bond Randall, R. Improved automated diagnosis of misfire in internal
combustion engines based on simulation models. Mechanical Systems and

Signal Processing, v. 64-65, p. 58–83, 2015. ISSN 0888-3270. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0888327015001727>.

CHEN, J. et al. Automated misfire diagnosis in engines using torsional vibration and
block rotation. Journal of Physics: Conference Series, IOP Publishing, v. 364, p. 012020,
may 2012. Disponível em: <https://doi.org/10.1088/1742-6596/364/1/012020>.

CHEN, S. K. et al. Machine learning for misfire detection in a dynamic skip fire engine.
SAE International Journal of Engines, SAE International, v. 11, n. 6, p. 965–976, 2018.
ISSN 19463936, 19463944.

CHEN, T.; GUESTRIN, C. Xgboost: A scalable tree boosting system. CoRR,
abs/1603.02754, 2016.

CHEN, Y. et al. Data-driven fuel consumption estimation: A multivariate adaptive
regression spline approach. Transportation Research Part C: Emerging Technologies,
v. 83, p. 134–145, 2017. ISSN 0968-090X.

CLAßEN, J. et al. Real driving emission calibration—review of current validation
methods against the background of future emission legislation. Applied Sciences, v. 11,
n. 12, 2021. ISSN 2076-3417.

DEVASENAPATI, S. B.; SUGUMARAN, V.; RAMACHANDRAN, K. Misfire identification
in a four-stroke four-cylinder petrol engine using decision tree. Expert Systems with

Applications, v. 37, n. 3, p. 2150–2160, 2010. ISSN 0957-4174. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0957417409007301>.

DREISEITL, S.; OHNO-MACHADO, L. Logistic regression and artificial neural network
classification models: a methodology review. Journal of Biomedical Informatics, v. 35,
n. 5, p. 352–359, 2002. ISSN 1532-0464.

DUA, D.; GRAFF, C. UCI Machine Learning Repository. 2017. Disponível em:
<http://archive.ics.uci.edu/ml>.

DZIUBINSKI, M. et al. Modelling characteristics of spark ignition engine
injection system. Advances in Science and Technology Research Jour-

nal, v. 11, p. 103–117, 06 2017. Disponível em: <http://www.astrj.com/
Modelling-characteristics-of-spark-ignition-engine-injection-system,70565,0,2.html>.

FIRMINO, J. L. et al. Misfire detection of an internal combustion engine based
on vibration and acoustic analysis. Journal of the Brazilian Society of Mechanical

Sciences and Engineering, v. 43, n. 336, 2021. ISSN 1806-3691. Disponível em:
<https://doi.org/10.1007/s40430-021-03052-y>.

FRANCIS, L. T. et al. Data-driven anomaly detection of engine knock based on
automotive ecu. In: 2022 XII Brazilian Symposium on Computing Systems Engineering

(SBESC). [S.l.: s.n.], 2022. p. 1–8.

FTOUTOU, E.; CHOUCHANE, M. Detection of diesel engine misfire by vibration
analysis. In: Congrès Tunisien de Mécanique COTUM’08. Hammamet: [s.n.], 2008.

GAO, J. et al. Fuel consumption and exhaust emissions of diesel vehicles in worldwide
harmonized light vehicles test cycles and their sensitivities to eco-driving factors.
Energy Conversion and Management, v. 196, p. 605–613, 2019. ISSN 0196-8904.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. <http://www.deeplearningbook.org>.

HAFEEZ, A. et al. Machine learning based ecu detection for automotive security. In:
IEEE. 2021 17th International Computer Engineering Conference (ICENCO). [S.l.],
2021. p. 73–81.

HAMED, M. A.; KHAFAGY, M. H.; BADRY, R. M. Fuel consumption prediction model
using machine learning. Int. Journal of Advanced Computer Science and Applications,
Science and Information (SAI) Organization Limited, v. 12, n. 11, 2021.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The elements of statistical learning: data

mining, inference and prediction. 2. ed. [S.l.]: Springer, 2009.

HAWKINS, M. et al. Cyber-physical production networks, internet of things-enabled
sustainability, and smart factory performance in industry 4.0-based manufacturing
systems. Economics, Management, and Financial Markets, Addleton Academic
Publishers, v. 16, n. 2, p. 73–83, 2021.

HAYKIN, S.; NETWORK, N. A comprehensive foundation. Neural networks, v. 2,
n. 2004, p. 41, 2004.

HMIDA, A. et al. Effects of misfire on the dynamic behavior of gasoline engine
crankshafts. Engineering Failure Analysis, v. 121, p. 105149, 2021. ISSN
1350-6307. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S1350630720316733>.

HOLDEN, E.; GILPIN, G.; BANISTER, D. Sustainable mobility at thirty. Sustainability,
MDPI, v. 11, n. 7, p. 1965, 2019.

HU, C.; LI, A.; ZHAO, X. Multivariate statistical analysis strategy for multiple
misfire detection in internal combustion engines. Mechanical Systems and Signal

Processing, v. 25, n. 2, p. 694–703, 2011. ISSN 0888-3270. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0888327010002955>.

HUANG, Y.; MENG, S. Automobile insurance classification ratemaking based on
telematics driving data. Decision Support Systems, v. 127, p. 113156, 2019. ISSN
0167-9236.

HUANG, Y. et al. Fuel consumption and emissions performance under real driving:
Comparison between hybrid and conventional vehicles. Science of The Total

Environment, v. 659, p. 275–282, 2019. ISSN 0048-9697.

HäNDEL, P. et al. Smartphone-based measurement systems for road vehicle
traffic monitoring and usage-based insurance. IEEE Systems Journal, v. 8, n. 4, p.
1238–1248, 2014.

İNCI, M. et al. A review and research on fuel cell electric vehicles: Topologies, power
electronic converters, energy management methods, technical challenges, marketing
and future aspects. Renewable and Sustainable Energy Reviews, Elsevier, v. 137, p.
110648, 2021.

JAFARIAN, K. et al. Misfire and valve clearance faults detection in the combustion
engines based on a multi-sensor vibration signal monitoring. Measurement, v. 128, p.
527–536, 2018. ISSN 0263-2241. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0263224118303439>.

KALOGIROU, S. A. Artificial intelligence for the modeling and control of combustion
processes: a review. Progress in Energy and Combustion Science, v. 29, n. 6, p.
515–566, 2003. ISSN 0360-1285.

KANARACHOS, S.; MATHEW, J.; FITZPATRICK, M. E. Instantaneous vehicle fuel
consumption estimation using smartphones and recurrent neural networks. Expert

Systems with Applications, v. 120, p. 436–447, 2019. ISSN 0957-4174.

KATREDDI, S.; THIRUVENGADAM, A. Trip based modeling of fuel consumption in
modern heavy-duty vehicles using artificial intelligence. Energies, v. 14, n. 24, 2021.
ISSN 1996-1073.

KIENCKE, U. Engine misfire detection. Control Engineering Practice, v. 7, n. 2, p.
203–208, 1999. ISSN 0967-0661. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0967066198001506>.

KIKTOVA, E. et al. Comparison of feature selection algorithms for acoustic event
detection system. In: Proceedings ELMAR-2014. [S.l.: s.n.], 2014. p. 1–4.

KLENK, M. et al. Misfire detection by evaluating crankshaft speed - a means to comply
with obdii. SAE Transactions, SAE International, v. 102, p. 598–607, 1993. ISSN
0096736X, 25771531. Disponível em: <http://www.jstor.org/stable/44611400>.

KOMORSKA, I. Detection of the engine head gasket defects on the basis of
vibration signal. Silniki Spalinowe, 2011. ISSN 0138-0346. Disponível em: <https:
//www.infona.pl/resource/bwmeta1.element.baztech-article-LOD6-0030-0017>.

KPMG. Industry leaders foresee dramatic changes: Where the opportunities may lie.
Global Automotive Executive Survey, v. 22, 2021.

KRUSE, T.; KURZ, S.; LANG, T. Modern statistical modeling and evolutionary
optimization methods for the broad use in ecu calibration. IFAC Proceedings Volumes,
v. 43, n. 7, p. 739–743, 2010. ISSN 1474-6670. 6th IFAC Symposium on Advances in
Automotive Control. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S1474667015369184>.

KUMAR, V.; MINZ, S. Feature selection: a literature review. SmartCR, v. 4, n. 3, p.
211–229, 2014.

LATTANZI, E.; FRESCHI, V. Machine learning techniques to identify unsafe driving
behavior by means of in-vehicle sensor data. Expert Systems with Applications, v. 176,
p. 114818, 2021. ISSN 0957-4174.

LEI, Y. et al. Applications of machine learning to machine fault diagnosis: A review and
roadmap. Mechanical Systems and Signal Processing, v. 138, p. 106587, abr. 2020.

LI, C. et al. Variability in real-world emissions and fuel consumption by diesel
construction vehicles and policy implications. Science of The Total Environment, v. 786,
p. 147256, 2021. ISSN 0048-9697.

LI, J. et al. Feature selection: A data perspective. ACM computing surveys (CSUR),
ACM New York, NY, USA, v. 50, n. 6, p. 1–45, 2017.

LI, Y. et al. Multilayer perceptron method to estimate real-world fuel consumption rate
of light duty vehicles. Ieee Access, IEEE, v. 7, p. 63395–63402, 2019.

LIIMATAINEN, H. Utilization of fuel consumption data in an ecodriving incentive system
for heavy-duty vehicle drivers. IEEE Trans. on Intelligent Transportation Systems, v. 12,
n. 4, p. 1087–1095, 2011.

LILLY, I. R. Diesel engine reference book. Woburn: Butterworth-Heinemann, 1999. v. 2.

LIU, B. et al. Misfire detection of a turbocharged diesel engine by using artificial
neural networks. Applied Thermal Engineering, v. 55, n. 1, p. 26–32, 2013. ISSN
1359-4311. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S1359431113001452>.

LIU, X.; JIN, H. High-precision transient fuel consumption model based on support
vector regression. Fuel, v. 338, p. 127368, 2023. ISSN 0016-2361.

LOIS, D. et al. Multivariate analysis of fuel consumption related to eco-driving:
Interaction of driving patterns and external factors. Transportation Research Part D:

Transport and Environment, v. 72, p. 232–242, 2019. ISSN 1361-9209.

LY, M. V.; MARTIN, S.; TRIVEDI, M. M. Driver classification and driving style recognition
using inertial sensors. In: 2013 IEEE Intelligent Vehicles Symposium (IV). [S.l.: s.n.],
2013. p. 1040–1045.

MA, X.; SHAHBAKHTI, M.; CHIGAN, C. Deep learning based distributed meta-learning
for fast and accurate online adaptive powertrain fuel consumption modeling. IEEE

Transactions on Vehicular Technology, p. 1–14, 2023.

MCCORD, K. Automotive Diagnostic Systems: Understanding OBD I and OBD II. [S.l.]:
CarTech Inc, 2011.

MERKISZ, J.; BOGUS, P.; GRZESZCZYK, R. Overview of engine misfire detection
methods used in on board diagnostics. Journal of Kones, Combustion Engines, v. 8,
n. 1-2, p. 326–341, 2001.

MIRI, I.; FOTOUHI, A.; EWIN, N. Electric vehicle energy consumption modelling and
estimation—a case study. International Journal of Energy Research, Wiley Online
Library, v. 45, n. 1, p. 501–520, 2021.

MONTANI, M.; SPECIALE, N. Multiple misfire identification by a wavelet-based
analysis of crankshaft speed fluctuation. In: 2006 IEEE International Symposium on

Signal Processing and Information Technology. [S.l.: s.n.], 2006. p. 144–148.

MORADI, E.; MIRANDA-MORENO, L. Vehicular fuel consumption estimation using
real-world measures through cascaded machine learning modeling. Transportation

Research Part D: Transport and Environment, v. 88, p. 102576, 2020. ISSN 1361-9209.

MURATA, N. et al. On-line learning in changing environments with applications in
supervised and unsupervised learning. Neural Networks, v. 15, n. 4, p. 743–760, 2002.
ISSN 0893-6080. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0893608002000606>.

NAG, P.; GHANEKAR, U.; HARMALKAR, J. A novel multi-core approach for functional
safety compliance of automotive electronic control unit according to iso 26262. In:
IEEE. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT).
[S.l.], 2019. p. 1–5.

NAKAGAWA, S.; FUKUCHI, E.; NUMATA, A. A new diagnosis method for an air-fuel
ratio cylinder imbalance. SAE 2012 World Congress & Exhibition, 2012. ISSN
0148-7191. Disponível em: <https://saemobilus.sae.org/content/2012-01-0718/>.

NGATIMAN, N. A.; NUAWI, M. Z. Hybrid vehicle engine misfire detection using piezo-
film sensors and analysing with z-freq. Journal of Mechanical Engineering, Faculty of
Mechanical Engineering Universiti Teknologi MARA (UiTM), v. 7, n. 1, p. 269–285,
2018. ISSN 1823-5514. Disponível em: <https://ir.uitm.edu.my/id/eprint/41749/>.

NGUYEN, T.-H.; CHEON, B. M.; JEON, J. W. Can fd performance analysis for ecu
re-programming using the canoe. In: The 18th IEEE International Symposium on

Consumer Electronics (ISCE 2014). [S.l.: s.n.], 2014. p. 1–4.

PAVLOVIC, J. et al. Understanding the origins and variability of the fuel consumption
gap: Lessons learned from laboratory tests and a real-driving campaign. Environmental

Sciences Europe, Springer, v. 32, p. 1–16, 2020.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, v. 12, p. 2825–2830, 2011.

PEPPES, N. et al. Driving behaviour analysis using machine and deep learning
methods for continuous streams of vehicular data. Sensors, v. 21, n. 14, 2021. ISSN
1424-8220.

PING, P. et al. Impact of driver behavior on fuel consumption: Classification, evaluation
and prediction using machine learning. IEEE Access, v. 7, p. 78515–78532, 2019.

QIN, C. et al. Dtcnnmi: A deep twin convolutional neural networks with multi-domain
inputs for strongly noisy diesel engine misfire detection. Measurement, v. 180, p.
109548, 2021. ISSN 0263-2241. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S026322412100525X>.

RAHMAN, A.; SMITH, A. D. Predicting fuel consumption for commercial buildings with
machine learning algorithms. Energy and Buildings, v. 152, p. 341–358, 2017. ISSN
0378-7788.

RAHNAMA, P.; ARAB, M.; REITZ, R. D. A time-saving methodology for optimizing a
compression ignition engine to reduce fuel consumption through machine learning.
SAE International Journal of Engines, SAE International, v. 13, n. 2, p. 267–288, 2020.
ISSN 19463936, 19463944.

RATH, M. et al. Analysis of autoregressive coefficients of knock sensor signals
for misfire detection in internal combustion engines. In: 2019 IEEE International

Instrumentation and Measurement Technology Conference (I2MTC). [S.l.: s.n.], 2019.
p. 1–6.

REYNOLDS, D. A. et al. Gaussian mixture models. Encyclopedia of biometrics, Berlin,
Springer, v. 741, n. 659-663, 2009.

RIOS-TORRES, J.; LIU, J.; KHATTAK, A. sc. International Journal of Sustainable

Transportation, Taylor & Francis, v. 13, n. 2, p. 123–137, 2019.

RUSSELL, S. J. Artificial intelligence a modern approach. [S.l.]: Pearson Education,
Inc., 2010.

SHAHID, S. M.; KO, S.; KWON, S. Real-time abnormality detection and classification
in diesel engine operations with convolutional neural network. Expert Systems

with Applications, v. 192, p. 116233, 2022. ISSN 0957-4174. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0957417421015451>.

SHAHVERDY, M. et al. Driver behavior detection and classification using deep
convolutional neural networks. Expert Systems with Applications, v. 149, p. 113240,
2020. ISSN 0957-4174.

SHARMA, A.; SUGUMARAN, V.; DEVASENAPATI, S. B. Misfire detection in an ic
engine using vibration signal and decision tree algorithms. Measurement, v. 50, p.
370–380, 2014. ISSN 0263-2241. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0263224114000244>.

SILVA, M. E. R. da; GRACIOLI, G.; ARAUJO, G. M. de. Feature selection in machine
learning for knocking noise detection. In: 2022 XII Brazilian Symposium on Computing

Systems Engineering (SBESC). [S.l.: s.n.], 2022. p. 1–8.

SINGH, S.; POTALA, S.; MOHANTY, A. An improved method of detecting engine
misfire by sound quality metrics of radiated sound. Proceedings of the Institution of

Mechanical Engineers Part D Journal of Automobile Engineering, v. 233, 2018.

SLAVIN, D. et al. Empirical modeling of vehicle fuel economy based on historical data.
In: The 2013 International Joint Conference on Neural Networks (IJCNN). [S.l.: s.n.],
2013. p. 1–6.

SYTA, A.; CZARNIGOWSKI, J.; JAKLIńSKI, P. Detection of cylinder misfire in an
aircraft engine using linear and non-linear signal analysis. Measurement, v. 174, p.
108982, 2021. ISSN 0263-2241. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0263224121000191>.

TAGHAVI, M.; SHOARAN, M. Hardware complexity analysis of deep neural networks
and decision tree ensembles for real-time neural data classification. In: 2019 9th

International IEEE/EMBS Conference on Neural Engineering (NER). [S.l.: s.n.], 2019.
p. 407–410.

TINAUT, F. V. et al. Misfire and compression fault detection through the energy
model. Mechanical Systems and Signal Processing, v. 21, n. 3, p. 1521–1535, 2007.
ISSN 0888-3270. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0888327006001191>.

TING, L. L.; MAYER J. E., J. Piston Ring Lubrication and Cylinder Bore Wear Analysis,
Part I—Theory. Journal of Lubrication Technology, v. 96, n. 3, p. 305–313, 07 1974.
ISSN 0022-2305. Disponível em: <https://doi.org/10.1115/1.3451948>.

TOLEDO, G.; SHIFTAN, Y. Can feedback from in-vehicle data recorders improve driver
behavior and reduce fuel consumption? Transportation Research Part A: Policy and

Practice, v. 94, p. 194–204, 2016. ISSN 0965-8564.

TSAKALIDIS, A. et al. Catalyzing sustainable transport innovation through policy
support and monitoring: The case of trimis and the european green deal. Sustainability,
MDPI, v. 12, n. 8, p. 3171, 2020.

WANG, R. et al. Research on the fault monitoring method of marine diesel engines
based on the manifold learning and isolation forest. App. O. Res., v. 112, p. 102681,
2021. ISSN 0141-1187.

WANG, S. et al. Predicting ship fuel consumption based on lasso regression.
Transportation Research Part D: Transport and Environment, v. 65, p. 817–824, 2018.
ISSN 1361-9209.

WANG, X. et al. Misfire detection using crank speed and long short-term memory
recurrent neural network. Energies, v. 15, n. 1, 2022. ISSN 1996-1073.

WEBER, M. et al. A hybrid anomaly detection system for electronic control units
featuring replicator neural networks. In: ARAI, K.; KAPOOR, S.; BHATIA, R. (Ed.).
Advances in Information and Communication Networks. Cham: Springer International
Publishing, 2019. p. 43–62. ISBN 978-3-030-03405-4.

WEHMEYER, C.; NOÉ, F. Time-lagged autoencoders: Deep learning of slow collective
variables for molecular kinetics. The Journal of chemical physics, AIP Publishing LLC,
v. 148, n. 24, p. 241703, 2018.

WEI, H. et al. Gasoline engine exhaust gas recirculation – a review. Applied

Energy, v. 99, p. 534–544, 2012. ISSN 0306-2619. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S0306261912003595>.

WELLER, K. et al. Real world fuel consumption and emissions from ldvs and hdvs.
Frontiers in Mechanical Engineering, Frontiers Media SA, v. 5, p. 45, 2019.

WU, J.-D.; LIU, C.-H. An expert system for fault diagnosis in internal combustion
engines using wavelet packet transform and neural network. Expert Systems with

Applications, v. 36, n. 3, Part 1, p. 4278–4286, 2009. ISSN 0957-4174. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0957417408001814>.

XIE, X. et al. Fuel consumption prediction models based on machine learning and
mathematical methods. Journal of Marine Science and Engineering, MDPI, v. 11, n. 4,
p. 738, 2023.

XU, C. et al. Misfire detection based on generalized force identification at the engine
centre of gravity. IEEE Access, v. 7, p. 165039–165047, 2019.

YANG, S. et al. Driving-style-oriented adaptive equivalent consumption minimization
strategies for hevs. IEEE Trans. on Vehicular Technology, v. 67, n. 10, p. 9249–9261,
2018.

YANG, Y. et al. Influence of driving style on traffic flow fuel consumption and emissions
based on the field data. Physica A: Stat. Mechanics and its Apps., v. 599, p. 127520,
2022. ISSN 0378-4371.

YAO, Y. et al. Vehicle fuel consumption prediction method based on driving behavior
data collected from smartphones. Journal of Advanced Transportation, Hindawi
Limited, v. 2020, p. 1–11, 2020.

YAO, Y. et al. Modeling of individual vehicle safety and fuel consumption under
comprehensive external conditions. Transportation Research Part D: Transport and

Environment, v. 79, p. 102224, 2020. ISSN 1361-9209.

YE, J. Application of extension theory in misfire fault diagnosis of gasoline engines.
Expert Systems with Applications, Elsevier, v. 36, n. 2, p. 1217–1221, 2009.

ZEBARI, R. et al. A comprehensive review of dimensionality reduction techniques for
feature selection and feature extraction. Journal of Applied Science and Technology

Trends, v. 1, n. 2, p. 56 – 70, May 2020.

ZHANG, Y.-T. et al. Develop of a fuel consumption model for hybrid vehicles. Energy

Conversion and Management, Elsevier, v. 207, p. 112546, 2020.

ZHAO, Z.; LIU, H. Spectral feature selection for supervised and unsupervised learning.
In: Proceedings of the 24th International Conference on Machine Learning. New York,
NY, USA: Association for Computing Machinery, 2007. (ICML ’07), p. 1151–1157. ISBN
9781595937933. Disponível em: <https://doi.org/10.1145/1273496.1273641>.

ZHENG, T. et al. Real-time combustion torque estimation and dynamic misfire fault
diagnosis in gasoline engine. Mechanical Systems and Signal Processing, v. 126, p.
521–535, 2019. ISSN 0888-3270. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0888327019301396>.

ZHENG, X. et al. Real-world fuel consumption of light-duty passenger vehicles using
on-board diagnostic (obd) systems. Frontiers of Environmental Science & Engineering,
Springer, v. 14, p. 1–10, 2020.

ZHENG, X. et al. Real-time driving style classification based on short-term observations.
IET Communications, v. 16, n. 12, p. 1393 – 1402, 2022.

ZHOU, M.; JIN, H.; WANG, W. A review of vehicle fuel consumption models to
evaluate eco-driving and eco-routing. Transportation Research Part D: Transport and

Environment, v. 49, p. 203–218, 2016. ISSN 1361-9209.

ZIółKOWSKI, J. et al. Use of artificial neural networks to predict fuel consumption
on the basis of technical parameters of vehicles. Energies, v. 14, n. 9, 2021. ISSN
1996-1073.

ÇAPRAZ, A. G. et al. Fuel consumption models applied to automobiles using real-time
data: A comparison of statistical models. Procedia Computer Science, v. 83, p.
774–781, 2016. ISSN 1877-0509. The 7th International Conference on Ambient
Systems, Networks and Technologies (ANT 2016) / The 6th International Conference
on Sustainable Energy Information Technology (SEIT-2016) / Affiliated Workshops.

APPENDIX A – MACHINE LEARNING ALGORITHM APPLICATION

A.0.1 Decision Tree

In this code example (Alg. A.1), the libraries matplotlib and SKLearn were used

to create and train the decision tree and to plot an image to show the result of the

algorithm, respectively. It starts by importing the libraries for its execution and loading

the dataset. After the dataset is divided into 4: train, test, and their respective targets,

the tree is trained and printed for visualization (Figure A.1). Finally, the created tree is

tested and evaluated for its performance. The evaluation metrics (Figure A.2) estimate

the algorithm’s performance, checking if it has learned as expected or needs retraining

or other adaptations.

Algorithm A.1 – Decision tree algorithm application.

1 # importing the required libraries

2 from sklearn . model_selection import train_test_split

3 from sklearn . metrics import classification_report

4 from sklearn .tree import plot_tree , DecisionTreeClassifier

5 from sklearn . datasets import load_iris

6 import matplotlib . pyplot as plt

7

8 # loading iris dataset imported with sklearn

9 dataset = load_iris ()

10

11 # spliting the dataset into train and test , with their

respective targets

12 input_train , input_test , output_train , output_test =

train_test_split (dataset .data , dataset .target , test_size =

0.25)

13

14 # training the tree

15 model = DecisionTreeClassifier ().fit(input_train ,

output_train)

16

17 # ploting the tree

18 plt. figure (figsize =(15 ,15))

19 plot_tree (model , filled =True , class_names = dataset .

target_names , feature_names = dataset . feature_names)

20 plt.show ()

21

22 # testing and evaluating the model with a prediction output

23 output_prediction = model. predict (input_test)

Figure A.2 – Decision tree (A.1) metrics.

Source: Author (2023).

from sklearn metrics. The code includes two plots: one for the training set and another

for the test set. Each plot shows the data points colored based on their assigned clusters,

and the cluster centroids are marked with red crosses. Finally, the code outputs the

silhouette score as an evaluation metric for the clustering performance on the test set.

Algorithm A.2 – K-Means algorithm application.

1 # Importing the required libraries

2 import numpy as np

3 import matplotlib . pyplot as plt

4 from mpl_toolkits . mplot3d import Axes3D

5 from sklearn . cluster import KMeans

6 from sklearn . datasets import load_iris

7 from sklearn . model_selection import train_test_split

8 from sklearn . metrics import silhouette_score

9

10 # Loading iris dataset imported with sklearn

11 iris = load_iris ()

12 # Consider all three features (sepal length , sepal width , and

petal length)

13 X = iris.data

14 y = iris. target

15

16 # Split the data into training and test sets

17 X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

18

19 # Perform k-means clustering on the training set

20 # Number of clusters

21 k = 3

22 kmeans = KMeans (n_clusters =k)

23 kmeans .fit(X_train)

24 labels_train = kmeans . labels_

25 centroids_train = kmeans . cluster_centers_

26

27 # Evaluate the clustering performance on the test set

28 labels_test = kmeans . predict (X_test)

29 silhouette_avg = silhouette_score (X_test , labels_test)

30

31 # Plot the training data points and cluster centroids

32 fig = plt. figure ()

33 ax = Figureadd_subplot (111 , projection =’3d’)

34 ax. scatter (X_train [:, 0], X_train [:, 1], X_train [:, 2], c=

labels_train)

35 ax. scatter (centroids_train [:, 0], centroids_train [:, 1],

centroids_train [:, 2], marker =’x’, s=200 , linewidths =3, c=’r’

)

36 ax. set_xlabel (’Sepal Length ’)

37 ax. set_ylabel (’Sepal Width ’)

38 ax. set_zlabel (’Petal Length ’)

39 ax. set_title (’K-means Clustering (IRIS dataset - Training Set

)’)

40 plt.show ()

41

42 # Plot the test data points and cluster centroids

43 fig = plt. figure ()

44 ax = Figureadd_subplot (111 , projection =’3d’)

45 ax. scatter (X_test [:, 0], X_test [:, 1], X_test [:, 2], c=

labels_test)

46 ax. scatter (centroids_train [:, 0], centroids_train [:, 1],

centroids_train [:, 2], marker =’x’, s=200 , linewidths =3, c=’r’

)

47 ax. set_xlabel (’Sepal Length ’)

48 ax. set_ylabel (’Sepal Width ’)

49 ax. set_zlabel (’Petal Length ’)

50 ax. set_title (’K-means Clustering (IRIS dataset - Test Set)’)

51 plt.show ()

52

53 # Print the evaluation metric

54 print (f" Silhouette Score: { silhouette_avg }")

By running this code, separate visualizations for the training and test sets are

9 from sklearn . metrics import accuracy_score ,

classification_report , confusion_matrix

10

11 # Load the iris dataset

12 iris = load_iris ()

13 X = iris.data

14 y = iris. target

15 class_names = iris. target_names

16

17 # Split the data into training and test sets

18 X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

19

20 # Train a logistic regression model

21 model = LogisticRegression ()

22 model.fit(X_train , y_train)

23

24 # Make predictions on the test set

25 y_pred = model. predict (X_test)

26

27 # Compute the accuracy score

28 accuracy = accuracy_score (y_test , y_pred)

29 print (f" Accuracy : { accuracy }")

30

31 # Generate a classification report

32 report = classification_report (y_test , y_pred , target_names =

class_names)

33 print (" Classification Report :")

34 print (report)

35

36 # Generate a confusion matrix

37 cm = confusion_matrix (y_test , y_pred)

38 df_cm = pd. DataFrame (cm , index= class_names , columns =

class_names)

39

40 # Plot the confusion matrix

41 plt. figure (figsize =(8, 6))

42 plt.title(" Confusion Matrix ")

43 sns. heatmap (df_cm , annot=True , cmap="Blues", fmt="d")

44 plt. xlabel (" Predicted ")

45 plt. ylabel (" Actual ")

46 plt.show ()

The accuracy score is computed and printed and a classification report is generated,

including precision, recall, F1-score, and support. A confusion matrix is computed and

plotted using a heat map.

Algorithm A.4 – K Neighbors algorithm application.

1 # Importing the required libraries

2 import numpy as np

3 import pandas as pd

4 import matplotlib . pyplot as plt

5 import seaborn as sns

6 from sklearn . datasets import load_iris

7 from sklearn . neighbors import KNeighborsClassifier

8 from sklearn . model_selection import train_test_split

9 from sklearn . metrics import accuracy_score ,

classification_report , confusion_matrix

10

11 # Load the iris dataset

12 iris = load_iris ()

13 X = iris.data

14 y = iris. target

15 class_names = iris. target_names

16

17 # Split the data into training and test sets

18 X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

19

20 # Train a KNeighborsClassifier model

21 model = KNeighborsClassifier ()

22 model.fit(X_train , y_train)

23

24 # Make predictions on the test set

25 y_pred = model. predict (X_test)

26

27 # Compute the accuracy score

28 accuracy = accuracy_score (y_test , y_pred)

29 print (f" Accuracy : { accuracy }")

30

31 # Generate a classification report

32 report = classification_report (y_test , y_pred , target_names =

class_names)

33 print (" Classification Report :")

34 print (report)

35

36 # Generate a confusion matrix

37 cm = confusion_matrix (y_test , y_pred)

38 df_cm = pd. DataFrame (cm , index= class_names , columns =

class_names)

39

40 # Plot the confusion matrix

41 plt. figure (figsize =(8, 6))

42 plt.title(" Confusion Matrix ")

43 sns. heatmap (df_cm , annot=True , cmap="Blues", fmt="d")

44 plt. xlabel (" Predicted ")

45 plt. ylabel (" Actual ")

46 plt.show ()

By running this code, the same results presented for Logistic Regression (Figs.

A.4 and A.5) are obtained.

A.0.5 Support Vector Classification

The iris dataset is loaded and splits into training and testing sets in this example

code (Alg. A.5). An SVC model is trained on the training data, and predictions are made

on the test set using the trained model. The accuracy score is computed and printed. A

classification report is generated, including precision, recall, F1-score, and support. A

confusion matrix is computed and plotted using a heat map.

Algorithm A.5 – Support Vector Classification algorithm application.

1 # Importing the required libraries

2 import numpy as np

3 import pandas as pd

4 import matplotlib . pyplot as plt

5 import seaborn as sns

6 from sklearn . datasets import load_iris

7 from sklearn .svm import SVC

8 from sklearn . model_selection import train_test_split

9 from sklearn . metrics import accuracy_score ,

classification_report , confusion_matrix

10

11 # Load the iris dataset

12 iris = load_iris ()

13 X = iris.data

14 y = iris. target

15 class_names = iris. target_names

16

17 # Split the data into training and test sets

18 X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

19

20 # Train an SVC model

21 model = SVC ()

22 model.fit(X_train , y_train)

23

24 # Make predictions on the test set

25 y_pred = model. predict (X_test)

26

27 # Compute the accuracy score

28 accuracy = accuracy_score (y_test , y_pred)

29 print (f" Accuracy : { accuracy }")

30

31 # Generate a classification report

32 report = classification_report (y_test , y_pred , target_names =

class_names)

33 print (" Classification Report :")

34 print (report)

35

36 # Generate a confusion matrix

37 cm = confusion_matrix (y_test , y_pred)

38 df_cm = pd. DataFrame (cm , index= class_names , columns =

class_names)

39

40 # Plot the confusion matrix

41 plt. figure (figsize =(8, 6))

42 plt.title(" Confusion Matrix ")

43 sns. heatmap (df_cm , annot=True , cmap="Blues", fmt="d")

44 plt. xlabel (" Predicted ")

45 plt. ylabel (" Actual ")

46 plt.show ()

By running this code, the same results presented for Logistic Regression (Figs.

A.4 and A.5) are obtained.

A.0.6 Gradient Boosting

In Algorithm A.6, we first load the iris dataset, then split the dataset into training

and test sets. Next, we create a Gradient Boosting classifier using GradientBoosting-

Classifier from sklearn.ensemble, specifying the number of estimators and the learning

rate as parameters. We train the classifier using the training and make predictions. To

evaluate the classifier’s performance, we plot the confusion matrix that shows the true

labels against the predicted labels, providing insights into the classifier’s performance.

Additionally, we can visualize the feature’s importance using a bar plot, representing

the relative importance of each feature in the classifier’s decision-making process.

Algorithm A.6 – Gradient Boosting algorithm application.

1 # Importing the required libraries

2 import numpy as np

3 import matplotlib . pyplot as plt

4 from sklearn . datasets import load_iris

5 from sklearn . model_selection import train_test_split

6 from sklearn . ensemble import GradientBoostingClassifier

7 from sklearn . metrics import confusion_matrix

8 import seaborn as sns

9

10 # Load the iris dataset

11 iris = load_iris ()

12 X = iris.data

13 y = iris. target

14

15 # Split the data into training and test sets

16 X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

17

18 # Create and train the Gradient Boosting classifier

19 clf = GradientBoostingClassifier (n_estimators =100 ,

learning_rate =0.1 , random_state =42)

20 clf.fit(X_train , y_train)

21

22 # Make predictions on the test set

23 y_pred = clf. predict (X_test)

24

25 # Calculate the confusion matrix

26 cm = confusion_matrix (y_test , y_pred)

27

28 # Plot the confusion matrix

29 plt. figure (figsize =(8, 6))

30 sns. heatmap (cm , annot=True , fmt=’d’, cmap=’Blues ’,

xticklabels =iris. target_names , yticklabels =iris. target_names)

31 plt. xlabel (’Predicted ’)

32 plt. ylabel (’True ’)

33 plt.title(’Confusion Matrix ’)

7

8 # Load the iris dataset

9 iris = load_iris ()

10 X = iris.data

11 y = iris. target

12

13 # Split the data into training and test sets

14 X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

15

16 # Create and train the XGBoost classifier

17 model = xgb. XGBClassifier ()

18 model.fit(X_train , y_train)

19

20 # Make predictions on the test set

21 y_pred = model. predict (X_test)

22

23 # Calculate the accuracy

24 accuracy = np.mean(y_pred == y_test)

25 print (f" Accuracy : { accuracy }")

26

27 # Plot the confusion matrix

28 confusion_matrix = np.zeros ((3, 3))

29 for i in range(len(y_test)):

30 confusion_matrix [y_test [i], int(y_pred [i])] += 1

31

32 plt. imshow (confusion_matrix , interpolation =’nearest ’, cmap=

plt.cm.Blues)

33 plt.title(’Confusion Matrix ’)

34 plt. colorbar ()

35 tick_marks = np. arange (len(iris. target_names))

36 plt. xticks (tick_marks , iris. target_names , rotation =45)

37 plt. yticks (tick_marks , iris. target_names)

38 plt. xlabel (’Predicted ’)

39 plt. ylabel (’True ’)

40 plt.show ()

By running this code, a single plot that summarizes the results of the XGBoost

classifier on the iris dataset is constructed. The plot represents the confusion matrix,

providing insights into the classifier’s performance. In this case, the results are the same

presented before (Figure A.6.

A.0.7 Ridge Regression

In this code example (A.8, the iris dataset is loaded and split into training and

test sets. A Ridge Regression model is trained on the training data, and predictions

are made on the test set using the trained model. The mean squared error (MSE) and

the coefficient of determination (R2 score) are computed and printed. A density plot

is generated to visualize the density of the actual and predicted values using kernel

density estimation.

Algorithm A.8 – Ridge Regression algorithm application.

1 # Importing the required libraries

2 import numpy as np

3 import pandas as pd

4 import matplotlib . pyplot as plt

5 import seaborn as sns

6 from sklearn . datasets import load_iris

7 from sklearn . linear_model import Ridge

8 from sklearn . model_selection import train_test_split

9 from sklearn . metrics import mean_squared_error , r2_score

10

11 # Load the iris dataset

12 iris = load_iris ()

13 X = iris.data

14 y = iris. target

15

16 # Split the data into training and test sets

17 X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

18

19 # Train a Ridge Regression model

20 model = Ridge ()

21 model.fit(X_train , y_train)

22

23 # Make predictions on the test set

24 y_pred = model. predict (X_test)

25

26 # Compute the mean squared error

27 mse = mean_squared_error (y_test , y_pred)

28 print (f"Mean Squared Error: {mse}")

29

30 # Compute the coefficient of determination (R^2 score)

31 r2 = r2_score (y_test , y_pred)

the coefficient of determination (R2 score) are computed and printed. A density plot

is generated to visualize the density of the actual and predicted values using kernel

density estimation

Algorithm A.9 – Support Vector Regression algorithm application.

1 # Importing the required libraries

2 import numpy as np

3 import pandas as pd

4 import matplotlib . pyplot as plt

5 import seaborn as sns

6 from sklearn . datasets import load_iris

7 from sklearn .svm import SVR

8 from sklearn . model_selection import train_test_split

9 from sklearn . metrics import mean_squared_error , r2_score

10

11 # Load the iris dataset

12 iris = load_iris ()

13 X = iris.data

14 y = iris. target

15

16 # Split the data into training and test sets

17 X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

18

19 # Train an SVR model

20 model = SVR ()

21 model.fit(X_train , y_train)

22

23 # Make predictions on the test set

24 y_pred = model. predict (X_test)

25

26 # Compute the mean squared error

27 mse = mean_squared_error (y_test , y_pred)

28 print (f"Mean Squared Error: {mse}")

29

30 # Compute the coefficient of determination (R^2 score)

31 r2 = r2_score (y_test , y_pred)

32 print (f"R^2 Score: {r2}")

33

34 # Plot the density of predicted and actual values (density

plot)

35 plt. figure (figsize =(8, 6))

density plot is generated to visualize the density of the actual and predicted values

using kernel density estimation

Algorithm A.10 – XGBoost Regressor algorithm application.

1 # Importing the required libraries

2 import numpy as np

3 import pandas as pd

4 import matplotlib . pyplot as plt

5 import seaborn as sns

6 from sklearn . datasets import load_iris

7 from sklearn . model_selection import train_test_split

8 from sklearn . metrics import mean_squared_error , r2_score

9 import xgboost as xgb

10

11 # Load the iris dataset

12 iris = load_iris ()

13 X = iris.data

14 y = iris. target

15

16 # Split the data into training and test sets

17 X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

18

19 # Convert the dataset into DMatrix format

20 dtrain = xgb. DMatrix (X_train , label= y_train)

21 dtest = xgb. DMatrix (X_test , label= y_test)

22

23 # Define the parameters for XGBoost regression

24 params = {

25 ’objective ’: ’reg: squarederror ’,

26 ’eval_metric ’: ’rmse ’

27 }

28

29 # Train the XGBoost regression model

30 model = xgb.train(params , dtrain)

31

32 # Make predictions on the test set

33 y_pred = model. predict (dtest)

34

35 # Compute the mean squared error

36 mse = mean_squared_error (y_test , y_pred)

37 print (f"Mean Squared Error: {mse}")

A.0.10 Perceptron

In this code example (Alg. A.11), the libraries numpy was used to convert the

dataset into only two classes, and SKLearn was used to create and train the perceptron.

It starts by importing the needed libraries. Afterward, the ’versicolor’ and ’virginica’

classes are merged into one class, leaving only two classes: Setosa or Other, so that

the dataset could be used in this example. Then the dataset is split into 4: train, test,

and their respective targets. At last, the perceptron was trained and evaluated to see

how it performed. The evaluation metrics (Figure A.10) showed that the algorithm could

classify all the data correctly.

Algorithm A.11 – Perceptron algorithm.

1 # importing the required libraries

2 import numpy as np

3 from sklearn . linear_model import Perceptron

4 from sklearn . model_selection import train_test_split

5 from sklearn . datasets import load_iris

6 from sklearn . metrics import classification_report

7

8 # loading iris dataset imported with sklearn

9 iris = load_iris ()

10

11 # making the dataset linearly separable

12 targets = np.where(iris. target == 0, 1, 0)

13

14 # spliting the dataset into train and test , with their

respective targets

15 input_train , input_test , output_train , output_test =

train_test_split (iris.data , targets , test_size = 0.25)

16

17 # training the perceptron

18 model = Perceptron (max_iter =10, tol =0.001)

19 model.fit(input_train , output_train)

20

21 # testing e evaluating the model with a prediction output

22 output_prediction = model. predict (input_test)

23 print (classification_report (output_prediction , output_test))

A.0.11 MultiLayer Perceptron

In this code example (Alg. A.12), the SKLearn library was used to build and train

the MLP. It starts by importing the necessary libraries and dividing the dataset into 4:

20 y_pred = model. predict (input_test)

21 print (" Predicted :", y_pred ,"\n Expected ", output_test)

22 print (" Accuracy of MLPClassifier : ", model.score(input_test ,

output_test))

Figure A.11 – MultiLayer Perceptron (A.12) metrics.

Source: Author (2023).

A.0.12 Autoencoder

An application example is shown in the following code (Alg. A.13), where an AE

is used to reconstruct the Iris dataset. The keras library was used to build the model

and, with the TensorFlow library, train and evaluate the AE, importing the dataset with

the SKLearn library. The network was structured by receiving input with 4 dimensions

(4 attributes), encoding to 2 dimensions, and reconstructing back to 4 dimensions. The

encoder and decoder were implemented with a linear activation function because of

the nature of the dataset. It was trained with 1000 epochs with 75% of the dataset. The

reconstruction made by the algorithm was plotted in another code. The result can be

seen in Figure A.12 and can be compared with Figure 2.4, representing the original

dataset. It is visible that the AE kept the setosa class separate from the others, with an

acceptable reconstruction error (in terms of scale).

Algorithm A.13 – Autoencoder algorithm.

1 # importing of required libraries

2 import tensorflow

3 from tensorflow .keras. optimizers import Adam

4 import keras

5 from keras. models import Model , load_model

6 from keras. layers import Input , Dense

7 from sklearn import datasets

8 import matplotlib . pyplot as plt

9 % matplotlib inline

10

11 iris = datasets . load_iris ()

12

13 # creating the AE , input with 4 dimensions (4 attributes),

enconding to 2 dimensions , and reconstructing back to 4

dimensions .

14 # Encoder e decoder with a linear activation function because

of the nature of the dataset

15 input_dimension = iris.data.shape [1]

16 encoding_dimension = 2

17 input_iris = Input(shape =(input_dimension ,))

18 encoded = Dense(encoding_dimension , activation =’linear ’)(

input_iris)

19 decoded = Dense(input_dimension , activation =’linear ’)(encoded

)

20 autoencoder = Model(input_iris , decoded)

21 autoencoder . compile (optimizer =’adam ’, loss=’mse ’)

22

23 # training the autoencoder

24 history = autoencoder .fit(iris.data , iris.data ,

25 epochs =1000 ,

26 batch_size =32,

27 shuffle =True ,

28 validation_split =0.25 ,

29 verbose = 0)

30

31 # testing the encoded layer with the training input

32 encoder = Model(input_iris , encoded)

33 encoded_input = Input(shape =(encoding_dimension ,))

34 decoder_layer = autoencoder . layers [-1]

35 decoder = Model(encoded_input , decoder_layer (encoded_input))

36 encoded_data = encoder . predict (iris.data)

	9849645929b1b8658baa8eceb2268308faa3b6684ebfc514300fb72a37e24295.pdf
	Machine learning applied in automotive ECUs for real-time engine behavior analysis
	Capa
	Title page

	Ficha Catalográfica - UFSC
	9849645929b1b8658baa8eceb2268308faa3b6684ebfc514300fb72a37e24295.pdf
	Machine learning applied in automotive ECUs for real-time engine behavior analysis

	8ca8a46ad34639369d9c202d67a3bbb464ef3eb7c7f57a60be147c32aa9bac0b.pdf
	Folha de aprovação

	9849645929b1b8658baa8eceb2268308faa3b6684ebfc514300fb72a37e24295.pdf
	blank595x842

	9849645929b1b8658baa8eceb2268308faa3b6684ebfc514300fb72a37e24295.pdf
	Machine learning applied in automotive ECUs for real-time engine behavior analysis
	Dedication
	Acknowledgements

	5cf42df02ccb8bd772353b53df33206363bf5dcc4437a092f3b56699a42e5666.pdf
	Machine learning applied in automotive ECUs for real-time engine behavior analysis
	1af96df4964b62b64335472ce6ee09fcca86d3f5d79296e4d17680bc3fbbdc9d.pdf
	blank595x842
	Machine learning applied in automotive ECUs for real-time engine behavior analysis
	Abstract

	blank595x841
	Machine learning applied in automotive ECUs for real-time engine behavior analysis
	List of Figures
	List of Tables
	Lista de Abreviaturas e Siglas
	Contents
	INTRODUCTION
	GOALS
	Contributions
	Statement of Contribution
	Document Organization

	BACKGROUND
	Electronic Control Unit
	Combustion engine
	Misfire
	Causes
	Symptoms
	Detection

	Fuel Consumption
	Driving and Consumption Profile
	Consumption Estimation

	Machine Learning
	Clustering and Classifiers Algorithm
	Regression
	Artificial neural network

	Feature Selection
	Partial Considerations

	RELATED WORK
	Misfire Detection
	Misfire Detection Summary and Comparison

	Machine Learning Classifiers for Driving Behavior and Fuel Consumption Classification
	ML Classification Summary and Comparison

	ML Regressors for Fuel Consumption Prediction
	ML Regressors summary and Comparison

	Partial Considerations

	Machine learning applied in automotive ECUs
	Hardware Validation
	IoT Platform and Workflows
	Data Acquisition and Experiments
	Feature Selection and essays
	Misfire Data Collection
	Fuel Consumption Data Collection

	Algorithm development and parameters
	Workflow example

	Partial Considerations

	Evaluation
	Misfire Classification Results
	Fuel Consumption
	Driving Profile Classification Results
	Fuel Consumption Prediction Results

	Conclusion
	Bibliography
	Machine Learning Algorithm Application
	Decision Tree
	K-Means
	Logistic Regression
	K Neighbors
	Support Vector Classification
	Gradient Boosting
	Ridge Regression
	Support Vector Regression
	Gradient Boosting Regression
	Perceptron
	MultiLayer Perceptron
	Autoencoder

		2023-10-07T18:45:20-0300

		2023-10-09T08:53:24-0300

