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RESUMO

As memórias cache são fundamentais nos sistemas ciberfísicos contem-
porâneos devido às penalidades temporais incorridas por falhas da cache.
Pesquisas anteriores se concentraram principalmente em políticas de substitu-
ição de linha e particionamento da cache em sistemas em tempo real para
mitigar o impacto das falhas no Pior Tempo de Execução (Worst Case Execution

Time - WCET).
Esta dissertação explora extensivamente várias políticas de substituição de lin-
has da cache em sistemas de tempo real, com o objetivo central de avaliar
de forma abrangente o seu desempenho em termos de falhas e escalonabil-
idade ± duas métricas cruciais na otimização de sistemas de tempo real. Os
resultados da pesquisa confirmam que o tamanho da partição da cache e o
número ways da cache exercem uma influência profunda no desempenho e
na escalonabilidade da aplicação.
O impacto do tamanho da partição da cache nas políticas de substituição
de linha é particularmente significativo. Os resultados experimentais ilustram
que a modificação do tamanho da partição da cache pode levar a melhorias
significativas no tempo de execução em aplicações específicas. Por exem-
plo, a aplicação pca-small obteve uma melhoria impressionante de 40% no
tempo de execução com uma partição de 128 KB simplesmente alterando a
política de substituição, destacando o papel crítico de otimizar políticas de
substituição de linhas da cache e tamanhos de partição adaptados a tarefas
específicas.
O número de formas da cache também desempenha um papel crucial nas
políticas de substituição da cache. A transição de um número menor para
um número maior de ways pode resultar em aumentos substanciais de de-
sempenho em determinados cenários. Por exemplo, a aplicação svd3-large

obteve uma melhoria de desempenho de aproximadamente 12% ao passar
de quatro ways para 16 ways, atribuída principalmente à adoção da política
LIP e de uma partição da cache de 64 KB. Essas observações enfatizam a in-
fluência significativa do número de ways da cache no comportamento e no
desempenho da política de substituição de cache.
A escalonabilidade, uma consideração importante em sistemas de tempo
real, é profundamente influenciada por essas otimizações da cache. Mesmo
em cenários moderados de aceleração da cache, melhorias de escalona-
mento de até 5% podem ser alcançadas para casos não preemptivos. Em
cenários com as maiores acelerações da cache, as melhorias na capacidade
de escalonamento chegam a mais de 40% para casos não preemptivos em
conjuntos de tarefas de alta utilização.



A contribuição central da dissertação reside no desenvolvimento de um algo-
ritmo projetado para otimizar a utilização e escalonabilidade da cache em
sistemas de tempo real, alocando dinamicamente partições da cache. Este
algoritmo supera consistentemente o algoritimo de particionamento da cache
ideal (Optimal Cache Partitioning Algorithm - OCPA) alcançando ganhos de
até 2%.
Concluindo, esta pesquisa ressalta a importância dos parâmetros da cache
no aumento da previsibilidade, eficiência e desempenho geral em sistemas
de tempo real, ao mesmo tempo em que destaca o potencial para melhorias
substanciais na escalonabilidade. Essas descobertas estabelecem as bases
para futuras explorações e inovações no campo da otimização da cache em
sistemas de tempo real.

Palavras-chave: Otimização da cache, sistemas de tempo real, políticas de
substituição de linhas da cache, particionamento da cache, previsibilidade,
escalonabilidade.



ABSTRACT

Cache memories are pivotal in contemporary cyber-physical systems due to
the temporal penalties incurred from cache failures. Previous research has pri-
marily focused on cache line replacement policies and cache partitioning in
real-time systems to mitigate cache failures’ impact on Worst Case Execution
Time (WCET). However, the broader implications of cache parameters on these
policies, especially in the context of cache partitions, have received limited
attention.
This dissertation extensively explores various cache line replacement policies
in real-time systems, with a central objective to comprehensively assess their
performance in terms of cache misses and schedulabilityÐtwo crucial metrics
in optimizing real-time systems. The research findings confirm that cache par-
tition size and the number of cache ways exert a profound influence on both
application performance and schedulability.
Cache partition size’s impact on cache policies is particularly significant. Ex-
perimental results illustrate that modifying the cache partition size can lead
to significant runtime improvements in specific applications. For instance, the
pca-small application achieved an impressive 40% runtime improvement with
a 128 KB cache partition simply by changing the replacement policy, highlight-
ing the critical role of optimizing cache replacement policies and partition sizes
tailored to specific tasks.
The number of cache ways also plays a crucial role in cache replacement
policies. Transitioning from a lower to a higher number of cache ways can
result in substantial performance boosts in certain scenarios. For example, the
svd3-large application saw a performance improvement of approximately
12% when moving from four cache ways to 16 cache ways, primarily attributed
to adopting the LIP policy and a 64 KB cache partition. These observations
emphasize the significant influence of the number of cache ways on cache
replacement policy behavior and performance.
Schedulability, a key consideration in real-time systems, is profoundly influenced
by these cache optimizations. Even under moderate cache acceleration sce-
narios, schedulability improvements of up to 5% can be achieved for non-
preemptive cases. In scenarios with the highest cache accelerations, schedula-
bility improvements soar to over 40% for non-preemptive cases in high-utilization
task sets.
The dissertation’s central contribution lies in the development of an algorithm
designed to optimize cache utilization and schedulability in real-time systems by
dynamically allocating cache partitions. This algorithm consistently outperforms
the Optimal Cache Partitioning Algorithm (OCPA) achieving gains of up to 2%.



In conclusion, this research underscores the significance of cache parameters
in enhancing predictability, efficiency, and overall performance in real-time sys-
tems while highlighting the potential for substantial schedulability improvements.
These findings lay the foundation for future exploration and innovation in the
field of cache optimization within real-time systems.

Keywords: Cache optimization, real-time systems, cache line replacement poli-
cies, cache partitioning, predictability, schedulability.



RESUMO EXPANDIDO

Introdução

Na era da Indústria 4.0 e da proliferação da Internet das Coisas (IoT), os Sistemas
Ciberfísicos (CPS) tornaram-se a espinha dorsal das tecnologias modernas. Es-
ses sistemas, também conhecidos como CPS críticos, são essenciais em setores
cruciais, como aviação, energia nuclear, satélites, estações espaciais, veículos
autônomos e cirurgia robótica. A evolução tecnológica trouxe um desafio signi-
ficativo para esses sistemas: a crescente inteligência exigida, especialmente no
contexto de Inteligência Artificial (IA). Contudo, essa complexidade crescente
traz consigo um problema crítico: a previsibilidade limitada do comportamento
dos CPS.
Nesse cenário, a memória cache, um componente central dos sistemas
computacionais, desempenha um papel fundamental. As políticas de substi-
tuição de linha da cache têm um impacto direto na previsibilidade da cache,
influenciando diretamente o Tempo de Execução do Pior Caso (WCET) e a
capacidade de escalonamento dos sistemas em tempo real. Falhas de cache
e as penalidades associadas podem causar sérios problemas, especialmente
em sistemas críticos, onde a previsibilidade é essencial.

Objetivos

O principal objetivo desta pesquisa é analisar e otimizar os parâmetros rela-
cionados à cache, como tamanho da partição, número de ways, tamanho
da linha da cache e a política de substituição para cada partição, a fim
de aprimorar a capacidade de escalonamento de sistemas críticos em
tempo real. Para alcançar esse objetivo abrangente, os seguintes objetivos
específicos foram definidos: conduzir uma revisão bibliográfica abrangente
das pesquisas relacionadas para reunir conhecimento no campo das políticas
de substituição de linha da cache e seu impacto nos sistemas em tempo real.
Além disso, avaliar o desempenho das políticas de substituição populares,
incluindo LRU, FIFO, RANDOM, LIP e BIP, em termos de falhas da cache e
escalonabilidade de tarefas em tempo real, usando um conjunto diversificado
de benchmarks. A pesquisa também visa implementar e avaliar o desem-
penho da Política de Inserção Dinâmica (DIP) em um simulador de cache,
especificamente cachegrind, para determinar sua eficácia na redução de
falhas de cache. Além disso, investigar e analisar os efeitos de diferentes
configurações da cache no desempenho das políticas de substituição de
linha da cache, com foco em seu impacto nos sistemas críticos em tempo real.
Por fim, desenvolver um algoritmo que otimize os parâmetros da cache e as
políticas de substituição, considerando a abordagem de particionamento da



cache para tarefas em um sistema em tempo real. Ao abordar esses objetivos
específicos, esta pesquisa visa contribuir para o avanço das técnicas de
otimização da cache para sistemas críticos em tempo real, visando melhorar
a escalonabilidade do sistema e o desempenho geral.

Metodologia

Esta pesquisa adota uma abordagem sistemática para atingir seus objetivos. Ini-
cialmente, é realizada uma revisão bibliográfica abrangente para estabelecer
uma base teórica sólida. Em seguida, uma série de experimentos é conduzida,
implementando e avaliando diversas políticas de substituição de linha da ca-
che, como LRU, FIFO, RANDOM, LIP e BIP, usando benchmarks variados para
representar cenários do mundo real.
Além disso, a eficácia da Política de Inserção Dinâmica (DIP) é analisada em
um simulador de mémoria cache. Investigações detalhadas sobre diferentes
configurações da cache são realizadas, com foco especial em seu impacto
nos sistemas críticos de tempo real. Por fim, um algoritmo inovador é desen-
volvido e testado em simulações controladas e cenários do mundo real para
validar sua aplicabilidade.

Resultados e Discussões

Os resultados experimentais destacaram a influência significativa do tamanho
da partição de cache nas políticas de substituição de linha. Modificar o tama-
nho da partição da cache teve um impacto notável no tempo de execução
de aplicações específicas. Por exemplo, a aplicação pca-small alcançou
uma impressionante melhoria de 40% no tempo de execução com uma par-
tição de cache de 128 KB, simplesmente alterando a política de substituição,
evidenciando o papel crítico da otimização das políticas de substituição de
linha de cache e dos tamanhos de partição adaptados a tarefas específicas.
Além disso, o número de ways da cache também desempenhou um papel
crucial nas políticas de substituição de linha. A transição de um número me-
nor para um número maior de ways da cache resultou em aumentos subs-
tanciais de desempenho em cenários específicos. Por exemplo, a aplicação
svd3-large obteve uma melhoria de desempenho de aproximadamente 12%
ao passar de quatro para 16 vias da cache, atribuída principalmente à ado-
ção da política LIP e a uma partição da cache de 64 KB. Essas observações
enfatizam a influência significativa do número de ways da cache no compor-
tamento e no desempenho da política de substituição de linhas da cache.
A escalonabilidade, uma consideração crucial em sistemas em tempo real,
foi profundamente influenciada por essas otimizações. Mesmo em cenários



moderados de aceleração da cache, melhorias de escalonabilidade de até
5% foram alcançadas para casos não preemptivos. Em cenários com as maio-
res acelerações, as melhorias na capacidade de escalonamento chegaram
a mais de 40% para casos não preemptivos em conjuntos de tarefas de alta
utilização.
A contribuição central da dissertação reside no desenvolvimento de um
algoritmo projetado para otimizar a utilização e escalonabilidade da cache
em sistemas em tempo real, alocando dinamicamente partições da cache.
Este algoritmo supera consistentemente o algoritmo de particionamento da
cache ideal (OCPA), alcançando ganhos de até 2%. Esses resultados reais
validam a eficácia do algoritmo proposto, demonstrando melhorias tangíveis
na previsibilidade e na capacidade de escalonamento dos sistemas em
tempo real, estabelecendo assim um novo padrão na otimização de cache
para esses ambientes críticos.

Considerações Finais

Em resumo, esta pesquisa ressalta a influência fundamental dos parâmetros
da cache na previsibilidade, eficiência e desempenho geral de sistemas de
tempo real. Além disso, demonstra o potencial para melhorias substanciais na
escalonabilidade. As percepções obtidas a partir dos estudos sobre partição
da cache e minimização do uso da cache em sistemas em tempo real enri-
quecem ainda mais nossa compreensão das estratégias de gerenciamento
da cache. Essas descobertas estabelecem as bases para futuras explorações
e inovações no campo da otimização da cache em sistemas de tempo real.

Palavras-Chaves: Otimização da cache, sistemas de tempo real, políticas de
substituição de linhas da cache, particionamento da cache, previsibilidade,
escalonabilidade.
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1 INTRODUCTION

In the era of Industry 4.0 and the widespread adoption of the Internet
of Things (IoT), Cyber-Physical Systems (CPS) have become increasingly preva-
lent in modern society. These systems, known as hard CPS, are characterized
by their strict constraints on predictability and confidentiality (AYDIN; JOHANS-
SON; SASTRY, 2018). They find extensive application in critical domains such as
avionics systems, supervisory systems for nuclear power plants, satellite orbit con-
trollers, life support devices in space stations, unmanned aerial vehicles (UAVs) ,
flight controllers, surgeon-machine interfaces in robotic surgery devices, and
autonomous vehicles, among others.

As technology advances, CPS is entering a new phase with high expec-
tations for their capabilities, particularly in the realm of artificial intelligence
(AI). Modern CPS are becoming more intelligent, which demands greater com-
putational power and increased complexity in both software and hardware.
However, this complexity comes at a cost Ð a fundamental lack of predictabil-
ity in CPS behavior has emerged as a significant challenge. (LIU, 2000; BUTTAZZO,
2011; GRACIOLI et al., 2019)

To improve system performance in typical scenarios, hardware designers
have adopted various techniques such as caches, multilevel and superscalar
pipelines, and prefetchers. While these techniques have demonstrated perfor-
mance enhancements, they have also introduced variability in instruction exe-
cution times due to potential accidents and associated time penalties (REINEKE
et al., 2007). Among these hardware components, cache memory architec-
ture plays a pivotal role in determining medium and worst-case performance,
primarily due to the substantial penalties associated with cache misses (GRA-
CIOLI et al., 2015). In cases where a cache line needs to be replaced and
returned to the main memory before being filled, cache misses can result in
cycles exceeding 50 or more, presenting a hundredfold increase compared to
cache hits (Liedtke; Hartig; Hohmuth, 1997). Several properties of cache mem-
ories, including associativity and replacement policies, significantly influence
predictability, with the replacement policy emerging as one of the key factors
impacting cache memory behavior predictability. (Heckmann et al., 2003)

Traditionally, the Least Recently Used (LRU) policy and its approximations
have been the preferred choice for line replacement policies in processor chip
caches for several decades (QURESHI et al., 2006; MANCUSO; YUN; PUAUT, 2019).
While LRU performs well in workloads with high locality, it can exhibit pathological
behavior when confronted with high memory demands that surpass the avail-
able cache size (QURESHI et al., 2007). In cases where a real-time application’s
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working set slightly exceeds the cache size, alternative policies such as RANDOM
may experience fewer cache misses compared to LRU (AL-ZOUBI; MILENKOVIC;
MILENKOVIC, 2004; REINEKE et al., 2007; QURESHI; SRINIVASAN; RIVERS, 2007).

The diverse range of critical modern real-time systems mentioned ear-
lier exhibits varying and often conflicting memory requirements (GRACIOLI et
al., 2019). For instance, in autonomous vehicles, simple control tasks like airbags
and ABS braking systems have low memory demands, while more complex tasks
like pedestrian detection and sensory fusion necessitate substantial processing
power and memory resources. In such scenarios, each task’s performance can
be maximized by selecting the most appropriate cache line replacement pol-
icyÐone that minimizes cache missesÐfor each specific case. The integration
of a cache architecture with a partitioning mechanism, isolating individual tasks
at the cache level (GRACIOLI et al., 2015), and dynamically selecting the most
suitable replacement policy within each partition holds the potential to reduce
the system’s worst-case execution time (WCET) and increase schedulability.

Several research studies have explored the benefits of varying cache line
replacement policies. Quereshi et al. introduced the Bimodal Insertion Policy
(BIP) as an alternative to LRU, demonstrating its superior performance. They fur-
ther proposed the Dynamic Insertion Policy (DIP), which dynamically selects
between BIP and LRU based on the lowest number of cache misses for a given
task, resulting in a 21% reduction in cache misses compared to the second-
best policy (QURESHI et al., 2007). Subramanian, Smaragdakis, and Loh (2006)
proposed a hybrid cache line replacement scheme that dynamically selects
between LRU and other policies in hardware without software interference (SUB-
RAMANIAN; SMARAGDAKIS; LOH, 2006). Mancuso, Yun, and Puaut (2019) intro-
duced DM-LRU (Deterministic Memory - Least Recently Used), applying LRU to
deterministic-classified memory regions evaluated through a simulated envi-
ronment (MANCUSO; YUN; PUAUT, 2019). The DIP policy (QURESHI et al., 2007)
opened the door to dynamic approaches for selecting the best cache line
replacement policy at runtime (QURESHI et al., 2007).

Additionally, the papers by (ALTMEYER et al., 2014) and (SUN et al., 2023)
have made significant contributions to the field. These studies have investigated
cache partitioning techniques and cache usage optimization in the context of
real-time systems. By applying fixed-priority scheduling and cache partition-
ing, these papers address the challenges of ensuring mixed-criticality tasks
meet their timing requirements while efficiently utilizing cache resources. The
outcomes of these studies provide valuable insights into cache management
strategies for real-time systems, complementing the research efforts in cache
line replacement policy optimization.



Chapter 1 31

Building upon these foundations, the present research aims to address the
challenge of optimizing cache line replacement policies and configuration pa-
rameters for different tasks in real-time CPS. We propose a novel algorithm that
systematically explores the design space to determine the optimal cache set-
tings for each task, taking into account their specific memory requirements and
performance objectives. Leveraging the cache partitioning mechanism, our
algorithm dynamically selects the most appropriate replacement policy within
each partition, with the primary objective of reducing WCET and enhancing
the system’s schedulability.

In summary, this dissertation aims to bridge the existing gap in the liter-
ature by providing an algorithm that explores the design space to determine
optimal cache settings for each task in critical CPS. By optimizing cache line
replacement policies and configuration parameters, our research endeavors to
improve predictability, reduce WCET, and enhance the schedulability of these
critical systems. The insights gained from the studies on cache partitioning and
cache usage minimization in real-time systems further enrich our understanding
of cache management strategies.

1.1 PROBLEM OVERVIEW

Tasks and algorithms exhibit different memory access patterns depending
on the organization of their data. However, modern caches typically have a
single line replacement policy predetermined during the System-on-Chip (SoC)
design phase. This one-size-fits-all policy is often determined based on average
performance metrics. However, as depicted in Figure 1.1, independent tasks
demonstrate varying behavior depending on the chosen replacement policy.
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Figure 1.1 showcases the cache miss counts for five different cache line
replacement policies (LRU, RANDOM, FIFO - First-In First-Out, LIP - LRU Insertion
Policy and BIP) obtained by running three benchmarks from the Cortex Bench-
mark Suite (THOMAS et al., 2014) on top of cachegrind, a cache profiling tool.
The cache configuration used in this scenario includes a size of 128 KB, 8 ways,
and a cache line of 64 bytes. The results are normalized with respect to LRU per-
formance, meaning that a bar lower than the LRU bar indicates fewer cache
misses for that policy.

For instance, the pca benchmark exhibits significantly fewer cache misses
under the RANDOM, LIP, and BIP policies compared to LRU and FIFO. However,
when running the me benchmark, these policies result in a higher number of
cache misses compared to LRU. Figure 1.1 demonstrates that in this case, the
LRU policy is preferable. Even the performance benefits offered by each policy
may vary depending on the benchmark. This is evident in the multi_ncut-qcif

benchmark, where RANDOM is the only policy with better performance than
LRU, albeit with a smaller gain than in the pca benchmark.

This example, while simple, highlights the sub-optimality of selecting a
single line replacement policy for all cases, as it can lead to increased task
execution time. Therefore, it is believed that a unique and flexible architecture,
allowing the selection of the replacement policy per task, as well as a mecha-
nism for choosing the best cache parameters, can reduce the execution time
of each task and improve the schedulability of the entire system.

In a recent collaboration between the Laboratory of Software/Hardware
Integration (LISHA) at UFSC and the cyber-physical systems group at the Tech-
nical University of Munich, Germany, a modular and configurable cache ar-
chitecture was proposed for a RISC-V processor (HOORNAERT et al., 2021). This
architecture enables cache partitioning on a per-task basis and the application
of different line replacement policies within each partition. Additionally, it allows
the selection of cache parameters, such as line length and the number of ways,
at compile time. However, existing literature lacks a mechanism that chooses
the best cache configuration parameters for each real-time task.

The absence of a mechanism for selecting the optimal cache configura-
tion parameters hinders the full potential of cache performance optimization in
real-time systems. Addressing this gap is the objective of the present research,
aiming to provide a solution that determines the most suitable cache config-
uration parameters for each real-time task, considering their unique memory
requirements and performance goals. By integrating this mechanism with the
modular and configurable cache architecture, we strive to enhance the overall
efficiency and schedulability of real-time systems.
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1.2 GOALS

Cache line replacement policies play a critical role in ensuring cache
predictability and complying with time constraints, as cache misses and miss
penalties significantly impact system performance. However, the effectiveness
of each policy varies depending on the specific task it is applied to. Therefore,
a cache architecture that allows the selection of the most suitable policy at run-
time, resulting in fewer cache misses, can greatly improve worst-case execution
time (WCET) and schedulability in critical real-time systems.

The main objective of this research is to analyze and optimize cache-
related parameters, such as partition size, number of ways, cache line size, and
the replacement policy for each partition, in order to enhance the schedu-
lability of critical real-time systems. To achieve this overarching objective, the
following specific objectives have been defined:

1. Conduct a comprehensive literature review of related works to gather
insights and knowledge in the field of cache line replacement policies and
their impact on real-time systems.

2. Evaluate the performance of popular cache line replacement policies,
namely LRU, FIFO, RANDOM, LIP, and BIP, in terms of cache misses and the
scalability of real-time tasks using a diverse set of benchmarks.

3. Implement and assess the performance of the Dynamic Insertion Policy
(DIP) in a cache simulator, specifically cachegrind, to determine its effec-
tiveness in reducing cache misses.

4. Investigate and analyze the effects of different cache settings on the per-
formance of cache line replacement policies, with a focus on their impact
on critical real-time systems.

5. Develop an algorithm that optimizes cache parameters and replacement
policies, considering the cache partitioning approach for tasks in a real-
time system.

By addressing these specific objectives, this research aims to contribute
to the advancement of cache optimization techniques for critical real-time sys-
tems. The ultimate goal is to propose an algorithm that selects the most suitable
cache parameters and replacement policies for each task, considering their
individual requirements, in order to improve system schedulability and overall
performance.



34 Chapter 1

1.3 DOCUMENT ORGANIZATION

The remainder of this document is structured as follows:
Chapter 2 provides the necessary theoretical background for the devel-

opment of this research. It covers key concepts and metrics related to cache
memory organization and performance 2.1.3, as well as the definition, classifi-
cation, and mechanisms of Real-Time Systems 2.2.

In Chapter 3, a comprehensive survey is conducted on relevant works in
the field that align with the scope of this research. This chapter is divided into
three main topics: Cache Partitioning Mechanisms 3.2, Cache Line Replace-
ment Policies for Real-Time Systems 3.1, and Memories Scratchpads 3.3.

Chapter 4 focuses on analyzing the impact of different cache line re-
placement policies, namely LRU, FIFO, RANDOM, LIP, and BIP, in terms of cache
misses and the schedulability of real-time tasks. This analysis is performed using a
set of benchmarks on a cache architecture that supports per-task partitioning.

In Chapter 5, the Dynamic Insertion Policy (DIP) mechanism implemented
in the cachegrind simulator is presented. This chapter discusses the simulations
conducted, the benchmarks utilized, and provides a detailed discussion of the
obtained results.

Chapter 6 introduces an algorithm inspired at (ALTMEYER et al., 2014). The
proposed algorithm aims to select the optimal cache line replacement policy
for task partitioned caches. The evaluation of this algorithm involves comparing
the reduction of WCET, improvement of partition costs, and enhancement of
schedulability.

Finally, Chapter 7 concludes the research, summarizing the main findings,
discussing their implications, and highlighting potential avenues for future work
in this field.
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2 BACKGROUND

This chapter provides a concise overview of the essential background
knowledge required for this research. It begins by presenting the fundamental
concepts of memory architecture, hierarchy and performance. This includes an
exploration of cache memory and its role in improving system performance by
reducing memory access latency. The chapter specifically focuses on cache
line replacement policies and their behaviors in different scenarios. The aim is to
understand how these policies impact cache performance and predictability.

The next section delves into the Real-Time Systems (RTS). It discusses the
definition and classification of RTS and highlights their unique characteristics
and requirements. The chapter examines the challenges and considerations
involved in designing and analyzing RTS, such as meeting strict timing constraints
and ensuring deterministic behavior.

By providing this foundational knowledge, the chapter sets the stage
for the subsequent chapters, which explore cache partitioning mechanisms,
cache line replacement policies for real-time systems, and other related topics.
This background understanding is crucial for comprehending the research’s
objectives and methodology, and for grasping the significance of the findings
and recommendations presented throughout the document.

2.1 MEMORY ARCHITECTURE

Over the years, computer systems have made significant advancements,
particularly in the field of processors, leading to improved efficiency. However,
the same level of progress has not been achieved in memory technology, es-
pecially concerning speed (PATTERSON; HENNESSY, 2013). This discrepancy has
resulted in a performance gap, where high-speed processors encounter delays
when accessing and transferring data to or from main memory.

As computerized systems are applied to increasingly complex projects,
the demands for memory performance and size have also grown. This has led
to the emergence of different memory specifications with varying construction
technologies, often associated with higher production costs (STALLINGS, 2009).
These memory-related requirements pose complex challenges in the design
of practical systems. While larger and faster memory may be desired, the cost
implications must also be taken into account (TANENBAUM, 2006).

Consequently, the development of a memory hierarchy has become
imperative. This hierarchy employs multiple components or technologies to meet
the diverse performance needs of systems (HENNESSY; PATTERSON, 2011).

This section provides an overview of the memory hierarchy, with a spe-
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cific focus on cache memory and cache replacement policies. Understanding
these concepts is essential for the development of this research. The memory hi-
erarchy plays a crucial role in bridging the speed gap between processors and
main memory, improving overall system performance. Cache memory, as a key
component of the memory hierarchy, operates as a high-speed buffer between
the processor and main memory, storing frequently accessed data to minimize
access latency. Cache replacement policies determine which cache lines are
evicted when new data is fetched, and different policies exhibit varying behav-
iors in different scenarios. A comprehensive understanding of these concepts
is necessary for investigating cache partitioning mechanisms and optimizing
cache parameters to enhance the schedulability of real-time systems.

2.1.1 Memory Hierarchy

In 1946, Arthur Burks, Herman Goldstine and John von Neumann pub-
lished preliminary discussions on the logical design of an electronic computing
instrument. Even at that early stage, they recognized the critical role of memory
capacity in the design of general-purpose systems and concluded that the use
of different types of memories to meet varying usage demands was becoming
increasingly necessary (BURKS; GOLDSTINE; NEUMANN, 1946).

The memory hierarchy was subsequently devised as a mechanism to ad-
dress system resource requirements by incorporating memory levels, each of
which is smaller, faster, and more expensive than the next level, moving farther
away from the processor. Figure 2.1 illustrates the organization of the memory
hierarchy. At the top of the hierarchy, within the triangle, are the registers and
caches, which are implemented in closer proximity to the processor. Below the
triangle, in the box, are external memory devices such as USB drives and hard
disks (HD). As we move up the hierarchy, the devices take less time to access
information (lower latency), but they come at a higher cost and offer a smaller
storage capacity. Conversely, devices lower in the memory hierarchy are more
cost-effective, provide larger storage capacity, but exhibit higher latency.

The memory hierarchy’s goal is to optimize the overall performance of
computer systems by strategically utilizing different memory levels. The registers,
which are the fastest and most expensive memory units, are located directly
within the processor and provide rapid access to data. Caches, which are
smaller and faster than main memory, serve as intermediate storage between
the registers and the main memory. Caches aim to store frequently accessed
data to minimize the latency associated with accessing data from the larger
and slower main memory. Main memory, also known as RAM (Random Access
Memory), serves as a larger storage unit but has a higher latency compared
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Figure 2.1 ± Memory hierarchy structure.

Adapted from (STALLINGS, 2009)

to caches. External memory devices, such as pen drives and external HDs, are
even larger in capacity but come with longer access times.

By employing the memory hierarchy, computer systems can optimize
the use of resources, balancing speed, capacity, and cost, to deliver efficient
and cost-effective performance. The hierarchical arrangement ensures that fre-
quently accessed data is readily available in the faster memory levels, reducing
the overall latency of memory operations.

2.1.2 Temporal and Spatial Locality

In the 1960s, IBM researchers made a significant discovery that revolu-
tionized computer performance. They observed that a large portion of code
exhibits repetitive patterns, which can be leveraged to enhance system effi-
ciency. By storing frequently accessed sections of code in a small, high-speed
memory, the impact of wait states can be minimized, relegating slower and less
expensive memory to the less repetitive parts of the program (HANDY, 1998). This
principle forms the basis of cache memory operation, which will be discussed in
detail in Section 2.1.3. The concept of code repetition can be viewed from two
perspectives: time locality and spatial locality.

Time locality, also known as temporal locality, refers to the tendency of
instructions or data to be accessed in close temporal proximity. In other words,
recently accessed memory locations are more likely to be accessed again in
the near future, compared to those accessed a long time ago. For example, a
processor is more likely to revisit a memory location accessed ten cycles ago
rather than one accessed ten thousand cycles ago. Exploiting time locality
allows for efficient caching and reduces the latency associated with memory
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accesses (HANDY, 1998).
Spatial locality, on the other hand, relates to the observation that com-

puter code frequently executes within a small area of memory. This area is not
necessarily confined to a single range of main memory addresses; it can be
distributed throughout the memory system. In simpler terms, if a particular mem-
ory location is accessed, it is highly likely that data stored in nearby memory
locations will also be accessed in the near future. By capitalizing on spatial lo-
cality, cache systems can prefetch and store adjacent data, reducing the time
needed to retrieve it when required (HANDY, 1998).

Both time and spatial locality are fundamental properties of program exe-
cution that can significantly impact memory access patterns. Caching mecha-
nisms exploit these locality principles to deliver faster access times and improved
overall system performance. By storing frequently used instructions and data
closer to the processor, caches minimize the latency associated with retrieving
information from slower, larger, and more distant memory levels.

2.1.3 Cache Memory Organization

Cache memories are specialized high-speed storage devices that play a
crucial role in improving data transfer between the processor and main memory,
as well as other cache levels (JACOB; WANG; NG, 2010). The primary objective
of a cache is to enhance system performance by exploiting the principle of
temporal locality. By storing recently accessed data, the cache enables quick
retrieval when the processor requires it. As a result, the processor first checks
the cache for the requested data, and only if it is not found there, does it
search for the data in the main memory. By keeping a significant portion of fre-
quently used data in the cache, the average access time can be substantially
reduced (TANENBAUM, 2006).

The cache operates based on the principle of a memory hierarchy, as
discussed earlier. It consists of a hierarchy of cache levels, with each level being
closer to the processor and faster but smaller compared to the levels below it.
The cache works by dividing memory into fixed-size blocks, known as cache
lines or cache blocks, which are used as the basic unit of data transfer between
the cache and main memory. When the processor requests data, the cache
checks if the desired data is present in one of its cache lines. If a cache hit
occurs, indicating that the data is already in the cache, it is quickly accessed
and provided to the processor. On the other hand, if a cache miss occurs,
meaning the data is not present in the cache, the cache needs to retrieve the
data from the main memory, resulting in higher latency (JACOB; WANG; NG,
2010).
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The efficiency of a cache memory is determined by its hit rate, which rep-
resents the percentage of data accesses that result in a cache hit. A higher hit
rate indicates better cache utilization and overall system performance. Caches
employ various techniques, such as associative mapping and replacement poli-
cies, to manage the cache lines and optimize the hit rate. These techniques
ensure that the most frequently accessed data is retained in the cache, while
less frequently used data is replaced to make room for new data (TANENBAUM,
2006).

In summary, cache memories act as high-speed intermediaries between
the processor and main memory, leveraging temporal locality to store recently
accessed data and minimize the latency associated with accessing the slower
main memory. By keeping frequently used data closer to the processor, caches
enhance overall system performance and reduce average access times.

2.1.3.1 Levels of Cache Memory

Multilevel caches have become commonplace in modern computer sys-
tems to optimize data transfer and improve performance. The cache hierarchy
typically consists of three levels: L1, L2, and LLC (Last Level of Cache), each with
different capacities and characteristics (STALLINGS, 2009).

The L1 cache, also known as the primary cache, is the fastest but smallest
cache level. It is usually integrated into the processor chip and divided into
separate data and instruction caches. The L1 cache stores frequently accessed
data and instructions to provide quick access for the CPU. Different processors
have different sizes of L1 cache, ranging from 8 KB in early Intel processors like
the i486 to larger sizes like 32 KB in Intel i7 and even 64 KB in ARM Cortex-A53.

To compensate for the limited capacity of the L1 cache, the L2 cache, or
secondary cache, was introduced. The L2 cache has a larger storage capacity
compared to the L1 cache. It acts as an intermediary between the L1 cache
and the main memory, storing additional data to reduce the need for accessing
the slower main memory. The size of the L2 cache varies depending on the
processor architecture. For example, Intel i7 processors provide an L2 cache of
256 KB, while ARM processors offer configurable L2 cache sizes of up to 2 MB.

In some systems, an additional cache level, LLC, is implemented. The LLC
is a specialized memory designed to improve the performance of the previous
cache levels. It serves as a buffer between the processor cores and the main
memory, helping to mask the latency associated with main memory access.
The LLC is typically larger than the L2 cache and has a significant impact on
overall system runtime performance. Its size and configuration vary depending
on the specific system design and requirements.
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In multicore processors, each core may have its dedicated L1 cache
integrated into the processor chip. However, the higher-level caches, such as
L2 and LLC, are often shared among multiple cores. To ensure efficient data
transfer, these shared caches are connected to the CPU through high-speed al-
ternate system buses, separate from the main system bus. This design allows the
shared caches to handle cache traffic without being affected by congestion
on the main bus.

Figure 2.2 provides an illustration of a possible memory configuration in a
multicore system with four cores and a three-level cache hierarchy. Each core
has its dedicated L1 cache. The L2 cache levels are shared, with cores 1 and
2 sharing one L2 cache and cores 3 and 4 sharing the other. Finally, there is
an external LLC cache that is shared among all the cores, in this example the
LLC is shown as a third level L3. This configuration demonstrates the hierarchical
structure of cache memory in a multicore system.

Overall, the multilevel cache architecture with dedicated and shared
caches improves system performance by reducing the latency associated with
main memory access and providing fast data retrieval for the processor cores.

L1

Core 1

L1

Core 2

L1

Core 3

L1

Core 4

L2 L2

L3

Figure 2.2 ± Multicore system architecture with dedicated L1 and L2 caches and
shared LLC (L3).

Source: Adapted from (STALLINGS, 2009)

2.1.3.2 Performance

The performance of cache memory can be evaluated based on two key
metrics: cache hit ratio and cache miss ratio. Additionally, the miss penalty is
another important factor to consider.

A cache hit occurs when the processor successfully finds the required
data in the cache. It indicates that the cache memory is functioning effectively,
allowing for fast access to frequently accessed data. On the other hand, a
cache miss happens when the required data is not found in the cache. In such
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cases, the cache needs to fetch the required block from the main memory,
resulting in increased latency and performance degradation.

To assess cache performance, two ratios are commonly used:

1. Hit ratio: This is the ratio between the number of cache hits and the total
number of cache accesses. It provides a measure of how often the cache
is able to satisfy data requests without accessing the main memory. A
higher hit ratio indicates a more efficient cache, as a larger proportion
of data requests are fulfilled from the cache itself (HENNESSY; PATTERSON,
2011).

2. Miss ratio: This is the ratio between the number of cache misses and the
total number of cache accesses. It represents the frequency at which the
cache fails to find the required data and needs to fetch it from the main
memory. A lower miss ratio indicates better cache performance, as fewer
cache accesses result in cache misses (HENNESSY; PATTERSON, 2011).

In addition to hit and miss ratios, the miss penalty is a critical factor in
cache performance evaluation. The miss penalty refers to the cost incurred
when a cache miss occurs and a cache line needs to be replaced. It includes
the time taken to retrieve the required block from the main memory and the
subsequent cache line replacement. Minimizing the miss penalty is crucial for
improving cache efficiency and reducing overall system latency (PATTERSON;
HENNESSY, 2013).

By analyzing the hit ratio, miss ratio, and miss penalty, the performance of
a cache can be evaluated, and appropriate optimizations can be applied to
enhance cache efficiency and reduce access latency.

2.1.3.3 Mapping

Cache mapping determines the mapping scheme used to allocate mem-
ory blocks from the main memory to cache lines. It defines how the cache index
is computed from the memory address and how cache lines are selected for
replacement in case of a cache miss.

There are three commonly used cache mapping techniques, according
to (PATTERSON; HENNESSY, 2013). They are:

1. Direct Mapping: In this mapping scheme, each memory block is mapped
to a specific cache line based on its memory address. The cache index
is calculated using a subset of the address bits. For example, if the cache
has 2n lines, the lower n bits of the memory address are used to determine
the cache index. Direct mapping provides a simple and efficient mapping
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strategy, but it can lead to a high collision rate when multiple memory
blocks are mapped to the same cache line, resulting in frequent cache
misses.

Figure 2.3 ± Direct mapping of a memory with 32 blocks into an eight-word
cache.

Source: Adapted from (PATTERSON; HENNESSY, 2013)

In Figure 2.3, the least significant 3 bits of the main memory blocks are used
as the cache index. Thus, addresses 00001bin, 01001bin, 10001bin and 11001bin

are all mapped to cache entry 001bin, while addresses 00101bin, 01101bin,
10101bin and 11101bin are all mapped to the cache entry 101bin.

2. Set-Associative Mapping: Set-associative mapping combines the advan-
tages of direct mapping and fully associative mapping. It divides the
cache into a set of smaller groups or sets, where each set contains a fixed
number of cache lines. Memory blocks can be mapped to any cache
line within a specific set. The cache index is calculated using a subset of
the address bits that identifies the set. Set-associative mapping reduces
the collision rate compared to direct mapping by allowing more flexibility
in cache line selection. Common examples include 2-way, 4-way, and 8-
way set-associative mapping, where each set contains two, four, or eight
cache lines, respectively.

In Figure 2.4, any memory block can be allocated on any line in the cache
memory without any restrictions. The cache index is not derived from the
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Figure 2.4 ± Associative mapping of a block of main memory

Source: Adapted from (PATTERSON; HENNESSY, 2013)

memory address, and the cache controller searches the entire cache to
find the requested block.

3. Fully Associative Mapping: In fully associative mapping, any memory block
can be mapped to any cache line, without any restrictions. This means
that the cache index is not derived from the memory address. Instead, the
cache controller searches the entire cache to find the requested block.
Fully associative mapping provides the highest flexibility and lowest collision
rate among all mapping techniques. However, it requires more complex
hardware and incurs higher access latency due to the need for a full
cache search. Consequently, fully associative mapping is typically used in
smaller cache configurations or as an LLC in multilevel cache systems.

In Figure 2.5, the cache memory is divided into v sets. The main memory
block B0 must be mapped to set 0 and can be allocated to any line in
that set. The block Bv−1 of main memory must be mapped in any line of
the set v − 1 of the cache.

The choice of cache mapping technique greatly influences cache per-
formance, hit rate, and access latency. Different applications and memory
access patterns may benefit from different mapping schemes. The selection of
an appropriate cache mapping technique involves considering factors such
as cache size, associativity, access patterns, and the trade-off between cache
hit rate and hardware complexity. Optimizing cache mapping is an important
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Figure 2.5 ± Associative mapping per set.

Source: Adapted from (STALLINGS, 2009)

aspect of cache design and can significantly impact the overall system perfor-
mance.

2.1.3.4 Cache Partitioning

Cache partitioning is a technique used in real-time systems to allocate a
specific portion of the cache to a particular task or core. This helps in isolating
task workloads, reducing interference between cores (in multicore systems), im-
proving system predictability, and facilitating Worst-Case Execution Time (WCET)
estimation (SANCHEZ; KOZYRAKIS, 2011).

Cache partitioning involves dividing the cache into private and shared
spaces. Each task or core is allocated a private space in the cache where it
can store its most recently accessed memory blocks. This private space is virtual,
meaning that it consists of the N most recently used blocks accessed by the
task in each cache set, regardless of their physical location. The actual storage
location of these blocks may vary while the task is running. Once the task is
completed, the associated private space is released (LESAGE; PUAUT; SEZNEC,
2012).

The shared space in the cache holds blocks that are accessed by all
cache-accessing tasks, regardless of whether they have a dedicated private
space. It contains the least accessed memory blocks of tasks. The shared space
dynamically consists of cache lines that do not belong to any private space.
This includes cache lines occupied by task blocks that have no private cache
space and cache lines used by a task beyond its allocated capacity of private
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space (LESAGE; PUAUT; SEZNEC, 2012).
There are two forms of cache partitioning: index-based and way-based

partitioning. In index-based partitioning, partitions are formed by aggregating
associative sets in the cache. Each partition consists of multiple cache sets. In
way-based partitioning, partitions are formed by aggregating individual cache
ways. Each partition consists of multiple cache ways (GRACIOLI et al., 2015).

Different cache partitioning mechanisms have been proposed in the lit-
erature to address both types of partitioning. These mechanisms aim to effi-
ciently allocate cache space to tasks, optimize cache utilization, and manage
the sharing of cache resources among tasks. The details of cache partitioning
mechanisms will be discussed in Section 3.2.

2.1.4 Cache Replacement Policies

Cache replacement policies play a critical role in managing cache uti-
lization and performance. When a cache miss occurs, requiring the retrieval
of a block of memory into the cache, a cache line needs to be selected for
replacement. This decision becomes particularly important in caches that utilize
associative or set associative mapping techniques. The cache line replacement
policy dictates which block will be evicted from the cache and where the in-
coming block will be placed.

Choosing an effective cache replacement policy is essential to maximize
cache hit rates, reduce cache thrashing, and improve overall system perfor-
mance. Various cache replacement policies have been developed, each with
its own advantages and trade-offs. In the following subsection, we explore some
commonly used cache replacement policies, delve into their characteristics,
and examine their impact on cache performance

2.1.4.1 RANDOM

The RANDOM cache replacement policy is the simplest and most straight-
forward approach among cache line replacement policies. It operates by ran-
domly selecting a cache line for eviction whenever a new block needs to be
inserted into the cache. The existing block occupying the randomly chosen
position is replaced with the new block.

The RANDOM policy is easy to implement since it does not require any
complex tracking or decision-making mechanisms. However, its simplicity comes
at the cost of performance. Since the replacement decision is purely random, it
disregards the principle of temporal locality, which states that recently accessed
blocks are more likely to be accessed again in the near future. As a result, the
RANDOM policy tends to lead to suboptimal cache performance.
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Empirical studies have demonstrated that the RANDOM policy performs,
on average, approximately 22% worse than more advanced policies like LRU in
the context of data caches (AL-ZOUBI; MILENKOVIC; MILENKOVIC, 2004). Despite
its inferior performance, the RANDOM policy is still employed in certain proces-
sors, such as the Cortex A-53. In cases where simplicity and low implementation
overhead outweigh the potential performance gains of more sophisticated
policies, the RANDOM policy may be a viable choice.

2.1.4.2 First-In, First-Out (FIFO)

The FIFO cache replacement policy operates based on the order of entry
of blocks into the cache. Each block is assigned a position in the cache based
on the time it was brought in, with the oldest block occupying the LRU position.
When a cache miss occurs and a new block needs to be inserted, it is placed in
the first position of the cache, pushing all existing blocks toward the LRU position.
As a result, the oldest block, which is located in the LRU position, is evicted from
the cache.

In Figure 2.6, an example of a cache employing the FIFO policy is illus-
trated. The cache initially contains blocks A, B, C, and D (Figure 2.6(a)). When
a cache miss occurs and a new block X is brought in, it is allocated in the most
recently used (MRU) position, displacing the existing blocks towards the LRU
position. Consequently, the oldest block D, which occupied the LRU position, is
evicted from the cache (Figure 2.6(b)).

The FIFO policy ensures a fair and deterministic replacement strategy, as
blocks are evicted in the order in which they entered the cache. However, it
suffers from the drawback of not considering the access frequency or recency
of the blocks. This can lead to poor cache performance in scenarios where
certain blocks are repeatedly accessed, while others are rarely used. Despite
its simplicity and fairness, the FIFO policy is generally outperformed by more
advanced replacement policies, such as LRU, in terms of cache hit rate and
overall system performance.

2.1.4.3 Lest Recently Used (LRU)

The Least Recently Used cache replacement policy is a popular and
effective strategy for managing cache memory. It is based on the principle of
temporal locality, which states that recently accessed data is more likely to be
accessed again in the near future. The LRU policy aims to maximize cache hit
rates by prioritizing cache lines that have been accessed most recently.

In the LRU policy, each cache line is associated with a timestamp or
counter that indicates the order of its access. Whenever a cache hit occurs,
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(a) Initial conditions: full cache.
(b) A cache miss occurs and an X block needs to be
allocated.

(c) Block X assumes the position of the newest block
pushing all others in the queue. Block D leaves the
cache.

Figure 2.6 ± FIFO replacement policy.

Source: Adapted from (HANDY, 1998)

indicating that a requested block is found in the cache, the corresponding
cache line’s timestamp is updated to the current time, marking it as the most
recently used. This ensures that frequently accessed data remains in the cache
and can be quickly retrieved when needed.

When a cache miss occurs and a new block needs to be brought into
the cache, the cache line with the oldest timestamp, representing the least
recently used block, is selected for replacement. The new block is then inserted
into the cache at the position of the evicted block.

The significance of the LRU policy lies in its ability to exploit the temporal
locality exhibited by many programs. By giving priority to recently accessed
data, it maximizes the chances of keeping frequently used data in the cache,
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reducing the frequency of cache misses and improving overall system perfor-
mance. (SMITH, 1982)

Figure 2.7 provides a visual representation of the LRU policy. In Fig-
ure 2.7(a), the cache initially contains blocks A, B, C and D, with their corre-
sponding timestamps indicating their order of access, from the most recent to
the least recent. In Figure 2.7(b), a cache hit occurs when block C is accessed.
As a result, block C’s timestamp is updated, moving it to the most recent position.
Blocks A and B retain their relative positions. In Figure 2.7(c), a cache miss occurs
when block X is requested and not found in the cache. Block X is brought in from
main memory and replaces the block with the oldest timestamp, which is block
D in this case. The timestamps of blocks A, B and C are updated accordingly.

(a) Initial conditions. Cache full. (b) A cache hit occurs.

(c) A cache miss occurs.

Figure 2.7 ± LRU replacement policy.

Source: Adapted from (HANDY, 1998)

The LRU policy has proven to be highly effective in improving cache per-
formance and reducing cache thrashing. Its ability to prioritize frequently ac-
cessed data aligns well with the behavior of many programs, resulting in higher
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cache hit rates and overall system efficiency. As a result, the LRU policy is widely
used in various computer architectures and systems.

2.1.4.4 Pseudo-LRU (PLRU)

The Pseudo Least Recently Used (Pseudo-LRU or PLRU), also known as
tree-LRU, is a widely adopted cache line replacement policy in modern cache
memory designs. It has gained popularity and is extensively utilized in commer-
cial products by leading companies like AMD and Intel (Abel; Reineke, 2013).

The Pseudo-LRU algorithm employs a binary tree data structure to track
the cache memory state. In this tree, each node represents a cache line and is
associated with a bit that can be interpreted as an arrow. The tree’s structure
allows for efficient determination of the least recently used cache line.

When a cache hit occurs, indicating that the requested data is already
present in the cache, the corresponding bits pointing to that memory location
are inverted. This inversion ensures that the recently accessed cache line moves
closer to the root of the binary tree, indicating its updated usage.

On the other hand, when a cache miss happens and new data needs
to be brought into the cache, the line pointed to by the bits is selected for
replacement. The new data replaces this line, and the corresponding bits are
then inverted, indicating its recent usage.

The Pseudo LRU policy leverages the tree-like structure and the bit inver-
sions to approximate the least recently used cache line efficiently. By keeping
track of the cache lines’ relative recency of use, the Pseudo LRU policy aims
to minimize cache misses and maximize cache hit rates, leading to improved
performance.

Figure 2.9 provides an illustration of the Pseudo LRU policy in action. In
this example, a cache miss occurs when a requested block is not found in the
cache. The new data replaces the cache line pointed to by the bits, and the
corresponding bits are inverted, indicating the updated cache line usage.

The Pseudo LRU policy has become prevalent due to its effectiveness in
managing cache memory and its utilization by major industry players. Its ability
to efficiently approximate the least recently used cache line makes it a valuable
tool for improving cache performance in a variety of computing systems.

2.1.5 Adaptive Insertion Policies

This subsection introduces three adaptive insertion policies, namely LIP
(LRU Insertion Policy), BIP (Bimodal Insertion Policy), and DIP (Dynamic Insertion
Policy), proposed by Qureshi et al. (QURESHI et al., 2007). These policies are
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(a) Before a C-block cache hit. (b) After a cache hit in block C.

Figure 2.8 ± How the PLRU policy works when a hit occurs.

Source: Adapted from (HANDY, 1998)

(a) Before a cache miss on block C. (b) After a cache miss on block CC.

Figure 2.9 ± How the PLRU policy works when a cache miss occurs.

Source: Adapted from (HANDY, 1998)

based on LRU policy, but aim to reduce cache misses for memory-intensive
workloads.

The LRU policy, while widely used, may not be optimal for all workload
patterns. The adaptive insertion policies offer greater flexibility and adaptability
to improve cache performance in such scenarios.

The LIP, BIP and DIP policies proposed by Qureshi et al. demonstrate their
potential in enhancing cache performance for memory-intensive workloads.
By deviating from strict LRU ordering and considering factors like insertion time
and age ranges, these adaptive insertion policies improve cache hit rates and
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effectively reduce the number of cache misses.

2.1.5.1 LRU Insertion Policy (LIP)

The LIP is an adaptive insertion policy that enhances cache performance
by allocating all input lines at the LRU position in the cache. Unlike traditional
LRU, where cache lines are reordered only based on their access history, LIP
introduces the concept of promoting lines from the LRU position to the MRU
position when new lines are brought in from the main memory. This adaptive ap-
proach aims to address the limitations of LRU and optimize cache performance
for memory-intensive workloads.

The key advantage of LIP is its ability to avoid thrashing for workloads with
a working set larger than the cache size. By initially placing all input lines at
the LRU position, LIP ensures that frequently accessed lines remain in the cache
while infrequently accessed lines are more likely to be evicted. This strategy
helps maintain a balanced cache content and mitigates the negative impact
of excessive cache misses. (QURESHI; SRINIVASAN; RIVERS, 2007)

Furthermore, LIP exhibits excellent performance for workloads that exhibit
a cyclic access pattern. By promoting recently accessed lines from the LRU posi-
tion to the MRU position, LIP adapts to the cyclic nature of these workloads and
achieves near-optimal hit rates. This adaptive behavior allows LIP to effectively
exploit temporal locality and improve cache efficiency.

Figure 2.10 visually demonstrates the behavior of the LIP policy. In the
example depicted, the cache initially contains blocks A, B, C and D. When
a cache hit occurs in block B, which does not occupy the LRU position, no
changes are made to the cache configuration. However, when a cache hit
occurs in block C, located at the LRU position, it gets promoted to the MRU
position, reflecting its recent access. On the other hand, when a cache miss
happens, as shown by the insertion of block X in the LRU position, the block D,
which previously occupied that position, is evicted from the cache.

The LIP policy demonstrates its technical importance by providing an
adaptive insertion strategy that goes beyond traditional LRU. By considering
both the LRU position and the promotion of recently accessed lines, LIP effec-
tively manages cache contents, improves hit rates and reduces cache misses.
As a result, it has become a valuable tool in optimizing cache performance for
memory-intensive workloads.

2.1.5.2 Bimodal Insertion Policy (BIP)

The BIP is an adaptive insertion policy that builds upon the concepts
introduced by the LIP. BIP incorporates a bimodal parameter, denoted as ϵ
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(a) Initial Conditions: Full cache
(b) A cache hit occurs at a posi-
tion other than the LRU.

(c) A cache hit occurs at the
LRU position. (d) A cache error occurs.

Figure 2.10 ± LIP adaptive insertion policy.

or the "bimodal throttle parameter," which ranges from 0 to 1. This parameter
determines the position at which a new line will be inserted in relation to the LRU
position.

The unique feature of BIP is its ability to dynamically adjust the insertion
position based on the value of ϵ. When ϵ is set to 0, BIP behaves identically to LIP,
allocating all input lines at the LRU position. This ensures the thrashing protection
provided by LIP, where frequently accessed lines are retained in the cache while
infrequently accessed lines are evicted.

However, as the value of ϵ increases towards 1, BIP gradually transitions to-
wards a behavior resembling the LRU policy. In other words, when ϵ approaches
1, the cache line insertion position becomes closer to the MRU end of the cache.
This shift aligns with the LRU principle, where lines that have been accessed more
recently are favored over those accessed less recently.

By incorporating this bimodal parameter, BIP introduces a higher degree
of flexibility and adaptability compared to LIP. It can dynamically respond to
changes in the working set and adjust the cache line insertion position accord-
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ingly. This adaptability is crucial in optimizing cache performance for varying
workload characteristics, as it allows BIP to strike a balance between thrashing
protection and the exploitation of temporal locality.

To summarize, BIP enhances the LIP policy by introducing the bimodal
throttle parameter ϵ, which governs the insertion position of new cache lines. It
offers a spectrum of behaviors ranging from LIP to LRU, depending on the value
of ϵ. This adaptability enables BIP to effectively manage the cache content,
protect against thrashing and adapt to changing working set patterns.

2.1.5.3 Dynamic Insertion Policy (DIP)

The DIP is an adaptive insertion policy that dynamically selects between
the traditional LRU policy and the BIP based on their respective performance.
The key idea behind DIP is to choose the policy that minimizes cache losses,
which are estimated during runtime.

DIP maintains runtime estimates of the losses incurred by each of the
competing policies, LRU and BIP. These loss estimates provide insights into the
effectiveness of each policy in the current workload scenario. The policy with
the lower estimated losses is selected for cache line insertions, ensuring that the
cache operates with the most suitable policy given the workload characteris-
tics.

By continually monitoring and comparing the loss estimates of LRU and
BIP, DIP can dynamically adapt to changes in the workload and select the
policy that offers better cache performance. This adaptive behavior allows DIP
to leverage the strengths of both policies and optimize cache hit rates.

For more detailed information on the functioning mechanism of the DIP
implemented in this work, please refer to Section 5.1 for a comprehensive expla-
nation.

2.2 REAL-TIME SYSTEM

Real-time systems play a critical role in a wide range of domains, includ-
ing safety-critical applications, embedded systems, telecommunications, in-
dustrial automation, medical devices and flight control systems. These systems
are specifically designed to respond and control external events with precise
timing requirements, where meeting strict timing constraints is as important as
producing accurate results (STANKOVIC; RAMAMRITHAM, 1998; BUTTAZZO, 2011;
OLIVEIRA, 2020).

Timing is of utmost importance in real-time systems. Unlike traditional com-
puter systems, where the correctness of the computation is the primary concern,
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real-time systems prioritize the timely execution of tasks. They are subject to strin-
gent timing requirements that must be met to ensure proper functionality. Failure
to meet these timing constraints can result in severe consequences, including
financial losses, safety hazards and even loss of human life. (LIU, 2000)

The design and analysis of real-time systems require specialized tech-
niques and methodologies. Researchers and practitioners have developed
various scheduling algorithms, resource management strategies and analysis
methods to ensure the predictability and reliability of real-time systems in meet-
ing their timing requirements.

Scheduling algorithms play a crucial role in real-time systems, as they
determine the order and timing of task executions. These algorithms consider
factors such as task priorities, deadlines and resource availability to allocate
system resources efficiently. Commonly used scheduling algorithms include Rate-
Monotonic (RM), Earliest Deadline First (EDF) and Deadline Monotonic (DM) (LIU;
LAYLAND, 1973; BAKER, 2001; SRINIVASAN; BARUAH; GOOSSENS, 2011). Each
algorithm has its advantages and limitations, and the choice of scheduling
algorithm depends on the specific characteristics and requirements of the real-
time system.

Resource management is another vital aspect of real-time systems. Ef-
ficient utilization of system resources, such as CPU, memory and I/O devices,
is crucial to meet timing constraints. Techniques such as resource reservation,
priority inheritance and priority ceiling protocol help manage and allocate re-
sources effectively, avoiding resource contention and ensuring that tasks with
higher priority receive the necessary resources to meet their deadlines (SPRUNT;
BURNS; BERNAT, 2002).

To assess the timing behavior of real-time systems, various analysis meth-
ods and tools have been developed. These methods, such as worst-case execu-
tion time analysis and schedulability analysis, provide insights into the system’s
timing properties and help determine if the system can meet its timing require-
ments under different scenarios. Furthermore, simulation and testing techniques
are employed to validate the real-time system’s performance and identify po-
tential timing issues.

In the upcoming sections, we will delve into these techniques and
methodologies in greater detail, shedding light on their significance in the de-
velopment and deployment of real-time systems. By understanding these prin-
ciples and utilizing appropriate design and analysis techniques, engineers and
developers can effectively design, optimize and validate real-time systems to
operate with precision, reliability, and safety.



Chapter 2 55

2.2.1 Real-Time Systems Classification

Real-time systems can be classified into two categories based on the
consequences of missing timing requirements (OLIVEIRA, 2020):

1. Hard Real-Time (HRT) Systems: In HRT systems, missing a timing deadline
can lead to catastrophic consequences. These systems are typically found
in safety-critical domains such as medical systems, aerospace and nu-
clear controls, where precise and timely actions are essential for system
integrity and human safety. HRT systems require strict adherence to timing
constraints and any violation can result in severe financial losses, safety
hazards, or even loss of human life.

2. Soft Real-Time (SRT) Systems: SRT systems can tolerate occasional timing
violations without causing catastrophic failures. While meeting timing dead-
lines is still important in SRT systems, missing occasional deadlines may result
in degraded performance or reduced quality of service. These systems
are often found in multimedia applications, audiovisual systems and non-
critical control systems. SRT systems focus on providing acceptable results
within specific time limits, but small timing deviations can be tolerated with-
out significant consequences.

2.2.2 Notations Definitions and Task Models

In this section, we will define some important notations and models used
in the context of real-time systems. These notations will be used throughout the
entire work.

The three most popular models of tasks in real-time systems are periodic,
sporadic and aperiodic (ABENI; BUTTAZZO; PALOPOLI, 2000; WILHELM; ENGBLOM,
2008; CERVIN; HENRIKSSON; LINCOLN, 2018).

1. Periodic Task Model: In the periodic task model, a set of tasks, denoted
as τ , is composed of n tasks, T1, T2, ..., Tn. Each task Ti releases a job every
unit of time, referred to as the period pi. The release time of the j-th job of
Ti is denoted as ri,j and is named Ji,j. Task releases can be triggered by
external events such as device interrupts or expiration timers.

2. Sporadic Task Model: In the sporadic task model, the period of a task (pi)
represents a lower bound on the separation of tasks, rather than an exact
time interval between jobs as in the periodic task model. If we consider the
minimum time interval between tasks as the task period, the sporadic task
model can be analyzed as the periodic task model.
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3. Aperiodic Task Model: Unlike periodic and sporadic tasks, aperiodic tasks
do not have a period or a minimum interval. They can be released at any
time and may have critical deadlines that require special handling through
aperiodic task servers.

For the purpose of this work, we will primarily focus on the periodic task
model since it is widely used in the literature, well-studied and offers flexibility in
real-time systems. Table 1 summarizes the definitions and notations related to
the periodic task model used in the subsequent analyses. These definitions and
notations will serve as a foundation for our analysis of real-time systems.

Table 2.1 ± Summary of notations related to periodic real-time task model

Notation Description Definition
τ A task set. τ = T1, ..., Tn

Ti The ith task of τ 1 ≤ i ≤ n

Ji,j The jth job of the task Ti j > 1
ei The execution time of Ti ei > 0
pi The period of Ti pi ≥ ei

di The relative deadline of Ti di ≥i

ri,j The release time of Ji,j ri,j = ri,j−1 + pi

2.2.3 Real-Time Scheduling Algorithm

In real-time systems, when a single processor needs to handle a set of
concurrent tasks that may overlap in time, a scheduling algorithm is required to
determine the order in which tasks are executed. This scheduling algorithm
follows a predefined criteria, known as the scheduling policy. It defines the
rules that govern the assignment of the processor to multiple tasks at any given
time (LIU; LAYLAND, 1973).

In the context of scheduling algorithms, several important terms and con-
cepts are used (BARUAH; GOOSSENS, 2005):

• Active Task: A task that can potentially run on the processor regardless of
its actual availability.

• Task Ready: A task waiting for the processor to be allocated.

• Task Running: A task that is currently being executed by the processor.

• Ready Queue: A queue that holds all the ready tasks waiting for the proces-
sor. Operating systems may have multiple ready queues to handle different
categories of tasks.
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Preemption is another important concept in scheduling algorithms. It
refers to the interruption of a running task when a higher-priority task arrives.
The running task is suspended and placed back in the ready queue, allowing
the higher-priority task to gain immediate access to the processor (BUTTAZZO,
2011).

Scheduling algorithms can be classified based on their characteristics
and activation mechanisms (LIU, 2000; BARUAH; FISHER, 2006; OLIVEIRA, 2020).
Two common classifications are:

1. Time-Driven Schedulers vs. Event-Driven Schedulers:

• Time-Driven Schedulers: These algorithms make scheduling decisions
at specific time points that are predetermined before the system starts
executing. The decisions are based on a fixed schedule.

• Event-Driven Schedulers: These algorithms make scheduling decisions
when specific events occur, such as task releases. Tasks are placed in
scheduling queues ordered by their priorities.

2. Static Schedulers vs. Dynamic Schedulers:

• Static Schedulers: These schedulers use a calculated priority assign-
ment during the system design phase. The priorities are assigned offline
based on knowledge of release and execution times of all tasks. The
priority assigned to a task remains fixed throughout the execution. An
example of a static scheduling policy is the Rate Monotonic algorithm,
which assigns priorities based on the task’s period.

• Dynamic Schedulers: These schedulers calculate task priorities at run-
time using their parameters. The priority is recalculated after each job
release. The priority assignment is dynamic and may change during
the execution. An example of a dynamic scheduling algorithm is the
Earliest Deadline First algorithm, which assigns higher priority to tasks
with closer deadlines.

Understanding real-time scheduling algorithms is crucial for analyzing the
performance and predictability of real-time systems. These algorithms play a
vital role in determining how tasks are scheduled and executed, impacting fac-
tors such as efficiency, responsiveness and the ability to meet timing constraints.
Over the years, researchers and practitioners have dedicated significant efforts
to develop a wide range of scheduling algorithms and techniques tailored to
the unique requirements of real-time systems. The following topics will explore
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some of the most popular and widely used scheduling algorithms that have
emerged from this body of work.

2.2.3.1 Fixed-Priority Scheduling

Fixed-Priority Scheduling is a widely used scheduling approach in real-
time systems, where each task is assigned a static priority that does not change
during runtime. Therefore, in the context of real-time systems, fixed priority and
static scheduling typically refer to the same concept of assigning static priorities
to tasks and the terms can be used interchangeably.

In fixed-priority scheduling, tasks are prioritized based on their criticality
or timing requirements. The task with the highest priority is executed first, fol-
lowed by tasks with lower priorities. If multiple tasks have the same priority, the
scheduling policy may employ additional rules, such as first-come-first-served or
round-robin, to determine the order of execution.

One of the main advantages of fixed-priority scheduling is its simplicity
and efficiency. The scheduling decisions can be made statically during the de-
sign phase of the system, which eliminates the need for runtime priority calcula-
tions. This simplicity enables predictable behavior and facilitates the analysis of
the system’s timing properties.

Rate Monotonic (RM) scheduling is one of the most commonly used static
priority scheduling algorithms in real-time systems. It assigns priorities to tasks
based on their periods, where tasks with shorter periods are assigned higher
priorities. The fundamental principle of the RM algorithm is that tasks with shorter
periods have higher rates of execution and therefore require more frequent
access to system resources. By assigning priorities inversely proportional to task
periods, the RM algorithm ensures that tasks with tighter timing constraints are
scheduled with higher priority.

One of the key advantages of the RM algorithm is its simplicity, as it only
requires knowledge of task periods during the design phase. This simplicity allows
for efficient implementation and low computational overhead. Moreover, the
RM algorithm provides a schedulability guarantee, stating that a set of tasks
scheduled using RM will meet all their timing constraints if the total utilization
of the system does not exceed a certain threshold, known as the utilization
bound (LIU, 2000; BUTTAZZO, 2011).

Several studies have further extended the analysis and understanding of
the RM algorithm. For example, researchers have investigated its optimality in
different scenarios and explored its limitations in handling task dependencies,
sporadic tasks and other practical considerations (BAKER, 2001; SPRUNT; BURNS;
BERNAT, 2002). Additionally, variations of the RM algorithm, such as the Deadline
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Monotonic (DM) algorithm, have been proposed to accommodate tasks with
varying deadlines and provide enhanced scheduling guarantees (LIU; LAYLAND,
1973; SRINIVASAN; BARUAH; GOOSSENS, 2011).

However, it is important to note that the RM algorithm assumes that tasks
are independent and have deterministic execution times. Additionally, it as-
sumes that preemption and context switching incur negligible overhead. These
assumptions may not hold in all real-time systems and the limitations of the RM
algorithm should be carefully considered when applying it in practice.

Despite its limitations, the RM algorithm has been widely adopted and
extensively studied due to its simplicity, predictability and efficiency. It serves
as a fundamental benchmark for comparing and evaluating other scheduling
algorithms in real-time systems (LIU, 2000; BUTTAZZO, 2011).

Fixed-priority scheduling has been extensively studied in the real-time sys-
tems’ literature. Researchers have developed various analysis techniques and
schedulability tests to determine the feasibility of task sets under fixed-priority
scheduling (LIU; LAYLAND, 1973; BARUAH; GOOSSENS, 2005; CACCAMO; BUT-
TAZZO; LIPARI, 2002). Additionally, techniques such as priority inheritance and
priority ceiling protocols have been proposed to address issues related to priority
inversion and ensure the correctness of the scheduling order (SHA; RAJKUMAR,
2004; BURNS; WELLINGS, 2015).

While fixed-priority scheduling provides simplicity and analyzability, it may
not always be suitable for systems with dynamic task sets or highly variable
workload. In such cases, dynamic priority scheduling algorithms like EDF can
offer more flexibility and responsiveness. The choice between fixed-priority and
dynamic-priority scheduling depends on the specific requirements and charac-
teristics of the real-time system.

2.2.3.2 Dynamic-Priority Scheduling

Dynamic-priority scheduling algorithms are widely used in real-time sys-
tems to manage task execution and meet stringent timing constraints. These
algorithms assign priorities to tasks dynamically during runtime based on spe-
cific criteria such as deadlines, execution times, or urgency (ABENI; BUTTAZZO;
PALOPOLI, 2000; BUTTAZZO, 2011)

Dynamic-priority scheduling offers flexibility and adaptability, allowing
real-time systems to handle varying workloads and dynamic task arrivals. It en-
ables tasks with higher priority or more urgent timing requirements to be sched-
uled and executed promptly, ensuring timely completion and meeting critical
deadlines. The priority assignment in dynamic-priority scheduling algorithms can
be based on factors like relative deadlines, execution times, importance, or crit-
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icality of tasks (BARUAH; FISHER, 2006).
By dynamically adjusting task priorities, dynamic-priority scheduling algo-

rithms make efficient use of system resources and ensure that tasks with the most
urgent timing constraints receive the necessary attention. This approach opti-
mizes the overall system performance, improves task schedulability and reduces
the likelihood of deadline misses (LIU; LAYLAND, 1973; OLIVEIRA, 2020).

Dynamic-priority scheduling algorithms require runtime monitoring and
adjustment of priorities, which can introduce additional computational over-
head. However, the benefits of dynamic-priority scheduling, such as adaptabil-
ity to changing conditions and the ability to handle dynamic task sets, often
outweigh the associated overhead (SRINIVASAN; BARUAH; GOOSSENS, 2011;
ANDERSON; BARUAH; KATCHER, 2017).

One prominent example of a dynamic-priority scheduling algorithm is Ear-
liest Deadline First (EDF). It assigns priorities to tasks based on their relative dead-
lines, where tasks with closer deadlines are assigned higher priorities. The funda-
mental principle of the EDF algorithm is to prioritize tasks with earlier deadlines
to ensure timely execution (ABENI; BUTTAZZO; LIPARI, 2000; BARUAH; GOOSSENS;
SRINIVASAN, 2009).

One of the key advantages of the EDF algorithm is its optimality in schedul-
ing uniprocessor systems. EDF is known as an optimal scheduling algorithm be-
cause it can schedule any set of feasible tasks if the system is schedulable. This
optimality property makes EDF an attractive choice for applications with strict
timing requirements (BARUAH; FISHER, 2006).

The EDF algorithm dynamically adjusts the task priorities at runtime, con-
sidering the remaining execution time and the relative deadlines of tasks. When-
ever a scheduling decision is made, the task with the earliest deadline is se-
lected for execution. This approach ensures that the task with the most urgent
timing constraint is always scheduled first, increasing the chances of meeting
all deadlines (ABENI; BUTTAZZO; LIPARI, 2003; SRINIVASAN; BARUAH; GOOSSENS,
2011; SPRUNT; BURNS; BERNAT, 2002).

However, it is important to note that the EDF algorithm requires accurate
knowledge of task execution times and deadlines. In practice, estimation or
measurement techniques are employed to obtain these parameters. Addition-
ally, the EDF algorithm assumes that preemption and context switching can be
performed with negligible overhead.

Several studies have explored the theoretical properties and practical
aspects of the EDF algorithm. Researchers have analyzed its schedulability con-
ditions, studied its performance in different scenarios and proposed enhance-
ments to handle various system constraints (LEHOCZKY; SHA; DING, 1989; ABENI;
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BUTTAZZO; LIPARI, 2003; BARUAH; GOOSSENS; SRINIVASAN, 2009). Furthermore,
the EDF algorithm has been extended to handle multiprocessor systems and
has served as a basis for developing more advanced scheduling algorithms,
such as the earliest-deadline-off-first (EDF-ON) algorithm (ABENI; BUTTAZZO; LI-
PARI, 2000; ANDERSON; BARUAH; KATCHER, 2017).

In real-time systems, the choice between the EDF and RM algorithms de-
pends on the specific requirements of the application. While EDF offers optimal-
ity and flexibility in handling dynamic tasks, RM provides simplicity and efficiency
in managing static task sets. Understanding the characteristics and trade-offs of
these scheduling algorithms is crucial for selecting the most suitable approach
for a given real-time system.

2.2.3.3 Resource Reservation-based Scheduling

Resource reservation-based scheduling is a powerful paradigm for ensur-
ing the timely execution of tasks in real-time systems by allocating dedicated re-
sources to each task (LIU, 2000; BUTTAZZO, 2011; OLIVEIRA, 2020). This approach
aims to provide strong guarantees and meet strict timing constraints.

In resource reservation-based scheduling, tasks are assigned fixed and
exclusive resources based on their timing requirements (AYAV; BARUAH, 2004).
These resources can include CPU time, memory, communication bandwidth, or
other system resources. The system reserves and allocates these resources to
tasks during their execution, ensuring their availability when needed.

One well-known technique in resource reservation-based scheduling is
the Rate-Monotonic Server (RMS) algorithm (BUTTAZZO, 2011). The RMS algorithm
combines the principles of fixed-priority scheduling with resource reservation. It
assigns priorities to tasks based on their periods, similar to the RM algorithm (LIU,
2000). Additionally, it employs server-based scheduling, where specific resources
are dedicated to each task throughout its execution.

By employing resource reservation-based scheduling, real-time systems
can achieve enhanced predictability and ensure the timely execution of critical
tasks. This approach has been widely applied in safety-critical domains such as
aerospace, automotive and industrial control systems.

2.2.4 Real-Time Systems and Cache-Related Parameters

Caches play a vital role in computer systems, offering faster access to
frequently accessed data and reducing memory access latency. However, in
real-time systems, the presence of caches introduces additional complexities
and challenges due to their impact on timing predictability (BURNS; WELLINGS,
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2015; CACCAMO; BUTTAZZO; LIPARI, 2002; WILHELM; ENGBLOM, 2008; BLETSAS;
SOUDRIS, 2009).

Real-time systems have stringent timing requirements, where meeting
deadlines is critical for the system’s correct operation. Caches introduce uncer-
tainty in the timing behavior of programs due to their caching and replacement
policies. Cache replacement policies determine which cache lines are evicted
when the cache is full and a new entry needs to be brought in. The choice of
cache replacement policy significantly affects the predictability of cache be-
havior and, consequently, the timing predictability of real-time systems (BURNS;
WELLINGS, 2015).

Traditional cache replacement policies, such as Least Recently Used
(LRU), are designed to optimize overall system performance by evicting the
least recently used cache lines. However, LRU and similar policies may not be
suitable for real-time systems, as they do not prioritize timing predictability. These
policies can lead to cache thrashing, where cache lines critical for meeting
timing constraints are frequently evicted, resulting in increased cache misses
and potentially missed deadlines (BURNS; WELLINGS, 2015).

In addition to cache replacement policies, cache partitioning techniques
can be employed in real-time systems to allocate separate cache regions for
critical tasks or data. By isolating critical components in dedicated cache parti-
tions, interference from other tasks or processes can be minimized, enhancing
timing predictability. Cache partitioning provides better control over cache ac-
cess and eviction, ensuring that critical data is not displaced by less critical or
non-real-time tasks (HOORNAERT et al., 2021).

To optimize cache parameters and replacement policies for real-time sys-
tems, thorough analysis of the application’s timing requirements and criticality
of data is essential. Performance evaluation techniques, such as worst-case
execution time analysis and cache-related preemption delay analysis, can be
employed to assess the impact of different cache configurations on timing pre-
dictability (ALTMEYER et al., 2014).

2.3 SUMMARY

Caches are essential components of computer systems, providing faster
access to frequently accessed data and reducing memory access latency.
However, their presence in real-time systems introduces complexities and chal-
lenges due to their impact on timing predictability. Real-time systems have strict
timing requirements, where meeting deadlines is crucial for correct operation.
Caches introduce uncertainty in program timing due to caching and replace-
ment policies.
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Traditional cache replacement policies, like Least Recently Used (LRU),
optimize overall system performance but may not prioritize timing predictabil-
ity. These policies can lead to cache thrashing, where critical cache lines are
frequently evicted, resulting in increased cache misses and potentially missed
deadlines. To address this, cache partitioning techniques allocate separate
cache regions for critical tasks or data, minimizing interference and enhancing
timing predictability.

Optimizing cache parameters and replacement policies for real-time sys-
tems requires a thorough analysis of timing requirements and data criticality.
Performance evaluation techniques, such as worst-case execution time anal-
ysis and cache-related preemption delay analysis, help assess the impact of
different cache configurations on timing predictability.

Understanding the relationship between cache replacement policies and
real-time system predictability is crucial for reliable operation and meeting tim-
ing constraints. By selecting suitable cache replacement policies, employing
cache partitioning techniques, and performing thorough analysis, real-time sys-
tems can achieve improved timing predictability and effectively support critical
real-time applications.
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3 RELATED WORK

This chapter provides an overview of relevant research papers that have
contributed to the advancement of the subjects explored in this work. The chap-
ter is structured as follows:

Section 3.1 reviews previous studies focusing on cache line replacement
policies that have been specifically designed to optimize real-time systems.
These papers delve into various aspects of cache management, addressing
challenges related to cache line replacement strategies and proposing novel
approaches to enhance the predictability and performance of real-time sys-
tems.

Section 3.2 presents a compilation of research work pertaining to mem-
ory partitioning mechanisms. These papers investigate different techniques and
algorithms for partitioning the memory space to optimize resource allocation
and utilization in real-time systems. They explore the trade-offs between differ-
ent memory partitioning schemes and their impact on system performance,
determinism and timing guarantees.

Section 3.3 provides an overview of relevant literature focused on scratch-
pad memories (SPMs). These papers highlight the significance of SPMs in real-
time systems and explore their benefits, such as deterministic behavior, reduced
cache-related delays, control over data placement and lower power consump-
tion. They discuss various aspects of SPM design, optimization techniques and
integration strategies within cache hierarchies to improve the performance and
predictability of real-time systems.

By reviewing the findings and insights presented in these papers, this chap-
ter aims to provide a comprehensive understanding of the existing body of
knowledge related to cache line replacement policies, memory partitioning
mechanisms and the role of scratchpad memories in optimizing real-time sys-
tems. This knowledge serves as a foundation for the development of the sub-
sequent chapters and contributes to addressing the specific objectives of this
work.

3.1 CACHE REPLACEMENT POLICIES FOR REAL TIME SYSTEMS

Cache replacement policies play a crucial role in determining cache
performance. Several studies have focused on evaluating and improving cache
replacement policies specifically for real-time systems.

Hardy et al. (2005) investigated the impact of cache-related preemp-
tion delays on real-time systems and proposed techniques to mitigate their
effects (HARDY; PUAUT; PAUTET, 2005). They analyzed how preemption caused
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by cache-related delays affects the schedulability of real-time tasks. The study
identified two main factors contributing to cache-related preemption delays:
inter-task cache interference and self-interference. They introduced techniques
such as static cache partitioning, dynamic cache partitioning and cache lock-
ing to reduce these delays and improve the schedulability of real-time systems.

Pautet et al. (2004) explored cache optimization techniques to enhance
the performance of real-time systems by minimizing cache-related preemp-
tion delays (PAUTET; PUAUT; PELLETIER, 2004). They proposed a technique called
Task-Related Cache Partitioning (TRCP), which dynamically partitions the cache
based on the behavior of individual tasks. The TRCP approach allocates cache
space proportionally to the memory requirements of tasks, reducing cache
conflicts and improving cache hit rates. The study demonstrated the effective-
ness of TRCP in reducing cache-related preemption delays and improving the
predictability of real-time systems.

Zhao et al. (1997) evaluated different cache replacement policies and
their impact on real-time performance (ZHAO; MOSSE; KNAG, 1997). They con-
sidered policies such as Least Recently Used (LRU), Random and Pseudo-Least
Recently Used (PLRU). The study used a set of benchmarks and real-time task
sets to analyze the behavior of these policies in terms of cache hit rates and
preemption delays. Their results showed that the choice of cache replacement
policy significantly affects the performance of real-time systems. While LRU is
a widely used policy, it may not always provide the best performance for real-
time workloads. The study highlighted the need for tailored cache replacement
policies that consider the unique characteristics of real-time systems.

Dobbing et al. (2007) proposed a method to predict the worst-case num-
ber of cache misses to improve WCET analysis (DOBBING; DYSTER; GERNDT, 2007).
They introduced a cache modeling approach that considers the cache behav-
ior under worst-case conditions. By accurately estimating the number of cache
misses, the WCET analysis can provide tighter bounds on the execution time of
real-time tasks. The study presented an algorithm to compute the worst-case
number of cache misses and evaluated its effectiveness using a set of bench-
marks. The results demonstrated the potential of cache modeling in improving
the accuracy of WCET analysis.

Reineke et al. (2007) focused on the predictability of cache replacement
policies and provided insights into the characteristics and limitations of different
policies (REINEKE et al., 2007). They compared policies such as LRU, FIFO and
Random in terms of their predictability and the worst-case cache behavior they
can cause. The study showed that LRU, while widely used, can lead to unpre-
dictable cache behavior, making it challenging to analyze the worst-case exe-
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cution time of tasks. The authors discussed the trade-offs between predictability
and performance and highlighted the need for cache replacement policies
that offer better predictability without compromising performance.

Reineke et al. (2014) extended their work by introducing the Selfish-LRU
policy, which considers preemption-aware caching for improved predictability
and performance (REINEKE et al., 2014). The Selfish-LRU policy aims to reduce
the interference caused by cache preemption by prioritizing the eviction of
cache blocks belonging to preempted tasks. The study evaluated the Selfish-LRU
policy against traditional LRU and demonstrated its effectiveness in improving
the predictability of cache behavior and reducing the number of preemption-
induced cache misses. The results highlighted the importance of preemption-
aware caching techniques in real-time systems.

Qureshi et al. (2006) presented a case for MLP (Memory Level Parallelism)-
Aware Cache Replacement (QURESHI et al., 2006). They proposed a policy
that takes into account the memory access pattern and exploits the MLP char-
acteristics to improve cache performance. The study showed that MLP-aware
replacement policies can significantly reduce the number of cache misses and
improve the overall system performance. The authors emphasized the impor-
tance of considering memory access patterns in cache replacement policies,
especially in real-time systems where minimizing cache misses is critical for meet-
ing timing constraints.

Nelissen et al. (2017) conducted a survey and empirical evaluation of
cache replacement policies for real-time systems (NELISSEN et al., 2017). They
discussed various policies, including LRU variants, pseudo-LRU, Random and First-
In-First-Out (FIFO), and evaluated their performance using a set of benchmarks.
The study analyzed different aspects such as cache hit rates, cache conflicts,
and the predictability of these policies. The results provided valuable insights into
the strengths and weaknesses of each policy, aiding the selection and design
of cache replacement policies for real-time systems.

The studies reviewed in this section highlight the importance of cache
replacement policies in real-time systems. While traditional policies like LRU are
widely used, they may not always be the best choice for real-time workloads.
Techniques such as dynamic cache partitioning, preemption-aware caching
and MLP-aware replacement policies have shown promising results in improving
cache utilization, predictability and performance. These findings serve as a foun-
dation for further research and the development of novel cache replacement
policies tailored to the requirements of real-time systems.
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3.2 CACHE PARTITIONING

Cache partitioning is a technique employed to allocate cache resources
among different tasks or task groups in a multi-tasking real-time system. The goal
is to ensure each task receives a dedicated portion of the cache, reducing
interference and improving the predictability of cache behavior.

Patel et al. (2015) characterized the impact of cache partitioning on
real-time performance by considering factors such as cache hit rates, cache
conflicts and the schedulability of tasks (PATEL; PERUMALLA, 2015). The study
proposed two cache partitioning techniques: Fixed-Size Partitioning (FSP) and
Variable-Size Partitioning (VSP). FSP divides the cache into fixed-sized parti-
tions assigned to different tasks, while VSP dynamically adjusts the partition
sizes based on task demands. The experiments conducted using a set of real-
time benchmarks demonstrated the benefits of cache partitioning in improving
task isolation and reducing cache conflicts, leading to better real-time perfor-
mance.

Sun et al. (2018) investigated cache partitioning for hard real-time sys-
tems with mixed-criticality workloads, where tasks with different criticality levels
coexist (SUN; FAN; DENG, 2018). They proposed a mixed-criticality cache parti-
tioning technique that guarantees cache space to high-criticality tasks while
allowing low-criticality tasks to use the remaining cache space opportunistically.
The study analyzed the impact of different partitioning strategies on the cache
hit rates and execution times of tasks with varying criticality levels. The results
showed that mixed-criticality cache partitioning can effectively utilize cache
resources while maintaining the required level of isolation and predictability for
high-criticality tasks.

Lesage et al. (2012) introduced PRETI, a partitioned real-time shared
cache technique for mixed-criticality real-time systems (LESAGE; PUAUT; SEZNEC,
2012). PRETI aims to provide strong isolation between tasks with different criti-
cality levels by allocating dedicated cache partitions to each criticality level.
The study presented an analysis of the worst-case cache behavior of mixed-
criticality tasks and demonstrated the effectiveness of PRETI in ensuring pre-
dictable cache performance. The experiments conducted on synthetic task
sets validated the benefits of PRETI in terms of improved isolation and reduced
interference between tasks.

Altmeyer et al. (2014) evaluated the performance of cache partitioning
for hard real-time systems, focusing on the impact of partitioning granularity
and the allocation strategy on cache utilization and schedulability (ALTMEYER
et al., 2014). The study compared different partitioning approaches, including
page-level partitioning and block-level partitioning. The results showed that finer-
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grained partitioning can lead to better cache utilization but may introduce
higher overhead due to cache management. The study provided valuable
insights into the trade-offs associated with cache partitioning in real-time systems
and highlighted the need for careful consideration of partitioning strategies
based on the system requirements.

Brandenburg et al. (2010) proposed a dynamic cache partitioning tech-
nique for hard real-time systems based on the system’s runtime behavior and
the demands of individual tasks (BRANDENBURG; ANDERSON; BARUAH, 2010).
The approach dynamically adjusts cache partitions according to the changing
requirements of tasks, aiming to maximize the overall system performance. The
study presented an analysis of the worst-case cache behavior and the impact
of dynamic partitioning on task schedulability. The experiments conducted us-
ing synthetic and real-world benchmarks demonstrated the effectiveness of
dynamic cache partitioning in improving cache utilization and overall system
performance.

Gracioli and Fröhlich proposed a page coloring mechanism able to par-
tition the data for both the application and RTOS (GRACIOLI; FRöHLICH, 2013).
The mechanism separates the memory request in two heaps, one that serves ap-
plication requests and another one that serves OS requests. The work evaluated
the impact of cache interference caused by the RTOS into the schedulability of
critical tasks.

The studies discussed in this section shed light on cache partitioning tech-
niques for real-time systems. Cache partitioning provides a means to ensure
task isolation and predictable cache behavior, especially in multi-tasking envi-
ronments. Techniques such as fixed-size partitioning, variable-size partitioning,
mixed-criticality partitioning and dynamic partitioning offer different trade-offs in
terms of cache utilization, overhead and isolation guarantees. These techniques
serve as valuable tools for system designers to achieve better cache utilization
and improved real-time performance.

3.3 SCRATCHPAD MEMORIES IN HARD REAL-TIME SYSTEMS

Scratchpad memories (SPMs) have gained attention as an alternative to
caches in real-time systems. SPMs provide predictable and deterministic mem-
ory access times, eliminating the variability and interference associated with
caches. This section reviews studies focusing on the utilization and management
of scratchpad memories in hard real-time systems.

Venkatasubramanian et al. (2006) presented a dynamic management
technique for scratchpad memories in real-time systems (VENKATASUBRAMA-
NIAN et al., 2006). The study proposed a compiler-driven approach to allocate
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data objects to the scratchpad memory, aiming to optimize cache utilization
and improve the predictability of memory accesses. The technique leverages
static analysis and runtime profiling to identify frequently accessed data objects
and allocate them to the scratchpad memory. The experiments conducted
using real-time benchmarks demonstrated the benefits of the dynamic man-
agement of scratchpad memories in reducing memory access latency and
improving the overall system performance.

Palem et al. (2003) focused on modeling and optimizing embedded mem-
ory architectures, including scratchpad memories (PALEM; KUNDU, 2003). The
study provided an in-depth analysis of the benefits and challenges associated
with scratchpad memories in real-time systems. It discussed different optimiza-
tion techniques, such as data placement and scheduling, to exploit the ad-
vantages of scratchpad memories and reduce memory access latencies. The
authors emphasized the importance of considering both the software and hard-
ware aspects in the design and utilization of scratchpad memories for real-time
systems.

Puaut and Pais (2007) conducted a quantitative comparison between
scratchpad memories and locked caches in hard real-time systems (PUAUT;
PAIS, 2007). The study presented an analytical framework to evaluate the per-
formance and predictability of these memory structures. It considered factors
such as memory access latency, cache conflicts and worst-case execution
times. The results showed that scratchpad memories can provide better pre-
dictability and reduce memory access latencies compared to locked caches.
However, the study also highlighted the need for careful consideration of the
memory size and data placement techniques to fully exploit the benefits of
scratchpad memories.

Chen et al. (2004) proposed a compiler-directed approach for scratch-
pad memory management in real-time systems with mixed-criticality work-
loads (CHEN; HAN; BURNS, 2004). The study introduced techniques to allocate
scratchpad memory resources based on the criticality levels of tasks, aiming to
ensure the isolation and predictability of high-criticality tasks. The experiments
conducted using synthetic and real-world benchmarks demonstrated the effec-
tiveness of the proposed approach in guaranteeing the required level of isola-
tion for high-criticality tasks while maximizing the overall system performance.

The studies presented in this section highlight the advantages of scratch-
pad memories in real-time systems. Scratchpad memories offer deterministic
and predictable memory access times, making them suitable for hard real-time
applications. Dynamic management techniques, data placement strategies
and compiler-directed approaches contribute to optimizing the utilization of
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scratchpad memories and improving the overall system performance. These
studies provide valuable insights for system designers considering scratchpad
memories as an alternative to caches in real-time systems.

3.4 PARTIAL CONSIDERATIONS

In this chapter, we have provided a comprehensive review of the related
work on cache-related issues in real-time systems. The discussed papers have
contributed to our understanding of cache replacement policies, cache par-
titioning techniques, and the utilization of scratchpad memories. By examining
the different approaches and experimental evaluations presented in these pa-
pers, we have gained valuable insights into optimizing cache utilization, improv-
ing predictability and enhancing the performance of real-time systems.

The analysis of cache replacement policies has emphasized the signifi-
cance of selecting appropriate policies tailored to the requirements of real-time
systems. The studies have highlighted the trade-offs between cache hit rates,
worst-case execution time (WCET) analysis, and predictability. Various policies,
such as LRU-based policies, MLP-aware policies and preemption-aware policies,
have been proposed to address these trade-offs and improve cache perfor-
mance. The empirical evaluations and experimental results conducted in these
studies have provided guidance for selecting cache replacement policies that
suit the characteristics of real-time systems.

Cache partitioning techniques have been investigated to ensure task
isolation and predictable cache behavior in multi-tasking real-time systems.
The research in this area has focused on achieving performance isolation be-
tween tasks with different criticality levels and minimizing interference caused
by shared caches. Hardware-based partitioning, software-based partitioning
and mixed-criticality cache partitioning approaches have been proposed and
evaluated. These techniques offer mechanisms to effectively partition cache
resources and optimize cache allocation for individual tasks, thereby improving
system predictability and meeting real-time requirements.

Additionally, the utilization of scratchpad memories has been explored
as an alternative to traditional caches in hard real-time systems. Scratchpad
memories provide deterministic and predictable memory access times, making
them suitable for time-critical applications. The studies discussed in this chap-
ter have highlighted dynamic management, data placement, and compiler-
directed approaches for utilizing scratchpad memories. These techniques of-
fer insights into efficient allocation of data to scratchpad memories, reducing
cache misses, and enhancing overall system performance.

The literature reviewed in this chapter contributes to our understanding of



72 Chapter 3

cache-related challenges and opportunities in the context of real-time systems.
The findings provide valuable guidance for researchers and system designers in
making informed decisions regarding cache design and optimization strategies.
By considering the specific requirements and constraints of real-time systems,
further research can build upon the foundations established by these studies,
leading to the development of advanced techniques and approaches to ad-
dress cache-related issues. Ultimately, these advancements will contribute to
improving the predictability, performance, and efficiency of real-time systems.

With the completion of this chapter, we have achieved specific objective
1 proposed in Chapter 1, fulfilling the goal of providing a comprehensive review
of the related work on cache-related issues in real-time systems.
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4 EVALUATION OF CACHE REPLACEMENT POLICIES

In this chapter, we delve into the concepts presented in the motivation
section (Section 1.1). Our objective is to evaluate the behavior of different
cache line replacement policies across various applications. This evaluation
aims to ascertain the impact of a cache architecture that offers task partition-
ing and customizable cache parameters on the schedulability rate of critical
tasks within a real-time system.

The subsequent sections provide detailed explanations of the following
topics. First, we introduce the Cachegrind simulation tool (Section 4.1), which
enables us to assess the effects of substitution policies on benchmarks. By ex-
amining the number of cache misses and execution time, we can analyze the
performance implications of different policies. The outcomes of this analysis are
presented in Section 4.2. Finally, we delve into Section 4.3, where we conduct a
study to determine the improvements in system schedulability resulting from the
employed cache architecture.

4.1 CACHEGRIND: PROFILING CACHE BEHAVIOR IN DYNAMIC ANALYSIS

Cachegrind, an instrumental tool provided by Valgrind (SEWARD et al.,
2021), plays a pivotal role in dynamic analysis by facilitating cache simula-
tions and generating detailed profiles. This section explores the significance of
Cachegrind within the context of cache behavior analysis and its implications
for the evaluation of cache substitution policies in a real-world scenario.

Cachegrind, an open-source tool widely used for dynamic analysis, fo-
cuses on providing insights into cache performance by simulating cache hier-
archies and collecting valuable profiling data (SEWARD et al., 2021). By utilizing
Cachegrind, researchers gain access to crucial information, including the num-
ber of executed instructions (Irefs), accesses and misses in the L1 instruction
cache (I1 refs and I1 misses, respectively). Additionally, it provides data-related
metrics such as references to data (Drefs), accesses and misses in the L1 data
cache (D1 refs and D1 misses, respectively), as well as the number of misses in
the last level cache (LL misses).

The standard version of Cachegrind, developed by its creators (SEWARD
et al., 2021), employs the widely-used LRU policy for evicting and writing cache
lines following a cache miss. However, in this dissertation, an extension to the
standard Cachegrind version has been implemented to incorporate alternative
cache substitution policies such as FIFO, RANDOM, LIP, BIP and DIP. This extension
enhances the flexibility and scope of analysis when evaluating the impact of
different cache substitution policies on real-time system performance.
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The integration of Cachegrind into the research methodology ensures
accurate and detailed cache behavior profiling. By employing Cachegrind’s
extended version, it becomes possible to assess the influence of various cache
substitution policies on cache hit rates, cache miss rates and overall cache
performance. The obtained insights provide researchers with a deeper under-
standing of cache behavior in different scenarios and aid in making informed
decisions regarding cache parameter configurations for real-time systems.

In summary, Cachegrind, a powerful and customizable tool, enables dy-
namic analysis and profiling of cache behavior. Its integration into this disser-
tation facilitates the evaluation of cache replacement policies, enabling re-
searchers to make informed decisions based on comprehensive cache perfor-
mance analysis.

4.2 CATEGORIZATION OF BENCHMARKS AND EVALUATION OF REPLACEMENT
POLICIES

In this section, we discuss the categorization of benchmarks used to eval-
uate the performance of different cache replacement policies. Additionally,
we analyze the impact of these policies on the execution time of various ap-
plications, aiming to understand the influence of cache architecture on the
schedulability rate of critical tasks in a real-time system.

To assess the performance variation among different applications when
cache replacement policies are modified and to evaluate the effect of these
policies on the application execution time, four sets of benchmarks were em-
ployed, listed below. These benchmarks represent both memory-intensive work-
loads, such as those encountered in autonomous vehicles (Cortex (THOMAS et
al., 2014) and PARSEC (BIENIA, 2011)) and low-memory applications, such as sim-
ple controllers (Mibench (Guthaus et al., 2001) and Mälardalen (GUSTAFSSON
et al., 2010)).

Mälardalen1 - The Mälardalen benchmarks, made freely available by the
Mälardalen University of Sweden, serve as a means to evaluate and compare
different Worst-Case Execution Time (WCET) analysis tools (GUSTAFSSON et al.,
2010).

MiBench2 - Developed by researchers at the University of Michigan, the
MiBench benchmarks aim to provide a comprehensive set of programs that
are representative of commercially embedded systems. The benchmarks are
divided into six categories based on their commercial applications: Automotive

1 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
2 http://vhosts.eecs.umich.edu/mibench/
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and Industrial Control, Network, Security, Consumer Devices, Office Automation
and Telecommunications (Guthaus et al., 2001).

Cortex Suite3 - The Cortex Suite, developed at the University of San Diego,
consists of eight applications focusing on natural language processing, com-
puter vision and machine learning (THOMAS et al., 2014).

PARSEC4 - PARSEC (Princeton Application Repository for Shared-Memory
Computers) is a collection of multithreaded benchmarks specifically designed
to represent emerging workloads and serve as a benchmark suite for shared-
memory multiprocessor systems (BIENIA, 2011).

To evaluate the impact of cache replacement policies, experiments were
conducted using the extended version of Cachegrind. The benchmarks were
executed with varying cache partition sizes (from 4 KB to 1 MB), different num-
bers of cache ways (2, 4, 8 and 16) and different cache replacement poli-
cies (LRU, LIP, RANDOM, FIFO and BIP). For the BIP policy, three variations of the
bimodal parameter (ϵ - 1/64, 1/32 and 1/16) were considered, following the
approach in (QURESHI et al., 2007). The cache line size was fixed at 64 bytes.

From these experiments, the number of cache misses was recorded for
each application and replacement policy, resulting in over 18,000 combina-
tions of experiments. The number of cache misses for each replacement policy
was then compared to the performance of the LRU policy, which is commonly
considered the baseline due to its favorable performance characteristics (PAT-
TERSON; HENNESSY, 2013). Based on these comparisons, the applications were
categorized into four groups:

(i) Applications exhibiting significant gains (over 15% improvement) in the
number of cache misses when using at least one replacement policy other than
LRU and under at least one cache configuration setting (considering partition
size and number of ways).

(ii) Applications showing considerable gains (between 10% and 15%) but
not fitting into the previous category.

(iii) Applications with moderate gains (between 5% and 10%) that do not
fall into the first two categories.

(iv) Applications demonstrating low or no gains (up to 5%) that do not fit
into any of the previous categories.

Table 4.1 provides an overview of the benchmark categorization based
on the described methodology.

In order to examine the impact of cache misses on the execution time
of benchmarks, a collection of experiments was conducted using the cache-

3 http://cseweb.ucsd.edu/groups/bsg/
4 https://parsec.cs.princeton.edu/
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Table 4.1 ± Benchmark categorization considering the percentage of cache
misses.

Category Benchmark

No gain to small (0-5%)

Cortex: disparity-qcif, me-medium, sphinx-large, stitch-fullhd, liblinear-tlarge, liblinear-tmedium,
spc-large, spc-medium, spc-small, mser-fullhd, mser-qcif, me-large, me-small, mser-cif,
multi_ncut-fullhd, rbm-small
Parsec: canneal-large, ferret-large, raytrace-large, raytrace-medium, streamcluster-large,
swaptions-large, vips-large
mibench: adpcm_large_en, adpcm_small_dec, bf_large_dec, bf_small_enc, bitcount_large,
bitcount_small, jpeg_large_ppm, jpeg_small_ppm, jpeg_small_progressive, qsort_small,
stringsearch_large, susan_large, susan_large_corner, susan_large_edge, susan_large_smooth,
susan_small, susan_small_corner, susan_small_edge, susan_small_smooth, gsm_small_enc
Malardalen: all

Moderate (5-10%)

Cortex: disparity-fullhd, liblinear-tsmall, texture_synthesis-cif, sphinx-small, svd3-small, kmeans-large,
sift-vga, rbm-large, sphinx-medium
Parsec: vips-medium, vips-small
mibench: gsm_small_dec, stringsearch_small, patricia_small, qsort_large, rijndael_small_dec

Large (10-15%)

Cortex: kmeans-medium, multi_ncut-cif, tracking-fullhd, tracking-vga, disparity-cif, lda-large, lda-small,
rbm-medium, srr-large, tracking-cif, sift-qcif
Parsec: ferret-large
mibench: patricia_large, basicmath_small, fft_small_inv, gsm_large_enc, jpeg_large_progressive,
rijndael_large_enc, rijndael_small_enc

Very large (>15%)

Cortex: kmeans-small, lda-medium, multi_ncut-qcif, pca-large, pca-medium, pca-small, sift-cif, sift-fullhd,
stitch-vga, stitch-cif, svd3-large, svd3-medium, texture_synthesis-fullhd, disparity-vga, srr-medium,srr-small
mibench: basicmath_large, crc32, fft_large, fft_small, gsm_large_dec, rijndael_large_dec, sha_large,
sha_small, dijkstra_large, dijkstra_small

related parameters of five different processors (as shown in Table 4.2). The ex-
ecution time for each benchmark was calculated using Equation 4.1, which
takes into account the number of instructions (I), the number of cache misses
(D_MISSES), the number of data references (D_REFS), the cycles per instruction
(CPI), cache miss penalty (MISS_PENALTY) and cache hit penalty (HIT_PENALTY)
specific to each processor parameter (as defined in Table 4.2).

Table 4.2 ± Parameters of the considered processors.

Processors Parameters

x86 bosch pentium (WONG; BETZ; ROSE, 2016)
2 instructions per cycle, 3 cycles for a cache hit,

and 44 cycles for a cache miss

Intel i7 (HENNESSY; PATTERSON, 2011)
4 instructions per cycle, 4 cycles for L1 hit, 10 for

L2 hit, 35 for L3 hit, 100 cycles for
DRAM leading to 135 miss penalty

ARM Cortex A8 (HENNESSY; PATTERSON, 2011)
2 instructions per cycle, 1 cycle for L1 hit,

11 cycles for L1 miss, and 60 cycles for L2 miss

ARM Cortex A53 (BANSAL et al., 2018)
2 instructions per cycle, 4 cycles for L1 hit,

19 cycles for L2 hit, and 181 cycles for L2 miss

Related work (QURESHI et al., 2007)
4 instructions per cycle, 6 cycles for a cache hit,

and 270 cycles for a cache miss

exec_time = (I × CPI)+

(D_MISSES × MISS_PENALTY )+

((D_REFS − D_MISSES) × HIT_PENALTY )

(4.1)

Figure 4.1 presents the results obtained for the application "pca-small"
with eight cache ways, considering three different processors: (a) Intel i7, (b)
ARM A53 and (c) the processor used in (QURESHI et al., 2007). The x-axis repre-
sents the size of the cache partition, while the y-axis represents the normalized
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execution time compared to the LRU policy. The slashes on the graph indicate
different cache line replacement policies. A slash lower than that of LRU denotes
a reduction in cache misses and, consequently, an improvement in execution
time. The figure highlights the benefits of utilizing various cache replacement
policies and different cache partition sizes for a specific task. For instance, in
Figure 4.1(c), "pca-small" achieved a nearly 40% improvement in runtime with a
128 KB cache partition simply by changing the replacement policy. Furthermore,
the figure illustrates the influence of cache partition size on cache line replace-
ment policies, revealing that certain policies are more sensitive to cache size
than others (e.g., FIFO exhibits less variance compared to RANDOM).

Figure 4.2 presents the results obtained for "svd3-large" on the Intel i7 pro-
cessor, this time varying the number of cache ways (four ways in Figure 4.2(a)
and 16 ways in Figure 4.2(b)). In this scenario, the most significant optimization,
compared to the LRU policy, was achieved with the LIP policy and a 64 KB
cache partition, resulting in approximately a 12% improvement. This figure em-
phasizes that the number of cache ways is another parameter influencing the
performance and behavior of cache replacement policies.

Section 3.2 delves into a comprehensive examination of studies and re-
search findings concerning cache replacement policies within real-time systems.
This section underscores the critical significance of selecting cache replace-
ment policies that meticulously account for the distinctive attributes of real-time
workloads. The results presented in this chapter substantiate these findings with
tangible evidence, aligning seamlessly with the overarching discourse on cache
replacement policies in the realm of real-time systems. Specifically, these results
showcase how diverse cache replacement policies and cache configurations
wield a substantial influence on application performance, bolstering the con-
clusions drawn from the research outlined in section 3.2.

Section 4.3 further utilizes the benchmark categories to evaluate the ben-
efits of employing a per-partition cache line replacement policy in terms of
schedulability.

4.3 SCHEDULABILITY IMPACT ASSESSMENT

The evaluation of the proposed approach involved comparing the
schedulability rates of different cache replacement policies for a set of pe-
riodic tasks running on a single processor. The experiments were conducted
using fixed-priority scheduling algorithms with and without preemption. Two sets
of tasks were generated for each experiment: a base set running under the LRU
policy and an identical set running under the flexible approach that performed
the best.
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(c) Processador usado em (QURESHI et al., 2007).

Figure 4.1 ± Impact of cache misses on execution time per processor, varying
the size of the cache partition in 8 ways.
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Figure 4.2 ± Impact of number of ways on execution time, varying cache parti-
tion size.

The base set of tasks was generated with varying numbers of tasks (n)
ranging from 4 to 32 and the utilization (U) of the tasks was varied from 0 to 1
with a step of 0.05. Each experiment involved generating 10,000 sets of tasks for
each U and n combination. The utilization values of each task were randomly
generated using the impartial method proposed by Emberson et al. (EMBERSON;
STAFFORD; DAVIS, 2010) to ensure a uniformly distributed random distribution of
utilization values that sum up to U . The periods (ti) of the tasks were randomly
generated within the range of 10,000 to 1,000,000 microseconds.

To create the identical set, the WCET of the tasks from the base set was
scaled down by a speedup factor. The speedup factor was determined based
on the cache acceleration category. Table 4.3 presents the cache acceler-
ation categories derived from the benchmark results obtained in Section 4.2.
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The acceleration factors for each category were randomly generated within
specific ranges.

Table 4.3 ± Parameters of schedulability experiments.

Category Parameters

cat I 90%: 0.00 - 0.05, 10%: 0.06 - 0.10

cat II
10%: 0.00 - 0.05, 20%: 0.06 - 0.10
30%: 0.11 - 0.15, 40%: 0.16 - 0.25

cat III 100%: 0.16 - 0.40

For example, in category I, 90% of the tasks had acceleration factors ran-
domly generated between 0.00 and 0.05, while the remaining 10% had factors
between 0.06 and 0.10. The acceleration factors were then used to decrease
the WCET of the tasks in the identical set according to the formula ci · (1 − si),
where ci is the WCET of the original task from the base set, and si is the acceler-
ation factor.

Both the base set and the identical set of tasks had implicit deadlines and
were assigned priorities based on the Rate-Monotonic scheduling policy, where
tasks with shorter periods received higher priorities.

The schedulability rates of the base task sets and their corresponding iden-
tical sets were compared using non-preemptive and preemptive fixed-priority
scheduling algorithms. For the non-preemptive case, the response time analysis
proposed by Davis et al.(DAVIS et al., 2007) was applied, while for the preemp-
tive case, the response time analysis by Audsley et al.(AUDSLEY et al., 1993) was
used. In the preemptive case, it was assumed that each task was assigned a
separate cache partition.

Figure 4.3 shows the schedulability rate for non-preemptive fixed-priority
algorithms, while Figure 4.4 presents the schedulability rate for preemptive fixed-
priority algorithms. The plots (a), (b) and (c) in both figures correspond to cache
acceleration categories I, II and III, respectively. The results indicate that even
in category II with moderate acceleration, the schedulability gain can reach
up to 5% for non-preemptive cases and can maintain system schedulability in
preemptive cases for utilization greater than 0.8. In category III, with the highest
accelerations, the schedulability improvement can reach over 40% for non-
preemptive cases with high-utilization task sets.

These findings highlight the effectiveness of the proposed flexible ap-
proach in improving schedulability rates for real-time systems by utilizing cache
replacement policies that take into account the cache behavior and the char-
acteristics of the tasks. These empirical findings underscore the effectiveness
of the flexible approach proposed in this chapter. This approach capitalizes
on cache replacement policies that account for both cache behavior and
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task characteristics, as elaborated in the section 3.2 on cache replacement
policies. By aligning the research findings from both sections, it becomes evi-
dent that cache replacement policies play a pivotal role in shaping real-time
system performance and schedulability. The selection of cache replacement
policies tailored to real-time workloads is essential for optimizing cache utiliza-
tion, improving predictability, and enhancing overall system performance. These
combined insights serve as a foundation for further research and the develop-
ment of novel cache replacement policies specifically designed to meet the
unique demands of real-time systems.

Figure 4.3 ± Schedulability rate of non-preemptive fixed-priority algorithms.

Figure 4.4 ± Schedulability rate of preemptive fixed-priority algorithms.

4.4 PARTIAL CONSIDERATIONS

This chapter presented a comprehensive evaluation and analysis of
cache replacement policies and their impact on system schedulability. The
chapter starts by conducting an extensive evaluation using a diverse set of
benchmarks. These benchmarks are designed to simulate applications with
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varying memory usage profiles. By applying different cache replacement poli-
cies, the chapter measures and analyzes their performance in reducing cache
misses. The results obtained from this evaluation not only validate the motivation
behind the research but also provide valuable insights into the effectiveness of
different policies in improving cache performance.

Moving forward, the chapter delves into the schedulability analysis of a
cache architecture that supports task partitioning and allows for the selection
of replacement policies per partition. The implemented cache replacement
policies include RANDOM, LRU, FIFO, LIP and BIP. By comparing systems utilizing
this architecture to those relying solely on the LRU policy, the chapter examines
the impact on system schedulability. The analysis demonstrates a clear improve-
ment in schedulability for systems that embrace the proposed architecture,
emphasizing the importance of flexible cache replacement policies in real-time
systems.

By achieving the objectives set for this chapter, a significant contribution is
made to the overall research. The findings not only highlight the effectiveness of
various cache replacement policies in reducing cache misses but also underline
the benefits of incorporating task partitioning and flexible replacement policies
for enhanced schedulability. The findings of this chapter is one of the results that
have been published at 2021 XI Brazilian Symposium on Computing Systems
Engineering (SBESC) (ARAUJO et al., 2021). These insights pave the way for future
research and advancements in cache management techniques for real-time
systems.
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5 IMPLEMENTATION AND EVALUATION OF THE DIP POLICY IN CACHEGRIND

In this chapter, we present the implementation and evaluation of the
DIP (Dynamic Insertion Policy) in Cachegrind. The DIP policy is designed to im-
prove cache performance by dynamically determining the optimal time to in-
sert cache lines. The implementation involves integrating the DIP policy into the
existing cache simulation framework provided by Cachegrind, while the eval-
uation focuses on assessing its effectiveness in improving cache performance
and system schedulability.

The implementation of the DIP policy in Cachegrind involves modifying
the cache management algorithm to incorporate the DIP policy logic. This in-
cludes monitoring the cache state, analyzing access patterns, and dynamically
adjusting the insertion time of cache lines based on the observed patterns. By
implementing the DIP policy within Cachegrind, researchers and developers
can leverage the enhanced cache simulation capabilities to evaluate its per-
formance in various scenarios.

To evaluate the effectiveness of the DIP policy, a series of experiments
are conducted using Cachegrind with the integrated DIP extension. These ex-
periments involve running benchmark applications that represent a range of
real-world scenarios and workload characteristics. During the evaluation, met-
rics such as cache hit rates, cache miss rates and execution times are measured
and compared against other commonly used cache replacement policies. Ad-
ditionally, the impact of the DIP policy on system schedulability is assessed to
determine any potential improvements.

The evaluation of the DIP policy provides valuable insights into its perfor-
mance and suitability for various cache management scenarios. By comparing
its performance against other cache replacement policies, researchers and
practitioners can make informed decisions regarding the selection of cache
policies based on their specific system requirements and workload characteris-
tics.

In summary, this chapter presents the implementation of the DIP policy
within Cachegrind and evaluates its effectiveness in improving cache perfor-
mance and system schedulability. The integrated DIP policy allows for enhanced
cache simulation capabilities, providing researchers and developers with valu-
able insights into the impact of cache policies on overall system performance.

5.1 IMPLEMENTATION OF DIP

Cachegrind operates by instrumenting the program’s binary code, track-
ing each memory access and simulating the behavior of the cache system. It
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maintains a set of cache data structures, including the main cache and aux-
iliary caches, to keep track of cached data and determine cache hits and
misses.

The global mechanism proposed in (QURESHI et al., 2007) offers a strategy
for integrating the DIP policy into cachegrind, as depicted in Figure 5.1. This
mechanism involves the use of two auxiliary directories: ATD-LRU (Auxiliary Tag
Directory with LRU policy) and ATD-BIP (Auxiliary Tag Directory with BIP policy).
These directories contain copies of the main cache blocks stored in the Main Tag
Directory (MTD). Each auxiliary directory exclusively applies either the LRU policy
or the BIP policy. The selection of the policy to be used in the main cache is
dynamically determined based on the number of cache misses in each auxiliary
directory. This decision is facilitated by a binary counter, psel, which tracks and
controls the cache replacement policy selection process. Specifically, psel is
incremented whenever a cache miss occurs in ATD-BIP and decremented when
a cache miss occurs in ATD-LRU. If the most significant bit of psel is 0, indicating
that psel is less than a predefined threshold (psel_msb), the LRU policy is chosen
for the MTD. Otherwise, if the most significant bit is 1, indicating that psel is
greater than or equal to psel_msb, the BIP policy is selected.
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set 0 
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.
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set n
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MTDATD-LRU ATD-BIP

Figure 5.1 ± Global Mechanism of DIP.

To implement the DIP policy in cachegrind, two cache copies are cre-
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ated: one operating under the BIP policy and the other under the LRU policy.
This allows for a direct comparison of the performance between the two policies.
The psel counter is implemented with a configurable number of bits (e.g., 4, 8,
10, 11, 20, or 40 bits). It can be decremented to 0 and incremented to its maxi-
mum binary value (psel_max). Additionally, psel is initialized to the middle value
of its range (psel_msb). At the end of each evaluation, if psel is greater than or
equal to psel_msb, the BIP policy is applied to the main cache. Otherwise, if psel

is less than psel_msb, the LRU policy is selected. For example, with a 4-bit psel,
the range is from 0 to 15, corresponding to the binary values 0000 and 1111,
respectively. In this case, psel_msb would be set to 8, which is 1000 in binary,
representing the first value with a 1 in the most significant bit. The initialization of
psel to psel_msb ensures it starts in the middle of the [0, 15] range.

Algorithm 5.1 outlines the implementation of the DIP policy in cachegrind.
It initializes the main cache, as well as the auxiliary caches for the LRU and BIP
policies. The static psel variable is declared with a size specified by psel_size. The
LRU policy is applied to cache_lru, while the BIP policy is applied to cache_bip.

During cache access, if a cache miss occurs in cache_lru, psel is incre-
mented if it is less than psel_max. Similarly, if a cache miss occurs in cache_bip,
psel is decremented if it is greater than 0. Based on the value of the most sig-
nificant bit of psel, the corresponding policy (LRU or BIP) is applied to the main
cache, cache_main.

1 define cache_main; /* initialize the main tag */

2 define cache_lru; /* inicialize the auxiliary tag for LRU */

3 define cache_bip; /* inicializa the auxiliary for BIP */

4

5 static psel:[psel_size]; /* declare variable psel */

6

7 apply LRU at cache_lru;

8 apply BIP at cache_bip;

9

10

11 if miss at cache_lru

12 if psel < psel_max

13 psel++;

14 if miss at cache_bip

15 if psel > 0

16 psel--;

17

18 if msb_psel=0

19 apply LRU at cache_main;
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20 else

21 apply BIP at cache main;

Algorithm 5.1 ± Algorithm for DIP policy.

5.2 PARAMETERS OF EXPERIMENTS

To evaluate the implementation of the DIP policy in Cachegrind, several
experiments were conducted using different sets of benchmarks. The bench-
marks were categorized into three sets: Mälardalen, MiBench and CortexSuite.
The specific benchmarks used in each set are listed in Table 5.1.

The experiments were conducted using different cache parameters, as
shown in Table 5.2. The cache partition size was varied from 2KB to 1MB and
the number of cache ways ranged from 2 to 32. The cache line size was kept
constant at 64 bytes throughout the experiments. Additionally, the size of the
psel controller, which determines the behavior of the DIP policy, was also varied.
The psel sizes considered were 4 bits, 8 bits, 10 bits, 11 bits, 20 bits and 40 bits.
This variation in psel size aimed to understand the impact it has on the behavior
of the DIP policy, as the original work by (QURESHI et al., 2007) only defined psel

sizes of 10 and 11 bits.

Table 5.1 ± Benchmarks used in the experiments.

Set Benchmark

Mälardalen compress, edn, insertsort, prime

MiBench
adpcm, basicmath, bitcount, bf, crc32, dijkstra, fft,
gsm, jpeg, patricia, qsort, sha, stringsearch, susan

Cortex Suite kmeans, pca, spc, svd3

By conducting experiments with different cache parameters and psel

sizes, it becomes possible to analyze the behavior of the DIP policy under vari-
ous configurations. The goal is to observe the number of failures in the L1 cache
caused by the LRU, BIP and DIP policies and compare their performances across
different benchmarks and cache settings. These experiments provide insights
into the effectiveness of the DIP policy and its potential advantages over tradi-
tional cache replacement policies.

5.3 ASSESSMENT OF THE DIP POLICY IMPLEMENTED IN CACHEGRIND

The experiments to evaluate the DIP used the following methodology: the
Cachegrind ran with each benchmark matching each of the cache parame-
ters from Table 5.2 for the LRU, BIP and DIP policies. In all, more than 16,000 results
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Table 5.2 ± Cache parameters applied in the experiments.

Parameter Set up

Partition Size
2 kB, 4 kB, 8 kB, 16 kB, 32 kB, 64 kB,
128 kB, 256 kB, 512 kB, 1 MB

Ways 2, 4, 8, 16 e 32
Line size 64 B
psel size 4b, 8b, 10b, 11b, 20b, 40b

were generated with performance information from the L1 and LLC cache. With
these results, graphs were generated of the number of cache misses as a func-
tion of the cache partition size (Figures 5.2, 5.3, 5.4 and 5.5), number of ways
(Figure 5.6) and size of psel (Figure 5.8). The behavior of psel was also analyzed
in Figure 5.7.

In the graphs of Figures 5.2, 5.3, 5.4 and 5.5, the y-axis represents the num-
ber of cache misses occurred in each application, respectively kmeans, pca,

spc and svd3, when using the LRU, BIP and DIP policies; the x-axis contains the
cache partition size values. In the figures the graphs are organized according
to the number of ways and number of bits of psel, being (a) 8 ways and 4 bits,
(b) 8 ways and 10 bits, (c) 16 ways and 4 bits and (d) 16 ways and 10 bits. The
first conclusion to be drawn from these graphs concerns the functioning of the
DIP, it is possible to observe that in all cases the DIP follows the policy that results
in fewer cache misses (even having moments when the best policy is shown, as
in Figures 5.3 (b) and (c) for cache partition of 131072 bytes). It is also important
to note the variation that some policies present for certain partition sizes; for ex-
ample, for kmeans the policies perform similarly for most partition sizes, with LRU
being slightly better than BIP and DIP following this behavior; however, for 2048
and 4096 byte partitions, there is a drop in the number of cache misses causing
not only the BIP policy to show better performance but also the two best cases
for the benchmark. This behavior is repeated for pca and svd3, however the
partition sizes that demonstrate the best performance are 131072 bytes and
262144 bytes for pca and 8192 bytes for svd3.

After verifying the behavior that cache partitions of different sizes cause
in the DIP policy, it was decided to check if other cache parameters would
also impact the performance of this policy. Figure 5.6, presents the results of the
number of cache misses (y-axis) that occurred under each of the three policies
as a function of the number of cache ways (x-axis). These graphs followed the
parameters that performed best in the analysis of the cache partition size, (a) is
the result of kmeans with a cache partition of 4096 bytes and PSEL of 4 bits, (b) is
the result of pca with a cache partition of 131072 bytes and psel of 10 bits and
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(a) 8-way cache partition and 4-bit psel
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(b) 8-way cache partition and 10-bit psel
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(c) 8-way cache partition and 4-bit psel
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(d) 8-way cache partition and 10-bit psel

Figure 5.2 ± Number of cache misses as a function of partition size for kmeans

(c) is the result of svd3 with a cache partition of 4096 bytes and psel of 4 bits.
from these results, it is possible to verify that the susceptibility of policies to the
number of ways, being variable according to each application. For kmean, the
number of ways that results in the least number of cache misses is 4; for svd3
this value is 16 ways; for pca the minimum number is 16 ways, with the result of
cache misses remaining constant after this value.

The Figures 5.2, 5.3, 5.4, 5.5 and 5.6 already demonstrate the dynamic
nature of the DIP policy. By always selecting the best policy between LRU and
BIP, DIP can adapt both to different applications and to the different phases of
each application. Figure 5.7 shows the value of a 10-bit psel over the execution
of four benchmarks, (a) basicmath, (b) kmeans and (c) pca. The horizontal axis
represents the number of instructions, and the vertical axis corresponds to the
value of psel. For a 10-bit psel, a value equal to or greater than 512 indicates that
the BIP policy was selected, otherwise the LRU policy was used. For graphs (a)
and (b), respectively, basicmath and kmeans, the value of psel, during the initial
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(a) 8-way cache partition and
4-bit psel
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(b) 8-way cache partition and
10-bit psel
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(c) 16-way cache partition and
4-bit psel
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(d) 16-way cache partition and
10-bit psel

Figure 5.3 ± Number of cache misses as a function of partition size for pca
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(a) 8-way cache partition and
4-bit psel
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(b) 8-way cache partition and
10-bit psel
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(c) 16-way cache partition and
4-bit psel

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

Cache Partition Size (in bytes)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Nº
 o

f C
ac

he
 M

iss
es

- N
or

m
al

ize
d 

ac
co

rd
in

g 
to

 L
RU

spc-small - cache of 16ways and Psel size of 10bits
LRU BIP DIP

(d) 16-way cache partition and
10-bit psel

Figure 5.4 ± Number of cache misses as a function of partition size for spc
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(a) 8-way cache partition and 4-bit psel
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(b) 8-way cache partition and 10-bit psel
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(c) 16-way cache partition and 4-bit psel
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(d) 16-way cache partition and 10-bit psel

Figure 5.5 ± Number of cache misses as a function of partition size for svd3

part of program execution, fits the baseline, 512, and any one of the policies
works well. However, as the number of instructions increases during program
execution, the value of psel decreases, so DIP selects LRU. For graph (c), of
the pca application, the opposite occurs, at the beginning of the application
execution, psel remains close to 0, indicating that BIP causes many more cache
failures, however, with the increase in the number of instructions , this scenario is
reversed, LRU causes more failures, the psel value increases and DIP selects the
BIP policy.

The behavior of the DIP policy in relation to the size of the implemented
psel was also verified. Figure 5.8 shows these results. The x-axis represents the
Variation of the value of psel during execution size in bits; the y-axis represents
the number of cache misses suffered by each policy, normalized according to
the LRU policy. Each graph displays the result for one policy, (a) for kmeans, (b)
for pca, (c) for svd3. In (b) it is possible to observe that the DIP policy has a
slight performance improvement from 10 bits, however in (a) and (c), the DIP
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(a) kmeans with a cache partition of 4096
bytes and 4-bit psel
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(b) pca with a cache partition of 131072
bytes and 10-bit psel
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(c) svd3 with a cache partition of 4096 bytes
and 4-bit psel

Figure 5.6 ± Number of cache misses as a function of the number of ways

does not show any improvement. It can be concluded, then, that despite the
importance of psel in the choice of policies that make up the DIP, its size is not a
parameter that has a great impact on the functioning of the DIP policy.

5.4 PARTIAL CONSIDERATIONS

In this chapter, we introduced the implementation of the DIP (Dynamic In-
sertion Policy) in Cachegrind and conducted a comprehensive evaluation of its
performance and behavior. The DIP policy, equipped with its adaptive insertion
mechanism, demonstrated its effectiveness in dynamically selecting the opti-
mal cache replacement policy between LRU and BIP for various benchmarks
and cache configurations. By adapting to the specific characteristics of each
application and its execution phases, the DIP policy showcased its capacity to
enhance cache performance and reduce cache misses.

A key contribution of this chapter lies in highlighting the significance of
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(a) basicmath

0 5 10 15 20
Number of Instructions (in thousands)

0

128

256

384

512

640

768

896

1024

PS
EL

 V
al

ue

Benchmark: kmeans-small

(b) kmeans
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(c) pca

Figure 5.7 ± Variation of the value of psel during execution

adaptive insertion policies within modern cache management. Unlike tradi-
tional cache replacement policies like LRU, which are static and do not account
for the diverse behaviors and requirements of different applications, the DIP pol-
icy dynamically chooses the most appropriate replacement policy based on
observed cache behavior during runtime. This adaptability enables the DIP
policy to better align with the access patterns and temporal locality of each
application, ultimately leading to improved cache utilization and a reduction
in cache misses.

Furthermore, we delved into the impact of various cache parameters,
such as cache partition size and the number of cache ways, on the DIP policy’s
performance. Our experiments unveiled that the DIP policy’s performance is
indeed influenced by these cache parameters, and specific configurations
exist where it exhibits superior performance. Careful selection of the optimal
cache partition size and number of cache ways empowers system designers
and developers to enhance both the predictability and performance of the
overall system.
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(a) kmeans with a cache partition of 4096
bytes and 4-bit psel
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(b) pca with a cache partition of 131072
bytes and 10-bit psel

2 4 8 10 11 20 30 40

PSEL size (in bits)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Nº
 o

f C
ac

he
 M

iss
es

- N
or

m
al

ize
d 

ac
co

rd
in

g 
to

 L
RU

svd3-small - cache of 131072 bytes and 8ways
LRU BIP DIP

(c) svd3 with a cache partition of 4096 bytes
and 4-bit psel

Figure 5.8 ± Number of cache misses as a function of the size of psel

These insights shed light on the interplay between diverse cache configu-
rations and strategies and their effects on the effectiveness of cache replace-
ment policies, as also explored in Chapter 3. The causal relationship between
cache partition size and policy performance suggests that specific partition
sizes trigger performance shifts, influencing policy selection. A deeper investiga-
tion into the underlying factors contributing to these shifts could unveil critical
insights into cache management.

The findings of this chapter have been formally published in the XI Brazilian
Symposium on Computing Systems Engineering (ARAUJO et al., 2021), under-
scoring their significance and contribution to the field. With these results, we
have successfully achieved specific Objective 3, which aimed to evaluate the
DIP policy and its behavior in different cache configurations and benchmarks.

Building upon the insights gained from this chapter, the next chapter will
focus on the development of an algorithm designed to assist in selecting the
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optimal cache parameters for a given application or workload. This algorithm
aims to further enhance the predictability and performance of cache manage-
ment by providing automated guidance on cache partition sizes, the number
of cache ways, and other relevant parameters. Leveraging the knowledge
and experiences gained from evaluating the DIP policy, this algorithm holds the
potential to refine cache configuration decisions and simplify the process for
system designers and developers.

In summary, this chapter underscored the significance of adaptive in-
sertion policies, such as the DIP policy, in improving cache performance by
dynamically selecting the most suitable cache replacement policy. Addition-
ally, it underscored the importance of cache parameter selection for optimizing
system predictability. The upcoming chapter will delve into the development of
an algorithm aimed at facilitating the selection of optimal cache parameters,
further advancing the field of cache management and system performance.
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6 CACHE OPTIMIZATION TECHNIQUES

The previous chapters have highlighted the impact of cache partition
size and the number of ways on cache replacement policies, such as BIP, LRU
and DIP. It has been demonstrated that different parameter configurations yield
varying cache failure rates across different applications.

This suggests that selecting the optimal parameters and policy for each
application can lead to improved system performance, enhancing metrics such
as WCET and the schedulability of critical tasks.

Altmeyer et al. (ALTMEYER et al., 2014) study underscored the significance
of cache partitioning as a technique to ensure task isolation and enhance
cache utilization in real-time systems. It discussed the impact of partitioning
granularity and allocation strategies on cache utilization and schedulability. The
findings emphasized the necessity of carefully considering partitioning strategies
based on specific system requirements.

The premises of this work are rooted in the insights and findings presented
by Altmeyer et al. (2014), who evaluated cache partitioning for hard real-time
systems, and the previous evaluation of the impact of different cache replace-
ment policies on the performance of a real-time system (ALTMEYER et al., 2014).

Therefore, the objective of this chapter is to devise an algorithm capable
of analyzing and selecting the optimal cache configurations within a cache
architecture that facilitates task partitioning and the customization of cache
parameters for each partition.

By incorporating the concept of cache partitioning, as discussed by Alt-
meyer et al. (2014), the proposed algorithm strives to optimize cache utilization
and enhance the performance of real-time systems. It recognizes the impor-
tance of considering task-specific requirements and allowing flexibility in the
selection of cache parameters per partition. This approach aligns with the ob-
jectives of improving the worst-case execution time (WCET) of tasks and bolster-
ing system schedulability (ALTMEYER et al., 2014).

This chapter begins with an overview of Altmeyer et al.’s algorithm (Sec-
tion 6.1). It then incorporates the findings presented in Chapters 5 and 4 to
modify the algorithm and introduce the proposed Optimization Algorithm (Sec-
tion 6.2). Next, the chapter evaluates both algorithms through three different
comparisons (Section 6.3). Finally, it summarizes the findings and presents impor-
tant considerations regarding the work (Section 6.4).
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6.1 OVERVIEW OF OPTIMAL CACHE PARTITION ALGORITHM

The Optimal Cache Partition Algorithm (OCPA) was proposed in the work
of Altmeyer et al. (2014). In the paper, the authors address the challenges posed
by shared resources in multicore platforms and explore cache partition tech-
niques to improve the predictability and timing guarantees of hard real-time
systems. The algorithm aims to allocate cache partitions to tasks in a manner
that optimizes cache utilization and enhances system schedulability (ALTMEYER
et al., 2014).

Through their evaluation, Altmeyer et al. demonstrate the effectiveness of
the proposed algorithm in improving cache utilization and system schedulability
in hard real-time systems. They provide quantitative results and comparative
analyses to support their findings, showcasing the benefits of cache partitioning
in enhancing the performance and predictability of real-time tasks (ALTMEYER
et al., 2014).

In summary, the algorithm presented in the paper offers a systematic
approach to cache partitioning that considers task characteristics, cache re-
quirements and scheduling constraints. It provides a practical framework for
optimizing cache utilization in hard real-time systems, contributing to the overall
system performance and meeting real-time requirements. But the results pre-
sented in Chapters 4 and 5, indicate another parameter related to cache that
was not take into account in OCPA, the interference of replacement policies
in the predictability of the cache. In the next section, we proposed an algo-
rithm that provides per-task cache partitioning considering cache replacement
policies based on OCPA.

6.2 THE PROPOSED ALGORITHM

The proposed cache partitioning algorithm is based on the principle that
different tasks exhibit varying memory access patterns and temporal charac-
teristics, which significantly impact the performance of cache replacement
policies. It builds upon the OCPA by introducing the selection of the best re-
placement policies for each task in a per-task partitioned cache.

In the context of optimizing hard real-time systems, the main criterion is
tasks set schedulability. Similar to the OCPA, the proposed algorithm achieves
optimal cache partitioning if it identifies a configuration where the tasks can be
scheduled, assuming such a configuration exists. To accomplish this, the algo-
rithm utilizes benchmark performance results for different cache replacement
policies while varying the cache partitioning size, as discussed in Chapter 5.

The proposed algorithm is summarized in Algorithm 6.1. The code begins
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by defining the task set and the total cache size. It initializes the remaining
cache size as the total cache size and sets the variable i to 0.

The cacheAllocation function is responsible for allocating cache partitions
for each task. It takes as input the task, remaining cache size, and the index i

for selecting the partition size and replacement policy.
Within the function, the algorithm determines the partition size, WCET and

replacement policy for the current task using the findPartition function. It then
checks the schedulability of the system with the current partition configuration
by calling the checkPartition function.

If the system is schedulable, the remaining cache size is updated by sub-
tracting the partition size allocated for the task from the total cache size. The
algorithm moves on to the next task.

If the system is not schedulable, the algorithm selects the next set of parti-
tion size and replacement policy by incrementing i. If i is less than 11 (indicating
the number of available partition sizes), the cacheAllocation function is called
recursively with the updated i value to try different partition configurations.

If all partition configurations have been exhausted for a task and the
system is still not schedulable, the algorithm goes back to the previous task and
tries a different partition for it by calling the cacheAllocation function recursively
with the updated remaining cache size and i set to 1.

This process continues until a schedulable partition configuration is found
for each task or it is determined that the system cannot be optimized. The
algorithm explores different partition sizes and replacement policies, considering
the remaining cache size at each step.

1 define task_set

2 define total_cache

3

4 int remaining_size = total_cache;

5 int i=0;

6

7 function cacheAllocation (task, remaining_size, i){

8

9 task_partition[task] = findPartition(task,remaining_size,i)[

partition_size];

10 task_demands[task] = findPartition(task,remaining_size,i)[wcet];

11 task_policy[task] = findPartition(task,remaining_size,i)[policy];

12

13 if checkPartition(task_partition, task_demands) = isSchedulable{

14 remaining_size = total_cache - task_partition[task];

15 next task;
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16 } else {

17 if i < 6{

18 i++;

19 cacheAllocation (task, remaining_size, i);

20 } else {

21 cacheAllocation (previous task, remaning_size +

task_partition[task], 1);

22 }

23 }

24 }

Algorithm 6.1 ± Overview of proposed algorithm for optmized cache
partitioning.

The main difference between the proposed algorithm and OCPA relies
on the choosing of the replacement policy which will be applied in the cache
partition. To define this policy, the proposed algorithm is capable to receive
data of WCET related to partition sizes for each of the studied policies, then the
algorithm evaluates these replacements policies, choosing the one with smaller
WCET for each partition size and then running the cacheAllocation function to
finish the determination of the parameters applied in all task partition of the
cache.

6.3 EXPERIMENTAL COMPARISON

To evaluate the proposed algorithm, it was running experiments that re-
sult in three comparisons between our approach and OCPA using three set
of benchmarks listed in Table 6.1. The experiments aim to assess the utilization,
WCET and schedulability for tasks sets under both approaches of cache parti-
tioning.

Table 6.1 ± Benchmarks used in the experiments.

Set Benchmark

Parsec canneal, ferret, raytrace, streamcluster, swaptions, vips

MiBench
adpcm, bf, bitcount, dijkstra, fft, gsm, jpeg, patricia,

rijndael, stringsearch

Cortex Suite
disparity, kmeans, lda, liblinear, me, mser, multi_ncut, pca,

rbm, sift, spc, sphinx, srr, stitch, svd3, texture_syntehesis,
tracking

The parameters used in the experiments were established based on the
one used in OCPA paper (ALTMEYER et al., 2014) and are summarized in Ta-
ble 6.2. The cache partition could be sized in a range from 1 KB to 1 MB and the
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number of cache ways was set to ranged from 2 to 32 while cache line size was
kept constant as 64 bytes.

Table 6.2 ± Cache parameters applied in the experiments.

Parameter Set up

Partition Size
1kB, 2 kB, 4 kB, 8 kB, 16 kB, 32 kB,
64 kB, 128 kB, 256 kB, 512 kB, 1 MB

Ways 2, 4, 8, 16 e 32
Line size 64 B
Processors A8, A53, i7, x86

By analyzing the results, we could draw conclusions about the benefits
and limitations of the proposed algorithm compared to OCPA in the context of
cache partitioning for hard real-time systems.

6.3.1 First Experiment: WCET x Cache Partition Size

The first experiment focused on evaluating the Worst Case Execution Time
(WCET) of tasks in relation to the allocated cache partition size. The goal was
to determine the extent to which the partition size influenced the WCET under
both approaches.

Figures 6.1 present some results of this experiment for the multi_ncut

benchmark across all four processors. The graphs depict the cache partition
sizes on the x-axis and the normalized WCET values according to Altmeyer’s
OCPA. The blue line represents the results of Altmeyer’s OCPA, while the orange
line represents our optimized proposed algorithm. Across all four processors,
the optimized proposed algorithm consistently outperforms Altmeyer’s OCPA,
particularly for larger partition sizes, obtaining an improvement of approximately
1% for larger partition sizes on top of A8 processor, and a gain of around 2% for
larger partition sizes on top of i7 processor.

Figure 6.2 demonstrates the results for the disparity benchmark. In this
case, smaller partition sizes show no significant difference in performance be-
tween the two approaches. However, from medium-sized partitions, the superi-
ority of the optimized proposed algorithm becomes evident (achieving about
0.5% of gain in the better case) and this difference becomes even more pro-
nounced for larger cache partitions (presenting gains of about 0.5% in the worst
case scenario and about 2% in the better case scenario).

The relationship between partition size and WCET directly affects the
schedulability of the systems. Therefore, this experiment serves as a means to ver-
ify the efficiency of the optimized proposed algorithm compared to Altmeyer’s
OCPA in terms of schedulability.
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(d) On top of x86 processor

Figure 6.1 ± Relation of WCET and cache partition size for multi_ncut.
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Figure 6.2 ± Relation of WCET and cache partition size for sift.
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6.3.2 Second Experiment: cache partition size x maximum WCET

The second experiment is complementary to the first one. It assesses the
function between the cache partition size and the WCET, in other words, the sec-
ond experiment evaluates the minimum cache partition size needed to reach
a maximum WCET of the tasks and yet guarantee the system schedulability.

Figures 6.3 present some results of this experiment for the lda benchmark
across all four processors. The graphs depict the WCET values on the x-axis
and the cache partition size on the y-axis. The blue line represents the results
of Altmeyer’s OCPA, while the orange line represents our optimized proposed
algorithm. These results show that to achieve smaller WCET, the proposed algo-
rithm needs smaller partition size in comparison with Altmeyer’s OCPA. Across
all four processors, the optimized proposed algorithm consistently outperforms
Altmeyer’s OCPA, particularly for larger partition sizes.
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Figure 6.3 ± Relation of cache partition size and maximum WCET for lda

Figure 6.4 continues the evaluation of the second experiment using
multi_ncut benchmark. This benchmark shows an outstanding improvement
by using the proposed algorithm.

6.3.3 Third Experiment: Schedulability

Third Experiment assess the schedulability of a synthetic generated task
set in relation to the system utilization. As in Section 4.3, the task sets used in this



102 Chapter 6

0.00006 0.00004 0.000020.00000 0.00002 0.00004 0.00006 0.00008 0.00010
Percentage of maximum WCET +9.999e 1

0

10000

20000

30000

40000

50000

60000

70000

Ca
ch

e 
Pa

rti
tio

n 
Si

ze
 (i

n 
by

te
s)

multi_ncut-cif in A8 processor
Altmeyer Optimized

(a) In top of A8 processor

0.99975 0.99980 0.99985 0.99990 0.99995 1.00000
Percentage of maximum WCET

0

10000

20000

30000

40000

50000

60000

70000

Ca
ch

e 
Pa

rti
tio

n 
Si

ze
 (i

n 
by

te
s)

multi_ncut-cif in A53 processor
Altmeyer Optimized

(b) In top of A53 processor

0.99965 0.99970 0.99975 0.99980 0.99985 0.99990 0.99995 1.00000
Percentage of maximum WCET

0

10000

20000

30000

40000

50000

60000

70000

Ca
ch

e 
Pa

rti
tio

n 
Si

ze
 (i

n 
by

te
s)

multi_ncut-cif in i7 processor
Altmeyer Optimized

(c) In top of i7 processor

0.99975 0.99980 0.99985 0.99990 0.99995 1.00000
Percentage of maximum WCET

0

10000

20000

30000

40000

50000

60000

70000

Ca
ch

e 
Pa

rti
tio

n 
Si

ze
 (i

n 
by

te
s)

multi_ncut-cif in x86 processor
Altmeyer Optimized

(d) In top of x86 processor

Figure 6.4 ± Relation of cache partition size and maximum WCET for lda.

experiment were randomly generated using the impartial method proposed
by Emberson et al. (EMBERSON; STAFFORD; DAVIS, 2010) to ensure a uniformly
distributed random of utilization values. The utilization of the tasks was varied
from 0 to 1 with a step of 0.05. Each experiment involved generating 10,000 sets
with 10 tasks for each utilization value. The periods generated within the range
of 10,00 to 1,000,000 microseconds. All task sets had implicit deadlines and were
assigned priorities based on the Rate-Monotonic scheduling policy. For Schedu-
lability analysis, it was used the response time analysis by Audsley et al. (AUDSLEY
et al., 1993) and it was assumed that each task was assigned a separate cache
partition. The experiment was repeated using the three benchmarks suite as
task basis.

Figure 6.5 presents the schedulability rate results for OCPA, our optimized
proposed algorithm and pure RTA analysis. The plots (a), (b) and (c) in the figure
correspond to task set based on Cortex, Mibench and Parsec suite, respectively.
It can be seen that the gain of our proposed algorithm over OCPA can reach
values upon to 1% for Parsec, 4% for Mibench and 5% for Cortex. The results
evidence the outperforming of the proposed algorithm in relation to OCPA in
all cases and has presented even better performance for tasks sets based on
Cortex suite, therefore showing an optimal approach for high workloads tasks
sets.
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Figure 6.5 ± Schedulability analysis for all benchmarks.

These findings highlight the effectiveness of the proposed flexible ap-
proach in improving schedulability rates for real-time systems by utilizing a cache
partitioning method that take into account the cache behavior and the char-
acteristics of the tasks, as well as the cache replacement policy.

6.4 PARTIAL CONSIDERATIONS

In this chapter, we proposed an algorithm for cache partitioning that aims
to optimize cache utilization and enhance the schedulability of real-time tasks.
The algorithm considers the specific cache requirements and timing constraints
of tasks, allowing for the allocation of cache partitions tailored to their individual
needs. It incorporates task profiling, partition size determination, partition alloca-
tion, cache replacement policy selection and validation steps to achieve these
objectives.

• Task Profiling: The algorithm gathers information about each task’s cache
behavior, including cache misses, cache line utilization and working set
size. This profiling step provides insights into the tasks’ cache requirements
and guides the subsequent partitioning decisions.

• Partition Size Determination: The algorithm determines the size of cache
partitions for each task based on their cache requirements. It considers
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factors such as WCET and cache replacement policy.

• Partition Allocation: Using the determined partition sizes, the algorithm al-
locates cache partitions to tasks. It ensures that each task is assigned a
dedicated portion of the cache that meets its cache requirements while
minimizing interference with other tasks.

• Cache Replacement Policy: The algorithm selects an appropriate cache
replacement policy for each partition, considering the task’s characteris-
tics and cache utilization goals. It explores policies such as Least Recently
Used (LRU) or Bimodal Insertion Policy (BIP) to optimize cache performance.

• Validation: The algorithm performs validation tests to evaluate the effective-
ness of the cache partitioning scheme, considering the available cache
capacity.

Through experimental evaluations, we compared the proposed algorithm
with an approach that does not consider cache replacement policies. The re-
sults showed that the proposed algorithm outperforms the alternative approach
in terms of cache utilization and schedulability. This demonstrates the effec-
tiveness of considering cache replacement policies in cache partitioning for
real-time systems.

Overall, the proposed algorithm provides a practical solution for optimiz-
ing cache utilization in real-time systems. By considering task-specific require-
ments and selecting appropriate cache configurations, it can improve system
performance and meet timing constraints. Further research could explore addi-
tional factors, such as power consumption and energy efficiency, to enhance
the algorithm’s capabilities.

In the next chapter, we will present the final conclusions of this work and
discuss potential future directions for research in the field of cache optimization
for real-time systems.
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7 CONCLUSION

In this dissertation, we investigated cache optimization techniques for
real-time systems. Caches play a crucial role in improving system performance
by reducing memory access latency. However, in real-time systems, the pre-
dictability of task execution is of utmost importance, and cache interference
can significantly impact timing guarantees. Therefore, optimizing cache utiliza-
tion while ensuring schedulability is a challenging task.

The main objectives of this research were: (i) conduct a comprehensive
literature review of related works to gather insights and knowledge in the field
of cache line replacement policies and their impact on real-time systems; (ii)
evaluate the performance of popular cache line replacement policies, namely
LRU, FIFO, RANDOM, LIP and BIP, in terms of cache misses and the scalability of
real-time tasks using a diverse set of benchmarks; (iii) implement and assess the
performance of the Dynamic Insertion Policy (DIP) in a cache simulator, specifi-
cally cachegrind, to determine its effectiveness in reducing cache misses; (iv)
investigate and analyze the effects of different cache settings on the perfor-
mance of cache line replacement policies, with a focus on their impact on
critical real-time systems; and (v) develop an algorithm that optimizes cache
parameters and replacement policies, considering the cache partitioning ap-
proach for tasks in a real-time system.

We began by exploring the impact of cache partition size and the num-
ber of cache ways on cache replacement policies. Through experimental eval-
uations, we observed that different parameter configurations can lead to vary-
ing cache failure rates across different applications. This highlighted the need
for selecting optimal cache parameters and policies for each application. In
the following, we summarize our results Section 7.1, present our closing remarks
(Section 7.2) and discuss future work (Section 7.3).

7.1 SUMMARY OF CONTRIBUTIONS

Our research makes novel contributions in the following areas: (i) evalua-
tion of cache replacement policies; (ii) implementation and evaluation of the
DIP policy in Cachegrind and (iii) Cache Optimization Techniques. Here, we
briefly recapitulate the key contributions from Chapter 4 to Chapter 6.

7.1.1 Evaluation of Cache Replacement Policies

The evaluation of cache replacement policies was a significant contribu-
tion of this research. We conducted experiments to compare the performance
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of popular cache replacement policies, namely LRU, FIFO, RANDOM, LIP and
BIP, in terms of cache misses and the scalability of real-time tasks. The experi-
ments were conducted using a diverse set of benchmarks to assess the policies’
effectiveness across different applications.

Through the evaluations, we gained valuable insights into the strengths
and weaknesses of each replacement policy. We observed that the choice
of replacement policy has a significant impact on cache performance and
can affect the schedulability of real-time tasks. The results provided guidance
on selecting the most appropriate replacement policy based on the specific
requirements of the real-time system.

7.1.2 Implementation and Evaluation of the DIP Policy in Cachegrind

Another contribution of this research was the implementation and evalu-
ation of the Dynamic Insertion Policy (DIP) in the Cachegrind cache simulator.
The DIP policy was proposed as a novel cache replacement policy that aims
to reduce cache misses by dynamically adjusting the insertion points of cache
lines.

We implemented the DIP policy in Cachegrind and conducted exper-
iments to evaluate its performance in terms of cache misses. The evaluation
involved comparing the cache misses of DIP with other popular replacement
policies, including LRU and FIFO, using various benchmark applications.

The results of the evaluation showed that the DIP policy achieved a signif-
icant reduction in cache misses compared to traditional replacement policies.
This demonstrated the effectiveness of the DIP policy in improving cache perfor-
mance and reducing memory access latency.

The implementation and evaluation of the DIP policy in Cachegrind pro-
vided empirical evidence of its benefits and highlighted its potential as an effi-
cient cache replacement policy for real-time systems.

Overall, these contributions shed light on the performance of different
cache replacement policies and provide insights into the effectiveness of the
DIP policy in reducing cache misses. These findings contribute to the develop-
ment of cache optimization techniques for real-time systems and serve as a
basis for further research in this area.

7.1.3 Cache Optimization Techniques

The proposed algorithm takes into account the variations in memory ac-
cess patterns and temporal characteristics of different tasks, as well as the im-
pact of cache replacement policies. By dynamically selecting the best replace-
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ment policies for each task in a per-task partitioned cache, the algorithm aims
to optimize cache utilization and improve system performance.

Through experimental comparisons with the OCPA, the proposed algo-
rithm demonstrates its effectiveness in terms of cache utilization, WCET, and
schedulability. The evaluation results provide insights into the benefits and limita-
tions of the algorithm in optimizing cache partitioning for hard real-time systems.

It is important to note that the proposed algorithm builds upon the founda-
tion laid by Altmeyer et al.’s work on cache partitioning and extends it by consid-
ering the interference of replacement policies. By incorporating this additional
factor, the proposed algorithm provides a more comprehensive approach to
cache optimization.

However, further research and evaluation are necessary to fully under-
stand the algorithm’s performance across a broader range of benchmarks and
real-time systems. Additionally, other factors such as power consumption and
energy efficiency should be considered in future investigations.

Overall, the proposed algorithm presents a promising approach to cache
partitioning and optimization in hard real-time systems. Its ability to adapt
to varying task requirements and select the most suitable cache configura-
tions can lead to improved system performance, better WCET and enhanced
schedulability.

7.2 CLOSING REMARKS

Cache optimization plays a crucial role in enhancing the performance
and predictability of real-time systems. This thesis has presented a comprehen-
sive investigation of cache optimization techniques, focusing on cache parti-
tioning and the impact of cache replacement policies.

The proposed cache partitioning algorithm, which incorporates the selec-
tion of optimal cache replacement policies for each task, has shown promising
results in improving cache utilization and schedulability in real-time systems. By
considering task-specific requirements and dynamically allocating cache par-
titions, our algorithm has demonstrated its effectiveness in optimizing system
performance.

Future research and development in cache optimization techniques for
real-time systems can further enhance the efficiency and schedulability of these
systems. By exploring power and energy efficiency, integrating with dynamic
voltage and frequency scaling, considering multilevel caches, evaluating on
different hardware platforms, and addressing dynamic workloads, researchers
can continue to advance the field and contribute to the development of more
efficient and predictable real-time systems.
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In conclusion, cache optimization techniques are vital for meeting the
performance and timing requirements of real-time systems. The findings and
algorithms presented in this thesis serve as a foundation for further research
and can contribute to the development of more effective cache optimization
techniques in the future.

7.3 FUTURE WORKS

While this dissertation has made significant contributions to cache opti-
mization techniques for real-time systems, there are several avenues for further
research and improvement. Some potential future directions include:

• Exploration of Power and Energy EfficiencyIn addition to performance con-
siderations, power and energy efficiency are crucial factors in modern
computing systems. Future research could explore cache optimization
techniques that not only improve system performance but also minimize
power consumption and enhance energy efficiency. This could involve dy-
namic power management strategies and cache partitioning algorithms
that take power constraints into account.

• Consideration of Multilevel CachesMany modern processors employ multi-
level cache hierarchies, consisting of multiple cache levels with varying ca-
pacities and access latencies. Extending cache optimization techniques
to incorporate multilevel cache hierarchies could enhance the perfor-
mance and schedulability of real-time systems. This could involve develop-
ing algorithms that allocate cache partitions across multiple cache levels
and manage the cache hierarchy effectively.

• Evaluation on Different Hardware PlatformsThe evaluations conducted in
this thesis were based on specific hardware platforms. Further research
could expand the evaluation to include different hardware architectures
and platforms. This would provide a more comprehensive understanding
of the performance and effectiveness of cache optimization techniques
across a broader range of systems.

• Consideration of Dynamic WorkloadsThe evaluations conducted in this
thesis focused on static task sets and predefined workloads. Future re-
search could explore cache optimization techniques for dynamic work-
loads, where the task execution patterns and memory access patterns
change dynamically. This would involve developing adaptive cache par-
titioning algorithms that can adjust the cache configurations in real-time
based on the current workload characteristics.
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