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RESUMO

Nesse trabalho, fotoprodução e eletroprodução exclusivas dos estados fundamental e excitado
dos mésons vetoriais ρ, ω, ϕ, ψ e Υ são discutidas em colisões hadrônicas ultraperiféricas
(UPCs) com prótons e núcleos como alvo. Como estamos interessados em espalhamentos nos
quais o projétil é um fóton virtual ou quase real produzido pelo lépton ou hádron incidente, nós
empregamos o modelo de dipolo de cor, o qual permite a fatorização do processo em três etapas.
A primeira consiste no desdobramento do fóton no par qq̄, o qual é descrito por uma função de
onda calculada perturbativamente. A segunda corresponde à interação desse par com o alvo,
que é descrita por uma seção de choque de dipolo parametrizada para considerar os fenômenos
não perturbativos. Nesse trabalho, usamos cinco parametrizações diferentes: duas integradas
(GBW e KST) e três não integradas (bCGC, bSat e BK), estas dependentes do parâmetro de
impacto. O terceiro passo é a transição do par qq̄ num méson vetorial. As contribuições dessa
parte para o cálculo de seções de choque totais e diferenciais em t é um dos principais objetos
de estudo desse trabalho, por isso, para descrever mésons vetoriais leves e pesados, usamos dois
modelos para a função de onda do méson vetorial: o modelo AdS/QCD holográfico e o modelo
de potenciais (que incorpora a transformação de spin de Melosh). Com esse formalismo e com o
próton como alvo, nós comparamos os nossos resultados com os dados disponíveis dos colisores
HERA e LHC e obtivemos uma boa concordância tanto nos resultados diferenciais quanto nos
resultados integrados. Para o caso nuclear, nós estendemos nossos cálculos a partir do uso da
teoria de Glauber-Gribov e os aplicamos para a fotoprodução coerente e incoerente de mésons
vetoriais em colisões ultraperiféricas com a inclusão dos efeitos de comprimento de coerência
finito e sombreamento de glúons ajustado a dados. Nossos resultados independentes de t
foram comparados com os dados disponibilizados pelo LHC, tanto para processos incoerentes
(J/ψ a 2.76 TeV) quanto para processos coerentes (J/ψ e ψ′ a 2.76 e 5.02 TeV). Enquanto
que no primeiro caso não conseguimos descrever o único dado disponível no momento, no
segundo caso, nós obtivemos uma boa descrição dos dados coerentes, especialmente para J/ψ,
o que mostra a eficácia do formalismo utilizado. Já no caso dependente de t, a divulgação
recente de dados de fotoprodução coerente de J/ψ a 5.02 TeV foi uma ferramenta conveniente
para medir a eficácia dos nossos resultados, os quais se mostraram muito próximos dos dados
experimentais. Nós também apresentamos predições para seções de choque para produção de
Υ(1S) e Υ(2S) em energias do LHC (s = 5.02 TeV), que podem ser úteis no futuro com
novas medições nos grandes colisores de partículas.

Palavras-chave: Méson vetorial. Modelo de dipolo de cor. Fotoprodução. Colisões ultraperi-
féricas. Cromodinâmica quântica. Modelo holográfico.





RESUMO EXPANDIDO

Um marco importante para a física de partículas ocorreu com a construção do colisor elétron-
hádron HERA (do inglês “High Energy Ring Accelerator”) em Hamburgo na Alemanha [1].
Sua vasta quantidade de medições, obtida entre 1992 e 2007, foi muito importante para a
investigação da estrutura interna do próton e uma melhor visualização da distribuição dos seus
componentes, que ocorreu com o advento da ideia de utilizar um lépton para sondar via a troca
de um fóton as interações fortes do alvo. Um processo de grande relevância que tomou lugar
nesse experimento foi a produção exclusiva de mésons vetoriais, onde exclusivo significa que no
estado final há apenas o méson vetorial e o próton inicial. Esse processo permite a obtenção de
observáveis diferenciais que portam informações importantes para a obtenção de uma imagem
detalhada do próton. Esse tipo de processo pode ser descrito através do formalismo de dipolo
de cor, que se baseia no fato de que no referencial de repouso do próton o tempo de vida do
dipolo de cor é muito maior que o tempo de interação entre ele e o alvo.

Nesse modelo, um fóton se divide em um par quark-antiquark (o dipolo de cor), o qual interage
elasticamente com o próton, e depois se recombina formando um méson vetorial (Fig. 1).
Enquanto que a primeira etapa do processo é descrita pela função de onda do fóton, que é bem
conhecida a partir do cálculo perturbativo da QED, a última etapa é descrita pela função de
onda do méson vetorial, que apresenta diversas incertezas quanto a sua forma devido à inclusão
de processos não perturbativos. Na literatura há algumas parametrizações para essa parte, e
as mais conhecidas são a boosted Gaussian e a Gaus-LC, que são construídas analogamente
à função de onda do fóton, mas assumindo-se uma forma gaussiana para a parte escalar [2].
Mesmo que essas funções descrevam de forma satisfatória os dados de processos exclusivos
difrativos do HERA [3], essas análises simplificadas não descrevem a produção de estados
excitados nem levam em conta vários efeitos que podem ter um impacto significativo nas
predições teóricas, como a rotação de Melosh [4]. Com isso, um dos objetivos deste trabaho
é estudar outras formas para as funções de onda de mésons vetoriais baseadas em princípios
teóricos da QCD.

Num primeiro momento, decidiu-se usar uma abordagem de potenciais para obter as funções
de onda de mésons vetoriais pesados, como o J/ψ e o Υ. Nesse caso, a função de onda é
obtida no referencial de repouso do par qq̄, através da solução da equação de Schroedinger não
relativística para diversos potenciais de interação, e depois transformada para o referencial de
momento infinito do par, onde está definido o formalismo de dipolo. Nesse procedimento, além
do boost nos quadrivetores do par, também é necessário um boost nos spins, que é realizado
através da rotação de Melosh. Com esse formalismo, foi possível calcular seções de choque
totais e diferenciais para fotoprodução dos estados fundamentais ψ(1S) e Υ(1S) e dos estados
excitados ψ(2S) e Υ(2S) com próton-alvo. Esses resultados conseguiram descrever bem os
dados existentes para esses mésons, como será mostrado adiante.

O sucesso na descrição desses dados, foi um incentivo para estender esse formalismo para
o caso de núcleo-alvo. Para isso, foi utilizado o modelo de Glauber-Gribov para considerar
os diversos espalhamentos do dipolo com o núcleo, assim como a inclusão dos efeitos de
comprimento de coerência finito e de sombreamento de glúons (ajustado aos dados). Com isso,
foram calculadas seções de choque independentes de t para as produções coerente e incoerente
dos mésons vetoriais ψ(1S), ψ(2S), Υ(1S) e Υ(2S). Os resultados para os estados de ψ foram



Figure 1 – Representação esquemática da amplitude de espalhamento para a produção exclu-
siva de mésons vetoriais a partir do modelo de dipolo de cor.

Source: Figura adaptada de [4].

comparados com os dados existentes do LHC e, no caso coerente (Fig. 2), conseguiu-se uma
boa descrição dos dados (principalmente para o caso fundamental), porém, no caso incoerente,
esse formalismo mostrou-se insuficiente para a descrição do único dado disponível do ALICE.
Além disso, foram calculadas seções de choque dependentes de t para a fotoprodução coerente
dos quatro mésons vetoriais pesados estudados e, graças à publicação de novos dados do
ALICE em 2021, foi possível compará-los com os resultados de J/ψ e verificar que ambos
concordavam.

Figure 2 – Distribuição em rapidez da fotoprodução coerente de ψ em colisões PbPb UPCs
em 2.76 TeV (esquerda) e 5.02 TeV (direita). Os resultados obtidos para 2.76 TeV
foram comparados com dados do CMS [5] e do ALICE [6, 7] para J/ψ e do ALICE
[8] para ψ′. Os resultados para 5.02 TeV foram comparados com dados do ALICE
[9] e com resultados preliminares do LHCb [10].
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Após estudar mésons vetoriais pesados, decidiu-se por estudar mésons vetoriais mais leves,
como o ρ, o ω e o ϕ. Nesse caso, o fato deles possuírem uma massa menor faz com que ela



não possa ser usada como escala dura para o processo, ou seja, não é nítida a separação da
parte perturbativa da não-perturbativa dos cálculos. Isso implica que a sua função de onda
apresenta mais efeitos não perturbativos do que os mésons pesados estudados anteriormente,
o que invalida o procedimento anterior para encontrar a função de onda. Para contornar esse
problema, foi avaliado um modelo holográfico proposto por Brodsky e Téramond [12] para
explicar a espectroscopia de mésons, e que baseia-se numa generalização da correspondência
entre estados de corda do espaço anti-de Sitter (AdS) e teorias de campos conformes [13]. A
vantagem desse modelo é que ele permite encontrar a função de onda do méson vetorial a partir
da solução de uma equação relativística, igual a equação de Schroedinger, com um potencial de
confinamento efetivo. Com essa abordagem, foi possível obter a função de onda tanto para os
estados fundamentais dos mésons leves ρ, ω e ϕ quanto para seus estados excitados. Com isso,
foi possível obter resultados para seções de choque totais e diferenciais com próton-alvo que
conseguem descrever bem os dados existentes para o estado fundamental desses três mésons
vetoriais leves. Além disso, conseguiu-se fazer predições para os seus estados excitados, o que
não havia sido encontrado na literatura até o momento.

O último ingrediente do formalismo de dipolo de cor, que até agora não foi citado, é a seção de
choque do dipolo, que é responsável pela descrição da interação do par qq̄ com o alvo. Devido
a sua natureza não perturbativa, ela não é calculada a partir dos primeiros princípios da QCD,
mas sim, parametrizada e obtida a partir de ajustes com relação a resultados experimentais.
Um problema encontrado é que os resultados obtidos a partir do formalismo de dipolo são
fortemente dependentes da parametrização usada para a seção de choque do dipolo. Além disso,
não há consenso entre os processos sobre qual é o melhor modelo para descrição dessa parte
da interação. Com isso, nesse trabalho, cinco parametrizações são usadas: duas independentes
do parâmentro de impacto (GBW e KST) e três dependentes do parâmetro de impacto (bCGC,
bSat e BK) e percebe-se que cada uma delas descreve melhor um tipo de processo. Os resultados
obtidos nessa tese podem ser importantes para definir qual é o melhor modelo para a seção de
choque do dipolo, pois espera-se que novas medições desses observáveis sejam realizadas nos
futuros colisores de partículas como o EIC (Electron Ion Collider) e o FCC (Future Circular
Collider).





ABSTRACT

In this work, exclusive photo and electroproduction of ground and excited states of the vector
mesons ρ, ω, ϕ, ψ, and Υ are discussed in ultraperipheral hadron collisions (UPCs) with proton
and nucleus targets. Since we are interested in scatterings with the projectile being a virtual or
quasi-real photon produced by the incoming lepton or hadron, we employ the color dipole model,
which permits the factorization of the process into three steps. The first one is the splitting
of the photon in a qq̄ pair, which is described by a perturbatively calculated wave function.
The second is the interaction of this pair with the target, which is described by a parametrized
dipole cross section in order to account for the non-perturbative effects. In this work, we use
five different parametrizations, two integrated (GBW and KST) and three unintegrated (bCGC,
bSat, and BK), which are b-dependent. The third step is the transition of the qq̄ pair into
the vector meson. This part’s contributions to the evaluation of total and t-differential cross
sections is one of the main objects of study of this work, thus to describe light and heavy vector
mesons, we used two models for the vector meson wave function: the AdS/QCD holographic
model and the potential model (which incorporates the Melosh spin transformation). With this
formalism and the proton as a target, we compared our results with the available data from
the HERA and the LHC colliders, and we obtained a good agreement for both the differential
and integrated results. For the nuclear case, we extended our calculations by using the Glauber-
Gribov theory and applied it to the coherent and incoherent photoproduction of vector mesons
in UPCs with the inclusion of the finite coherence length and gluon shadowing effects fitted
to data. Our t-independent results are compared to the available LHC data in both incoherent
(J/ψ at 2.76 TeV) and coherent (J/ψ and ψ′ at 2.76 and 5.02 TeV) processes. While in the
first case, we could not describe the data, in the second case, we obtained a good description
of the coherent data, especially for J/ψ, which shows the efficiency of the formalism used. In
the t-dependent case, the recent publication of coherent J/ψ photoproduction data at 5.02
TeV was a convenient tool to measure the efficiency of our results, which were very close to
the experimental data. We also presented predictions for Υ(1S) and Υ(2S) cross sections at
LHC energies (s = 5.02 TeV), which can be helpful in the future with new measurements on
the large particle colliders.

Keywords: Vector meson. Color dipole model. Photoproduction. Ultraperipheral collisions.
Quantum-chromodynamics. Holographic model.
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1 INTRODUCTION

Since the earliest civilizations that lived in this world, humanity has been intrigued
by the fundamental question: “What are things made of?”. Around the fifth century BC, an
answer to this question emerged with Democritus and Leucippus, who proposed that matter
was composed of tiny indivisible particles, which they called atoms. Today, it is known that the
atom is not an indivisible structure, but in a general sense, it is formed by protons, neutrons,
and electrons. A big step in understanding the composition of the atoms was taken in the
1960s with the discovery that the first two are not indivisible either, but they are composed of
smaller particles called quarks [14].

1.1 STANDARD MODEL

The fundamental particles are grouped in what is called the Standard Model. It puts
together the fundamental blocks that constitute the matter of the Universe (fermions, which
have a half-integer spin) and the interaction mediators (bosons, which have an integer spin).

Fermions are classified into two groups: the quarks (which can not be found isolated in
nature due to their color charge) and the leptons (that can exist alone). Each of these groups
is composed of six particles. The six quark flavors are: up, down, strange, charm, top, and
bottom, and they carry one of the three color charges: red, green, or blue. Since, in nature,
just singlet-bound states can be observed ( i.e., only states with neutral color charge can be
measured), quarks combine to form bound states. The combination of three quarks is called
baryon, while a state formed by a quark and an antiquark is named meson. Since each possesses
a semi-half spin, mesons compulsorily have an integer spin. Mesons with zero spin and odd
parity are called pseudoscalar mesons, such as pions. On the other hand, mesons with spin
equal to one, and also odd parity, are called vector mesons (as an example, one can cite the ρ
vector meson). Lastly, quarks also have a fractional electric charge; up, charm, and top quarks
(first line in Fig. 3) possess Qe = 2/3 of the positron charge, while down, strange, and bottom
(second line in Fig. 3) have Qe = −1/3.

As was aforementioned, leptons exist in six flavors: the electron, the muon, and the
tau have an electric charge Qe = −1 (third line in Fig. 3), while each of its corresponding
neutrinos (fourth line in Fig. 3) are electrically neutral and possess a very small mass. Leptons
are colorless, thereby, can exist in isolation without forming composite states.

Besides this classification, fermions also can be divided into three generations (the first
three columns in Fig. 3). Each generation contains two quarks (one with charge 2/3 and one
with charge −1/3) and two leptons (one with charge −1 and one with 0 charge). They are
organized by the particle mass. Each generation, except maybe for neutrinos, has a higher mass
than the previous one. This is known as the mass hierarchy, which explains why particles from
the second and third generations decay into the first one. The first generation is composed of
lighter particles, which can combine to form ordinary matter. The description of the matter
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Figure 3 – Standard Models of elementary particles.

Source: Figure taken from [15].

in the Universe requires the existence of 12 building blocks. This number does not account
for the antifermions, which need to be considered since in the Standard Model each particle is
associated with an antiparticle (a particle with the same mass but opposite additive quantum
numbers, such as electric and color charges). It also does not include the three possible color
charges that each quark can possess. Thus, in light of all this, this sector of the Standard
Model contains 48 building blocks [16].

Looking now for the boson sector, only W+ and W− are electrically charged, the other
bosons are electrically neutral. As a consequence, W+ is the W− antiparticle, and vice-versa.
They also can have spin 0 (scalar bosons) or spin 1 (vector bosons). In the first case, the Higgs
boson is the only one that belongs to this category, being isolated in the fifth column of Fig. 3.
It is also responsible for giving mass to the other particles. The second group is composed of
the bosons which are responsible for three of the four fundamental forces that exist in nature.
The photon carries the electromagnetic force, which is related to the electric charge. Gluons
intermediate the strong force and are associated with the color charge. And finally, there are
the Z and W± bosons, which are the mediators of the weak interactions and are responsible
for the quark flavor change in charged currents [17].



1.2. QCD 23

1.2 QCD

Quantum chromodynamics (QCD) is a gauge theory responsible for the description of
strong interactions. This means that it describes the force that exists between colorful quarks
and antiquarks that occurs by the exchange of gluons, which also carry color charge. This
last characteristic makes possible the interaction of gluons with themselves, which makes the
theory richer and more complex, and, in addition, more difficult to be treated when compared
to quantum electrodynamics (QED), which describes electromagnetic interactions [18].

The intensity with which these forces act is measured by the coupling constants αem

and αs. In the electromagnetic interaction case, the fine-structure constant αem ∼ 1/137 is
much smaller than unity, which makes possible the use of perturbative theories in calculations
involving QED. However, in strong interactions, the coupling constant varies considerably with
energy, being relatively large for low energies (or large distances), and decreasing rapidly with
increasing energy [19], as can be seen in Fig. 4. This fact evidences that studies involving QCD
should consider two different energy regimes.

Figure 4 – Strong coupling constant as a function of the energy scale Q.

Source: Figure taken from [20].

In the high energy limit, the interaction between the quarks becomes very weak, causing
them to move practically freely inside the hadrons. This property is called asymptotic freedom
and allows the use of perturbative theories to perform the calculations. On the other hand, in
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the low energy regime, the strong force grows as the separation between two quarks increases,
in such a way that at a given moment the energy applied to the system is so great that a
new qq̄ pair is spontaneously produced, transforming the initial hadron into a pair of hadrons.
This QCD particularity is called color confinement and prevents the observation of colored
objects in nature. Furthermore, due to the size of the coupling constant, it is not possible to
use perturbative techniques in this region, which makes the calculations extremely complicated
and prompts the emergence of phenomenological models to deal with physics in this domain.

The Deep Inelastic Scattering (DIS) played an important role in improving the un-
derstanding of the proton structure [21]. It was vastly investigated in the HERA accelerator
(Hadron-Electron Ring Accelerator), where it was realized that the deep inelastic scattering
cross section was weakly dependent on Q2. Actually, it was noticed that the structure function
F (x,Q2) has a scaling behavior in the limit of Q2 → ∞, depending only on the variable x [22].
This variable, named after James Bjorken, is interpreted at leading-order (LO) as the fraction
of the proton momentum carried by the parton that participates in the interaction [23]. This
phenomenon was explained by Feynman by means of the parton model, which states that a
proton is constituted by interacting point-like particles called partons. Quarks and gluons are
considered partons. The second ones were vastly measured by HERA collider between 1996
and 2007. The way in which the partons are distributed inside the proton, or any nucleon, is
described by parton distribution functions (PDFs), which are obtained by parameterizations
[24] fitted to experimental data.

1.3 EXCLUSIVE VECTOR MESON PRODUCTION

The exclusive production of vector mesons in photon-proton or photon-nucleus collisions
is a very interesting tool to understand the limits of perturbative QCD. Exclusive production
means that in the final state there exists only the vector meson and the initial proton or nucleus.
Regarding the production of heavy vector mesons such as J/ψ and Υ, which are respectively
charm (cc̄) and bottom (bb̄) bound states, the quark mass mQ can serve as a hard scale for
the process, which determines the suitability of the perturbative theory in the calculation of
the observables [25]. However, in the case of light vector meson production, as ρ, ω, and ϕ -
where the first two are bound states composed by the superposition of up and down qq̄ pairs
and the third one is a strange bound state (ss̄) - their quark masses are not high enough to
work as a hard scale for the process [26]. This prevents a clear separation of the perturbative
effects from the non-perturbative ones, a phenomenon known as factorization. Thus, for these
processes, phenomenological techniques need to be applied in order to calculate observables.

Moreover, this type of production can play a significant and promising role in testing
diffractive processes, which are characterized by the absence of an exchange of quantum
numbers between the projectile and the target [27]. A notable aspect of diffractive interactions
is that the final particle beams travel almost in the same direction as the initial one, generating
a rapidity gap that provides a clear measurement. This means that in this kind of collision, the
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interaction is minimal at the central region, which suggests that the interaction occurs through
an exchange of a colorless object with the vacuum quantum numbers. In Regge theory, this
object is called Pomeron and was proposed in 1961 to explain the growth of the hadronic cross
section at high energies [28].

There are two different ways of exclusively producing vector mesons in photon–target
collisions. The first one is called photoproduction, γp → V p, and concerns the cases where
the photon emitted by the (usually nucleus) projectile is quasi-real, which means that it has a
virtuality that tends to zero (Q2 ∼ 0). The second one, known as electroproduction, γ∗p → V p,
has a virtual (Q2 > 0) photon originated from the (usually electron) projectile. In both cases,
the quantum numbers of the projectile photon and the target remain unchanged, allowing their
interaction to be described as a Pomeron exchange. Over the course of many years, the HERA
collider served as a prominent facility for vector meson production and has accumulated an
extensive quantity of measurements with proton targets. Its precise data were valuable to test
the available theories and understand the exclusive vector meson production mechanism.

Recently, vector meson photoproduction data have been released by the Large Hadron
Collider (LHC). This collider executes collisions involving both proton targets and nuclear
targets, which means that these particles actively participate in the collision with the photon.
When protons or nuclei emit the photons, they are regarded as the projectile. In the case of
nuclear targets, the impact parameters must be larger than the sum of the two nuclei radii
(ultraperipheral collisions - UPC) to ensure that they only interact through photon exchange.
In the ultra-relativistic limit, using the Weizsäcker-Williams method, it is possible to factorize
the collision cross section into a photon flux factor and a cross section for photon-nucleus
interaction.

1.4 COLOR DIPOLE MODEL

The description of cross sections with the proton as a target and a photon as a
projectile can be evaluated using the famous and successful color dipole model [29], which
consists of a photon fluctuating into a quark-antiquark pair and interacting with the target
before transforming into the vector meson. In the small dipole approximation, the photon part
can be calculated with perturbative QED, presenting no big mysteries in its analytical form.
However, the second and third parts present a significant contribution of nonperturbative effects,
which encourage the use of parameterizations to describe them. Thus, they are vulnerable
to uncertainties stemming from the choice of models [4]. In this work, it was selected five
parameterizations for the strong interaction of the color dipole through gluon exchange: two
integrated ones (GBW and KST) and three unintegrated ones (bCGC, b-Sat, and BK), which
present an impact parameter dependence. The objective of testing this number of models is
to achieve the best description of the data available in the literature. All these concepts are
discussed in more detail in Chapter 2, which is destinated to the color dipole formalism and
the elements that concern it.
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In the literature, there is no profound understanding about what is the form of the
vector meson wave function, the last part of the process in the color dipole model. It is
common to describe it by utilizing a Gaussian form to encode all dynamics of the vector meson
formation; however, since it is mostly fitted, it depends on the existence of data to restrict the
parameterization parameters. For this reason, one of the biggest goals of this project was to
study some important observables using wave functions based on the theoretical fundaments
of QCD. It would be very nice to find a universal wave function for all vector mesons; however,
as was aforementioned, their different masses make them work differently in distinct scale
regimes. Therefore, this work addresses two models for the vector meson wave function: one
for light vector mesons (the holographic model) and the other for the heavy ones: based on a
solution of the Schrödinger equation in the qq̄ pair rest frame for different interquark potential
models and incorporating a boost on the spins (Melosh spin rotation).

These two models provide a framework to obtain not only the wave functions for
the ground states but also the wave functions for the excited states. This fact is of great
significance, as it allows the description of new data from LHCb and ALICE [8, 30] for ψ(2S)
and obtaining predictions for ρ(2S), ω(2S), ϕ(2S), and Υ(2S). This will be of immense value
with the construction of future high-energy colliders, such as the Electron-Ion Collider (EIC)
[31] and the Future Circular Collider (FCC). These predictions are presented in Chapter 3,
together with a thorough explanation of each vector meson wave function model. Moreover,
this chapter shows total cross sections as a function of the center of mass energy W and
differential cross sections as a function of the proton transferred momentum |t| for the exclusive
production of the ground and excited states of all five vector mesons: ρ, ω, ϕ, ψ, and Υ .

In Chapter 4, a generalization of this formalism for the case of nuclear targets will be
presented. In this case, it is necessary to employ the Glauber-Gribov formalism to account
for the various possible interactions of the dipole with the nucleons within the nucleus and
to consider that the vector mesons can be produced coherently (when the nucleus remains
intact) or incoherently (when after the collision the nucleus final state is different than its
initial state). In nuclear target collisions, there are two important effects to consider. The
first is gluon shadowing, which occurs when higher states with gluon inclusions are present
and survive a shorter time than the |qq̄⟩ state [32]. The second is the finite coherence length,
which is related to the finiteness lifetime of the quark-antiquark pair. Both effects lead to a
suppression of the cross section, however, the former is more relevant at high energies, while
the latter affects more the low-energy regime. The final results are presented at the end of
the chapter, which include rapidity distributions for the coherent and incoherent cases and
t-dependent differential cross sections, both considering heavy vector meson photoproduction
at LHC energies.
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2 COLOR DIPOLE FORMALISM FOR VECTOR MESON PRODUCTION WITH
PROTON AS THE TARGET.

The exclusive vector meson production processes are powerful and effective tools for
exploring the limit between perturbative (hard QCD) and non-perturbative phenomena (soft
QCD). The production of bound states such as Υ provides a sufficiently hard scale (mb) that
enables the application of perturbative calculations. The production of slightly lighter states
such as ψ exhibits a semi-hard scale and can work as an environment to study the interplay
between the two regimes. And finally, the production of very light vector mesons such as ρ,
ω, and ϕ possesses a soft scale, which makes non-perturbative effects dominate the process.
Developing a formalism capable of describing the data for all these vector mesons is a good
way to test the efficiency of the parameterizations responsible for describing non-perturbative
aspects and validate their universality.

Furthermore, the exclusive production of vector mesons allows the determination of
differential observables, such as differential cross sections that depend on kinematic variables.
These observables are extremely important for obtaining a detailed description of the proton
structure, highlighting the dependence of this structure on the impact parameter. Considering
these motives, this chapter will present a study of this process through the lens of color dipole
formalism.

2.1 KINEMATICS OF THE PROCESS WITH A PROTON TARGET.

The exclusive vector meson production in γp scattering is a diffractive process in which
the proton remains intact. It can be measured in fixed target experiments as well as in electron-
proton and proton-proton collisions. Its lowest order diagram (Fig. 5) consists of an electron
emitting a photon with four-momentum q = k − k′, which subsequently interacts with the
target proton. This interaction is represented in Fig. 5 by the dashed bubble.

In order to describe the kinematics of this interaction, it is helpful to define some
invariant quantities, like:

s = (p+ k)2

Q2 = −q2 = − (k − k′)2

x = (p− p′) · q
p · q

≈ M2
x +Q2

W 2 +Q2 .

(1)

On the first line, √
s is the total center-of-mass (c.o.m) energy of the collision between the

incident particle and target proton (ep, pp, or Ap), Mx is the bound state mass produced in the
collision and x is the modified Bjorken-x. The virtuality Q2 measures how much off-shell the
photon is. The Heisenberg principle states that the virtuality can be related to the resolution
in which the photon probes the proton, and is approximately 1/

√
Q2. The last invariant is the

center of mass energy of the photon-proton system squared, given by W 2 = (p+ q)2.
This process has two particles in the final state, V p, as such it can be described by
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Figure 5 – Kinematics of the vector meson production through an electron-proton collision.
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two independent variables [33]. The cross section does not depend on the azimuthal angle φ,
but it does depend on the scattering angle θ. However, since it is not Lorentz-invariant, it is
convenient to write it in terms of the Mandelstam variable t

t = (p′ − p)2 = m2
p +m2

p′ − 2EpEp′ + 2|p||p′| cos θ, (2)

which corresponds to the difference between the proton four-momentum before and after the
interaction. Together with initial-state dependent W , we have the complete description.

In the high energy limit, it is possible to approximate the energy and the momentum
absolute value by (See Appendix F):

Ep, Ep′ , |p|, |p′| ≃
W 2→∞

W

2 , (3)

and neglect the particle masses. Thereby, it is found the following relation for the scattering
angle:

cos θ = 1 + 2t
W 2 (4)

Finally, it is interesting to express the vector meson transverse momenta ∆T ≡ |∆| as
function of the invariants t and W 2:

∆2
T = |p′|2 sin2 θ ∼= −

[
t+ t2

W 2

]
, (5)

which in the high energy limit, W 2 → ∞, becomes

∆2
T ≃ −t. (6)
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2.2 COLOR DIPOLE PICTURE

The photon-proton interaction can be described by the color dipole picture, which is
based on the fact that in quantum mechanics a photon can fluctuate into a qq̄ pair, which can
strongly interact with a proton. The reason why it is possible to use this approach is that, in
the proton rest frame, the fluctuation lifetime is bigger than the duration of the interaction.
This permits the factorization of the cross section into a part that deals with the photon
transformation into the quark-antiquark pair and another that models the interaction. Briefly,
the γp elastic scattering can be divided into three steps: first, the photon splits into a qq̄ pair,
which then interacts elastically with the proton and, finally, recombines into a vector meson
(Fig. 6).

Figure 6 – Schematic representation of the scattering amplitude for the vector meson produc-
tion in the color dipole picture.

Source: Figure adapted from [4].

The scattering amplitude for this process is given by the product of the amplitude of
each subprocess integrated in β and r, which are the momentum fraction of the photon carried
by the quark and the qq̄ transverse distance,

Aγp (x,∆T ) =
∫

d2r

∫ 1

0
dβΨ∗

V (r, β)Ψγ(r, β)Aqq̄(x, r,∆) . (7)

In this equation, Ψγ is the photon wave function (vertex γ → qq̄), ΨV is the vector meson
wave function (vertex V → qq̄) and Aqq̄(x, r,∆) is the elementary elastic amplitude of the
dipole-proton interaction, which can be related to the S-matrix as:

Aqq̄(x, r,∆) =
∫

d2b e−ib·∆ Aqq̄(x, r, b) = i
∫

d2b e−ib·∆ 2[1 − S(x, r, b)] . (8)

From the optical theorem1 it is possible to correlate the imaginary part of the forward
elementary elastic amplitude (∆ = 0) with the total dipole cross section (a universal ingredient
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that will be explained later) [2]

σqq̄(x, r) = ImAqq̄(x, r,∆ = 0)

=
∫

d2b 2 [1 − ReS(x, r, b)]

≡
∫

d2b 2N(x, r, b)

(9)

Considering that the elementary elastic amplitude is purely imaginary, which is a safe
approximation in the high energy limit, it is possible to use the optical theorem to rewrite the
scattering amplitude of the γp → V p process (Eq. 7) as:

Aγp(x,∆T ) = 2i
∫

d2r

∫ 1

0
dβ
∫

d2bΨ∗
V (r, β)Ψγ(r, β)e−i[b− (1−2β)

2 r]·∆N(x, r, b) . (10)

This equation includes a correction that considers the finite size of the color dipole, which is not
necessarily smaller than the proton size. It was first introduced by Kowalski, Motyka, and Watt,
who stated that the non-forward elementary amplitude (∆ ̸= 0) could be written exactly as (8),
but multiplying it by the exponential factor exp

[
− i(1 −β)r · ∆)

]
. This approach was used in

many works [34, 35, 36, 37, 3], including our first two papers [11, 38] (which show results of
heavy vector meson photoproduction). However, recently, the authors of [39] underlined that
this term is not compatible with the requirement made in [40] that the amplitude should be
invariant under replacing quark and antiquark kinematic variables: β → 1 − β and r → −r.
Thus, they show that the correct phase factor is exp(−i1−2β

2 r · ∆), which we included in our
third paper [41] (that presents results for light vector mesons). Implementing the correct factor
provided a better description of the t-dependent cross sections since it enhanced the cross
section at larger t values, preventing the curves from dropping so fast.

Recalling that the formalism presented previously was constructed based on the suppo-
sition that the scattering amplitude is purely imaginary, we chose to include a term on Eq. 10
referent to the ratio of its real to its imaginary part, in order to consider the small contribution
of the real part of the amplitude. Thus the modification of the amplitude is:

Aγp ⇒ Aγp

(
1 − i

πλ

2

)
, com λ = ∂ ln Aγp

∂ ln(1/x) . (11)

This substitution was suggested in [42], and it is based on dispersion relations on pp collisions,
as can be seen in [43, 44] and in Appendix C. However, there are no known ways to extend
this approach to other hadronic processes, consequently this expression should be considered
an ansatz.

Another correction introduced in the calculations is the skewness effect. It takes into
account that the gluons exchanged between the qq̄ pair and the target nucleon can carry
1 Originally, in the high energy limit, the optical theorem presents a factor 1/W 2 multiplying the imaginary

part of the amplitude: σqq̄(x, r) = ImAqq̄(x,r,∆=0)
W 2 . However, the absorption of this denominator into the

definition of the amplitude was conventionalized in the dipole formalism, which leads to an amplitude with
the dimension of 1/energy2. This subject is discussed in more detail in [2].



2.3. Color dipole parametrizations 31

different momentum fractions (x and x′). This effect is not considered in the dipole cross
section, since the optical theorem makes the two gluons have symmetric momenta. Thus, on
the limit of x′ ≪ x ≪ 1 and small t values, it is possible to include the skewness effect by
multiplying the scattering amplitude by the factor [45]:

Rg(λ) = 22λ+3
√
π

Γ(λ+ 5/2)
Γ(λ+ 4) . (12)

2.3 COLOR DIPOLE PARAMETRIZATIONS

An essential ingredient of the color dipole formalism is the universal dipole cross section
σqq̄(r, x). It is responsible for describing the interaction between the qq̄ pair and the target
nucleon and it is directly related to the gluon distribution inside the proton. It was introduced
for the first time in [29], more than 40 years ago, and it is based on the fact that the interaction
eigenstates in QCD, at high energies, are dipoles with a fixed transverse size r. This implies
that the value of the dipole cross section for each color dipole with a different size is an
interaction eigenvalue.

It is possible to see in Eq. 10 that all the scattering amplitude dependence on the
energy is located on the partial dipole amplitude N(x, r, b). This dependence comes from
higher-order corrections related to gluon radiations. This means that besides the photon splits
into a qq̄ pair, like in Fig. 6, it also can split into higher Fock states (that include gluons), like
qq̄G, qq̄2G...qq̄nG. In this case, the radiated gluons are responsible for the emergence of the
dependence of the partial dipole amplitude on the energy.

For small dipoles, it is possible to use perturbative QCD (pQCD) to find this dependence
on the energy [42]. However, for larger dipoles, the strong interaction coupling constant becomes
very high, which precludes the use of pQCD in this regime. Therefore, a phenomenological form
is necessary to describe this part of the interaction. A lot of parameterizations are available in
the literature and some of them will be shown hereafter.

2.3.1 GBW

One of the first parameterizations to succeed, mostly on the description of deep inelastic
scattering (DIS) events, was proposed by Golec-Biernat and Wüsthoff (GBW) [46, 47] in 1998
and presented a very simple form given by:

σqq̄ (x, r) = σ0

(
1 − e− r2Q2

s(x)
4

)
. (13)

In this case, σ0 is merely a constant parameter, and Q2
s(x) ≡ R−2

0 (x) = Q2
0
(

x0
x

)λ is the
saturation scale (or the inverse of the saturation radius), which delimits the regime where the
saturation effects become relevant. Eq. 13 is responsible for describing two phenomena; the
first is called color transparency and basically considers that the dipole cross section has a
quadratic behavior (σqq̄ ∝ r2) in the r → 0 limit (or in other words, the target becomes more
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transparent to interactions with smaller color dipoles). The second phenomenon is saturation.
It occurs in the limit of high r values, when the photon wavelength ∼ 1/Q reaches the target
size, making the dipole cross section approach a constant value σ0. Another aspect considered
by [46], refers to the fact that on the small-x regime, the partons inside the proton form a
dense system, which permits them to interact with each other and recombine. This means
that the density of partons that effectively interact is limited (there will be partons that will
be just spectators of the interaction), and the point where this effect starts to be relevant is
defined by the saturation scale. This limitation on the effective interactions makes the cross
section approach a constant value, which is called black disk limit.

It is worth emphasizing that Eq. 13 depends on the photon virtuality Q2 by means of
x. In the original paper [46], the authors define it with a dependence on the quark masses
x = (Q2 + 4m2

f )/(Q2 +W 2). They also provided two sets of fit parameters: one for only three
light flavors, and another including the charm quark. In the course of our studies, we tested
both the original set of fits as well as the updated GBW fit found in [48], and we observed that
the numerical differences in the results obtained were minimal. However, regarding the results
for total γp → V p photoproduction cross section at higher W (these results will be discussed
in Sec.3.2.1), we noticed that the original GBW parameterization is somewhat closer to the
data points. For this reason, we chose the “old” GBW fit for the evaluation of the observables
in this work. Its four free parameters were fitted to HERA data for F2 structure function [47],

Q2
0 = 1 GeV2, x0 = 3.04 × 10−4, λ = 0.288, σ0 = 23.03 mb , (14)

enabling a good description of several observables in ep and pp collisions at high energies.

2.3.2 KST

On the soft limit, where the virtuality goes to zero (photoproduction), the Bjorken
variable x is not a very proper variable to describe the data. This issue motivated Kopeliovich,
Schäfer, and Tarasov to develop a model (named KST) [49], whose dipole cross section is
treated as a function of the center of mass energy squared of the photon-nucleon system,
ŝ = W 2, and is more convenient for hadronic processes.

In this case, they used a simple form for the dipole cross section analogous to that used
in GBW model:

σq̄q (r, ŝ) = σ0(ŝ)
[
1 − e−r2/R2

0(ŝ)
]
. (15)

However, now the parameters σ0(ŝ) and R0(ŝ) are energy dependent,

R0(ŝ) = 0.88 fm (s0/ŝ)0.14 , σ0(ŝ) = σπp
tot(ŝ)

(
1 + 3R2

0(ŝ)
8 ⟨r2

ch⟩π

)
, (16)

and are chosen in a way that the normalized dipole cross section reproduces the pion-proton
total cross section [50]

σπp
tot(ŝ) = 23.6 (ŝ/s0)0.08 mb. (17)
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Besides that, on Eq. 16, ⟨r2
ch⟩π = 0.44 fm2 is the mean pion charge radius squared [51] and

s0 = 1000 GeV2. More information about this model can be found in [49], where they state
that the success of this model is guaranteed only up to Q2 ∼ 10 GeV2.

2.3.3 bSat

With the purpose of describing t-distributions for the exclusive vector meson production,
it is necessary to use a dipole cross section that depends on the impact parameter, since this
is the Fourier conjugate variable to the transferred momentum. A famous parameterization
with this dependence was proposed by Kowalski and Teaney [52] to describe HERA data, and
is well known by the name bSat. This parameterization also has an exponential behavior

N(x, r, b) = 1 − exp
(

− π2

2Nc

r2αs(µ2)xg(x, µ2)T (b)
)

(18)

that depends on the gluon density xg(x, µ2), the number of colors (Nc = 3) and the strong
coupling constant αs(µ2), which depends on the scale µ2 = 4/r2+µ2

0 (found in [2] as µ2
0 = 1.17

GeV2).
In the original model [52], the initial gluon density is expressed as an ansatz, which is

evolved from the initial scale µ2
0 (fitted to ZEUS data [53, 54]) to µ2 through the factorization

scale evolution equation DGLAP (Dokshitzer [55], Gribov-Lipatov [56] e Altarelli-Parisi [57])
at leading order (LO) without the inclusion of quarks in the gluon density. However, in this
work, we used the parton distribution function (PDF) CT14LO [58] parameterized to data
from several processes. The deviation between the results obtained with these two different
approaches is very small, thus, aiming for the universality of the description of the QCD
non-perturbative phenomena, we chose CT14LO over the original gluon distribution for the
calculations. Besides that, it was considered a Gaussian form for the proton shape function

T (b) = 1
2πBG

e−b2/2BG , (19)

with the slope parameter BG = 4.0 GeV-2 [2].

2.3.4 BK

The DGLAP evolution equation, which generally is used for the description of HERA
data, is not very appropriate when x approaches the saturation limit, because in this regime
the parton density becomes so high that the neighboring gluon ladders start to overlap [59].
Therefore, the Balitsky-Kovchegov (BK) evolution equation [60, 61, 62] can be a more inter-
esting option on the description of the photoproduction processes since it includes a non-linear
term that controls the rise of the gluon density in the saturation region. A recent solution
for the BK equation, which includes a b-dependence in the partial dipole amplitude, can be
found in [63]. It considers only the absolute value of the transversal dipole size r and of the
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impact parameter b, i.e., it does not depend on the angle between r and b. This leads to a
BK equation with the form:

∂N(r, b, Y )
∂Y

=
∫
dr1K (r, r1, r2) (N (r1, b1, Y ) +N (r2, b2Y ) −N(r, b, Y )

−N (r1, b1, Y )N (r2, b2, Y )) ,
(20)

which has N(x, r, b) as the partial dipole amplitude, that appears in Eq. 10, with rapidity
Y = ln(0.008/x).

An interesting fact about this solution is that it has a new and improved kernel
K (r, r1, r2) [64] that suppresses daughter dipoles with large transverse size, fixing the problem
of Coloumb tails (a name given to a phenomenon related to an unphysical growth of the cross
section for high b-values).

2.3.5 bCGC

Another parameterization that includes the non-linear saturation effects is the bCGC
dipole model. It was first proposed, without impact parameter dependence, by Iancu, Itakura,
and Munier in [65] as an interpolation of two limiting behavior functions. The first one is
the analytical solution of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation, valid in the
vicinity of the saturation line, for small dipoles (r ≪ 2/Qs); and the second is the Levin-Tuchin
solution [66] for the BK equation, used in the saturation limit to include the non-linear effects
that appear with large dipoles (r ≫ 2/Qs). In their model, called CGC, the dipole-proton
amplitude is given by [2, 3, 67]:

N(x, r,b) =

N0
(

r Qs

2

)2[γs+(1/(ηΛY )) ln(2/rQs)]
rQs ≤ 2

1 − e−A ln2(B r Qs) rQs > 2
, (21)

with Y = ln(1/x) and η = 9.9 (fixed at the LO BFKL value [65]). The parameters A and
B are determined by the condition that the partial dipole amplitude N(x, r,b), as well as its
derivative with respect to rQs, must be continuous at rQs = 2, which gives:

A = − N2
0γ

2
s

(1 −N0)2 ln (1 −N0)
, B = 1

2 (1 −N0)− 1−N0
N0γs . (22)

The b-dependence was introduced later on the CGC model by Watt, Motyka and
Kowalski [2], who included it in the saturation scale:

Qs ≡ Qs(x, b) =
(x0

x

)Λ/2
[
exp

(
− b2

2BCGC

)]1/(2γs)

. (23)

This was quite a natural choice, because it is expected that the gluon distribution is higher in
the center of the proton than in its outskirts, thus the saturation effects should be stronger in
the center, which can be taken into account with a saturation scale that depends on x and b.
This model was called bCGC, and its parameters N0, x0 γs, and Λ were obtained by a fit to
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the HERA data (we used the ones for mc = 1.4 GeV in [3]), while BCGC was determined by
requiring a good description of the t-distribution of the exclusive J/ψ photoproduction.

It is worth emphasizing that the dipole cross sections are parameterized considering
just the part of the gluon density that grows at small-x values. From the constituent counting
rules [68, 69, 70], it is known that the gluon density inside the target should decrease as
g(x) ∝ (1 − x)N for x > 0.01. In [71], it was verified that multiplying the saturation scale by
this factor improves the description of Drell-Yan process for larger x, maintaining the results
mostly unaltered for small x. Regarding this, we chose to follow the same approach as [72]
and multiply the dipole cross section by the factor (1 − x)2ns−1, where ns is the number of
spectator quarks. In the color dipole model, these quarks represent the sea quark contribution,
and for this reason, we set ns = 4.

2.4 PHOTON WAVE FUNCTION

The photon wave function is the part of the scattering amplitude that carries the
information about the photon fluctuation into the quark-antiquark pair. Basically, it describes
the probability of finding a quark (antiquark) carrying a fraction of the momentum of the
photon β (1 − β) and separated by a distance r. This vertice was calculated with perturbative
QED by many authors [73, 74, 75, 76, 77, 78] and its shape is very known in the literature
[42]:

Ψ(µ,µ̄)
γT,L

(
r, β,Q2) =

√
Ncαem

2π ZQχ
µ†
Q ÔT,Lχ̃

µ

Q̄
K0(εr), ε2 = β(1 − β)Q2 +m2

Q. (24)

In this equation the variables ε and ZQ are, respectively, the energy and electric charge fraction
of the quark that forms the dipole (ergo, Zu = Zc = 2/3 and Zd = Zs = Zb = 1/3); χµ

Q and
χ̃µ̄

Q̄
≡ iσyχ

µ̄∗
Q̄

are, in due order, the quark and antiquark spinors.
The operators ÔT,L are defined in the following way:

ÔT = mQσ⃗ · e⃗γ + i(1 − 2β)(σ⃗ · n⃗)
(
e⃗γ · ∇⃗r

)
+ (n⃗× e⃗γ) ∇⃗r

ÔL = 2Qβ(1 − β)σ⃗ · n⃗, σ⃗ = (σx, σy, σz) , ∇⃗r ≡ ∂/∂r
(25)

where e⃗γ is the photon transversal polarization, n⃗ = p⃗γ/|p⃗γ| is a unit vector that points to the
photon momentum direction and σ{x,y,z} are the Pauli matrices. Looking at equation 25, it is
evident that in the photoproduction case (Q2 = 0) the photon longitudinal wave function is
zero. Thus, one can use this process to study the photon transverse wave function.

It is worth mentioning that the fact that Eq. 24 was obtained by perturbative calculations
makes this expression very reliable for small dipoles. However, when the qq̄ separation is not
small (large dipoles), confinement effects start to appear, which should be included in the
photon wave function. Some studies about the subject can be found in [35, 76]. These effects
become more relevant in light vector meson production at small virtualities since, in this case,
there is no hard scale to inhibit the modified Bessel functions that appear in Eq. 24 from
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becoming very large. This is not a concern in the heavy vector meson case, because the quark
mass can be used as a hard scale, making it safe to use Eq. 24.

2.5 VECTOR MESON WAVE FUNCTION

The last part of the Eq. 10 is the vector meson wave function, which is one of the
major sources of uncertainties in the vector meson production [4, 34, 79, 80, 81]. This comes
from the fact that when one is dealing with bound states, one has to consider the existence
of an interaction between the constituents [82], which adds non-perturbative effects to the
calculations, such as color confinement. One can deal with that by projecting the physical vector
meson onto the Fock space where the vector states are composed of free and non-interacting
quarks and gluons |Vphys⟩ = c0|qq̄⟩ + c1|qq̄g⟩ + c2|qq̄gg⟩ + c3|qq̄qq̄⟩ + ..., and the coefficients
ci are the wave functions of the physical vector meson projected in the states |i⟩. The problem
is that in Quantum Field Theory (QFT), it is uncertain whether the entire framework that
assumes well-defined wave functions and vector mesons represented as states of free and non-
interacting components would function properly. For this reason, many authors in the literature
[2, 3, 34, 81] use a photon-like vertex, i.e. they assume that the vector meson wave function
has the same polarization and helicity structure as the photon wave function, with the scalar
part parameterized by a Gaussian function. This is the case of two often used vector mesons
wave function models: the Boosted Gaussian [76] and the Gauss-LC [52, 83]. However, some
recent works showed that the use of these simplified parameterizations can have a significant
impact on the theoretical predictions of exclusive quarkonia production observables (something
about 30% for the J/ψ cross section [4, 79]). As a result of the aforementioned circumstance,
I was encouraged to seek out models based on first principles and capable of describing excited
quarkonia states. Considering its importance to my work, I will allocate the next chapter to
provide a comprehensive exposition on this topic.

2.6 CROSS SECTION

Now that all the ingredients of the amplitude were explained, it is possible to calculate
the differential cross section, which, using the notation discussed earlier for the optical theorem
(Eq. 9), is defined as [2, 84]:

dσγp→V p

dt = 1
16π |Aγp(x,∆T )|2 . (26)

This equation will be a fundamental piece for describing the present HERA data as well as
any measurement conducted by LHC and EIC in the future. A pictorial representation of this
quantity can be found in Fig. 7.

In the integrated cross section calculus, it is customary to assume an exponential
parameterization for the differential cross section behavior in the small-|t| limit, dσγp→V p

dt
∝ e−Bt,

with B representing the size of the interaction area [2]. This assumption comes from an analysis
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Figure 7 – Pictoric representation of the cross section for J/ψ photoproduction in a collision
with a proton as a target.

γ∗

p

J/ψ

Source: Figure taken from [4].

of the phase space, where the perturbative QCD permits the calculation of hard processes,
whereas soft processes cannot be computed with it. In the second case, the interactions bear a
close resemblance to hadron-hadron elastic scattering, which can be described by soft Pomeron
exchange, as dictated by Regge phenomenology [85]. This makes it possible to write the
differential cross section as:

dσγp→V p

dt = dσγp→V p

dt

∣∣∣∣
t=0

e−Bt, (27)

with B defined by the Regge trajectory [86, 4]:

B = B0 + 4α′(0) ln
(
W

W0

)
. (28)

The parameters B0 = 4.62 GeV-2 and α′(0) = 0.171 GeV-2 came from a fit to H1 [87,
88] and ZEUS [89, 90] combined data and can be found in [4]. Besides that, data shows [85,
91, 92, 93] that in the case where Q2 > 0 or when one is interested in the exclusive production
of the Υ heavy vector meson, the results obtained with Eq. 28 are not satisfactory, which
suggests the necessity of inclusion of an empiric term in Eq. 28 [93]. Thus, for the heavy vector
mesons production, the slope parameter takes the form:

B
(
W,Q2) ≈ B

(
W,Q2 = 0

)
−B1 ln

(
Q2 +M2

V

M2
J/Ψ

)
, (29)

with B1 = 0.45 GeV-2. For the light vector mesons, a better parameterization is given by [94,
95, 96, 97]:

B = N

[
14.0

(
1GeV2

Q2 +M2
V

)0.2

+ 1
]
, (30)
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with N = 0.55 GeV−2, which agrees with the ZEUS data for both ρ and ϕ production.
When B data is plotted as a function of the scale µ2 = (Q2 + M2

V )/4 (Fig. 8), one
can see that it decreases with the scale increasing, until it approaches the asymptotic value of
5 GeV-2. This is evidence of the fact that for small µ2 values, the presence of large dipoles is
enhanced and soft diffraction dominates the process, increasing the B slope value. However,
with the increase of the scale, the size of the dipoles will decrease, and the hard diffraction
will start to dominate until the fully hard regime is reached (“finite size” effects) [91].

Figure 8 – Elastic scattering data for the B slope parameter as function of the scale µ2.
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After all this discussion, it is possible to find the total cross section for the vector meson
exclusive production by integrating Eq. 27, and thus write it as

σγp→V p = 1
16πB

∣∣Aγp→V p(t = 0)
∣∣2 . (31)

This equation will be used in the next section to calculate the total t-independent cross sections.
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3 VECTOR MESON WAVE FUNCTIONS AND RESULTS

The pursuit of ways to describe the important aspects of nature is one of the biggest
goals of theoretical physics. It would be very nice to be capable of obtaining each piece of
the dipole model calculated completely by first principles. However, the behavior of the strong
constant at small scales forbids the use of the known method of the perturbative QCD in all
energy ranges. This directly impacts the attempt to find one universal model to describe the
vector meson wave function for all vector mesons (ρ, ω, ϕ, ψ, and Υ) at once. The heavy vector
mesons ψ, and Υ possess a significant mass that can serve as a hard scale that separates the
perturbative dynamics from non-perturbative ones in an effect called factorization. However,
the light vector mesons ρ, ω, and ϕ do not have a mass high enough to provide a sufficiently
high scale to ensure that factorization works. Actually, their mass is so small that their wave
functions are highly non-perturbative. This fact implies that the formalism used to obtain the
wave functions is different for heavy and light vector meson production.

3.1 HEAVY VECTOR MESON WAVE FUNCTION

The heavy quarkonium wave function is obtained on the qq̄ rest frame, where it is
appropriately defined. In this reference frame, solutions for the non-relativistic Schrödinger
equation for various quark-antiquark interaction potentials can be found, and these solutions
are identified as the vector meson wave functions. While obtaining these solutions is not
a challenging task, a complication arises due to the dipole approach being defined in the
target rest frame. Consequently, a boost is required to transform from the dipole rest frame
to the target rest frame. Moreover, it is advantageous to switch to the light cone variables:
x+ = x0 + x3 and x− = x0 − x3 (additional properties are available in Appendix D), as they
are a more convenient way for transforming to the reference frame. Following the original
approach [42], this combination of a boost and a change of variables will be equivalent to the
infinite momentum frame (IMF) of the qq̄ pair.

The wave functions in the two aforementioned frames are related by a Lorentz trans-
formation, which means applying a boost to the four-vectors of the pair and a Melosh spin
rotation to the spins of the pair. In this simplified relation, the multiparticle effects are not
considered. For instance, the lowest order |qq̄⟩ state in the rest frame does not correspond
exactly to the lowest |qq̄⟩ state in the infinite momentum frame since the frame change can
mix the states in the Fock space. Although interesting and relevant, this effect will not be
included in the presented calculations since there is no consensus in the literature about how
to describe it. It is expected that the contribution of this effect is small, in truth, even smaller
than other neglected contributions that appear in next-to-leading order.

This task can be resolved by employing a methodology, as explained in [4, 42], that
involves initially performing a Fourier transform of the wave function in the rest frame (RF)
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from the coordinate space to the momentum space (ΨRF
V (r̃) ⇒ ΨRF

V (p)):

ΨRF
V (p) = 2√

2πp

∫ ∞

0
dr̃ r̃ΨRF

V (r̃) sin(pr̃),
∫

d3p |ΨRF
V (p)|2 = 1 . (32)

In these equations, p ≡ |p| is the quark 3-momentum in the rest frame and r̃ ≡ |r̃| is the
quark-antiquark separation in 3D.

The second step consists of boosting the wave function from the rest frame to the
infinite momentum frame. For this purpose, one can use the Brodsky-Huang-Lepage prescription
[98, 99] and equate the qq̄ pair squared invariant mass in both frames. Thus, in the infinite
momentum frame, the squared invariant mass is (Appendix E)

M2
QQ̄ =

p2
T +m2

Q

β(1 − β) , (33)

while in the rest frame, it is given by:

M2
QQ̄ = 4

(
p2 +m2

Q

)
, (34)

in which pL and pT are respectively the longitudinal and transversal components of the three-
momentum p and mQ is the quark mass.

Equating both equations it is possible to find

p2 =
p2

T + (1 − 2β)2m2
Q

4β(1 − β) . (35)

Using the fact that p2 = p2
L + p2

T and isolating p2
L one obtain:

p2
L =

(
p2

T +m2
Q

)
(1 − 2β)2

4β(1 − β) , (36)

which is an appropriate kinetic variable conversion between the two frames. It will be useful to
differentiate both sides of Eq. 36,

dpL =

√
p2

T +m2
Q

4 (β(1 − β))3/2 dβ , (37)

and substitute it into the equation of the conservation of probability density:

d3p|ΨRF
V (p)|2 = d2pT dβ

∣∣ΨIMF
V (pT , β)

∣∣2 , d3p = dpLd2pT (38)

to thereby, obtain the Terent’ev relation [100] between the infinite momentum wave function
ΨIMF

V (pT , β) and its counterpart in the rest frame ΨRF
V (p):

ΨIMF
V (pT , β) =

(
p2

T +m2
Q

16(β(1 − β))3

) 1
4

ΨRF
V (p), (39)

which is also normalized to
∫ ∣∣ΨIMF

V (pT , β)
∣∣2 d2pT dβ = 1.
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Now that the boost from the rest frame to the dipole infinite momentum frame was
done, it is time to add an essential ingredient to the Lorentz transformation, the Melosh spin
rotation, responsible for the spin boost. The two bidimensional spinors χQ and χQ̄ that describe
the quark and the antiquark in the infinite momentum frame respectively are related to the
rest frame spinors χ̄Q and χ̄Q̄ via Melosh rotation [100, 101]:

χ̄Q = R̂ (β,pT )χQ ,

χ̄Q̄ = R̂ (1 − β,−pT )χQ̄,
(40)

in which the rotation matrix is given by:

R̂ (β,pT ) =
mQ + βMQQ̄ − i[σ⃗ × n⃗]pT√(

mQ + βMQQ̄

)2 + p2
T

. (41)

Since the potentials used in this work are not spin-dependent, it is convenient to
assume that the infinite momentum wave function can be factorized into a spatial part and a
spin-dependent one

Ψ(µ,µ̄)
V (β,pT ) = U (µ,µ̄) (β,pT ) ΨIMF

V (β, pT ) , (42)

in which the spin-dependent part

U (µ,µ̄) (β,pT ) = 1√
2
χ̄µ†

Q σ⃗ · e⃗V X̃µ̄

Q̄
, X̃µ̄

Q̄
= iσyχ̄

µ̄∗
Q̄
, (43)

depends on the vector meson polarization vector e⃗V and on the aforementioned quark spinors.
Lastly, with the help of Eq. 40 it is possible to write

U (µ,µ̄) (β,pT ) = 1√
2
χµ†

Q R̂
† (β,pT ) σ⃗ · e⃗V σyR̂

∗ (1 − β,−pT )σ−1
y χ̃µ̄

Q̄
. (44)

Now, it is possible to find the vector meson wave function in the infinite momentum
frame as a function that depends on the longitudinal momentum and the transverse spatial
coordinate, in the same way as it appears in Eq. 10. For this purpose, one just needs to apply
a Fourier transformation in Eq. 42

Ψ(µ,µ̄)
V (β, r) = 1

2π

∫
d2pT e−ipT rΨ(µ,µ̄)

V (β,pT ) , (45)

and then replace it, together with Eq. 44, in Eq. 10 to obtain the final expression for the
scattering amplitude

Aγp
T,L(x,∆T ) = 2i

∫
d2r

∫ 1

0
dβ
∫

d2b e−i[b− (1−2β)
2 r]·∆ × ΣT,L(β, r)N(x, r, b) , (46)

with ΣT,L given by

ΣT,L

(
β, r;Q2) =

∫ d2pT

2π e−ipT rΨIMF
V

† (β, pT )
∑
µ,µ̄

U †(µ,µ̄) (β,pT ) Ψ(µ,µ̄)
γ∗

T,L

(
r, β,Q2) . (47)



42 Chapter 3. Vector meson wave functions and results

Evaluating the sum over the spins and the angular integration in the Eq. 47, one finds:

ΣL = ZQ

√
Ncαem

2π
√

2
4Qβ(1 − β)K0(εr)

∫
pT dpTJ0 (pT r) ΨV (β, pT )

mTmL +m2
Q

mQ (mT +mL) , (48)

for the longitudinal component. And, for the transverse component, it is convenient to write
ΣT (β, r) = Σ(1)(β, r) + Σ(2)(β, r) ∂

∂r
in terms of the coefficients

Σ(1) = ZQ

√
Ncαem

2π
√

2
2K0(εr)

∫
dpTJ0(pT r)ΨV (β, pT )pT

mTmL +m2
T − 2β(1 − β)p2

T

mL +mT

and

Σ(2) = ZQ

√
Ncαem

2π
√

2
2K0(εr)

∫
dpTJ1(pT r)ΨV (β, pT )p

2
T

2
mL +mT + (1 − 2β)2mT

mT (mL +mT ) .

In these equations αem = 1/137 is the fine structure constant, Nc = 3 is the QCD number
of colors, J0,1 and K0 are respectively the Bessel function and the modified Bessel function,
mL = 2mQ

√
β(1 − β) and ε =

√
β(1 − β)Q2 +m2

Q. The superscript notation “IMF“ was
also dismissed from the vector meson wave function in the last equations, and henceforth, it
shall be a standard practice for all the wave functions defined in the infinite momentum frame.

3.1.1 Schrödinger equation solution for the potential model

Given that the procedure for transforming wave functions from the dipole rest frame to
its infinite momentum frame has been demonstrated, it is essential, indeed, to calculate the
wave functions in the rest frame.

As was aforementioned, in the rest frame the qq̄ pair wave functions satisfy the non-
relativistic Schrödinger equation [102](

− ∆
2µ + V (r̃)

)
Ψnlm(r̃) = EnlΨnlm(r̃), µ = mq

2 , (49)

where µ is the qq̄ pair reduced mass and the laplacian operator ∆ acts on the coordinates of
r̃ in the following way:

∆ =
3∑

i=1

∂2

∂x2
i

= 1
r̃2

∂

∂r̃

(
r̃2 ∂

∂r̃

)
+ 1
r̃2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1
r̃2 sin2 θ

∂2

∂φ2 . (50)

Making a separation of variables between the radial and the angular parts,

Ψnlm(r̃) = ψnl(r̃)Ylm(θ, φ) , (51)

it is possible to part the Schrödinger equation (49), by utilizing Eq. 50, into two equations:

1
r̃

∂2

∂r̃2 (r̃ψ(r̃)) +mq(E − V (r̃))ψ(r̃) = l(l + 1)
r̃2 ψ(r̃)

1
sin θ

∂

∂θ

(
sin θ∂Y (θ, φ)

∂θ

)
+ 1

sin2 θ

∂2Y (θ, φ)
∂φ2 = −l(l + 1)Y (θ, φ) ,

(52)
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wherein, the quantum number l = 0 denotes the ground state, l = 1 corresponds to the first
excited state, l = 2 represents the second excited state, and so forth. The first differential
equation can be rewritten in a more convenient way

∂2u(r̃)
∂r̃2 = (Veff(r̃) − ϵQ)u(r̃) (53)

by the definition of two new quantities:

Veff(r̃) = mqV (r̃) + l(l + 1)
r̃2 , ϵQ = mqE . (54)

In this equation, the relation between the radial wave function ψ(r̃) and the new one u(r̃) is
given by: u(r̃) =

√
4πr̃ψ(r̃) .

Lastly, the solution for the Schrödinger equation (53) can be obtained numerically for
different qq̄ interaction potentials. In this work, 5 different potential parameterizations were
used:

• Buchmüller-Tye potential (but)

The Buchmüller-Tye potential [103] presents a Coulomb-like behavior for small r̃ values
and a string-like behavior at high r̃ values. Therefore, it presents two different forms for
each regime. For r̃ ≥ 0.01 fm,

V (r̃) = k

r̃
− 8π

27
v(λr̃)
r̃

, (55)

and for r̃ < 0.01 fm

V (r̃) = −16π
25

1
r̃ ln(w(r̃))

(
1 + 2

(
γE + 53

75

)
1

ln(w(r̃)) − 462
625

ln(ln(w(r̃)))
ln(w(r̃))

)
. (56)

In these equations, the used parameters were w(r̃) = 1
λ2

MSr̃2 , λMS = 0.509 GeV, k =
0.153 GeV2 , λ = 0.406 GeV, γE = 0.5772 is the Euler constant and the function v(x) is
evaluated numerically in [103]. Besides that, it was used mc = 1.48 GeV and mb = 4.87
GeV for the quark masses.

• Cornell potential (cor)

The Cornell potential is given by [104]:

V (r̃) = −k

r̃
+ r̃

a2 (57)

with the parameters k = 0.52, a = 2.34 GeV-1 and the masses mc = 1.84 GeV and
mb = 5.17 GeV.

• Logarithmic potential (log)

The logarithmic potential is written as [105]:

V (r̃) = −0.6635 GeV + (0.733 GeV) log(r̃ · 1 GeV) (58)

with masses mc = 1.5 GeV and mb = 5.0 GeV.



44 Chapter 3. Vector meson wave functions and results

• Harmonic oscillator potential (osc)

The harmonic oscillator potential has the following form:

V (r̃) = 1
2mqω

2r̃2, ω = 1
2 (M2S −M1S) , (59)

which leads to a wave function that exhibits a straightforward Gaussian profile. In this
model, the charm and bottom quark masses are taken as mc = 1.4 GeV and mb = 4.2
GeV. The ω parameter is fixed in 0.3 GeV for charmonia and 0.28 for bottomonia.

• Power-law potential (pow)

This potential is parameterized by a power-law function expressed as [106]:

V (r̃) = −6.41 GeV + (6.08 GeV)(r̃ · 1 GeV)0.106 , (60)

with mc = 1.334 GeV and mb = 4.721 GeV.

3.2 HEAVY VECTOR MESON NUMERICAL RESULTS

In the last few years, the amount of information regarding vector meson exclusive pro-
duction has become more abundant thanks to the contributions from high-energy accelerators
such as the LHC. Considering that this collider will pass through future updates and possibly
an expansion of its collider complex, it is possible that more observables related to these
particles will be obtained. This, in turn, motivates the search for realistic models capable of
accurately describing this process. Furthermore, the recent data published by the LHCb [30]
and CMS [107] collaborations on the cross section for the production of J/ψ, ψ′, and Υ(1S)
has motivated the use of the previously described formalism in the calculation of cross sections
for the process γp → V p, with V = ψ(nS),Υ(nS) for n = 1, 2.

3.2.1 Heavy vector meson total cross section

In this subsection, it will be presented numerical results for the total integrated cross
section for the γp → V p process for the heavy vector mesons: V = ψ(1S), ψ(2S), Υ(1S)
and Υ(2S); and for real photons (Q2 = 0), which are represented by γ. First, Fig. 9 shows the
total cross section for ψ(1S) (left) and ψ(2S) (right) photoproduction as a function of the
photon-proton center of mass energy W . In this analysis, five different potential models were
used to describe the quark-antiquark interaction, along with the GBW model for the dipole
cross section. It is worth mentioning that the KST model provides extremely similar results
to the GBW, making its presentation unnecessary. The results were compared to the H1 [87],
ZEUS [89], ALICE [7] and LHCb [30] data as well as to fixed target experiments performed at
Fermilab [108, 109, 110]. It is possible to observe that all five potentials describe very well the
available data for both ψ(1S) and ψ(2S) in all considered energy range.
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Figure 9 – Total cross section as a function of the γp center of mass energy W for ψ(1S)
(left) and ψ(2S) (right) photoproduction. The results were obtained with the GBW
model and compared to the available data from H1 [87], ZEUS [89], ALICE [7]
and LHCb [30], as well as from the fixed target experiments at Fermilab [108, 109,
110].
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Figure 10 – Total cross section as a function of the γp center of mass energy W for Υ(1S)
(left) and Υ(2S) (right) photoproduction. The results were obtained with the KST
model and compared to the available data from CMS [107], H1 [111], ZEUS [112,
113] and LHCb [114].
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It is worth mentioning that the original GBW model [46] was employed in the calculations.
This choice is supported by an independent analysis comparing the results obtained with the
original model and the more recently fitted version [48], which reveals that the differences
between the results obtained with these two GBW parameterizations are insignificant. However,
a detailed examination reveals that the original fit gets closer to the experimental data, mostly
in the high W region.

Fig. 10 presents the numerical results for the total integrated cross section for the
diffractive photoproduction of Υ(1S) (left) and Υ(2S) (right) as a function of W . Analogously
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to the previous figure, the bottomonia wave functions are calculated with the aforementioned
five different potentials. The Υ ground state results are compared to CMS [107], H1 [111],
ZEUS [112, 113] and LHCb [114] available data. In this figure, the KST model was used for
the dipole cross section since it provides a better description for the Υ photoproduction data.
It is worth to note that all five potentials generate comparatively good results for the Υ(1S)
data, in the considered energy range. These two facts unleash the utilization of the same setup
to obtain predictions for the excited state Υ(2S) total cross sections.

A detailed survey of Fig. 10 reveals that the differences between the cross sections
for the ground and the excited states reduce with the W increase for all potentials. In the
oscillator potential case, the Υ(1S) result is approximately 22% bigger than the Υ(2S) one,
at W = 1000 GeV, which has the smallest difference when compared to the other potentials.
The observation that the oscillator potential presents very close results for the ground and the
excited states can be explained by the similar contribution of the two wave functions at small-r,
which does not occur with the other potentials. Therefore, since the main contribution to the
total cross section comes from the small-r region, this effect is particularly relevant for the Υ
states.

3.2.2 Heavy vector meson t-distributions

Besides the total cross section, it is possible, as was seen previously in the text, to calcu-
late differential cross sections that depend on the proton transferred momentum t. Nevertheless,
the evaluation of these observables is only possible through the utilization of impact parameter-
dependent dipole cross section parameterizations. The GBW and KST models, which were used
in the previous results, do not have this dependence, and the non-integrated forms for these
models found in the literature [115] were not effective in the available data description. It is
expected that the factorized exponential form (Eq. 27) works in the small |t| regime, however,
this assumption was used in this work only for evaluating total cross sections. Hence, more
parameterizations were tested, and it was noticed that the best data description was obtained
with the famous “bSat” model and the recent solution of the BK equation. For this reason,
it was decided to show the results with both models. Moreover, it is worth mentioning that
the two parameterizations were originally fitted to data with the skewness factor to consider
different momentum fractions carried by the gluons, thus, its inclusion is indispensable in our
calculations.

Fig. 11 shows the differential cross section for the photoproduction of J/ψ ≡ ψ(1S)
(upper curves) and ψ(2S) (lower curves) as a function of the transferred momentum |t|
at W = 100 GeV (left) and W = 55 GeV (right). The results were obtained with the
solution of the BK equation and the five potential models described previously in the text.
The charmonium ground state curves were compared with the few available experimental data
from H1 collaboration [87, 88], which was very well described. It is worth to note that the
inclination of the curve is almost constant and arises from the almost exponential behavior of
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Figure 11 – Differential cross section for ψ(1S) (upper curves) and ψ(2S) (lower curves)
photoproduction as a function of |t| obtained using the numerical solution of the
BK equation obtained in Ref. [63], for W = 100 GeV (left) and W = 55 GeV
(right). The results are presented for five different potential models. The ψ(1S)
results are compared to data from H1 Collaboration [87, 88].
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the dipole amplitude with respect to the impact parameter, which agrees with the data.

Figure 12 – Predictions for the differential cross section for Υ(1S) (left) and Υ(2S) (right)
photoproduction as a function of |t| obtained using the numerical solution of the
BK equation obtained in Ref. [63], for W = 120 GeV. The results are presented
for five different potential models.
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Predictions for the differential cross section for the Υ(1S) (left) and Υ(2S) (right)
photoproduction are presented in Fig. 12 as a function of |t|. In the same way as the previous
figure, the solution of the BK equation was used together with the five qq̄ interaction potentials,
however in this case it was calculated for W = 120 GeV. The ground and excited state results
are shown in two different plots because of the closeness of the oscillator potential results. As
was aforementioned, this occurs because the two wave functions have a r-dependence very
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similar for small r values. Thus, since this domain has a big contribution to the amplitude
integrals for the Υ states production, the results for Υ(1S) and Υ(2S) become very close.

Figure 13 – Differential cross section for ψ(1S) (upper curves) and ψ(2S) (lower curves)
photoproduction as a function of |t| obtained with the “bSat” model, for W =
100 GeV (left) and W = 55 GeV (right). The results are presented for five
different potential models. The ψ(1S) results are compared to data from H1
Collaboration [87, 88].

100

101

102

0 0.2 0.4 0.6 0.8 1 1.2

ψ(1S)

ψ(2S)

W = 100 GeV100

101

102

0 0.2 0.4 0.6 0.8 1 1.2

ψ(1S)

ψ(2S)

W = 100 GeVd
σ
γ
p
→
V
p
/
d
t
(n
b
/G

eV
2
)

|t| (GeV2)

but
cor
log
osc
pow

d
σ
γ
p
→
V
p
/
d
t
(n
b
/G

eV
2
)

|t| (GeV2)

100

101

102

0 0.2 0.4 0.6 0.8 1 1.2

ψ(1S)

ψ(2S)

W = 55 GeV100

101

102

0 0.2 0.4 0.6 0.8 1 1.2

ψ(1S)

ψ(2S)

W = 55 GeVd
σ
γ
p
→
V
p
/
d
t
(n
b
/G

eV
2
)

|t| (GeV2)

but
cor
log
osc
pow

d
σ
γ
p
→
V
p
/
d
t
(n
b
/G

eV
2
)

|t| (GeV2)

Source: Elaborated by the author and published in [38].

Last but not least, Figs. 13 and 14 are analogous to Figs. 11 and 12, except by the
fact that they are computed with the “bSat” model, instead of the BK solution. Fig. 13 shows
that the “bSat” model also gives a reasonable description of the H1 data, thus, even if this
description is not as good as the one obtained with the BK solution, it was decided to show
it due to its great popularity in the literature. A comparison between the results obtained
with the two models can be found in Fig. 15, where one can see that both curves are mostly
inside the experimental error bars for both W = 100 GeV (left) and W = 55 GeV (right). The
biggest divergence happens at small-t values, where the “bSat” overestimates the data.

3.3 LIGHT VECTOR MESON WAVE FUNCTION

The method of obtaining the heavy vector meson wave function by solving the non-
relativistic Schrödinger equation in a rest frame relies on the large quark masses which make
them have non-relativistic speeds. However, in the light vector mesons case, the light quark
masses are not high enough to treat them non-relativistically. Besides that, it cannot be
considered a hard scale, provoking the emergence of non-perturbative effects [26, 116]. Thus,
the difficult goal of finding the light vector meson wave functions reduces to discovering a way
to deal with the relativistic strongly coupled regime of QCD at large distances.

The AdS/CFT correspondence establishes a relationship between a gravitational theory
in (d + 1)-dimensional anti-de-Sitter (AdS) space and a conformal field theory (CFT) in d-
dimensional Minkowski space. This correspondence led to what is called Brodsky-de Téramond
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Figure 14 – Predictions for the differential cross section for Υ(1S) (left) and Υ(2S) (right)
photoproduction as a function of |t| obtained with the “bSat” model, for W = 120
GeV. The results are presented for five different potential models.
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Figure 15 – Differential cross section for ψ(1S) photoproduction as a function of |t| found
using the Buchmüller-Tye potential with BK and “bSat” models for W = 100 GeV
(left) and W = 55 GeV (right). The ψ(1S) results are compared to data from H1
Collaboration [87, 88].
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semiclassical model, which offers a framework for studying the strongly coupled QCD and sheds
light on its perturbative dynamics. It is an explicit manifestation of the holographic principle1,
and enables the calculation of physical observables in a strongly coupled theory through a
weakly coupled classical gravity theory [12].

Five-dimensional anti-de Sitter space (AdS5) possesses 15 isometries2, which yields
the symmetry of the conformal group Conf(R1,3) to the Minkowski-spacetime theory. The
conformal symmetry implies that the mass spectrum is continuous or that all masses are zero
1 The holographic principle states that a gravitational system is equivalent to a non-gravitational one in one

lower dimension [117, 118]. In this correspondence, the former is denoted as the holographic dual, or gravity
dual, of the lower-dimensional system.
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[119]. Thus, the classical QCD lagrangian with massless quarks preserves conformal symmetry.
However, the existence of quantum effects introduces an energy scale µ, which breaks the
conformal invariance, since it separates the space into two regions: the asymptotic freedom
perturbative region and the confined non-perturbative one. The problem does not come from
the perturbative region, since the small coupling makes it almost scale-invariant, but it comes
from the non-perturbative part. The good news is that there are evidences [120, 121, 122, 123]
that point out that the strong coupling does not grow indefinitely but becomes constant at
small µ. This can be physically treated as an infrared cut-off originated from the confinement
effect.

To maintain the correct correspondence between QCD and AdS5 spaces, it is necessary
to incorporate confinement into the gravitational space. This can be achieved by imposing a
boundary condition on the holographic variable z. In the "soft-wall" model [124], a smooth
infrared cut-off is introduced by including a dilaton3 background field φ(z) = κ2z2, whose
form is chosen to reproduce the Regge behavior of the hadronic mass spectrum. After this
consideration, one can proceed with the mapping of the vector meson wave function in AdS5

to its corresponding expression in QCD space. For this task, it will be necessary to write the
wave equation in both spaces, which will be done right below.

3.3.1 Wave equation in AdS5 space

In this section, the derivation of the hadronic bound-state wave equations in the anti-de
Sitter space will be carried out following the Brodsky-de Téramond prescription presented
in [12, 126]. In their formulation, for a general purpose, the equations will be obtained in a
(d + 1)-dimensional AdS space. Then, in the comparison with the equations obtained in the
QCD physical space, one takes d = 4.

The coordinates in the (d+ 1)-dimensional anti-de Sitter space can be expressed as a
combination of the coordinates in the d-dimensional Minkowski space, denoted by xµ, and the
holographic variable, denoted by z. This combination can be represented by xM = (xµ, z = xd),
where M,N = 1, ..., d are indices corresponding to the higher-dimensional AdS space, and
µ, ν = 0, ..., d − 1 are indices corresponding to the Minkowski flat space. Using Poincaré
coordinates - which means taking x0 = t, xi (with i = 1, ..., d−1), and xd ≡ z - the conformal
AdS metric can be written as

ds2 = gMNdx
MdxN = R2

z2 (ηµνdx
µdxν − dz2). (61)

In this equation, gMN is the metric tensor of the AdS space and ηµν = diag(1,−1,−1,−1) is
the metric tensor of the Minkowski space.

2 Isometry is, roughly, a transformation between two spaces that preserves distance.
3 Dilaton is a scalar field that appears in all string theories. Its existence and characteristics come from the

symmetries of the theory [125].
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The first step to find the wave functions for a bound state with integer spin J is writing
the action in AdSd+1 space considering the effect of the dilaton background field φ(z):

S =
∫
ddxdz

√
geφ(z)gN1N ′

1 · · · gNJ N ′
J

(
gMM ′

DMΦ∗
N1...NJ

DM ′ΦN ′
1...N ′

J

−µ2Φ∗
N1...NJ

ΦN ′
1...N ′

J
+ · · ·

)
.

(62)

In this equation, ΦN1...NJ
represents the J-spin fields, √

g is the square root of the modulus
of the determinant of the metric tensor gMN , DM is the covariant derivative, and µ is the
AdS mass. The three dots at the end of the Eq. 62 represent terms with different indices
contractions. In fact, all terms with indices along the z-direction must vanish,

ΦzN2...NJ
= 0 , (63)

because physical hadrons have only polarization indices along the 3+1 physical coordinates.
This implies that only the terms with Φν1,ν2...νJ

will survive.
A convenient way of conducting the conformal symmetry breaking consists in including

a z-dependence in an effective AdS mass µeff (z) and rewriting Eq. 62 as the effective action:

Seff =
∫
ddxdz

√
geφ(z)gN1N ′

1 · · · gNJ N ′
J

(
gMM ′

DMΦ∗
N1...NJ

DM ′ΦN ′
1...N ′

J

−µ2
eff (z)Φ∗

N1...NJ
ΦN ′

1...N ′
J

)
.

(64)

The terms with different indices contractions omitted in Eq. 62 are now contained into µeff (z).
The z-dependence of this function is unknown at the present moment, however, it will be
determined by the meticulous mapping of the AdS space into the QCD one.

The equations of motion will be defined by the Euler-Lagrange equations:

δSeff

δΦ∗
ν1ν2···νJ

= 0 (65)

δSeff

δΦ∗
zN2···NJ

= 0. (66)

Nevertheless, prior to their evaluation, it is worth noting that the presence of covariant deriva-
tives in the action (Eqs. 62 and 64) leads to complicated expressions with several sums that
are difficult to be treated. A solution to this predicament can be found in Appendix D of [12],
where the authors go to a local inertial frame where the covariant derivatives become partial
derivatives, thereby simplifying the expressions. Thus, the evaluation of Eq. 65 results in the
equation of motion for the AdS fields with polarizations in the physical directions:[

∂µ∂
µ − zd−1−2J

eφ(z) ∂z

(
eφ(z)

zd−1−2J
∂z

)
+ (mR)2

z2

]
Φν1...νJ

= 0 , (67)

with
(mR)2 = (µeff (z)R)2 − Jzφ′(z) + J(d− J + 1), (68)
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whereas Eq. 66 provides kinematical constraints which eliminate lower spin states J−1, J−2, ...
from the symmetric tensor Φν1ν2···νJ

:

ηµν∂µΦνν2···νJ
= 0, ηµνΦµνν3···νJ

= 0. (69)

In order to establish a connection between the equation of motion in AdS5 and physical
QCD spaces, one needs to rewrite Eq. 67 as a one-dimensional equation of motion. This can be
done by considering hadronic states with momentum P and a z-independent spinor ϵν1···νJ

(P ).
This bound states can be represented by a z-dependent wave function ΦJ(z) and a plane wave
propagating in the physical space-time:

Φν1···νJ
(x, z) = eiP ·xΦJ(z)ϵν1···νJ

(P ) . (70)

Inserting this into Eq. 67 and considering the invariant hadron mass PµP
µ = M2, one obtains

the hadronic bound-state wave equation in AdS5 space:[
−zd−1−2J

eφ(z) ∂z

(
eφ(z)

zd−1−2J
∂z

)
+ (mR)2

z2

]
ΦJ(z) = M2ΦJ(z) . (71)

3.3.2 Wave equation in QCD space

The challenge of finding the light vector meson wave function in the four-dimensional
QCD space-time lies in the fact that the small quark masses prevent the identification of a
rest frame where the Schrödinger equation can be applied. One way to contour this problem
relies on using light-front quantization, since it provides a relativistic and frame-independent
framework to solve bound-state wave equations. This approach has the advantage of not
running into the multiparticle problem of boosting a hadronic state from its rest frame to a
moving one, at an ordinary fixed time (x0).

The idea of working in the light-front frame4 was formulated by Dirac [127], who realized
that the advantage of defining the states at the fixed light-front time x+ = x0 + x3 is that the
boost operators are kinematic generators of the Lorentz transformations, which means that
they do not depend on the system dynamics and make the hadron description independent of
the observer’s frame. Thus, for a hadron with four-momentum P µ = (P+, P−,P⊥) (Appendix
D), one can construct a LF (light-front) Lorentz invariant Hamiltonian HLF = P+P− − P 2

⊥,
whose eigenvalues M2 and eigenstates |ψ(P )⟩ can be obtained from the equation

HLF |ψ(P )⟩ = M2|ψ(P )⟩ , (72)

where M2 defines the hadron mass spectrum and |ψ(P )⟩ gives the hadron wave function.
Having established a procedure for deriving the wave equations within a relativistic

framework, one can now focus on describing the dynamics of QCD using the LF variables. For
4 The expression “light-front” comes from the idea that a measurement in this frame can be likened to a

captured image with a flash camera. This image portrays the object as it appears when illuminated by the
front of the light wave from the flash.
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this, one can start with the invariant QCD Lagrangian:

LQCD = ψ̄ (iγµDµ −m)ψ − 1
4G

a
µνG

aµν , (73)

where Dµ = ∂µ − igsA
a
µT

a is the covariant derivative and Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsc

abcAb
µA

c
ν

is the gluon field strength tensor. In these equations, T c are the color matrices (related to the
Gell-Mann matrices), cabc are structure constants, gs is the coupling constant of the strong
force, and a, b, c are color indices.

One can obtain from the Lagrangian (Eq. 73) expressions for the four-momentum
components P µ = (P+, P−,P⊥) in terms of the + component of the quark field ψ+ and the
transverse component of the gluon field A⊥ quantized on the LF frame with fixed LF time x+

[128, 129]:

P− = 1
2

∫
dx−d2x⊥

(
ψ̄+γ

+m
2 + (i∇⊥)2

i∂+ ψ+ − Aaµ (i∇⊥)2 Aa
µ

)
+ gs

∫
dx−d2x⊥ψ̄+γ

µT aψ+A
a
µ+

+ g2
s

4

∫
dx−d2x⊥c

abccadeAb
µA

c
νA

dµAeν

+ g2
s

2

∫
dx−d2x⊥ψ̄+γ

+T aψ+
1

(i∂+)2 ψ̄+γ
+T aψ+

+ g2
s

2

∫
dx−d2x⊥ψ̄+γ

µT aAa
µ

γ+

i∂+

(
T bAb

νγ
νψ+

)
,

(74)

P+ =
∫
dx−d2x⊥

(
ψ̄+γ

+i∂+ψ+ − Aaµ
(
i∂+)2

Aa
µ

)
, (75)

and
P⊥ = 1

2

∫
dx−d2x⊥

(
ψ̄+γ

+i∇⊥ψ+ − Aaµi∂+i∇⊥A
a
µ

)
. (76)

Now, it is evident that the operators P+ and P⊥ are kinetic generators, since there is no
interaction term in Eqs. 75 and 76. The fact that the operator P− has interaction terms
(Eq. 74), makes it responsible for the evolution of the system. This type of operator is
classified as dynamic generator.

The quark and the gluon fields can be written in terms of particle creation and particle
annihilation operators:

ψ+
(
x−,x⊥

)
α

=
∑

λ

∫
q+>0

dq+
√

2q+
d2q⊥

(2π)3

[
bλ(q)uα(q, λ)e−iq·x + d†

λ(q)vα(q, λ)eiq·x
]
, (77)

and

A⊥
(
x−,x⊥

)
=
∑

λ

∫
q+>0

dq+
√

2q+
d2q⊥

(2π)3

[
a(q)⃗ϵ⊥(q, λ)e−iq·x + a†(q)⃗ϵ∗

⊥(q, λ)eiq·x] , (78)

where u and v are LF spinors and a†(q), b†(q), and c†(q) are respectively the quark, antiquark,
and gluon creation operators. This expansion will be useful in the next step, when the hadron
state will be expanded on a LF Fock basis.
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The hadronic state |ψ(P )⟩, that appears in Eq. 72, can be expanded into multiparticle
Fock states |n⟩ constituted by free partons

|ψ(P )⟩ =
∑

n

ψn|n⟩ , (79)

which are constructed by the application of creation operators to the vacuum state |0⟩ (for
example, the one-quark state is |q⟩ =

√
2q+b†(q)|0⟩ ). The advantage of this approach is that

the coefficients of the Fock expansion do not depend on the hadron momentum P+ and P⊥;
they only depend on the relative partonic coordinates, which are: the longitudinal momentum
fraction carried by the ith-parton βi = k+

i /P
+, the parton transverse momentum k⊥i, and

the projection of its spin along the z direction λi. Thus, the wave function ψn(βi, k⊥i, λi) is
frame-independent and relates the hadron state to its quark and gluon state constituents.

Now, one has all the pieces to compute M2 from the matrix element〈
ψ (P ′)

∣∣HLF (P+, P−,P⊥)
∣∣ψ(P )

〉
= M2 ⟨ψ (P ′) | ψ(P )⟩ . (80)

For this arduous task, the initial and final hadronic states need to be expanded into the
Fock basis (as presented in Eq. 79) and the LF Hamiltonian must be written in terms of the
creation and annihilation operators, by inserting Eqs. 77 and 78 into Eqs. 74, 75, and 76, and
substituting it into HLF = P+P− − P 2

⊥. The result is the following [130, 13]:

M2 =
∑

n

∫
[dβi]

[
d2k⊥i

] n∑
a=1

(
k2

⊥a +m2
a

βa

)
|ψn (βi,k⊥i)|2 + (interactions) , (81)

which also includes similar terms referring to antiquarks and gluons (mg = 0). The phase space
is normalized to a Dirac δ-function, which leads to the expression [12, 130]:

[
dβid

2k⊥i

]
= δ

(
1 −

Nn∑
j=1

βj

)
δ(2)

(
Nn∑
j=1

k⃗⊥j

)
dβ1 . . . dβNnd

2k⊥1 . . . d
2k⊥Nn . (82)

It is convenient to transform Eq. 81 from the momentum space to the impact parameter space.
This is accomplished through the utilization of a Fourier expansion, which relates each of
the n− 1 transversal momentum coordinates with its respective transverse impact parameter
variable b⊥j. The resulting equation is

M2 =
∑

n

n−1∏
j=1

∫
dβjd

2b⊥jψ
∗
n (βj,b⊥j)

n∑
a=1

(−∇2
b⊥a

+m2
a

βa

)
ψn (βj,b⊥j) + (interactions) .

(83)
In order to obtain a solution for Eqs. 81 and 83, a simplification is implemented to

reduce the multiparticle problem to a single variable problem. Therefore, the first step is to take
the limit of mq → 0 in Eqs. 81 and 83. Subsequently, the invariant mass of the constituents
in each n-particle Fock state,

M2
n =

(
n∑

i=1

kµ
i

)2

=
(

n∑
i=1

k+
i

)(
n∑

i=1

k−
i

)
−

(
n∑

i=1

k⊥i

)2

=
n∑

i=1

k2
⊥i +m2

i

βi

, (84)
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is identified as the key variable that encodes all bound state dynamics. This simplification is
named by Brodsky and de Téramond as semiclassical approximation.

Considering that the focus of this project is the study of vector mesons, it is inherent
to examine Eqs. 81 and 83 for the case of n = 2, which leads to equations:

M2 =
∫ 1

0
dβ

∫
d2k⊥

16π3
k2

⊥
β(1 − β) |ψ (β,k⊥)|2 + ( interactions )

=
∫ 1

0

dβ

β(1 − β)

∫
d2b⊥ψ

∗ (β,b⊥)
(
−∇2

b⊥

)
ψ (β,b⊥) + (interactions) .

(85)

In this instance, the invariant mass is M2
qq = k2

⊥
β(1−β) . And the corresponding variable on

the impact-parameter space is the invariant separation of the qq̄ pair ζ2 = β(1 − β)b2
⊥.

Consequently, as a first approximation, one can factorize the orbital and the longitudinal
dependencies on the vector meson wave function:

ψ(β, ζ, φ) = eiLφX(β) ϕ(ζ)√
2πζ

. (86)

In this case, ϕ(ζ) stores all information about the hadronic dynamics, and X(β) =
√
β(1 − β)

is obtained by mapping form factor calculations from AdS5 to QCD space [131]. The normal-
ization of these quantities is given by:

⟨ϕ | ϕ⟩ =
∫
dζϕ2(ζ) = 1

⟨X | X⟩ =
∫ 1

0
dββ−1(1 − β)−1X2(β) = 1 .

(87)

After evaluating the β and the angular integrations in Eq. 85 (with the Laplacian
written in polar coordinates), the squared hadron mass is given by:

M2 =
∫
dζ ϕ∗(ζ)

√
ζ

(
− d2

dζ2 − 1
ζ

d

dζ
+ L2

ζ2

)
ϕ(ζ)√
ζ

+
∫
dζ ϕ∗(ζ)U(ζ)ϕ(ζ) . (88)

In this equation, the effective potential U(ζ) encompasses all the interaction terms of the
QCD Hamiltonian and describes confinement at some infrared scale. Thus, after all these
considerations, one finds that the wave equation in QCD space is given by:(

− d2

dζ2 − 1 − 4L2

4ζ2 + U(ζ)
)
ϕ(ζ) = M2ϕ(ζ). (89)

3.3.3 Holographic mapping

Now that the wave equations were obtained in both AdS and QCD spaces, it is possible
to take advantage of their very similar structure to make a connection between the hadronic
modes in AdS and the vector meson QCD wave function. Upon initial inspection, it becomes
evident that both equations have the same eigenvalue M2 and are frame-independent. However,
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for an exact comparison, the spin-J hadronic modes have to be modified to put Eq. 71 in the
same relativistic Schrödinger-like form5 of Eq. 89. Thus, they will be written as:

ΦJ(z) =
(
R

z

)J−(d−1)/2

e−φ(z)/2ϕJ(z) . (90)

The substitution of the previous form into the d-dimensional wave equation in AdS
space equation (71) results in the following expression:{

− d2

dz2 + φ′′(z)
2 + φ′(z)2

4 + φ′(z)
2

(2J − d+ 1)
z

+ (d− 2J + 1) (d− 2J − 1)
4z2 +

(mR)2

z2

}
ϕJ(z) = M2ϕJ(z) , (91)

which for d = 4 is{
− d2

dz2 + φ′′(z)
2 + φ′(z)2

4 + φ′(z)
2

(2J − 3)
z

+ (2J − 5) (2J − 3)
4z2 + (mR)2

z2

}
ϕJ(z)

= M2ϕJ(z) . (92)

This equation has precisely the same form as Eq. 71, hence, the total mapping of the AdS5

space into the QCD space is achieved when the holographic variable z corresponds exactly to
the LF variable ζ. A direct comparison between Eqs. 92 and 89 permits the identification of
the effective potential as a function of the dilaton field:

U(ζ, J) = 1
2φ

′′(ζ) + 1
4φ

′(ζ)2 + 2J − 3
2ζ φ′(ζ) , (93)

and the AdS mass as a function of the hadron total angular momentum J and the orbital
angular momentum L:

(mR)2 = −(2 − J)2 + L2 . (94)

As was aforementioned, in the soft-wall model, the dilaton background field has the
quadratic form φ(z) = κ2z2, whose substitution into Eq. 93 leads to effective potential:

U(ζ, J) = κ4ζ2 + 2κ2(J − 1) . (95)

The insertion of this potential into the LF QCD wave equation Eq. 89, turns the difficult
problem of solving a relativistic equation for light bound-states into the problem of solving the
Schrödinger equation for the harmonic oscillator potential in two dimensions. Therefore, the
normalized solutions of Eq. 89 are:

ϕn,L(ζ) = κ1+L

√
2n!

(n+ L)!ζ
1/2+L exp

(
−κ2ζ2

2

)
LL

n

(
κ2ζ2) , (96)

5 The LF approach leads to an equation that exhibits the same form as the simple non-relativistic Schrödinger
equation, however, it is a fully relativistic approach, thus it produces a relativistic wave function.
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where LL
n (κ2ζ2) are the Laguerre polynomials, and the eigenvalues are

M2 = 4κ2
(
n+ J

2 + L

2

)
. (97)

These eigenvalues are responsible for the description of meson spectroscopy data. Thus,
the value of the effective potential free parameter κ, which comes from the dilaton field, can
be chosen in a way that best suits its purpose. In the original model [131, 132], κ is a universal
constant parameter, which is fixed for all mesons. Its value was selected considering the Regge
trajectories of the ρ vector meson family [133], however, this choice leads to the necessity of
introducing a mass shift in Eq. 97 to describe the spectroscopy of other vector mesons, like the
ϕ. As can be seen in Fig 16, this provides a good description of the ground states with L = 0
and L = 2, however, it fails to describe the first excited states with L = 0. Therefore, since
one aim of this project is precisely to describe these excited states, we enable κ to depend on
the vector meson ground state mass 6. This choice is consistent with the fact that κ is related
to the Regge slope [134]. Hence, for each vector family, we calculate a different κ parameter
that is compatible with Eq. 97:

κ =
MV (n=0)√

2
. (98)

This parameterization provided a good description of the ground and the excited states
of the three light vector mesons studied in this project (ρ, ω, and ϕ). The left panel of Fig. 16
shows the Regge curves obtained with Eq. 97 and the mass-dependent κ parameter for the ρ
(gray solid curves) and ω (blue dashed curves) vector mesons and compared with spectroscopy
data [136]. The results described well the data, which was expected since in this case κ is
practically the same as the one found in the original model [12]. The right panel presents results
for the ϕ spectroscopy obtained with the mass-dependent κ (blue dashed curves) and with
the fixed κ = 0.54 GeV (gray solid lines). As was aforementioned, the non-fixed κ permitted a
better description of the states with L = 0.

Returning to the vector meson wave function, it is worth recalling that Eq. 96 was
obtained in the quark massless limit mq → 0. However, it is expected that the effective
interaction of the constituents depends on the quark masses. A natural idea would be to include
this interaction into the effective potential equation (93), since it encodes the state dynamics;
however, it would break the conformal symmetry. Thus, following the original Brodsky- de
Téramond model, the quark mass dependence can be included in the invariant mass (Eq. 84)
by substituting:

M2
qq̄ = k2

⊥
β(1 − β) → k2

⊥
β(1 − β) +

m2
q

β
+

m2
q̄

1 − β
. (99)

This leads to the inclusion of the exponential term e
m2

q
β

+
m2

q̄
1−β into Eq. 86, which now will have

the form:
ψ(β, ζ, φ) = eiLφX(β)e

m2
q

β
+

m2
q̄

1−β
ϕ(ζ)√
2πζ

. (100)
6 There are other works that do not fix κ to a universal constant value, such as [134, 135]
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Figure 16 – Spectroscopy of light vector mesons. The left panel shows the Regge trajectories
calculated with the mass-dependent κ for ρ (gray solid curves) and ω (blue dashed
curves) mesons. The right panel compares the results obtained with the mass-
dependent κ (blue dashed curve) and the fixed-value κ (gray solid curve) for ϕ
vector meson. The data shown in the plots were taken from [136]
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The inclusion of the quark masses is a big obstacle that prevents the utilization of
the holographic model to find wave equations for heavy vector mesons. Its high mass is
responsible for strongly breaking the conformal symmetry, which makes the limit of massless
quarks pointless. Thus, this theory is not suitable for heavy mesons. This is a good reason why
the treatment for calculating the light and heavy vector meson wave functions needs to be
different.

Finally, the hadronic bound state wave function shown in Eq. 100, represents only the
scalar part of the vector meson wave function that appears in Eq. 10. Therefore, the full
expressions for the vector meson wave functions, which contain the helicities of the quark
(h± 1

2) and antiquark (h̄± 1
2) and the polarization λ, are [137, 138]:

Ψh,h̄
V,L(λ=0)(r, β) = NL

1
2
√

2
δh,−h̄

(
1 +

m2
f − ∇2

r

M2β(1 − β)

)
ψ(β, ζ) (101)

Ψh,h̄
V,T (λ=±1)(r, β) = ±NT

[
ie±iθ

(
βδh,±δh̄,∓ − (1 − β)δh,∓δh̄,±

)
∂r +mfδh,±δh̄,±

] ψ(β, ζ)
2β(1 − β) .

(102)
It is worth mentioning that in these equations ∇2

r ≡ 1
r
∂r + ∂2

r and that they are normalized to:

∑
h,h̄

∫
d2rdβ

∣∣∣Ψh,h̄
λ (r, β)

∣∣∣2 = 1 . (103)

With this fundamental piece of the color dipole model, one can calculate cross sections for the
three light vector mesons: ρ, ω, and ϕ.
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3.4 LIGHT VECTOR MESON NUMERICAL RESULTS

The search for a universal theoretical approach able to describe all available observables
is an important goal for all theoretical physicists. With this purpose, we decided to test the
formalism presented in the previous chapter on light vector mesons, since their small masses
make them a good tool for probing the non-perturbative QCD regime. Therefore, in this section,
results for total and differential cross sections will be presented for the production of ρ, ω, and
ϕ vector mesons in γ(∗)p collision. To avoid confusion, let’s clarify the notation used in the
labels of the figures. The symbol γ represents real photons, while γ∗ represents virtual photons.
All calculations were performed using the AdS/QCD holographic wave functions, explained in
the previous section. In addition, the results will be presented for two b-dependent partial dipole
models: the bCGC and the bSat. This choice was taken based on the fact that there are a lot
of uncertainties regarding which is the best model for describing the dipole-proton interactions
[38, 139], since this part is very perturbative and, hence, very sensible to the modeling process.
In a separate study, we tested a few parameterizations and found that the bCGC and the bSat
were the ones that best described the available data for ρ, ω, and ϕ production cross sections.

In Fig. 17, results for the total cross section for ρ photoproduction are shown as a
function of the center-of-mass energy W . As was aforementioned, the curves were obtained
with the holographic wave function together with bCGC (blue solid line) and bSat (violet
dashed line) b-dependent dipole parametrizations. The figure also includes experimental data
from H1 [140, 141], ZEUS [142] and CMS [92] collaborations. As can be seen, the bSat model
is more successful in describing the available data than the bCGC model, especially at lower
W values. Unfortunately, for higher W , none of the models are capable of describing the few
existing data points.

Figure 17 – Total cross section for the ρ(1S) photoproduction as a function of γp center-of-
mass energy W . The results are compared to data from H1 [140, 141], ZEUS [142]
and CMS [92] collaborations.
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In the same way as Fig. 17, Fig. 18 presents the total cross section as a function of W .
However, in this case, it is calculated for ρ electroproduction (which means Q2 > 0). Here, the
darker curves represent small Q2 values while the lighter ones correspond to higher Q2. The
curves were obtained with the same setup of the previous figure and compared, on the left
panel, to the H1 data [91] for five distinct values of Q2 (from top to bottom, Q2 = 3.3, 6.6,
11.9, 19.5, and 35.6 GeV2, respectively) and, on the right panel, to the ZEUS data [85] for six
values of Q2 (from top to bottom, Q2 = 2.4, 3.7, 6.0, 8.3, 13.5, and 32.0 GeV2, respectively).
This time, the bCGC model outperformed the bSat model in describing the experimental data
for all available values of Q2 and in all measured W ranges.

Figure 18 – Total cross section for ρ(1S) electroproduction as a function of W . The results
are compared, on the left, to the data from the H1 [91] collaboration for five
values of Q2 (from top to bottom, we have Q2 = 3.3, 6.6, 11.9, 19.5 and 35.6
GeV2, respectively) and, on the right, to the data from ZEUS [85] collaboration
for six different values of Q2 (from top to bottom, Q2 = 2.4, 3.7, 6.0, 8.3, 13.5
and 32.0 GeV2, respectively).

10−1

100

101

102

103

0 25 50 75 100 125 150 175

γ∗p→ ρ(1S)p

10−1

100

101

102

103

0 25 50 75 100 125 150 175

γ∗p→ ρ(1S)p

σ
γ
∗ p
→
V
p
(n
b
)

W (GeV)

bCGC
bsat

Q2=3.3GeV2

Q2=35.6GeV2

σ
γ
∗ p
→
V
p
(n
b
)

W (GeV)

H1

Q2=3.3GeV2

Q2=35.6GeV2

10−1

100

101

102

103

0 25 50 75 100 125 150 175

γ∗p→ ρ(1S)p

10−1

100

101

102

103

0 25 50 75 100 125 150 175

γ∗p→ ρ(1S)p

σ
γ
∗ p
→
V
p
(n
b
)

W (GeV)

bCGC
bsat

Q2=2.4GeV2

Q2=32.0GeV2

σ
γ
∗ p
→
V
p
(n
b
)

W (GeV)

ZEUS

Q2=2.4GeV2

Q2=32.0GeV2

Source: Elaborated by the author and published in [41].

In addition to total cross sections, differential cross sections were also calculated with
the dipole formalism using the holographic wave function and bCGC and bSat dipole models.
An example is shown in Fig. 19 for ρ(1S) photoproduction as a function of the momentum
transfer squared |t| for W = 35.6, 108 GeV (left panel), and for W = 24, 65 GeV (right panel).
The results were compared to data from CMS [92] and H1 [141] collaborations, respectively.
To prevent an overlap of the curves, in each panel, the curves with higher W values (W = 108
GeV, W = 65 GeV), indicated by darker colors, were multiplied by a factor of ten. Analyzing
the plots, one might find that the bSat model provides a better overall description of the
available data sets. However, a closer observation shows that H1 collaboration data points in
the higher-t regime present big error bars and that in this regime the bCGC model comes closer
to the central value of the measurement. At small |t|, one can see that the bSat model provides
a better description of the data for higher W (represented by darker curves). Remarkably, at
the same regime and for W = 24 GeV, the curve corresponding to the bCGC model becomes
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closer to the data points than the bSat, and finally, bCGC and bSat models have very similar
behaviors at W = 35.6 GeV. This observation emphasizes the fact that there is no single
b-dependent partial dipole amplitude parametrization that perfectly describes all existing data
for ρ(1S) photoproduction.

Figure 19 – Differential cross section of ρ(1S) photoproduction as a function of the momentum
transfer squared |t| and compared to data from the CMS collaboration [92] (left
panel) and the H1 collaboration [141] (right panel). The darker upper curves were
multiplied by a factor of ten in order to distinguish them from the lighter ones.
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Fig. 20 presents the differential cross section as a function of the momentum transfer
squared |t| for ρ(1S) electroproduction at W = 75 GeV. The left panel, shows a comparison
between the results obtained with bCGC and bSat models and the corresponding H1 data
[91] for three different values of Q2 (from top to bottom, Q2 = 3.3, 11.5 and 33.0 GeV2,
respectively). In this case, the bCGC model performs better in describing the experimental
data. Consequently, on the right panel, more results are shown for five different Q2 values
(namely, from top to bottom, Q2 = 3.3, 6.6, 11.5, 17.4 and 33.0 GeV2, respectively), but
calculated just with the bCGC model.

As was aforementioned, the use of the holographic model permits one to obtain wave
functions for other mesons than ρ. Hence, the left panel of Fig. 21 exhibits the total cross
section as a function of W for two distinct production scenarios: one with Q2 = 0 GeV2

(represented by the darker curve) and other with Q2 = 7 GeV2 (represented by the lighter
curve). They are compared to data from fixed target experiments [143, 144, 145, 146, 147,
148, 149, 150, 151, 152, 153, 154] (a compilation of these data can be found in Ref. [155]),
and from the ZEUS Collaboration [155, 156]. One can notice that the bCGC model exhibits a
strong agreement with the available data (i.e. excluding the ZEUS data point for Q2 = 0 GeV2).
The right panel of Fig. 21 shows the differential cross section for the ω(1S) photoproduction
as a function of momentum transfer squared |t| for W = 80 GeV compared to data from the
ZEUS Collaboration [155]. The obtained curves are close to the experimental data, which is a
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Figure 20 – Differential cross section for ρ(1S) electroproduction as a function |t| for W = 75
GeV. The left panel shows a comparison of the results obtained by using the bCGC
and bSat models with the H1 data [91] for three distinct values of Q2 (from top
to bottom, Q2 = 3.3, 11.5 and 33.0 GeV2, respectively). The right panel presents
the curves obtained only with the bCGC model and compared to the H1 data for
five different Q2 values (from top to bottom, Q2 = 3.3, 6.6, 11.5, 17.4 and 33.0
GeV2, respectively).
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significant observation considering the difficulties of describing t-dependent differential cross
sections with the dipole approach.

Figure 21 – Results for the ω(1S) photo- and electroproduction cross sections. On the left
panel, the total cross section is shown as a function of W for Q2 = 0 GeV2 (darker
curves) and Q2 = 7 GeV2 (lighter curves) and compared with the fixed target
measurements [143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154] (a
compilation of these data can be found in Ref. [155]) and also with the data
from the ZEUS Collaboration [155, 156]. On the right panel, the differential cross
section is shown as a function of |t| for W = 80 GeV and compared with ZEUS
data [155].
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On the left panel of Fig. 22, the total cross section for the ϕ(1S) electroproduction is
presented as a function of W and compared with experimental data from the ZEUS Collabo-
ration [157]. Only the results obtained using the bCGC dipole parametrization are exhibited
in this plot, as it proved to be the most successful in describing the vector meson electropro-
duction data. Similarly to the previous electroproduction cases, the curves exhibited a notable
correspondence with the available data for four distinct Q2 values (from top to bottom, Q2 =
2.4, 3.8, 6.5 and 13.0 GeV2, respectively). On the right panel, the differential cross section
is shown as a function of |t| for W = 75 GeV. In the same way, the available data for seven
different sets of Q2 values provided by the ZEUS Collaboration [157] (from top to bottom:
Q2 = 2.4, 3.6, 5.2, 6.9, 9.2, 12.6, and 19.7 GeV2) are well described. It is a good point
to mention that these excellent results were obtained with the mass-dependent κ parameter.
Consequently, one can conclude that it can provide a good description of the experimental
data sets for all three light vector mesons.

Figure 22 – Results for ϕ(1S) electroproduction cross sections compared with the ZEUS
data [157]. The results were obtained only with the bCGC model. On the left
panel, the total cross section is shown as a function of W and compared to four
datasets with different Q2 values (from top to bottom, Q2 = 2.4, 3.8, 6.5 and
13.0 GeV2, respectively). On the right panel, the differential cross section is shown
as a function of |t| for W = 75 GeV and compared with data points for seven
different values of Q2 (from top to bottom, Q2 = 2.4, 3.6, 5.2, 6.9, 9.2, 12.6 and
19.7 GeV2, respectively).
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As was previously mentioned, one advantage of the holographic approach is that it
enables obtaining wave functions for excited states. Therefore, predictions for the total cross
section for ρ(2S) (darker blue solid line), ω(2S) (medium shade of blue dotted line), and
ϕ(2S) (lighter blue dashed line) photoproduction are presented in Fig. 23 as functions of W .
Correspondingly, on the right panel, predictions for the differential cross sections as functions
of |t| are shown for a fixed W = 108 GeV. All these curves are obtained with the bCGC model,
since it was most successful in describing the available data for ground-state electroproduction.
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Figure 23 – Predictions for the total cross section as a function of W (left panel) and for the
differential cross section as a function of |t| (right panel) for ρ(2S) (darker blue
solid line), ω(2S) (medium shade of blue dotted line) and ϕ(2S) (lighter blue
dashed line) photoproduction.

10−1

100

101

0 25 50 75 100 125 150 175

Q2 = 0 GeV2

ρ(2S)

ω(2S)

φ(2S)
10−1

100

101

0 25 50 75 100 125 150 175

Q2 = 0 GeV2

ρ(2S)

ω(2S)

φ(2S)

σ
γ
p
→
V
p
(µ
b
)

W (GeV)

σ
γ
p
→
V
p
(µ
b
)

W (GeV)

100

101

102

103

104

105

0 0.1 0.2 0.3 0.4 0.5

Q2 = 0 GeV2

W = 108GeV

100

101

102

103

104

105

0 0.1 0.2 0.3 0.4 0.5

Q2 = 0 GeV2

W = 108GeV

d
σ
γ
p
→
V
p
/
d
t
(n
b
/G

eV
2
)

|t| (GeV2)

ρ(2S)
ω(2S)
φ(2S)

d
σ
γ
p
→
V
p
/
d
t
(n
b
/G

eV
2
)

|t| (GeV2)
Source: Elaborated by the author and published in [41].

Given the significant discrepancies observed among the results obtained with different
parametrizations of the partial dipole amplitude, particularly in the photoproduction case, we
decided to present in Fig. 24 predictions for the ratio between the excited-state total cross
section and its corresponding ground-state total cross section as a function of W (left panel),
as well as the ratio between the excited-state differential cross section and the ground-state
differential cross section as a function of |t| for W = 108 GeV (right panel), for the three
distinct light vector mesons. To enhance the visualization of the curves, different line types
were used for different mesons (darker solid lines for ρ, medium shade dotted lines for ω, and
lighter dashed lines for ϕ) and different colors were used for representing the results with
different partial dipole parameterizations (blue shades were used for bCGC and violet shades
correspond to bSat model). As can be seen on both panels, the results obtained with the
bSat model are much higher than the ones obtained with the bCGC parametrization. This
result corroborates the statement that there are still big uncertainties in the structure of partial
dipole amplitudes, that come from the soft and non-perturbative domain [81]. Also, it shows
the necessity of improvements on the dipole parametrizations to describe all existing exclusive
processes for vector meson production. The forthcoming measurements of the excited states
have the potential to play a pivotal role in constraining the dipole models, mostly within the
non-perturbative regime.
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Figure 24 – Predictions for the ratio of the excited-state total cross section to the ground-
state total cross section as a function of W (left panel) and for the ratio of the
excited-state differential cross section to the ground-state differential cross section
as a function of momentum transfer squared |t| (right panel) for ρ (solid lines), ω
(dotted lines) and ϕ (dashed lines) mesons. The blue curves are obtained with the
bCGC model, while the violet ones correspond to the bSat model.
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4 VECTOR MESON PHOTOPRODUCTION IN NUCLEAR TARGETS

In the context of nuclear ultraperipheral collisions (UPC), it is also possible to observe
the occurrence of vector meson photoproduction. In the last few years, the LHC has released
some data for the ρ(1S), ψ(1S), ψ(2S), and Υ(1S) photoproduction in ultraperipheral PbPb
collisions, which can be described by extending the color dipole model to the nuclear case
considering the Glauber-Gribov formalism. For this purpose, the necessity of including some
extra effects, such as gluon shadowing and finite coherence length (which will be explained
later), has been verified. Furthermore, it has been speculated that with the construction
of future colliders such as the Electron-Ion Collider (EIC) and the Future Circular Collider
(FCC), new measurements with nuclear targets will be performed, which could provide relevant
information for the processes and predictions studied in this work.

4.1 COHERENT PRODUCTION

The nuclear vector meson photoproduction occurs through the process γA → V A,
which maintains the nucleus target intact (left panel of Fig. 25). The scattering cross section is
determined by taking the average of the scattering amplitude A over the interaction eigenstates
and then squaring the result

dσγA→V A

dt = 1
16π

∣∣〈AγA→V A(x,∆)
〉∣∣2 . (104)

Figure 25 – Coherent (left) and incoherent (right) vector meson production in a nuclei collision.
In the left panel, one can see that the nucleus remains in the initial state A. Whereas
in the right panel, the nucleus target changes from the initial state A to the final
state A∗.
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Source: Elaborated by the author.

Since this average is taken over all possible configurations of the nucleons inside the
nucleus, this amplitude is sensible to the dipole-nucleus interaction, which probes the gluon
distribution at small x. Consequently, the coherent cross section assumes an important role in
analyzing the average shape of the target [158].
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The Glauber model was the first one to incorporate the shadowing effect1 in the
elastic hadron-nucleus interaction [159]. This model considers that the incident hadron only
experiences elastic scatterings with the nucleons inside the nucleus. Thus the hadron-nucleus
scattering amplitude is given by the summation of all possible successive rescatterings with
the single nucleons (Fig. 26). A more detailed explanation of this calculation can be found in
Appendix G.

Figure 26 – Pictorial representation of the Glauber model. One can see that the projectile
hadron only scatters elastically with the nucleons inside the nucleus.

h h

A A

Source: Elaborated by the author.

This approximation of considering only elastic scatterings is reasonable for small energies
when the average momenta of the nucleons within the nucleus are small, which prevents the
collapse of the nucleus [160]. The problem with this model appears with the energy increase,
because it leads to the possibility that particles produced in inelastic scatterings with nucleons
inside the nucleus can subsequently be absorbed by other bound nucleons (Fig. 27), which
makes the nucleus more transparent. These inelastic corrections were incorporated into the
Glauber model by Gribov [160, 161] and lead to an increase of the elastic cross section of about
40%. Briefly, in Glauber model the incident hadron interacts with each nucleon independently,
while the Gribov corrections allow for coherent interactions with more than one nucleon.

Figure 27 – Gribov’s correction to Glauber’s model. As can be seen in the picture, the projectile
hadron can suffer diffractive excitations when interacting with a nucleon and
undergoes intermediary states before returning to its initial state.

AA

h h

Source: Figure taken from [159].

1 The term“shadowing” is frequently used in the literature to make reference to a reduction of the cross
section due to the interaction of the constituents inside the particles that participate in the collision. It
comes from the idea that a particle can hide others behind its shadow.
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In a modern language, instead of hadrons, a color dipole can be used as an interaction
eigenstate. This allows for the calculation of Gribov inelastic corrections to all orders. This
occurs because, in this regime, the quark-antiquark pair lifetime, which is called coherence
length,

lc = 2ω′

M2
V

, (105)

is considered to be much bigger than the nucleus radius (lc ≫ RA). In this case, the transverse
distance between the quarks remains approximately constant (which is often referred to as
“frozen”), which means that the photon does not fluctuate into the qq̄ pair during its passage
through the nucleus, but rather a long time before (Fig. 28). In this equation, ω′ is the photon
energy in the nucleus target rest frame and MV is the vector meson mass.

Figure 28 – Pictoric representation of the coherence length in the high energy limit, i.e., when
lc ≫ RA. In this regime, it is considered that the qq̄ pair was created a long time
before its passage through the nucleus and will transform itself into the vector
meson very much time later.
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ഥ𝐪

𝐪

Source: Elaborated by the author. Adapted from [162].

The adoption of the “frozen” approximation enables the determination of an asymptotic
expression for the averaged diffractive scattering amplitude [38].

〈
AγA→V A(x,∆)

〉
=i
∫

d2r
∫ 1

0
dβ
∫

d2b e−i[b−(1−z)r]·∆

× ΣT (r, β) 2
[
1 − exp

(
−ATA(b)σqq̄(x, r)

2

)]
,

(106)

with ΣT = Σ(1) + Σ(2) d
dr

, which was defined in the previous chapter. In this equation, as was
discussed previously, σqq̄ is the dipole-proton interaction total cross section, A is the mass
number, and TA(b) is the nuclear thickness function, which is defined as the integral of the
nuclear density ρA(b, z) over the longitudinal coordinate z with fixed impact parameter:

TA(b) =
∫ +∞

−∞
dz ρA(b, z) ,

∫
d2bTA(b) = 1 . (107)
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In the present study, the Woods-Saxon distribution was employed to represent the
nuclear density, which is characterized by the following form [163]:

ρA(b, z) = NA

1 + exp[ ℓ(b,z)−RC

δ
]
, (108)

where ℓ ≡ |ℓ| is the distance from the nucleus center to a generic point inside it (defined
as ℓ(b, z) =

√
b2 + z2), NA is a general normalization factor, and the parameters for lead

RC = 6.62 fm and δ = 0.546 fm were taken from Ref. [164].
The expression 106 enables not only to calculate the t differential cross section for the

γA → V A process (Eq. 104) but also to calculate the total cross section, given by:

σγA→V A =
∫

d2b

∣∣∣∣∫ dβ d2r ΣT (r, β)
[
1 − exp

(
−ATA(b)σqq̄(x, r)

2

)]∣∣∣∣2 . (109)

This is a fundamental piece for the coherent cross section calculation in ultraperipheral collisions,
thus it will be used in the upcoming numerical calculations.

4.2 INCOHERENT PRODUCTION

Another possible way to produce vector mesons in nuclear collisions is the one called
incoherent production. This consists in a process γA → V A∗ whose nucleus does not remain
intact after the collision. In this case, the nucleus passes through a transition to an excited
state, composed of nucleons and nuclear fragments, however without any other hadron (it is
shown on the right side of Fig. 25).

The scattering amplitude that describes events with initial state |i⟩ and final state |f⟩
is ⟨f |A| i⟩ (the superscript caption γA → V A was omitted to make the notation clearer in
the next equation). Since in this case the final state must be different than the initial one and
what goes into the cross section is the transition amplitude squared, it is convenient to write
[158] ∑

f ̸=i

|⟨f |A| i⟩|2 =
∑

f

⟨i |A∗| f⟩ ⟨f |A| i⟩ − ⟨i |A∗| i⟩ ⟨i |A| i⟩ (110)

= ⟨i |A∗A| i⟩ − |⟨i |A| i⟩|2 . (111)

The last line was obtained with the completeness relation
∑

f |f⟩⟨f | = 1. One can identify the
first term of this equation as the average, over the initial states, of the absolute value of the
scattering amplitude squared, while the second one is the square of the averaged amplitude,
which can be identified as the coherent part of the scattering. This makes the vector meson
incoherent production cross section to be given by:

dσγA→V A∗

dt = 1
16π

(〈∣∣AγA→V A
∣∣2〉 −

∣∣〈AγA→V A
〉∣∣2) . (112)

Since the incoherent cross section is proportional to the variance of the diffractive
scattering amplitude, it can measure how sensitive the amplitude is to fluctuations, which can
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be probed at different length scales. This occurs because the impact parameter is the Fourier
conjugate of the transferred momentum ∆, which can be accessed by measurements. As a
result, it can be utilized to restrict the geometry of the fluctuations.

In the same way, as was explained in the previous subsection, the Glauber-Gribov model
can be employed to compute the averages indicated in Eq. 112, which can be utilized to derive
an expression for the incoherent cross section [165, 166, 167].

σγA→V A∗ =
∫

d2b

∫
d2r1

∫ 1

0
dβ1ΣT (r1, β1) exp

[
−A

2 σqq̄ (r1, x)TA(b)
]

×
∫

d2r2

∫ 1

0
dβ2ΣT (r2, β2) exp

[
−A

2 σqq̄ (r2, x)TA(b)
]

×
{

exp
[
σqq̄ (r1, x)σqq̄ (r2, x)

16πB ATA(b)
]

− 1
}
.

(113)

The elastic cross section of dipole-nucleon interaction (σqq̄) is considerably small for heavy
quarks [165]. Consequently, the exponential function present in the last line of this equation
can be expanded, leading to the following expression:

σγA→V A∗ =
∫

d2b
ATA(b)
16πB

∣∣∣∣∫ dβ d2r ΣT (r, β)σqq̄ (x, r) exp
(

−ATA(b)σqq̄ (x, r)
2

)∣∣∣∣2 .
(114)

It is worth mentioning that all this formalism was constructed over the supposition that
the diffractive scattering amplitude (Eq. 106) was purely imaginary. The real part is taken into
account by substituting the dipole cross section in Eqs. 109 and 114 by [168]:

σqq̄(x, r) ⇒ σqq̄(x, r)
(

1 − i
π

2
∂ ln σqq̄(x, r)
∂ ln (1/x)

)
, (115)

which is included in the numerical calculations.

4.3 FINITE COHERENCE LENGTH

All the formalism described previously was constructed in the limit of long coherence
length (lc ≫ RA). Nevertheless, it is necessary to consider the case in which the coherence
length is smaller than the nucleus radius (lc ≲ RA). In this regime, the photon can propagate
through the nucleus without undergoing any attenuation until it fluctuates into a qq̄ pair.
Accordingly to [165], an adequate form to describe this propagation is by using a Green function
that satisfies the bidimensional Schödinger equation [169]. However, since the solution of this
equation is only known for the harmonic oscillator potential and with the supposition that the
dipole cross section has a simplified and non-realistic form σqq̄ ∝ r2, it was decided, in this
work, to include this effect through the multiplication of the cross sections 109 and 114 by a
form factor [168]:

σγA→V A∗(W 2) ⇒ σγA→V A∗(W 2) Finc(W 2, lc) , (116)
σγA→V A(W 2) ⇒ σγA→V A(W 2) Fcoh(W 2, lc) . (117)
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In the incoherent case, the form factor is given by:

Finc(W 2, lc) =
∫

d2b

∫ ∞

−∞
dzρA(b, z)

∣∣∣F1(W 2, b, z) − F2(W 2, b, z, lc)
∣∣∣2/(...)∣∣∣

lc→∞
(118)

where the term
(
...
)∣∣∣

lc→∞
represents the numerator in the infinite coherence length limit. The

factor
F1(W 2, b, z) = exp

(
−1

2σVN(W 2)
∫ ∞

z

dz′ρA(b, z′)
)
, (119)

represents the probability of the vector meson be produced in the point z and leave the nucleus
without experiencing any inelastic interaction (Fig. 29.a). It depends on the total vector meson-
nucleon cross section σVN(W 2), which depends on the center of mass energy W [42]. The
second term in Eq. 118,

F2(W 2, b, z, lc) = 1
2σVN(W 2)

∫ z

−∞
dz′ρA(b, z′)F1(W 2, b, z′)ei(z′−z)/lc , (120)

considers that the photon can first produce elastically a bound state in the point z′, which will
propagate through the nucleus until it interacts quasielastically with another bound nucleon in
the point z > z′, turning itself into a vector meson (Fig. 29.b).

Figure 29 – Representation of the finite coherence length case. On the left, a virtual photon
interacts with a nucleon at z and incoherently produces the qq̄ pair, which prop-
agates through the nucleus and then transforms into the vector meson. On the
right, the photon first produces elastically the qq̄ pair at point z′, which propagates
through the nucleus until it interacts quasielastically at z, where it transforms into
the vector meson.

Source: Figure taken from [169].

The form factor for the coherent production presents a much simpler expression that
the one seen previously:

Fcoh(W 2, lc) =
∫

d2b

∣∣∣∣∫ ∞

−∞
dzρA(b, z)F1(W 2, b, z)eiz/lc

∣∣∣∣2/(...)∣∣∣
lc→∞

. (121)

This occurs because the interaction amplitudes of the vector mesons produced at different
longitudinal coordinates add up coherently, which prevents a qq̄ pair from interacting with two
nucleons before transforming into a vector meson (as can be seen in Fig.29.b).
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The authors of the paper [165] exposed that this approach is more appropriate in the
description of lighter vector meson photoproduction, like the ρ meson. Although, since this
effect is evident only at high rapidities, where there is no experimental data at the present
moment, it is not possible to analyze how adequate the finite coherence length procedure
is. Moreover, as can be seen in Eq. 105, this effect becomes less noticeable with the energy
increase, thus it will be less relevant in future measurements at the upcoming colliders, like
the FCC (which promises to reach energies close to 100 TeV [170]).

4.4 GLUON SHADOWING

At the high energy regime, the nuclei experience Lorentz contraction, as also do the
nucleons inside them. Nevertheless, the gluon density inside these nucleons exhibits a smaller
contraction in comparison to the remaining constituents of the system, because they carry a
smaller momentum fraction, which is proportional to x. Consequently, gluons originated from
different nucleons can fuse, making the gluon density inside the nucleus smaller than the one
of free nucleons. This effect is named gluon shadowing.

Figure 30 – Diagrams of the photon-nucleon interaction with a gluon emission, i.e., for the
γN → qq̄GN process.
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Source: Figure taken from [49].

In the nucleus rest frame, this phenomenon is seen as the inclusion of higher states
that comprehend gluon radiations, i.e., |qq̄G⟩, |qq̄2G⟩, ... , |qq̄nG⟩ (the first state diagrams,
that include the radiation of one gluon are shown in Fig. 30). The expressions for the nuclear
cross section (109 and 114) consider only that the lowest state created by the photon splitting
|qq̄⟩ participates of the multiple scatterings in the nucleus [168]. As aforementioned, the dipole
cross section σqq̄ already considers the higher states with gluon emission, however, it only
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describes the dipole-nucleon interaction and not the interaction with the whole nucleus, case
where the states with gluon emission should have a smaller coherence length than the one that
just produces the qq̄ pair lgc < lc. Thus, it is expected that the states with gluon radiation will
survive less time in nuclear targets than in proton targets, generating a shadowing effect in
the nuclear cross section.

Since the gluon radiation is taken into account in the dipole cross section, the most
suitable way to incorporate this change in the gluon distribution is by renormalizing it through
fits to data:

σqq̄(r, x) → σqq̄(r, x)RG(x, µ2) . (122)

In this modification, the RG factor is the ratio between the gluon density inside a nucleon in a
nucleus and the one found in a free nucleon

RG(x, µ2) = xgA(x, µ2)
Axgp(x, µ2) . (123)

Instead of using the analytic calculations found in the literature [168, 169, 171], it
was decided, in this project, to use the nuclear parton distribution EPPS16 [172], and the
proton parton distribution CT14 [58], adjusted to LHC data and including next to leading
order correction, to evaluate this ratio. This approach privileges the universality of this part
of the process, which is intrinsically non-perturbative. Similar to previous studies [171], the
factorization scale chosen to be used in the PDFs is µ = MV /2.

4.5 PHOTON FLUX AND ULTRAPERIPHERAL COLLISIONS

Hitherto, it was only studied interactions of photons with nucleus and the effects that
arise from it, for this reason, this section will present a discussion about the origin of the
photons in nuclear collisions. In the large particle accelerators, like the LHC, the nuclei are
accelerated to velocities very close to the speed of light. Since these nuclei have a non-zero
electric charge, its movement is responsible for the generation of strong electromagnetic fields.

In 1924, Enrico Fermi formulated the equivalent (or virtual) photon method, which
basically states that the electromagnetic fields generated by a moving charge can be described
by a photon flux [173, 174]. Ten years later, Weizsäcker and Williams independently extended
this idea to the ultrarelativistic particles case, which was named Weizsäcker-Williams method.

They realized that when a charged particle is moving in the limit of v ∼ c, a symmetry of
the electric and magnetic fields generated by its motion arises. This symmetry is a characteristic
of electromagnetic fields and makes an inertial observer unable to distinguish the origin of
these fields, whether they come from a charged particle with ultrarelativistic velocity or they
come from a radiation pulse propagating in the same direction.

This radiation pulse can be seen as a flux of virtual photons, which is defined as the
Fourier transform of the time-dependent electric fields. The complete procedure to obtain this
quantity can be found in the appendix B, where one can verify that the equivalent photon flux
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per unit area and photon energy is:
d3Nγ(ω, bγ)
dωd2bγ

= Z2αemζ
2

π2ωb2
γ

[
K2

1(ζ) + 1
γ2K

2
0(ζ)

]
, ζ = bγ ω

γ
, (124)

in which γ =
√
s/2mp is the Lorentz factor for a proton inside the projectile nucleus with

mass equal to mp = 0.938 GeV, Z is the atomic number (which in the lead case is 82) and bγ

is the photon impact parameter. It is worth mentioning that in this equation ω is the photon
energy in the collision center of mass frame, which is related to ω′ (Eq. 105) by ω′ = 2γω.

From this point of view, it is possible to substitute the incident particle with the photon
flux shown previously. Therefore, using the factorization, a cross section for a hadronic process
can be written as a convolution of the photon flux and the photon-target cross section [175]:

σAA→AV X =
∫

dωdN(ω)
dω σγA→V X . (125)

This equation is very suitable for describing ultraperipheral collisions between two nuclei (AA),
defined as those in which the impact parameter exceeds the sum of the nuclei radius (b > 2RA),
because for large b-values the strong interactions are suppressed and the photoproduction
processes become dominant (Fig. 31).

Figure 31 – Schematic representation of an ultraperipheral collision involving two lead nuclei.
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Source: Elaborated by the author.

Since 2010, the LHC has been studying ultraperipheral collisions with lead nuclei.
However, the most recent data published by this collider are not presented in terms of the
photon energy but in terms of the final state rapidity. There it is convenient to rewrite Eq. 125
as a rapidity distribution. The relation between the rapidity and the photon energy is y = ln 2ω

MV
,

which enables Eq. 125 to be written in the following way:
dσAA→AV X

dy
= ω

dN(ω)
dω σγA→V X . (126)
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Since the two nuclei that participate in the collision can act both as the source of
the virtual photons and as the target, it is necessary to include in the last equation a term
identic to the one shown in the right part of Eq. 126, but replacing y → −y. Besides that,
given that the photon flux obtained in Eq. 124 depends on the impact parameter, as well as
the photon-nucleus cross section, it is more appropriate to add impact parameter integrals to
Eq. 126, thus obtaining:

dσAA→AV X

dy
=
∫

d2b

∫
d2b′ ω

dNγ(ω, bγ)
dωd2bγ

dσγA→V X(ω, b′)
d2b′ . (127)

In this equation, b is the distance between the center of the two nuclei, and b′ is the distance
between the nucleus target center and the interaction point. Consequently, it is possible to
relate these two quantities to the photon impact parameter bγ = b′ − b (Fig. 32).

Figure 32 – Schematic representation of the impact parameter relation bγ = b′ − b in the
transverse plane of the collision.
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Source: Figure adapted from [176].

It is noteworthy that, as was aforementioned, the integral with respect to the impact
parameter b should have its lower limit equal to 2RA, to ensure that there is no overlap between
the nuclei. Even if that was not the case, this integral can never start from zero, due to a
constraint imposed by quantum mechanics. It is known that each particle can be described by
a wave packet with a width of at least ∆x ≥ ℏ/pmax, where pmax represents the maximum
momentum transferred during the collision. Hence, it just makes sense to consider the collision
impact parameter if it satisfies the condition b > ∆x [174].

4.6 NUMERICAL RESULTS

This chapter presents a methodology to obtain the rapidity distributions for the vector
meson photoproduction in ultraperipheral collisions. Based on this mathematical development,
several numerical results have been obtained, which will be shown below.
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4.6.1 t- integrated heavy vector meson y- distributions

Following the steps taken in the previous chapter, we computed the t-integrated cross
sections for the heavy vector meson photoproduction in lead-lead (PbPb) collisions at the LHC
energies, employing two dipole models, namely, the GBW and the KST parametrizations.

Fig. 33 shows the differential cross section as a function of the rapidity for the coherent
photoproduction of ψ(1S) and ψ(2S) in ultraperipheral collisions at 2.76 TeV (left) and ψ(1S)
at 5.02 TeV (right). In both panels, the results were obtained using all five qq̄ pair interaction
potentials, mentioned earlier, and the GBW model for the color dipole cross section.

In the left graph, the results evaluated at 2.76 TeV for the ground state were compared
to CMS [5] and ALICE [6, 7] data, while the results for the excited states were compared to
ALICE data [8]. One can notice that for the ψ(1S) case, the data can be well described by all
five curves. However, this does not occur for ψ(2S), where only the oscillator potential curve
lies within the error bars.

On the right graph, the ψ(1S) results at an energy of 5.02 TeV were compared with
experimental data from ALICE [9] and preliminary results from LHCb [10]. As one can see
in the figure, a satisfactory agreement with the LHCb data was achieved, whereas, for the
ALICE data, it was not. Nevertheless, it should be noted that a huge tension exists between
the measurements of the two groups, making it practically impossible to describe both datasets
simultaneously.

Figure 33 – Rapidity distribution for the coherent ψ photoproduction in PbPb UPCs at 2.76
TeV (left) and 5.02 TeV (right). The results obtained for 2.76 TeV were compared
to data from CMS [5] and ALICE [6, 7] collaborations for J/ψ and from ALICE
[8] for ψ′. The results for 5.02 were compared to data from ALICE [9] and with
LHCb preliminary results [10].
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In Fig. 34, predictions for the differential cross section are shown as a function of the
rapidity for the coherent photoproduction of Υ(1S) (left) and Υ(2S) (right) at 5.02 TeV in
PbPb collisions. In the same way as in Fig. 33, the results were obtained for the five potentials
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aforementioned, the only difference is the color dipole cross section, which for this case it was
used the KST model.

Upon analyzing the curves depicted in the left panel of this figure, a significant spread
is observed, mainly at small rapidity values. This effect comes from the shape of the Υ(1S)
wave function [4], which differs more among themselves than the other studied bound states.
This can be noted on the right graph, which shows a significant resemblance between the
potential curves, except for the harmonic oscillator potential, which is responsible for a curve
that is nearly twice as high as the others.

Figure 34 – Predictions for the rapidity distribution for the coherent Υ(1S) (left) and Υ(2S)
(right) photoproduction in PbPb UPCs at 5.02 TeV.
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In order to analyze the impact of the model choice on the calculations, Fig. 35 presents
the results for the Υ(1S) coherent photoproduction at 5.02 TeV using all five different color
dipole parameterizations aforementioned. It was chosen to use the vector meson wave functions
calculated with the Cornell (darker curves) and harmonic oscillator (lighter curves) potentials
because, in this case, they yield the most discrepant results (as evident from the left panel of
Fig. 34). It is very clear that the model choice significantly affects the cross section results, thus
this is a substantial source of uncertainties in the dipole formalism, showing the necessity of
further studies regarding this part of the model. Additionally, it is worth noting that the results
obtained with the solution of the BK equation are constrained to y < 1.5 due to limitations
stemming from the finite grid range in [63].

In Fig. 36, the differential cross section is displayed as a function of the rapidity for the
incoherent ψ(1S) (left) and ψ(2S) (right) photoproduction at 2.76 TeV. Again, it was used in
the calculations the GBW model together with the five potentials. The results for the ground
state were compared with the single data point available at the moment from the ALICE
collaboration [6]. In this case, one can see that the curves were not capable of describing the
data point shown in the left panel of the figure. This evidences that the developed formalism
was not enough to deal with the incoherent production, ergo, new studies and theoretical
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Figure 35 – Predictions for the rapidity distribution for the coherent Υ(1S) photoproduction
in PbPb UPCs at 5.02 TeV. The results were obtained with 5 parameterizations
for the dipole cross section together with vector meson wave functions obtained
with 2 different potentials: the Cornell (darker curves) and the harmonic oscillator
(lighter curves).
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analyses must be undertaken to solve this problem.

Figure 36 – Rapidity distribution for the incoherent ψ(1S) (left) and ψ(2S) (right) photopro-
duction in PbPb UPCs at 2.76 TeV. The ground state results were compared to
the only available datapoint from ALICE collaboration [6].
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Lastly, Fig. 37 presents predictions for the differential cross section as a function of
the rapidity for the incoherent Υ(1S) (left) and Υ(2S) (right) photoproduction at 5.02 TeV
at PbPb collisions. Once again, a spread can be observed among the curves computed with
distinct potentials, which reinforces the previous statement that the Υ(1S) wave functions are
considerably distinct from one another.
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Figure 37 – Predictions for the rapidity distribution for the incoherent Υ(1S) (left) and Υ(2S)
(right) photoproduction in PbPb UPCs at 5.02 TeV.
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4.6.2 t- dependent heavy vector meson y- distributions

In this section, an extension of the previously discussed formalism will be presented for
the computation of nuclear differential cross sections as a function of the transferred momentum
t. The main motivation for this undertaking is the absence, in the literature, of any calculation
of this quantity using the potential model for the vector meson wave function. Moreover, we
wanted to investigate the impact of the gluon shadowing effect on such observables. Notably,
this part of the work is original from this project, while the previous one (t-independent) was
carried out in collaboration with another student; thus, it can also be seen in his dissertation
[176].

In light of this, we will now present numerical results for the differential cross sections
of coherent vector meson photoproduction as a function of |t|. Analogously to the previous
section, the vector meson wave functions were computed with the potential approach and
incorporating the Melosh spin rotation. However, since there were no noticeable differences
between the curves obtained with different potentials, we chose only to display the ones
obtained with the Buchmüller-Tye potential. The dipole-nucleus scattering amplitude was
built up with the Glauber-Gribov approach and considering three parameterizations for the
dipole-nucleon interaction cross section: the numerical solution of the BK-equation, the well-
known phenomenological GBW model, and the saturated b-Sat model. Additionally, the gluon
shadowing effect was taken into account through a phenomenological renormalization of the
color dipole cross section.

The left panel of Fig. 38 presents a comparison between the results obtained for the
differential cross section for ψ(1S) coherent photoproduction and the recent ALICE data [177]
at √

s = 5.02 TeV. One can see that the curves slightly underestimate the data at very small
|t| values, whereas, for higher |t|, the results describe very well the available data. The right
panel shows predictions for ψ(2S) excited state, with the same setup and at the same energy.
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Figure 38 – Differential cross sections for the γPb → ψ(nS)Pb process as functions of |t|.
The results were obtained using the Buchmüller-Tye potential and three parame-
terizations for the qq̄-nucleon interaction: BK, bSat, and GBW models. For the
ψ(1S) case, they were compared to the recent ALICE data [177].
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The left and right panels of Fig. 39 show the predicted differential cross section for
coherent photoproduction of ψ and Υ states, respectively, in γPb collisions at √

s = 5.02 TeV
over a broader range of |t|. The nearly identical positions of the dips in both ψ(1S, 2S) and
Υ(1S, 2S) can be observed due to the destructive interference of individual nucleon scatterings
within the nucleus. This shape only appears in coherent scatterings because, in this case, the
photon interacts with the entire nucleus, allowing it to interact with all nucleons within it and
ultimately result in a negative phase.

Figure 39 – Predictions for the differential cross section for the coherent photoproduction of
ψ (left) and Υ (right) states in γPb → V Pb collisions at √

s = 5.02 TeV.
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Lastly, in Fig. 40, predictions for the differential cross section for ψ (left) and Υ (right)
states are presented for PbPb → V PbPb collisions at √

s = 5.02 TeV and y = 0. These
energy and rapidity values are compatible with those used in LHC, enhancing the chances of
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being measured. A trivial thing to be noted is that these results have exactly the same shape
as those found in Fig. 39, but are three orders of magnitude larger, which is caused by the
Weizsäcker-Williams photon flux.

Figure 40 – Predictions for the differential cross section for the coherent photoproduction of ψ
(left) and Υ (right) states in PbPb → V PbPb collisions at √

s = 5.02 TeV and
y = 0.
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5 CONCLUSION

The main focus of this thesis was the study of exclusive photo and electroproduction
of vector mesons with proton and nucleus targets through the color dipole formalism. An ideal
goal would be to describe all five vector mesons presented in the text, ρ, ω, ϕ, ψ, and Υ, in
both ground and excited states, with exactly the same model. However, the fact that these
mesons have very different masses makes it necessary to study them separately and adjust the
general formalism to each regime. This adjustment is made in the vector meson wave function,
which is responsible for describing the combination of the qq̄ pair into the vector meson. Thus,
in this work, it was used two models for the wave function: the AdS/QCD holographic model
for the light vector mesons and a potential approach (which consists of finding a solution for
the Schrödinger equation in the qq̄ rest frame for several interquark potentials and then boost
it to the infinite momentum frame including the Melosh spin rotation) for the heavy ones. It is
worth emphasizing that one of the main goals of the project was to study these vector meson
cross sections using wave functions based on the theoretical fundaments of QCD. Another
one was to obtain wave functions for the excited states. Both objectives were successfully
accomplished with these two models.

For the light vector meson case, this formalism resulted in a very good description of
the available data for ρ(1S), ω(1S), and ϕ(1S) electroproduction cross sections. This showed
the importance of a mass-dependent κ parameter in the effective confining potential, mostly
for the obtention of the excellent ϕ results. In the photoproduction case, the differential cross
section calculated with the same setup provided a good description of the available ZEUS data
for the ω(1S) and the CMS data for ρ(1S) production at small t. The calculation of total
cross sections has revealed the existence of significant uncertainties related to the b-dependent
partial dipole amplitude model employed. This highlights that the construction of such models
should be improved considering these data and future measurements, like the production of
excited states. For this reason, predictions were evaluated for the ρ(2S), ω(2S), and ϕ(2S)
photoproduction, which to the best of our knowledge, have not been found in the literature
until the present moment.

With this formalism, it was possible to obtain an excellent description of all available
data for the total cross section of ψ(1S), ψ(2S), and Υ(1S) photoproduction with a proton
target using the GBW and KST dipole models. Despite the lack of data, predictions were
made for the excited state Υ(2S) for completeness. Additionally, differential cross sections
in t were calculated for the same four-vector mesons. However, to do so, it was necessary
to utilize impact parameter-dependent partial dipole amplitude parameterizations. Thus, the
b-Sat model and a solution of the BK equation were used to reproduce the H1 data (only
available for J/ψ photoproduction), and it was observed that the latter achieved a better
description.

Once the formalism for the proton target case had been well-established, it was decided
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to extend it to the nucleus target case. For this purpose, the Glauber-Gribov model was used
to account for the multiple scatterings of the dipole with the nucleus, including the effects of
finite coherence length and gluon shadowing (adjusted to data). A summary with all models
used in the present text can be found in Appendix A. Initially, the study focused on the
coherent t-independent case, where the photon interacts with the entire nucleus. Remarkably,
an excellent description of the J/ψ data from the CMS and ALICE experiments was obtained
for ultraperipheral PbPb collisions at 2.76 TeV. However, for the ψ′ state, only the harmonic
potential was able to describe the single available data point from ALICE. For higher energies,
a successful description was achieved only for LHCb data at 5.02 TeV, but it is important
to note the tension between these data and those from ALICE. Predictions were also made
for Υ(1S) and Υ(2S) at LHC energies, with the hope that future measurements could help
determine the best interquark potential.

In the incoherent case, t-independent calculations were also performed for the same
four vector mesons; however, they could only be compared to the single available data point for
J/ψ photoproduction obtained by ALICE, which did not agree with the results. Nevertheless,
it was deemed important to present these predictions, considering the well-known difficulty of
describing incoherent processes in the literature. Therefore, the best description achieved with
the formalism developed in this work was presented.

Finally, predictions were made for the t-dependent differential cross section for the
coherent photoproduction of both ground and excited ψ and Υ states in nuclear collisions at
central rapidity. The recently published ALICE data for J/ψ photoproduction made it possible
to test the developed approach. They showed that, in contrast to the results obtained for
proton targets, the bSat model provided a better description of this nuclear data than the
other models, which once more evidenced the existent significant uncertainties in modeling the
b-dependent color dipole cross section. These findings led to the publication of three articles
[11, 38, 41]. Furthermore, given the success of this formalism in describing the coherent data
from the LHC, it is expected that these predictions will play an important role in understanding
future measurements of vector meson exclusive production at the LHC and at other future
colliders, such as the EIC and the FCC.
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6 FORTHCOMING RESEARCH

A natural continuation of the current work is the extension of the presented formalism
to the coherent photoproduction of light vector mesons in nuclear collisions. However, in this
scenario, their small mass poses a challenge for using the available parton distribution functions
to evaluate the gluon shadowing effect, since the current fits only have an initial evolution
scale µ0 = mc. Thus, an adequate approach must be developed to accurately describe the
gluon shadowing in light vector mesons. The recent measurements [178, 179, 180] from ALICE
collaboration for coherent ρ photoproduction can serve as a valuable testbed for validating the
proposed formalism.

Since the formalism adopted in this work did not provide a satisfactory description of the
single available incoherent data in ultraperipheral collisions, it is evident that an improvement
in the theoretical approach is necessary. Some recent works have attempted to incorporate the
description of the fluctuations of the nucleus constituents [158, 181] into their models. While
this approach may provide a suitable solution for the incoherent case, it leads to a worsened
description of the coherent case. Thus, a model refinement is crucial to enable the description
of this and the forthcoming data for both incoherent and coherent processes within the dipole
formalism.

Finally, the advanced understanding of the dipole formalism can be useful in developing
a theoretical model capable of describing a phenomenon observed in pp collisions at TOTEM
[182] and ATLAS [183], known as "hollowness" [184, 185, 186, 187, 188]. This phenomenon
reveals that at high energies, the inelasticity density does not reach its maximum when the
impact parameter is zero but when it is small.
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APPENDIX A – SUMMARY OF EMPLOYED MODELS

Model Explanation References
Photon flux The Weizsäcker-Williams method consists of relating

the electromagnetic fields produced by a charged
particle moving with ultrarelativistic velocity with
a flux of virtual photons. It is important in nuclear
UPCs because it describes the origin of the photons
that participate in the photon-nucleus collisions.

[173, 174]

Photon wave func-
tion

Part of the scattering amplitude that carries the
information about the photon fluctuation into the
qq̄ pair.

[42, 73, 74, 75,
76, 77, 78]

Color dipole pa-
rameterization

Part of the scattering amplitude that describes the
interaction of the qq̄ pair with the target nucleon.

GBW [46, 47,
48], KST [49],
bSat [52], BK
[63], bCGC [65,
2, 3, 67]

Real part Term that considers the contribution of the real part
of the scattering amplitude.

[42]

Skewness Correction that takes into account the fact that the
gluons exchanged between the qq̄ pair and the target
nucleon can carry different momentum fractions.

[45]

Vector meson wave
function

Part of the scattering amplitude that carries the in-
formation about the combination of the qq̄ pair into
the vector meson.
For heavy vector mesons, a non-relativistic
Schrödinger equation is solved in the qq̄ rest frame
with different interquark potentials to obtain the vec-
tor meson wave functions for ψ and Υ.
For light vector mesons, the Brodsky-de Téramond
approach (based on the AdS/QCD correspondence)
can be used to obtain the vector meson wave func-
tions for ρ, ω, and ϕ.

Potential ap-
proach [4, 42],
AdS/QCD
holographic
model [12,
126]

Melosh spin rota-
tion

Transformation that is responsible for the spin boost.
It is necessary for heavy vector mesons.

[100, 101]

Coherent produc-
tion

Vector meson production through the process γA →
V A, which maintains the nucleus target intact.

[158, 38]

Incoherent produc-
tion

Vector meson production through the process γA →
V A∗ whose nucleus does not remain intact after the
collision

[165, 166, 167]

Glauber–Gribov
model

Model used to calculate the dipole-nucleus scatter-
ing amplitude by the summation of all possible suc-
cessive rescatterings with the nucleons inside the
nucleus.

[159, 160, 161]
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Nuclear profile The Woods-Saxon considers a homogeneous distri-
bution of the nucleons inside the nucleus.

[163]

Gluon shadowing Effect that reduces the nuclear cross section and is
related to the presence of higher states with gluon
inclusions that survive a shorter time than the |qq̄⟩
state.

[32, 168, 169,
171]

Finite coherence
length

Effect related to the finiteness lifetime of the quark-
antiquark pair. It is relevant when the coherence
length is smaller than the nucleus radius lc ≲ RA.

[168]
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APPENDIX B – WEIZSÄCKER-WILLIAMS METHOD FOR THE PHOTON
FLUX

To calculate the flux factor of a charged particle moving in the x1 direction with a
constant velocity v relative to the inertial reference frame S, one will first write the relationship
between the electromagnetic fields in the particle rest frame S’ and the frame S.

E1 = E ′
1

E2 = γ(E ′
2 + βB′

3)

E3 = γ(E ′
3 − βB′

2)

B1 = B′
1

B2 = γ(B′
2 − βE ′

3)

B3 = γ(B′
3 + βE ′

2)

(128)

Figure 41 – Relation between the reference frame S’ (where the punctual charge q is at rest)
and S (where the charge moves with velocity v in the x1 direction)

Source: Figure adapted from [189].

Considering the existence of an observer at a point P with coordinates r′ = (−vt′, b, 0)
in S’ (Fig. 41), it is possible to see that only the fields

E ′
1 = −qvt′

r′3 E ′
2 = qbγ

r′3
(129)

are non-zero. However, by performing a Lorentz transformation on these fields, one finds that
the intensity of the electromagnetic field generated by a charged particle as measured in P is
given by:

E1 = −qγvt(
b2

γ + (γvt)2
)3/2 E2 = qγbγ(

b2
γ + (γvt)2

)3/2 B3 = βE2. (130)

In the limit of relativistic velocities, where β ∼ 1, the magnetic field B3 tends to the same value
as E2, creating a symmetry between these two fields that is characteristic of electromagnetic
waves. This means that in reference frame S, these two fields behave like a radiation pulse
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P1 propagating in the direction of the charged particle (Fig. 42). However, it does not exist
a magnetic field in S that can be associated with E1 to form another pulse. To resolve this
impasse, it is worth noting that if the charge does not exhibit relativistic motion in S, it is
possible to introduce a magnetic field without affecting the physics of the problem, as in this
reference frame, particles only respond to the electric field. Consequently, a second pulse P2

propagating in the x2 direction can be formed (Fig. 42).

Figure 42 – Equivalent radiation pulses P1 and P2 as saw by an observer at a point P in the
rest frame S.

Source: Figure taken from [174].

After an analysis of the system, it is possible to establish a relationship between each
of the pulses and a frequency spectrum [174]

d3I(ω, bγ)
dωd2bγ

= c

2π |E(ω)|2, (131)

where E(ω) is the Fourier transform of the time-dependent electric field. This quantity can be
obtained by eq. 130, and the calculation of E2 is shown below:

E2(ω) = 1√
2π

∫ ∞

−∞

qγbγ(
b2

γ + (γvt)2
)3/2 e

iωtdt = 1√
2π

q

bv

∫ ∞

−∞

eiαζ(
1 + ζ2

)3/2 dζ, (132)

where ζ = γvt
bγ

and α = ωb
γv

.
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For a moment, let’s just focus on the integral presented in the previous equation,

I =
∫ ∞

−∞

eiαζ(
1 + ζ2

)3/2 dζ

=
∫ ∞

−∞

cos(αζ)(
1 + ζ2

)3/2 dζ + i

∫ ∞

−∞

sin(αζ)(
1 + ζ2

)3/2 dζ

= 2
∫ ∞

0

cos(αζ)(
1 + ζ2

)3/2 dζ .

(133)

The derivation of the last line comes from the fact that the integrand of the first term is even,
while the integrand of the second term is odd (which makes the integral identically zero). This
final result can be expressed more elegantly in terms of the Bessel function. To do so, we
employ the following property:

Kν(xz) =
Γ
(
ν + 1

2

)
(2z)ν

π1/2xν

∫ ∞

0

cos(xt)(
t2 + z2

)ν+1/2 dt, (134)

taking ν = 1 and z = 1
K1(x) = 1

x

∫ ∞

0

cos(xt)(
t2 + 1

)3/2 dt. (135)

Replacing this result in 132, one finds the final expression for the electric field E2:

E2(ω) = 1√
2π

q

bv
2αK1(α). (136)

The calculation of the electric field E1 can be done by simply following the same steps
as shown earlier. However, in this case, the integral obtained will be slightly different from 133,
and an additional algebraic manipulation will be required.

E1(ω) = 1√
2π

∫ ∞

−∞

−qγvt(
b2

γ + (γvt)2
)3/2 e

iωtdt = − 1√
2π

q

bγγv

∫ ∞

−∞

ζeiαζ(
1 + ζ2

)3/2 dζ. (137)

This time, the integral to be calculated is:

I ′ =
∫ ∞

−∞

ζeiαζ(
1 + ζ2

)3/2 dζ

= i

∫ ∞

−∞

ζ sin(αζ)(
1 + ζ2

)3/2 dζ

= 2i
∫ ∞

0

α cos(αζ)(
1 + ζ2

)3/2 dζ,

(138)

in which the function parity was used again to eliminate the term proportional to cos(αζ) in
the second line. Additionally, integration by parts was performed to obtain the expression in
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the third line. After this procedure, it is possible to use the property 134 with ν = 0 and z = 1
to substitute this integral in 137, and thus, find:

E1(ω) = − 1√
2π

q

bγγv
2iαK0(α). (139)

Once the expressions for the electric fields are obtained as a function of the frequency,
they can be summed and substituted into 131, resulting in the total frequency spectrum
experienced at point P:

d3I(ω, bγ)
dωd2b

= c q2

v2π2
α2

b2
γ

(
K2

1(α) + K2
0(α)
γ2

)
. (140)

It is worth noting that we are interested in the high-energy limit, so it is convenient
to approximate v ∼ c and introduce a quantity called the flux of equivalent photons per unit
area and frequency

d3N(ω, bγ)
dωd2b

= 1
ω

d3I(ω, bγ)
dωd2b

= q2

π2
α2

b2
γ

(
K2

1(α) + K2
0(α)
γ2

)
, (141)

where α = ωbγ

γ
.
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APPENDIX C – DERIVATIVE ANALICITY RELATIONS

Dispersion relations are an effective tool to obtain an expression of the real part of an
amplitude in terms of its imaginary part. Following the derivation presented in [43, 44] for pp
scatterings, one starts with the subtracted dispersion relation [43] for an even amplitude f+ in
terms of the center-of-mass energy squared s:

Re f+(s, t) = 2s2

π
P

∫ ∞

s0

ds′

s′ (s2 − s2) Im f+ (s′, t) , (142)

where P represents the Cauchy’s principal value (which appears because of the explicit diver-
gence).

To solve this problem, let’s first concentrate on the evaluation of the integral:

I = P

∫ ∞

s0

ds′

s′ (s2 − s2) Im f+ (s′, t) . (143)

It can be solved by multiplying the r.h.s by sα

sα (α is a real parameter) and integrating by parts
with:

u = Im f+ (s′, t)
s′

s′

s′ , v′ = 1
s′2 − s2

Thus,

I = Im f+ (s′, t)
s′ 2s ln

∣∣∣∣s− s′

s+ s′

∣∣∣∣∣∣∣∣∞
s0

−
∫ ∞

s0

ds′ 1
2s ln

∣∣∣∣s− s′

s+ s′

∣∣∣∣ dds′

(
Im f+ (s′, t)

s′α s′α−1
)
. (144)

In the high energy limit (s >> s0), the first term vanishes, remaining only:

I = − 1
2s

∫ ∞

s0

ds′ ln
∣∣∣∣s− s′

s+ s′

∣∣∣∣s′α−1
[
α− 1
s′ + d

ds′

]
Im f+ (s′, t)

s′α . (145)

Now, one can perform a change of variable s = eξ and s′ = eξ ′ and use the relation:

ln
(
eξ + eξ ′

eξ − eξ ′

)
= ln

(
ξ′ − ξ

2

)
(146)

to rewrite Eq. 145 as:

I = − 1
2s

∫ ∞

ln s0

dξ′eξ′(α−1) ln
(

coth
∣∣∣∣ξ − ξ′

2

∣∣∣∣) [α− 1 + d

dξ′

] Im f+
(
eξ′
, t
)

eξ′α
. (147)

Now, one can expand Im f+(s′,t)
s′α in powers of (ξ′ − ξ):

Im f+ (s′, t)
s′α =

∞∑
n=0

1
n!

(
d(n)

d ln s′(n)
Im f+ (s′, t)

s′α

)∣∣∣∣
ξ′=ξ

(ξ′ − ξ)n , (148)

and change the order of the integration and the summation. Since the calculations are evaluated
in the high energy region (s >> s0), one can take the limit of s0 → 0 ⇒ ln s0 → −∞, which
leads to the expression:

I = sα−2

2

∞∑
n=0

1
n!

(
d(n)

d ln s(n)
Im f+ (s, t)

sα

)
In (149)
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with
In =

∫ ∞

−∞
dξ′e(ξ′−ξ)(α−1) ln

(
coth

∣∣∣∣ξ − ξ′

2

∣∣∣∣) [α− 1 + d

dξ′

]
(ξ′ − ξ)n (150)

Let’s consider that the series can be integrated term by term. Therefore, using y ≡ ξ′−ξ,
one can evaluate the integral In (Eq. 150) by integrating by parts:

u = ln
(

coth
∣∣∣y2 ∣∣∣) ⇒ u′ = − 1

sinh y and v′ = e(α−1)y
[
α− 1 + d

dy

]
yn ⇒ v = e(α−1)yyn

leads to
In = ln

(
coth

∣∣∣y2 ∣∣∣)e(α−1)yyn
∣∣∣∞
−∞

+
∫ ∞

−∞
dy
e(α−1)yyn

sinh y . (151)

An important point to highlight is that the first term on the r.h.s approaches zero only when
0 < α < 2, since ln

(
coth

∣∣y
2

∣∣) decreases like 2e−|y| for large values of y. Consequently, just
the second term is relevant for In, and it can be expressed as a recursive relation in terms of
α:

dIn

dα
=
∫ ∞

−∞
dy
e(α−1)yyn+1

sinh y = In+1

dIn+1

dα
=
∫ ∞

−∞
dy
e(α−1)yyn+2

sinh y = In+2

(152)

Thus, In+2 = d2In

dα2 and for the nth term In = dnI0
dαn , with I0 being integrated in the complex

plane:
I0 =

∫ ∞

−∞
dy
e(α−1)y

sinh y = π tan
[π

2 (α− 1)
]
. (153)

Substituting this result (Eq. 153) into Eq. 149, one obtains:

I = sα−2π

2

∞∑
n=0

1
n!

(
d(n)

d ln s(n)
Im f+ (s, t)

sα

)
dn

dαn
tan

[π
2 (α− 1)

]
. (154)

Then, one can replace this equation into the expression for the real part of the even amplitude
(Eq. 142) and write the first terms of the series:

Re f+(s, t) = sα Im f+ (s, t)
sα

tan
[π

2 (α− 1)
]

+ sα

(
d

d ln s
Im f+ (s, t)

sα

)
sec2

[π
2 (α− 1)

] π
2

+ · · ·
(155)

which correspond exactly to the first terms of the Taylor expansion of the function

Re f+(s, t) = sα

π
tan

[
π

2

(
α− 1 + d

d ln s

)]
Im f+(s, t)

sα
. (156)

According to [43], the choice of the α value is not very relevant, since the results do not depend
strongly on this parameter. A standard choice is to put α = 1 [44], which is also appropriate for
hadronic scatterings with a pomeron exchange [43]. Thus, following this conventional choice,
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the first term in Eq. 155 vanishes, remaining only the second term (along with higher-order
terms, which will not be considered in this analysis)

Re f+(s, t) = πs

2

(
d

d ln s
Im f+ (s, t)

s

)
(157)

The main purpose of these calculations is to find an expression for the ratio of the real
to imaginary parts of the forward elastic scattering amplitude

ρ(s) = Re A(s, t = 0)
Im A(s, t = 0) , (158)

which is related to the even amplitude by:

A(s, t = 0) ≡ f+ (s, t = 0)
s

. (159)

Therefore, substituting Eq. 157 into Eq. 159, one obtains the real part of the forward elastic
scattering amplitude

Re A(s, 0) = π

2

(
d

d ln s
Im A (s, 0)

s

)
, (160)

and, consequently, replacing it on the expression of the ratio (Eq. 158), one finally gets the
derivative analyticity relation (DAR):

ρ(s) = π

2
d ln A(s)
d ln s . (161)
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APPENDIX D – LIGHT-FRONT COORDINATES AND KINEMATICS

In the ordinary four-dimension Minkowski space-time, an event is defined by a time
coordinate (x0) and three space coordinates (x1, x2, x3). In this space, any four-vector can be
written as Aµ = (A0, A1, A2, A3) = (A0,A) and the Minkowski metric is given by :

gµν = gµν = diag(+1,−1 − 1 − 1) . (162)

The light-front coordinates are defined as:

A± =
(
A0 ± A3) , (163)

which enables a four-vector to be expressed as Aµ = (A+, A−,AT ), where AT is the transverse
component of the vector (A1, A2). The four-vector squared can be written as:

A2 =
(
A0)2 − (A)2 = A+A− − (AT )2 . (164)

One can use these relations to write the shell relation P 2 = M2 as P 2 = P+P−−(PT )2,
which leads to the dispersion relation for the minus component of the light-front momentum:

P− = P 2
T +M2

P+ . (165)
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APPENDIX E – COLOR DIPOLE KINEMATICS

Considering a photon with four-momentum q = (q+, q−, qT ), one can define the plus
component of the quark and antiquark momentum, respectively, as:

k+ = βq+

k′+ = (1 − β)q+ ,
(166)

where β is a parameter that varies from 0 to 1. Hence, regarding that these two particles are
on-shell,

k2 = m2
q

k′2 = m2
q̄ ,

(167)

one can use Eq. 165 (Appendix D) to write the quark and antiquark four-momentum as:

k =
(
βq+,

m2
T

βq+ ,pT

)
k′ =

(
(1 − β)q+,

m2
T

(1 − β)q+ ,−pT

)
,

(168)

with m2
T = m2

q + p2
T .

The square of the sum of these two four-momenta gives the squared invariant mass in
the qq̄-pair infinite momentum frame:

M2
QQ̄ = [k + k′]2

=
[(
q+,

m2
T

β(1 − β)q+ ,0
)]2

= m2
T

β(1 − β) .

(169)

In the qq̄ rest frame, the pair tri-momentum vanishes PQQ̄ = 0, thus the squared
invariant mass is exactly the dipole energy squared:

M2
QQ̄ = P µ

QQ̄
PQQ̄µ

= E2
QQ̄ −

�������:0
PQQ̄ · PQQ̄ . (170)

Besides that, in this frame, the pair energy is just the sum of the energy of the constituents:

EQQ̄ = Eq + Eq̄ = 2Eq

E2
QQ̄ = 4E2

q .
(171)

Finally, substituting it in Eq. 170 and using the dispersion relation, one obtains the squared
invariant mass in the qq̄ rest frame:

M2
QQ̄ = 4(p2 +m2

q) . (172)
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APPENDIX F – KINEMATICS OF A TWO-BODY ELASTIC SCATTERING

Figure 43 – Schematic representation of the kinematic variables in a two-body scattering in
the CMS frame.

Source: Figure taken from [189].

This appendix will present the kinematics of a generic two-body elastic scattering
(Fig. 43)

1 + 2 → 3 + 4 (173)

in the center-of-mass system (CMS) frame [33, 189]. This means that the three-momentum
of the incident particles is related as:

p1 + p2 = 0 (174)

Assuming that the initial particles only move in the longitudinal direction z, the four-
momentum of each one of these particles is given by:

p1 = (E1,p) = (E1, 0, 0, pz)

p2 = (E2,−p) = (E2, 0, 0,−pz)

p3 = (E3,p
′) = (E3,pT , p

′
z)

p4 = (E4,−p′) = (E4,−pT ,−p′
z) ,

(175)

where the final particles were allowed to have transverse momentum pT .
The number of independent variables in a (1 + 2 → 3 + 4) problem is two, thus one

can choose as independent variables the absolute value of the initial state particles |p| = pz

(this equality comes from the fact that particles 1 and 2 move only in the z-direction) and the
scattering angle θ. Hence, with respect to the variables in Eq. 175, they can be written as:

p′
z = |p′| cos θ

|pT | = |p′| sin θ .
(176)

The energies in Eq. 175 can be written in terms of the CM energy squared s = (p1+p2)2,
or

√
s = E1 + E2 . (177)



118 APPENDIX F. kinematics of a two-body elastic scattering

To find the energy of the particle 2 (E2) in terms of the energy of the particle 1 (E1), one can
use the on-shell relation E2

1,2 = m2
1,2 + p2

z combined with the fact that both particles have the
same p2

z. This leads to the following expression:

E2
1 −m2

1 = E2
2 −m2

2

E2 =
√
E2

1 −m2
1 −m2

2 ,
(178)

which when substituted in Eq. 177, leads to
√
s = E1 +

√
E2

1 −m2
1 −m2

2

√
s− E1 =

√
E2

1 −m2
1 −m2

2

s− 2
√
sE1 + E2

1 = E2
1 −m2

1 −m2
2

E1 = s+m2
1 +m2

2
2
√
s

.

(179)

The same procedure can be done for the other energies, giving:

E2 = 1
2
√
s

[
s+m2

2 −m2
1
]

E3 = 1
2
√
s

[
s+m2

3 −m2
4
]

E4 = 1
2
√
s

[
s+m2

4 −m2
3
]
.

(180)

Now, one can use again the on-shell relation together with Eq. 179 to calculate the
momentum p2 in terms of s:

p2 = E2
1 −m2

1

= s+m2
1 −m2

2
4s −m2

1

= [s+ (m1 +m2) (m1 −m2)]2 − 4sm2
1

4s

= s2 + 2s (m1 +m2) (m1 −m2) + (m1 +m2)2 (m1 −m2)2 − 4sm2
1

4s

= s2 − s (m1 −m2)2 − s (m1 +m2)2 + (m1 +m2)2 (m1 −m2)2

4s

=
[
s− (m1 +m2)2] [s− (m1 −m2)2]

4s
= 1

4sλ
(
s,m2

1,m
2
2
)
,

(181)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz. Analogously, the momentum p′ is given
by:

p′2 = p2
T + p2

z = E2
3 −m2

3

=
[
s− (m3 +m4)2] [s− (m3 −m4)2]

4s
= 1

4sλ
(
s,m2

3,m
2
4
)
.

(182)
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Finally, taking the limit s → 0 in the previous equations, one finds the high energy limit
of the energies and the momenta:

E1, E2, E3, E4 ≃
s→∞

√
s

2

|p|, |p′| ≃
s→∞

√
s

2 .
(183)
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APPENDIX G – GLAUBER MODEL

In the original work [190, 191], Glauber used the diffraction approximation to write the
proton-nucleon scattering amplitude as:

fj (k − k′) = ik

2π

∫
ei(k−k′)·bΓj(b)d2b. (184)

In this equation, f is the Fourier transform of the profile function Γ(b), which may be expressed
in terms of the phase-shift function χ(b)

Γ(b) = 1 − eiχ(b) (185)

For the case of proton-nucleus collision, the corresponding scattering amplitude is given
by:

Ffi(∆) = ik

2π

∫
ei∆·bψ∗

f ({rj}) Γ (b, s1 . . . sA)ψi ({rj})
A∏

j=1

d3rj d2b , (186)

where ψi and ψf are, respectively, the initial and final state wave functions of the nucleus
and ∆ = k − k′. The position of a nucleon j that compounds the nucleus is denoted by rj ,
j = 1, . . . , A, and its projection into the perpendicular plane (where lies the impact parameter
vector b) is sj

In the diffraction approximation, it is assumed that the overall phase-shift function
χ(b, s1, . . . , sA) is the sum of phase-shift functions of the individual nucleon collision χj(b, sj).
Thus, one can write the nuclear profile function as:

Γ (b, s1, . . . , sA) ≡ 1 − eiχ(b,s1,...,sA) = 1 − ei
∑A

j=1 χj(b−sj) = 1 −
A∏

j=1

[1 − Γj (b − sj)] .

(187)
For the nucleus ground state wave function, the independent particle model will be

assumed, which basically neglects the existence of correlations between the position of the
nucleons. This enables one to write the nuclear wave function as the product of the individual
nucleon wave functions. Thus introducing the single particle densities ρj(rj), one finds:

|ψi (r1 . . . rA)|2 =
A∏

j=1

ρj (rj) , (188)

which has the following normalization condition:∫
ρj (rj) d3rj = 1 . (189)

These approximations (Eqs. 187 and 188) can be used to calculate the amplitude for
an elastic nuclear scattering, which is when the final state is the same as the initial one. Thus,
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Eq. 186 will be transformed into:

FN(∆) = ik

2π

∫
ei∆·bψ∗

i ({rj})
{

1 −
A∏

j=1

[1 − Γj (b − sj)]
}
ψi ({rj})

A∏
1

d3rj d2b

= ik

2π

∫
ei∆·b

{
|ψi ({rj})|2 − |ψi ({rj})|2

A∏
j=1

[1 − Γj (b − sj)]
}

A∏
1

d3rj d2b

= ik

2π

∫
ei∆·b

{∫ A∏
j=1

ρj (rj) d3rj −
∫ A∏

j=1

ρj (rj) [1 − Γj (b − sj)] d3rj

}
d2b

= ik

2π

∫
ei∆·b

{
1 −

A∏
j=1

[
1 −

∫
ρj (rj) Γj (b − sj) d3rj

]}
d2b

(190)
Following the original Glauber prescription [190], one will use the high-energy approxi-

mation and work with phase-shift functions. Thus, analyzing Eq. 190, one can see that it has
a similar form as Eq. 184; hence it is convenient to define the second term of Eq. 190 in terms
of an effective phase-shift function χopt:

eiχopt(b) =
∫

|ψi ({rj})|2 ei
∑N

j=1 χj(b−sj)
A∏

j=1

d3rj =
A∏

j=1

[
1 −

∫
ρj (rj) Γj (b − sj) d3rj

]
,

(191)
which leads to the following:

χopt(b) = −i
A∑

j=1

log
[
1 −

∫
ρj (rj) Γj (b − sj) d3rj

]
. (192)

It is good to remark that the logarithmic is a multi-valued function. Thus, in order to maintain
the consistency of the theory, one chooses the branch which vanishes when b → ∞.

Another simplification should be considered to evaluate the integration in Eq. 192. One
should recall that the range of the interactions between the incident particles and the target
nucleons should be smaller than the nuclear radius R. Consequently, when this interaction
is strong, the profile functions Γj approach the unit, and when it is weak, they vanish. This
implies that the term: ∫

ρj (rj) Γj (b − sj) d3rj (193)

should be small, especially for b ≫ R. This fact permits one to expand the logarithm function
and obtain:

χopt(b) = i
A∑

j=1

∫
ρj (rj) Γj (b − sj) d3rj + · · · (194)

Considering that all nucleon profile functions Γj (b) have the same form Γ (b), one can
write χopt in terms of the average particle density,

χopt(b) = iA

∫
ρ (r) Γ (b − s) d3r (195)
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which is defined as:

ρ = 1
A

A∑
j=1

ρj (rj) . (196)

Now, to facilitate the integration in Eq. 195, it will be useful to make explicit the components
of the vector r = (s, z) ( where z is the longitudinal component of r ) and to introduce the
vector l = b − s:∫

ρ (s, z) Γ (b − s) d3r =
∫
ρ (b − l, z) Γ (l) d2ldz

=
(∫

Γ (l) d2l

)(∫ ∞

−∞
ρ (b, z) dz

)
.

(197)

In the last line, it was used the fact that the nucleon density function ρ(s, z) varies very
smoothly inside the nucleus and must vanish outside it. This encourages one to make a power
expansion at the point b = s, i.e., l = 0, and to use the first term (which does not depend on
l) to separate the integrals.

Now, one can relate the integration of the profile function with the definition of the
proton-nucleon scattering amplitude (Eq. 184):

f (0) = ik

2π

∫
Γ(b)d2b , (198)

and use it in Eq. 197 to obtain the following expression for the effective phase-shift function

χopt(b) = 2πA
k

f(0)TA(b) . (199)

In this expression TA(b) is the thickness function, which is defined as TA(b) =
∫∞

−∞ ρ (b, z) dz.
Returning to the elastic nuclear scattering amplitude (Eq. 190), one finds:

FN(∆) = ik

2π

∫
ei∆·b {1 − eiχopt

}
d2b = ik

2π

∫
ei∆·b

{
1 − e

2πiA
k

f(0)TA(b)
}

d2b . (200)

In order to relate the forward proton-nucleon scattering amplitude with a cross section, it is
convenient to separate its real and imaginary parts:

FN(∆) = ik

2π

∫
ei∆·b

{
1 − e

2πiA
k

[Re{f(0)}+iIm{f(0)}]TA(b)
}

d2b

= ik

2π

∫
ei∆·b

{
1 − e

−2πA
k

Im{f(0)}[1−iρ]TA(b)
}

d2b

(201)

where ρ = Re{f(0)}
Im{f(0)} is the ratio of the real to the imaginary part of the forward scattering

amplitude. Considering that the forward scattering amplitude is purely imaginary, one can use
the optical theorem to write:

FN(∆) = ik

2π

∫
ei∆·b

{
1 − e

−1
2 ATA(b)σqq̄

}
d2b . (202)
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Lastly, it is worth highlighting that the Glauber formalism was built on the wave function
formalism, thus, for the purpose of this work, it is necessary to translate Eq. 202 to the dipole
formalism:

AN(∆) = 4π
k
FN(∆) = 2i

∫
ei∆·b

{
1 − e

−1
2 ATA(b)σqq̄

}
d2b . (203)

This leads to the following expression for the nuclear scattering amplitude for the coherent
γA → V A process:

AγA→V A(x,∆) =i
∫

d2r

∫ 1

0
dβ
∫

d2b e−ib·∆Ψ∗
V (r, β)Ψγ(r, β)2

[
1 − e− ATA(b)σqq̄(x,r)

2

]
.

(204)
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