

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE TECNOLÓGICO

Departamento de Engenharia de Produção e Sistemas

Campus Universitário Reitor João David Ferreira Lima - Trindade CEP 88040.900 -Florianópolis SC Fone: (48) 3721-7001/7011

PLANO DE ENSINO SEMESTRE - 2023-1

1. IDENTIFICAÇÃO DA DISCIPLINA:						
CURSO		TIPO	PERÍODO/FASE			
316 – Adm	ninistração (noturno)	Obrigatória	04			
CÓDIGO	NOME DA DISCIPLINA	TURMA (S)	TOTAL DE HORAS-AULA SEMESTRAIS			
EPS7042	Introdução a Pesquisa Operacional	04316	72 ha			

2. PROFESSOR(ES) MINISTRANTE(S)

Oscar Ciro Lopez (oscar.lopez@ufsc.br) / lpez.oscar@gmail.com

3. PRÉ-REQUISITO(S)			
CÓDIGO	NOME DA DISCIPLINA		
MTM3100	Pré-Cálculo (ou MTM3700 ou MTM5204 ou MTM7003 ou MTM9104 ou MTM9108)		

4. EMENTA

Programação Linear: formulação de modelos; solução gráfica; solução algébrica; método simplex; Problema de transportes; Problema de atribuição. Dualidades. Programação de Projetos: PERT/CPM, conceitos fundamentais; montagem de redes; análise do caminho crítico; durações probabilísticas. Utilização do Computador. Introdução à Simulação.

5. OBJETIVOS

Apresentar uma visão geral de técnicas tradicionais de Pesquisa Operacional aplicados à gestão, capacitando o aluno a formular e resolver problemas de decisão, cuja complexidade e porte justifiquem o uso de modelos matemáticos e sistemas computacionais.

6. CONTEÚDO PROGRAMÁTICO

- 1. Introdução (2h)
- 2. Programação Linear (36h)
- 2.1. Formulação de modelos
- 2.2. Resolução gráfica
- 2.3. Método Simplex formulação algébrica
- 2.4. Método Simplex forma tableau
- 2.5. Obtenção de uma solução básica viável
- 2.6. Problema de transportes
- 2.7. Problema de atribuição
- 2.8. Dualidade: problema dual

3. Programação de Projetos (18h)

- 3.1. Análise estruturada de projetos
- 3.2. Diagrama PERT/CPM
- 3.3. Cálculo de datas, folgas e caminho crítico
- 3.4. Elaboração de cronogramas
- 3.5. Programação com recursos limitados
- 3.7. Programação com incerteza (Program Evaluation and Review Tecnique)

4. Simulação (16h)

- 4.1. Conceituação
- 4.2. Geração de números aleatórios
- 4.3. Simulação de Monte Carlo

7. METODOLOGIA DE ENSINO

As aulas serão expositivas com uso de projetor e quadro; Privilegiará a realização de trabalhos individuais e de grupos. A aula será desenvolvida em dois momentos: no primeiro, o professor debaterá os conceitos; no segundo, os alunos, através de resolução de exercícios, reunidos em grupos oferecerão sua contribuição ao tema abordado. Exercícios e atividades serão disponibilizadas para serem resolvidos extra-classe em complementação a parte expositiva. Alguns exercícios requerem o uso de planilha eletrônica. Em caso de dificuldade de acesso ao software o aluno deve informar ao professor. O material da disciplina será disponibilizado via Moodle.

8. AVALIAÇÃO E CONTROLE DE FREQUÊNCIA

N1	Avaliação 01	3,5 ptos	19/04/2023
N2	Avaliação 02	3,5 ptos	26/05/2023
N3	Avaliação 03 – Atividades Moodle/trabalho	3,0 ptos	30/06/2023

A avaliação será composta de três notas: M = 0,35 x N1 (Avaliação 01) + 0,35 x N2 (Avaliação 02) + 0,3 x N3 (Atividades/trabalho). É considerado aprovado o aluno que obtiver média M igual ou superior a 6. Os alunos que não preencherem este requisito, mas com média superior a 3, serão submetidos a uma prova de recuperação. Após a recuperação, a nota final é calculada como NF = (M + Rec.) / 2, a qual deverá ser igual ou superior a 6 para a aprovação. Para ser aprovado o aluno deverá ter pelo menos 75% de frequência.

9. ATENDIMENTO

O aluno deve procurar o professor em caso de dificuldade através do e-mail (oscar.lopez@ufsc.br) ou pelo sistema de mensagem do Moodle. Os horários de atendimento do professor estarão disponíveis na página inicial do Moodle.

10. CRONOGRAMA

Data	Descrição do conteúdo	Data	Descrição do conteúdo	
08/mar	Apresentação do plano de ensino e Introdução a Pesquisa Operacional	12/mai	Elaboração de cronogramas físicos- financeiro	
10/mar	Formulação de modelos	17/mai	Programação com recursos – cronograma de mão de obra	
15/mar	Formulação de modelos	19/mai	Programação com incerteza	
17/mar	Feriado Independencia do Brasil	24/mai	Revisão	
22/mar	Método gráfico de solução	26/mai	2ª Avaliação	
24/mar	Simplex, formulação algébrica e tableau	31/mai	Problema de transportes	
29/mar	Simplex, formulação algébrica e tableau	02/jun	Problema de transportes	
31/mar	Simplex, formulação algébrica e tableau	07/jun	Problema de atribuição	
05/abr	Soluções básicas viáveis do Simplex	09/jun	Dia não letivo	
07/abr	Feriado – Sexta-Feira Santa	14/jun	Dualidade: problema dual	
12/abr	Solução em planilha eletrônica de problemas de PL	16/jun	Solução em planilha eletrônica	
14/abr	Solução em planilha eletrônica de problemas de PL	21/jun	Simulação - Introdução, geração de números pseudoaleatórios	
19/abr	1 ^a Avaliação	23/jun	Simulação de Monte Carlo	
21/abr	Feriado - Tiradentes	28/jun	Análise / Execução da simulação	
26/abr	Programação de Projetos:conceitos básicos de redes PERT/CPM	30/jun	3ª Avaliação	
28/abr	Cálculos da rede: Primeiras Datas, Últimas Datas	05/jul	Atendimento dos alunos em recuperação ao longo da semana	
03/mai	Cálculos da rede: Caminho crítico	07/jul	Recuperação	
05/mai	Cálculos da rede: folgas	12/jul	Divulgação das notas finais	
10/mai	Elaboração de cronogramas físicos			

OBS.: Havendo alteração no cronograma, os alunos serão avisados via Moodle junto com a publicação do novo cronograma.

11. BIBLIOGRAFIA BÁSICA

BELFIORE, P.; FÁVERO, L. P; Pesquisa Operacional; Rio de Janeiro : Elsevier Editora Ltda, 2012. HILLIER, F. S.; LIEBERMAN, G. J.; Introdução à Pesquisa Operacional; 9ª edição; Porto Alegre: AMGH Editora Ltda, 2013.

HIRSCHFELD, H. Planejamento com PERT-CPM e Análise do Desempenho. São Paulo: Atlas, 1989. SILVA, E.M.; SILVA, E.M.; GOLÇALVES, V.; MUROLO, A.C. Pesquisa operacional para os cursos de administração e engenharia, 4. ed. São Paulo: Atlas, 2010.

12. BIBLIOGRAFIA COMPLEMENTAR

ARENALES, M; ARMENTANO, V; MORABITO, R; YANASSE, H. Pesquisa Operacional; Rio de Janeiro : Elsevier, 2007.

BRONSON, R.; Pesquisa Operacional; São Paulo: McGraw Hill do Brasil, 1985.

GOLDBARG, M. C.; LUNA, H. P. L.; Otimização Combinatória e Programação Linear – Modelos e Algoritmos; Rio de Janeiro : Editora Campus, 2000.

MOREIRA, D. A.; Pesquisa Operacional – Curso Introdutório; São Paulo : Thomson Learning, 2007. SHAMBLIN, J. E.; STEVENS, G. T.; Pesquisa Operacional: uma Abordagem Básica; Editora Atlas, 1979.

TAHA, H. A.; Pesquisa Operacional; 8ª edição; São Paulo : Pearson / Prentice-Hall; 2007.

WAGNER, H. M.; Pesquisa Operacional; 2ª edição; Prentice-Hall, 1986.