Fonte: Arte bambu (2016)

Puerto Cayo (Equador)

Potencial do bambu para o desenvolvimento sustentável

Lisiane Ilha Librelotto

Estrutura da apresentação

- Sustentabilidade
- Usos em potencial
- Construções sustentáveis com bambu
- Técnicas construtivas com bambu (painéis, esterilhas, pisos, etc.)
- Construções Mistas
- Obras em geral
- Geodésicas

Sustentabilidade

"O desenvolvimento sustentável é o desenvolvimento que **encontra as necessidades atuais** sem comprometer a habilidade das futuras gerações de atender suas próprias necessidades." Comissão Brundtland. Relatório O Nosso Futuro Comum. 1987

Possibilidades de uso

Possibilidades de uso

Bienal de Arquitetura em Bambu 2016

Construção Sustentável

O iiSBE Portugal (International Initiative for a Sustainable Built Environment – Portugal (2011)

Construção Sustentável

O iiSBE Portugal / Agenda 21 para a Construção Sustentável em Países em desenvolvimento do CIB (Conselho Internacional da Construção)

Objetivos: economizar energia e água; assegurar a salubridade dos edifícios; maximizar a durabilidade dos edifícios; planejar a conservação e a manutenção dos edifícios; utilizar materiais eco-eficientes; apresentar baixa massa de construção; minimizar a produção de resíduos; apresentar custos de ciclo de vida menos elevados do que a construção convencional; garantir condições dignas de higiene e segurança nos trabalhos de construção

Construção sustentável com bambu

Depende:

- Do Projeto;
- Da Tecnologia incorporada ao projeto;
- Do Sistema construtivo material, técnicas e processo construtivo.
- Da estrutura urbana onde está inserida;
- Do desempenho final.

Energia embutida das partes da edificação Modelo 1. Fonte: Tavares (.....)

	ETAPAS DO CICLO DE VIDA							
PARTES DA EDIFICAÇÃO.	EE Mat. Constr.	EE Transp.	EE Desp.	EE Transp. Desp.	TOTAL EE setor	EE manut. 50 anos	E Equip.	TOTAL EE CVE
Serv. Prel.	992,19	18,19	15,02	4,43	1029,83	0,00	873,41	1029,83
Estruturas	51367,81	3916,54	9452,16	2244,82	66981,32	0,00	19,31	66981,32
Alvenarias	54922,68	4586,30	10374,45	1614,83	71498,25	4081,20	6,12	75579,46
Esquadrias	15949,12	135,37	1303,07	33,93	17421,50	17421,50	0,00	34842,99
Cobertura	8711,45	595,57	1306,46	185,06	10798,53	7702,78	0,00	18501,32
Pisos	17430,24	4012,38	4162,48	2444,33	28049,43	6791,51	52,09	34840,94
Instalações	13541,42	171,62	3186,95	46,53	16946,51	12224,64	0,00	29171,15
Pintura	16949,74	34,30	2542,46	10,29	19536,80	78147,19	0,00	97683,99
Serv. Compl.	42628,04	5113,79	9276,79	2600,62	59619,24	27414,34	0,00	87033,58
TOTAL MJ	222492,68	18584,06	41619,83	9184,84	291881,42	153783,16	950,93	445664,58
TOTAL GJ / m²	3,53	0,29	0,66	0,15	4,63	2,44	0,02	7,07

MODELO 1 - EDIFICAÇÃO UNIFAMILIAR, BAIXA RENDA

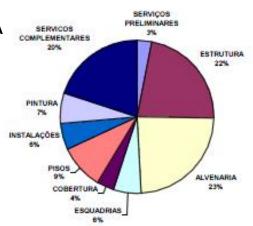


Figura 5.4: Distribuição percentual de Energia por partes da edificação do Modelo 1

Tabela 3: Relação entre a energia de produção por unidade de tensão

MATERIAL	BAMBU	MADEIRA	CONCRETO	AÇO
MJ/m³/MPa	30	80	240	1500

Fonte: GHAVAMI, 1992, p.11.

	Fanta Olivaira (2006)						
Necessidad	Necessidade de rever a forma como construímos?						
	ogias incorpora as construtivos		técnicas)	ga			
Madeira laminada-colada	2,4	1200	n,i.	n,i.			
Cimento	1,4	1750	260	n.i.			
Concreto	0,3	700	25	n.i.			
Tijolo	0,8	1360	140	n.i.			
Aço	5,9	46000	1000	≅30			
Plástico PVC	18,0	24700	1800	n.i.			
Alumínio	52,0	141500	4200	≅120			

Fonte: Oliveira (2008), adaptado de Ceotto.

Novos materiais

+

Técnicas construtivas

=

Sistemas construtivos inovadores

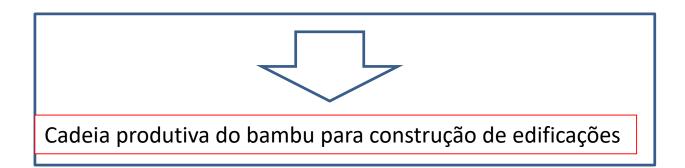
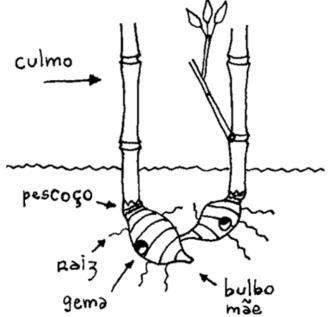
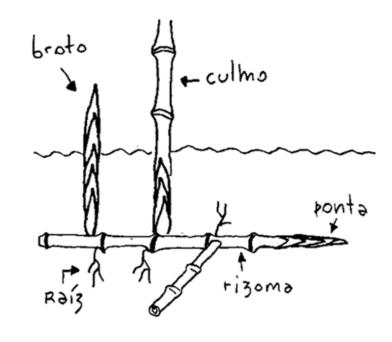



Figura 01 – Diagrama padrão das Cadeias Produtivas que envolvem bambu Ambiente Leis, Cultura, Tradição, Educação Costumes e meio ambiente. Institucional Extração e Distribuição Plantação Tratamento Mercado Processamento Secagem Espécies e tempo Construção Civil Armazenamento Preço Atores de maturação Transporte Qualidade Locais Artesanato Transporte disponiveis Exportação Mobiliário Crescimento Técnica agricola Tratamento e mão-de-obra Químico Geração e Energia Concorrência Aspectos Tratamento Papel e Celulose ecológicos Orgánico Fluxo de Bens e Serviços Volume de Plantas Outros Fluxo Financeiro e de Informações produção Industriais Associações, Cooperativas, Infra-estrutura, Informações, Ambiente Organizações de Apoio, Financiamento, Pesquisa e Organizacional Desenvolvimento Tecnológico.

Fonte: Dantas.


A CADEIA PRODUTIVA

Entouceirantes

Alastrantes

CULTIVO, MANEJO E COLHEITA – práticas que executamos nos bambus do ARQ CURA, TRATAMENTO e SECAGEM

AUTOCLAVE

Tratamento usando Tanino Maçarico

NOVOS MATERIAIS (TRANSFORMAÇÃO E PROCESSAMENTO DO BAMBU)

Tiras ou ripas – painéis de tiras - compensado de bambu, bambu laminado colado, e pisos de madeira /bambu

Lascas – compensados de bambu rasgado, placas de cortinas de bambu, placas de laminados Esteiras e cortinas de bambu

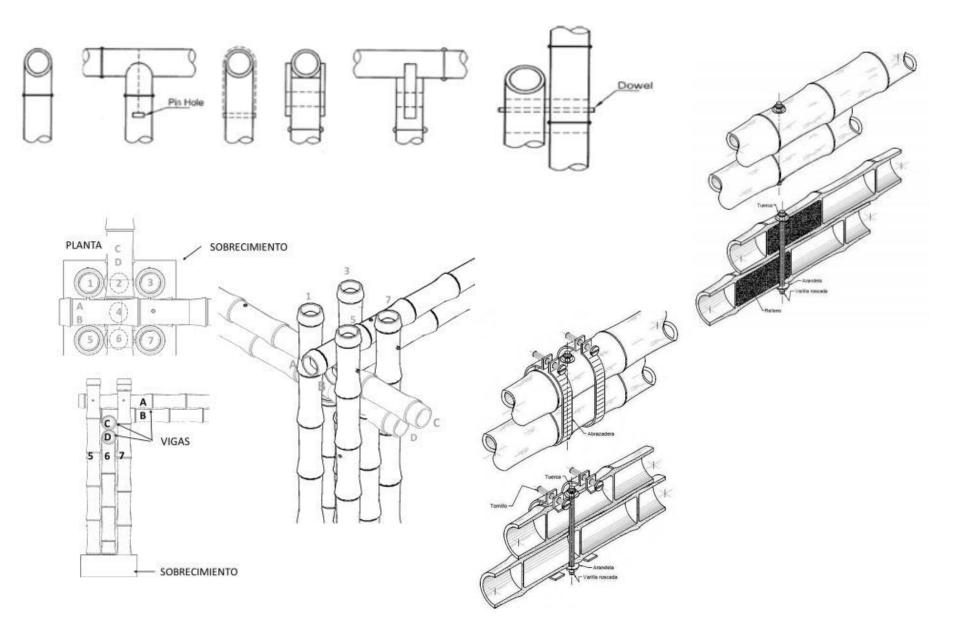
Painéis de partículas

Painéis ou chapas de bambu compostas - piso composto de madeira e bambu, chapa de lâminas de bambu e ripas de madeira, assoalho de bambu composto de madeira, chapas de partículas de bambu reforçado, bambu sobre chapas de partículas, compensado de bambu folheado com lâmina de madeira.

Materiais

Esterilhas – bambu planificado (López, 1981) ou painéis trançados Cardoso Jr.

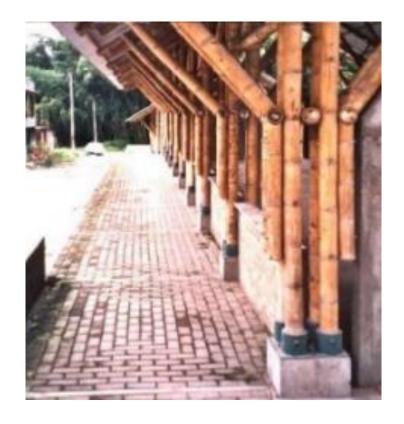
Fonte: Salamon e Ostapiv (2016) - Material não publica


Fásquias e calhas (com faca estrela ou outras técnicas – cruzetas e vergalhões que cortam o bambu longitudinalmente).

no porte

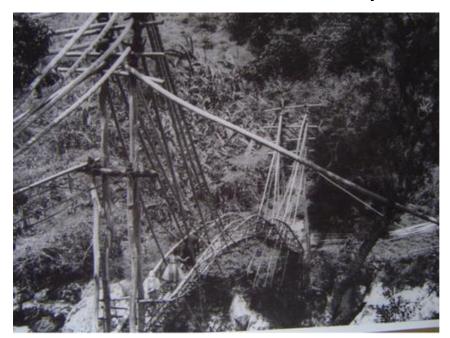
radier, pilare<u>s e vigas</u>

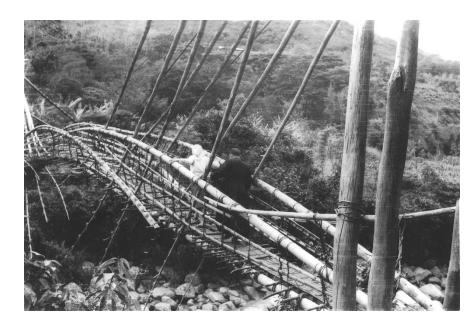
Ligações



Fundações – construções de pequeno porte

Bases em radier, pilares e vigas Sapatas Estacas e blocos de fundação


Teixeira (2006)


Estruturas (pilares, vigas e lajes) Painéis Estruturais

Tração (MPa)	Compressão (MPa)	Flexão (MPa)	Cisalhamento (MPa)	Espécie
135	40	108	46	Dendrocalamus giganteus
285	28	89	6,6	D. asper
103	27	75	56	Bambusa multiplex
111	34	93	54	B. tuldoides
82	27	78	41	B. vulgaris
149	46	124	41	B. vulgaris Schrad
297	34	76	9,5	B. arundinacea
130	42	102	48	Guadua superba
237	29	82	8,0	G. verticillata
120	42	-	-	Plyllostachys bambusoides
296	30	84	7,2	Gigantochoa apus
288	31	97	8,2	G. atter

Resistência de algumas espécies de bambu. Fonte: Pereira (2005)

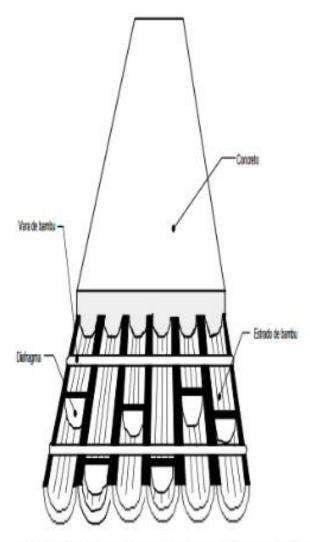
Respeito a cultura local (Amparo Bastidas)

Respeito a cultura local (Ampara Bastidas)

Natural Cultural Construido

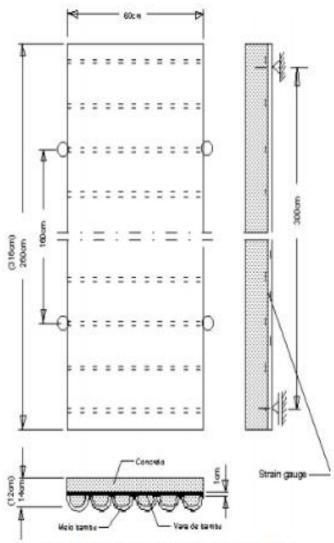
Técnicas:
Arquitectura
Urbanismo
Paisajismo

Bambucreto



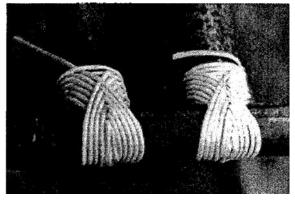
Fonte: FERREIRA (2002)

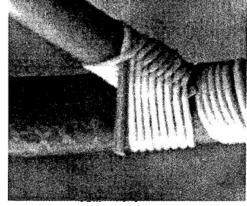
Com outros materiais

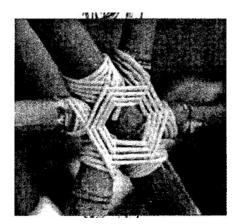

- Anéis de arame farpado para melhor aderência
- Impermeabilização do bambu para reduzir retração Igol 2 ou Sikadur Gel
- Caracterizar espécies e propriedades
- Usar estribos em aço (indefinição do comportamento do bambu no cisalhamento de vigas)

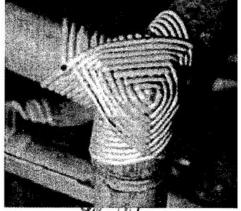
a) schematic set up of the slab

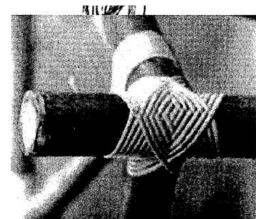
b) pouring concrete



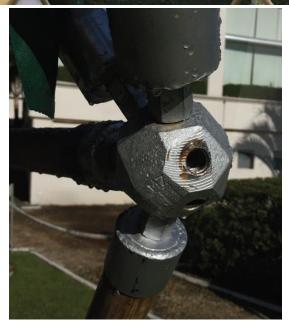

c) Dimensions of the slabs


Fonte: Ghavami (2005)


Ligações – grupo 1 – contato entre seções inteiras dos elementos


Boca de peixe Nós

Ligações utilizando peças de bambu Fonte: Teixeira (2006)



Ligações com peças metálicas Fonte: Vélez (2002)

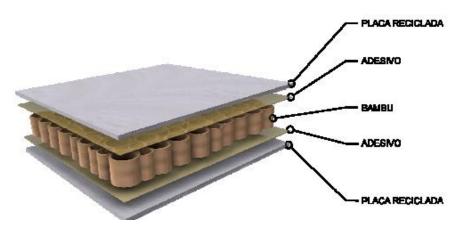
	Formac	ión del n	udo de acue	erdo al tipo	de estructura	
Estructura			Nudo	Ejemplo	Descripción	Elementos de fijación
Estructuras planares	Estructuras lineales	En el ángulo recto			Nudo desarrollado por la unión de elementos de bambú verticales y horizontales, que pueden ser compuestos por una sola caña o varias, formendo perpendiculares entre ellos.	1 Amarres con ouerdas sintéticas. 2. Varillas rescadas de 10 mm, con relleno en los entrenudos de mortero. 3 Placas metálicas o de madera.
		Compuesto			Nudo compuesto por la unión elementos verticales, horizontales y de ángulo. Los elementos estructurales puede ser de 1 a más cañas.	
	Estructuras triangulares	Vigas			Nudo formado en la unión de barras que forman el triángulo en las estructuras. Trabajan a compresión o tracción dependiendo de la fuerza y su dirección aplicada.	
		Cerchas	1			
		Marquesinas				
Estructuras tridimensionales		Estructuras en diferentes planos			Nudo desarrollado por la unión de varios elementos estructurales en diferentes planos.	
		Malla	1		Nudo desarrollado por un elemento de fijación.	Conectores de acero inoxidable, galvanizados y aluminio.

Fonte: Roberto Aguilar Larinagua. Tese de doutorado. UPC (2022)

Vedações/ painéis decorativos ou estruturais

- Tipos de painéis - painéis estacados

Fonte: Teixeira (2006); Hidalgo, López (2003); Vélez (2000)


Paineis Tensionados

Teixeira (2006)

Painéis de bambu Pré-fabricados

Jaramillo, Librelotto e Dotta (2016)

Bambuíche. Marinho (2013)


Painéis Instituto do Bambu - Alagoas

Trama de bambu preenchida Micro-concreto – cimento, cal, areia, raspa de pneus e bambus triturados

Construção na Colômbia

Carregamentos nos painéis de diferentes composições

Método construtivo	Painel 1	Painel 2	Painel 3	Carga média
	(kN/m)	(kN/m)	(kN/m)	(kN/m)
Painéis com colmos de bambu				
e argamassa cimentícia	429	540	533	501
Painel com tijolos cerâmicos				
estruturais	415	408	325	383
Painel com Adobe	96	133	129	119
Painel com tijolos de solo-	78	252		
cimento	(4% CP ¹)	(6% CP ¹)		165

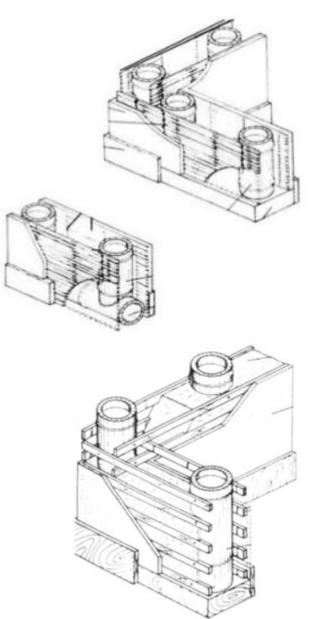
Fonte: SOBRINHO JR. (2006).

Painel 1 – argamassa sem fibras de 8 MPa

Painel 2 – argamassa com EVA de 7,5 MPa

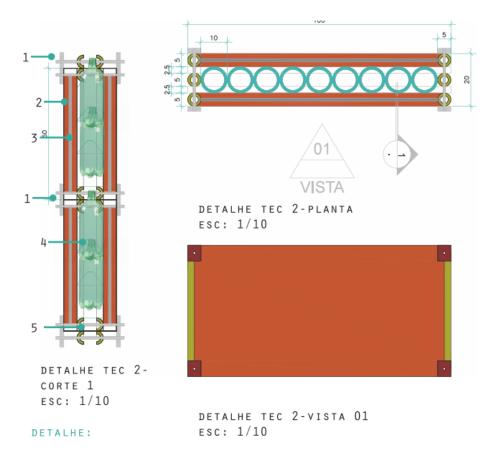
Painel 3 – argamassa com fibra de bambu de 3,1 MPa

- Bahareque (com esteiras duplas)


Vedações/ painéis decorativos

- Painéis feitos com esteiras (esterilhas)

Fonte: Teixeira (2006); Hidalgo- López (2003);

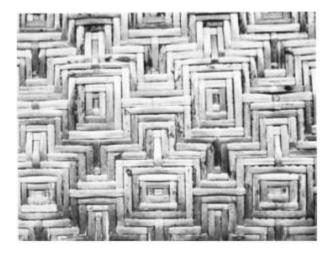


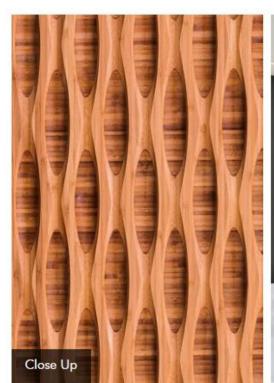
Esta edificação de quatro pavimentos foi construída por volta de 1930, em Salamina, Colómbia, e somente nos anos setenta as

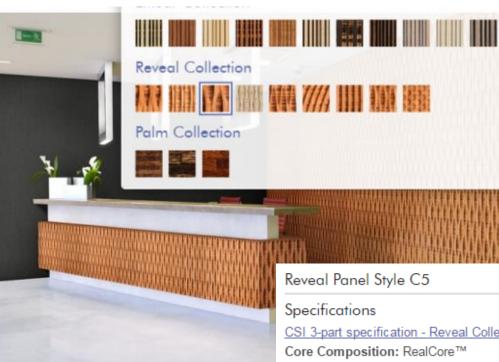
Painel de PET à pique

Perdomo, Librelotto (2015)

Painéis geométricos






Desenhos decorativos

Painéis Industrializados para Interiores (fonte: plyboo.com)

Fabricado por Smith & Fog, 100% bambu com certificado FSC Pontua no LEED, até 3 créditos

CSI 3-part specification - Reveal Collection

Color: Amber or Natural Material: 100% Bamboo Size: 3/4" x 48" x 96" Weight: 90 lbs

Surface Texture: Prefinished or Unfinished

Fire Resistance Classification: Class C (Class B available) Emission Testing - CA Section 01350 Protocol: No VOC's with chronic REL's (reference exposure level) detected; passes office,

school, and residential criteria

BP-V4896A/C5: Carb Phase II Compatible

FSC® Certified 100% C012079 The material in this product comes from well-managed forests, independently certified in accordance with the rules of the Forest Stewardship Council™.

FSC® 100% Certified Bamboo Soybond; PlybooPure

Plyboo • PlybooStrand • Neopolitan • PlybooSquared • PlybooSport • PlybooPure PlybooFit • PlybooQuiet • Soybond

Coconut • Sugar • Palm Woven • Deco Palm

Esquadrias

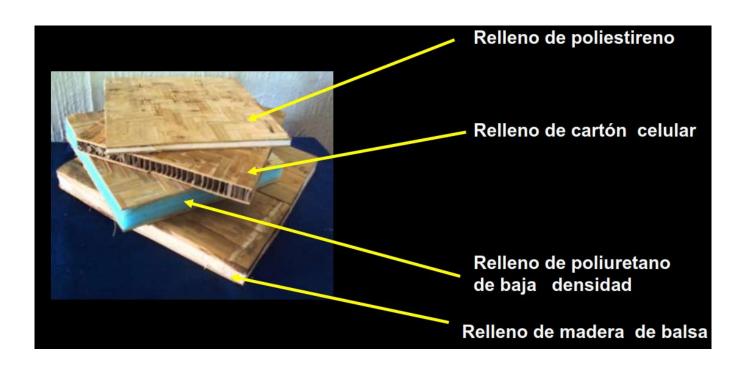
Pivotantes

Telhas de bambu-cimento

Figura 1 – a) Acabamento da telha ondulada (PIMENTEL, 2000)

b) Colocação da telha sobre o molde

Compósito biomassa vegetal -cimento - partículas fragmentadas de bambusa vulgaris ou dendrocalamus giganteus (dimensões inferiores a 2,4 mm), tratadas para melhor reação química com o cimento (CPIII e CPV ARI). Argamassa de cimento e areia+ fibras de bambu.

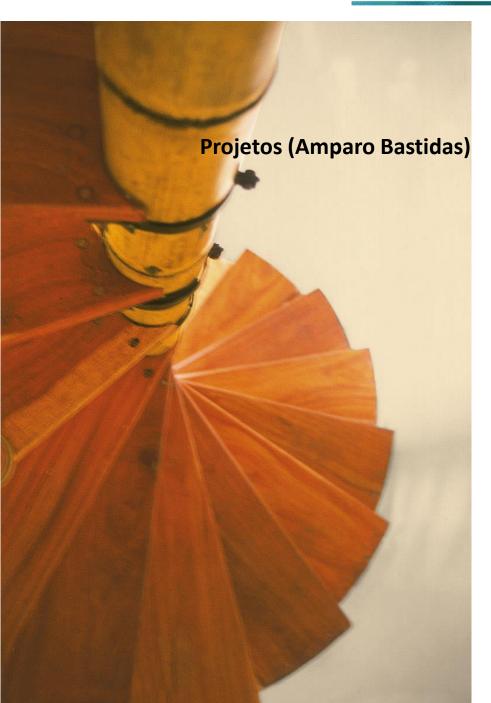


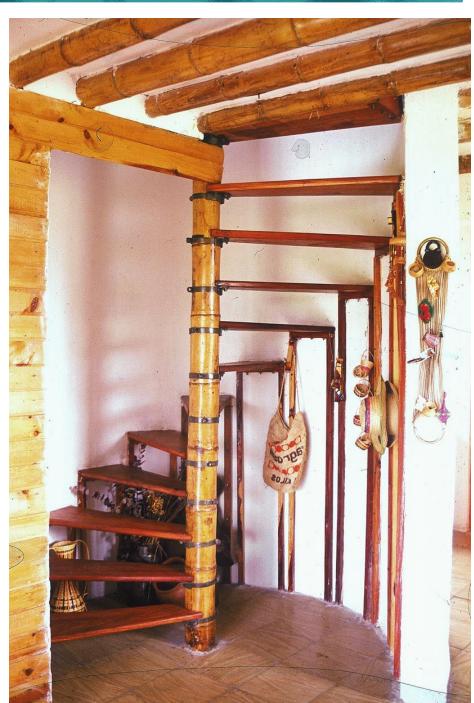
Telhas capa e canal

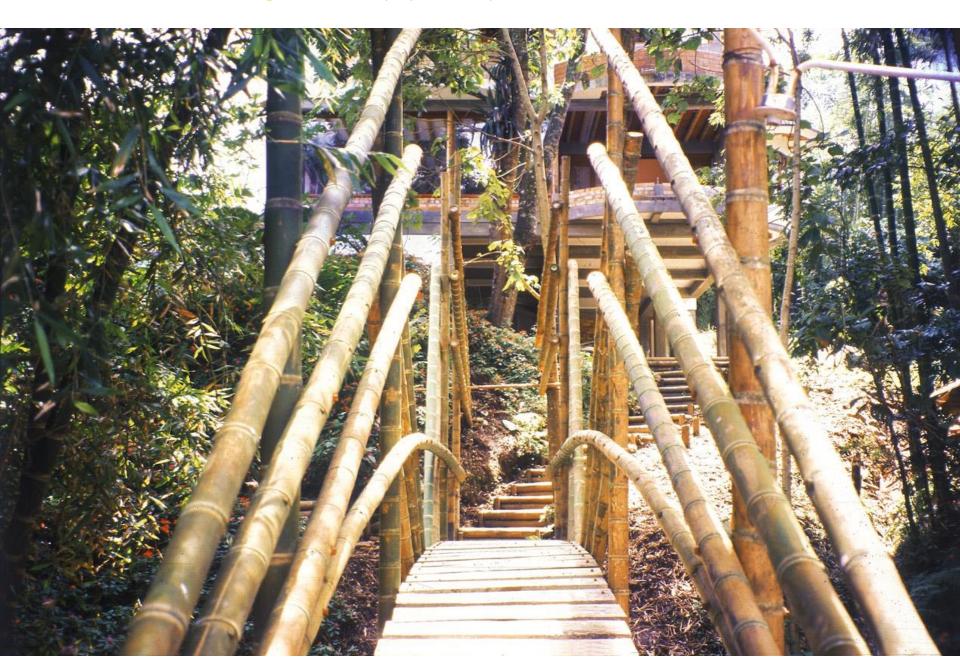
Telhas – UCSG/ SENESCYT

Eco materiais

Painíes – UCSG/ SENESCYT



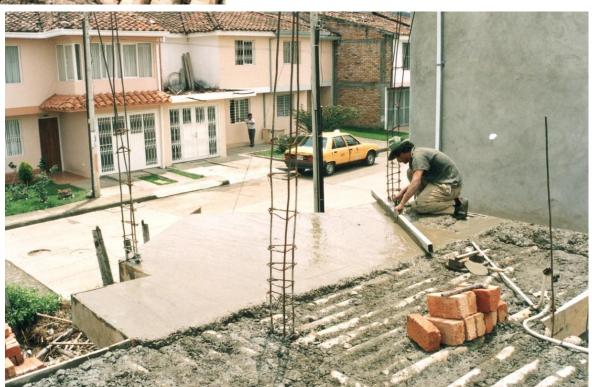


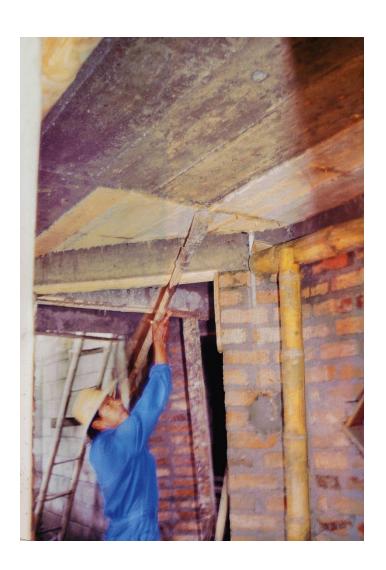


Puente atirantado con guadua – Popayán (Amparo Bastidas)

Projetos (Amparo Bastidas)

Projetos (Amparo Bastidas) Amazônia Equatoriana Cabanas Turísticas



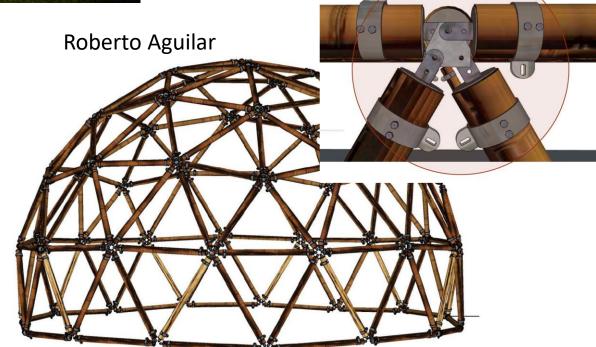


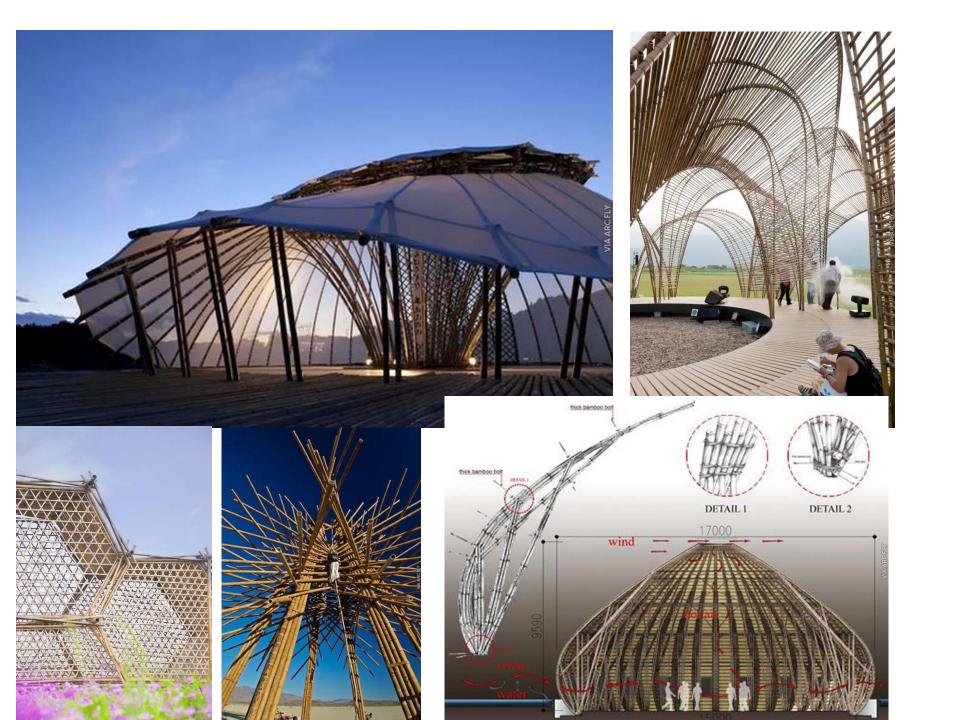
- Reemplaza el acero y a la vez es material de aligeramiento.
- Placa aligerada de alta resistencia,
- Garantiza su durabilidad
- Bajo costo

Edificio - Popayán 2015

BAMBÚ

Urbanización Yanaconas (Amparo Bastidas)


Geodésica André Chalupe


Festival Be bamboo

Domos, Geodésicas e possibilidades

Referências

- Arte Bambu. https://arteybambu.wordpress.com/fotos/rosario-de-la-frontera-prototipo-casa-01/
- DANTAS, Anderson Barros; MILITO, Cláudia Maria; LUSTOSA, Maria Cecília Junqueira. O uso do bambu na construção do desenvolvimento sustentável. Maceió: Instituto do Bambu, 2005.
- Pereira, M. A. R. Bambu, espécies, características e aplicações. UNESP, São Paulo, Bauru.
 S.d.
- FERREIRA, G. C. S. Vigas do concreto armadas com bambu. Dissertação de mestrado Faculdade de Engenharia Civil Unicamp. 123 p. 2002.
- Oliveira, T. F. C.S. Sustentabilidade e Arquitetura: um reflexão sobre o uso do bambu na construção civil. UFAL. Maceió. 2006.
- Almeida, J. G. de; R, Bonelli. Caderno de nós em bambu. UNB, 2009. Disponível em:https://drive.google.com/file/d/0BzY_vyKceyhqaExJYVBCTVVJYmM/view
- López, Oscar Hidalgo. Manual de Construcción com Bambú. Estudios técnico Colombianos Ltda. 1981
- Beraldo, A. L.; Chen, F.K.C; Azzini, Anísio. TELHAS ONDULADAS DE BAMBU CIMENTO.
 III ENECS. ENCONTRO NACIONAL SOBRE EDIFICAÇÕES E COMUNIDADES SUSTENTÁVEIS

Referências

- SOBRINHO JR., A. S.; TORRES, S. M.; DE BARROS, S. A utilização de modelos de interface no estudo da aderência entre bambu e concreto. In: NOCMAT 2006, Anais. Salvador, BA, 7 p., 2006.
- TEIXEIRA, A. A. Painéis de Bambu para Habitações Econômicas: Avaliação
- do Desempenho de Painéis Revestidos com Argamassa. Dissertação de Mestrado em Arquitetura e Urbanismo, Universidade de Brasília, DF, 179p. 2006
- Palestra Amparo Bastidas. Repositório UFSC. Grupo de Pesquisa Virtuhab