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“One of the basic rules of the universe is that nothing is perfect.

Perfection simply doesn’t exist.....

Without imperfection, neither you nor I would exist”.

Stephen Hawking.
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Abstract

The aim of this thesis is to study the dynamics of discontinuous piecewise-smooth systems
(DPWS) that exhibit more than one switching boundary, i.e. multiple discontinuity
boundaries. In particular, 2D/3D-DPWS systems with two discontinuity boundaries
that are usually given by line/planes are studied. More precisely, we aim to investigate
the different scenarios that can appear in the phase portraits of DPWS systems when a
real parameter generates a disturbance of the system being able to manifest qualitative
changes in the dynamics of these systems. This class of dynamical phenomena leads to
the study of bifurcations in DPWS systems and can reveal classic bifurcations such as
saddle-node, Hopf, Pitchfork, etc., and discontinuity induced bifurcations (DIBs) that
are unique to piecewise smooth systems. Within this former group of bifurcations are the
boundary equilibrium bifurcations (BEBs) and the łsliding bifurcationsž characterized by
having a sliding segment at the discontinuity boundary. A classical geometric approach
is adopted to study this class of dynamical systems and for the sliding dynamics that
may occur on the discontinuity boundary, the Filippov convection method is used. In
this sense, this work presents a qualitative and geometrical analysis of the bifurcations
and their unfolding, in particular, of codimension 1 and 2 that involve natural equilibria,
boundary equilibria, pseudo-equilibria, limit cycles and surfaces. We present original
contributions which are obtained from the study of DPWS systems theory applied in three
different case studies in power electronics and in a prey-predator Lotka-Volterra system
modeled by two predators competing for one prey and including harvesting actions. The
őrst application considers a capacitors voltage balancing system in a modular multilevel
converter (MMC) using a sliding mode control law (SMC). The second application is for a
bidirectional dc-dc buck converter feeding a nonlinear load of constant power-type (CPL).
This system is composed of two buck converters connected in a cascade structure, the őrst
being a buck converter controlled by a SMC and the second converter modeled by a CPL
deőned by a piecewise function. The third application consists of the study of the global
dynamics of a Lotka-Volterra system described by two species of predators competing for
prey with human action of harvesting the species of predators. The fourth application
is on the analysis of the nonlinear dynamics of a DC-DC buck converter controlled by
a sliding mode control (SMC) law connected in parallel to two power converters where
one of them is a boost converter and the other is a buck converter, both modeled by
CPL piecewise functions. In addition, we present numerical simulations for a better
understanding of the dynamics of the systems in question and to verify the theoretical
results obtained.

Keywords: Discontinuous piecewise smooth systems, multiple switching boundaries,
sliding mode control, discontinuity induced bifurcations, buck power converter, constant
power load, DC distributed power system, stability analysis, two predator-one prey
system, global stability.
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Resumo

O objetivo desta tese é estudar a dinâmica de sistemas descontínuos suaves por partes
(DPWS) que exibem mais de um limite de comutação, ou seja, limites de múltiplas
descontinuidades. Em particular, são estudados sistemas 2D/3D-DPWS com dois con-
tornos de descontinuidade que normalmente são dados por hipersuperfícies (planos). Mais
precisamente, pretendemos investigar os diferentes cenários que podem aparecer nos
retratos de fase de sistemas DPWS quando um parâmetro real gera uma perturbação do
sistema podendo manifestar mudanças qualitativas na dinâmica desses sistemas. Essa
classe de fenômenos dinâmicos leva ao estudo de bifurcações em sistemas DPWS e pode
revelar bifurcações clássicas como sela-nó, Hopf, forquilha etc. e bifurcações induzidas
por descontinuidade (DIBs) que são exclusivas de sistemas suaves por partes. Dentro
deste antigo grupo de bifurcações estão as bifurcações de equilíbrio de contorno (BEBs) e
as łbifurcações deslizantesž caracterizadas por ter um segmento deslizante no limite da
descontinuidade. Uma abordagem geométrica clássica é adotada para estudar esta classe
de sistemas dinâmicos e para a dinâmica de deslizamento que podem ocorrer no limite da
descontinuidade, a convecção de Filippov é usado. Nesse sentido, este trabalho apresenta
uma análise qualitativa e geométrica das bifurcações e seus desdobramentos, em partic-
ular, das codimensões 1 e 2 que envolvem equilíbrios naturais, equilíbrios de contorno,
pseudo-equilíbrios, ciclos limite e superfícies invariantes. Apresentamos contribuições
originais que são obtidas a partir do estudo da teoria de sistemas DPWS aplicada em
três diferentes estudos de caso em eletrônica de potência e um sistema presa-predador
Lotka-Volterra modelado por dois predadores competindo por uma presa e incluindo
ações de colheita. A primeira aplicação considera um sistema de balanceamento de tensão
de capacitores em um conversor modular multinível (MMC) usando uma lei de controle
de modo deslizante (SMC). A segunda aplicação é para um conversor buck CC-CC
bidirecional alimentando uma carga não linear do tipo potência constante (CPL). Este
sistema é composto por dois conversores buck conectados em uma estrutura em cascata,
sendo o primeiro um conversor buck controlado por um SMC e o segundo conversor
modelado por um CPL deőnido por uma função por partes. A terceira aplicação consiste
no estudo da dinâmica global de um sistema Lotka-Volterra descrito por duas espécies de
predadores competindo por presas com a ação humana de colher as espécies de predadores.
A quarta aplicação é sobre a análise da dinâmica não linear de um conversor DC-DC buck
controlado por uma lei de controle de modo deslizante (SMC) conectado em paralelo a
dois conversores de potência onde um deles é um conversor boost e o outro é um conversor
buck, ambos modelados por uma função CPL por partes. Além disso, apresentamos
simulações numéricas para um melhor entendimento da dinâmica dos sistemas em questão
e para veriőcar os resultados teóricos obtidos.

Palavras-chave: Sistemas contínuos suaves por partes, sistemas descontínuos suaves por
partes, múltiplas fronteiras de descontinuidade, controle por modo deslizante, bifurcações
induzidas por descontinuidade, conversor buck, carga de potência constante, sistema de
energia distribuída CC, análise de estabilidade, sistema de dois predadores e uma presa,
estabilidade global.
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Resumo Expandido

Introdução

A teoria dos Sistemas Dinâmicos é fruto de um longo período de desenvolvimento
cientíőco, e determinar sua origem não é simples. No entanto, pode-se identiőcar o
início dessa teoria no século XVI, na teoria da mecânica celeste de Johannes Kepler e
na formalização da mecânica clássica de Isaac Newton. Aleksander Lyapunov e Henri
Poincaré, matemáticos russos e franceses, respectivamente, são considerados os fundadores
da teoria moderna dos sistemas dinâmicos. Eles introduziram vários conceitos de análise
qualitativa de equações diferenciais, como estabilidade da solução, comportamento assin-
tótico, entre outros. Normalmente tais sistemas dinâmicos são não lineares ou mesmo
descontínuos e dependem de parâmetros. Consequentemente, o estudo do comportamento
qualitativo de suas soluções é uma tarefa difícil e desaőadora. Um método bastante eőcaz
para lidar com sistemas dinâmicos é a teoria de bifurcações, segundo a qual o problema
original é uma perturbação de um problema solucionável, e estamos interessados em
mudanças qualitativas de propriedades de soluções para pequenas variações de parâmetros.
Atualmente, a teoria da bifurcação está bem desenvolvida e os métodos aplicados por
essas teorias são bastante amplos, incluindo ferramentas analíticas funcionais e também
simulações numéricas.

Dentro desta abrangente área, o estudo de sistemas dinâmicos suaves por partes
(PWS, por suas siglas em inglês), ou sistemas dinâmicos não suaves é relativamente
recente e tem grande relevância na pesquisa cientíőca atual. Os trabalhos pioneiros de
Andronov (1971) sobre bifurcações em sistemas dinâmicos não suaves e de Filippov (1988)
sobre movimento deslizante estabelecem as bases para o desenvolvimento desta linha
de pesquisa. Os sistemas PWS são frequentemente considerados em sistemas físicos e
aplicações de engenharia para descrever fenômenos envolvendo fricção, colisão, sistemas
intermitentemente restritos ou processos com componentes de comutação. As bifurcações
em sistemas PWS têm sido objeto de estudo em diversos trabalhos de pesquisa até hoje,
pois ainda não há um entendimento completo das bifurcações locais e globais desses
sistemas.

Em sistemas dinâmicos PWS pode-se, em geral, distinguir entre dois tipos de bi-
furcações. O primeiro tipo é semelhante às bifurcações que conhecemos para sistemas
dinâmicos suaves. Estes incluem bifurcações locais, que podem ser analisadas inteira-
mente através de mudanças nas propriedades de estabilidade local de equilíbrios, órbitas
periódicas ou outros conjuntos invariantes como cruzamentos de parâmetros através
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de limiares críticos (nó de sela, bifurcações de Hopf, etc); e bifurcações globais, que
geralmente ocorrem quando conjuntos invariantes maiores do sistema ’colidem’ uns com os
outros, ou com equilíbrios do sistema. Eles não podem ser detectados puramente por uma
análise de estabilidade dos equilíbrios (bifurcações homoclínicas, bifurcações heteroclínicas
de equilíbrios e órbitas periódicas, etc). O segundo tipo de bifurcações referido como
bifurcações border-collision está relacionado com situações em que a trajetória começa a
cruzar uma das chamadas superfícies de comutação ou superfícies de descontinuidade, ou
seja, superfícies que dividem o espaço de fase em domínios de diferentes dinâmicas. Dentro
de cada um desses domínios, o sistema é suave, mas as equações de movimento mudam
abruptamente de um domínio para o outro. Este tipo de bifurcação, que normalmente
envolve saltos abruptos nos autovalores da órbita, não pode ocorrer em sistemas dinâmicos
suaves.

Assim esta tese é dedicada ao estudo da dinâmica de sistemas descontínuos suaves
por partes (DPWS) que exibem mais de um limite de comutação, ou seja, limites de
múltiplas descontinuidades com aplicações em sistemas de controle não lineares em
diferentes áreas da ciência e engenharia, como biologia e eletrônica de potência. Em
particular, são estudados sistemas 2D/3D-DPWS com duas fronteiras de descontinuidade
que normalmente são dados por superfícies planas. Nesse sentido, este trabalho apresenta
uma análise qualitativa e geométrica das bifurcações e seus desdobramentos, em particular,
das codimensões 1 e 2 que envolvem equilíbrios naturais, equilíbrios de contorno, pseudo-
equilíbrios, ciclos limite e superfícies invariantes. Apresentamos contribuições originais
que são obtidas a partir do estudo da teoria de sistemas DPWS aplicada em três
diferentes estudos de caso em eletrônica de potência e um sistema presa-predador Lotka-
Volterra modelado por dois predadores competindo por uma presa e incluindo ações
de colheita. Além disso, apresentamos simulações para realizar cálculos de continuação
numérica usando pacotes computacionais como o XPP-AUTO e assim obter uma melhor
compreensão da dinâmica dos sistemas em questão e veriőcar os resultados teóricos
obtidos.

Objetivos

O principal objetivo desta tese é o estudo de sistemas dinâmicos suaves por partes
(PWS) com aplicações em sistemas de controle não lineares em diferentes áreas da ciência
e engenharia, em particular:

• Estudar a dinâmica e a estabilidade de um sistema de n capacitores conectados
em série a uma fonte de tensão e controlados por uma lei de controle por modo
deslizante com múltiplas fronteiras de descontinuidade usando as ferramentas da
teoria de sistemas PWS.

• Analisar a dinâmica local e global de um circuito eletrônico de potência alimen-
tando uma carga de potência constante e controlado por uma lei de controle por
modo deslizante que é modelado como um sistema 3D-DPWS com dois limites de
comutação transversais.

• Analisar a dinâmica local e global de um sistema de dois predadores e uma presa
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sob ações de colheita que são introduzidas por meio de duas ações de controle de
comutação deőnidas nas espécise dos predadores; e determinar as condições nos
parâmetros do sistema para que o equilíbrio de coexistência dos predadores seja
globalmente estável.

• Fornecer simulações numéricas dos sistemas estudados para ter uma melhor com-
preensão do comportamento dinâmico dos mesmos e veriőcar os resultados teóricos
obtidos.

Metodologia

Através de uma revisão bibliográőca, observamos que: é um problema complicado
analisar todos os casos possíveis para lidar com sistemas DPWS com n fronteiras, pois
não existe uma teoria geral. Esta classe de sistemas é estudada caso a caso utilizando
ferramentas de geometria de campos vetoriais. Sabemos que a teoria estabelecida por
Filippov tem como pressuposto fundamental uma superfície regular entre duas regiões
lisas, mas muitos fenômenos de grande relevância requerem modelos onde ocorram dois ou
mais fronteiras de descontinuidade que não sejam necessariamente superfícies planas, onde
pode haver uma interseção entre eles e/ou podem ocorrer mudanças em sua dinâmica.
Na última década, três principais metodologias surgiram para o estudo desses sistemas.
Uma das metodologias foi apresentada por Jeffrey (2014) e propõe uma extensão da
dinâmica de Filippov para pontos onde a variedade chaveada Σ se auto-interseta através
do chamado łcanopyž. Outra metodologia foi apresentada por Diece et al. (2009), que
propõe uma construção similar onde ocorre a não unicidade dos vetores deslizantes. Aqui,
foi mostrado que, ao impor certas hipóteses de atratividade na variedade de comutação
Σ, muitas conclusões podem ser provadas sobre o comportamento da dinâmica. No
entanto, impor condições sobre Σ é restritivo. Finalmente, Buzzi et al. (2012) propõem
uma extensão da dinâmica de Filippov para pontos onde a auto-intersecção através da
aplicação de uma explosão adequada e o uso da Teoria da Perturbação Singular Geométrica
(Teoria-GSP) para estudar os sistemas lento-rápidos resultantes. Embora distante de
uma generalização direta da convenção de Filippov, esta metodologia também é uma
abordagem natural com vantagens sobre as anteriores, uma vez que a não unicidade do
campo deslizante é prevista e gerenciada naturalmente. Ainda mais, nenhuma suposição
sobre Σ ou os campos vetoriais subjacentes f (i) são necessários aqui. No entanto, todas
estas metodologias carecem de uma apresentação e justiőcação clara para a dinâmica
induzida nos pontos onde occorre uma auto-intersecção de Σ. Motivados no estudo de
esta classe de sistemas, por meio do estudo de casos, dedicamos esta tese ao estudo
de bifurcações locais e globais para sistemas dinâmicos PWS com no máximo dois
limites de comutação também chamados de superfícies de descontínuidade as quais vão
ser normalmente superfícies planas, onde o método dado por Filippov (convenção de
Filippov) será aplicado para analisar a descontínuidade dos sistemas dinâmicos suaves
por partes (DPWS) com aplicações em sistemas de controle não lineares em diferentes
áreas da ciência e engenharia, como biologia e eletrônica de potência.
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Resultados e Considerações Finais

Como resultado de nossa pesquisa, propomos e estudamos três aplicações dos sistemas
DPWS, e como resultado de ela obtivemos três artigos publicados.

A primeira aplicação considera um sistema de balanceamento de tensão de capacitores
em um conversor modular multinível (MMC) usando uma lei de controle de modo
deslizante (SMC) deu origem a nossa primeira publicação: Rony Cristiano, Daniel J.
Pagano and Marduck M. Henao. Multiple boundaries sliding mode control applied to
capacitor voltage-balancing systems Commun Nonlinear Sci Numer Simulat., 91 (2020),
doi:10.1016/j.cnsns.2020.105430.

A segunda aplicação é para um conversor buck CC-CC bidirecional alimentando uma
carga não linear do tipo potência constante (CPL). Este sistema é composto por dois
conversores buck conectados em uma estrutura em cascata, sendo o primeiro um conversor
buck controlado por um SMC e o segundo conversor modelado por um CPL deőnido
por uma função por partes deu origem a nossa segunda publicação: Marduck M. Henao,
Rony Cristiano, Daniel J. Pagano. Bifurcation analysis of 3D-PWS systems with two
transversal switching boundaries: A case study in power electronics, Physica D Nonlinear
Phenomena, 442 (2022), doi: 10.1016/j.physd.2022.133505.

A terceira aplicação consiste no estudo da dinâmica global de um sistema Lotka-
Volterra descrito por duas espécies de predadores competindo por presas com a ação
humana de colher as espécies de predadores deu origem a nossa terceira publicação:
Rony Cristiano, Marduck M. Henao, Daniel J. Pagano. Global stability of a Lotka-
Volterra piecewise-smooth system with harvesting actions and two predators compet-
ing for one prey, Journal of Mathematical Analysis and Applications, 522 (2023), doi:
10.1016/j.jmaa.2023.126998.

Cabe mencionar que para o estudo de cada problema de aplicação apresentados neste
trabalho, foram feitos cálculos de continuação numérica usando pacotes computacionais
para assim ter uma melhor compreensão da dinâmica dos sistemas estudados e também
validar os resultados teóricos obtidos.

Palavras-chave: Sistemas contínuos suaves por partes, sistemas descontínuos suaves por
partes, múltiplas fronteiras de descontinuidade, controle por modo deslizante, bifurcações
induzidas por descontinuidade, conversor buck, carga de potência constante, sistema de
energia distribuída CC, análise de estabilidade, sistema de dois predadores e uma presa,
estabilidade global.
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Introduction

Motivation and goals

Dynamical Systems theory is the result of a long time of scientiőc development, and
determining its origin is not simple. However, one can identify the beginnings of this
theory in the 16th century, in the celestial mechanics theory by Johannes Kepler, and in
the formalization of classical mechanics by Isaac Newton. Aleksander Lyapunov and Henri
Poincaré, Russian and French mathematicians respectively, are considered founders of
the modern theory of dynamical systems. They introduced several concepts of qualitative
analysis of differential equations, such as solution stability, asymptotic behavior, among
others. Usually such dynamical systems are nonlinear or even discontinuous and depend
on parameters. Consequently, the study of the qualitative behavior of their solutions
is a difficult and challenging task. A rather effective method for handling dynamical
systems is the bifurcation theory, whereby the original problem is a perturbation of a
solvable problem, and we are interested in qualitative changes of properties of solutions
for small parameter variations. Currently, bifurcation theory is well developed and the
methods applied by these theories are quite broad, including functional analytical tools
and numerical simulations as well; see e.g. [49, 50, 55, 57, 54, 56]

Within this comprehensive area, the study of piecewise-smooth dynamical systems
(PWS, for short), or non-smooth dynamical systems is relatively recent and it has
great relevance in current scientiőc research. The pioneering works of Andronov [54]
on bifurcations in non-smooth dynamical systems, and Filippov [1] on sliding motion,
lay the foundations for the development of this line of research. PWS systems are
often considered in physical systems and engineering applications to describe phenomena
involving friction, collision, intermittently constrained systems, or processes with switching
components, see [8].

Bifurcations in PWS systems have been the object of study in several works by many
researchers until nowadays because there is not yet a complete understanding of local
and global bifurcations for these systems.

In PWS dynamical systems one can in general distinguish between two types of
bifurcations. The őrst type is similar to the bifurcations we know for smooth dynamical
systems. These include local bifurcations, which can be analyzed entirely through changes
in the local stability properties of equilibria, periodic orbits or other invariant sets as
parameter crossings through critical thresholds (saddle-node, Hopf bifurcations, etc); and
global bifurcations, which often occur when larger invariant sets of the system ’collide’
with each other, or with equilibria of the system. They cannot be detected purely by
a stability analysis of the equilibria (Homoclinic bifurcations, Heteroclinic Bifurcation
of equilibria and periodic orbits, etc). The second type of bifurcations referred to as
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border-collision bifurcations is connected with situations where the trajectory starts to
intersect one of the so-called switching surfaces or discontinuity surfaces, i.e., surfaces that
divide the phase space into domains of different dynamics. Within each such domain, the
system is smooth, but the equations of motion change abruptly from one domain to the
next. This type of bifurcation, which typically involves abrupt jumps in the eigenvalues
of the orbit, cannot occur in smooth dynamical systems.

It is a cumbersome problem to analyze all the possible cases to deal with DPWS

systems with n boundaries since we do not have a general theory. This class of systems is
studied on a case-by-case basis using vector őeld geometry tools. We know that the theory
established by Filippov has as its fundamental assumption a regular surface between
two smooth regions, but many highly relevant phenomena require models where two
or more discontinuity boundaries occur that are not necessarily plane surfaces, where
there can be an intersection between them and changes in its dynamics may occur, see
[8, 9, 13, 18, 97, 100]. In the last decade, three main methodologies have emerged for
the study of these systems. One of the methodologies was presented by Jeffrey and
proposes an extension of the Filippov dynamics to points where the switching manifold
Σ self-intersects through the so-called łcanopyž, a convex-like ruled surface, for more
details see [18]. The next one, presented by Diece et al., which is older than the previous
methodology, proposes a similar construction where the nonuniqueness of sliding vectors
happens. Here, however, it was shown that by imposing certain attractivity hypotheses
on the switching manifold Σ, many conclusions can be proved on the behavior of the
dynamics. However, imposing conditions on Σ is a fundamental and restrictive hypothesis
here, for more details see [9]. Finally, Buzzi et al. propose an extension of the Filippov
dynamics to points where Σ self-intersects through the application of a proper blow-up
and the use of Geometrical Singular Perturbation Theory (GSP-Theory for short) to
study the resulting slow-fast systems. Although distant from a direct generalization of
Filippov’s convention, this methodology is also a natural approach with advantages over
the previous ones, since, the non-uniqueness of the sliding őeld is predicted and it is
managed naturally. Even more, no assumptions neither on Σ or the underlying vector
őelds f (i) are required here. However, the works lack a clear presentation and justiőcation
for the dynamics induced over points where Σ self-intersects, for more details see [97].

This thesis is dedicated to the study of local and global bifurcations for PWS

dynamical systems with at most two switching boundaries also called discontinuous
surface (normally plane surfaces), where the method given by Filippov (Filippov’s
convention) will be applied to analyze the discontinuous piecewise-smooth dynamical
systems (DPWS systems, for short).

The PWS systems are described as a set of ordinary differential equations of the form

ẋ = f (i)(x), x ∈ Ri ⊂ R
n, (1)

where f (i) : Ri → R
n and Ri (i = 1, 2, 3, ...,m,) are open regions separated by switching

boundaries Σij of (n− 1)-dimension and f (i) and Σij are supposed to be smooth. The
union of all Σij and all regions Ri covers the entire state space of (1).

The nonsmoothness of the system occurs on the switching boundaries Σij. Moreover,
PWS systems are classiőed depending on the type of non-smoothness; see [8],

• Continuous piecewise-smooth systems (CPWS systems) if the vector őeld (1) is
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continuous but it is not differentiable at some points, i.e.,

f (i)(x) = f (j)(x) with f (i)
x (x) ̸= f (j)

x (x), for some x ∈ Σij.

CPWS systems do not have sliding motion.

• Discontinuous piecewise-smooth systems (DPWS systems) if

f (i)(x) ̸= f (j)(x) for some x ∈ Σij.

In DPWS systems there can be sliding motion in a region of Σij fulőlling certain
conditions. Such systems are also known in the literature as Filippov systems and
are described by a set of őrst-order differential equations with a discontinuous
right-hand side. Also, it is possible to construct an appropriate vector őeld to
describe this sliding motion, called sliding vector őeld (see [1]).

PWS systems exhibit the classical bifurcations (saddle-node, transcritical, Hopf,
homoclinic, etc.) of smooth systems (see [19, 50]) and also unconventional bifurcations,
unique to non-smooth systems, known as discontinuity-induced bifurcations (DIBs), see
[43]. Bifurcations that determine changes in the number and nature of the equilibria
and of the limit cycles of the system of study are of particular importance to this work.
The topological changes from real to virtual equilibrium points (or vice versa), due
to changes in some system parameters, can lead to boundary equilibrium bifurcations
(BEB); see [23, 19, 20, 24, 25]. Besides the classical bifurcations, the DIBs, such as
sliding bifurcations of limit cycles that occur when a limit cycle develops an intersection
(tangential or transversal) with a sliding region as Grazing-sliding bifurcations (GS); see
[19, 26, 37, 27, 38, 39, 28] are dealt with in this thesis; and discontinuous saddle-node
(DSN, [22]).

An important feature of PWS systems is the presence of different types of equilibrium
points such as regular equilibrium, boundary equilibrium and the so-called pseudo-
equilibrium. In particular, the latter is the equilibrium at the switching boundary
where the sliding vector őeld becomes stationary, and can be achieved in őnite time by
trajectories initiated outside of the boundary. In Sliding mode control (SMC) processes
[14], the desired operating point is a stable pseudo-equilibrium of the system that belongs
to an attractive region into the switching boundary where the sliding occurs. The output
of the pseudo-equilibrium of this attractive sliding region, induced by the variation of
a system parameter, is usually associated with typical bifurcations of DPWS systems
such as the boundary equilibrium bifurcations (BEBs) which will be studied in detail in
this thesis.

General Purpose

The main objective of this thesis is the study of piecewise smooth (PWS) dynamical
systems with applications in non-linear control systems in different areas of science and
engineering such as biology and power electronics. In particular, we are interested in
PWS systems with two and three dimensions, and in the qualitative analysis of these
systems, paying special attention to the constant solutions on the switching boundaries
associated with the resulting sliding vector őeld equilibrium, as well as the characterization
and classiőcation of bifurcations induced by the switching boundaries by numerical and
analytical methods.
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Specific Objectives

• Study the dynamics and the stability of a system of n capacitors connected in a
serial arrangement to a voltage source and controlled by a switching control law
with multiple boundaries by using the tools of the PWS systems theory.

• Analyze the local and global dynamics of a power electronic circuit feeding a
constant power load and controlled by a sliding mode control law which is modeled
as a 3D DPWS system with two transversal switching boundaries.

• Analyze the local and global dynamics of a two-predator one-prey system under
harvesting actions that it is introduced by means of two switching control actions
deőned on the predator species and determine the conditions on the system param-
eters so that the coexistence equilibrium (which is the reference pseudo-equilibrium
of the system) of the predators is globally stable.

• Provide numerical simulations of the studied systems to better understand the
dynamic behavior of such systems, and to check the theoretical results obtained.

Outline

This document is organized as follows:

Chapter 1 presents the elementary deőnitions related to the DPWS systems as
well as the tools to analyze the dynamic behavior of these systems. Also, we describe
brieŕy discontinuous-induced bifurcations (DIB) such as boundary equilibrium bifurcation
(BEB), discontinuous saddle-node (DSN) and Grazing-sliding bifurcation.

Chapter 2 we study an application of the capacitor voltage-balancing system found in
modular multilevel converters (MMC) and we show an important result on local stability
of the model with n submodules (SM). Moreover, we describe the global dynamics of
systems with two SMs, modeled by 2D-DPWS and 3D-DPWS systems with two
transversal switching boundaries. Also, we analyze and characterize the sliding vector
őeld at the intersection of two transversal switching boundaries. Finally, to validate the
theoretical analysis, we provide the results of numerical simulations on a MMC with
10 SMs. This chapter originated from the published paper: Rony Cristiano, Daniel J.
Pagano and Marduck M. Henao. Multiple boundaries sliding mode control applied to
capacitor voltage-balancing systems Commun Nonlinear Sci Numer Simulat., 91 (2020),
doi:10.1016/j.cnsns.2020.105430.

Chapter 3 we analyse a dc-dc bidirectional buck composed of two buck converters
connected in a cascade structure being the őrst buck converter controlled by a sliding
mode control (SMC) law and the second converter modeled by a piecewise constant
power load (CPL). In particular, we analyze a piecewise smooth dynamical system in
R

3 with two transversal switching boundaries where the sliding motion occurs only
at the SMC-boundary. Furthermore, the local and global phenomena associated with
bifurcations induced by two transversal switching boundaries are shown (DIB, BEB,
DSN, GS). Also, we present numerical results on the bifurcation and study the vanishing
(or birth) of limit cycles. This chapter originates from the published paper: Marduck

20



M. Henao, Rony Cristiano, Daniel J. Pagano. Bifurcation analysis of 3D-PWS systems
with two transversal switching boundaries: A case study in power electronics, Physica D
Nonlinear Phenomena, 442 (2022), doi: 10.1016/j.physd.2022.133505.

Chapter 4 consists of an investigation of the global dynamics of a three-dimensional
Lotka-Volterra system described by two predator species competing for one prey and with
human harvesting action on the predator species. The harvesting action is introduced by
means of two switching control actions deőned on the predator species. We prove that there
is a global stable equilibrium point where the three species can coexist due to the proposed
harvesting action. This chapter originates from the published paper: Rony Cristiano,
Marduck M. Henao, Daniel J. Pagano. Global stability of a Lotka-Volterra piecewise-
smooth system with harvesting actions and two predators competing for one prey, Journal
of Mathematical Analysis and Applications, 522 (2023), doi: 10.1016/j.jmaa.2023.126998.

Chapter 5 we analyse the nonlinear dynamics of a DC-DC buck converter controlled
by a sliding mode control law connected to two power converters where one of them is
a boost converter and the other is a buck converter, both modeled by a CPL piecewise
function. The main focus is to study the stability analysis method of this type of model
and its pseudo equilibrium point, which is the operating point. The results obtained in
this chapter will be published in another scientiőc journal.

Chapter 6 presents the őnal remarks of this thesis.

List of publications

As a result of the work developed during the doctorate, we obtained three articles
published in recognized journals and works presented at national and international
scientiőc events.

• Published:

1 Rony Cristiano, Daniel J. Pagano, Marduck M. Henao, łMultiple bound-
aries sliding mode control applied to capacitor voltage-balancing systemsž,
manuscript accepted for publication in Communications in Nonlinear Science
and Numerical Simulation (CNSNS),91 (2020), doi:10.1016/j.cnsns.2020.105430.

2 Marduck M. Henao, Rony Cristiano, Daniel J. Pagano, łBifurcation analysis of
3D-PWS systems with two transversal switching boundaries: A case study in
power electronicsž, manuscript accepted for publication in Physica D Nonlinear
Phenomena, 442 (2022), doi: 10.1016/j.physd.2022.133505.

3 Rony Cristiano, Marduck M. Henao, Daniel J. Pagano, łGlobal stability
of a Lotka-Volterra piecewise-smooth system with harvesting actions and
two predators competing for one preyž, manuscript accepted for publica-
tion in Journal of Mathematical Analysis and Applications, 522 (2023), doi:
10.1016/j.jmaa.2023.126998.
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Chapter 1

Preliminaries and background materials

In this chapter, we present a brief outline of the mathematical structure and notations
that we will use throughout this work. We start with a brief introduction to the qualitative
theory for smooth dynamical systems, including a quick review of classical bifurcations
for these systems (saddle node, transcritical, Hopf, etc.), highlighting that they also make
sense for nonsmooth systems. Then we present the deőnitions and notations regarding
DPWS dynamical systems, as well as the tools for the analysis of these systems. In
particular, we are interested in two and three-dimensional DPWS systems with two
switching boundaries.

1.1 Smooth dynamical systems

We begin with a formal deőnition of a dynamical system and recall elements of
the concept from the theory of smooth dynamical systems that can also be applied to
non-smooth systems. In general terms, dynamic systems are systems whose states evolve
over time. Knowing the current state of the system and the laws that govern its evolution,
the behavior of such a system can be predicted to some extent, provided the laws do
not change over time. Therefore, a dynamical system can be deőned through three
components: a state space, a non-empty set representing the space of time, and a law of
evolution of the state in time.

Let X ⊂ R
n be the state space. We can deőne an operator ϕ in x that evolves

previously known elements x0 through a ł timež t to a state xt:

ϕt :X → X

x 7→ ϕt(x) = xt.

The time t assumes values in a set of indices T , which is usually discrete (Z) or
continuous (R). The operator ϕt is called łthe evolution operatorž and deőnes a dynamic
system when it is equipped with a semi-group structure, see [8].

Definition 1.1.1. A state space X, a time set T and the evolution operator ϕt deőne a
dynamical system if

(i) ϕ0(x) = x, for all x ∈ X,
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(ii) ϕt+s(x) = ϕt(ϕs(x)), for all x ∈ X and t, s ∈ T .

The above deőnition is quite general and encompasses the two major strands of
dynamic systems theory, namely, continuous-time and discrete-time dynamical systems.
We will consider here only systems of the őrst type, that is, when T is an interval I ⊂ R,
[8].

Consider a system of ordinary differential equations (ODEs)

ẋ = F (x), x ∈ D ⊂ R
n, (1.1.1)

where D is a domain and F : D ⊂ R
n → R

n is a vector őeld sufficiently smooth.
If we deőne X = D, T = I ⊂ R and ϕt(x) = φ(x, t), where φ(x, t) is the ŕow that

takes the initial condition x to its solution at time t:

∂

∂t
φ(x, t) = F (φ(x, t)), φ(x, 0) = x,

then {X, T , ϕt} deőnes a continuous dynamical system.
We say that a dynamical system is smooth of index r, or of class Cr, if the őrst r

derivatives of φ with respect to x exist and are continuous at every point x ∈ X. Thus,
if we suppose that the vector őeld F in (1.1.1) is of class Cr−1 for some r ≥ 2, then the
ŕow φ(x, t) is of a smoother index and therefore the dynamical system {D, I, φ} is Cr.

Definition 1.1.2. The subset O(x0) = {x ∈ D : x = φ(x0, t), t ∈ I} is called orbit
or trajectory through the point x0. The phase portrait of the dynamical system is the
partitioning of the state space into orbits.

Definition 1.1.3. A point x ∈ D ⊂ R
n is said to be an equilibrium point of (1.1.1) if

F (x) = 0.

Definition 1.1.4. A cycle (or a closed orbit) is a periodic orbit, that is, an orbit γ not
reduced to a point such that each point x ∈ γ satisőes φ(x, t + t0) = φ(x, t) for some
t0 > 0.

Definition 1.1.5. A closed orbit γ in a neighborhood in which there are no other cycles
is called a limit cycle.

Usually, it is important that the dynamics of the system behave in a stable manner,
that is, the őnal state of the dynamics does not change due to small changes in the initial
conditions.

Definition 1.1.6. An equilibrium point x0 of (1.1.1) is (Lyapunov) stable if for all
neighborhood U1 ⊂ D of x0 there is a neighborhood U2 ⊂ U1 of x0 such that every solution
φ(x0, t) of (1.1.1) with φ(x0, 0) ∈ U2 is deőned and in U1 for all t ≥ 0.

Definition 1.1.7. An equilibrium x0 of (1.1.1) is said to be asymptotically stable (in the
sense of Lyapunov) if

(i) it is stable;

(ii) limt→∞ φ(x, t) = x0, para todo x in some neighborhood of x0.
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We will say that an equilibrium is unstable if it is not stable according to Deőnition 1.1.6.

One of the goals of the dynamical system theory is to qualitatively classify dynamics.
Roughly speaking, structurally stable systems are those in which all łclosež systems
have qualitatively łequivalentž dynamics. The notion of proximity and equivalence is
formalized below, following [8].

We will denote by Ωr = Ωr(D) the space of the vector őelds of class Cr in D, with
r ≥ 1. Consider Cr a topology of Ωr, whose basic neighborhood of radius ϵ of a őeld
F0 ∈ Ωr is deőned as

B(F0, ϵ) = {F ∈ Ωr; ∥F − F0∥r < ϵ},
where

∥F∥r := sup
x∈D

{∥F∥, ∥DF∥, . . . , ∥DrF∥}.

Remark 1.1.8. ∥ · ∥sup denotes the norm of vectors (and matrices) called the supremum
norm

∥x∥sup = sup



√√√√

n∑

i=1

x2i


 and ∥A∥sup = sup



√√√√

n∑

i,j=1

a2ij


 ,

where x = (x1, . . . , xn) and A = (aij)n.

Now consider two dynamical systems

ẋ = F (x), x ∈ D ⊂ R
n, (1.1.2)

ẋ = G(x), x ∈ D ⊂ R
n, (1.1.3)

where F and G are smooth vector őelds in D.
We say that the systems (1.1.2) and (1.1.3) are ϵ-proximals in D if ∥F −G∥r < ϵ for

some ϵ > 0, or equivalently, if it exists some basic neighborhood Bϵ of Ωr that contains
F,G ∈ Ωr.

Definition 1.1.9. Perturbation of parameter of the system (1.1.2) generates another
system given by

ẋ = F (x) + µG(x) x ∈ D ⊂ R
n, µ ∈ R, (1.1.4)

where G is smooth őeld in D and µ ∈ R is the parameter.

Notice that, if µ = 0 in (1.1.4), we recover (1.1.2). Thus, (1.1.4) can be rewritten as
follows

ẋ = G(x, µ) x ∈ D ⊂ R
n, µ ∈ R,

with G(x, 0) = F (x). A perturbation (1.1.4) has a maximum size ϵ if (1.1.4) is ϵ-proximal
to system (1.1.2).

Definition 1.1.10. Two dynamical systems ẋ = F (x) and ẋ = G(x) are topologically
equivalent if there exists a homeomorphism h : Rn −→ R

n that carries the orbits of the
őrst system onto orbits of the second one, preserving the orientation of the trajectories in
time.
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Definition 1.1.11. A system is structurally stable if there is an ϵ > 0 such that all
perturbations of maximum size ϵ to the vector őeld F are topologically equivalent to G.

There is also the concept of smooth system conjugations, where the travel time of a
trajectory is conserved by homeomorphism, see [8].

Definition 1.1.12. The systems ẋ = F (x) and ẋ = G(x) are topologically conjugates if
it exists a homeomorphism h : Rn −→ R

n such that,

φ(x, t) = h−1(ψ(h(x), t))

where φ(x, t) and ψ(h(y), t) are the ŕow generated by őelds F and G, respectively.

Consider again a smooth dynamical system that depends on parameters, that is,

ẋ = F (x, µ) x ∈ D ⊂ R
n, µ ∈ R

p.

When considering a perturbation of the system under the action of the parameters,
its phase portraits may vary. Thus, there are two possibilities: either the system
remains topologically equivalent to the original or its topology changes. Next, we deőne
a bifurcation in terms of the loss of structural stability when a parameter acts as a
perturbation of the system (some types of smooth system bifurcations have been studied
and classiőed; for more details see [49, 57, 54, 56]).

Definition 1.1.13. A bifurcation occurs at a parameter bifurcation µ = µ0 if the dynamic
system is not structurally stable.

• An unfolding of a bifurcation is a simpliőed system that for µ close to µ0 it contains
all possible structurally stable phase portraits that arise under small perturbations
of the system at the bifurcation point.

• The codimension of a bifurcation is the dimension of parameter space required to
unfold the bifurcation.

• A bifurcation diagram is a graphic representation that helps to understand how the
phase portrait of the system varies with the parameter.

For more details see [8].

1.2 Piecewise-smooth control system

In this section, we present deőnitions, notations, and elementary concepts regarding
DPWS systems as well as the tools for the analysis of the dynamic behaviour of
such systems, and properties related to boundary equilibrium bifurcations (BEBs). In
particular, we are interested in DPWS systems with multiple switching boundaries.

Since our interest is to study the piecewise-smooth control systems we consider a
control system of the form

ẋ = f(x) + g(x)u, (1.2.1)

where x = (x1, x2, . . . , xn) ∈ R
n is the state vector, n ≥ 2, the dot ”·” indicates derivatives

with respect to t and the functions f : Rn → R
n and g : Rn → R

n×m such that g(x) ̸= 0,
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are smooth and the control signal u = (u1, u2, . . . , um) is supposed to be a discontinuous
function, which gives the discontinuity of the dynamical system (1.2.1). We assume that
u1, u2 ,. . . ,um are piecewise constant functions, deőned by

uk =

{
u+k , if hk(x) > 0,
u−k , if hk(x) < 0,

(1.2.2)

for k = 1, 2, . . . ,m and u+k ̸= u−k , where each function hk : Rn → R fulőll ∇hk(x) ̸= 0, for
all x ∈ R

n, where ∇hk(x) represent the gradient of hk. Thus, system (1.2.1) presents m
switching boundaries of (n− 1)-dimension, being deőned by

Σk = {x ∈ R
n : hk(x) = 0} .

In addition, we assume that the gradient vectors {∇hk}mk=1 are linearly independent and
∩m
k=1Σk is not empty.

System (1.2.1) endowed with the control law (1.2.2) constitutes a DPWS system of
form

ẋ = Fi(x), x ∈ Ri ⊂ R
n, (1.2.3)

where Ri, i = 1, 2, . . . , 2m, are open regions separated by m switching boundaries Σk of
(n− 1)-dimension, transversely intersecting at a same point. The union of all boundaries
Σk and all regions Ri covers the entire state space D of (1.2.3), i.e.,

(
∪m−1

j=1 Σj

)
∪
(
∪2m

i=1Ri

)
= D.

The non-smoothness occurs at one of the switching boundaries Σk and, if Σij is the
boundary that separates Ri from Rj, then Fi(x) ̸= Fj(x) for some x ∈ Σij, see [8].

Remark 1.2.1. It is worth to mention that (1.2.3) does not specify how the dynamics of
the system evolve within the switching boundary. This basically depends on the dynamics
of each vector őeld fi near the border. One possibility is that the piecewise-smooth system
crosses transversely Σij, as in Figure 1.1; in this case, without loss of generality, we
can establish that Σij belongs to a single region Ri. However, there may be a case where
the dynamics of the DPWS system are conőned to a switching boundary after contact
with it (sliding motion). The region on Σij where the sliding motion occurs is knowns
as the sliding region. There are two approaches to studying the dynamics of this kind of
system in the sliding region: Utkin’s control method [14] and Filippov’s Convex Method
[1] (Utkin’s method is an extension of Filippov’s Method).

Definition 1.2.2. Two piecewise-smooth systems with switching boundaries Σk and Σ̃k

are topologically equivalent by parts if:

1.) They are topologically equivalent, that is, there is a homeomorphism h : Rn −→ R
n

that carries the orbits of the őrst system into the orbits of the second, preserving
the orientation of the trajectories, so that ϕ(x, t) = h−1(ϕ̃(h(x), s)), where the
application t −→ s(t) is continuous and inverse.

2.) The homeomorphism h preserves each of the switching boundaries, that is, h(Σk) =
Σ̃k.
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Figure 1.1: Piecewise-smooth vector őeld.

The sliding dynamics of system (1.2.3) occurs on Σ =
⋃m

k=1Σk and exists when
Σ attracts close trajectories in őnite time, so that trajectories become restricted to Σ
following a sliding motion. Associated to the sliding dynamics there is a vector őeld,
known as sliding vector őeld. Following [1], we consider that a sliding vector őeld is any
vector őeld given by

Fs(x) =
2m∑

i=1

λi(x)Fi(x),

such that x ∈ Σ, λi(x) ≥ 0 and
∑2m

i=1 λi(x) = 1. The functions λ1(x), λ2(x),..., are
selected in such a way that Fs is tangent to Σ at x, that is, λi must satisfy the constraint
∇hk(x)T · Fs(x) = 0, i.e.,

2m∑

i=1

λi(x)∇hk(x)T · Fi(x) = 0, for k = 1, 2, ...,m.

From the constraint above it is generally not possible to obtain λi(x)’s functions
uniquely, which can lead to many sliding vectors at x, see [18]. This ambiguity problem
does not appear when the sliding motion occurs at a single switching boundary, as shown
in Subsection 1.2.1. The method used in this case is well known in the literature and
appears in many works, see for instance [19, 20]. On the other hand, when the sliding
motion occurs at the intersection of two or more switching boundaries, there is still no
widespread general method that determines a single sliding vector őeld, being able to
describe the dynamic characteristics of this sliding motion. Some recent works deal with
the problem of sliding vector ambiguity and present proposals on how to deőne a sliding
vector őeld at the intersection of switching boundaries, see for instance [10, 18].

However, for DPWS systems derived from the control system given in (1.2.1)-(1.2.2),
it is possible to obtain a single solution for the sliding vector at the intersection of
switching boundaries. To see this, just use the equivalent control method, see [14, 15] and
Subsection 1.2.2. Then, we deőne hT (x) = [h1(x) h2(x) ... hm(x)], Lgh(x) = hx(x) · g(x)
and Lfh(x) = hx(x) · f(x), where hx(x) is a m× n matrix whose rows are the gradients
of the functions hk. In addition, we assume that Lgh(x) is nonsingular for all x. The
equivalent control ueq(x) is solution of

d

dt
h(x) = Lfh(x) + Lgh(x) · ueq(x) = 0,

i.e.,
ueq(x) = − (Lgh(x))

−1 · Lfh(x). (1.2.4)
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Introducing the equivalent control in the equations of system (1.2.1), we obtain the sliding
vector őeld

Fs(x) = f(x)− g(x) · (Lgh(x))
−1 · Lfh(x), (1.2.5)

restricted to the intersection of the switching boundaries Σ1, Σ2, ..., given by h(x) = 0.
By the above assumptions, if m ≥ n then the switching boundaries intersect trans-

versely at a single point of Rn, say x, and the sliding vector őeld on it is null, i.e, Fs(x) = 0.
In this case, x is a pseudo-equilibrium point of the switching system.

Definition 1.2.3. Consider the dynamical system (1.2.3) and let x ∈ R
n. We say that:

(i) x is a regular equilibrium point associated to the vector őeld Fi if Fi(x) = 0 and
x ∈ ⋃2m

i=1Ri. It is real (admissible) whenever x ∈ Ri, or virtual in the other case.

(ii) x is a boundary equilibrium point associated to the vector őeld Fi if Fi(x) = 0
and x ∈ Ri (implies x ∈ Σk for some k).

(iii) Some other stationary point that is not equilibrium in any of the vector őelds
Fi, may appear over one of the switching boundaries Σ1, Σ2,..., including at the
intersection of two or more boundaries. Such a point is called pseudo-equilibrium.
In addition, if x is a pseudo-equilibrium then it is an equilibrium of the sliding
dynamics induced by vector őelds F1, F2,..., in the neighborhood of x.

It is a difficult problem to analyze all possible cases for dealing with DPWS systems
with n boundaries, as we do not have a general theory. This class of systems is studied case
by case. It might not be surprising that simulating a set of equations across a discontinuity
results in some irregular or unpredictable behavior. In the intersection of discontinuity
surfaces the dynamic of the system evolves approximately along a discontinuity surface,
the dynamics őnd an attractor that approximates, but the attractor can be sensitive to
parameters of the vector őeld or the switching method, undergoing numerous bifurcations
that affect the speed of the sliding motion. The problem of motion along the intersection
of discontinuity surfaces was left open in Filippov’s inŕuential work [1] and has recently
been taken up from a variety of perspectives based on practical considerations of how
to model dynamics around discontinuities, see e.g. [11, 12, 9, 18, 13, 100] or on more
theoretical considerations such as equivalence classes and stability, see e.g. [98, 99] and
references therein. Next, we will show theoretical tools for qualitative analysis of DPWS

systems in R
n with one or two discontinuity boundaries (plane surfaces).

1.2.1 A single switching boundary

We consider m = 1 in system (1.2.3), and Σ = {x ∈ R
n : h(x) = 0} for some

h : Rn → R, as being a switching boundary splitting the state space into two open regions

R1 = {x ∈ R
n : h(x) < 0} and R2 = {x ∈ R

n : h(x) > 0}

such that R
n = R1 ∪R2 ∪ Σ. Therefore, the general system (1.2.3) becomes a DPWS

dynamical system of the form:

ẋ =

{
F1(x), if x ∈ R1,
F2(x), if x ∈ R2,

(1.2.6)
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Remark 1.2.4. The contact type of the orbits of a vector őeld F with a switching boundary
Σ deőned by h(x) = 0, are provided by the directional Lie derivatives: LFh = ∇hT · F
(or LFh = ⟨∇h,F⟩). The higher order Lie derivatives are given by Lq

F
h = ∇Lq−1

F
hT · F

(or Lq
F
h = ⟨∇Lq−1

F
h,F⟩).

The switching boundary Σ can be partitioned into regions with different dynamical
behaviours: (i) crossing regions (Σ±

c ), where one vector őeld is pointing to Σ and the
other is pointing out of the boundary; (ii) attractive sliding region (Σas), where the
vector őelds F1 and F2 point towards Σ from both sides; (iii) repulsive sliding region
(Σrs), where both F1 and F2 are pointing out of Σ from either sides. Points in such
regions are qualiőed accordingly. Thus, we can explicitly determine the sliding and
crossing regions as follows:

Σas = {x ∈ Σ : LF2h(x) < 0 < LF1h(x)}, (1.2.7)

Σrs = {x ∈ Σ : LF1h(x) < 0 < LF2h(x)}, (1.2.8)

Σ−
c = {x ∈ Σ : LF1h(x) < 0 and LF2h(x) < 0}, (1.2.9)

Σ+
c = {x ∈ Σ : LF1h(x) > 0 and LF2h(x) > 0}. (1.2.10)

These regions are separated by lines formed by tangency points of the vector őelds
F1,2 with Σ, satisfying the tangency condition LF1,2h(x) = 0 and h(x) = 0. Then, we
deőne two sets of tangential singularities:

T+ = {x ∈ Σ : LF2h(x) = 0}

and
T− = {x ∈ Σ : LF1h(x) = 0};

one for each vector őeld involved. Note that these tangency points are assumed to be
smooth curves contained in Σ, that is, to T+ (resp. T−) as the tangency line of F2

(resp. F1). Points where both vector őelds F1,2 are tangent to Σ, that is, x ∈ T+ ∩T− are
called double tangency points which are classiőed generically as two-fold singularities.
The following provides the deőnition of tangential singularities; see [1, 19].

Definition 1.2.5. (i) x̂ ∈ Σ is a fold point of F1 if x̂ ∈ T+, LF1h(x̂) = 0 and
L2
F1
h(x̂) ̸= 0 (the contact of F1 with Σ is quadratic). Moreover, we say that this

fold point is visible (resp. invisible) if L2
F1
h(x̂) < 0 (resp. L2

F1
h(x̂) > 0), i.e., the

orbit of ẋ = F1(x) starting at x̂, belongs to R1 (resp. R2) for all sufficiently small
|t| ≠ 0. See Figure 1.2(a)-(b), respectively.

(ii) x̂ ∈ Σ is a fold point of F2 if x̂ ∈ T−, LF2h(x̂) = 0 and L2
F2
h(x̂) ̸= 0. Moreover,

we say that this fold point is visible (resp. invisible) if L2
F2
h(x̂) > 0 (resp.

L2
F2
h(x̂) < 0), i.e., the orbit of ẋ = F2(x) starting at x̂, belongs to R2 (resp. R1)

for all sufficiently small |t| ≠ 0. See Figure 1.2(a)-(b), respectively.
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(a) Visible fold. (b) Invisible fold.

Figure 1.2: Tangent points: (a) visible and (b) invisible of a plane Filippov system. The
solid region (dotted) of the boundary Σ represents the sliding region (crossing).

Definition 1.2.6. (i) xc ∈ Σ is a cusp point of F1 if xc ∈ T−, L2
F1
h(xc) = 0,

L3
F1
h(xc) ̸= 0 and the set {∇h(xc),∇LF1h(xc),∇L2

F1
h(xc)} is linearly independent.

(ii) xc ∈ Σ is a cusp point of F2 if xc ∈ T+, L2
F2
h(xc) = 0, L3

F2
h(xc) ̸= 0 and the set

{∇h(xc),∇LF2h(xc),∇L2
F2
h(xc)} is linearly independent.

The orbits of system (1.2.6) can be constructed by concatenating standard solutions
in R1,2 and sliding solutions on Σ following the Filippov convex method [1]. Once the
sliding mode has been achieved introduced by the discontinuous vector őeld (1.2.6), the
states are forced to follow a trajectory over the surface. This dynamic is restricted to the
sliding set Σas ∪ Σrs, and described by the sliding vector őeld

Fs(x) = (1− λ)F1(x) + λF2(x), with λ =
LF1h(x)

LF1h(x)− LF2h(x)
, (1.2.11)

or more concretely,

Fs(x) =
LF2h(x)F1(x)− LF1h(x)F2(x)

LF2h(x)− LF1h(x)
, (1.2.12)

provided that the above denominator does not vanish. Therefore, λ ∈ (0, 1) for all
x ∈ Σas ∪ Σrs. While λ = 0 implies that LF1h(x) = 0, i.e., x is a tangency point of
the vector őeld F1 with the boundary Σ and Fs(x) = F1(x) (x becomes a boundary
equilibrium if F1(x) = 0); and λ = 1 implies that LF2h(x) = 0, i.e., x is a tangency point
of the vector őeld F2 with the boundary Σ and Fs(x) = F2(x) (x becomes a boundary
equilibrium if F2(x) = 0). Naturally, λ ∈ (−∞, 0) ∪ (1,∞) for all x ∈ Σ+

c ∪ Σ−
c .

Figure 1.3: Geometric deőnition of the sliding vector őeld.
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The sliding vector őeld Fs can be rewritten in terms of the f and g functions from
the control system given in (1.2.1). For this, we use the general sliding vector őeld given
in (1.2.5), obtained from Utkin’s equivalent control method [14], and so

Fs(x) = F1(x) + F2(x)ueq(x),

where

ueq(x) = −LF1h(x)

LF2h(x)
.

Note that the transversality condition LF2h(x) ̸= 0 is a necessary condition for the
existence of ueq. Moreover, the attractive sliding condition at x ∈ Σ becomes

LF2h(x)u
− < LF1h(x) < LF2h(x)u

+.

Sliding

h(x) = 0

ẋ = F1(x)

ẋ = F2(x)

h(x) < 0

h(x) > 0

∇h

F
s

F1

F2

R1

R2

(a)

Crossing

h(x) = 0

ẋ = F1(x)

ẋ = F2(x)

h(x) < 0

h(x) > 0

∇h

F2

F1

R1

R2

(b)

Tangency: invisible fold

h(x) = 0

ẋ = F1(x)

ẋ = F2(x)

h(x) < 0

h(x) > 0

R1

R2

0

(c)

Tangency: visible fold

h(x) = 0

ẋ = F1(x)

ẋ = F2(x)

h(x) < 0

h(x) > 0

R1

R2

0

(d)

Figure 1.4: Some modes on Σ. In (a) is shown the attractive sliding motion that occurs
in the set Σas, where LF2h(x) < 0 and LF1h(x) > 0. In (b) the crossing mode is shown,
where a trajectory crosses Σ at a point of Σ−

c (restricted to LF2h(x) < 0 and LF1h(x) < 0),
passing from R2 to R1. In (c)-(d) are shown the behavior of the system’s orbits close to
a tangency point at 0, associated to vector őeld F2, being of the invisible fold type in (c),
since LF2h(0) = 0 and L2

F2
h(0) < 0, and of the visible fold type in (d), since LF2h(0) = 0

and L2
F2
h(0) > 0.

The orbits of system (1.2.6) can be constructed by concatenating standard solutions in
R1∪R2, and sliding solutions on Σ following the sliding system ẋ = Fs(x); see [19, 21, 20].
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The forward orbit of (1.2.6) that crosses Σ, goes from R1 to R2 through x0 ∈ Σ+
c and

goes from R2 to R1 through x0 ∈ Σ−
c (see Figure 1.4(b)). The forward orbit of (1.2.6)

that intersects Σ at a point x0 ∈ Σas, continues from this point x0 on a contained sliding
motion in Σ (see Figure 1.4(a)). The forward orbits of (1.2.6) through x0 ∈ R1 ∪ R2

never reach the repulsive sliding region Σrs. But if x0 ∈ Σrs, we can assume that there is
a sliding motion starting at x0 that follows the orbit of Fs.

Sliding regions are delimited by tangency points. In addition, the sliding vector őeld
Fs is transversal to the set of tangency singularities at any fold point of this set, such
that each invisible fold point is an entry point for attractive sliding dynamics and each
visible fold point is an exit point from attractive sliding dynamics. The trajectory that
leaves the attractive sliding region by a visible fold point of F1 (resp. F2), enters the R1

(resp. R2) region, see [21, 20]. Next, we reőne the deőnition of natural equilibrium and
pseudo-equilibrium point given in Deőnition 1.2.3(iii) for the vector őeld (1.2.6).

Definition 1.2.7. The points x̃ ∈ Σ are called pseudo-equilibrium point of the Filippov
system (1.2.6) if x̃ ∈ Σas ∪Σrs and it is an equilibrium for the sliding vector őeld Fs, i.e.,

Fs(x̃) = 0 and h(x̃) = 0.

For instance, suppose that F2 and F1 are transversal to Σ and anti-collinear at a
certain point of this surface, that is, there exist λ1, λ2 > 0, such that

λ1F2 + λ2F1 = 0.

The point is necessarily in Σas, since then LF1,2(x)h(x) are non-zero and with different
sign. In fact, it is immediate to conclude that at such point one has Fs = 0, being a
pseudo-equilibrium for (1.2.1). Reciprocally, if x is a point of Σs with Fs(x) = 0 and
it is not tangency point, both vector őelds are anti-collinear at point. Sliding regions
are delimited by points where the vector őelds F1,2 are tangent to Σ. We recall that the
discontinuous system (1.2.1) inherits the equilibrium vector őeld (1.2.12), and that they
can be admissible (real) or non admissible (virtual) equilibria depending on its position
with respect to the switching boundary.

Definition 1.2.8. A point x ∈ R
n is a natural equilibrium of (1.2.6) if it is an equilibrium

of the vector őeld F1 or F2. Moreover, we say that x ∈ R
n is real (admissible) if

F1(x) = 0 and h(x) < 0,

or
F2(x) = 0 and h(x) > 0.

Whenever F2(x) = 0 or F1(x) = 0 and h(x) = 0, the point x is called boundary

equilibrium of system (1.2.6). Thus, a boundary equilibrium point is at the boundary of
the sliding set Σas; and so from [19] it can also be considered a pseudo-equilibrium point.
Therefore, some interaction between the equilibria of the two involved vector őelds and
the pseudo-equilibria of the sliding vector őeld appears whenever, by moving parameters,
a real equilibrium point collides with Σ. We say then that the system undergoes a
boundary equilibrium bifurcation of codimension-two (BEB for short).
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1.2.2 Two switching boundaries

We consider in system (1.2.3) that m = 2 and there are two switching boundaries
that intersect transversely, deőned by

Σ1 = {x ∈ R
n : h1(x) = 0},

Σ2 = {x ∈ R
n : h2(x) = 0}.

In this case we have four open regions, given by

R1 = {x ∈ R
n : h1(x) > 0 and h2(x) > 0},

R2 = {x ∈ R
n : h1(x) < 0 and h2(x) > 0},

R3 = {x ∈ R
n : h1(x) < 0 and h2(x) < 0},

R4 = {x ∈ R
n : h1(x) > 0 and h2(x) < 0};

as Figure 1.5 shows.

Σ2

Σ1

R1 : F1R2 : F2

R3 : F3 R4 : F4

F+
s2

F−
s2

F+
s1

F−
s1

Fs

Σ+
1

Σ−
1

Σ−
2 Σ+

2

Figure 1.5: State space conőguration in R
3 with Σ1 ∪ Σ2 attracting in őnite time all

nearby trajectories. The vector őelds Fi point to the switching boundaries Σ1 and Σ2

in all regions. Then, sliding vector őelds can be deőned in Σ1, Σ2 and Σ1 ∩ Σ2, being
denoted by F±

s1
, F±

s2
and Fs, respectively.

The Σ1 boundary is divided into two parts, one for h2(x) > 0 and the other for
h2(x) < 0, denoted by Σ+

1 and Σ−
1 , respectively. In each part we can őnd sliding, crossing

and tangency sets, as well as points of boundary equilibrium and of pseudo-equilibrium.
Such elements are obtained and classiőed using the results and tools for the case with a
single switching boundary, presented in the previous subsection. In addition, the sliding
dynamics in Σ+

1 (resp. Σ−
1 ) can be analyzed using the sliding vector őeld deőned in

(1.2.11). The same applies to the Σ2 boundary.
The interesting thing when it comes to systems with two switching boundaries is what

happens at the intersection of these boundaries. Of course, in Σ1 ∩ Σ2 we can also őnd
singularities as the pseudo-equilibria, boundary equilibria, tangencies, besides sliding and
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crossing sets. But for this, we must take into account the four vector őelds, F1, F2, F3

and F4, around this intersection.
We assume that there is a subset Σs of Σ1 ∩ Σ2, such that

LF1h1(x) < 0, LF1h2(x) < 0, (1.2.13)

LF2h1(x) > 0, LF2h2(x) < 0, (1.2.14)

LF3h1(x) > 0, LF3h2(x) > 0, (1.2.15)

LF4h1(x) < 0, LF4h2(x) > 0, (1.2.16)

for all x in that subset. In this case, both the switching boundaries Σ1 and Σ2 present
sets of attractive sliding in a neighborhood of Σ1 ∩ Σ2. In Σ1 the sliding vector őeld,
denoted by Fs1, is a piecewise smooth vector őeld of form

Fs1(x) =

{
F+

s1
(x), if h2(x) > 0,

F−
s1
(x), if h2(x) < 0,

with F±
s1

calculated from (1.2.11), getting

F+
s1
(x) =

LF2h1(x) · F1(x)− LF1h1(x) · F2(x)

LF2h1(x)− LF1h1(x)
,

for h2(x) > 0 and

F−
s1
=
LF3h1(x) · F4(x)− LF4h1(x) · F3(x)

LF3h1(x)− LF4h1(x)
,

for h2(x) < 0.
In Σ2 the sliding vector őeld, denoted by Fs2 , is a piecewise smooth vector őeld of

form

Fs2(x) =

{
F+

s2
(x), if h1(x) > 0,

F−
s2
(x), if h1(x) < 0,

with F±
s2

calculated from (1.2.11), getting

F+
s2
=
LF4h2(x) · F1(x)− LF1h2(x) · F4(x)

LF4h2(x)− LF1h2(x)
,

for h1(x) > 0 and

F−
s2
=
LF3h2(x) · F2(x)− LF2h2(x) · F3(x)

LF3h2(x)− LF2h2(x)
,

for h1(x) < 0.
Note that Σ1 ∩ Σ2 = Σ0 is the switching boundary for both the vector őelds Fs1 ,

restricted to Σ1, and Fs2 restricted to Σ2. The assumed conditions (1.2.13)-(1.2.16)
ensure that Σs ⊂ Σ0 is attractive in őnite time, that is, for any x ∈ Σs we have

L
F

+
s1
h2(x) < 0, L

F
−

s1
h2(x) > 0,

L
F

+
s2
h1(x) < 0, L

F
−

s2
h1(x) > 0.
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We assume that the sliding vector őeld, denoted by Fs and restricted to Σs, is given
by

Fs(x) = λ1F1(x) + λ2F2(x) + λ3F3(x) + λ4F4(x), (1.2.17)

where λi’s are smooth functions of x, such that λi ≥ 0 and λ1 + λ2 + λ3 + λ4 = 1.
The λi’s functions must be chosen in order to fulőll the equations LFs

h1(x) = 0 and
LFs

h2(x) = 0. For systems like (1.2.1)-(1.2.2), if we deőne F1(x) = f(x) + g(x)u++,
F2(x) = f(x) + g(x)u−+, F3(x) = f(x) + g(x)u−− and F4(x) = f(x) + g(x)u+−, where

u++ =

[
u+1
u+2

]
, u−+ =

[
u−1
u+2

]
, u−− =

[
u−1
u−2

]
, u+− =

[
u+1
u−2

]
,

then (1.2.17) is reduced to Fs(x) = f(x) + g(x)ueq after taking

λ1u
++ + λ2u

−+ + λ3u
−− + λ4u

+− = ueq.

The ueq vector, so-called equivalent control (see [15]), is obtained in a unique way
from formula (1.2.4), leading to a well-deőned and smooth sliding vector őeld at the
intersection of Σ1 and Σ2, which is, consequently, calculated by the formula given in
(1.2.5).

1.3 Bifurcations of piecewise-smooth dynamical sys-

tems

In this section, we describe the basic concepts of smooth (or non-smooth) systems
bifurcations, for which it is necessary to talk a little about limit cycles.

A limit cycle is an isolated and closed trajectory that can appear in the phase portrait
of nonlinear systems. An isolated periodic orbit means the absence of other inőnitesimally
close closed trajectories. In this sense, neighboring trajectories close to a limit cycle must
either approach or move away from it. If the trajectories that start in a neighborhood
tend to the limit cycle, then we say that the limit cycle is stable, see Figure 1.6(a);
otherwise, in which the trajectories move away from the limit cycle, we say that there is
an unstable limit cycle, see Figure 1.6(b). If for certain neighborhoods the trajectories
converge to the limit cycle and for other neighborhoods, the trajectories move away from
the limit cycle, we say that the limit cycle is semi-stable, see Figure 1.6(c). The study of
limit cycles has been used to model the behavior of a large number of dynamical systems
in the real world, as the dynamics of a system can be characterized by its critical points
and position of the variant manifolds. This generated a great deal of research interest
in mathematicians, physicists and engineers. Although there is a lot of work on the
existence and number of limit cycles in DPWS systems, this is still an open problem, even
if we consider the discontinuity manifold as a straight line or plane surface. In general,
őnding limit cycles in a system is an arduous task and almost impossible in some cases.
However, there are qualitative and numerical methods to őnd them.

The most important kind of limit cycle is the stable limit cycle, where nearby curves
spiral toward the limit cycle on both sides. Periodic processes in nature can often be
represented as stable limit cycles, so great interest is attached to őnding such trajectories
if they exist. Unfortunately, surprisingly little is known about how to do this, or how to
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(a) Stable limit cycle. (b) Unstable limit cycle. (c) Semi-stable limit cycle.

Figure 1.6: Limit Cycle Trajectories.

show that a system has no limit cycles. There is active research on this subject today,
for example, the Poincare-Bendixson Theorem, Bendixson’s Criterion, Levinson-Smith
Theorem, for more details see [101, 102, 50].

In this sense, it is necessary to describe what is meant by bifurcations in non-smooth
systems. Consider a general invariant set of a piecewise-smooth system. Bifurcations that
involve invariant sets contained in a single region Ri for all parameter values of interest
can be studied using the bifurcation theory for smooth systems. The topological changes
in the phase portrait of the system can be conőned to arbitrarily small neighborhoods of
the bifurcation őxed points by moving the bifurcation parameter close to such bifurcation
point (hence "local").

Local bifurcations can be analyzed entirely through changes in the local stability
properties of equilibria, periodic orbits, or other invariant sets as parameters cross through
critical thresholds, as for example:

• saddle-node bifurcation which is common to both smooth and non-smooth dynamical
systems. It is a local bifurcation where two equilibria collide and annihilate each
other; see [50, 49].

• Hopf bifurcation is a critical point where the stability of the system switches and
a periodic solution arises. More concretely, it is a local bifurcation where a őxed
point of the dynamical system loses its stability (as a pair of complex conjugate
eigenvalues-of the linearization around the őxed point-crosses the complex plane
imaginary axis). Under reasonably generic assumptions about the dynamical system,
a small-amplitude limit cycle branches from the (critical) Hopf bifurcation point.
This limit cycle is stable if the őrst Lyapunov coefficient is negative, in this case, we
say that the bifurcation is a supercritical Hopf bifurcation. Otherwise, it is unstable
and the bifurcation is a subcritical Hopf bifurcation; see [49].

Hopf and saddle-node bifurcations occur only in smooth systems, but appear in nons-
mooth systems when they occur in regions deőned by smooth vector őelds.

Global bifurcations typically occur because ’larger’ invariant sets, such as periodic
orbits, collide with equilibria. This causes changes in the topology of the trajectories in
the phase space which cannot be conőned to a small neighborhood, as is the case with
local bifurcations. Some examples of global bifurcations are:
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• Homoclinic bifurcation is where a limit cycle collides with a saddle point, see Figure
1.7. The variant above is one type of homoclinic bifurcation. Still, there is another
type of homoclinic bifurcation in which the homoclinic orbit "traps" the other ends
of the unstable and stable manifolds of the saddle. Higher codimension bifurcations
can occur in three or more dimensions, producing complicated, possibly chaotic
dynamics, see [8, 49].

(a) Periodic orbit. (b) Homoclinic orbit. (c) Homoclinic orbit is broken.

Figure 1.7: Homoclinic bifurcation for a saddle equilibrium creating a stable limit cycle.
In őgure (a) there is a stable periodic orbit; in őgure (b) the periodic orbit approaches
the homoclinic orbit; and in őgure (c), the homoclinic orbit is broken and there is no
periodic orbit.

• Heteroclinic bifurcation is when a limit cycle collides with two or more saddle points
(see Figure 1.8). A heteroclinic orbit is an invariant set in the phase space of a
dynamical system. If a heteroclinic orbit is asymptotically stable, approaching
trajectories spend longer and longer periods of time in a neighbourhood of successive
equilibria. In general, the heteroclinic connections of dynamic systems are of high
codimension, that is, they will not persist if the parameters are varied.

(a) Unstable equilibrium and
two saddles coexisting.

(b) Heteroclinic orbit. (c) Limit cycle before hetero-
clinic bifurcation.

Figure 1.8: Heteroclinic bifurcation for two saddles equilibrium creating a stable limit
cycle. In őgure (a) there is an unstable equilibrium coexists with two saddles; in őgure
(b) the heteroclinic orbits connecting the saddles, forming a heteroclinic cycle; and in
őgure (c) there is a stable limit cycle that disappears through heteroclinic bifurcation.

38



Global bifurcations can also involve more complicated sets such as causing the sudden
appearance or disappearance of a chaotic attractor in a boundary crisis bifurcation, see
[8].

The classical bifurcations (saddle-node bifurcation, Hopf bifurcation, etc) also occurs
in DPWS systems. However, there exists other bifurcations that are exclusive of
the piecewise-smooth systems, such as those that normally involve interactions of an
invariant set with a discontinuity boundary, known in the literature as discontinuity-
induced bifurcations (DIBs); see [8, 64]. These bifurcations occur when an invariant
set (equilibrium point, limit cycle, etc) crosses or touches tangentially the switching
boundary Σ in state space. The topological changes from real to virtual equilibrium
points (or vice versa), due to changes in some system parameters, can lead to a BEB; see
[19, 20, 23, 24, 25]. There are other DIBs, such as sliding bifurcations of limit cycles that
occur when a limit cycle develops an intersection (tangential or transversal) with a sliding
region; see [59], Grazing-sliding bifurcations (GS) that occurs when a limit cycle intersects
tangentially a switching boundary; see, [19, 26, 27, 28, 37, 38, 39], and discontinuous
saddle-node (DSN) bifurcation that occurs when the equilibria in different vector őelds
collide, deőned as a non-smooth analog of the saddle-node bifurcation; see [22].

1.3.1 Boundary equilibrium bifurcations

The boundary equilibrium bifurcations (BEB) have been the object of study of many
works in the last few years and they have been identiőed in mathematical models of
a wide variety of physical systems. For two-dimensional DPWS systems, there is a
complete classiőcation of the BEBs and their unfolding, see [1, 24, 25, 59, 63]. For
three-dimensional DPWS systems, the BEBs have a greater complexity of phenomena,
with many possible geometric combinations. We still do not őnd a classiőcation in the
literature that is similar to the two-dimensional systems for the three-dimensional ones,
although there are recent studies focused on the study of phenomena linked to BEBs as,
for example, [23, 26, 20].

Definition 1.3.1. The DPWS system (1.2.6) undergoes a boundary equilibrium

bifurcation on the parameter µ = µ∗ (µ ∈ R) in relation to vector őelds Fi (i = 1, 2), if
there is a point x∗ such that:

(i) Fi(x
∗, µ∗) = 0, but Fj(x

∗, µ∗) ̸= 0;

(ii) h(x∗, µ∗) = 0;

(iii) ∇xFi(x
∗, µ∗) is invertible (equivalently, Det[∇xFi(x

∗, µ∗)] ̸= 0);

(iv) ∇µh(x
∗, µ∗)−∇xh(x

∗, µ∗)
[
∇xF

−1
i ∇µFi

]
(x∗, µ∗) ̸= 0.

where ∇x=( ∂
∂x1
, ∂
∂x2
, ..., ∂

∂xn
) and ∇µ=( ∂

∂µ1
, ∂
∂µ2

, ..., ∂
∂µn

).

Remark 1.3.2. Items (i)-(ii) say just that x∗ is a boundary equilibrium at parameter
µ = µ∗. After the analysis of just the linear part of the system, we have that with the
Implicit Function theorem1 we can conclude the validity of the results for the complete
non-linear system, as indicated by the item (iii). item (iv) means that the branches of the

1See, [8, Theorem 2.4]
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equilibria of the vector őelds F1 and F2 cross Σ transversely at the bifurcation point of
the boundary equilibrium (x∗, µ∗).

A BEB is classiőed according to two possible scenarios, that take into account only
the positions of the equilibria involved in relation to the boundaries of their respective
vector őelds:

(i) Persistence scenario occurs when a natural equilibrium turns into a pseudo-
equilibrium. In this case, if the natural equilibrium is real (resp. virtual), then the
pseudo-equilibrium is virtual (resp. real).

(ii) Nonsmooth fold scenario occurs when both a natural equilibrium and a pseudo-
equilibrium collide and disappear. In this case, if the natural equilibrium is real
(resp. virtual), then so is the pseudo-equilibrium.

To distinguish between the persistence and nonsmooth fold scenarios, we use the
BEB-Theorem shown in [8] which is enunciated below.

Theorem 1.3.3. Let D ⊂ R
n be the region containing the origin, the Filippov system

ẋ =

{
F1(x, µ), if h(x, µ) > 0,
F2(x, µ), if h(x, µ) < 0,

(1.3.1)

where x ∈ R
n, µ ∈ R, F1,F2 : R

n+1 → R
n and h : Rn+1 → R are smooth functions in D,

and Σ is a switching boundary. Suppose that (1.3.1) undergoes a boundary equilibrium
bifurcation at (x∗, µ∗) = (0, 0) in relation to F1. So, assuming

CTN−1
1 E ̸= 0,

where N1 = ∇xF1(0, 0), C
T = ∇xh(0, 0), E = F2 − F1, we have :

(i) The persistence scenario occurs if CTN−1
1 E < 0.

(ii) The nonsmooth fold scenario occurs if CTN−1
1 E > 0.

1.3.2 Discontinuous saddle-node bifurcation

A Discontinuous saddle-node bifurcation is a codimension-one situation deőned as by a
nonsmooth analog of the saddle-node bifurcation. This type of bifurcation is a nonsmooth
fold, that is, two equilibria coexist and collide and annihilate at the discontinuous
bifurcation. It is worth mentioning that this bifurcation occurs in the CPWS systems;
see [22].

1.3.3 Grazing-sliding bifurcation

Another important case of DIB caused by the interaction of a trajectory with the
boundary of a sliding region is the grazing-sliding bifurcations(GS) that occurs when a
limit cycle entirely contained in some region Ri collides with the switching boundary
Σ, generating a sliding cycle. The dynamics associated can be simple or extremely
complicated and appear under a continuous small change in initial conditions, see [8].
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Figure 1.9 (below) shows that as we vary parameter µ ∈ R in a 2D-DPWS system,
two generic cases can appear depending on the stability of the tangent cycle L at µ = 0.
In Case 1 (Fig. 1.9(a)), the L cycle is stable and, for µ < 0, there is a stable limit cycle
Lµ ⊂ R1. This cycle becomes a sliding cycle for µ > 0. In Case 2 (Fig. 1.9(b)), the L
cycle is unstable and, for µ < 0 there are two limit cycles: an unstable Lu

µ ⊂ R1 cycle
and a stable Lµ sliding cycle. In this case, when µ > 0 there is no cycle, see [19].

(a) Case 1.

(b) Case 2.

Figure 1.9: Grazing-sliding bifurcation in 2D.
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Chapter 2

Multiple boundaries sliding mode

control applied to capacitor

voltage-balancing systems

In this chapter, we are interested in studying the stability of an active voltage
balancing strategy for pre-charging MMCs (Modular Multilevel Converters), since the
voltage balancing of the ŕoating capacitors in the submodules of the MMC during its
pre-charging operating stage is a key issue insomuch as it is a critical task for the
correct operation of these converters. The adopted voltage-balancing strategy consists
in adding a resistance to each submodule of the MMC by means of a controlled switch.
These switches are being controlled by a sliding mode control algorithm with multiple
boundaries (discontinuity surfaces of high co-dimension). These systems are essentially
discontinuous piecewise smooth dynamical systems (Filippov systems) commanded by
electronic switches. In this chapter, the local stability of the voltage balanced system
is analytically proven for an arbitrary number of sub-modules. In addition, a detailed
analysis of the global dynamics of this system with two sub-modules and two switching
boundaries sliding mode control is presented. Moreover, simulation results obtained on
an MMC with 10 submodules are shown to validate the theoretical analysis.

2.1 Introduction

A very interesting problem in power electronics is to equalize the voltage of an
arbitrary number of ŕoating capacitors connected in series or parallel arrangements to a
voltage source. This problem so called capacitor voltage-balancing is well known to power
electronics engineers and its solution has motivated different balancing strategies. These
systems are in essence dynamic switching systems (Filippov systems [1]) commanded by
electronic switches, typically MOSFET for low power applications and insulated-gate
bipolar transistors (IGBT) for medium power systems.

Capacitor voltage-balancing systems are commonly used in different circuit applications
in power electronics, see for instance [2]. A particular application of the capacitor
voltage-balancing techniques is found in modular multilevel converters (MMC) during its
pre-charge operating stage [3, 4]. A typical three-phase MMC, őrst proposed by Lesnicar
and Marquardt in 2003 [5], is shown in Figure 2.1. Nowadays, it is one of the main

42



Laa Laa Laa

LaaLaaLaa

Lf
LfLf

Lf

S1

S2 Sb

Rb
RK1

K2 Ci

VDC

l

i  {1, 2, ..., N}

Figure 2.1: MMC with pre-charge circuit. La stands for the equivalent arm inductance;
Lf is the output ac inductance; Vdc is the dc voltage source; Rl stands for the equivalent
circuit resistance; Rb and Sb are the balancing resistance and control switch, respectively;
S1 and S2 are the submodule switches; Ci is the submodule capacitor; APS is the
auxiliary power supply; K1, K2 and Kac denote pre-charge and operating circuit switches.
Adapted from [7].

modular converter topologies used in High Voltage Direct Current (HVDC) and is also
widely used in other applications including medium voltage drives and renewable energy
sources integration. The MMC is composed of fundamental units called submodules
(SM). A set of serially connected submodules is called an arm, and two arms, one superior
and one inferior compose one phase leg of the MMC. A detailed state-space model of the
three-phase MMC can be found in [6]. The topology used within the SMs can vary, being
the most common the half-bridge and full-bridge converters, connected to a capacitor.
Summing up the output voltages of several SMs it is possible to have different levels of
voltage in each phase [7].

In practical MMCs, each SM local signal electronics circuits are self-powered by means
of a local auxiliary power supply (APS) fed from the SM DC-link [7]. However, the
cascade of hundreds of SMs also brings a major challenge to the system’s capacitor
voltage balancing during the pre-charge stage where this conőguration might not lead to
balanced or stable SM voltages. The connection of the converter to the grid can only be
performed after pre-charging all capacitors to minimum voltage levels, which prevents
inrush currents. In this sense, the balancing of the MMC’s capacitor voltages during its
pre-charge stage is critical for the correct operation of these converters [7]. The capacitor
voltage balancing of the MMC can be classiőed into two different methods (i) a passive
balancing strategy that consists in adding a balancing őxed resistance in parallel to each
one of the SMs; (ii) an active balancing strategy implemented by controlled switches that
connect/disconnect the balancing resistance for each SM.

A passive balancing strategy considering the switch Sb closed in Figure 2.1 and varying
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the balancing resistance Rb is studied in depth in [7]. In this chapter, an active balancing
strategy that consists in adding a balancing resistance in parallel to each one of the SMs
being controlled by a switch Sb is analysed from the point of view of the discontinuous
piecewise smooth dynamical systems (DPWS systems, for short) theory [8].

In DPWS systems, when a discontinuous ŕow through a switching boundary points
inwards, so that it cannot escape, it induces a single ŕow within the boundary, so called
sliding mode regime. When several of these switching boundaries intersect (discontinuity
surfaces of high co-dimension), a method to analyse this type of systems is to seek a
ŕow within the intersection, but some difficulties can arise. The widely adopted Filippov
method [1] to deőne the sliding vector őeld is, in general, ambiguous. For instance,
when sliding takes place on a surface of co-dimension 2, that is, the intersection of two
co-dimension 1 surfaces, even if the surface attracts nearby dynamics, an ambiguity
may arise to solve the problem. The ambiguity involved in this situation can be solved
by different practical approaches: (i) globally smoothing out the vector őeld, see for
instance, previous works on DPWS with two or more switching boundaries, Dieci et al.
[9, 10] ; (ii) blending technique, that is essentially an interpolation of the vector őelds in
the neighborhood of the discontinuity boundaries, see [11], [12]; (iii) to impose further
constraints on the class of Filippov vector őelds, in order to regularize the problem on
the co-dimension 2 surface [13].

For DPWS systems derived from control systems like (1.2.1)-(1.2.2), Utkin’s equiva-
lent control method [14, 15] provides a single sliding vector őeld at the intersection of the
m switching boundaries. When the system is linear with respect to the control variable,
the Filippov and Utkin methods return the same sliding vector őeld over a switching
boundary between two vector őelds, but may differ if this relationship is non-linear, see
[16]. The same occurs when the sliding motion is restricted to the intersection of m
switching boundaries. However, Utkin’s method for determining the sliding vector őeld at
the intersection of the m switching boundaries of control systems such as (1.2.1)-(1.2.2)
is simpler to apply than Filippov’s method, which can show up to m possible ways to
obtain the same sliding vector őeld.

The main contributions of this chapter is to study the dynamics and the stability
of a system of n capacitors connected in a serial arrangement to a voltage source and
controlled by a switching control law with multiple boundaries. Our case is to solve the
problem of capacitor voltage balance during pre-charge operation of multilevel modular
converters, as it is an interesting problem, less addressed in the literature. Moreover, we
use standard tools for DPWS systems and we have numerical simulations of the studied
systems, which verify the analytical results.

This chapter is organized as follows. Section 2.1 presents a brief introduction to
the problem of capacitor voltage-balancing. Section 2.2 is dedicated to modeling and
introducing the main result obtained on local stability of the model with n submodules;
see Theorem 2.2.1. A brief description of other results obtained in the following sections
is also provided. A qualitative analysis of the case in R

2 corresponding to two SM
planar systems is studied in Section 2.3. In Section 2.4 we analyze the case in R

3 with
two switching boundaries, taking into account the dynamics of the equivalent inductor.
Simulation results are shown in Section 2.5. Finally, Section 2.6 presents the main
conclusions.

Previous results on DPWS systems are necessary for the development of this work.
Chapter 1 reviews the main aspects of these systems, relevant to our objectives.
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2.2 Model description and main result

Only one leg with two arms of the MMC circuit shown in Figure 2.1 is reduced to an
equivalent circuit that operates during pre-charge operation, as shown in Figure 2.2, to
analyze the voltage balancing mechanism of the active capacitor. The equivalent circuit
is obtained when K1 is closed, K2 is open, Kac is open, all the IGBTs are blocked and
the APSs are turned on. The control switches Sb are employed to switch-on/switch-off
the balancing resistances Rb in such a way to control the SM voltages.

−
+Vdc

iL Rl

La

CN
2

CN
2
+1

C1

CN

vCN

vCN
2 +1

vCN
2

vC1

P1

PN
2

PN
2
+1

PN

Rb1

Sb1

RbN
2

SbN
2

RbN
2 +1

SbN
2 +1

RbN

SbN

Figure 2.2: Equivalent circuit for one leg with two arms of the MMC circuit shown in
Figure 2.1. Note that N is an even number and the symbol ▶◀ denotes a constant
power source (Pi/vCi

).

The dynamics of the circuit shown in Figure 2.2 can be expressed by equations

Ci
dvCi

dt
= iL − Pi

vCi

− vCi

Rbi

ui

La
diL
dt

= Vdc − iLRl −
∑N

k=1 vCk

(2.2.1)
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for i = 1, 2, 3, ..., N , where N (even number) stands for the number of SMs of the MMC.
If we can assume that the second equation of (2.2.1) has fast-scale dynamics and it is
everywhere stable, so we have the approximation

0 = Vdc − iLRl −
N∑

k=1

vCk
(2.2.2)

for very small La value (La > 0) and we can solve this equation for iL to get

iL =
1

Rl

(
Vdc −

N∑

k=1

vCk

)
, (2.2.3)

then a standard singular perturbation analysis shows that (2.2.1), by substituting (2.2.3)
in őrst equation of (2.2.1), can be reduced to

Ci
dvCi

dt
=

1

Rl

(
Vdc −

N∑

k=1

vCk

)
− Pi

vCi

− vCi

Rbi

ui (2.2.4)

for i = 1, 2, 3, ..., N .
In system (2.2.4) the state variables are the voltage capacitors vCi

= vCi
(t), such that

vCi
∈ (0, Vdc], the parameters are Vdc > 0, Ci > 0, Pi ≥ 0, Rl > 0, Rbi > 0. The control

variables are ui ∈ {0, 1}, 0 for open switch (Sbi in Figure 2.1) and 1 for closed switch.
The control objectives are basically: (i) to stabilize the voltage of each capacitor at a
desired value Vri ∈ (0, Vdc), where Vdc >

∑N
k=1 Vrk ; (ii) to ensure the robustness of the

system to parameter variations, produced mainly by load and power demand changes
(parameters Pi and Rbi). We adopt a Sliding Mode Control (SMC) strategy that depends
on the voltage capacitor error signal on each capacitor, given by

ui =
1

2
(1 + sign [vCi

− Vri ]), (2.2.5)

for i = 1, 2, ..., n, where vCi
− Vri = 0 stands for the switching boundaries. This leads us

to deal with piecewise smooth systems that have n switching boundaries that intersect at
the desired operating point since there are N independent control variables. Such class
of switching control law is well-known as multiple boundaries SMC.

For the study carried out in this and the next section, we consider the system (2.2.4)-
(2.2.5) in a normalized form given by

1

ai

dxi
dτ

= 1−
n∑

k=1

xk −
bi
xi

− cixiui, (2.2.6)

with

ui =
1

2
(1 + sign [xi − µi]), (2.2.7)

and for i = 1, 2, ..., n. System (2.2.6)-(2.2.7) is obtained by applying the standard change
of variables (state and time, see Wang et al. [17]) and parameters, deőned in Table 2.1,
to the original system (2.2.4)-(2.2.5). So, the new state vector is x = (x1, x2, ..., xn) ∈
D ⊂ R

n
+ such that

D = {0 < xi ≤ 1 for i = 1, 2, ..., n} ,
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and xref = (µ1, µ2, ..., µn) is the normalized voltage reference vector whose components
meet the inequality µ1 + µ2 + ...+ µn ≤ 1. Switching boundaries are deőned by

Σi = {x ∈ D : hi(x) = xi − µi = 0}

for i = 1, 2, ..., n. In this case, if hi(x) > 0 then ui = 1 and if hi(x) < 0 then ui = 0. Note
that these sets are orthogonal to each other and Σ1 ∩ Σ2 ∩ · · · ∩ Σn = {xref}.

State and Time Variables Parameters

xi = vCi
/Vdc µi = Vri/Vdc

ai = CN/Ci

bi = PiRl/V
2
dc

τ = t/(RlCN) ci = Rl/Rbi

Table 2.1: Normalization.

In what follows, the local stability of the desired operation equilibrium point (balanced
system) of the equivalent system shown in Figure 2.2 is analytically proven for an arbitrary
number of submodules.

Theorem 2.2.1. Point (Vr1 , Vr2 , ..., VrN ) is a local attractor for system (2.2.4)-(2.2.5)
whenever

Vri
Rl

(
Vdc −

N∑

k=1

Vrk −
Rl

Rbi

Vri

)
< Pi <

Vri
Rl

(
Vdc −

N∑

k=1

Vrk

)
. (2.2.8)

for i = 1, 2, ..., n.

Proof. We use a special notation for Lie derivatives, namely

ẋ+i (x) =
dxi
dτ

(ui = 1) and ẋ−i (x) =
dxi
dτ

(ui = 0),

in order to simplify the analysis of the contact of the system’s orbits with the switching
boundaries Σi. From this, we can determine the sliding regions in Σi and conditions on
the system parameters to ensure stability at the point xref, which is the desired operating
point.

Attractive sliding regions are given by

Σas
i =

{
x ∈ Σi : ẋ

+
i (x) < 0 < ẋ−i (x)

}
,

where

ẋ+i (x) = ai

(
1−

n∑

k=1

xk −
bi
xi

− cixi

)
and ẋ−i (x) = ai

(
1−

n∑

k=1

xk −
bi
xi

)
.

We have Σas
1 ∩Σas

2 ∩ · · · ∩Σas
n = {xref} iff ẋ+i (xref) < 0 < ẋ−i (xref) for all i. This condition

is obtained for the system parameters satisfying

µi

(
1−

n∑

k=1

µk − ciµi

)
< bi < µi

(
1−

n∑

k=1

µk

)
. (2.2.9)
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Condition (2.2.9) is rewritten as condition (2.2.8) of Theorem 2.2.1, applying the changes
given in Table 2.1.

Assuming (2.2.9) in system (2.2.6)-(2.2.7), we can ensure that it exists a neighborhood
V of xref, including xref, such that for any x in V we get

ẋ−i (x) > 0 if xi ≤ µi, and ẋ+i (x) < 0 if xi ≥ µi,

for all i. Then xref is a local attractor of system (2.2.6)-(2.2.7), which we call pseudo-
equilibrium point. Furthermore, such a pseudo-equilibrium point is reached in őnite
time.

In this way the local stability of the desired operation point (Vr1 , Vr2 , ..., Vrn) of
the equivalent system is analytically proven for an arbitrary number of submodules.
Determining the attraction domain of this equilibrium point remains an interesting issue
for future research.

2.3 Qualitative analysis of the planar case with two-

boundaries

In this section we consider in system (2.2.6)-(2.2.7) that n = 2, and we get

1

a

dx1
dτ

= 1− x2 − (1 + c1u1)x1 −
b1
x1
, (2.3.1)

dx2
dτ

= 1− x1 − (1 + c2u2)x2 −
b2
x2
, (2.3.2)

with (x1, x2) ∈ D ⊂ R
2 and

u1 =
1

2
(1 + sign [x1 − µ1]), (2.3.3)

u2 =
1

2
(1 + sign [x2 − µ2]). (2.3.4)

Switching boundaries are deőned by

Σ1 = {(x1, x2) ∈ D : h1(x1, x2) = x1 − µ1 = 0},
Σ2 = {(x1, x2) ∈ D : h2(x1, x2) = x2 − µ2 = 0},

which are orthogonal at (µ1, µ2). Then the state space is divided into four open
regions, namely

D1 = {(x1, x2) ∈ D : h1(x1, x2) > 0 and h2(x1, x2) > 0},
D2 = {(x1, x2) ∈ D : h1(x1, x2) < 0 and h2(x1, x2) > 0},
D3 = {(x1, x2) ∈ D : h1(x1, x2) < 0 and h2(x1, x2) < 0},
D4 = {(x1, x2) ∈ D : h1(x1, x2) > 0 and h2(x1, x2) < 0}.

In each of these regions there is a distinct vector őeld acting, obtained from system
(2.3.1)-(2.3.4) and deőned as in Figure 2.3.
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Figure 2.3: State space of system (2.3.1)-(2.3.4): D = Σ1 ∪ Σ2 ∪D1 ∪D2 ∪D3 ∪D4.

System (2.3.1)-(2.3.4) is then represented as a 2D-DPWS system of the form



dx1
dτ

dx2
dτ


 =





F++(x1, x2), if (x1, x2) ∈ D1

F−+(x1, x2), if (x1, x2) ∈ D2

F−−(x1, x2), if (x1, x2) ∈ D3

F+−(x1, x2), if (x1, x2) ∈ D4

, (2.3.5)

composed by the vector őelds

F++(x1, x2) =

[
a
(
1− (1 + c1)x1 − x2 − b1

x1

)

1− x1 − (1 + c2)x2 − b2
x2

]
, F−+(x1, x2) =

[
a
(
1− x1 − x2 − b1

x1

)

1− x1 − (1 + c2)x2 − b2
x2

]
,

(2.3.6)

F−−(x1, x2) =

[
a(1− x1 − x2 − b1

x1
)

1− x1 − x2 − b2
x2

]
and F+−(x1, x2) =

[
a
(
1− (1 + c1)x1 − x2 − b1

x1

)

1− x1 − x2

]
,

(2.3.7)

for u1 = u2 = 1, u1 = 0 and u2 = 1, u1 = u2 = 0, u1 = 1 and u2 = 0, respectively. Vector
őelds must be appropriately extended to the switching boundaries using Filippov’s theory.

2.3.1 Case Study for b1 = b2 = 0 (Pi = 0)

Sliding segments and tangential singularities

There is in Σ1 an attractive sliding region given by the vertical line segment

Σas
1 = {x1 = µ1, 1− (1 + c1)µ1 < x2 < 1− µ1},

and obtained from the solution of the inequalities

LF−+h1(µ1, x2) = LF−−
h1(µ1, x2) = a(1− µ1 − x2) > 0,

LF++h1(µ1, x2) = LF+−
h1(µ1, x2) = a(1− (1 + c1)µ1 − x2) < 0.
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The same happens in Σ2, but given by the horizontal line segment

Σas
2 = {x2 = µ2, 1− (1 + c2)µ2 < x1 < 1− µ2},

which is obtained from the solution of the inequalities

LF−−
h2(x1, µ2) = LF+−

h2(x1, µ2) = 1− x1 − µ2 > 0,

and
LF−+h2(x1, µ2) = LF++h2(x1, µ2) = 1− x1 − (1 + c2)µ2 < 0.

According to the previous section, by constraint (2.2.9), Σas
1 ∩Σas

2 = {(µ1, µ2)} occurs
whenever the inequalities

1− (1 + c1)µ1 − µ2 < 0 < 1− µ1 − µ2 and 1− µ1 − (1 + c2)µ2 < 0 < 1− µ1 − µ2.

are satisőed. For this, the system parameters must satisfy the constraint:

Max

[
1− µ1

1 + c2
; 1− (1 + c1)µ1

]
< µ2 < 1− µ1. (2.3.8)

The ends of the sliding segment Σas
1 are tangency points of the system orbits with Σ1,

and such points have coordinates given by

T−
1 = (µ1, 1− µ1) and T+

1 = (µ1, 1− (1 + c1)µ1) .

Similarly, the ends of the sliding segment Σas
2 are tangency points of the system orbits

with Σ2, and such points have coordinates given by

T−
2 = (1− µ2, µ2) and T+

2 = (1− (1 + c2)µ2, µ2) .

Obviously, the sliding dynamics in Σas
1 and Σas

2 can be extended to its extremes. In this
case we can consider the sliding dynamics in Σ1 acting in all Σas

1 ∪ T−
1 ∪ T+

1 , and in Σ2

acting in all Σas
2 ∪ T−

2 ∪ T+
2 .

We assume that the condition (2.3.8) is satisőed. Next, we identify which tangency
points T−

1 , T+
1 , T−

2 and T+
2 are associated with the vector őelds of (2.3.5). See Figure

2.4.

(i) Vector őeld F++ is transverse to the switching boundaries Σ1 and Σ2, because
1− (1 + c2)µ2 < µ1 ≤ x1 and 1− (1 + c1)µ1 < µ2 ≤ x2, and therefore

LF++h1(µ1, x2) = a(1− (1 + c1)µ1 − x2) < 0,

LF++h2(x1, µ2) = 1− x1 − (1 + c2)µ2 < 0.

(ii) Vector őeld F−− is transverse to the switching boundaries Σ1 and Σ2, because
x1 ≤ µ1 < 1− µ2, x2 ≤ µ2 < 1− µ1, and therefore

LF−−
h1(µ1, x2) = a (1− µ1 − x2) > 0,

LF−−
h2(x1, µ2) = 1− x1 − µ2 > 0.
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(iii) Vector őeld F−+ is tangent to Σ1 at the point T−
1 and it is tangent to Σ2 at T+

2 .
Both tangency points are classiőed as invisible fold, because

LF−+h1
(
T−
1

)
= 0, L2

F−+
h1
(
T−
1

)
= ac2(1− µ1) > 0,

LF−+h2
(
T+
2

)
= 0, L2

F−+
h2
(
T+
2

)
= −ac2µ2 < 0.

(iv) Vector őeld F+− is tangent to Σ1 at T+
1 and it is tangent to Σ2 at T−

2 . Both
tangency points are classiőed as invisible fold, because

LF+−
h1
(
T+
1

)
= 0, L2

F+−
h1
(
T+
1

)
= −ac1µ1 < 0,

LF+−
h2
(
T−
2

)
= 0, L2

F+−
h2
(
T−
2

)
= ac1(1− µ2) > 0.

x2

x10

1

1µ1

Σ1

µ2 Σ2

T+
1

T−
1

T+
2

T−
2

D1 : F++D2 : F−+

D3 : F−−
D4 : F+−

Figure 2.4: A geometric illustration of vector őelds of the system (2.3.5)-(2.3.7) assuming
b1 = b2 = 0 and (2.3.8).

Regular equilibria and stability

Below we describe the equilibria of the vector őelds F++, F−+, F−− and F+−.

(i) Vector őeld F−− has no equilibrium point. But there is an invariant line of equation
x2 = 1− x1. Note that dx1

dτ
> 0 and dx2

dτ
> 0 for x2 < 1− x1, whereas dx1

dτ
< 0 and

dx2

dτ
< 0 for x2 > 1 − x1. Therefore, this invariant line is attracting. Following

(2.3.8) we take µ2 < 1− µ1 and, thus, such a line does not cut the region D3.

(ii) Vector őeld F−+ has an equilibrium point at (1, 0). As (1, 0) /∈ D2, it is a virtual
equilibrium.
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(iii) Vector őeld F+− has an equilibrium point at (0, 1). As (0, 1) /∈ D4, it is a virtual
equilibrium.

(iv) Vector őeld F++ has an equilibrium point at (x1, x2), where

x1 =
1

1 + c1 +
c1
c2

and x2 =
1

1 + c2 +
c2
c1

.

Note that x1 < 1 and x2 < 1. Moreover, 1−x1−x2 = c1c2
c1+c2+c1c2

> 0, then (x1, x2) is
located in the region below the straight line x2 = 1−x1. This equilibrium is virtual if
µ1 > x1 (since h1(x1, x2) = x1−µ1 < 0) or if µ2 > x2 (since h2(x1, x2) = x2−µ2 < 0).
In the case µ1 < x1 and µ2 < x2 this equilibrium becomes real. However, the
condition (2.3.8) does not allow the existence of a real equilibrium.

Both regular equilibria are classiőed as asymptotically stable node, since

Det[A] = a(c1u1(1 + c2u2) + c2u2) > 0,

Tr[A] = −1− a(1 + c1u1)− c2u2 < 0,

∆ = Tr[A]2 − 4Det[A] = 4a+ (−1 + a(1 + c1u1)− c2u2)
2 > 0,

where A is the Jacobian matrix of system (2.3.1)-(2.3.2) with b1 = b2 = 0 and for u1 and
u2 not simultaneously null. So the eigenvalues of A are real negative and distinct.

Sliding dynamics and pseudo-equilibria

Sliding motion occurs on segment lines deőned by T+
1 ∪ Σas

1 ∪ T−
1 and T+

2 ∪ Σas
2 ∪ T−

2 .
Tangency points T±

1 and T±
2 are of the invisible fold type whenever the condition (2.3.8)

is satisőed. Then, if an orbit system touches Σ1 (or Σ2) at a point of Σas
1 (or Σas

2 ) for
some time τ = τ0 > 0, it remains in Σas

1 (or Σas
2 ) for all τ > τ0, sliding to a stable

equilibrium. We will show below that this stable equilibrium is unique and appears at the
point (µ1, µ2) ∈ Σas

1 ∩ Σas
2 , which is called pseudo-equilibrium of system (2.3.5)-(2.3.7).

The sliding vector őeld deőned in Σ1 is given by

Fs1(µ1, x2) =

[
0

1− µ1 − (1 + c2u2)x2

]

and, therefore, the sliding dynamics in Σ1 is described by the piecewise linear one-
dimensional system

dx2
dτ

=

{
f+(x2) = 1− µ1 − (1 + c2)x2 if x2 > µ2,
f−(x2) = 1− µ1 − x2 if x2 < µ2.

(2.3.9)

Point x2 = µ2 is a single stable pseudo-equilibrium of (2.3.9) only for (µ1, µ2) satisfying
the condition (2.3.8), because only then we get f+(x2) < 0 for all x2 > µ2 and f−(x2) > 0
for all x2 < µ2. In this case, point x2 = µ2 is reached in őnite time for any initial condition
in Σas

1 ∪ T+
1 ∪ T−

1 .
The sliding vector őeld deőned in Σ2 is given by

Fs2(x1, µ2) = a

[
1− (1 + c1u1)x1 − µ2

0

]
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and, therefore, the sliding dynamics in Σ2 is described by the piecewise linear one-
dimensional system

dx1
dτ

=

{
g+(x1) = a(1− (1 + c1)x1 − µ2) if x1 > µ1,
g−(x1) = a(1− x1 − µ2) if x1 < µ1.

(2.3.10)

Point x1 = µ1 is a single stable pseudo-equilibrium of (2.3.9) only for (µ1, µ2) satisfying
the condition (2.3.8), because only then we get g+(x1) < 0 for all x1 > µ1 and g−(x1) > 0
for all x1 < µ1. In this case, point x1 = µ1 is reached in őnite time for any initial condition
in Σas

2 ∪ T+
2 ∪ T−

2 .
Therefore, (µ1, µ2) is the only pseudo-equilibrium of system (2.3.5)-(2.3.7) for b1 =

b2 = 0, and it is globally stable in T+
1 ∪Σas

1 ∪T−
1 ∪T+

2 ∪Σas
2 ∪T−

2 whenever the condition
(2.3.8) is satisőed.

Global analysis and simulations

We assume system (2.3.5)-(2.3.7) under the condition (2.3.8) and with b1 = b2 = 0.
We include to the state space D the coordinate axes x1 and x2, being redeőned as

D = {(x1, x2) ∈ R
2 : 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1}.

For any initial condition in D the system trajectory remains in Int[D] for all τ > 0.
In fact, since the vector őelds of system (2.3.5)-(2.3.7) point into square D everywhere on
its sides, except at the vertices (1, 0) and (0, 1) where the acting vector őeld is tangent;
see Figure 2.4. This is veriőed by analysing the signal of the vector components

F++(1, x2) =

[
−a (c1 + x2)
−(1 + c2)x2

]
, F++(x1, 1) =

[
−a(1 + c1)x1
−x1 − c2

]
,

F−+(0, x2) =

[
a (1− x2)

1− (1 + c2)x2

]
, F−+(x1, 1) =

[
−ax1

−x1 − c2

]
,

F−−(0, x2) =

[
a(1− x2)
1− x2

]
, F−−(x1, 0) =

[
a(1− x1)
1− x1

]
,

F+−(x1, 0) =

[
a (1− (1 + c1)x1)

1− x1

]
, F+−(1, x2) =

[
−a (c1 + x2)

−x2

]
.

Figure 2.4 illustrates, based on the results obtained so far, how the vector őelds of the
system (2.3.5)-(2.3.7) are organized in D. Such an illustration helps us understand how
the trajectories of system (2.3.5)-(2.3.7) evolve inside D. For any initial condition x0 in
the region D1 the system trajectory intersects the switching boundary: (i) Σ1; or (ii) Σ2,
at a crossing or sliding point x1; and (iii) there is a particular initial condition that leads
directly to the pseudo-equilibrium point (µ1, µ2). If x1 is a crossing point the trajectory
goes to region (i) D2 or (ii) D4. If x1 is a sliding point then the trajectory starts to slide
on (i) Σ1 or (ii) Σ2, towards the point (µ1, µ2); or (iii) remains at (µ1, µ2). The same is
true for initial conditions in D3. For any initial condition in the region D2 the system
trajectory intersects the switching boundary Σ1, or Σ2, at a sliding point and then slides
on Σ1, or Σ2, towards the point (µ1, µ2). Also, there is a particular initial condition that
leads directly to (µ1, µ2). The same is true for initial conditions in D4.
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Note that the tangency points, which mark the ends of the sliding segments, are of
the invisible fold type. Therefore, any trajectory that goes into sliding motion no longer
comes out (except for a brief moment after a sudden small change in the reference values
µi). In addition, all sliding trajectories tend to the point (µ1, µ2), and in őnite time since
this point is not a regular equilibrium of system (2.3.5)-(2.3.7) nor sliding systems (2.3.9)
and (2.3.10).

Based on the study carried out in this subsection, we enunciate the following Lemma,
whose proof is obtained directly from the previous results presented.

Lemma 2.3.1. Assume in system (2.3.5)-(2.3.7) that b1 = b2 = 0 and that (2.3.8) is
satisőed. Then the point (µ1, µ2) is the global attractor of this system, being achieved in
őnite time.

Example 1. Figure 2.5 shows simulation results of the system (2.3.5)-(2.3.7) for some
initial conditions in D. In (a) we visualize the system phase portrait and in (b) the time
response of each state variable. The constraint given in (2.3.8), which ensures global
stability for the pseudo-equilibrium (µ1, µ2), is geometrically represented by the region
within the triangle in Figure 2.5(a), with the sides deőned by the blue dashed lines. The
region inside this triangle we call the Operating Region in (x1, x2)-plane and (µ1, µ2) is
a global attractor only when located in that. Obviously, the global stability is preserved if
(µ1, µ2) is exactly on one side of this triangle. However, this is a critical situation, since
a disturbance in system parameter values may cause the system to operate at a different
point than the desired one (µ1, µ2). Therefore, we discard this situation and we consider
the operating region only inside the triangle shown. In Figure 2.5(b), time solutions
of (2.3.5)-(2.3.7) are represented in different colors for different initial conditions. We
observed in these simulations that the sliding trajectories have a small oscillation around
the operating point (µ1, µ2). This is due to the introduction of a small hysteresis band,
required for the implementation of the sliding mode controller.
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(a) Phase portrait.
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Figure 2.5: Simulations of the system (2.3.5)-(2.3.7) assuming c1 = 2, c2 = 1, b1 = b2 = 0,
a = 1 and input references µ1 = 0.3 and µ2 = 0.5. A hysteresis band of 0.005 is considered.
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2.3.2 Case Study for b1 > 0 and b2 > 0 (Pi > 0)

The sliding segments Σas
1 ⊂ Σ1 and Σas

2 ⊂ Σ2 are determined by imposing the sliding
motion conditions on the system (2.3.5)-(2.3.7), that is,

LF−+h1(µ1, x2) = LF−−
h1(µ1, x2) = a

(
1− µ1 −

b1
µ1

− x2

)
> 0,

LF++h1(µ1, x2) = LF+−
h1(µ1, x2) = a

(
1− (1 + c1)µ1 −

b1
µ1

− x2

)
< 0,

and

LF−−
h2(x1, µ2) = LF+−

h2(x1, µ2) = 1− x1 − µ2 −
b2
µ2

> 0,

LF−+h2(x1, µ2) = LF++h2(x1, µ2) = 1− x1 − (1 + c2)µ2 −
b2
µ2

< 0.

This way we get the sliding segments

Σas
1 =

{
x1 = µ1, 1− (1 + c1)µ1 −

b1
µ1

< x2 < 1− µ1 −
b1
µ1

}
,

Σas
2 =

{
x2 = µ2, 1− (1 + c2)µ2 −

b2
µ2

< x1 < 1− µ2 −
b2
µ2

}
.

Therefore, Σas
1 ∩ Σas

2 = {(µ1, µ2)} occurs only if the system parameters fulől

µ1 (1− (1 + c1)µ1 − µ2) < b1 < µ1 (1− µ1 − µ2) , (2.3.11)

µ2 (1− (1 + c2)µ2 − µ1) < b2 < µ2 (1− µ1 − µ2) . (2.3.12)

Remember that 1− µ1 − µ2 > 0. According to Theorem 2.2.1, conditions (2.3.11) and
(2.3.12) ensure local stability of the pseudo-equilibrium point (µ1, µ2). In fact, since there
is ε1 > 0 such that for any (x1, µ2) ∈ Σas

2 with |x1 − µ1| < ε1 we get

1

a

dx1
dτ

(x1, µ2)|u1=0 = 1− µ2 − x1 −
b1
x1

> 0,

1

a

dx1
dτ

(x1, µ2)|u1=1 = 1− µ2 − (1 + c1)x1 −
b1
x1

< 0.

Similarly, there is ε2 > 0 such that for any (µ1, x2) ∈ Σas
1 with |x2 − µ2| < ε2 we get

dx2
dτ

(µ1, x2)|u2=0 = 1− µ1 − x2 −
b2
x2

> 0,

dx2
dτ

(µ1, x2)|u2=1 = 1− µ1 − (1 + c2)x2 −
b2
x2

< 0.

Figure 2.6 illustrates how vector őelds are directed in the neighborhood of the point
(µ1, µ2). Note that the sliding vector őelds F−

s1 and F+
s1, as well as F−

s2 and F+
s2, are anti

collinear at (µ1, µ2). Moreover, (µ1, µ2) is not a regular equilibrium point of any of the
vector őelds involved. Then, this pseudo-equilibrium point is reached in őnite time.

55



µ2 Σas
2

µ1

Σas
1

F
−
s2 F

+
s2

F
−
s1

F
+
s1

µ1 − ε1 µ1 + ε1

µ2 − ε2

µ2 + ε2

D1 : F++D2 : F−+

D3 : F−− D4 : F+−

Figure 2.6: Local stability analysis at (µ1, µ2).

Now, we consider in system (2.3.5)-(2.3.7) that a = 1, b1 = b2 = b and c1 = c2 = c.
Then, the local stability condition at (µ1, µ2), given in (2.3.11)-(2.3.12), is rewritten as

Max[µ1(p− cµ1), µ2(p− cµ2)] < b < Min[µ1p, µ2p]. (2.3.13)

where p = p(µ1, µ2) = 1−µ1 −µ2. The maximum interval for the variation of b is ]0, 1/8[
and occurs for (µ1, µ2) = (1/4, 1/4) and c ≥ 2.

The domain of operation Ω is a subset of D such that for any (µ1, µ2) ∈ Ω the
constraint (2.3.13) is satisőed. Thus, Ω = Ω1 ∩ Ω2 with

Ω1 =

{
(x1, x2) ∈ D : 0 < 1− x1 − x2 −

b

x1
< cx1

}
,

Ω2 =

{
(x1, x2) ∈ D : 0 < 1− x1 − x2 −

b

x2
< cx2

}
.

For any b ∈]0, 1/8[ we have that Ω is not empty.
The set Ω determines in the (x1, x2)-plane two disjunct regions or a single region, as

shown in Figures 2.7(a)-(b) and 2.7(c) by the painted areas. The őrst scenario occurs if
b ≤ 1

4(2+c)
, and the second if b > 1

4(2+c)
. The change from the őrst scenario to the second

occurs simultaneously with the disappearance of the equilibria of the vector őeld F++.
Such equilibria appear at the intersection points of the red curves shown in Figure 2.7,
represented by the numbers 3, 4, 5 and 7. Intersection points of the green curves indicate
the equilibria of the vector őeld F−−, represented by the numbers 1 and 10. While the
points of intersection between a red and a green curve indicate the equilibria of the vector
őelds F−+ (represented by the numbers 2 and 8) and F+− (represented by the numbers 6
and 9).
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Figure 2.7: Domain of operation for the system (2.3.5)-(2.3.7). To ensure local stability
at the desired operating point (µ1, µ2), we must choose values of µ1 and µ2 within the
set Ω, represented by the painted areas.

Naturally, for a given value of b such that 0 < b < 1/8, the domain of operation Ω
has maximum area when there are only the two equilibria of the vector őeld F−−. This
occurs for c ≥ c∗(b), with c∗ deőned above in the item (iv), which is part of the following
analysis on the existence and stability of the regular equilibria of system (2.3.5)-(2.3.7).
For the study of the equilibrium stability we use the Jacobian matrix given by

J(u1, u2) =

(
−1− cu1 +

b
x2
1

−1

−1 −1− cu2 +
b
x2
2

)
.

This matrix is symmetric and thus its eigenvalues are real. Therefore, the equilib-
rium in analysis will be a saddle if Det[J(u1, u2)] < 0, but if Det[J(u1, u2)] > 0 and
Tr[J(u1, u2)] < 0 (resp. Tr[J(u1, u2)] > 0) it will be a stable (resp. unstable) node. The
following statements hold:

(i) Vector őeld F−− (u1 = u2 = 0) has two equilibrium points, given by x̂± = (x̂±, x̂±)
with

x̂± =
1

4

(
1±

√
1− 8b

)
,
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whenever b < 1/8.

If the condition of local stability at the pseudo-equilibrium (µ1, µ2) is satisőed, that
is, the inequalities in (2.3.13) are true, then the regular equilibria x̂± are deőned
because b < Min[µ1p, µ2p] < 1/8. Moreover, under such stability condition we
have x̂− real and x̂+ virtual. In order to prove this we can assume, without loss of
generality, that µ1 ≤ µ2. Then, we reduce both inequalities h2(x̂

−) = x̂− − µ2 ≤
h1(x̂

−) = x̂− − µ1 < 0 and h1(x̂
+) = x̂+ − µ1 > 0 to form b < µ1(1− 2µ1), which is

true since µ1(1− µ1 − µ2) ≤ µ1(1− 2µ1) whenever µ1 ≤ µ2.

To determine the stability of x̂± we consider

Det[J(0, 0)]
∣∣∣
x1=x2

=
b(b− 2x22)

x42
and Tr[J(0, 0)]

∣∣∣
x1=x2

=
2(b− x22)

x22
.

Taking x2 = x̂− we obtain (x̂−)2 < b/2 < b. Then x̂− is an unstable node. And
for x2 = x̂+ we obtain (x̂+)2 > b/2. Then x̂+ is a saddle. Evidently, for b = 1/8 a
saddle-node bifurcation occurs.

(ii) Vector őeld F++ (u1 = u2 = 1) has a maximum of four equilibria, namely x±
α =

(α±, α±) and x±
β =

(
β±, b

cβ±

)
with

α± =
1±

√
1− 4(2 + c)b

2(2 + c)
and β± =

c±
√
c(c− 4b(1 + c)2)

2c(1 + c)
,

being x±
α deőned for b ≤ 1

4(2+c)
and x±

β deőned for b ≤ c
4(1+c)2

. If the condition

of local stability at (µ1, µ2) is satisőed, then these equilibria are real whenever
α− > Max[µ1, µ2] or virtual otherwise.

To determine the stability of x±
α we consider

Det[J(1, 1)]
∣∣∣
x1=x2

=
c(2 + c)

x42

(
x22 −

b

c

)(
x22 −

b

2 + c

)
,

T r[J(1, 1)]
∣∣∣
x1=x2

= −2(1 + c)

x22

(
x22 −

b

1 + c

)
.

Taking x2 = α− we obtain (α−)2 < b
2+c

< b
1+c

< b
c

whenever b < 1
4(2+c)

. Then x−
α

is an unstable node. Taking x2 = α+ we obtain (α+)2 > b
c
> b

1+c
> b

2+c
whenever

b < c
4(1+c)2

. But, if c
4(1+c)2

< b < c
4(1+c)

we obtain b
c
> (α+)2 > b

2+c
. Then x+

α is a

stable node for b < c
4(1+c)2

and a saddle for c
4(1+c)2

< b < 1
4(2+c)

.

Regarding x±
β we obtain

Det[J(1, 1)]
∣∣∣
x2=

b
cx1

= −(1 + c) (b− cx21)
2

bx21
< 0,

for both x1 = β+ and x1 = β−, whenever b < c
4(1+c)2

. Then x+
β and x−

β are saddle.

A pitchfork bifurcation occurs for b = c
4(1+c)2

. In fact, just note that x+
α (stable

node) and x±
β (saddle) coexist for b < c

4(1+c)2
; both collide for b = c

4(1+c)2
; and
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x±
β disappear and x+

α (saddle) remains. Moreover, x+
α and (saddle) x−

α (unstable

node) coexist for b < 1
4(2+c)

; collide for b = 1
4(2+c)

; and disappear b > 1
4(2+c)

. Then a

saddle-node bifurcation occurs for b = 1
4(2+c)

.

(iii) Equilibria of the vector őeld F+− (u1 = 1, u2 = 0) fulőll the equations

1− (1 + c)x1 − x2 −
b

x1
= 0,

1− x1 − x2 −
b

x2
= 0.

Isolating x1 in the second equation and replacing it in the őrst, and then isolating
the parameter c, we obtain

c(x2) =
b(1− 2x2 − b/x2)

(1− x2 − b/x2)2x2
, (2.3.14)

deőned for x2 ∈ [x̂−, x̂+]. From the graph of (2.3.14) on the (x2, c)-plane, we can
identify the number of equilibria of F+−. Graphs of this function are plotted in
Figure 2.8(a) for some values of parameter b, showing that for each c in the image
set there are always two possible values for x2. So F+− has a maximum of two
equilibria.

Graph of (2.3.14) is illustrated in the Figure 2.8(b), where we highlight its zeros at
x̂− and x̂+, and the maximum point at (x̂∗, c∗). Note that 0 < x̂− < 1/4 < x̂+ < 1/2
for 0 < b < 1/8. Therefore, assuming 0 < b < 1/8, there are two equilibrium points
for c ∈]0, c∗[, they collide for c = c∗ and disappear for c > c∗, with c∗ = c(x∗) and

x∗ =
1

12

(
− 3

√
3

3

√
−72b+ 2

√
3
√

108b(4b− 1) + 7 + 9 +
32/3

3

√
−72b+ 2

√
3
√

108b(4b− 1) + 7 + 9
+ 3

)
.

In fact, since the derived function

c′(x2) =
b(b− x2(x2(4x2 − 3) + 1))

((1− x2 − b/x2)x2)3

has only one real zero, that occurs at x2 = x∗.

Equilibrium point associated to the left branch of the graph of (2.3.14) shown in
Figure 2.8(b) (solid line) is an unstable node, while the equilibrium point associated
to the right branch (dashed line) is a saddle. At the maximum value c = c∗ a
saddle-node bifurcation occurs. To prove these statements we use

Det[J(1, 0)]
∣∣∣
(x1,c)=(1−x2−b/x2,c(x2))

= c′(x2) (1− x2 − b/x2) , (2.3.15)

Tr[J(1, 0)]
∣∣∣
(x1,c)=(1−x2−b/x2,c(x2))

= −2 +
b (b2 − 2bx2 + (1 + 3b)x22 − 3x32 + 4x42)

x42(1− x2 − b/x2)2
,

(2.3.16)

where 1−x2−b/x2 > 0 for all (x2, b) such that x2 ∈ [x̂−, x̂+] and b ∈]0, 1/8[. Figure
2.8(c) helps us to classify the types of equilibria involved. Note that Det[J(1, 0)] = 0
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Figure 2.8: Existence and stability of equilibria of the vector őeld F+−. (a) Graphics of
(2.3.14). (b) Bifurcation diagram in the (x2, c)-plane. (c) Det(J(1, 0)) (eq. (2.3.15)) and
Tr(J(1, 0)) (eq. (2.3.16)) in the (x2, b)-plane.

(dashed line) iff c′(x2) = 0, that occurs at x2 = x∗(b) for all b ∈]0, 1/8[. We have
Det[J(1, 0)] < 0 for all x2 > x∗, while Det[J(1, 0)] > 0 and Tr[J(1, 0)] > 0 for all
x2 < x∗.

We denote by x̃+ = (x̃+1 , x̃
+
2 ) the saddle equilibrium and by x̃− = (x̃−1 , x̃

−
2 ) the

unstable node equilibrium. If x̃+1 > µ1 and x̃+2 < µ2 then x̃+ is real. If x̃+1 < µ1 or
x̃+2 > µ2 then x̃+ is virtual. If x̃−1 > µ1 and x̃−2 < µ2 then x̃− is real. If x̃−1 < µ1 or
x̃−2 > µ2 then x̃− is virtual. If x̃−1 > µ1 and x̃+2 < µ2 then both x̃− and x̃+ are real.
If x̃+1 < µ1 or x̃−2 > µ2 then both x̃− and x̃+ are virtual. All of these scenarios are
possible even when restricted to the condition of local stability at (µ1, µ2) given in
(2.3.13).

(iv) Vector őeld F−+ (u1 = 0, u2 = 1) has the same equilibria as the vector őeld F+−,
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but with coordinates exchanged since

F−+(x1, x2) =

[
0 1
1 0

]
F+−(x2, x1).

We assume (2.3.13) hold and α−(c, b) < Max[µ1, µ2] (equilibria of F++ are virtual).
The basin of attraction Ψ for the pseudo-equilibrium (µ1, µ2) is a subset of D such that for
any initial condition (x1(0), x2(0)) = (x10, x20) ∈ Ψ the trajectory of system (2.3.5)-(2.3.7)
tends to (µ1, µ2). In particular, the reach time is őnite since (µ1, µ2) is not an equilibrium
of any of the vector őelds involved, including sliding vector őelds. Set Ψ is represented in
Figure 2.9 by the region in the (x1, x2)-plane bounded by the purple lines.
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Figure 2.9: Phase portraits of system (2.3.5)-(2.3.7) assuming a = 1, b1 = b2 = 0.01,
c1 = c2 = 1/2 in (a)-(b) and c1 = c2 = 3 in (c).

The upper limits for the x1 and x2 coordinates deőned by Ψ are the same as for D,
occurring at x1 = 1 and x2 = 1. Inferiorly, the x1 and x2 coordinates are bounded by two
curve segments formed from system orbits (see Figure 2.9), and the following may occur:

(a) If F−+ (resp. F+−) has no equilibria or its equilibria are virtual, then the lower
limit for the x1 (resp. x2) coordinate is given by a curve segment formed by the
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union between the piece of orbit of F−+ (resp. F+−) with extremes in (x∗1, 1) (resp.
(1, x∗2)) and (x∗∗1 , µ2) (resp. (µ1, x

∗∗
2 )), the latter being an equilibrium point of the

sliding vector őeld deőned in Σ2 (resp. Σ1), the backward orbit of F−− starting at
(x∗∗1 , µ2) (resp. (µ1, x

∗∗
2 )) and the equilibrium point x̂− of F−−. See Figure 2.9(c).

(b) Based on the assumptions made at the beginning of this paragraph, the vector őeld
F−+ (resp. F+−) can present a real saddle equilibrium. In this case, the curve
segment is formed by the union between the saddle point, the trajectories belonging
to the stable manifold of the saddle, the backward orbit of F−− starting at (x∗∗∗1 , µ2)
(resp. (µ1, x

∗∗∗
2 )), this being the point of intersection of the stable manifold of the

saddle with the switching boundary Σ2 (resp. Σ1), and the equilibrium point x̂− of
F−−. See Figure 2.9(a).

2.4 Study of the sliding dynamics in R
3 with two-

boundaries

In this section we consider the system (2.2.1) in R
3 with two switching boundaries,

taking into account the dynamics of the equivalent inductor. Moreover, we consider
C1 = C2, R1 = R2, P1 = P2 and Vr1 = Vr2 . We will analyze the sliding dynamics of
this system, with special attention to the sliding vector őeld at the intersection of the
switching boundaries Σ1 and Σ2, located at VC1 = Vr1 and VC2 = Vr2 , respectively. For
this, we take the equations of (2.2.1) in a normalized form, using the coordinates and
parameters given in Table 2.1, redeőning the state variables as x1 = x and x2 = y, and
we include the state variable z = L

RCnVdc
iL and the parameter r = R2Cn

L
. The normalized

parameters are assumed as a = 1, b1 = b2 = b, c1 = c2 = c and µ1 = µ2 = µ, for
0 < µ < 1/2.

Next, we write the normalized system as a 3D-DPWS system, namely

d

dτ



x
y
z


 =





F++(x, y, z), if (x, y, z) ∈ D1

F−+(x, y, z), if (x, y, z) ∈ D2

F−−(x, y, z), if (x, y, z) ∈ D3

F+−(x, y, z), if (x, y, z) ∈ D4

, (2.4.1)

composed by the vector őelds

F++(x, y, z) =



rz − cx− b

x

rz − cy − b
y

1− x− y − rz


 , F−+(x, y, z) =




rz − b
x

rz − cy − b
y

1− x− y − rz


 , (2.4.2)

F−−(x, y, z) =




rz − b
x

rz − b
y

1− x− y − rz


 and F+−(x, y, z) =



rz − cx− b

x

rz − b
y

1− x− y − rz


 , (2.4.3)

being D = {x = (x, y, z) ∈ R
3 : 0 < x, y ≤ 1, z ≥ 0} the normalized state space. Then,

D = Σ1 ∪ Σ2 ∪ D1 ∪ D2 ∪ D3 ∪ D4, where

Σ1 = {x ∈ D : h1(x) = x− µ},
Σ2 = {x ∈ D : h2(x) = y − µ},
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and

D1 = {x ∈ D : h1(x) > 0 and h2(x) > 0},
D2 = {x ∈ D : h1(x) < 0 and h2(x) > 0},
D3 = {x ∈ D : h1(x) < 0 and h2(x) < 0},
D4 = {x ∈ D : h1(x) > 0 and h2(x) < 0}.

System (2.4.1)-(2.4.3) presents sliding motion in Σ1 ∪ Σ2, provided that the sliding
conditions at Σ1 and Σ2 are satisőed, given by

LF++h1(µ, y, z) < 0 < LF−+h1(µ, y, z),

LF+−
h1(µ, y, z) < 0 < LF−−

h1(µ, y, z),

and

LF++h2(x, µ, z) < 0 < LF+−
h2(x, µ, z),

LF−+h2(x, µ, z) < 0 < LF−−
h2(x, µ, z),

respectively, with LF++h1(µ, y, z) = LF++h2(x, µ, z) = LF+−
h1(µ, y, z) = LF−+h2(x, µ, z) =

rz− cµ− b
µ

and LF−−
h1(µ, y, z) = LF−−

h2(x, µ, z) = LF−+h1(µ, y, z) = LF+−
h2(x, µ, z) =

rz − b
µ
. So, there are two attractive sliding regions, namely

Σas
1 =

{
x ∈ Σ1 :

b

µ
< rz <

b

µ
+ cµ

}
,

Σas
2 =

{
x ∈ Σ2 :

b

µ
< rz <

b

µ
+ cµ

}
.

In Σas
1 the sliding vector őeld, denoted by Fs1, is piecewise smooth and has two vector

őelds which are calculated by formula

F
j
s1 =

LF−j
h1 · F+j − LF+j

h1 · F−j

LF−j
h1 − LF+j

h1
,

for j = + if y > µ and for j = − if y < µ. In this way, for x = µ we obtain

Fs1(µ, y, z) =

{
F+

s1(µ, y, z), if y > µ
F−

s1(µ, y, z), if y < µ
,

where

F+
s1(µ, y, z) =




0
rz − b

y
− cy

1− µ− y − rz


 and F−

s1(µ, y, z) =




0
rz − b

y

1− µ− y − rz


 .

Vector őelds F+
s1 and F−

s1 can have two equilibrium points each. For the study of the
stability of these equilibria, we can consider the vector őelds

f+s1(y, z) =

[
rz − b

y
− cy

1− µ− y − rz

]
and f−s1(y, z) =

[
rz − b

y

1− µ− y − rz

]
,

composed of the last two components of F+
s1 and F−

s1, respectively. The following
statements describe the characteristics of local dynamics of F+

s1 and F−
s1.
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(i) Vector őeld F+
s1 has two equilibria, given by q+

1,2 = (µ, ỹ+1,2, (1− µ− ỹ+1,2)/r) with

ỹ+1,2 =

√
ν+sn
1 + c

(
1±

√
1− b

ν+sn

)
, ν+sn =

(1− µ)2

4(1 + c)
,

provided that b < ν+sn. We have ỹ+2 ≥
√

ν+sn
1+c

≥ ỹ+1 , being ỹ+2 = ỹ+1 iff b = ν+sn. From

a simple analysis of the sign of the determinant and trace of the Jacobian matrix of
f+s1, given by

J+
s1(q

+
1,2) =


2(1 + c)

(√
ν+sn
1+c

− ỹ+1,2

)
+ ỹ+1,2 rỹ+1,2

−ỹ+1,2 −rỹ+1,2




and

Det
[
J+
s1(q

+
1,2)
]
= 2r(1 + c)

(
ỹ+1,2 −

√
ν+sn
1+c

)
ỹ+1,2,

Tr
[
J+
s1(q

+
1,2)
]
= −2(1 + c)

(
ỹ+1,2 −

√
ν+sn
1+c

)
− (r − 1)ỹ+1,2,

we can conclude that if b < ν+sn then:

• q+
1 is a saddle equilibrium;

• q+
2 is a stable equilibrium whenever r > 1− 2(1+c)

ỹ+2

(
ỹ+2 −

√
ν+sn
1+c

)
.

(ii) Vector őeld F−
s1 has two equilibria, namely q−

1,2 = (µ, ỹ−1,2, (1− µ− ỹ−1,2)/r) with

ỹ−1,2 =
√
ν−sn

(
1±

√
1− b

ν−sn

)
, ν−sn =

(1− µ)2

4
,

provided that b < ν−sn. We have ỹ−2 ≥
√
ν−sn ≥ ỹ−1 , being ỹ−2 = ỹ−1 iff b = ν−sn. From

a simple analysis of the sign of the determinant and trace of the Jacobian matrix of
f−s1, given by

J−
s1(q

−
1,2) =

[
2
(√

νsn − ỹ−1,2
)
+ ỹ−1,2 rỹ−1,2

−ỹ−1,2 −rỹ−1,2

]

and

Det
[
J−
s1(q

−
1,2)
]
= 2r

(
ỹ−1,2 −

√
ν−sn

)
ỹ−1,2,

Tr
[
J−
s1(q

−
1,2)
]
= −2

(
ỹ−1,2 −

√
ν−sn

)
− (r − 1)ỹ−1,2,

we can conclude that if b < ν−sn then:

• q−
1 is a saddle equilibrium;

• q−
2 is a stable equilibrium whenever r > 1− 2

ỹ−2

(
ỹ−2 −

√
ν−sn
)
.
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In the following example we show two main scenarios for the dynamics in Σas
1 , taking

into account that in practice r must be equal to or greater than 1. In addition, we
consider the cases where the system parameters satisfy the condition

µ(1− (2 + c)µ) < b < µ(1− 2µ), (2.4.4)

being that (2.4.4) is equivalent to the local stability condition established in Theorem
2.2.1 after the normalization of the variables and parameters given in Table 2.1 and the
considerations on the normalized parameters assumed in this section.

Example 2. We assume that (2.4.4) is satisőed and r ≥ 1. Figure 2.10 shows two
main non-critical scenarios1 for the dynamics in Σas

1 . Such scenarios occur for µ ≥ 1
3+2c

.

In fact, because we will have ỹ+1 < ỹ+2 < µ and ỹ−1 < µ < ỹ−2 , with q−
1,2 existing, but

q−
2 always virtual, and q+

1,2 virtual when existing. The saddle equilibrium q−
1 is real if

ỹ−1 > 1− (1 + c)µ− b
µ

(as in Fig. (a), red dot in Σas−
1 ) or virtual otherwise (as in Fig.

(b)). Even when q−
1 is virtual, it is a stable manifold cuts the Σas−

1 region keeping it
divided into two parts: one where the trajectories reach the switching boundary at y = µ;
and another where they do not (i.e. the trajectories). The green line at y = µ represents
the switching boundary between the vector őelds F−

s1 and F+
s1. This line is locally attractive

and, in it, a sliding motion occurs and there is a stable equilibrium (blue dot). Naturally,
the sliding dynamics in this line is governed by the third component of F−

s1 and F+
s1 (which

are the same) at y = µ.
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Figure 2.10: Phase portraits of Fs1 restricted to Σas
1 . In (a) we use r = 1, b = 1/16, c = 3

and µ = 1/4; in (b), r = 1, b = 1/16, c = 3/2 and µ = 1/4.

In Σas
2 the sliding vector őeld, denoted by Fs2, also is piecewise smooth and has two

vector őelds which are calculated by formula

Fi
s2 =

LFi−
h2 · Fi+ − LFi+

h2 · Fi−
LFi−

h2 − LFi+
h2

,

1They are not altered by slight variations in the parameters.
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for i = + if x > µ and for i = − if x < µ. Thus, we obtain

Fs2(x, µ, z) =

{
F+

s2(x, µ, z), if x > µ
F−

s2(x, µ, z), if x < µ
,

where

F+
s2(x, µ, z) =




rz − b
x
− cx

0
1− µ− x− rz


 and F−

s2(x, µ, z) =




rz − b
x

0
1− µ− x− rz


 .

Vector Fields F+
s2 and F−

s2 have the same dynamic behavior as the vector őelds F+
s1 and

F−
s1, respectively. Thus, the phase portraits shown in Figure 2.10 also occur in Σas

2 , and
for the same values of the parameters.

There is a line segment containing attractive sliding points, given by Σas = Σas
1 ∩ Σas

2 ,
because

L
F

+
s1
h2(µ, µ, z) < 0 < L

F
−

s1
h2(µ, µ, z),

L
F

+
s2
h1(µ, µ, z) < 0 < L

F
−

s2
h1(µ, µ, z),

where L
F

+
s1
h2(µ, µ, z) = L

F
+
s2
h1(µ, µ, z) = rz− b

µ
−cµ and L

F
−

s1
h2(µ, µ, z) = L

F
−

s2
h1(µ, µ, z) =

rz − b
µ
. Then, we can determine a sliding vector őeld in Σas, by using the formula given

in (1.2.5). Taking into account that

f(x, y, z) =




rz − b
x

rz − b
y

1− x− y − rz


 and g(x, y, z) =



cx 0 0
0 cy 0
0 0 0


 ,

from (1.2.5) we get

Fs(µ, µ, z) =




0
0

1− 2µ− rz


 .

From the statements above, we can conclude the following (remember that 0 < µ < 1
2

and r > 0).

Proposition 2.4.1. Sliding dynamics in Σas is described by dz
dτ

= 1− 2µ− rz, which has
at z = (1− 2µ)/r a stable equilibrium point.

We then say that system (2.4.1)-(2.4.3) has a stable pseudo-equilibrium point at

p(µ) = (µ, µ, (1− 2µ)/r),

such that p(µ) ∈ Σas whenever L
F

+
s2
h1(p(µ)) < 0 < L

F
−

s2
h1(p(µ)) and L

F
+
s1
h2(p(µ)) <

0 < L
F

−

s1
h2(p(µ)), i.e., whether the system parameters satisfy the condition (2.4.4).

Therefore, the condition (2.4.4) ensures local stability at p. As we said before in
this section, such a condition is equivalent to that established in Theorem 2.2.1. This
reinforces the fact that in the stability analysis of system (2.2.1) we can disregard the
dynamics imposed by the inductor, taking the reduced system (2.2.4), as done in the
previous sections.
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Example 3. We consider system (2.4.1)-(2.4.3) with b = 1/16, c = 3, r = 1 and µ = 1/4.
Figure 2.11 shows the system phase portrait for some initial conditions, along with the
elements involved such as switching boundaries, tangency lines delimiting the sliding sets
and equilibrium points. Such a choice for the values of the system parameters satisőes
the local stability condition (2.4.4) of the pseudo-equilibrium p (blue dot), which is a real
stable equilibrium of the sliding vector őeld Fs deőned in Σas (green line segment with
extremes in the red dots). In addition, there is a single real regular equilibrium point
(green dot), which is a saddle equilibrium of the vector őeld F−−. Two pseudo-saddles
(black dots) also appear in the sliding regions (region between parallel black lines), one in
Σas

1 ⊂ Σ1 being a real equilibrium of the sliding vector őeld F−
s1, and the other in Σas

2 ⊂ Σ2

being a real equilibrium of the sliding vector őeld F−
s2.
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Figure 2.11: Phase portrait of system (2.4.1)-(2.4.3) assuming b = 1/16, c = 3, r = 1 and
µ = 1/4. Gray vectors indicate sliding motion.

2.5 Simulation results

We consider system (2.2.4)-(2.2.5) with Ci = C, Rbi = Rb, Pi = P and Vri = Vr for
all i. Then the local stability condition established in Theorem 2.2.1 becomes

Vr
Rl

(
Vdc −

(
n+

Rl

Rb

)
Vr

)
< P <

Vr
Rl

(Vdc − nVr) .
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We assume n = 10, Vdc = 740 V, Rl = 100 ± 5% Ω, C = 2.82 ± 20% mF, P = 10.74
W and Rb = 375 Ω, according to [7]. For these nominal values, the above constraint
is satisőed if 70.5708V < Vr < 72.519V or 1.48099V < Vr < 1.48183V . Naturally, the
second option should be ruled out since the basin of attraction of the operating point is
too small for this case, as there are unstable real equilibria very close to the operating
point (as seen in subsection 2.3.2). Then we take the reference voltage as Vr = 72 V.

Figure 2.12 shows two simulation results. In (a) we consider an uncertainty of ±5%
in the value of Rl, and in (b) an uncertainty of ±20% in the value of C. In both cases,
we see that the system remains stable. Obviously, for such disturbances taken in these
parameters, the choice of Vr still satisőes the stability condition of the operating point.
Note that in (a) all equations in the system have the same parameter values, and so, all
state variables have the same evolution over time, for the same initial condition in each
state variable. But in (b), each equation has a different capacitance, and so, even with
the same initial conditions for each state variable, the evolution over time of each state
variable is different from one another.
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Figure 2.12: Response time of system (2.2.4)-(2.2.5) with initial conditions at vCi
(0) = 2V

for i = 1, 2, ..., 10. A hysteresis band of 0.1V is applied.

Remember that there is a real unstable equilibrium near the origin. Speciőcally,
for these parameter values such equilibrium has coordinates vCi

= 1.48099V for all i.
Therefore, to ensure that the operating point is reached, it is sufficient that we take equal
initial conditions for each state variable, that is, vC1(0) = vC2(0) = ... = vC10(0) = v0C ,
such that 1.48099V < v0C < Vr = 72V. Naturally, the closer to 1.48099V is the initial
condition, the longer the system’s response time to reach the operating point.

2.6 Conclusion

This chapter explored sliding mode control applied to capacitor voltage-balancing
systems. In particular, a novel active capacitor voltage-balancing method for MMCs
based on a sliding mode control with multiple switching boundaries (discontinuity surfaces
of high co-dimension) was studied in depth. The main contribution of this chapter was
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enunciated in Theorem 2.2.1 and its proof was developed in Section 2.2. In this Theorem,
the local stability of the voltage balanced system is analytically proven for an arbitrary
number of submodules. Furthermore, a detailed analysis of the global dynamics of this
system with two submodules and two switching boundaries sliding mode control was
presented, helping us to unravel the dynamical richness of this class of systems. The
methodology developed in this chapter can be applied to other capacitor voltage-balancing
systems found in power electronic circuits. As future research, a more detailed study
should be carried out in a reduced circuit that considers all three legs of the MMC circuit
and takes into account their dynamic interactions.
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Chapter 3

Bifurcation analysis of 3D-PWS

systems with two transversal switching

boundaries: a case study in power

electronics

In this chapter, we study piecewise smooth systems with two switching boundaries.
A bifurcation approach is proposed in order to study local and global phenomena on
a power electronic circuit feeding a piecewise constant power load and controlled by
means of a sliding mode control law. This case study in power electronics allows us
to characterize different switching dynamic phenomena and bifurcations like Boundary
Equilibrium Bifurcations (BEB) and Limit Cycle Bifurcations (LCB) detected on the
sliding and crossing regions. We present some novel results on the BEBs analysis in R

3

and study various dynamic behaviors that are found in DPWS systems. In this sense,
the analysis of a simple power electronic circuit allows to unveil a plethora of dynamic
phenomena that are manifested in more complex DPWS. Furthermore, this case study
in power electronics can be used, as a benchmark, to study in depth different dynamic
phenomena that can lead to develop new techniques and methods to analyze this class of
systems characterizing novel local and global bifurcations. Simulation results obtained on
a controlled power buck converter feeding a constant power load are shown to validate
the theoretical and numerical analysis.

3.1 Introduction

In typical direct current (for short, dc) electrical distribution systems, more known as
dc microgrids, with a cascaded converters architecture (see Figure 3.1), loads connected
to the bus by an electronic converter behave as a constant power drawn from the feeder,
and can be modeled as a constant power load (for short, CPL); see [31, 29, 30]. Figure 3.2
shows a simpliőed view of two cascaded converters PC1 and PC2, also shown in Figure
3.1.
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Figure 3.1: Block diagram of a simpliőed dc electrical distribution system (dc microgrid)
with cascaded interconnected converters architecture and two dc buses (Bus1 and Bus2)..
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Figure 3.2: a) Cascaded power converters block diagram. b) Experimental CPL curve
corresponding to the PC2 plus load (Pin = P0 = 2.4W , Vth = 6v).

Since the input and output power of PC2 (Pin and Po) are constant, the static input
voltage-current (vc − i) function, ibus = f(vc), is ideally a hyperbola given by i = Pin

vc
.

The input resistance of PC2 has a negative impedance characteristic, where a voltage
increment will cause a current decrease and vice versa. Therefore, the PC2 converter
as seen by PC1 can be modeled as a CPL. Thus, assuming that the BUS1 voltage
suffers small variations, the PC1 converter connected to the loads in BUS2 microgrid, see
Figure 3.1, can be analyzed by the model depicted in Figure 3.2(a), composed by a őrst
stage buck converter that feeds a CPL. This electronic circuit is composed of two buck
converters connected in a cascade structure being the őrst buck converter controlled by a
sliding mode control (for short SMC) law and the second converter modelled by a CPL,
as shown in Figure 3.2(a).

In practice, function ibus = f(vc) can be expressed as a power piecewise function for
the buck converter case considered as a CPL. Figure 3.2(b) shows a CPL curve for a buck
converter with resistive load obtained from an experimental circuit setup. This piecewise
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function is continuous but not differentiable at vc = Vth, being composed of two parts:
(i) one linear function for vc ≤ Vth; and (ii) a hyperbolic function for vc > Vth, where
Vth stands for a voltage threshold, as will be seen in Section 3.2. This type of problem
is well-known in power electronics literature but curiously is not treated in a rigorous
mathematical form. An exception can be found in previous work on spacecraft power
systems with CPL by David Hamill et al. [32, 33], and recent studies on applications in
systems composed of interconnected power converters in an islanded dc microgrid by L.
Benadero et al. [29].

The system under study can be considered as a piecewise smooth dynamical system
in R

3 (for short, 3D-DPWS system) with two transversal switching boundaries deőned
by (i) the SMC law designed to control the voltage output of the őrst buck converter and
(ii) the voltage threshold at vc = Vth due to the non-smooth characteristic of the CPL. It
is noteworthy that the sliding motion occurs only at the SMC-boundary and the vector
őeld that governs this motion, calculated following Filippov’s convention, is continuous
but not differentiable at the intersection with the CPL-boundary. In this sense, the study
carried out in this work considers the theory of CPWS systems and Filippov systems
(DPWS); see [1, 34].

DPWS dynamical system with two transversal switching boundaries has been ap-
proached by several researchers, see for instance [35, 36] (CPWS) and [10, 13, 42, 40, 18]
(DPWS) where the sliding motion can occur at all switching boundaries involved, which
is not our case study as mentioned in the previous paragraph.

The main goal of this chapter is to study local and global phenomena associated
with bifurcations induced by the switching boundaries, as the Boundary Equilibrium
Bifurcations (BEBs, [23, 19, 20, 24, 25]), the Grazing-Sliding (GS, [19, 26, 37, 27, 38,
39, 28]) and Discontinous Saddle-Node (DSN, [22]), which are part of the group of
Discontinuous Induced Bifurcations (DIBs, [41, 43]), and also the non-smooth limit cycles
bifurcations, with or without sliding part (see [19, 44, 45, 46, 47, 48]). Classic bifurcations
as the Hopf, Saddle-Node of equilibria, Saddle-Node of limit cycles, Homoclinic connection
(see [50, 49]), are also found in the system under study. In the qualitative analysis carried
out, we use standard tools for DPWS systems. Numerical continuation methods based
on AUTO software are also employed to obtain bifurcation sets and bifurcation diagrams.
The CPL equations used are class C0 functions, that is, continuous but with discontinuous
derivatives. As a signiőcant part of this chapter involves the bifurcation analysis of
dynamic systems, C∞ models are more suitable for performing numerical continuation
calculations using computational packages such as XPP-AUTO for which it is necessary to
use the hyperbolic tangent functions to approximate C0 nonlinearities as C∞, for instance

i(vbus) =
Pdc

vbus

[
1

2
+

1

2
tanh

(
vbus − Vth

ϵ

)]
+
vbus
Rth

[
1

2
− 1

2
tanh

(
vbus − Vth

ϵ

)]
,

where Rth =
V 2
th

Pdc
with Vth being a reference signal for the converter output voltage modeled

as CPL and ϵ is an adjustment parameter that must be small (0 < ϵ << 1). Numerical
simulations of the studied system are provided, which help us to better understand the
dynamic behavior of this system, in addition to checking the results obtained.

This chapter is organized as follows. Section 3.1 presents a brief introduction to the
electronic circuit composed of two buck converters connected in a cascade structure.
The modeling of the dc-dc bidirectional buck converter by feeding a CPL is developed
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in section 3.2 and we analyze the existence, local stability and bifurcations of regular
equilibria, and pseudo-equilibria. In section 3.3 we study the boundary equilibrium
bifurcations. Section 3.4 is dedicated to the study of limit cycle bifurcations by using
numerical analysis. In addition, we present two bifurcation frameworks in two parameters
(power load and control reference), considering two different case studies with the other
system parameters taken őxed, where many equilibria and limit cycle bifurcations are
predicted. Finally, in section 3.5 we present a brief conclusion.

Previous results on DPWS in chapter 1 are important for the development that
follows.

3.2 The buck converter feeding a nonlinear load of

CPL-type

In typical dc distribution systems with a cascaded converter architecture, loads
connected to the bus by an electronic converter behave as constant power drawn from the
feeder, and can be modelled as a load of CPL-type, see [31] and references therein. We
will consider a 3D-PWS system that models the voltage control process at the output
of the dc-dc bidirectional buck converter by feeding a CPL, see Figure 3.3.

Constant Power Load (CPL)

+
− vC

+

−
P

iLoad

Vin vLoad
+

−
PLoad

Buck

Converter

iL
Converter at

load point
Load

Figure 3.3: The converter at the load point behaves as a constant power load for the
feeder buck converter, see [51].

The behavior of a dc-dc bidirectional buck converter controlled by a sliding mode
control (SMC) law and the second converter modelled by a CPL piecewise function, can
be studied using the circuit topology depicted in Figure 3.4, its model is given by

L
diL
dt

= uVin − rLiL − vC , (3.2.1)

C
dvC
dt

= iL − ξ(vC), (3.2.2)

dzF
dt

= ωF (iL − zF ), (3.2.3)

where ξ(vC) is a CPL piecewise function deőned by

ξ(vC) =





P

vC
, if vC ≥ Vth,

PvC
V 2
th

, if vC < Vth,

(3.2.4)

73



−
+Vin C

−

+

vC

rL L

iL

CPL

S1

S2

vC(t)

iL(t)

(a) dc-dc bidirectional buck converter.

iL
+

ωF
∫ zF

−

iF

(b) Washout filter.

iF k

+
vC

+

Vref

−
H

S1

S2

u

(c) Sliding mode controller.

Figure 3.4: Basic topology of a Buck converter connected to a CPL load and under
a sliding mode and washout őlter control strategy. The control function is deőned as
u = 1

2
(1 − sign[H(iL, vC , zF )]). The őltered inductor current given by iF = iL − zF

expresses the difference between the inductor current iL and the őltered signal zF .

where L, C, and rL denote the inductance, the capacitance and the inductor resistance,
respectively. vC > 0 and iL ∈ (−imax, imax), for some imax > 0, are the instantaneous
capacitor voltage and inductor current, respectively. The load parameter is denoted by
P ∈ R and Vth is the voltage threshold. The őltered inductor current, denoted by variable
zF , is the output of the washout őlter modelled by equation (3.2.3), where ωF ≤ 1/

√
LC

is the cut-off őlter frequency, which should be assigned to the natural frequency of the
system (see [31, 52]).

The control law is deőned as

u =
1

2
(1− sign[H(iL, vC , zF )]), (3.2.5)

where u = 0 means that switch S1 in Figure 3.4(a) is off and u = 1 means that it is on.
Switches S1 and S2 are complementary. From this, the control surface is chosen as

H(iL, vC , zF ) = vC − Vref +K(iL − zF ) = 0, (3.2.6)

where vc ≈ Vref < Vin is the reference voltage (desired voltage value at the output) with
Vin denoting the source voltage and K > 0 is the control parameter, which must be
adjusted properly to ensure stability (at least local) of the desired operating point.

To obtain the desired voltage value Vref at the output, a control strategy by sliding
modes based on the use of a washout őlter is implemented, as illustrated in Figure 3.4(b)-
(c). The washout is a high-pass linear őlter that washes out steady-state inputs while
passing transient inputs (see [53]), and is chosen in order to reject load perturbations.
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3.2.1 Normalized model

Looking for a simpliőed model with two planar switching surfaces, the equations
(3.2.1)-(3.2.3) are normalized by applying the change of variables, time and parameters,
given by Table 3.1. The switch position function is invariant with respect to normalization.
In this way, we obtain a dimensionless dynamical system of the form

ẋ = u− bx− y,

ẏ = x− ξ(y), (3.2.7)

ż = (1− kb)x+ (ω − k)y − ξ(y)− ωz − ωyr + ku,

where ξ(y) is a normalized CPL piecewise function given by

ξ(y) =





d

y
if y ≥ yth,

dy

y2th
if y < yth,

(3.2.8)

with x ∈ (−xmax, xmax) for some xmax > 0, y > 0 and z ∈ R are the normalized variables
of inductor current, capacitor voltage and őlter, respectively. The normalized parameters
d > 0, b > 0, ω ∈ (0, 1], k > 0, yth > 0 and 0 < yr < 1 correspond to the CPL, inductor
resistance, őlter cut-off frequency, control parameter, voltage threshold, and reference
voltage, respectively (the dot “ · ” indicates derivatives with respect to the normalized
time τ).

Remark 3.2.1. Throughout this chapter, we assume that 0 < yth < yr < 1. Moreover,
we will consider 0 < b < 1 and 0 < k < 1/b.

State and Time Variables Parameters

iL = Vin

√
C
L
x Vref = yrVin

vC = Viny P = V 2
in

√
C
L
d

zF = iL +
vC−Vref−Vinz

K
K = k

√
L
C

t =
√
CLτ rL = b

√
L
C

ωF = ω√
LC

Table 3.1: Normalized variables, parameters and time

We denote x = (x, y, z) ∈ A, where

A = {x ∈ R
3 : x ∈ (−xmax, xmax), xmax > 0, y > 0 and z ∈ R}.

Now for the normalized system (3.2.7), the control law can be rewritten as u = 1
2
(1 +

sign[z]) an by redeőning the planar switching surface as h1(x) = z = 0. In addition,
there is another switching boundary, imposed by CPL loads and given by the planar
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switching surface h2(x) = y − yth = 0. In this way, the switching boundaries are deőned
by

Σ1 := {x ∈ A : h1(x) = z = 0} , (3.2.9)

Σ2 := {x ∈ A : h2(x) = y − yth = 0} .

The system state space is divided into four different regions (see Figure 3.5), namely

D1 = {x ∈ A : h1(x) > 0 and h2(x) > 0},
D2 = {x ∈ A : h1(x) > 0 and h2(x) < 0},
D3 = {x ∈ A : h1(x) < 0 and h2(x) < 0},
D4 = {x ∈ A : h1(x) < 0 and h2(x) > 0}.

(3.2.10)

In each one of these regions there is a distinct vector őeld acting, obtained from system
(3.2.7) and it is represented as a 3D-PWS system of the form

ẋ =





F1(x) if x ∈ D1,
F2(x) if x ∈ D2,
F3(x) if x ∈ D3,
F4(x) if x ∈ D4,

(3.2.11)

composed of the vector őelds

F1(x) =




−bx− y

x− d

y
f3,1(x)


 , F2(x) =




−bx− y

x− d

y2th
y

f3,2(x)


 , (3.2.12)

F3(x) =




1− bx− y

x− d

y2th
y

f3,2(x) + k


 and F4(x) =




1− bx− y

x− d

y
f3,1(x) + k


 , (3.2.13)

where

f3,1(x) = (1− kb)x+ (ω − k)y − d

y
− ωz − ωyr

and

f3,2(x) = (1− kb)x+ (ω − k)y − d

y2th
y − ωz − ωyr.

It should be noted that F1(x) = F2(x) and F3(x) = F4(x) for all x ∈ Σ2, however,
the őrst derivatives of F1(x) and F2(x), as well as F3(x) and F4(x), are not the same
in Σ2. Thus, the switching boundary Σ2 is a crossing switching boundary, that is, the
system trajectories that reach Σ2, always cross it or are tangent to it. The following
proposition predicts this.

Proposition 3.2.2. There is no sliding motion at the switching boundary Σ2 deőned in
(3.2.9).

Proof. A straightforward calculus yields, LF1,2(x)h2(x) · LF4,3(x)h2(x) = (x− ξ(y))2 ≥ 0,
where ξ is the piecewise function deőned as in (3.2.8). Therefore, Σ2 is just a crossing
boundary, containing a double tangency line at x = ξ(yth) and y = yth.
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z

y

Σ1

Σ2

D1D2

D4D3

Figure 3.5: Switching boundaries deőned in (3.2.9).

In order to analyze the dynamic behavior of system (3.2.11) on the switching boundary
Σ1, we calculate the sliding and crossing regions according (1.2.7) taking into account
the discontinuity of ξ(y) at y = yth for which we divided the study in two cases as follows
and they are depicted in Figure (3.6).

(i) For y ≥ yth: the crossing and sliding regions are deőned, respectively, by

Σc1 = {x ∈ Σ1 : y > 0, and x > α(y) or x < α(y)} ,
Σs1 = {x ∈ Σ1 : y > 0, and α(y) < x < α(y)} ,

where

α(y) =
(w − k)y2 − wyry − d

(bk − 1)y
and α(y) =

(w − k)y2 − (wyr − k)y − d

(bk − 1)y
.

(ii) For y < yth: the crossing and sliding regions are deőned by

Σc2 =
{
x ∈ Σ1 : y > 0, and x > β(y) or x < β(y)

}
,

Σs2 =
{
x ∈ Σ1 : y > 0, and β(y) < x < β(y)

}
,

where

β(y) =
(wy2th − ky2th − d)y + (k − wyr)y

2
th

(bk − 1)y2th
and β(y) =

(wy2th − ky2th − d)y − wyry
2
th

(bk − 1)y2th
.
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Σs1Σs2

Σc1

Σc2

Σc2 Σc1

0

6

x

y=yth y=yr

y
1

Figure 3.6: Sliding (gray region) and crossing regions (white region) in the (y, x)-plane
for parameters ω = 1, b = 0.2, k = 2, yth = 0.1, yr = 0.5 and d = 0.3.

3.2.2 Regular equilibria and stability

In what follows, we analyze the equilibria of the vector őelds Fi(x), for i = 1, 2, 3, 4
and its stability considering only the dynamics with respect to the variables (x, y), since
that őrst and second components of the vector őelds mentioned above are independent of
the dynamic in their third component z, whose dynamic is stable since the associated
eigenvalue is −ω < 0. Thus, we just need to consider the reduced linearization Jacobian
matrix given by

A =

[
−b −1
1 −ξ′

(y)

]
. (3.2.14)

(i) Vector őeld F1(x, y, z) has no equilibrium for d > 0.

(ii) Vector őeld F2(x, y, z) has only one equilibrium point, given by x2 = (0, 0,−yr),
and it is virtual because h1(x2) = −yr < 0. The stability in F2(x, y, z) is equal to
that of the vector őeld F3(x, y, z) wich we will see below.

(iii) Vector őeld F3(x, y, z) has an equilibrium point,

x3 =

(
d

bd+ y2th
,

y2th
bd+ y2th

,
y2th

bd+ y2th
− yr

)
.

It is real for d >
(1−yr)y2th

byr
(h1(x3) < 0) and d > (1−yth)yth

b
(h2(x3) < 0), or equivalently

d > max{ (1−yth)yth
b

,
(1−yr)y2th

byr
} = (1−yth)yth

b
because yth < yr. Otherwise, it is virtual.

Moreover this point is a boundary equilibrium for d = (1−yth)yth
b

(h2(x3) = 0). The
determinant and trace are given by

Det [A(x3)] =
bd+ y2th
y2th

and Tr [A(x3)] = −
(
b+

d

y2th

)
.

This equilibrium is always stable because d > 0. Moreover, analyzing the dis-
criminant ∆ = Tr [A(x3)]

2 − 4Det [A(x3)] (∆ < 0 or ∆ > 0) we have that x3
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is: (i) a virtual stable focus for d ∈ (0, (2 + b)y2th); (ii) a virtual stable node for

d ∈
(
(2 + b)y2th,

(1− yth)yth
b

)
; and (iii) a real stable node for d >

(1− yth)yth
b

.

(iv) Vector őeld F4(x, y, z) has two equilibrium points, namely

x+
4 =

(
1 + γ

2b
,
1− γ

2
,
1− 2yr − γ

2

)
and x−

4 =

(
1− γ

2b
,
1 + γ

2
,
1− 2yr + γ

2

)
,

with γ =
√
1− 4bd deőned for 0 < d < 1/4b. Equilibrium x+

4 is real for yr >
1−γ
2

(h1(x
+
4 ) < 0) and yth <

1−γ
2

(h2(x
+
4 ) > 0). Otherwise it is virtual. It becomes

a boundary equilibrium at Σ1 for yr = 1−γ
2

> yth, or at Σ2 for yth = 1−γ
2

< yr.

Likewise, the point x−
4 is real whenever yr >

1+γ
2

(h1(x
−
4 ) < 0) and yth <

1+γ
2

(h2(x
−
4 ) > 0). Otherwise it is virtual. It becomes a boundary equilibrium at Σ1 for

yr =
1+γ
2
> yth, or at Σ2 for yth = 1+γ

2
< yr. The determinant and trace are given

by

Det [A(x±
4 )] =

4bd− 1∓ γ

2bd
and Tr [A(x±

4 )] = −b+ 4d

(1∓ γ)2
. (3.2.15)

Equilibrium x+
4 is a saddle point because Det [A(x+

4 )] =
4bd−1−γ

2bd
< 0 for all 0 < d <

1
4b

. On the other hand, the equilibrium x−
4 has Det [A(x−

4 )] =
4bd−1+γ

2bd
> 0 for all

0 < d < 1
4b

. Moreover, Tr [A(x−
4 )] = −b+ 4d

(1+γ)2
< 0 whenever 0 < d < b

(1+b2)2
, thus

x−
4 is stable. Besides, for b

(1+b2)2
< d < 1

4b
we have Tr [A(x−

4 )] = −b + 4d
(1+γ)2

> 0,

this mean that x−
4 is unstable.

Interesting phenomena, such as classical and discontinuous bifurcations, appear
wrapping the equilibrium points of the vector őelds F3 and F4. In the following proposition,
we can draw some conclusions from the previous stability analysis.

Proposition 3.2.3. Consider the vector őelds F3 and F4 deőned in (3.2.13). The
following statements hold.

(a) For d = b
(1+b2)2

a subcritical Hopf bifurcation occurs at x−
4 .

(b) For d = 1
4b

a saddle-node bifurcation occurs at x+
4 = x−

4 = ( 1
2b
, 1
2
, 1
2
− yr).

(c) Assume yth < 1/2. For d = (1−yth)yth
b

a discontinuous saddle-node bifurcation occurs

at x3 = x+
4 = (1−yth

b
, yth, yth − yr) .

Proof. (a) From the second equation in (3.2.15) and using the trace of jacobian matrix
(3.2.14) at x−

4 , we conclude the following holds for all 0 < b < 1:

Det[A(x−
4 )]|d= b

(1+b2)2
= (1 + b2)(1− b2) > 0,

T r[A(x−
4 )]|d= b

(1+b2)2
= 0

d

dd
Tr[A(x−

4 )]|d= b

(1+b2)2
=

2(1 + b2)

1− b2
̸= 0.
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Thus, we show the necessary condition to obtain the Hopf bifurcation. The x and
y components are decoupled from the z component, so consider the planar analytic
system

ẋ = − 1

1 + b2
(bx+ y) + bxy − y2,

ẏ =
1

1 + b2
(x+ by) + xy,

obtained from a translation of (3.2.15) in such a way that x−
4 is translated to the

origin. Then, according to [54]-page 243, the őrst Lyapunov coefficient of the vector
őeld F4 is given by

l−1 =
πb(1 + b2)2(3− b3)

2
√
2(1− b2)

3
2

> 0, ∀ 0 < b < 1.

Hence, we have an unstable limit cycle and so, this Hopf bifurcation is subcritical.
It is important to note that at the bifurcation point the equilibrium x−

4 is real if
yr >

1+γ
2

.

(b) From stability analysis of F4 we obtained that the equilibria x+
4 and x−

4 are well
deőned for 0 < d < 1

4b
and collide with each other at d = 1

4b
, i.e., x+

4 = x−
4 =

( 1
2b
, 1
2
, 1
2
− yr), then both disappear for d > 1

4b
, where x+

4 is saddle and x−
4 is node

near to the collision point. Therefore at d = 1
4b

a saddle-node bifurcation occurs. It
is worth mentioning that the equilibria involved are real for yr > 1/2.

(c) From stability analysis of F3 and F4 we obtained that the equilibria x3 and

x+
4 are real for d > (1−yth)yth

b
, they collide for d = (1−yth)yth

b
, if yth < 1/2, i.e.,

x3 = x+
4 = (1−yth

b
, yth, yth − yr) and then both equilibria dissapear (become virtual)

for d < (1−yth)yth
b

, where x3 is a stable node and x+
4 is a saddle near to the collision

point. Therefore, for d = (1−yth)yth
b

a discontinuous saddle-node bifurcation occurs.
Notice that the bifurcation point is a nonsmooth-fold boundary equilibrium in Σ2,
see Figure 3.7(b).

The bifurcations presented in Proposition 3.2.3, will be observed in the numerical
analysis carried out in Section 3.4.

3.2.3 Sliding vector field and pseudo-equilibria

The sliding vector őeld associated to the dynamical system (3.2.11) is calculated
according to (1.2.12), and it is deőned as

Fs(x, y, z) =




ω(yr−y)−x+ξ(y)
k

x− ξ(y)
0


 , (3.2.16)

where (x, y, z) ∈ Σs ⊂ Σ1. Pseudo-equilibrium points of system (3.2.11) are obtained
by solving the equation system Fs(x, y, 0) = 0 taking into account h1(x) = 0 and the
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discontinuity of ξ(y) at y = yth (h2(x) = 0). So, we have a pseudo-equilibrium point
that depends on the values of ξ, namely x̃ = (ξ(yr), yr, 0). For yr ≥ yth, then the pseudo-

equilibrium has coordinates given by x̃ =
(

d
yr
, yr, 0

)
. The reduced Jacobian matrix is

given by

A(x̃) =

[
− 1

k
− (ωy2r+d)

ky2r

1 d
y2r

]
.

Notice that Det[A(x̃)] = ω
k
> 0 and Tr[A(x̃)] = kd−y2r

ky2r
< 0 if d < y2r

k
, then x̃ is stable,

otherwise is unstable. Moreover, the pseudo-equilibrium is real (located in the sliding

region) whenever d < (1−yr)yr
b

.

Proposition 3.2.4. Consider the vector őeld Fs deőned in (3.2.16). For d = y2r
k

a
subcritical Hopf bifurcation occurs at x̃.

Proof. The proof is similar to Proposition 3.2.3(a) with the őrst Lyapunov coefficient of
the vector őeld Fs, which can be calculated, and it is given by

ls1 =
3πk2

4
√
kω(1 + kω)y2r

> 0.

This phenomenon will be observed in the numerical analysis carried out in section 3.4.

3.2.4 Two local DIBs of equilibrium collision with borders

In the system (3.2.11), two types of equilibrium collision with the boundaries Σ1 and
Σ2 can occur. The boundary equilibrium bifurcations (BEBs) (see [19]) are typical of
PWS discontinuous systems, occurring by varying the parameter bifurcation d (chosen as
the parameter bifurcation BEB) involving the equilibria of the vector őelds F4 and Fs,
occurring in Σ1, studied in the next section. Another bifurcation is called discontinuous
saddle-node (DSN) involving the equilibria of the vector őelds F3 and F4, occurring in Σ2

(see Proposition 3.2.3), deőned as a non-smooth analogue of the saddle-node bifurcation
(see [22]).

Figure 3.7 shows the rise and disappearance of equilibria of the system (3.2.11) when
varying the value of bifurcation parameter d for őxed ω = 1, b = 0.2, k = 2, yth = 0.1 and
yr = 0.5. In Figure 3.7(a) with d = 0.3, we illustrate the interaction between nullclines
(black lines) given by n1 : x = 1−y

b
(u = 1) and n2 : x = −y

b
(u = 0) and the CPL

piecewise function (3.2.8) (red curve); notice that a virtual equilibrium point x2 and x−
4

of the vector őeld F2 and F4, respectively; and the pseudo-equilibrium x̃, appears.
In Figure 3.7(b) with d = 0.45 it can be seen that the nullcline n1 touches the

discontinuity point of the CPL piecewise function and a DSN occurs. As d increases until
it reaches 1, in Figure 3.7(c), we can note the rise of the equilibria x3 and x+

4 .
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Figure 3.7: Equilibria of system (3.2.11) when varying the value of bifurcation parameter
d for w = 1, b = 0.2, k = 2, yth = 0.1, showing the collision between regular and
pseudo-equilibrium points on the (y, x)-plane. Figures (a) to (e) yr = 0.5 and őgure (f)
yr = 0.25

Figure 3.7(d) shows the simultaneous collision of both equilibriums x+
4 and x−

4 with
the pseudo-equilibrium x̃, which occurs for d = 1.25 (Here, a SN and a degenerate BEBd
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occur simultaneously). In other words, at this point, it happens a typical two-parameter
bifurcation of a Filippov system on a codimension-two point where a curve of BEB changes
from persistence to nonsmooth-fold type, see [59]. The nonsmooth and persistence cases
will be studied in detail in Section 3.3. From this point onwards, the pseudo-equilibrium
comes out of the sliding region (gray region) and falls into the crossing region (white
region) where it becomes virtual as observed in Figure 3.7(e) with d = 1.4. Finally,
Figure 3.7(f) illustrates the behavior of the equilibrium of the normalized system (3.2.7)
for other values in the bifurcation parameters; in this case for d = 0.65 and yr = 0.25.

3.3 Boundary equilibrium bifurcations

A boundary equilibrium bifurcation (BEB) occurs when an equilibrium collides with
a discontinuity surface in a DPWS system of ordinary differential equations due to the
variation of one or more parameters. Such type of bifurcations have been identiőed in
mathematical models of a wide variety of physical systems involving abrupt events, such
as control systems with switching elements, and ecological systems; see e.g., [20, 58].
Various invariant sets (such as limit cycles) can be created in BEBs. But if we look only
at equilibria, then there are two generic scenarios. These are distinguished by the relative
coexistence of the regular equilibrium and the pseudo-equilibrium undergoing the BEB.
When the regular equilibrium transitions to a pseudo-equilibrium (on the discontinuity
surface) occurs the persistence scenario. In this case, if the regular equilibrium is real
(resp. virtual), then the pseudo-equilibrium is virtual (resp. real). On the other hand,
if the regular equilibrium collides and annihilates with a coexisting pseudo-equilibrium
the nonsmooth fold scenario occurs. In this case, if the regular equilibrium is real (resp.
virtual), then so is the pseudo-equilibrium; see [20] and references therein.

Some results on BEBs are presented in [20] for a particular class of 3D-DPWS

systems of the form

ẋ =

{
F−(x) = Px+ n−, if h(x) = z < 0
F+(x) = Px+ n+, if h(x) = z > 0

, (3.3.1)

with P = (pij)3 for i, j ∈ {1, 2, 3}, and n± = (n±
1 , n

±
2 , n

±
3 ). In addition, the following

assumptions are made: (i) p31 ̸= 0 and/or p32 ̸= 0, and n−
3 − n+

3 > 0; (ii) there are
(generally) two cusp points x±

c , one for each vector őeld F±(x); (iii) L3
F±h(x±

c ) is not
identically zero. The following result was essentially shown in [20].

Theorem 3.3.1. Assume a23 ̸= 0 and ν ̸= µ, where

a23 =
8Det [P ]

(n−
3 − n+

3 )
3
, µ = − 8Det [R+]

(n−
3 − n+

3 )
3
, ν = − 8Det [R−]

(n−
3 − n+

3 )
3
, R± =



p11 p12 n±

1

p21 p22 n±
2

p31 p32 n±
3


 .

Then, the system (3.3.1) has two regular equilibria and one pseudo-equilibrium point,
given in canonical coordinates by

x− =

(
−1, 0,

ν

a23

)
, x+ =

(
1, 0,

µ

a23

)
, x̃ =

(
ν + µ

ν − µ
, 0, 0

)
,

and a BEB occurs for ν = 0 if µ ̸= 0 or for µ = 0 if ν ̸= 0. In addition, the following
statements hold.
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(a) The BEB at µ = 0 corresponds to persistence scenario if a23ν > 0, and to nonsmooth
fold if a23ν < 0.

(b) The BEB at ν = 0 corresponds to persistence scenario if a23µ < 0, and to nonsmooth
fold if a23µ > 0.

Now we are going to show the occurrence of BEBs in system (3.2.11). We chose the
parameter d as the BEB bifurcation parameter. Taking z = 0 and solving the equations
Fi(x, y, 0, d) = 0, for i = 1, 2, 3, 4 respect to (x, y, z, d), we get

(xb1 , dB1) =

(
−yr
b
, yr, 0,−

y2r
b

)
, (3.3.2)

(xb2 , dB2) =

(
−yr
b
, yr, 0,−

y2th
b

)
, (3.3.3)

(xb3 , dB3) =

(
1− yr
b

, yr, 0,
(1− yr)y

2
th

byr

)
, (3.3.4)

(xb4 , dB4) =

(
1− yr
b

, yr, 0,
(1− yr)yr

b

)
, (3.3.5)

where xbi (i = 1, 2, 3, 4) denote the boundary equilibrium related to the vector őeld
deőned at (3.2.11), and appearing for the critical value d = dBi

(i=1,2,3,4) of the load
parameter.

Once we assume yr > yth, the boundary equilibria xb2 and xb3 are always virtual,
that is, the BEBs at these boundary equilibria are not observed. On the other hand,
the boundary equilibria xb1 and xb4 are always real, and the BEBs at these boundaries
equilibria are observed. However, as we are assuming that d > 0, the boundary equilibrium
xb1 is left out of our study. In what follows, we study the BEBs that occur at the point
xb4 .

Lemma 3.3.2. System (3.2.11) undergoes a Boundary Equilibrium Bifurcation for d =
(1−yr)yr

b
if yr ≠

1
2
. In addition, this BEB corresponds to persistence scenario if yr >

1
2
,

and to nonsmooth fold if yr <
1
2
.

Proof. A piecewise-linear version of (3.2.11) for y > yth, at the boundary equilibrium
point (xb4 , dB4), is obtained and represented by

ẋ =

{
Px+ n−, if z < 0
Px+ n+, if z > 0

, (3.3.6)

with

P =




−b −1 0
1 dB4/y

2
r 0

1− bk dB4/y
2
r + ω − k −ω


 (3.3.7)

n− =




1
−(d+ dB4)/yr

−(d+ dB4)/yr − ωyr + k


 , n+ =




0
−(d+ dB4)/yr

−(d+ dB4)/yr − ωyr


 , (3.3.8)

where dB4 =
(1−yr)yr

b
is the critical value for the BEB.

84



Following [20], őrst we check the hypotheses to obtain a canonical form. So, we
assume in system (3.2.11) that p31 = 1 − bk ≠ 0 and n−

3 − n+
3 = k > 0. Moreover the

parameters (yr, k, b, ω) are easily selected so that

Det [Q] = −
(

dB1,4

yr

)4
bk −

(
dB1,4

yr

)2
f(k, b, ω)− g(k, b, ω) ̸= 0,

L3
F±h(x±

c ) = Det
[
R±] not identically zero,

being

Q =




∇h(x±
c )

∇LF±h(x±
c )

∇L2
F±h(x±

c )


 ,

f(k, b, ω) = ω − k − b(1− k(b+ ω − k)) and g(k, b, ω) = 1 + (ω − k)2 + b2kω − b(k + ω).
Next, we calculate the critical parameters a23, ν and µ for our system using (3.3.6)-

(3.3.8), namely

a23(d) =
8ωb(d+ dB1)

k3y2r
, ν(d) =

8ωb(d− dB4)

k3yr
, µ(d) =

8ωb(d− dB1)

k3yr
.

Note that ν = µ− 8ω
k3
< µ.

Regarding the vector őeld F4, we get

ν(dB4) = 0, a23(dB4)µ(dB4) =
64ω2(1− 2yr)

k6
̸= 0 if yr ̸= 1/2.

If yr > 1/2 then a persistence BEB is observed at the boundary equilibrium point xb4 ,
but if yr < 1/2 then a nonsmooth fold BEB is observed.

3.4 Two-parameter bifurcation analysis

In this section, a two-parameter bifurcation study (codimension-two analysis) is
presented. The two parameters are the power load (parameter d) and the voltage
reference (yr). They were chosen due to their relevance in the operation of the power
distribution system. Bifurcation sets in (yr; d)-plane with the main local and global
bifurcations are shown in Figure 3.8(a)-(d). In this analysis, we only consider the right
side of the vertical line yr = yth, because we assumed yr > yth. The black parabolic curve
indicates the occurrence of BEBs. In the complete parabolic curve of dB = dB4 =

(1−yr)yr
b

,
the left branch refers to the nonsmooth fold BEBNF involving the equilibria x4,+ and x̃,
of the vector őelds F4 and Fs, respectively. On the same curve, the right branch refers to
the persistence BEBP involving the equilibria x−

4 and x̃, of the vector őelds F4 and Fs,
respectively.
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Figure 3.8: Bifurcation set in (yr, d)-plane showing the main local and global bifurcations
curves. a)(yr, d)-plane assuming b = 0.2, k = 0.1 and ω = 1. b) (yr, d)-plane assuming
b =

√
1/3, k = 0.5, ω = 1.

The vector őelds F4 and Fs exhibit some classical bifurcations. The green line in
Figure 3.8(a)-(b) refers to a saddle-node bifurcation (SNe) at d = 1/4b (see Proposition
3.2.3) deőned for 0.5 < yr < 1. The blue straight line segment refers to subcritical
Hopf bifurcation (Hsub) at d = b/(1 + b2)2 (see a Proposition 3.2.3) of the equilibrium
x−
4 deőned for 0.96 < yr < 1. The red parabolic curve segment in 0.1 < yr < 0.334

indicates a subcritical Hopf bifurcation (Hs
sub) at d = y2r/k of the pseudo-equilibrium

x̃ (see a Proposition 3.2.4); and the violet line refers to a discontinuous saddle-node

(DSN) at d = (1−yth)yth
b

(see Proposition 3.2.3). Table 3.2 shows the characteristics of the
equilibria of system (3.2.11) for each region enumerated in Figure 3.8(a), and studied in
the previous sections.
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Regions x3 x
+
4 x

−
4 x̃

1 real stable virtual virtual virtual

2 real stable real saddle virtual real unstable

3 real stable real saddle virtual real stable

4 real stable real saddle real stable virtual

5 real stable real saddle real unstable virtual

6 virtual virtual virtual real stable

7 virtual virtual virtual real stable

8 virtual virtual real unstable virtual

9 virtual virtual real unstable virtual

10 virtual virtual real stable virtual

11 virtual virtual virtual real stable

12 virtual virtual real unstable virtual

13 virtual virtual real stable virtual

Table 3.2: Classiőcation of Equilibria and Pseudo-equilibria according to őgure 3.8(a).

Figure 3.8(b) shows two important global bifurcations: a Homoclinic bifurcation
(HC) and a Grazing-sliding bifurcation (GS) represented by dark green curve and a
maroon curve, respectively. Another important phenomenon occurs when two limit cycles
collapse, one stable and the other unstable, which is called a saddle-node bifurcation of
periodic orbits (SNPO) represented by orange curves. These bifurcations are determined
numerically as it will be seen in the next subsection.

The points {Pi} in Figure 3.8 indicate the two-codimension bifurcations where two or
more bifurcations occur simultaneously, but not necessarily involve the same equilibrium
point. Such points in Figures 3.8(a)-(d) are: P1(1/2, 1/(4b)), when the Saddle-node
bifurcation (SNe) occurs simultaneously to BEBP ; P2(k/(b+ k), k/(b+ k)2), when the
subcritical Hopf bifurcation (Hs

sub) occurs together to BEBNF ; P3(1/(1+ b
2), b/(1+ b2)2),

when the subcritical Hopf bifurcation (Hsub) occurs at the same time to BEBP ; P4, when
the BEBP occurs concomitantly to SNPO; P5((1+

√
1− 4(1− yth)yth)/2, (1− yth)yth/b),

when the DSN occurs together to BEBP ; P6(
(1−yth)yth

b
,
√

k(1−yth)yth
b

), when the DSN

occurs concurrently to Hs
sub; and P7, when the subcritical Hopf bifurcation Hsub occus at

the same time to SNPO. Bifurcation points that occur only for bifurcation set in Figures
3.8(a) are: P∗, when the DSN ocurs simultaneously to SNPO; and at P∗∗ a BEBP occurs
together to SNPO. Bifurcation points that occur only for bifurcation set in Figures 3.8(b)
are: At P8 a Grazing sliding bifurcation (GS) occurs concurrently to SNPO; P9, when
the homoclinic connection (HC) occurs concomitantly to BEBP ; and P10 when the DSN
occurs at the same time to SNPO and an HC.

3.4.1 Limit cycle bifurcations

In this subsection we present some results of the numerical analysis of the existence
of limit cycles and bifurcations, considering the bifurcation diagrams shown in Figure
3.9-3.14, which were used to obtain the curves of the bifurcation set diagrams shown in
Figure 3.8.

For the sake of brevity we adopt in Figure 3.9-3.14 the following notation: (i) solid line
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branches indicate stable invariant sets (equilibria or limit cycle), and dashed line branches
indicate unstable ones; (ii) black line branches represent the amplitude of limit cycles;
(iii) red line branch represents the coordinates of x̃; (iv) blue and green line branches
represent the coordinates of the equilibria x+

4 and x−
4 , respectively; (v) violet line branch

stands for the coordinates of the equilibrium x3; (vi) dotted line branches stand for the
virtual equilibria, while solid and dashed branches represent the real equilibria.

Figures 3.9(a)-(d) show the bifurcations diagram of system (3.2.11) with respect to
variation in the bifurcation parameter d assuming yr = 0.25. A saddle-node bifurcation
occurs at d = 1.25 (point A) when the equilibria of F4 collapses. A saddle-node bifurcation
of periodic orbits indicated by C and C

′

, occurs at d = 0.029 when two limit cycles
collapse, one stable and one unstable with a smaller amplitude. Note that when increasing
a constant power load d, the amplitude of the limit cycle decreases until it disappears in
the subcritical Hopf bifurcation at d = 0.62 (point H), so the pseudo equilibria become
unstable; and soon it collides with equilibrium x+

4 at d = 0.9375 (point D) and set off
virtual. As the power load increases further, the stable limit cycle disappears (collapses)
when a saddle-node discontinuous (DSN) rises for d = 0.45 (point B). At this same point
a collision between x3 and x+

4 occurs and becomes real from a DSN bifurcation. Note
that between D and B the equilibrium x+

4 is real unstable; outside this interval it is
virtual and x−

4 is also virtual.
Figure 3.10(a)-(d) show the bifurcations diagram with yr = 0.5. In this case, a pseudo-

equilibrium point collapsed with the saddle-node bifurcation in the degenerate boundary
equilibrium point (A) at d = 1.25, thereafter it becomes virtual. Other bifurcations
happen when the amplitude of the limit cycle increases as it varies, starting in the
subcritical Hopf bifurcation at point A and disappearing (with maximum amplitude) on
a saddle-node discontinuous at d = 0.44995 (point B). Notice that the change from the
unstable to stable limit cycle occurs at d = 0.04270 (points C and C

′

). Between A and
B the equilibrium x+

4 is real; outside this interval it is virtual and x−
4 is also virtual.

Figure 3.11 (a)-(d) show the bifurcations diagram with yr = 0.75. A saddle-node
bifurcation occurs at d = 1.25 (point A) when the equilibria of F4 collapses. In this case, a
pseudo-equilibrium point collides with an equilibrium x−

4 at a boundary equilibrium point
in (D) at d = 0.93, after this, a pseudo-equilibrium becomes virtual. A discontinuous
saddle-node bifurcation happens at d = 0.449 (point B); the change from the unstable to
stable limit cycle occurs at d = 0.051 (points C and C

′

). Notice that between A and B,
the equilibrium x+

4 is real; outside this it is virtual; and between A and D the x−
4 is real,

outside this is virtual.
Figure 3.12(a)-(d) shows the bifurcations diagram with yr = 0.93. Discontinuous

saddle-node bifurcation occurs at d = 1.25 (point A) when the equilibria of F4 collapses.
In this case, a pseudo-equilibrium point collapses with the equilibrium x−

4 at a boundary
equilibrium point in D at d = 0.93 after this becomes virtual. A saddle-node bifurcation
of periodic orbits indicated by C and C

′

, occurs at d = 0.4901 when two limit cycles
collapse, one stable and one unstable. The stable limit cycle disappears (collapses) when
a discontinuous saddle-node bifurcation (DSN) arises for d = 0.449 at point B. The
unstable limit cycle disappears when it collides with another stable limit cycle having
a sliding segment in another SNPO bifurcation in E and E

′

at d = 0.0645. Note that
between A and B the equilibrium x+

4 is real; outside this interval it is virtual; and between
A and D the equilibrium x−

4 is real, outside this interval is virtual.
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Figure 3.13(a)-(d) shows the bifurcations diagram with yr = 0.99. A saddle-node
bifurcation occurs at d = 1.25 (point A) when the equilibria of F4 collapses. In this case,
a pseudo-equilibrium point collapses with the equilibrium x−

4 at a boundary equilibrium
point in D at (d=0.0495) after this becomes virtual. A saddle-node bifurcation of
periodic orbits indicated by C and C

′

, occurs at d = 0.05889 when two limit cycles
collapse, one stable and one unstable. The stable limit cycle disappears (collapses) when
a discontinuous saddle-node bifurcation (DSN) arises for d = 0.449 at point B. The
unstable limit cycle disappears when it collides with another stable limit cycle having
a sliding segment in another SNPO bifurcation in E and E

′

at d = 0.3928. Another
SNPO occurs at point F (point d = 0.18479), from which bifurcates an unstable (smooth)
limit cycle and a stable (non-smooth) limit cycle with a sliding segment. The unstable
(smooth) limit cycle disappears in subcritical Hopf bifurcations at G (d = 0.1849). In this
last situation, the coexistence of 4 limit cycles is observed, which is the maximum number
of limit cycles found for system (3.2.11). Note that between A and B the equilibrium x+

4

is real unstable; outside this interval it is virtual; between A and G the equilibrium x−
4 is

unstable real and between G and D is real stable, outside this interval is virtual. Figure
3.15 shows a case with 3 limit cycles, from the simulation of the system in state space.
Table 3.3 shows the maximum number of limit cycles in each region of Figure 3.8(a), and
in Table 3.4 for the Figure 3.8(b).

Figure 3.14(a)-(d) shows the bifurcations diagram considering d as the bifurcation

parameter for b =
√

1
3
, k = 0.5, ω = 1, yth = 0.1 and yr = 0.937, in this case a pseudo-

equilibrium point collapses with the equilibrium x+
4 at a boundary equilibrium point in

D at d = 0.10224, thereafter it becomes virtual. A saddle-node bifurcation occurs at
d = 1.25 (point A) and a discontinuous saddle-node bifurcation happens at d = 0.15588
(point B). We observe the occurrence of a subcritical Hopf bifurcation in G at d = 0.3247
and the emergence of an unstable limit cycle (saddle) when decreasing the parameter
d. This cycle is entirely contained in the region D4 of the system state space, deőned in
(3.2.10) until it touches the switching boundary Σ1, and so a Grazing-sliding bifurcation
occurs (P) at d = 0.3047. Then it becomes a cycle with a sliding part and persists until
it disappears after the homoclinic connection in O at d = 0.2558.
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Figure 3.9: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, ω = 1, yth = 0.1 and yr = 0.25. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium x4+ and the equilibrium x−

4 , respectively; the violet line stands for the
equilibrium x3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium/limit cycle, and dotted curves mean the virtual
equilibrium.

90



0 0.5 1 1.5

-1

0

1

2

3

4

5

(a) (x, d)-plane

0 0.5 1 1.5

-0.1

0

0.1

0.3

0.5

0.7

0.9

1

(b) (y, d)-plane

0 0.5 1 1.5

-0.8

-0.4

0

0.4

0.8

(c) (z, d)-plane

0 0.5 1 1.5

0.5

1

2

3

4

5

(d) (norm, d)-plane

Figure 3.10: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, ω = 1, yth = 0.1 and yr = 0.5. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium x4+ and the equilibrium x−

4 , respectively; the violet line stands for the
equilibrium x3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium.
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Figure 3.11: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, ω = 1, yth = 0.1 and yr = 0.75. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium x4+ and the equilibrium x−

4 , respectively; the violet line stands for the
equilibrium x3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium.
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Figure 3.12: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, ω = 1, yth = 0.1 and yr = 0.93. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium x4+ and the equilibrium x−

4 , respectively; the violet line stands for the
equilibrium x3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium.
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Figure 3.13: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, ω = 1, yth = 0.1 and yr = 0.99. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium x4+ and the equilibrium x−

4 , respectively; the violet line stands for the
equilibrium x3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium.
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Figure 3.14: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation

parameter for b =
√

1
3
, k = 0.5, ω = 1, yth = 0.1 and yr = 0.937. Black curves stand

for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium x+

4 and the equilibrium x−
4 , respectively; the violet line stands for the

equilibrium x3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium.

Regions 1 2 3 4 5 6 7 8 9 10 11 12 13

Stable limit cycle 0 0 0 0 1 1 1 1 2 1 0 0 2

Unstable limit cycle 0 0 1 0 1 0 1 0 1 0 0 1 2

Table 3.3: Number and stability of coexisting limit cycles from the bifurcation set of
Figure 3.8(a).

95



Regions 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Stable limit cycle 0 0 0 0 1 1 1 0 0 0 0 0 0 1

Unstable limit cycle 0 0 1 0 0 1 1 1 1 0 0 0 0 2

Table 3.4: Number and stability of coexisting limit cycles from the bifurcation set of
Figure 3.8(b).

Boundary focus collision

If we take (yr, d) in the parabola segment with extremes at P∗∗ (resp. P4) and P3,
shown in Figure 3.8(a) (resp. 3.8(b)), then a persistence BEB involving the unstable
focus equilibrium x−

4 and the stable pseudo-node x̃, is observed in system (3.2.11). This
dynamic scenario is simulated and shown in Figure 3.15(b)-(d), where the points of focus
equilibrium, pseudo-node and boundary equilibrium are represented by green, red and
black dots, respectively. A stable limit cycle with a sliding part rises in the state space
for d > dB4 = 0.4.

This kind of BEB is known as Boundary Focus Bifurcation (BFB), from which it was
proved the existence of őve generic critical cases; see [19]. In planar Filippov systems, such
a BEB involves a regular focus equilibrium, a pseudo-equilibrium, and a fold singularity.
In the case where the regular equilibrium is an unstable focus, the pseudo-equilibrium is
stable and we have a persistence BEB, such a bifurcation produces a stable limit cycle
that is composed of two orbit segments, one deőned by the sliding vector őeld and the
other by vector őeld below (or above) the switching boundary. In addition, this limit cycle
is present in the state space when the focus is a real equilibrium close to the switching
boundary and the pseudo-equilibrium is virtual and the fold singularity is visible.

Naturally, the scenario described in the previous paragraph also occurs in 3D systems,
as we have observed from system (3.2.11). As in the two-dimensional case, a stable limit
cycle with sliding segment arises from a boundary equilibrium of dynamic unstable focus
for F4 and stable node for Fs. But, unlike the planar case, here the tangential singularity
involved is of the cusp type and divided the tangency line into visible and invisible
folds. In addition, this limit cycle is present in the state space when the focus is a real
equilibrium close to the Σ1, the pseudo-equilibrium is virtual and the cusp singularity is
łvisible" (that is, L3

F4
h(x−

c ) < 0 at the cusp point; see [20].
Beside the stable limit cycle with the sliding part mentioned above, there are also two

more crossing limit cycles, one stable (blue cycle) and the other unstable (black cycle) as
shown in Figure 3.15(e)-(f).
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(a) (b) d = 0.15 < dB4

(c) d = 0.3255 = dB4
(d) d = 0.4 > dB4

(e) d = 0.4 (f) d = 0.4

Figure 3.15: Simulation results of system (3.2.11) with parameters b = 0.2, ω = 1, k = 0.1
and yr = 0.93 showing the stable limit cycle in blue color and the unstable limit cycle in
black color; the points of focus equilibrium, pseudo-node and boundary equilibrium are
represent by green, red and black dots, respectively.
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Grazing-sliding Bifurcation

Consider in system (3.2.11) that b =
√
1/3, ω = 1, k = 0.5, yr = 0.937 and d = 0.305.

In this case, there is an unstable limit cycle around the real focus equilibrium of the vector
őeld F4, which is tangent to the switching boundary Σ1, see Figure 3.16(a) (violet cycle).
For a small perturbation in the parameter d (for d < 0.305) this limit cycle persists, but
has a sliding segment thereafter, as shown in Figure 3.16(b) (maroon cycle). Then we
have a Grazing-sliding bifurcation occurring in system (3.2.11) (see Figure 3.16(a)). More
speciőcally, this type of bifurcation appears when a periodic orbit touches the surface
where the system is discontinuous (switching boundary) (see [37, 60]). This result is
expected according to the bifurcation diagrams in Figure 3.14.

A Homoclinic connection bifurcation occurs when the unstable limit cycle with sliding
segment collides with the saddle equilibrium of the vector őeld F4; see Figure 3.16(b)
(maroon cycle). This phenomenon is expected according to the bifurcation diagram
shown in Figure 3.14(c). Notice that near the homoclinic connection is the stable node
equilibrium of the vector őeld F3. There is a combination of system parameters (point
P10 in Figure 3.8(b)) such that the homoclinic connection is formed in a (nonsmooth)
saddle-node equilibrium, which appears at the switching boundary Σ2 when the regular
equilibria node and saddle, of the vector őelds F3 and F4 respectively, collide.

(a) (b)

Figure 3.16: Simulation results of system (3.2.11) with parameters b =
√

1/3, ω = 1,
k = 0.5, yr = 0.937 and d = 0.305 showing the Grazing-sliding bifurcation (see violet
cycle) and the Homoclinic connection bifurcation (see maroon cycle).

3.5 Conclusion

This chapter addressed the nonlinear analysis of DPWS dynamical systems with
two transverse switching boundaries through a real case study: a cascade of two buck
converters connected to a common bus in a DC microgrid. A bifurcation approach is
proposed in order to study local and global phenomena of a power electronic circuit
feeding a piecewise constant power load and controlled by means of a sliding mode
control law. In the interconnected power converters structure, the two boundaries were
deőned by (i) the SMC law of the őrst buck converter and (ii) a piecewise constant
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power load modelling the second buck converter. The nonlinear behavior of this system
was analyzed and some results on bifurcations induced by two transversal switching
boundaries, obtained from a two-parameter analysis, were presented. Typical bifurcations
of DPWS systems were detected in the system under study, such as the BEB, BFB,
DSN and GS bifurcations. In addition, from the study carried out, we have predicted the
coexistence of at least 4 limit cycles. Other bifurcations of equilibrium and limit cycles
(Hopf, SNe, SNPO, HC) were also found in this case study.

The nonlinear analysis performed is very useful to determine the safe parameter region
which guarantees robust stability at the desired operating point for the system, under
changes considered in the parameters of load power and control reference voltage. This
information can be summarized in bifurcation diagrams and bifurcation sets leading to
practical rules for choosing the control parameters in order to achieve a suitable SMC
design.
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Chapter 4

Global stability of a Lotka-Volterra

piecewise-smooth system with

harvesting actions and two predators

competing for one prey

In this chapter, we will study the global dynamics of a three-dimensional Lotka-
Volterra system described by two predator species competing for one prey and with
human harvesting action on the predator species. The harvesting action is introduced by
means of two switching control actions deőned on the predator species. A well-known
result in the study of ecosystem modeling is that there are two states of coexistence
of one of the predatory species with the prey species assuming that the principle of
competitive exclusion or coexistence of competing species is fulőlled. In this sense, the
three species cannot coexist in this class of system. In this chapter, it is proved that
there is a global stable equilibrium point where the three species can coexist due to the
proposed harvesting action.

4.1 Introduction

According to the theory of evolution, competition within a species and between
species plays a fundamental role in natural selection, However, it is not always a simple
phenomenon and can occur indirectly, affecting the structure of the ecosystems. In
general, it is an important issue in nature and society since competition is related to the
concept of selection that is required to obtain or facilitate success in certain environments.
Therefore, the study of global dynamics on the competitive resource model is important
to understand the behavior and survival mechanism of the őttest (natural selection). In
addition, the analytical and numerical study of these models becomes very important in
different lines of research, see [66, 69, 70, 71, 85].

The study of the dynamics of predator-prey systems was originated in the works of
Lotka [68] and Volterra [67] who considered a model for one predator and one single
prey in an uniform environment. They also argued that the coexistence of two or more
predators competing for fewer prey resources is unfeasible, which is called the principle
of competitive exclusion. Recently, the control strategy for predator-prey models has

100



generated much interest in the mathematical society [86], since to understand its dynamics
it is important to use the qualitative analysis techniques related to Filippov non-smooth
systems, which are part of DPWS systems. The stability of equilibria of the system, the
existence of pseudo-equilibria of the sliding mode dynamics, different kinds of bifurcations,
global stability, etc, are in constant study and some of them are also investigated using
numerical analysis; see [87, 91, 90, 89, 88, 92].

We will study the dynamics of a 3-dimensional predator prey Lotka-Volterra system,
which describes two predators competing for food or sharing one resource. The two preda-
tory species are supposed to compete in a purely exploitative way without interference
between rivals, the growth rate of the prey species is logistic or linear in the absence of
predation, and the functional response of the predator is linear. Thus, the model given
by a system of ordinary differential equations of the form

dS(t)

dt
=

(
r3 −

1

K
S(t)− b1x1(t)− b2x2(t)

)
S(t),

dx1(t)

dt
= (a1S(t)− r1) x1(t)− u1x1(t), (4.1.1)

dx2(t)

dt
= (a2S(t)− r2) x2(t)− u2x2(t),

where xi(t) for i = 1, 2 stand for the population density of the i-th predator at time t,
S(t) represents the population density of the prey at time t, r3 > 0 is the intrinsic rate
of growth of the prey, K > 0 is the carrying capacity of the prey, which describes the
richness of resources for prey.

Notice that, if K = ∞, then the prey can increase unlimited, which implies that the
growth rate of the prey species is linear in the absence of predation; bi > 0 is the effect of
the i-th predation on the prey, ri > 0 is the natural death rate of the i-th predator in
the absence of prey, ai is the effciency and propagation rate of the i-th predator in the
presence of prey. Notice that xi(t) ≥ 0 and S(t) ≥ 0. Thus, system (4.1.1) is considered
only in the non-negative octant R

3
+. The control variables u1,2 stand for a proportional

removal of the predator population given by

u1 = k1ϕ1(ρ1) and u2 = k2ϕ2(ρ2),

where k1,2 are the control effort parameters to be designed and ϕ1,2(ρ1,2) are deőned as,

ϕ1(ρ1) =

{
1, if ρ1 > 0,
0, if ρ1 < 0,

and ϕ2(ρ2) =

{
1, if ρ2 > 0,
0, if ρ2 < 0,

(4.1.2)

with ρ1 = x1(t)− xr1(t) and ρ2 = x2(t)− xr2(t) representing the variables that deőne the
threshold, which is dependent on the system states, with xr1 and xr2 denote the reference
parameters for predatory species.

It is worth mentioning that the model (4.1.1) without control was studied by Llibre
and Xiao in [84], where results of the global dynamics of the system are presented.

System (4.1.1) under the proposed control strategy is represented by a piecewise
smooth system with two switching boundaries that cross perpendicularly between them
and has a sliding motion that is described in this work following Filippov’s convention.
The main result of this work is the proof of global stability of system (4.1.1) with two
switching boundaries under the action of control (4.1.2). From this study, we have
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explicitly determined the conditions on the system parameters so that the coexistence
equilibrium (which is the reference pseudo-equilibrium of the system) of the predators is
globally stable, see Theorem 4.4.1. As far as we know, there is no work in the literature
that deals with the global stability of system (4.1.1) with harvesting actions deőned by a
sliding mode control strategy. Other contributions are: (i) the identiőcation of a special
boundary equilibrium bifurcations that occurs in sliding vector őelds, called boundary
pseudo-equilibrium bifurcation (BPEB), see Theorems 4.3.2 and 4.3.4; (ii) the description
of the sliding dynamics on each switching boundary, even at the intersection between
them, see sections 4.3.1-4.3.2.

This chapter is organized as follows. Section 4.2 presents a detailed analysis of the
dynamics of the system. Conditions of global stability for the coexistence of the predators
are given in Section 4.4. The main conclusions are presented in Section 4.5.

4.2 A two-predator one-prey system under harvesting

actions

The system (4.1.1) is normalized by applying the change of variables and time, deőned
by

S = r3√
a1a2

x, x1 =
r3
b1
y, x2 =

r3
b2
z, t = 1

r3
τ. (4.2.1)

Then, we obtain the simpliőed system

ẋ = (1− βx− y − z)x,

ẏ =

(
αx− r1

r3

)
y − u1

r3
y, (4.2.2)

ż =

(
x

α
− r2
r3

)
z − u2

r3
z,

where x is the prey normalized variable, y and z are the predator normalized variables,

α =
√

a1
a2

and β = 1
K
√
a1a2

are normalized parameters. The control variables are rewritten
as

u1 =
k1
2
(1 + Sign[h1]) , and u2 =

k2
2
(1 + Sign[h2]) ,

being h1(x) = y−yr and h2(x) = z−zr the normalized switching functions, and yr =
b1
r3
xr1

and zr =
b1
r3
xr2 are the normalized reference parameters.

We denote the state variables by x = (x, y, z) ∈ D, where

D = {x ∈ R
3 : x ≥ 0, y ≥ 0 and z ≥ 0}.

We consider D∗ = {x ∈ R
3 : x > 0, y > 0 and z > 0}.
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The system state space is divided into four different regions, given by

R++ = {x ∈ D : h1(x) > 0 and h2(x) > 0},
R−+ = {x ∈ D : h1(x) < 0 and h2(x) > 0},
R−− = {x ∈ D : h1(x) < 0 and h2(x) < 0},
R+− = {x ∈ D : h1(x) > 0 and h2(x) < 0},

separated by two transverse switching boundaries, namely

Σ1 = {x ∈ D : h1(x) = y − yr = 0},
Σ2 = {x ∈ D : h2(x) = z − zr = 0}.

System (4.2.2) is then represented as a discontinuous piecewise smooth system of the
form

ẋ =





F++(x), if x ∈ R++,
F−+(x), if x ∈ R−+,
F−−(x), if x ∈ R−−,
F+−(x), if x ∈ R+−,

(4.2.3)

composed of the vector őelds

Fij(x) =



(1− βx− y − z)x

α(x− µi
1)y

1
α
(x− µj

2)z


 , (4.2.4)

for i = +,− and j = +,−, where µi
1 and µj

2 are normalized parameters deőned by

µ+
1 = r1+k1

r3α
, µ+

2 = α(r2+k2)
r3

, µ−
1 = r1

r3α
, µ−

2 = α r2
r3
. (4.2.5)

Notice that 0 < µ−
l < µ+

l for l = 1, 2 since k1,2 > 0.

4.2.1 Dynamics of vector field Fij

System (4.2.3) has an equilibrium at the origin 0 = (0, 0, 0) and another equilibrium
at the point e = (1/β, 0, 0) for all the values of the parameters. In addition, they are
equilibria of both the vector őelds F++, F−+, F−− and F+−, but they are admissible only
for F−−. If µi

1 ̸= µj
2 then there are two more equilibria for each vector őeld Fij, located

at the points
ei1 = (µi

1, 1− βµi
1, 0) and e

j
2 = (µj

2, 0, 1− βµj
2).

The point e−1 (resp. e+1 ) is an equilibrium for the vector őelds F−− and F−+ (resp. F+−
and F++), but it is admissible only for F−− (resp. F+−) and if yr > 1− βµ−

1 > 0 (resp.
0 < yr < 1− βµ+

1 ). The point e−2 (resp. e+2 ) is an equilibrium for the vector őelds F−−
and F+− (resp. F−+ and F++), but it is admissible only for F−− (resp. F−+) and if
zr > 1 − βµ−

2 > 0 (resp. 0 < zr < 1 − βµ+
2 ). If µi

1 = µj
2 = µij < 1/β then there are

inőnitely many equilibria of Fij located at the line segment Lij = {(µij, 1− βµij − z, z) :
0 ≤ z ≤ 1 − βµij}. Predators can coexist in the latter case, but this is a structurally
unstable scenario as it is not preserved after a small variation in parameter µi

1 or µj
2.

In what follows we consider only the cases of our interest, which are those that have
equilibria ei1 and e

j
2 with coordinates in D.

103



Proposition 4.2.1. Assume in system (4.2.3) that µi
1 ≠ µj

2 and µ+
1,2 <

1
β
. The following

statements hold on the equilibria of Fij.

(i) The trivial equilibrium 0 is a saddle with a 2-dimensional stable manifold and a
1-dimensional unstable manifold.

(ii) The equilibrium e is a saddle with a 1-dimensional stable manifold and a 2-
dimensional unstable manifold.

(iii) The equilibrium ei1 is asymptotically stable if µi
1 < µj

2, with local dynamics of focus
(resp. node) for µi

1 <
1
β

4α
β+4α

(resp. ≥). If µi
1 > µj

2 then it is a saddle-focus (resp.

saddle) with a 2-dimensional stable manifold and a 1-dimensional unstable manifold
for µi

1 <
1
β

4α
β+4α

(resp. ≥).

(iv) The equilibrium e
j
2 is asymptotically stable if µi

1 > µj
2, with local dynamics of focus

(resp. node) if µj
2 <

1
β

4
βα+4

(resp. ≥). If µi
1 < µj

2 then it is a saddle-focus (resp.

saddle) with a 2-dimensional stable manifold and a 1-dimensional unstable manifold
for µj

2 <
1
β

4
βα+4

(resp. ≥).

Proof. The (i)-(iv) statements are easily proven from the eigenvalues of the Jacobian
matrix given by: (i) λij1 = 1, λij2 = −αµi

1, λ
ij
3 = − 1

α
µj
2 for the equilibrium 0; (ii) λij4 = −1,

λij5 = α
(

1
β
− µi

1

)
, λij6 = 1

α

(
1
β
− µj

2

)
for the equilibrium e; (iii) λij7 = 1

α
(µi

1 − µj
2),

λij8,9 = −βµi
1

2

(
1±

√
1− 4α

µi
1β

(
1
β
− µi

1

))
for equilibrium ei1; and (iv) λij10 = −α(µi

1 − µj
2),

λij11,12 = −βµj
2

2

(
1±

√
1− 4

αµj
2β

(
1
β
− µj

2

))
for the equilibrium e

j
2.
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Figure 4.1: Phase portraits of the vector őeld Fij in D from the choice of (µi
1, µ

j
2),

assuming µi
1 ̸= µj

2, µ
i
1 < 1/β, µj

2 < 1/β and α = 1. The green, blue and red dot represent
the equilibrium points e, ej2 and ei1, respectively

It is well known in the literature that the Lotka-Volterra system (4.1.1) has a globally
asymptotically stable equilibrium point if r1

a1
̸= r2

a2
, see for instance [66, 84] (that implies

µi
1 ≠ µj

2 in the normalized system (4.2.3)); and [86, 93] with harvesting action on predator
and prey species. In this case, if we assume the őeld Fij deőned in the whole D, then
that vector őeld has a globally stable equilibrium. Whenever µi

1 < µj
2 < 1/β the globally

asymptotically stable equilibrium of Fij is the point ei1, but if µj
2 < µi

1 < 1/β then e
j
2

takes place. Such property is observed in the phase portraits of the vector őeld Fij in D,
obtained from the choice of µi

1 and µj
2 in the (µi

1, µ
j
2)-plane of parameters, as shown in

Figure 4.1. Notice that k1 and k2 parameters are deőned by (4.2.5) and both are also
positive as previously deőned in the text.

4.2.2 Configuration on Σ = Σ1 ∪ Σ2

To study the contact of vector őelds with the switching boundaries we use the Lie
derivatives: LFij

hk = ∇hTk · Fij and Lq
Fij
hk = ∇Lq−1

Fij
hTk · Fij, for k = 1, 2 and q = 2, 3.

The ŕux of Fij is tangent to the switching boundary Σ1 at the points (x, y, z) ∈ Σ1
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such that LFij
h1(x, yr, z) = αyr(x − µi

1) = 0, and it is tangent to Σ2 at the points

(x, y, z) ∈ Σ2 such that LFij
h2(x, y, zr) = zr(x− µj

2)/α = 0. Then, we deőne two sets of
tangential points for each vector őeld Fij, namely

T i
1 = {(x, y, z) ∈ Σ1 : x = µi

1, y = yr} and T j
2 = {(x, y, z) ∈ Σ2 : x = µj

2, z = zr},
(4.2.6)

for i, j ∈ {+,−}. Note that T+
1 is the tangency line for F++ and F+−, and that T−

1 is
the tangency line for F−+ and F−−. Similarly, T+

2 is the tangency line for F++ and F−+,
and T−

2 is the tangency line for F−− and F+−. In addition, the tangency lines T+
1 and

T−
1 are parallel straight lines in Σ1, while T+

2 and T−
2 are parallel straight lines in Σ2.

In T i
1 and in T j

2 it may appear a cusp point with coordinates given by

qi
1 = (µi

1, yr, 1− βµi
1 − yr) and q

j
2 = (µj

2, 1− βµj
2 − zr, zr),

respectively. Note that qi
1 and q

j
2 have positive coordinates only if yr < 1 − βµi

1 and
zr < 1− βµj

2, respectively.

(i) We say that q+
1 is a real cusp point for F++ if yr + zr < 1 − βµ+

1 , or for F+− if
yr + zr > 1− βµ+

1 . If yr + zr = 1− βµ+
1 then q+

1 ∈ Σ1 ∩ Σ2 and it is a boundary
cusp point.

(ii) We say that q−
1 is a real cusp point for F−+ if yr + zr < 1 − βµ−

1 , or for F−− if
yr + zr > 1− βµ−

1 . If yr + zr = 1− βµ−
1 then q−

1 ∈ Σ1 ∩ Σ2 and it is a boundary
cusp point.

(iii) We say that q+
2 is a real cusp point for F++ if yr + zr < 1 − βµ+

2 , or for F−+ if
yr + zr > 1− βµ+

2 . If yr + zr = 1− βµ+
2 then q+

2 ∈ Σ1 ∩ Σ2 and it is a boundary
cusp point.

(iv) We say that q−
2 is a real cusp point for F+− if yr + zr < 1 − βµ−

2 , or for F−− if
yr + zr > 1− βµ−

2 . If yr + zr = 1− βµ−
2 then q−

2 ∈ Σ1 ∩ Σ2 and it is a boundary
cusp point.

Other points of T i
1 and in T j

2 are classiőed as visible or invisible fold.

Proposition 4.2.2. Let T i
1 and T j

2 be the tangency lines of system (4.2.3), and assume
µi
1 ̸= µj

2, z̄
i = 1− βµi

1 − yr ̸= 0 and ȳj = 1− βµj
2 − zr ̸= 0, for i, j ∈ {+,−}.

(i) Tangential singularities in Σ1:

(a1) (x, y, z) ∈ T+
1 is a visible fold point for all z < z̄+, an invisible fold point for

all z > z̄+, and at z = z̄+ it is a cusp point.

(b1) (x, y, z) ∈ T−
1 is a visible fold point for all z > z̄−, an invisible fold point for

all z < z̄−, and at z = z̄− it is a cusp point.

(ii) Tangential singularities in Σ2:

(a2) (x, y, z) ∈ T+
2 is a visible fold point for all y < ȳ+, an invisible fold point for

all y > ȳ+, and at y = ȳ+ it is a cusp point.

(b2) (x, y, z) ∈ T−
2 is a visible fold point for all y > ȳ−, an invisible fold point for

all y < ȳ−, and at y = ȳ− it is a cusp point.
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Proof. (i) Computing the second and third Lie derivatives at the tangency lines T i
1

and at the cusp point qi
1, respectively, we get

L2
Fij
h1(µ

i
1, yr, z) = αyrµ

i
1(z̄

i − z),

L3
Fij
h1(q

i
1) = −yrµi

1z̄
i(µi

1 − µj
2).

(a1) Notice that, L2
Fij
h1(µ

+
1 , yr, z) ̸= 0 if z ≠ z̄+, therefore, (x, y, z) ∈ T+

1 is a

visible fold for z < z̄+, and for z > z̄+ then (x, y, z) ∈ T+
1 is a invisible fold.

Now, if z = z̄+ then we have L2
Fij
h1(µ

+
1 , yr, z) = 0 and L3

Fij
h1(q

+
1 ) ̸= 0, i.e.,

the point q+
1 is a cusp point.

(b1) Analogously, (x, y, z) ∈ T−
1 is a visible fold point for all z > z̄−, an invisible

fold point for all z < z̄−, and at z = z̄− the point q−
1 it is a cusp point.

(ii) Computing the second and third Lie derivatives at the tangency lines T j
2 and at

the cusp point q
j
2, respectively, we get

L2
Fij
h2(µ

j
2, y, zr) =

zrµ
j
2

α
(ȳj − y),

L3
Fij
h2(q

j
2) = zrµ

j
2ȳ

j(µi
1 − µj

2).

(a2) Notice that, L2
Fij
h2(µ

+
2 , yr, z) ̸= 0 if y ≠ ȳ+, therefore, (x, y, z) ∈ T+

2 is a

visible fold for y < ȳ+, and for y > ȳ+ then (x, y, z) ∈ T+
2 is a invisible fold.

Now, if y = ȳ+ then we have L2
Fij
h2(µ

+
2 , yr, z) = 0 and L3

Fij
h2(q

+
2 ) ̸= 0, i.e.,

the point q+
2 is a cusp point.

(b2) Likewise, (x, y, z) ∈ T−
2 is a visible fold point for all y > ȳ−, an invisible fold

point for all y < ȳ−, and at y = ȳ− the point q−
2 it is a cusp point.

Between the parallel tangency lines T−
1 and T+

1 contained in Σ1, there is the attractive
sliding region

Σas

1 = {(x, y, z) ∈ Σ1 : µ
−
1 < x < µ+

1 , z = yr}, (4.2.7)

and on the outside there are the crossing regions

Σc+
1 = {(x, y, z) ∈ Σ1 : x > µ+

1 , z = yr} and Σc−
1 = {(x, y, z) ∈ Σ1 : x < µ−

1 , z = yr}.

The same conőguration appears in Σ2, with the attractive sliding region

Σas

2 = {(x, y, z) ∈ Σ2 : µ
−
2 < x < µ+

2 , y = zr}, (4.2.8)

and the crossing regions

Σc+
2 = {(x, y, z) ∈ Σ2 : x > µ+

2 , y = zr} and Σc−
2 = {(x, y, z) ∈ Σ2 : x < µ−

2 , y = zr}.

With that we have completed the set Σ = Σ1 ∪ Σ2. Figure 4.2 shows a particular
situation that occurs when yr > 1 − βµ−

1 , zr > 1 − βµ−
2 , µ−

1 < µ−
2 and µ+

1 > µ+
2 . In

this case, the cusp points qi
1 and q

j
2 have negative coordinates and, thus, the tangency

lines T+
1 and T+

2 consist only of invisible fold points, while the tangency lines T−
1 and

T−
2 consist only of visible fold points. Moreover, there is an intersection between the

attractive sliding sets, given by Σas

1 ∩ Σas

2 = {(x, yr, zr) : µ−
2 < x < µ+

2 }.

107



y

z

x

Σ2

Σ1

T−
2

T+
2

T−
1

T+
1

Σas
1

Σc+
1

Σc−
1

Σc+
2

Σc−
2

Σas
2

q
−

20

q
+
20

Figure 4.2: Conőguration on Σ = Σ1∪Σ2 assuming yr > 1−βµ−
1 , zr > 1−βµ−

2 , µ−
1 < µ−

2 ,
µ+
1 > µ+

2 , where q+
20 = (µ+

2 , yr, zr) ∈ T+
2 ∩ Σ1 and q−

20 = (µ−
2 , yr, zr) ∈ T−

2 ∩ Σ1 are fold
points of the sliding vector őeld in Σas

1 with its switching boundary Σ1 ∩ Σ2.

4.3 Sliding vector fields and pseudo-equilibria

4.3.1 Sliding dynamics on Σ1 and bifurcations

System (4.2.3) has sliding orbits on the switching boundary Σ1 that are restricted
to the attractive sliding region Σas

1 ⊂ Σ1, being extended to their borders given by the
parallel tangency lines T−

1 ⊂ Σ1 and T+
1 ⊂ Σ1. The sliding vector őeld Fs1 : S1 → D that

governs the dynamics of the sliding motion in S1 = T−
1 ∪ Σas

1 ∪ T+
1 is given by

Fs1(x, y, z) =

{
F−

s1(x, y, z) if h2(x, y, z) < 0,
F+

s1(x, y, z) if h2(x, y, z) > 0,
(4.3.1)

where

F
j
s1(x, y, z) =



(1− βx− y − z)x

0
1
α
(x− µj

2)z


 , (4.3.2)

for j = +,−, and deőned for y = yr, µ
−
1 ≤ x ≤ µ+

1 and z ≥ 0. This vector őeld is
piecewise smooth and has the switching line S0

1 = {(x, yr, zr) : µ−
1 ≤ x ≤ µ+

1 } that divides
the state space S1 into two zones: S−

1 = {(x, yr, z) : µ−
1 ≤ x ≤ µ+

1 , 0 ≤ z < zr} and
S+
1 = {(x, yr, z) : µ−

1 ≤ x ≤ µ+
1 , z > zr}.

The regular equilibria of Fs1, which are pseudo-equilibria for the system (4.2.3), are
located at the points: p10 = (0, yr, 0) /∈ S1,

p11 =

(
1− yr
β

, yr, 0

)
and p

j
12 = (µj

2, yr, 1− βµj
2 − yr). (4.3.3)

Note that p10 is always a virtual equilibrium for both F−
s1 and F+

s1, thus being excluded of
the stability analysis that follows. Point p11 ∈ S−

1 is a virtual equilibrium for F+
s1 and real
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for F−
s1 if yr ∈ (1− βµ+

1 , 1− βµ−
1 ). But if p11 /∈ S−

1 , that is, if yr /∈ [1− βµ+
1 , 1− βµ−

1 ],
then it is virtual for both F+

s1 and F−
s1. Moreover, it becomes a boundary equilibrium such

that p11 = e−1 ∈ T−
1 if yr = 1−βµ−

1 or p11 = e+1 ∈ T+
1 if yr = 1−βµ+

1 . Point p−
12 ∈ S−

1 is
a real equilibrium of F−

s1 whenever yr ≤ 1− βµ−
2 < yr + zr and µ−

2 ∈ (µ−
1 , µ

+
1 ), being that

p−
12 = p11 when yr = 1− βµ−

2 . If yr + zr = 1− βµ−
2 and µ−

2 ∈ (µ−
1 , µ

+
1 ) then it becomes a

pseudo boundary equilibrium such that p−
12 = p ∈ S0

1 , where p denotes the non-trivial
pseudo-equilibrium of Fs1 which will be introduced later. In other cases, that is, p−

12 ∈ S+
1

or p−
12 /∈ S1, this equilibrium is virtual. Point p+

12 ∈ S+
1 is a real equilibrium of F+

s1

whenever yr + zr < 1− βµ+
2 and µ+

2 ∈ (µ−
1 , µ

+
1 ). If yr + zr = 1− βµ+

2 and µ+
2 ∈ (µ−

1 , µ
+
1 )

then it becomes a boundary equilibrium such that p+
12 = p ∈ S0

1 . In other cases, that
is, p+

12 ∈ S−
1 or p+

12 /∈ S1, this equilibrium is virtual. Remember that we are assuming
µi
1 ̸= µj

2 for i, j ∈ {+,−}, then p
j
12 /∈ T i

1.
The following proposition presents the stability characteristics of these pseudo-

equilibria.

Proposition 4.3.1. Consider the pseudo-equilibrium points p11 and p
j
12, for j = +,−,

of system (4.2.3). The following statements hold.

(i) p11 is a stable pseudo-node if yr ∈ (1− βµ−
2 , 1), and a pseudo-saddle if yr > 1 or

yr < 1− βµ−
2 .

(ii) p
j
12 is a pseudo-saddle if yr > 1−βµj

2, a stable pseudo-node if yr ∈
[
1− βµj

2 −
αβ2µj

2

4
, 1− βµj

2

)
,

and a stable pseudo-focus if yr < 1− βµj
2 −

αβ2µj
2

4
.

Proof. The sliding dynamics in S1 is described by the vector őeld (4.3.1), which can be
investigated by the two-dimensional system

ẋ = (1− yr − βx− z)x, (4.3.4)

ż =

{
1
α
(x− µ−

2 )z, if z < zr,
1
α
(x− µ+

2 )z, if z > zr.
(4.3.5)

Jacobian matrix is

Jj(x̄, z̄) =

(
−βx̄ −x̄
z̄/α (x̄− µj

2)/α

)
,

where x̄ and z̄ denote the coordinates x and z of the equilibrium points p11 and p
j
12, with

eigenvalues given by

L11 =

{
yr − 1,

1− βµ−
2 − yr

αβ

}
and Lj

12 =

{
−βµ

j
2

2

(
1±

√
1− 4

αβ2µj
2

(1− βµj
2 − yr)

)}

for p11 and p
j
12, respectively.

(i) It is easy to see that the equilibrium point p11 is a stable pseudo-node if yr ∈
(1−βµ−

2 , 1), since the eigenvalues in L11 are negative reals; and, it is a pseudo-saddle
for yr > 1 or yr < 1− βµ−

2 since the eigenvalues in L11 have opposite signs.

(ii) It is easy to see that the equilibrium point pj
12 is a pseudo-saddle if yr > 1− βµj

2,
since the eigenvalues in Lj

12 have opposite signs; and, it is a stable pseudo-node
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for yr ∈
[
1− βµj

2 −
αβ2µj

2

4
, 1− βµj

2

)
since the eigenvalues in Lj

12 are negative reals;

and, it is a stable pseudo-focus when yr < 1− βµj
2 −

αβ2µj
2

4
, since the eigenvalues in

Lj
12 are complex conjugate with a negative real part.

The vector őeld F+
s1 (resp. F−

s1) is tangent to the switching line S0
1 ⊂ Σ1 ∩ Σ2 at the

point q+
20 = (µ+

2 , yr, zr) ∈ T+
2 ∩ Σ1 (resp. q−

20 = (µ−
2 , yr, zr) ∈ T−

2 ∩ Σ1), being this point
classiőed as invisible fold if yr + zr > 1− βµ+

2 (resp. yr + zr < 1− βµ−
2 ) and visible fold

if yr + zr < 1− βµ+
2 (resp. yr + zr > 1− βµ−

2 ). In the segment that joins the fold points
q−
20 and q+

20, there is a new sliding motion, generated by the vector őelds F−
s1 and F+

s1. If
µj
2 ∈ (µ−

1 , µ
+
1 ) then this sliding segment is all inside S0

1 , as in the case shown in Figure
4.2. In general, the sliding segment is denoted by S and deőned by

S = Σas

1 ∩ Σas

2 = {(x, yr, zr) : max[µ−
1 , µ

−
2 ] < x < min[µ+

1 , µ
+
2 ]}. (4.3.6)

These results are checked with the Lie derivatives: L
F

j
s1
h2(x, yr, zr) =

zr
α
(x − µj

2) and

L2
F

j
s1

h2(q
j
20) =

zrµ
j
2

α
(1− βµj

2 − yr − zr).

The sliding dynamics in S has the equations

ẋ = (1− yr − zr − βx)x,

ẏ = 0, (4.3.7)

ż = 0,

with a stable non-trivial equilibrium at

p =

(
1− yr − zr

β
, yr, zr

)
. (4.3.8)

The point p is a pseudo-equilibrium of the sliding vector őeld Fs1. In addition, it is real
whenever

1− β min[µ+
1 , µ

+
2 ] < yr + zr < 1− β max[µ−

1 , µ
−
2 ]. (4.3.9)

Considering only the switching boundary Σ1 and the sliding motion occurring there,
we get a two-dimensional DPWS system (4.3.4)-(4.3.5) with the switching boundary
S0
1 ⊂ Σ1, which has three regular equilibria and one non-trivial pseudo-equilibrium. In

this system (4.3.4)-(4.3.5) two Persistence bifurcations of boundary equilibria occur,
which is one of the scenarios of the well-known Boundary Equilibrium Bifurcation (BEB),
typical of DPWS systems, see for instance [20, 19]. However, such regular equilibria
and pseudo-equilibrium of the two-dimensional DPWS system, are equivalent to the
pseudo-equilibrium points p11, p

+
12, p

−
12, and to the pseudo-equilibrium point p. With that,

the bifurcation point is a boundary pseudo-equilibrium of system (4.2.3) and, therefore,
we renamed such a BEB as Boundary Pseudo-Equilibrium Bifurcation (BPEB). The
following theorem predicts the unfolding scenarios of BPEBs in system (4.2.3), that occur
in sliding dynamics restricted to Σ1.

Theorem 4.3.2. Assume µj
2 ∈ (µ−

1 , µ
+
1 ), µ

+
1 < 1/β, yr < 1 − βµ+

2 and yr + zr ∈
(1 − βµ+

1 , 1 − βµ−
1 ). System (4.2.3) undergoes a BPEB for yr + zr = 1 − βµ+

2 or for
yr + zr = 1− βµ−

2 . Moreover, in both cases, the bifurcation is of the Persistence type and
involves the pseudo-equilibria p and p+

12 or p and p−
12, as described below.
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(a) If yr + zr < 1− βµ+
2 then p is virtual, p+

12 is real and p−
12 is virtual.

(b) If yr + zr = 1− βµ+
2 then p = p+

12 becomes a boundary pseudo-equilibrium, and p−
12

remains virtual.

(c) If yr + zr ∈ (1− βµ+
2 , 1− βµ−

2 ) then p is real, p−
12 and p+

12 are virtual.

(d) If yr + zr = 1− βµ−
2 then p = p−

12 becomes a boundary pseudo-equilibrium, and p+
12

remains virtual.

(e) If yr + zr > 1− βµ−
2 then p is virtual, p−

12 is real and p+
12 is virtual.

Proof. (a) If yr + zr < 1− βµ+
2 then by (4.3.9) we have that p is virtual, since p /∈ S0

1 ;
and, by (4.3.3) we have that p+

12 is real and p−
12 is virtual, since p+

12 ∈ S+
1 and

p−
12 ∈ S+

1 .

(b) If yr + zr = 1− βµ+
2 then by (4.3.9) we have that p = p+

12 is a boundary pseudo-
equilibrium, since p+

12 ∈ S0
1 ; and, by (4.3.3) we have that p−

12 is virtual since
p−
12 ∈ S+

1 .

(c) If yr + zr ∈ (1− βµ+
2 , 1− βµ−

2 ) then by (4.3.9) we have that p is real since p ∈ S1;
and, by (4.3.3) we have that p−

12 and p+
12 are virtual, since p−

12 ∈ S+
1 and p+

12 ∈ S−
1 .

(d) If yr + zr = 1− βµ−
2 then by (4.3.9) we have that p = p−

12 is a boundary pseudo-
equilibrium since p−

12 ∈ S0
1 ; and, by (4.3.3) we have that p+

12 is virtual since
p+
12 ∈ S−

1 .

(e) If yr + zr > 1− βµ−
2 then by (4.3.9) we have that p is virtual since p /∈ S0

1 ; and, by
(4.3.3) we have that p−

12 is real and p+
12 is virtual, since p−

12 ∈ S−
1 and p+

12 ∈ S−
1 .

A bifurcation set in the (yr, zr)-plane of parameters is shown in Figure 4.3(a), and in
4.3(b) there are shown some planar phase portraits of the sliding dynamics of system
(4.2.3) restricted to S1 = T−

1 ∪ Σas
1 ∪ T+

1 ⊂ Σ1. We are considering the hypothesis of

Theorem 4.3.2 and also yr < 1 − βµj
2 −

αβ2µj
2

4
from the Proposition 4.3.1, in order to

obtain p
j
12 and p inside Σas

1 , and also to obtain a focus dynamics in (x, z)-plane for both
the pseudo-equilibria p+

12 and p−
12. For any (yr, zr) in the regions 1, 2 or 3, on the left

horizontal dashed line in red color, the statement (a), (c) or (e) of Theorem 4.3.2 occurs,
respectively. These scenarios are structurally stable and the planar phase portrait for
each case is shown in Figure 4.3(b). For any (yr, zr) at the border of regions 1 and 2
(solid red line) or at the border of regions 2 and 3 (solid blue line), the statement (b)
or (d) of Theorem 4.3.2 occurs, respectively. In both cases, a Persistence bifurcation
occurs at a boundary pseudo-focus. Looking at the planar sliding dynamics, we observe
the presence of typical unfoldings from boundary-focus bifurcations of Planar Filippov
systems, see [19].
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Figure 4.3: Sliding dynamics in Σ1. In (a) is shown a set of bifurcations in the (yr, zr)-
plane of parameters assuming µ±

2 ∈ (µ−
1 , µ

+
1 ) and µ+

1 < 1/β, where the red and blue
lines indicate the Persistence BPEB involving the boundary pseudo-equilibrium p = p+

12

and p = p−
12, respectively. For points (yr, zr) in the regions 1, 2 or 3, one of the pseudo-

equilibria involved becomes real, and all of them, real and virtual, are located in Σas
1 ,

being that p+
12 (resp. p−

12) have positive coordinates if on the left of the horizontal dashed
line in red (resp. blue) color. In (b) there are shown some phase portraits of the sliding
dynamics restricted to S1 = T−

1 ∪ Σas
1 ∪ T+

1 ⊂ Σ1, taking (yr, zr) in the regions 1 (left),
2 (center) and 3 (right) of the bifurcations set. The green dot represents the p11 point,
the red dots represent the p±

12 points and the blue dot represents the p point. They
are virtual when represented by a small circle with an empty interior. The black dots
represent the pseudo-folds q+

20 and q−
20. Consider z∗ = 1− βµ−

2 .
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4.3.2 Sliding dynamics on Σ2 and bifurcations

We now consider the sliding orbits of system (4.2.3) restricted to attractive sliding
region Σas

2 ⊂ Σ2, including its borders located at the parallel tangency lines T−
2 ⊂ Σ2

and T+
2 ⊂ Σ2. The sliding vector őeld Fs2 : S2 → R

3 that governs the dynamics of the
sliding motion in S2 = T−

2 ∪ Σas

2 ∪ T+
2 is given by

Fs2(x, y, z) =

{
F−

s2(x, y, z) if h1(x, y, z) < 0,
F+

s2(x, y, z) if h1(x, y, z) > 0,
(4.3.10)

where

Fi
s2(x, y, z) =



(1− βx− y − z)x

α(x− µi
1)y

0


 , (4.3.11)

for i = +,−, and deőned for z = zr, µ
−
2 ≤ x ≤ µ+

2 and y ≥ 0. This vector őeld is
piecewise smooth and has the switching line S0

2 = {(x, yr, zr) : µ−
2 ≤ x ≤ µ+

2 } that divides
the state space S2 into two zones: S−

2 = {(x, y, zr) : µ−
2 ≤ x ≤ µ+

2 , 0 ≤ y < yr} and
S+
2 = {(x, y, zr) : µ−

2 ≤ x ≤ µ+
2 , y > yr}.

Sliding dynamics on Σ2 has the same characteristics as the sliding dynamics on Σ1

described in the previous subsection. We then proceed in a similar way to the previous
subsection. The regular equilibria of Fs2, which are pseudo-equilibria for the system
(4.2.3), are located at the points: p20 = (0, 0, zr) /∈ S2,

p21 =

(
1− zr
β

, 0, zr

)
and pi

22 = (µi
1, 1− βµi

1 − zr, zr) (4.3.12)

Proposition 4.3.3. Consider the pseudo-equilibrium points p21 and pi
22, for i = +,−,

of system (4.2.3). The following statements hold.

(i) p21 is a stable pseudo-node if zr ∈ (1− βµ−
1 , 1), and a pseudo-saddle if zr > 1 or

zr < 1− βµ−
1 .

(ii) pi
22 is a pseudo-saddle if zr > 1−βµi

1, a stable pseudo-node if zr ∈
[
1− βµi

1 −
αβ2µi

1

4
, 1− βµi

1

)
,

and a stable pseudo-focus if zr < 1− βµi
1 −

αβ2µi
1

4
.

Proof. The sliding dynamics in S2 is described by the two-dimensional PWS system

ẋ = (1− zr − βx− y)x, (4.3.13)

ẏ =

{
α(x− µ−

1 )y, if y < yr,
α(x− µ+

1 )y, if y > yr.
(4.3.14)

Jacobian matrix is

Ji(x̄, z̄) =

(
−βx̄ −x̄
αȳ α(x̄− µi

1)

)
,

where x̄ and ȳ denote the coordinates x and y of the equilibrium points p21 and pi
22, with

eigenvalues given by

L21 =

{
zr − 1,

α(1− βµ−
1 − zr)

β

}
and Li

22 =

{
−βµ

i
1

2

(
1±

√
1− 4α

β2µi
1

(1− βµi
1zr)

)}

for p21 and pi
22, respectively.
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(i) It is easy to see that the equilibrium point p21 is a stable pseudo-node if zr ∈
(1−βµ−

1 , 1), since the eigenvalues in L21 are negative reals; and, it is a pseudo-saddle
for zr > 1 or zr < 1− βµ−

1 since the eigenvalues in L21 have opposite signs.

(ii) It is easy to see that the equilibrium point pi
22 is a pseudo-saddle if zr > 1− βµi

1,
since the eigenvalues in Li

22 have opposite signs; and, it is a stable pseudo-node

for zr ∈
[
1− βµi

1 −
αβ2µi

1

4
, 1− βµi

1

)
since the eigenvalues in Li

22 are negative reals;

and, it is a stable pseudo-focus when zr < 1− βµi
1 −

αβ2µi
1

4
, since the eigenvalues in

Li
22 are complex conjugate with a negative real part.

The vector őeld F+
s2 (resp. F−

s2) is tangent to the switching line S0
2 ⊂ Σ1 ∩ Σ2 at the

point q+
10 = (µ+

1 , yr, zr) ∈ T+
1 ∩ Σ2 (resp. q−

10 = (µ−
1 , yr, zr) ∈ T−

1 ∩ Σ2), being this point
classiőed as invisible fold if yr + zr > 1 − βµ+

1 (resp. yr + zr < 1 − βµ−
1 ) and visible

fold if yr + zr < 1− βµ+
1 (resp. yr + zr > 1− βµ−

1 ). In the segment that joins the fold
points q−

10 and q+
10, there is a new sliding motion, this generated by the vector őelds F−

s2

and F+
s2. If µi

1 ∈ (µ−
2 , µ

+
2 ) then the sliding segment S, given in (4.3.6), is all inside S0

2 .
These results are checked with the Lie derivatives: LF

i
s2
h1(x, yr, zr) = yrα(x− µi

1) and

L2
F

i
s2
h1(q

i
10) = yrµ

i
1α(1 − βµi

1 − yr − zr). The sliding dynamics of vector őeld (4.3.10)

in S is described by the same equations for the sliding dynamics of vector őeld (4.3.1),
given in (4.3.7) and analyzed in the previous subsection. So, the pseudo-equilibrium p,
given in (4.3.8), is also pseudo-equilibrium of the vector őeld (4.3.10). In addition, it is
real whenever yr + zr satisőes the condition given in (4.3.9).

Considering only the switching boundary Σ2 and the sliding motion occurring there,
we get a two-dimensional DPWS system with a switching line deőned in S2 ⊂ Σ2,
which has three regular equilibria and one non-trivial pseudo-equilibrium. In vector
őeld (4.3.10) two Persistence bifurcations of boundary equilibria occur, involving the
pseudo-equilibrium points p21, p

+
22, p

−
22, and the pseudo-equilibrium point p. With that,

the bifurcation point is a boundary pseudo-equilibrium (BPEB) of system (4.2.3). The
following theorem predicts the unfolding scenarios of BPEBs in system (4.2.3), that occur
in sliding dynamics restricted to Σ2.

Theorem 4.3.4. Assume µi
1 ∈ (µ−

2 , µ
+
2 ), µ

+
2 < 1/β, zr < 1 − βµ+

1 and yr + zr ∈
(1−βµ+

2 , 1−βµ−
2 ). System (4.2.3) undergoes a Boundary Pseudo-Equilibrium Bifurcation

for yr + zr = 1− βµ+
1 or for yr + zr = 1− βµ−

1 . Moreover, in both cases the bifurcation
is of the Persistence type and involves the pseudo-equilibria p and p+

22 or p and p−
22, as

described below.

(a) If yr + zr < 1− βµ+
1 then p is virtual, p+

22 is real and p−
22 is virtual.

(b) If yr + zr = 1− βµ+
1 then p = p+

22 becomes a boundary pseudo-equilibrium, and p−
22

remains virtual.

(c) If yr + zr ∈ (1− βµ+
1 , 1− βµ−

1 ) then p is real, p−
22 and p+

22 are virtual.

(d) If yr + zr = 1− βµ−
1 then p = p−

22 becomes a boundary pseudo-equilibrium, and p+
22

remains virtual.
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(e) If yr + zr > 1− βµ−
1 then p is virtual, p−

22 is real and p+
22 is virtual.

Proof. Analogously to Theorem 4.3.2, we have

(a) If yr + zr < 1− βµ+
1 then by (4.3.9) we have that p is virtual, since p3 /∈ S0

2 ; and,
by (4.3.12) we have that p+

22 is real and p−
22 is virtual, since p+

22 ∈ S+
2 and p−

22 ∈ S+
2 .

(b) If yr + zr = 1− βµ+
1 then by (4.3.9) we have that p = p+

22 is a boundary pseudo-
equilibrium, since p+

22 ∈ S0
2 ; and, by (4.3.12) we have that p−

22 is virtual since
p−
22 ∈ S+

2 .

(c) If yr + zr ∈ (1− βµ+
1 , 1− βµ−

1 ) then by (4.3.9) we have that p is real since p ∈ S2;
and, by (4.3.12) we have that p−

22 and p+
22 are virtual, since p−

22 ∈ S+
2 and p+

22 ∈ S−
2 .

(d) If yr + zr = 1− βµ−
1 then by (4.3.9) we have that p = p−

22 is a boundary pseudo-
equilibrium since p−

22 ∈ S0
2 ; and, by (4.3.12) we have that p+

22 is virtual since
p+
22 ∈ S−

2 .

(e) If yr + zr > 1− βµ−
1 then by (4.3.9) we have that p is virtual since p /∈ S0

2 ; and, by
(4.3.12) we have that p−

22 is real and p+
22 is virtual, since p−

22 ∈ S−
2 and p+

22 ∈ S−
2 .

Sliding dynamics on Σ1 ∩ Σ2

By sections 4.3.1- 4.3.2, there is a sliding segment S = Σas
1 ∩ Σas

2 deőned in (4.3.6),
since

L
F

+
s1
h2(x, yr, zr) < 0 < L

F
−

s1
h2(x, yr, zr),

L
F

+
s2
h1(x, yr, zr) < 0 < L

F
−

s2
h1(x, yr, zr),

where L
F

j
s1
h2(x, yr, zr) =

zr
α
(x − µj

2) and LF
i
s2
h1(x, yr, zr) = yrα(x − µi

1). Then, we can

deőne a sliding vector őeld in S as

Fs(x, y, z) =



(1− βx− y − z)x

0
0


 .

When the trajectories achieve the sliding boundary and the states are forced to follow
a trajectory over the sliding segment S, then the dynamics described by Fs at the
intersection of the switching boundaries become unidimensional as follows:

ẋ = (1− βx− yr − zr)x, (4.3.15)

where (x, yr, zr) ∈ S. Notice that the őrst cordinate of p deőned in (4.3.8) is an equibrium
point for (4.3.15) that is real whenever condition (4.3.9) is satisőed, this mean that p ∈ S,
and it is stable since ẍ(p) = yr + zr − 1 < −β max[µ−

1 , µ
−
2 ] < 0. Being that S ⊂ Σ1 ∩ Σ2,

we have that p is the pseudo-equilibrium of the normalized system (4.2.3) in the sliding
segment S. In summary, we have the following result.

Lemma 4.3.5. Assuming the condition (4.3.9), system (4.2.3) has an unique real pseudo-
equilibrium in the sliding segment S ⊂ Σ1 ∪ Σ2, with coordinates denoted by p, given in
(4.3.8), and it is stable.
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4.4 Conditions of global stability for the coexistence of

predators

In this section, the conditions for the global stability of the pseudo-equilibrium point
p where the three species can coexist are formulated. Such conditions are derived from
the analysis of equilibria and stability carried out in the previous sections.

Theorem 4.4.1. Assume the condition (4.3.9) holds and µ−
1,2 < µ+

1,2 < 1/β. Then the

pseudo-equilibrium p = (xr, yr, zr), where xr = 1−yr−zr
β

, is a globally stable point for

system (4.2.3) in D∗.

Proof. The planes x = 0, y = 0 and z = 0, of two-dimensional coordinates in R
3, are

invariant sets of system (4.2.3). Then a solution of (4.2.3) with a positive initial condition
remains in the positive octant forever. In the study carried out in [84] it was proved that
all solutions of system (4.1.1) with positive initial conditions are positive and bounded in
forward time. So, the solutions of (4.2.3) for each vector őeld Fij are also positive and
bounded in forward time.

By Lemma 4.3.5, taking any combination of parameters satisfying the condition
(4.3.9) and µ−

1,2 < µ+
1,2 < 1/β, then there is an unique real pseudo-equilibrium point and

it is stable, being denoted by p = (xr, yr, zr) (coordinates explained in (4.3.8)), with
xr = 1−yr−zr

β
, and located in the attractive sliding segment that appears at Σ1 ∩ Σ2.

Under such conditions and according to Section 4.2.1 and Proposition 4.2.1, the vector
őeld F−− has two real saddle equilibria (denoted by 0 and e) and the vector őeld F−+

or F+− may have a real equilibrium (denoted by e+2 or e+1 , respectively), but it is also
of the saddle type. These equilibrium points appear on the borders of D. So, p is the
only attractor point for system (4.2.3). Furthermore, every future orbit starting in D∗

converges to p, which can converge in őnite time to a few system orbits (because p is a
pseudo-equilibrium).

To prove the global stability of p we use the Lyapunov function

V (x) =
1

α

(
y − yr − yrln

y

yr

)
+ α

(
z − zr − zrln

z

zr

)
+ x− xr − xrln

x

xr
, (4.4.1)

such that V (p) = 0 and V (x) > 0 ∀x ∈ D∗ \ p. From the derivative of V (x) with
respect to time we obtain

dV (x)

dt

ij

= (xr−µi
1)y+(xr−µj

2)z−(x−µi
1)yr−(x−µj

2)zr+(1−βx)(x−xr), for i, j ∈ {+,−}.

Note that (xr − µi
1)y + (xr − µj

2)z ≤ (xr − µi
1)yr + (xr − µj

2)zr, i.e., (xr − µi
1)(y − yr) +

(xr − µj
2)(z − zr) ≤ 0, since: (i) if i = −, then y ≤ yr and xr > µ−

1 ; (ii) if i = +, then
y ≥ yr and xr < µ+

1 ; (iii) if j = −, then z ≤ zr and xr > µ−
2 ; (iv) if j = +, then z ≥ zr

and xr < µ+
2 . So we concluded that

dV (x)

dt

ij

< (xr − µi
1)yr + (xr − µj

2)zr − (x− µi
1)yr − (x− µj

2)zr + (1− βx)(x− xr)

= −β(x− xr)
2,

and dV (x)ij/dt < 0 for all x ∈ D∗ \ p. Therefore, the pseudo-equilibrium p is the global
attractor of the system.
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4.4.1 Simulation results

The simulations below show the interaction between one prey and two populations of
predators under the proposed control. See Figures 4.4-4.5 where the blue point stands for
the pseudo-equilibrium point p (where the three species can coexist) and the trajectories
are represented by black curves.
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Figure 4.4: Figure (a) shows a phase portrait of the system with parameters µ+
1 = 0.8,

µ−
1 = 0.1, µ+

2 = 0.7, µ−
2 = 0.2, β = 1, α = 1, yr = zr = 0.325 for various initial conditions

of the prey and predators populations. The green dot represents the point p11 and the
blue dot represents the pseudo-equilibrium point p. Figures (b)-(d) exhibit the population
dynamics for one prey and two predators over time for distinct initial conditions.

Figures 4.4(a)-4.5(a) show a phase portrait of system (4.2.3) assuming the hypothesis
under system parameters of Theorem 4.4.1. It is observed how the trajectories of different
initial conditions go to the pseudo-equilibrium point as expected.

Figures 4.4(b)-4.5(b) expose the prey population change through time (days), in the
beginning, the number of prey increasing until a maximum of approximately 85% of its
carrying capacity depending on its initial condition, and after that, the prey population
decreases until it stabilizes at p.

117



(a)

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.25

0.35

0.5

0.6

0.7

0.8

0.85

(b)

0 2 4 6 8 10 12 14 16 18 20

0.03
0.05

0.1
0.12
0.15

0.2

0.45

0.55

0.6

0.85

(c)

0 2 4 6 8 10 12 14 16 18 20

0.03
0.05

0.1
0.12
0.15

0.3

0.45

0.55

0.6

0.85

(d)

Figure 4.5: Figure (a) shows a phase portrait of the system with parameters µ+
1 = 0.8,

µ−
1 = 0.1, µ+

2 = 0.7, µ−
2 = 0.2, β = 1, α = 1, yr = 0.2 and zr = 0.3 (yr < zr) for various

initial conditions of the prey and predators populations. The green dot represents the
point p11 and the blue dot represents the pseudo-equilibrium point p. Figures (b)-(d)
exhibit the population dynamics for one prey and two predators over time for distinct
initial conditions.

Figures 4.4(c-d)-4.5(c-d) display the population size of each predator over time. We
observe that, at őrst, the two predators thrive when prey is abundant, but after a few
days, outnumber prey and their population diminishes until it stabilizes at p.

For Figures 4.4-4.5 we choose the parameters µ+
1 = 0.8, µ−

1 = 0.1, µ+
2 = 0.7, µ−

2 = 0.2,
β = 1, α = 1, with the difference that in Figure 4.4 we take on yr = zr = 0.325, and in
Figure 4.5 we have yr < zr such that yr = 0.2 and zr = 0.3.

4.4.2 Harvesting control

In ecological systems, the control action can be associated with human interference
in the natural environment, which can take the form of a harvesting policy [93]. There
are basically two main reasons for obtaining control strategies for predator-prey systems.
The őrst one is to allow sustainable exploitation of its resources. The other one is to
restore ecological balance. These subjects have been treated by Cunha and Pagano [94]
and Meza et al. [95]. Furthermore, it is important to remark that the implementation of
a certain control signal u in the real predator-prey system might come across two major
problems: (i) feedback control laws require the measurement of the population sizes of
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both species at every instant of time. However, this might not always be possible in
numerous predator-prey interactions found in nature; (ii) the second problem is that the
control signals should model the human action on the ecosystem. Note that, in (4.2.2),
the control signals u1 and u2 represent the instantaneous rates of change (with respect
to t) of y and z respectively, that have to be applied into the system by human action.
Hence, if the control signals exhibit elevated rates of signal variation and/or assume a
different value at every instant of time, one can argue that human action cannot respond
in that manner in many ecosystems found in nature. In order to tackle these problems,
it is desirable to determine control signals that can be implemented by environmental
agencies as management policies. Note that, the harvesting control does not impose any
switching frequency limit because the switch rule is state-based instead of time-based.
Consequently, the switching may evolve to unacceptable high frequencies. This behavior
is treated in the literature as chattering (see more details in [93]). According to May
and Beddington [96], a constant harvest quota is an idealized model of real management
policies adopted by environmental agencies. Hence, in order to adequate human actions to
the control signals, a control strategy that determines piecewise-constant control signals
from periodic measurements of the prey and predator population sizes is proposed in [93].

4.5 Conclusion

This chapter addressed the study of the global dynamics of a Lotka-Volterra piecewise-
smooth system with two predators competing for one prey where the resource for prey
is limited (i.e., K is bounded). A control harvesting strategy deőned by two switching
boundaries that determine piecewise-constant control signals for the tracking problem
of predator-prey systems was proposed since this type of signal is an idealized model
of management policies adopted by environmental agencies. The reference trajectories
of the two predator species are chosen to restore the original dynamics of a disturbed
system and to guarantee the global stability of the pseudo-equilibrium point where the
two predator species and one prey specie can coexist. In this sense, a proof of the global
stability condition for the pseudo-equilibrium point was presented.
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Chapter 5

Nonlinear analysis of DC power

converters connected in parallel

In this chapter, we study a method of stability analysis of the nonlinear dynamics
of a DC-DC buck converter controlled by a step-mode control law (SMC) connected to
two power converters: a boost converter and a buck converter, both modeled by CPL by
parts functions.

5.1 Introduction

Dc distribution systems are becoming increasingly common in industrial applications,
most speciőcally the distributed power systems (DPSs) with multiple switching power
converters, such as dc micro-grids, electric vehicles, aircraft, communication systems,
and other applications which provide more efficient conversion of energy, to reduce cost,
power quality, efficiency, and simpler power electronic interfaces and control.

Most research focuses on dc distributed power systems with a single DC bus. So, they
may not be able to very succinctly assess the stability of multivoltage DC distributed
power systems, since power sources and loads are connected with interfacing power
converters via a DC bus, where each converter in the DC distribution system is expected
to be well designed when operating as a standalone system by ensuring a sufficient phase
margin at the cut-off frequency of the converter and the stability of the whole system.
However, the stability assessment is valid only when the system is subject to small
signal disturbance. In practice, the DC distribution system is often confronted by large
disturbances, such as during start-up or abrupt load change. These factors may intensify
through the interaction of the subsystems, resulting in undesirable consequences on the
system’s transient stability performance. Some analysis methods have been proposed,
such as the phase-plane analysis which is suitable for numerical simulations (see [80] ),
and bifurcation analysis which can give boundaries of stable operation of the system for
stability assessment (see [81, 82]).

In this work, the system under study can be considered as a piecewise smooth
dynamical system in R

3 (for short, 3D-PWS system) with three switching boundaries
deőned by (i) the SMC law designed to control the voltage output of the őrst buck
converter; (ii) the voltage threshold at vbus = Vth1 due to the non-smooth characteristic
of the CPL of the buck converter; and (iii) the voltage threshold at vbus = Vth2 due to the
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non-smooth characteristic of the CPL of the boost converter. It is noteworthy that the
sliding motion occurs only at the SMC-boundary and the vector őeld that governs this
motion, calculated following Filippov’s convention, is continuous but not differentiable at
the intersection with the CPL-boundary, which involves us with the theory of CPWS

systems and Filippov systems (DPWS) [1, 34, 8].
The main goal of this chapter is to analyze the stability of multivoltage-level dc

distributed power system given by a DC-DC buck converter controlled by a sliding
mode control (SMC) law connected to two power converters where one of them is a
boost converter and another is a buck converter, both modeled by a CPL piecewise
function. We also study local phenomena associated with bifurcations induced by the
switching boundaries, as the Boundary Equilibrium Bifurcations (BEBs, [20, 19, 24, 23]
and Discontinous Saddle-Node (DSN, [22]), which are part of the group of Discontinuous
Induced Bifurcations (DIBs, [41, 43]). Classic bifurcations as the Hopf and Saddle-Node
equilibria (see [49, 50]) are also investigated.

In the qualitative analysis performed we use standard tools for DPWS systems.
Numerical continuation methods based on AUTO software are also employed to obtain
bifurcation sets and bifurcation diagrams. The CPL equations used in this work are class
C0 functions, that is, continuous but with discontinuous derivatives. As a signiőcant part
of this work involves the bifurcation analysis of dynamic systems, C∞ models are more
suitable for performing numerical continuation calculations using computational packages
such as XPP-AUTO (see [83]), which help us to better understand the dynamic behavior
of this system and also to verify the analytical results.

Theoretical background for understanding the dynamics of Filippov systems and
some preliminary results on DPWS systems relevant to our purposes can be found in
[8, 42, 82].

The remainder of this chapter is organized as follows. The modeling of the DC-DC
buck converter controlled by a sliding mode control (SMC) law connected to two power
converters both modeled by CPL piecewise functions is developed in section 5.2, where
we analyze the existence, local stability and bifurcations of regular equilibria and pseudo-
equilibria. Due to the complexity of our model, we divided it into three case studies. In
section 5.3 we study the őrst case where Vth1 = Vth2. In section 5.4 we study the second
case where Vth1 < Vth2. In section 5.5 we study the third case where Vth1 > Vth2. Finally,
in section 5.6 we present a brief conclusion.

5.2 Model description

The behavior of a DC-DC buck converter controlled by a sliding mode control (SMC)
law connected to two converters in parallel: a boost converter and a buck converter, both
modeled by CPL piecewise functions; is given by
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Figure 5.1: Block diagram of the studied DC microgrid. Simpliőed system diagram
assuming that the loads are represented by CPLs and the PV source by a CPS. Vin is the
battery voltage and DBC stands for the bidirectional power converter controlling the DC
bus voltage.

L
diL
dt

= uVin − rLiL − v0,

C
dv0
dt

= iL − i0,

Lline
di0
dt

= v0 − vbus − i0rline, (5.2.1)

Cbus
dvbus
dt

= i0 − (q1ξ1(vbus, Vth1) + q2ξ2(vbus, Vth2)) +
Ps

v0
,

dzF
dt

= ωF (iL − zF ),

where qi = {0, 1}, with i = 1, 2. In system (5.2.1), ξ1(vbus, Vth1) is a CPL piecewise
function of conversor Buck deőned by

ξ1(vbus, Vth1) =





P1

vbus
, if vbus ≥ Vth1,

P1vbus
V 2
th1

, if vbus < Vth1,

and ξ2(vbus, Vth2) is a CPL piecewise function of conversor Boost deőned by

ξ2(vbus, Vth2) =





P2

vbus
, if vbus ≥ Vth2,

Ith, if vbus < Vth2,
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Figure 5.2: Basic topology of a dc-dc buck converter controlled by a sliding mode and
washout őlter control strategy, connected to two converters in parallel. The control
function is deőned as u = 1

2
(1− sign[H(iL, vC , zF )]). The őltered inductor current given

by iF = iL − zF expresses the difference between the inductor current iL and the őltered
signal zF .

where L, C, Lline, Cbus and rline denotes the inductance of the capacitor, the voltage
capacitor, the inductance of the bus, bus capacitor and the inductor resistance, respectively.
Due to the complexity of the model in Figure 5.1, we will consider the battery as a
constant value. The power consumed by the load (load parameter) is denoted by P1,2 ∈ R

and Vth1,th2 are the voltage threshold. iL ∈ (−imax, imax), for some imax > 0, are the
inductor current and Ith = imax = P2

Vth2
. The output buck current is denoted by i0.

Variable zF denotes a őltered inductor current and ωF ≤ 1/
√
LC is the cut-off őlter

frequency. In Figure 5.2 the parameter G is the solar irradiation, T the temperature
on the PV module of a DC-DC converter with maximum power point tracking (MPPT)
and Ps represents a constant power source that is the PV+converter operating in MPPT
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mode. The control law u is deőned as

u =
1

2
(1− sign[H1(iL, v0, zF )]), (5.2.2)

where u = 0 means that switch S is off and u = 1 means that it is on. From this, the
control surface is chosen as

H1(iL, v0, zF ) = v0 − v∗0 +K(iL − zF ) = 0,

where K > 0 is the control parameter, which must be adjusted properly to ensure stability
at least local stability of the desired operating point and v0 ≈ v∗0 < Vin represents the
reference voltage, that is, the desired voltage for the output value, with Vin denoting the
source voltage.

It is a cumbersome problem to analyze all possible cases, therefore, in this chapter, we
will focus our study analysis on the stability condition at the pseudo-equilibrium point of
system (5.2.1) assuming q1 = q2 = 1, Lline

∼= 0 and rline ∼= 0, consequently v0 = vbus. We
deőne Ce = C + Cbus as a capacitance equivalent to the voltage capacitor and the bus
capacitor. The other cases remain open problems. Thus, the system of equations deőned
in (5.2.1) can be reduced to

L
diL
dt

= uVin − rLiL − v0,

Ce
dv0
dt

= iL − (ξ1(v0, Vth1) + ξ2(v0, Vth2)) +
Ps

v0
, (5.2.3)

dzF
dt

= ωF (iL − zF ),

with

ξ1(v0, Vth1) =





P1

v0
, if v0 ≥ Vth1,

P1v0
V 2
th1

, if v0 < Vth1,

(5.2.4)

and

ξ2(v0, Vth2) =





P2

v0
, if v0 ≥ Vth2,

Ith, if v0 < Vth2.

System (5.2.3) is normalized by applying the change of variables and time given by
Table 5.1 Then, we obtain the simpliőed system of the form

ẋ = u− bx− y,

ẏ = x− ξ0(y) +
d3
y
, (5.2.5)

ż = (1− kb)x+ (ω − k)y − ξ0(y)− ωz − ωyr + ku+
d3
y
,

124



State and Time Variables Parameters

iL = Vin

√
Ce

L
x vr = Vinyr

v0 = Viny ωF = ω√
LCe

zF = iL + v0−vr−Vinz
K

K = k
√

L
Ce

t =
√
CeLτ P1 = V 2

in

√
Ce

L
d1

P2 = V 2
in

√
Ce

L
d2

Ps = V 2
in

√
Ce

L
d3

rL = b
√

L
Ce

Table 5.1: Normalized variable, parameters and time.

where ξ0(y) = ξ1(y) + ξ2(y), ξ1(y) is a normalized CPL piecewise function of the buck
converter given by

ξ1(y) =





d1
y
, if y ≥ yth1,

d1y

y2th1
, if y < yth1,

(5.2.6)

and ξ2(y) is a normalized CPL piecewise function of boost converter given by

ξ2(y) =





d2
y
, if y ≥ yth2,

d2
yth2

, if y < yth2,

(5.2.7)

such that x, y and z are the normalized variables of the inductor current, capacitor
voltage and őlter, respectively, of the őrst buck converter. The normalized parameters
d1 > 0, d2 > 0, ω ∈ (0, 1], k > 0, b > 0, yth1, yth2 and yr correspond to the CPL to buck
converter, CPL to boost converter, inductor resistance, őlter cut-off frequency, control
parameter, inductor resistance, the voltage threshold of the capacitor voltage at CPL
to the buck converter and CPL to the boost converter (respectively) and the reference
voltage, respectively. We denoted x = (x, y, z) ∈ D, where

D = {x ∈ R
3 : x ∈ (−xmax, xmax), xmax > 0, y > 0, z ∈ R}.

From the normalized system (5.2.5), the control law given in equation (5.2.2), can
be rewritten as u = 1

2
[1 − sign(z)], so we redeőne the planar switching surface as

h1(x) = z = 0. In addition, there are two additional switching boundaries more, imposed
by CPL of buck converter and boost converter, and given by h2(x) = y − yth1 = 0 and
h3(x) = y − yth2 = 0, respectively. In this way, the switching boundaries are deőned by

Σ1 = {x ∈ D : h1(x) = z = 0},
Σ2 = {x ∈ D : h2(x) = y − yth1 = 0}, (5.2.8)

Σ3 = {x ∈ D : h3(x) = y − yth2 = 0}.
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We analize the normalized system (5.2.5) in three cases, when yth1 = yth2, yth1 < yth2
and yth1 > yth2.

5.3 Case study for yth1 = yth2

Throughout this section we deőne yth = yth1 = yth2, Σ{2,3} = Σ2 = Σ3 and h{2,3}(x) =
h2(x) = h3(x), as shown in the Figure 5.3(a). Due to the switching boundaries deőned in
(5.2.8), the state space of the system is divided into four different regions, namely

D1 = {x ∈ D : h1(x) > 0 and h(x) > 0},
D2 = {x ∈ D : h1(x) > 0 and h(x) < 0},
D3 = {x ∈ D : h1(x) < 0 and h(x) < 0},
D4 = {x ∈ D : h1(x) < 0 and h(x) > 0}.

In each one of these regions there is a distinct vector őeld acting, then the system (5.2.5)
is represented as a 3D-DPWS system of the form

ẋ =





F1(x), if x ∈ D1,
F2(x), if x ∈ D2,
F3(x), if x ∈ D3,
F4(x), if x ∈ D4,

(5.3.1)

composed of the vector őelds

F1(x) =




−bx− y
x− d1+d2

y
+ d3

y

f1,3


 , F2(x) =




−bx− y

x− d1y+d2yth
y2
th

+ d3
y

f2,3


 ,

F3(x) =




1− bx− y

x− d1y+d2yth
y2
th

+ d3
y

f2,3 + k


 and F4(x) =




1− bx− y
x− d1+d2

y
+ d3

y

f1,3 + k


 ,

where

f1,3 = (1− kb)x+ (ω − k)y − d1 + d2
y

− ωz − ωyr +
d3
y
,

f2,3 = (1− kb)x+ (ω − k)y − d1y + d2yth
y2th

− ωz − ωyr +
d3
y
.

Proposition 5.3.1. There is no sliding motion at the switching boundaries Σ{2,3} deőned
in (5.2.8).

Proof. A straightforward calculus produces, LF1,3(x)h{2,3}(x) · LF2,4(x)h{2,3}(x) = (x −
ξ0(y) +

d3
y
)2 ≥ 0, Therefore, Σ{2,3} is just a crossing boundary, containing a double

tangency line at x = ξ0(yth)− d3
yth

and y = yth, and z ∈ R.
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Figure 5.3: Show the switching boundaries deőned in (5.2.8). Figure (a) shows the
switching boundaries when yth1 = yth2, deőned by Σ{2,3}. Figure (b) shows the switching
boundaries when yth1 ̸= yth2.

In order to analyze the dynamic behavior of system (5.2.5) on the switching boundary
Σ1, we calculate the sliding and crossing regions taking into account the discontinuity at
y = yth. For this we divided the study in cases as follows.

(i) For y ≥ yth: the crossing and sliding regions are deőned, respectively, by

Σc1 = {x ∈ Σ1 : x > α(y) or x > α(y)} , (5.3.2)

Σs1 = {x ∈ Σ1 : α(y) < x < α(y)} , (5.3.3)

where

α(y) =
1

(1− kb)y
(d1 + d2 − d3 + (ω(z − y) + ky)y + ωyr) ,

α(y) =
1

(1− kb)y
(d1 + d2 − d3 + (ω(z − y) + k(y − 1))y + ωyr) .

(ii) For y < yth: the crossing and sliding regions are deőned by

Σc2 =
{
x ∈ Σ1 : x > β(y) or x > β(y)

}
, (5.3.4)

Σs2 =
{
x ∈ Σ1 : β(y) < x < β(y)

}
, (5.3.5)

where

β(y) =
1

(1− kb)

(
d1y + d2yth

y2th
− d3

y
+ ω(yr − y) + ky + ωz

)
,

β(y) =
1

(1− kb)

(
d1y + d2yth

y2th
− d3

y
+ ω(yr − y) + k(y − 1) + ωz

)
.
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5.3.1 Regular equilibria and stability

In what follows, we analyze the equilibria of the vector őelds Fi(x), for i = 1, 2, 3, 4
and its stability considering only the dynamics with respect to the variables (x, y), since
that the őrst and second component of the vector őelds mentioned above are independent
of the dynamics in their third component z, whose dynamic is stable the associated
eigenvalue is −ω < 0. Thus, we just need to consider the reduced linearization Jacobian
matrix given by

A =

[
−b −1

1 −
(
ξ
′

0(y) +
d3
y2

)
]
. (5.3.6)

(i) F1(x) has no equilibrium point for d1 > 0 and d2 > 0.

(ii) F2(x) has an equilibrium point, given by

x±
2 =


(d2 ± γ/

√
b)yth

2(bd1 + y2th)
,
−bd2yth ∓ ythγ

√
b

bd1 + y2th
,
−
(
2bd1yr + bd2yth + 2yry

2
th ± ythγ

√
b
)

2(bd1 + y2th)


 .

where γ =
√
bd22 + 4d1d3 + 4d3y2th . Equilibrium x+

2 is virtual because h1(x
+
2 ) <

0. In other hand, x−
2 is real for yr < (γ

√
b−bd2)yth

2bd1+2y2
th

(h1(x
−
2 ) > 0) and d3 <

(bd1+y2
th
+bd2)2−b2d22

4bd1+4by2
th

(h{2,3}(x
−
2 ) < 0). Moreover, this point is a boundary equilib-

rium point if

• yr =
(γ

√
b−bd2)yth

2bd1+2y2
th

(h1(x
−
2 ) = 0) and d3 =

(bd1+y2
th
+bd2)2−b2d22

4bd1+4by2
th

(h{2,3}(x
−
2 ) = 0),

• yr =
(γ

√
b−bd2)yth

2bd1+2y2
th

(h1(x
−
2 ) = 0) and d3 >

(bd1+y2
th
+bd2)2−b2d22

4bd1+4by2
th

(h{2,3}(x
−
2 ) < 0),

• yr >
(γ

√
b−bd2)yth

2bd1+2y2
th

(h1(x
−
2 ) > 0) and d3 =

(bd1+y2
th
+bd2)2−b2d22

4bd1+4by2
th

(h{2,3}(x
−
2 ) = 0).

The determinant and trace are given by

Det[A(x±
2 )] =

bd22 + 4bd1d3 + 4d3y
2
th ∓ d2γ

√
b

2d3y2th
,

T r[A(x±
2 )] = −b− d1

y2th
− 4d3(bd1 + y2th)

2

(
bd2yth ± ythγ

√
b
)2 .

Equilibrium x−
2 is stable because Det[A(x−

2 )] > 0 and Tr[A(x−
2 )] < 0 for

−bd22
4(bd1+y2

th
)
<

d3 <
−b2d22(d1+by2

th
)

(2bd1+y2
th
+b2y2

th
)2

.

(iii) F3(x) has an equilibrium point, given by

x±
3 =

(
1

b
+
bd2yth − y2th ± β

2b(bd1 + y2th)
,
y2th − bd2yth ∓ β

2(bd1 + y2th)
,−yr −

bd2 + yth − y2th ± β

2(bd1 + y2th)

)
.

where β =
√

4bd3y2th(bd1 + y2th) + (y2th − bd2yth)2. Equilibrium x+
3 is real for yr >

− bd2+yth−y2
th
+β

2(bd1+y2
th
)

(h1(x
+
3 ) < 0) and d1+d2−d3 < (1−yth)yth

b
(h{2,3}(x

+
3 ) < 0). Moreover,

this point is a boundary equilibrium point if
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• yr = − bd2+yth−y2
th
+β

2(bd1+y2
th
)

(h1(x
+
3 ) = 0) and d1+d2−d3 = (1−yth)yth

b
(h{2,3}(x

+
3 ) = 0)),

• yr = − bd2+yth−y2
th
+β

2(bd1+y2
th
)

(h1(x
+
3 ) = 0) and d1+d2−d3 < (1−yth)yth

b
(h{2,3}(x

+
3 ) < 0)),

• yr > − bd2+yth−y2
th
+β

2(bd1+y2
th
)

(h1(x
+
3 ) < 0) and d1+d2−d3 = (1−yth)yth

b
(h{2,3}(x

+
3 ) = 0).

In other hand, x−
3 is real for yr > − bd2+yth−y2

th
−β

2(bd1+y2
th
)

(h1(x
−
3 ) < 0) and d1 + d2 − d3 >

(1−yth)yth
b

(h{2,3}(x
−
3 ) < 0). Moreover, this point is a boundary equilibrium point if

• yr = − bd2+yth−y2
th
−β

2(bd1+y2
th
)

(h1(x
−
3 ) = 0) and d1+d2−d3 = (1−yth)yth

b
(h{2,3}(x

−
3 ) = 0),

• yr = − bd2+yth−y2
th
−β

2(bd1+y2
th
)

(h1(x
−
3 ) = 0) and d1+d2−d3 > (1−yth)yth

b
(h{2,3}(x

−
3 ) < 0),

• yr > − bd2+yth−y2
th
−β

2(bd1+y2
th
)

(h1(x
−
3 ) < 0) and d1+d2−d3 = (1−yth)yth

b
(h{2,3}(x

−
3 ) = 0).

The determinant and trace are given by

Det[A(x±
3 )] =

−2(bd2 − yth)(bd1 + y2th)

yth

(
y2th − bd2yth ∓

√
y2th(b

2(d22 + 4d1d3) + y2th − 2byth(d2 − 2d3yth))
) ,

T r[A(x±
3 )] = −b− d1

y2th
+

4d3(bd1 + y2th)
2

(
±bd2yth ∓ y2th +

√
y2th(b

2(d22 + 4d1d3) + y2th − 2byth(d2 − 2d3yth))
)2 .

Equilibrium x+
3 is a stable point because Det[A(x+

3 )] > 0 and Tr[A(x+
3 )] < 0 for

d1 <
−y2

th

b
and d3 <

(bd2−yth)
2(d1+by2

th
)

(b2−1)2y4
th

. In other hand, x−
3 is a saddle point, since

Det[A(x−
4 )] < 0 for all 0 < d1 <

−yth
b

.

(iv) F4(x) has an equilibrium point, given by

x±
4 =

(
1± γ

2b
,
1∓ γ

2
,
1∓ γ − 2yr

2

)
,

with γ =
√
1− 4b(d1 + d2 − d3). Equilibrium x+

4 is real for yr >
1−γ
2

(h1(x
+
4 ) < 0)

and yth <
1−γ
2

(h(x+
4 ) > 0). Otherwise, it is virtual. Moreover, x+

4 becomes a
boundary equilibrium point if

• yr =
1−γ
2

(h1(x
+
4 ) = 0) and yth <

1−γ
2

(h(x+
4 ) > 0),

• yr >
1−γ
2

(h1(x
+
4 ) < 0) and yth = 1−γ

2
(h(x+

4 ) = 0),

• yr =
1−γ
2

(h1(x
+
4 ) = 0) or yth = 1−γ

2
(h(x+

4 ) = 0).

Analogously, the equilibrium x−
4 is real for yr >

1+γ
2

(h1(x
−
4 ) < 0) and yth <

1+γ
2

(h(x−
4 ) > 0). Furthermore, it becomes a boundary equilibrium point at if

• yr =
1+γ
2

(h1(x
−
4 ) = 0) and yth <

1+γ
2

(h(x−
4 ) > 0),
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• yr >
1+γ
2

(h1(x
−
4 ) < 0) and yth = 1+γ

2
(h(x−

4 ) = 0),

• yr =
1+γ
2

(h1(x
−
4 ) = 0) or yth = 1+γ

2
(h(x−

4 ) = 0).

The determinant and trace are given by

Det[A(x±
4 )] =

2− 4b(d1 + d2 − d3)∓ γ

(γ ∓ 1)2
and Tr[A(x±

4 )] = −b+4b(d1 + d2 − d3)

(γ ∓ 1)2
.

Equilibrium x+
4 is a stable point because Det[A(x+

4 )] > 0 and Tr[A(x+
4 )] < 0 for

1
4b
< d1+d2−d3 < b

(1+b2)2
. In other hand, x−

4 is a saddle point, since Det[A(x−
4 )] < 0

for all 0 < d1 + d2 − d3 <
1
4b

.

5.3.2 Sliding vector field and pseudo-equilibria

Sliding vector őeld associated to the dynamical system (5.2.3) is deőned as

Fs(x) =




ω(yr−y)−x+ξ0(y)+ωz
k

− d3
y

x− ξ0(y) +
d3
y

0


 , (5.3.7)

where (x, y, z) ∈ Σs ⊂ Σ1. The pseudo equilibrium points are given by x̃ = (ξ0(y), y, 0)
that depend of values of ξ0(y), i.e, the discontinuity at y = yth. So, there are two
pseudo-equilibrium,

x̃1 =

(
d1 + d2 − d3

yr
, yr, 0

)
and x̃2 =

(
d1yr + d2yth

y2th
− d3
yr
, yr, 0

)
,

for y ≥ yth and y < yth, respectively. By hypothesis yr > yth, then the pseudo-equilibrium
x̃2 is always virtual, so the stability analysis will be just for the pseudo-equilibrium point
x̃1.

Since the őrst and second components of Fs(x) mentioned above are decoupled from
the third component, then we only need to consider the reduced Jacobian matrix given
by

A =

[
− 1

k
− (ω−ξ‘0(y))

k
+ d3

ky2r

1 −ξ‘0(y)− d3
y2r

]
.

Pseudo-equilibrium x̃1 is stable becauseDet[A(x̃1)] =
ω
k
> 0 and Tr[A(x̃1)] =

k(d1+d2−d3)−y2r
ky2r

<

0 for 0 < k < y2r
d1+d2−d3

with d1 + d2 ≠ d3, otherwise is unstable. Moreover, the pseudo-

equilibrium x̃1 is real (located in the sliding region) whenever d1 + d2 − d3 <
(1−yr)yr

b
.

Proposition 5.3.2. Consider the vector őeld Fs deőned in (5.3.7). For d1+ d2 =
y2r
k
+ d3

a subcritical Hopf bifurcation occurs at x̃1.

Proof. From the determinant and trace at x̃1, we conclude the following
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Det[A(x̃1)]|
d1+d2=

y2r
k
+d3

=
ω

k
> 0,

T r[A(x̃1)]|
d1+d2=

y2r
k
+d3

= 0

d

d(d1 + d2)
Tr[A(x̃1)]|

d1+d2=
y2r
k
+d3

=
1

y2r
̸= 0.

Thus, we show the necessary condition to obtain Hopf bifurcation. Notice that, the x
and y components are decoupled from z component in (5.3.7). Now, desingularizing
the vector őeld Fs|ξ0(y)= d1+d2

y

(see (5.3.7)) and considering Fds = kyFs|ξ0(y)= d1+d2
y

, the

differential equations that describe Fds(x, y) are expressed as

ẋ = ω(yr − y)y − xy + d1 + d2 − d3, (5.3.8)

ẏ = k(xy − (d1 + d2) + d3),

then, translating the pseudo-equilibrium x̃1 to the origin in (5.3.8) with d1+ d2 =
y2r
k
+ d3,

we get

ẋ = −ωy2 − xy − yxr − (
y2r
k

+ ωyr)y, (5.3.9)

ẏ = kyrx+ kxy + yry,

according to [19]-page 243, the őrst Lyapunov coefficient of the vector őeld Fs can be
calculated, and it is given by

ls1 =
3πk2

4
√
kω(1 + kω)y2r

> 0.

Hence, we have an unstable limit cycle and so, this Hopf bifurcation is subcritical.

5.3.3 Boundary equilibrium bifurcation

Now we are going to show the occurrence of BEBs in system 5.3.1. By hypothesis yr >
yth, in addition to that taking z = 0, y = yr and solving the equations Fi(x, yr, 0, d) = 0

with d = d1+d2−d3, for i = 1, 2, 3, 4 respect to (x, y, z, d), we get a boundary equilibrium

(xb4 , dB4) =

(
1− yr
b

, yr, 0,
(1− yr)yr

b

)
, (5.3.10)

where xb4 denote the boundary equilibrium related to the vector őeld F4(x) and appearing
for the critical value d1+ d2− d3 = dB4 of the load parameter. Notice that, The boundary
equilibrium related to the vector őelds Fi, for i = 1, 2, 3 are left out of our study, since
by hypothesis d1 > 0, d2 > 0, d3 > 0 and yr > yth. Therefore, the BEB occurs just at the
point xb4 .

In Figure 5.5 a two-parameter bifurcation study is presented. The power load
parameter (d1) and the control parameter (k). The black line indicates the occurrence of
BEBNF involving the equilibria x+

4 and x̃1, of the vector őelds F4 and Fs, respectively.
The green line refers to a saddle-node bifurcation (SNe) at d1 = d3 − d2 +1/4b. The blue
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Figure 5.4: Simulation results of system (5.3.1) with parameters b = 0.006742, , k =
0.6742, d2 = d3 = 0.02575, yth1 = 0.0416667, yth2 = 0.0833333andyr = 0.5 showing the
unstable limit cycle in black color; the point of pseudo equilibrium is represented by red.

Figure 5.5: Bifurcation set in (k, d1)-plane showing the main local bifurcations assuming
b = 0.006742, , k = 0.6742, d2 = d3 = 0.02575, yth1 = 0.0416667, yth2 = 0.0833333, ω =
0.461288 and yr = 0.5.

straight line segment refers to subcritical Hopf bifurcation (Hsub) at d1 = d3−d2+b/(1+b2)2
of the equilibrium x−

4 . The red parabolic curve segment indicates a subcritical Hopf
bifurcation (Hs

sub) at d1 = d3− d2+ y
2
r/k of the pseudo-equilibrium x̃1 and the purple line

refers to a discontinuous saddleśnode (DSN) at d1 = d3 − d2 + (1− yth1)yth1/b. The point
Pi with i = 1, 2 indicates the codimension-two bifurcations occur simultaneously, but not
necessarily involving the same equilibrium point. In P1 the subcritical Hopf bifurcation
(Hs

sub) occurs together to BEBNF and, in P2 the DSN occurs concomitantly to Hs
sub.

5.4 Case study for yth1 < yth2

Due to the switching boundaries deőned in (5.2.8) and assuming that yth1 < yth2, as
shown in the Figure 5.3(b). Observe that in this case the state space of the system is
divided into six different regions, namely
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D1 = {x ∈ D : h1(x) > 0, h2(x) > 0 and h3(x) > 0},
D2 = {x ∈ D : h1(x) > 0, h2(x) < 0 and h3(x) < 0},
D3 = {x ∈ D : h1(x) < 0, h2(x) < 0 and h3(x) < 0},
D4 = {x ∈ D : h1(x) < 0, h2(x) > 0 and h3(x) > 0},
D5 = {x ∈ D : h1(x) > 0, h2(x) > 0 and h3(x) < 0},
D6 = {x ∈ D : h1(x) < 0, h2(x) > 0 and h3(x) < 0},

such that x = (x, y, z) ∈ D. In each one of these regions there is a distinct vector őeld
acting, then the system (5.2.5) is represented as a 3D-DPWS system of the form

ẋ =





F1(x), if x ∈ D1,
F2(x), if x ∈ D2,
F3(x), if x ∈ D3,
F4(x), if x ∈ D4,
F5(x), if x ∈ D5,
F6(x), if x ∈ D6,

(5.4.1)

composed by the vector őelds

F1(x) =




−bx− y
x− d1+d2

y
+ d3

y

f1,3


 , F2(x) =




−bx− y

x− d1y
y2
th1

− d2
yth2

+ d3
y

f2,3


 ,

F3(x) =




1− bx− y

x− d1y
y2
th1

− d2
yth2

+ d3
y

f2,3 + k


 F4(x) =




1− bx− y
x− d1+d2

y
+ d3

y

f1,3 + k


 ,

F5(x) =




−bx− y
x− d2

yth2
− d1

y
+ d3

y

f3,3


 and F6(x) =




1− bx− y
x− d2

yth2
− d1

y
+ d3

y

f3,3 + k


 ,

where

f1,3 = (1− kb)x+ (ω − k)y − d1 + d2
y

+
d3
y

− ωz − ωyr,

f2,3 = (1− kb)x+ (ω − k)y − d1y

y2th1
− d2
yth2

+
d3
y

− ωz − ωyr,

f3,3 = (1− kb)x+ (ω − k)y − d2
yth2

− d1
y

+
d3
y

− ωz − ωyr.

Proposition 5.4.1. There are no sliding motion at the switching boundaries Σ2 and Σ3

deőned in (5.2.8).

Proof. A straightforward calculus produces, LF2,3(x)h2(x) · LF5,6(x)h2(x) = (x − ξ0(y) +
d3
y
)2 ≥ 0 and LF1,4(x)h3(x) · LF5,6(x)h3(x) = (x− ξ0(y) +

d3
y
)2 ≥ 0, Therefore, Σ2 and Σ3

is just a crossing boundary. Containing a double tangency line at x = ξ0(yth)− d3
yth

and
y = yth, and z ∈ R.
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In order to analyze the dynamic behavior of system (5.2.5) on the switching boundary
Σ1, we calculate the sliding and crossing regions taking into account the discontinuity at
y = yth1 and y = yth2, for this we divided the study in cases as follows.

(i) For y ≥ yth2, the crossing and sliding regions are deőned by Σc1 and Σs1 as deőned
in (5.3.2) and (5.3.3), respectively.

(ii) For yth1 ≤ y ≤ yth2, the crossing and sliding regions are deőned as follows

Σc3 =
{
x ∈ Σ1 : x > ρ(y) or x > ρ(y)

}
, (5.4.2)

Σs3 =
{
x ∈ Σ1 : ρ(y) < x < ρ(y)

}
, (5.4.3)

where

ρ(y) =
1

(1− kb)

(
d1
y

+
d2
yth2

− d3
y

+ ky + ω(yr − y)y + ωz

)
,

ρ(y) =
1

(1− kb)

(
d1
y

+
d2
yth2

− d3
y

+ k(y − 1)y + ω(yr − y) + ωz

)
.

(iii) For y < yth1, the crossing and sliding regions are deőned as follows

Σc4 = {x ∈ Σ1 : x > ϖ(y) or x > ϖ(y)} , (5.4.4)

Σs4 = {x ∈ Σ1 : ϖ(y) < x < ϖ(y)} , (5.4.5)

where

ϖ(y) =
1

(1− kb)

(
d1y

y2th1
+

d2
yth2

− d3
y

+ ky + ω(yr − y) + ωz

)
,

ϖ(y) =
1

(1− kb)

(
d1y

y2th1
+

d2
yth2

− d3
y

+ k(y − 1)y + ω(yr − y) + ωz

)
.

5.4.1 Regular equilibria and stability

As we mentioned in Subsection 5.3.1, the őrst and second component of the vector
őelds Fi(x) (i = 1, 2, 3, 4, 5, 6) are independent of the dynamic in their third component
z, whose dynamic is stable the associated eigenvalue is −ω < 0. Thus, we just need to
consider the reduced linearization Jacobian matrix as deőned in (5.3.6). Then, we will
analize the equilibria of the vector őelds Fi(x) for i = 1, 2, 3, 4, 5, 6 and its stabilities
considering only the dynamics with respect to the variables (x, y).

(i) F1(x) has no equilibrium point for d1 > 0 and d2 > 0.

(ii) F2(x) has an equilibrium point, given by

x±
2 = (

d2y
2
th1 ± yth1ρ/

√
b

2(bd1 + y2th1)yth2
,
−bd2y2th1 ∓ yth1ρ

√
b

2(bd1 + y2th1)yth2
,

−bd2y2th1 − 2bd1yryth2 − 2yry
2
th1yth2 ∓ yth1ρ

2(bd1 + y2th1)yth2
),
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where ρ =
√
bd22y

2
th1 + 4d3(bd1 + y2th1)y

2
th2. Equilibrium x+

2 is virtual because

h1(x
+
2 ) < 0. Equilibrium x−

2 is real for yr <
yth1ρ−bd2yth1
2(bd1+y2

th1)yth2
(h1(x

−
2 ) > 0), d3 <

d1 +
yth1(bd2+yth1yth2)

byth2
(h2(x

−
2 ) < 0) and d3 < d2 +

y2
th2(bd1+y2

th1)

by2
th1

(h3(x
−
2 ) < 0). Other-

wise, it is virtual. Moreover, x−
2 becomes a boundary equilibrium point if

• yr =
yth1ρ−bd2yth1
2(bd1+y2

th1)yth2
(h1(x

−
2 ) = 0), d3 < d1 +

yth1(bd2+yth1yth2)
byth2

(h2(x
−
2 ) < 0) and

d3 < d2 +
y2
th2(bd1+y2

th1)

by2
th1

(h3(x
−
2 ) < 0),

• yr <
yth1ρ−bd2yth1
2(bd1+y2

th1)yth2
(h1(x

−
2 ) > 0), d3 = d1 +

yth1(bd2+yth1yth2)
byth2

(h2(x
−
2 ) = 0) and

d3 < d2 +
y2
th2(bd1+y2

th1)

by2
th1

(h3(x
−
2 ) < 0),

• yr <
yth1ρ−bd2yth1
2(bd1+y2

th1)yth2
(h1(x

−
2 ) > 0), d3 < d1 +

yth1(bd2+yth1yth2)
byth2

(h2(x
−
2 ) < 0) and

d3 = d2 +
y2
th2(bd1+y2

th1)

by2
th1

(h3(x
−
2 ) = 0).

The determinant and trace are given by

Det[A(x−
2 )] =

2(bd1 + y2th1)(bd
2
2y

2
th1 + 4d3(bd1 + y2th1)y

2
th2 − d2yth1ρ

√
b)

y2th1(ρ
√
b− d2yth1

√
b)2

,

T r[A(x−
2 )] = −b− d1

y2th1
− 4d3(bd1 + y2th1)

2y2th2(
bd2y2th1 − yth1ρ

√
b
)2 .

Equilibrium x−
2 is stable because Det[A(x−

2 )] > 0 and Tr[A(x−
2 )] < 0 for d3 > 0.

(iii) F3(x) has an equilibrium point, given by

x±
3 = (

2bd1yth2 + y2th1(bd2 + yth2)± ξ

2b(bd1 + y2th1)yth2
,
−y2th1(bd2 − yth2)∓ ξ

2(bd1 + y2th1)yth2
,

−2bd1yryth2 − y2th1(bd2 + (2yr − 1)yth2)∓ ξ

2(bd1 + y2th1)yth2
),

where ξ =
√

4bd3y2th1(bd1 + y2th1)y
2
th2 + y4th1(yth2 − bd2)2 Equilibrium x+

3 is real for

yr >
(y2

th1−bd2yth2)yth2−ξ

2(bd1+y2
th1)yth2

(h1(x
+
3 ) < 0), d3 > d1 +

y2
th1

b
+ d2yth1

yth2
− yth1

b
(h2(x

+
3 ) < 0) and

d3 >
y2
th2+y2

th1(bd2−yth2)

by2
th1(bd1+y2

th1)
(h3(x

+
3 ) < 0). Otherwise, it is virtual. Moreover, x−

2 becomes

a boundary equilibrium point if

• yr =
(y2

th1−bd2yth2)yth2−ξ

2(bd1+y2
th1)yth2

(h1(x
+
3 ) = 0), d3 > d1 +

y2
th1

b
+ d2yth1

yth2
− yth1

b
(h2(x

+
3 ) < 0)

and d3 >
y2
th2+y2

th1(bd2−yth2)

by2
th1(bd1+y2

th1)
(h3(x

+
3 ) < 0),

• yr >
(y2

th1−bd2yth2)yth2−ξ

2(bd1+y2
th1)yth2

(h1(x
+
3 ) < 0), d3 = d1 +

y2
th1

b
+ d2yth1

yth2
− yth1

b
(h2(x

+
3 ) = 0)

and d3 >
y2
th2+y2

th1(bd2−yth2)

by2
th1(bd1+y2

th1)
(h3(x

+
3 ) < 0),

• yr >
(y2

th1−bd2yth2)yth2−ξ

2(bd1+y2
th1)yth2

(h1(x
+
3 ) < 0), d3 > d1 +

y2
th1

b
+ d2yth1

yth2
− yth1

b
(h2(x

+
3 ) < 0)

and d3 =
y2
th2+y2

th1(bd2−yth2)

by2
th1(bd1+y2

th1)
(h3(x

+
3 ) = 0),
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• yr =
(y2

th1−bd2yth2)yth2−ξ

2(bd1+y2
th1)yth2

(h1(x
+
3 ) = 0), d3 = d1 +

y2
th1

b
+ d2yth1

yth2
− yth1

b
(h2(x

+
3 ) = 0)

and d3 >
y2
th2+y2

th1(bd2−yth2)

by2
th1(bd1+y2

th1)
(h3(x

+
3 ) < 0),

• yr =
(y2

th1−bd2yth2)yth2−ξ

2(bd1+y2
th1)yth2

(h1(x
+
3 ) = 0), d3 > d1 +

y2
th1

b
+ d2yth1

yth2
− yth1

b
(h2(x

+
3 ) < 0)

and d3 =
y2
th2+y2

th1(bd2−yth2)

by2
th1(bd1+y2

th1)
(h3(x

+
3 ) = 0).

Equilibrium x−
3 is real for yr >

(y2
th1−bd2yth2)yth2+ξ

2(bd1+y2
th1)yth2

(h1(x
−
3 ) < 0), d3 <

(bd1+y2
th1)yth2+(bd2−yth2)yth1

byth2

(h2(x
−
3 ) < 0) and d3 <

(bd1+y2
th1)y

2
th2+(bd2−yth2)y

2
th1

by2
th1

(h3(x
−
3 ) < 0). Otherwise, it is vir-

tual. Furthermore, it becomes a boundary equilibrium point if

• yr =
(y2

th1−bd2yth2)yth2+ξ

2(bd1+y2
th1)yth2

(h1(x
−
3 ) < 0), d3 <

(bd1+y2
th1)yth2+(bd2−yth2)yth1

byth2
(h2(x

−
3 ) <

0) and d3 <
(bd1+y2

th1)y
2
th2+(bd2−yth2)y

2
th1

by2
th1

(h3(x
−
3 ) < 0),

• yr >
(y2

th1−bd2yth2)yth2+ξ

2(bd1+y2
th1)yth2

(h1(x
−
3 ) < 0), d3 =

(bd1+y2
th1)yth2+(bd2−yth2)yth1

byth2
(h2(x

−
3 ) =

0) and d3 <
(bd1+y2

th1)y
2
th2+(bd2−yth2)y

2
th1

by2
th1

(h3(x
−
3 ) < 0),

• yr >
(y2

th1−bd2yth2)yth2+ξ

2(bd1+y2
th1)yth2

(h1(x
−
3 ) < 0), d3 <

(bd1+y2
th1)yth2+(bd2−yth2)yth1

byth2
(h2(x

−
3 ) <

0) and d3 =
(bd1+y2

th1)y
2
th2+(bd2−yth2)y

2
th1

by2
th1

(h3(x
−
3 ) = 0),

• yr =
(y2

th1−bd2yth2)yth2+ξ

2(bd1+y2
th1)yth2

(h1(x
−
3 ) = 0), d3 =

(bd1+y2
th1)yth2+(bd2−yth2)yth1

byth2
(h2(x

−
3 ) =

0) and d3 <
(bd1+y2

th1)y
2
th2+(bd2−yth2)y

2
th1

by2
th1

(h3(x
−
3 ) < 0),

• yr =
(y2

th1−bd2yth2)yth2+ξ

2(bd1+y2
th1)yth2

(h1(x
−
3 ) = 0), d3 <

(bd1+y2
th1)yth2+(bd2−yth2)yth1

byth2
(h2(x

−
3 ) <

0) and d3 =
(bd1+y2

th1)y
2
th2+(bd2−yth2)y

2
th1

by2
th1

(h3(x
−
3 ) = 0).

The determinant and trace are given by

Det[A(x±
3 )] =

4b2d1d3y
2
th2 ∓ bd2ξ − yth2ξ + y2th1(b

2d22 + y2th2 + 2byth2(2d3yth2 − d2))

2bd3y2th1y
2
th2

,

T r[A(x±
3 )] = −b− d1

y2th1
− 4d3(bd1 + y2th1)

2y2th2
(±bd2y2th1 ∓ y2th1yth2 + ξ)

2 .

Equilibrium x±
3 is stable because Det[A(x±

3 )] > 0 and Tr[A(x±
3 )] < 0 for d3 >

−y2
th1(yth2−bd2)2

4b(bd1+y2
th1)y

2
th2

.

(iv) F4(x) has an equilibrium point, given by

x±
4 =

(
1± γ

2b
,
1∓ γ

2
,
1∓ γ − 2yr

2

)
,

with γ =
√

1− 4b(d1 + d2 − d3). Equilibrium x+
4 is real for yr >

1−γ
2

(h1(x
+
4 ) < 0),

yth1 <
1−γ
2

(h2(x
+
4 ) > 0) and yth2 <

1−γ
2

(h3(x
+
4 ) > 0). Otherwise, it is virtual.

Moreover, becomes a boundary equilibrium point if
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• yr =
1−γ
2

(h1(x
+
4 ) = 0), yth1 =

1−γ
2

(h2(x
+
4 ) = 0) and yth2 <

1−γ
2

(h3(x
+
4 ) > 0),

respectively,

• yr =
1−γ
2

(h1(x
+
4 ) = 0), yth1 <

1−γ
2

(h2(x
+
4 ) > 0) and yth2 =

1−γ
2

(h3(x
+
4 ) = 0),

• yr =
1−γ
2

(h1(x
+
4 ) = 0), yth1 <

1−γ
2

(h2(x
+
4 ) > 0) and yth2 <

1−γ
2

(h3(x
+
4 ) > 0),

• yr >
1−γ
2

(h1(x
+
4 ) < 0), yth1 =

1−γ
2

(h2(x
+
4 ) = 0) and yth2 <

1−γ
2

(h3(x
+
4 ) > 0),

• yr >
1−γ
2

(h1(x
+
4 ) < 0), yth1 <

1−γ
2

(h2(x
+
4 ) > 0) and yth2 =

1−γ
2

(h3(x
+
4 ) = 0).

Analogously, the equilibrium x−
4 is real for yr >

1+γ
2

(h1(x
−
4 ) < 0), yth1 <

1+γ
2

(h2(x
−
4 ) > 0) and yth2 <

1+γ
2

(h3(x
−
4 ) > 0). Otherwise, it is virtual. Furthermore, it

becomes a boundary equilibrium point if

• yr =
1−γ
2

(h1(x
−
4 ) = 0), yth1 =

1−γ
2

(h2(x
−
4 ) = 0) and yth2 <

1−γ
2

(h3(x
−
4 ) > 0),

• yr =
1−γ
2

(h1(x
−
4 ) = 0), yth1 <

1−γ
2

(h2(x
−
4 ) > 0) and yth2 =

1−γ
2

(h3(x
−
4 ) = 0),

• yr =
1−γ
2

(h1(x
−
4 ) = 0), yth1 <

1−γ
2

(h2(x
−
4 ) > 0) and yth2 <

1−γ
2

(h3(x
−
4 ) > 0),

• yr >
1−γ
2

(h1(x
−
4 ) < 0), yth1 =

1−γ
2

(h2(x
−
4 ) = 0) and yth2 <

1−γ
2

(h3(x
−
4 ) > 0),

• yr >
1−γ
2

(h1(x
−
4 ) < 0), yth1 <

1−γ
2

(h2(x
−
4 ) > 0) and yth2 =

1−γ
2

(h3(x
−
4 ) = 0).

The determinant and trace are given by

Det[A(x±
4 )] =

2− 4b(d1 + d2 − d3)∓ γ

(γ ∓ 1)2
and Tr[A(x±

4 )] = −b+4b(d1 + d2 − d3)

(γ ∓ 1)2
.

Equilibrium x+
4 is a stable point because Det[A(x+

4 )] > 0 and Tr[A(x+
4 )] < 0 for

1
4b
< d1+d2−d3 < b

(1+b2)2
. In other hand, x−

4 is a saddle point, since Det[A(x−
4 )] < 0

for all 0 < d1 + d2 − d3 <
1
4b

.

(v) F5(x) has an equilibrium point, given by

x±
5 =

(
d2 ± ζ/

√
b

2yth2
),
−bd2 ∓ ζ

√
b

2yth2
,
−bd2 − 2yryth2 ∓ ζ

√
b

2yth2

)
,

where ζ =
√
bd22 + 4(d3 − d1)y2th2 Equilibrium x+

5 is virtual, because h1(x
+
5 ) < 0.

Equilibrium x−
5 is real for yr <

ξ
√
b−bd2

2yth2
(h1(x

−
5 ) > 0), yth1 <

ξ
√
b−bd2

2yth2
(h2(x

−
5 ) > 0)

and d3− d1− d2 >
y2
th2

b
(h3(x

−
5 ) < 0). Otherwise, it is virtual. Moreover, it becomes

a boundary equilibrium point if

• yr =
ξ
√
b−bd2

2yth2
(h1(x

−
5 ) = 0), yth1 <

ξ
√
b−bd2

2yth2
(h2(x

−
5 ) > 0) and d3− d1− d2 >

y2
th2

b

(h3(x
−
5 ) < 0),

• yr <
ξ
√
b−bd2

2yth2
(h1(x

−
5 ) > 0), yth1 =

ξ
√
b−bd2

2yth2
(h2(x

−
5 ) = 0) and d3− d1− d2 >

y2
th2

b

(h3(x
−
5 ) < 0),

• yr <
ξ
√
b−bd2

2yth2
(h1(x

−
5 ) > 0), yth1 <

ξ
√
b−bd2

2yth2
(h2(x

−
5 ) > 0) and d3− d1− d2 =

y2
th2

b

(h3(x
−
5 ) = 0),
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• yr =
ξ
√
b−bd2

2yth2
(h1(x

−
5 ) = 0), yth1 =

ξ
√
b−bd2

2yth2
(h2(x

−
5 ) = 0) and d3− d1− d2 >

y2
th2

b

(h3(x
−
5 ) < 0),

• yr =
ξ
√
b−bd2

2yth2
(h1(x

−
5 ) = 0), yth1 <

ξ
√
b−bd2

2yth2
(h2(x

−
5 ) > 0) and d3− d1− d2 =

y2
th2

b

(h3(x
−
5 ) = 0).

The determinant and trace are given by

Det[A(x−
5 )] =

2bd22 + 8(d3 − d1)y
2
th2 − 2d2ζ

√
b

(ζ − d2
√
b)2

,

T r[A(x−
5 )] = −b+ 4(d1 − d3)y

2
th2

(bd2 − ζ
√
b)2

Equilibrium x−
5 is stable becauseDet[A(x−

5 )] > 0 and Tr[A(x−
5 )] < 0 for

4d1y2th2−bd22
4y2

th2
<

d3 < d1 − b3d22
(1+b2)2y2

th2
.

(vi) F6(x) has an equilibrium point, given by

x±
6 =

(
bd2 + yth2 ± η

2byth2
,
−bd2 + yth2 ∓ η

2yth2
,
yth2 − bd2 − 2yryth2 ∓ η

2yth2

)
,

where η =
√
4b(d3 − d1)y2th2 + (yth2 − bd2)2. Equilibrium x+

6 is real for yr >
yth2−bd2−η

2yth2
(h1(x

+
6 ) < 0), yth1 <

yth2−bd2−η
2yth2

(h2(x
+
6 ) > 0) and d3 > d1+d2+

(yth2−1)yth2
b

(h3(x
+
6 ) < 0). Otherwise it is virtual. Moreover, it becomes a boundary equilibrium

point if

• yr = yth2−bd2−η
2yth2

(h1(x
+
6 ) = 0), yth1 < yth2−bd2−η

2yth2
(h2(x

+
6 ) > 0) and d3 >

d1 + d2 +
(yth2−1)yth2

b
(h3(x

+
6 ) < 0),

• yr > yth2−bd2−η
2yth2

(h1(x
+
6 ) < 0), yth1 = yth2−bd2−η

2yth2
(h2(x

+
6 ) = 0) and d3 >

d1 + d2 +
(yth2−1)yth2

b
(h3(x

+
6 ) < 0).,

• yr > yth2−bd2−η
2yth2

(h1(x
+
6 ) < 0), yth1 < yth2−bd2−η

2yth2
(h2(x

+
6 ) > 0) and d3 =

d1 + d2 +
(yth2−1)yth2

b
(h3(x

+
6 ) = 0),

• yr = yth2−bd2−η
2yth2

(h1(x
+
6 ) = 0), yth1 = yth2−bd2−η

2yth2
(h2(x

+
6 ) = 0) and d3 >

d1 + d2 +
(yth2−1)yth2

b
(h3(x

+
6 ) < 0),

• yr = yth2−bd2−η
2yth2

(h1(x
+
6 ) = 0), yth1 < yth2−bd2−η

2yth2
(h2(x

+
6 ) > 0) and d3 =

d1 + d2 +
(yth2−1)yth2

b
(h3(x

+
6 ) = 0).

Equilibrium x−
6 is real for yr >

yth2−bd2+η
2yth2

(h1(x
−
6 ) < 0), yth1 <

yth2−bd2η
2yth2

(h2(x
−
6 ) > 0)

and d3 < d1 + d2 +
(yth2−1)yth2

b
(h3(x

−
6 ) < 0). Otherwise, it is virtual. Furthermore,

it becomes a boundary equilibrium point if

• yr =
yth2−bd2+η

2yth2
(h1(x

−
6 ) = 0), yth1 <

yth2−bd2η
2yth2

(h2(x
−
6 ) > 0) and d3 < d1 + d2 +

(yth2−1)yth2
b

(h3(x
−
6 ) < 0),
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• yr >
yth2−bd2+η

2yth2
(h1(x

−
6 ) < 0), yth1 =

yth2−bd2η
2yth2

(h2(x
−
6 ) = 0) and d3 < d1 + d2 +

(yth2−1)yth2
b

(h3(x
−
6 ) < 0),

• yr >
yth2−bd2+η

2yth2
(h1(x

−
6 ) < 0), yth1 <

yth2−bd2η
2yth2

(h2(x
−
6 ) > 0) and d3 = d1 + d2 +

(yth2−1)yth2
b

(h3(x
−
6 ) = 0),

• yr =
yth2−bd2+η

2yth2
(h1(x

−
6 ) = 0), yth1 =

yth2−bd2η
2yth2

(h2(x
−
6 ) = 0) and d3 < d1 + d2 +

(yth2−1)yth2
b

(h3(x
−
6 ) < 0),

• yr =
yth2−bd2+η

2yth2
(h1(x

−
6 ) = 0), yth1 <

yth2−bd2η
2yth2

(h2(x
−
6 ) > 0) and d3 = d1 + d2 +

(yth2−1)yth2
b

(h3(x
−
6 ) = 0).

The determinant and trace are given by

Det[A(x±
6 )] =

2η

±bd2 ∓ yth2 + η
,

Tr[A(x±
6 )] = −b+ 4(d1 − d3)y

2
th2

(±bd2 ∓ yth2 + η)2
.

Equilibrium x±
6 are stables because Det[A(x6±)] > 0 and Tr[A(x±

6 )] < 0 for

d3 ∈ (−∞, d1 − 1
4by2

th2
(y2th2 − bd2)

2) ∪ (d1,+∞) and d3 ∈ (d1 − b(bd2−yth2)
2

(1+b2)2y2
th2
, d1),

respectively.

5.4.2 Sliding vector field and pseudo-equilibria

Sliding vector őeld associated of the dynamical system (5.2.3) is deőned by (5.3.7),
where (x, y, z) ∈ Σs ⊂ Σ1. The pseudo equilibrium point is given by x̃ = (ξ0(y), y, 0) that
depend of values of ξ0(y), i.e, the discontinuity at y = yth1 and y = yth2. So, there are
three pseudo-equilibrium points namely,

x̃1 =

(
d1 + d2 − d3

yr
, yr, 0

)
,

x̃2 =

(
d1yr
y2th1

+
d2
yth2

− d3
yr
, yr, 0

)
,

x̃3 =

(
d2
yth2

+
d1
yr

− d3
yr
, yr, 0

)
,

for y ≥ yth2, y < yth1 and yth1 ≤ y < yth2, respectively. By hypothesis, yr > yth2 > yth1,
then the pseudo-equilibria x̃2 and x̃3 are always virtual, so the stability analysis will be
only for the pseudo-equilibrium point x̃1 as studied in the Subsection 5.3.2.

5.5 Case study for yth1 > yth2

Due to the switching boundaries deőned in (5.2.8) and assuming that yth1 > yth2.
Observe that in this case the state space of the system is divided into six different regions,
namely

139



D1 = {x ∈ D : h1(x) > 0, h2(x) > 0 and h3(x) > 0},
D2 = {x ∈ D : h1(x) > 0, h2(x) < 0 and h3(x) < 0},
D3 = {x ∈ D : h1(x) < 0, h2(x) < 0 and h3(x) < 0},
D4 = {x ∈ D : h1(x) < 0, h2(x) > 0 and h3(x) > 0},
D5 = {x ∈ D : h1(x) > 0, h2(x) < 0 and h3(x) > 0},
D6 = {x ∈ D : h1(x) < 0, h2(x) < 0 and h3(x) > 0}.

In each one of these regions there is a distinct vector őeld acting, then the system
(5.2.5) is represented as a 3D-DPWS system of the form

ẋ =





F1(x), if x ∈ D1,
F2(x), if x ∈ D2,
F3(x), if x ∈ D3,
F4(x), if x ∈ D4,
F5(x), if x ∈ D5,
F6(x), if x ∈ D6,

(5.5.1)

composed by the vector őelds

F1(x) =




−bx− y
x− d1+d2

y
+ d3

y

f1,3


 , F2(x) =




−bx− y

x− d1y
y2
th1

− d2
yth2

+ d3
y

f2,3


 ,

F3(x) =




1− bx− y

x− d1y
y2
th1

− d2
yth2

+ d3
y

f2,3 + k


 , F4(x) =




1− bx− y
x− d1+d2

y
+ d3

y

f1,3 + k


 ,

F5(x) =




−bx− y

x− d1y
y2
th1

− d2
y
+ d3

y

f3,3


 and F6(x) =




1− bx− y

x− d1y
y2
th1

− d2
y
+ d3

y

f3,3 + k


 ,

where

f1,3 = (1− kb)x+ (ω − k)y − d1 + d2
y

+
d3
y

− ωz − ωyr,

f2,3 = (1− kb)x+ (ω − k)y − d1y

y2th1
+
d3
y

− d2
yth2

− ωz − ωyr,

f3,3 = (1− kb)x+ (ω − k)y − d1y

y2th1
+
d3
y

− d2
y

− ωz − ωyr.

Proposition 5.5.1. There are no sliding motion at the switching boundaries Σ2 and Σ3

deőned in (5.2.8).

Proof. A straightforward calculus produces, LF2,3(x)h2(x) · LF5,6(x)h2(x) = (x − ξ0(y) +
d3
y
)2 ≥ 0 and LF1,4(x)h3(x) · LF5,6(x)h3(x) = (x− ξ0(y) +

d3
y
)2 ≥ 0, Therefore, Σ2 and Σ3

is just a crossing boundary. Containing a double tangency line at x = ξ0(yth)− d3
yth

and
y = yth, and z ∈ R.
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In order to analyze the dynamic behavior of system (5.2.5) on the switching boundary
Σ1, we calculate the sliding and crossing regions taking into account the discontinuity at
y = yth1 and y = yth2, for this we divided the study in cases as follows.

(i) For y ≥ yth1, the crossing and sliding regions are deőned by Σc1 and Σs1 as deőned
in (5.3.2) and (5.3.3), respectively.

(ii) For yth2 ≤ y ≤ yth1, the crossing and sliding regions are deőned as follows

Σc5 = {x ∈ Σ1 : x > κ(y) or x > κ(y)} , (5.5.2)

Σs5 = {x ∈ Σ1 : κ(y) < x < κ(y)} , (5.5.3)

where

κ(y) =
1

(1− kb)

(
d1y

y2th1
+
d2
y

− d3
y

+ ky + ω(yr − y) + ωz

)
,

κ(y) =
1

(1− kb)

(
d1y

y2th1
+
d2
y

− d3
y

+ k(y − 1) + ω(yr − y) + ωz

)
.

(iii) For y < yth2, the crossing and sliding regions are deőned by Σc4 and Σs4 as deőned
in (5.4.4) and (5.4.5), respectively.

5.5.1 Regular equilibria and stability

As mentioned in Subsection 5.3.1, the őrst and second components of the vector őelds
Fi(x) (i = 1, 2, 3, 4, 5, 6) are independent of the dynamic in their third component z,
whose dynamic is stable the associated eigenvalue is −ω < 0. Thus, we just need to
consider the reduced linearization Jacobian matrix as deőned in (5.3.6). In this case, the
regular equilibria and stabilities in the vector őelds Fi(x) with i = 1, 2, 3, 4 are equal to
Section 5.4, when yth1 < yth2. Then, we will analyze the equilibria of the vector őelds
Fi(x) for i = 5, 6 and its stabilities.

(i) F5(x) has an equilibrium point, given by

x±
5 =

(
± ν

b
√
bd1 + y2th1

,∓ ν√
bd1 + yth12

,−yr ∓
ν√

bd1 + y2th1

)
,

where, ν =
√
b(d3 − d2)y2th1. Equilibrium x+

5 is virtual, because h1(x
+
5 ) < 0.

Equilibrium x−
5 is real for yr < ν√

bd1+y2
th1

(h1(x
−
5 ) > 0), d3 − d1 − d2 <

y2
th1

b

(h2(x
−
5 ) < 0) and d3 < d2 +

(bd1+y2
th1)y

b
th22

y2
th1

(h3(x
−
5 ) > 0). Moreover, it becomes a

boundary equilibrium point if

• yr = ν√
bd1+y2

th1

(h1(x
−
5 ) = 0), d3 − d1 − d2 <

y2
th1

b
(h2(x

−
5 ) < 0) and d3 <

d2 +
(bd1+y2

th1)y
b
th22

y2
th1

(h3(x
−
5 ) > 0),

• yr <
ν√

bd1+y2
th1

(h1(x
−
5 ) > 0), d3 − d1 − d2 =

y2
th1

b
(h2(x

−
5 ) = 0) and d3 <

d2 +
(bd1+y2

th1)y
b
th22

y2
th1

(h3(x
−
5 ) > 0),
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• yr <
ν√

bd1+y2
th1

(h1(x
−
5 ) > 0), d3 − d1 − d2 <

y2
th1

b
(h2(x

−
5 ) < 0) and d3 =

d2 +
(bd1+y2

th1)y
b
th22

y2
th1

(h3(x
−
5 ) = 0),

• yr = ν√
bd1+y2

th1

(h1(x
−
5 ) = 0), d3 − d1 − d2 =

y2
th1

b
(h2(x

−
5 ) = 0) and d3 <

d2 +
(bd1+y2

th1)y
b
th22

y2
th1

(h3(x
−
5 ) > 0),

• yr = ν√
bd1+y2

th1

(h1(x
−
5 ) = 0), d3 − d1 − d2 <

y2
th1

b
(h2(x

−
5 ) < 0) and d3 =

d2 +
(bd1+y2

th1)y
b
th22

y2
th1

(h3(x
−
5 ) = 0).

The determinant and trace are given by

Det[A(x−
5 )] = 2 +

2bd1
y2th1

and Tr[A(x−
5 )] = −b− 1

b
− 2d1
y2th1

.

Equilibrium x−
5 are stables because Det[A(x−

5 )] > 0 and Tr[A(x−
5 )] < 0 for all

d1 > 0.

(ii) F6(x) has an equilibrium point, given by

x±
6 =

(
2bd1 + y2th1 ± yth1δ

2b(bd1 + y2th1)
,
y2th1 ∓ yth1δ

2(bd1 + y2th1)
,
y2th1 − 2yr(bd1 + y2th1)∓ yth1δ

2(bd1 + y2th1)

)
,

where δ =
√
y2th1 − 4b(d2 − d3)(bd1 + y2th1). Equilibrium x+

6 is real for yr >
(yth1−δ)yth1
2(bd1+y2

th1)

(h1(x
+
6 ) < 0), d3−d1−d2 > (yth1−1)yth1

b
(h2(x

+
6 ) < 0) and d3−d2 < (bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
+
6 ) > 0). Moreover, it becomes a boundary equilibrium point if

• yr = (yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

+
6 ) = 0), d3 − d1 − d2 >

(yth1−1)yth1
b

(h2(x
+
6 ) < 0) and

d3 − d2 <
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
+
6 ) > 0),

• yr >
(yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

+
6 ) < 0), d3 − d1 − d2 = (yth1−1)yth1

b
(h2(x

+
6 ) = 0) and

d3 − d2 <
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
+
6 ) > 0),

• yr >
(yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

+
6 ) < 0), d3 − d1 − d2 >

(yth1−1)yth1
b

(h2(x
+
6 ) < 0) and

d3 − d2 =
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
+
6 ) = 0),

• yr = (yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

+
6 ) = 0), d3 − d1 − d2 = (yth1−1)yth1

b
(h2(x

+
6 ) = 0) and

d3 − d2 <
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
+
6 ) > 0),

• yr = (yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

+
6 ) = 0), d3 − d1 − d2 >

(yth1−1)yth1
b

(h2(x
+
6 ) < 0) and

d3 − d2 =
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
+
6 ) = 0).

On the other hand, x−
6 is real for yr >

(yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

−
6 ) < 0), d3 − d1 − d2 <

(yth1−1)yth1
b

(h2(x
−
6 ) < 0) and d3 − d2 >

(bd1yth2+y2
th1yth2−y2

th1)yth2
by2

th1
(h3(x

−
6 ) > 0), other-

wise it is virtual. Moreover, it becomes a boundary equilibrium point if
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• yr = (yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

−
6 ) = 0), d3 − d1 − d2 <

(yth1−1)yth1
b

(h2(x
−
6 ) < 0) and

d3 − d2 >
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
−
6 ) > 0),

• yr >
(yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

−
6 ) < 0), d3 − d1 − d2 = (yth1−1)yth1

b
(h2(x

−
6 ) = 0) and

d3 − d2 >
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
−
6 ) > 0),

• yr >
(yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

−
6 ) < 0), d3 − d1 − d2 <

(yth1−1)yth1
b

(h2(x
−
6 ) < 0) and

d3 − d2 =
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
−
6 ) = 0),

• yr = (yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

−
6 ) = 0), d3 − d1 − d2 = (yth1−1)yth1

b
(h2(x

−
6 ) = 0) and

d3 − d2 >
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
−
6 ) > 0),

• yr = (yth1−δ)yth1
2(bd1+y2

th1)
(h1(x

−
6 ) = 0), d3 − d1 − d2 <

(yth1−1)yth1
b

(h2(x
−
6 ) < 0) and

d3 − d2 =
(bd1yth2+y2

th1yth2−y2
th1)yth2

by2
th1

(h3(x
−
6 ) = 0).

The determinant and trace are given by

Det[A(x±
6 )] = 2− 1

2b(d2 − d3)
+
b(d1 + d2)

y2th1
∓ yth1δ

2b(d2 − d3)y2th1

Tr[A(x±
6 )] = −b− d2

y2th1
+

4(d2 − d3)(bd1 + y2th1)
2

(y2th1 ∓ yth1δ)2
.

Equilibrium x+
6 is a stable point because Det[A(x+

6 )] > 0 and Tr[A(x+
6 )] < 0 for

d3 ∈ (d2 − y2
th1

4b(bd1+y2
th1)

, d2)

5.5.2 Sliding vector field and pseudo-equilibria

Sliding vector őeld associated to the dynamical system (5.2.3) is deőned by (5.3.7),
where (x, y, x) ∈ Σs ⊂ Σ1. The pseudo equilibrium point is given by x̃ = (ξ0(y), y, 0) that
depend of values of ξ0(y), i.e, the discontinuity at y = yth1 and y = yth2. In this case,
there are three pseudo-equilibrium points namely,

x̃1 =

(
d1 + d2 − d3

yr
, yr, 0

)
,

x̃2 =

(
d1yr
y2th1

+
d2
yth2

− d3
yr
, yr, 0

)
,

x̃3 =

(
d1y

2
r + d2y

2
th1

yr
− d3
yr
, yr, 0

)
,

for y ≥ yth1, y < yth2 and yth2 ≤ y < yth1, respectively. By hypothesis yr > yth1 > yth2,
then the pseudo-equilibria x̃2 and x̃3 are always virtual, so the stability analysis will be
only for the pseudo-equilibrium point x̃1 as studied in the Subsection 5.3.2.
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5.6 Conclusion

This chapter discussed the nonlinear dynamics of a dc-dc buck converter controlled
by a sliding mode control (SMC) law connected to two power converters where one of
them is a boost converter and the other is a buck converter, both modeled by a CPL
piecewise function. The main goal was to guarantee system stability by balancing the
power of sources and loads through a storage element for this the nonlinear effects of the
two constant power loads and of a sliding mode controller.
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Chapter 6

Final Remarks

In this Thesis, we reviewed some concepts and deőnitions of the DPWS systems
theory, giving tools for the analysis of the dynamic behavior of these systems and we lay
the foundations for the development of the work. The main contributions of this thesis
work are contained in chapters 2, 3, 4 and 5; which resulted in three published articles
and one article that is still in development:

• Multiple boundaries sliding mode control applied to capacitor voltage-balancing
systems, Communications in Nonlinear Science and Numerical Simulation (2020),
DOI:10.1016/j.cnsns.2020.105430;

• Bifurcation analysis of 3D-PWS systems with two transversal switching bound-
aries: A case study in power electronics, Physica D Nonlinear Phenomena (2022),
DOI:10.1016/j.physd.2022.133505;

• Global stability of a Lotka-Volterra piecewise-smooth system with harvesting actions
and two predators competing for one prey, Journal of Mathematical Analysis and
Applications (2023), DOI:10.1016/j.jmaa.2023.126998;

• Nonlinear analysis of DC power converters connected in parallel (in progress).

The main results and contributions of this Thesis are summarized below:

In Chapter 2, a new active capacitor voltage balancing method for MMCs was studied
in depth based on a sliding mode control with multiple switching boundaries. The
main contribution in this part was to show analytically the local stability of the voltage
balanced system for an arbitrary number of submodules (see Theorem 2.2.1 in Section
2.2). Other important results are:

• the description of the global dynamics of systems with two SM, modeled by 2D-

DPWS systems with two perpendicular switching straight lines, see Section 2.3;

• the description of the global sliding dynamics of systems with two SM, considering
the presence of inductors in the circuit, being modeled by 3D-DPWS systems
with two perpendicular switching planes, see Section 2.4;

• the characterization of the sliding vector őeld at the intersection of the two perpen-
dicular switching planes, for the setting of the previous item;
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• the identiőcation and classiőcation of typical singularities for the system class under
study;

• numerical simulations of the studied systems are provided which help us to better
understand the dynamic behavior of these systems, in addition to checking the
analytical results.

In Chapter 3, local and global phenomena of power electronic circuits feeding a piecewise
constant power load controlled by a sliding-mode control law were studied. These
electronic circuits were modeled as a dynamic 3D-DPWS system with two transverse
switching boundaries, with only sliding on one of them and only crossing on the other.
Among the most important result, we highlight:

• The non-linear behavior of this system was analyzed and some results were presented
on bifurcations induced by the two transverse switched boundaries, such as BEB,
BFB, DSN and GB;

• We had predicted numerically the coexistence of at least 4 limit cycles, in addition,
we found other bifurcations of equilibrium and limit cycles, such as Hopf, SNe,
SNPO and HC bifurcations. These results are very useful to determine the safe
parameter region which guarantees robust stability at the desired operating point
for the system, in order to achieve a suitable SMC design.

• Numerical simulations are also provided to obtain bifurcation sets and bifurcation
diagrams.

In Chapter 4, we study the global dynamics of a piecewise smooth Lotka-Volterra
system with two predators competing for prey where prey resources are limited. In
this study, the control harvesting strategy was deőned by two switching thresholds that
determine piecewise constant control signals for the tracking problem of predator-prey
systems. The main contribution in this chapter was the proof of the global stability
condition for the pseudo-equilibrium point, which is where two predator species and one
prey species can coexist. Other contributions:

• the identiőcation of a special boundary equilibrium bifurcation that occurs in sliding
vector őelds called boundary pseudo-equilibrium bifurcation (BPEB);

• the description of the sliding dynamics on each switching boundary, even at the
intersection between them.

In Chapter 5, a qualitative analysis of the stability of DC power converters connected
in parallel was carried out. This system was composed of a bidirectional DC-DC buck
converter controlled by a sliding mode control law (SMC) and connected to two power
converters, where one of them is a boost converter and the other is a buck converter, both
represented by two CPL functions by parts. A photovoltaic (PV + MPPT converter)
source modeled as a CPS was also included in the microgrid to make a more generic
analysis. Local phenomena associated with bifurcations induced by switching boundaries
as Boundary Equilibrium Bifurcations (BEBs) and Discontinuous Saddle-Node (DSN),
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which are part of the class of Discontinuous Induced Bifurcations (DIBs), were also stud-
ied. Furthermore, the well-known Hopf and Saddle-Node of equilibrium points bifurcation
were also studied. Numerical continuation methods using AUTO software were employed
to obtain bifurcation sets and bifurcation diagrams.

Finally, we can conclude that although this Thesis provides a minor contribution to
the theoretical aspects of DPWS systems with multiple boundaries, the cases studied in
chapters 2, 3, 4 and 5 contribute to unravel the dynamic richness of this class of systems,
providing some insights to deal with this class of systems in engineering applications.
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