

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS - CFM PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA PURA E APLICADA

Aluízio Antonio Fernandes da Silva

Estados KMS e ground de C*-álgebras de espaços rotulados normais

Aluízio Antonio F	Fernandes da Silva
Estados KMS e ground de C*-álge	ebras de espaços rotulados normais
	Tese submetida ao Programa de Pós-Graduação
	em Matemática Pura e Aplicada da Universidade Federal de Santa Catarina para a obtenção do ti tulo de doutor em Matemática com área de concen tração em Análise Matemática. Orientador: Prof. Gilles Gonçalves de Castro, Dr.

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Silva, Aluízio Antonio Fernandes da Estados KMS e ground de C*-álgebras de espaços rotulados normais / Aluízio Antonio Fernandes da Silva ; orientador, Gilles Gonçalves de Castro, 2023. 107 p.

Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Matemática Pura e Aplicada, Florianópolis, 2023.

Inclui referências.

1. Matemática Pura e Aplicada. 2. C*-álgebra de espaço rotulado. 3. C*-álgebra de Toeplitz do espaço rotulado. 4. Produto cruzado parcial. 5. C*-álgebra de grupoide. I. de Castro, Gilles Gonçalves. II. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Matemática Pura e Aplicada. III. Título.

Aluízio Antonio Fernandes da Silva

Estados KMS e ground de C*-álgebras de espaços rotulados normais

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca examinadora composta pelos seguintes membros:

Prof. Rodrigo Bissacot Proença, Dr. Universidade de São Paulo - USP

Prof. Alcides Buss, Dr.
Universidade Federal de Santa Catarina - UFSC

Prof. Daniel Gonçalves, Dr. Universidade Federal de Santa Catarina - UFSC

Certificamos que esta é a **versão original e final** do trabalho de conclusão que foi julgado adequado para obtenção do título de doutor em Matemática com área de concentração em Análise Matemática.

Coordenação do Programa de Pós-Graduação

Prof. Gilles Gonçalves de Castro, Dr.

Orientador

AGRADECIMENTOS

Agradeço à Universidade Federal de Santa Catarina (UFSC) pelo apoio material e humano durante todo o período do meu doutorado.

Agradeço à Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) pela concessão da bolsa de estudos de doutorado.

Agradeço ao meu orientador e amigo Gilles Gonçalves de Castro por ter me dado a honra de trabalhar com uma pessoa completamente apaixonada e competente naquilo que faz.

Agradeço aos professores Rodrigo Bissacot Proença, Alcides Buss e Daniel Gonçalves por terem aceito o convite para participar da banca examinadora da tese e pelas correções e sugestões propostas para melhorar o trabalho.

Agradeço ao corpo docente, discente e administrativo do Departamento de Matemática da UFSC, em especial aos professores Danilo Royer, Virgínia Silva Rodrigues e Eliézer Batista, e ao colega Kledilson Honorato.

RESUMO

Dado um espaço rotulado normal tal que a família acomodante e o alfabeto são enumeráveis, caracterizamos os estados KMS e ground de certa ação fortemente contínua do grupo topológico aditivo dos números reais na C*-álgebra desse espaço rotulado. Além disso, definimos a C*-álgebra de Toeplitz do espaço rotulado normal, e mostramos que essa C*-álgebra de Toeplitz pode ser vista como uma C*-ágebra de grupoide e como um produto cruzado parcial. Por fim, supondo que o espaço rotulado normal possui a família acomodante e o alfabeto enumeráveis, e usando a versão produto cruzado parcial da sua C*-álgebra de Toeplitz, caracterizamos os estados KMS e ground de certa ação fortemente contínua do grupo topológico aditivo dos números reais na C*-álgebra de Toeplitz desse espaço.

Palavras-chave: C*-álgebra de espaço rotulado. C*-álgebra de Toeplitz de espaço rotulado. Produto cruzado parcial. C*-álgebra de grupoide. Estado KMS.

ABSTRACT

Given a normal labelled space such that the accommodating family and the alphabet are countable, we characterize the KMS and ground states of a certain strongly continuous action of the additive topological group of real numbers in the C*-algebra of this labelled space. In addition, we define the Toeplitz C*-algebra of the normal labelled space, and we show that this Toeplitz C*-algebra can be seen as a groupoid C*-algebra and as a partial crossed product. Finally, assuming that the normal labelled space has countable accommodating family and alphabet, and using the version of the partial crossed product of his Toeplitz C*-algebra, we characterize the KMS and ground states of a certain strongly continuous action of the additive topological group of real numbers in the Toeplitz C*-algebra of that space.

Keywords: C*-algebra of labelled space. Toeplitz C*-algebra of labelled space. Partial cross product. Groupoid C*-algebra. KMS state.

LISTA DE SÍMBOLOS

$\mathcal{E} = (\mathcal{E}^0, \mathcal{E}^1, r, s)$	Grafo dirigido
\mathcal{E}^0	Conjunto de vértices
\mathcal{E}^{1}	Conjunto de arestas
$r \colon \mathcal{E}^1 \to \mathcal{E}^0$	Função range
$s\colon \mathcal{E}^1 \to \mathcal{E}^0$	Função source
\mathcal{E}^{n}	Conjunto dos caminhos de arestas de comprimento $n \in \mathbb{N}$
$\mathcal{E}^* = \cup_{n \geq 0} \mathcal{E}^n$	Conjunto dos caminhos de arestas de comprimento finito
\mathcal{E}^{∞}	Conjunto dos caminhos infinitos de arestas
\mathcal{A}	Conjunto chamado de alfabeto cujos elementos são chamados letras
$\mathcal{L}\colon \mathcal{E}^1\to \mathcal{A}$	Aplicação rotulante sobrejetora
\mathcal{A}^*	Conjunto das palavras finitas sobre ${\cal A}$
\mathcal{A}^{∞}	Conjunto das palavras infinitas sobre ${\cal A}$
$\mathcal{L}\colon \mathcal{E}^{n}\to \mathcal{A}^{*}$	Extensão natural da aplicação rotulante $\mathcal L$
$\mathcal{L} \colon \mathcal{E}^{\infty} o \mathcal{A}^{\infty}$	Extensão natural da aplicação rotulante $\mathcal L$
$\mathcal{L}^n = \mathcal{L}(\mathcal{E}^n)$	Conjunto dos caminhos rotulados de comprimento $n\in\mathbb{N}$
$\mathcal{L}^{\infty} = \mathcal{L}(\mathcal{E}^{\infty})$	Conjunto dos caminhos rotulados de comprimento infinito
ω	Palavra vazia
$\mathcal{L}^{\geq 1} := \cup_{n \geq 1} \mathcal{L}^n$	
$\mathcal{L}^* := \{\omega\} \cup \mathcal{L}^{\geq 1}$	
$\mathcal{L}^{\leq \infty} \coloneqq \mathcal{L}^* \cup \mathcal{L}^{\infty}$	
$P(\mathcal{E}^0)$	Conjunto das partes de \mathcal{E}^0
$r(A,\alpha)$	Imagem relativa de $lpha \in \mathcal{L}^*$ com relação a $A \in P(\mathcal{E}^0)$
$\mathcal{L}(A\mathcal{E}^1)$	Conjunto das letras que saem de $A \in P(\mathcal{E}^0)$
$\overline{\mathcal{L}^{\infty}}$	$\overline{\mathcal{L}(\mathcal{E}^{\infty})}$
$\mathcal B$	Família acomodante
$(\mathcal{E},\mathcal{L},\mathcal{B})$	Espaço rotulado
$\mathcal{B}_{ extit{reg}}$	Conjunto dos elementos regulares de ${\cal B}$
\mathcal{B}_{lpha}	$\mathcal{B}\cap P(r(lpha))$
S	Semigrupo inverso do espaço rotulado
E(S)	Semirreticulado de idempotentes de S
F	Conjunto dos filtros de $E(S)$
\hat{E}_0	Conjunto dos caracteres de $E(S)$
$\hat{m{E}}_{\infty}$	Conjunto dos caracteres de $E(S)$ relacionados a ultrafiltros
Ê _{tight}	Espaço fechado dos caracteres tight
Т	Espaço fechado dos filtros tight

Espaço fechado de caminhos de ultrafiltros

Espaço fechado de caracteres associados a P

 \hat{E}_{ult}

$\mathcal{C}^*(\mathcal{E},\mathcal{L},\mathcal{B})$	C*-álgebra do espaço rotulado
$\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$	C*-subálgebra diagonal do espaço rotulado
\mathbb{F}	Grupo livre gerado pelo alfabeto ${\cal A}$
$C_0(T) times_{\hat{oldsymbol{arphi}}} \mathbb{F}$	Produto cruzado parcial oriundo da ação parcial de ${\mathbb F}$ em T
$\mathcal{G}(X,\sigma)$	Grupoide de Renault-Deaconu associado ao homeomorfismo local $\sigma\colon T o$
	X
$\mathbb{B}_{\pmb{X}}$	σ -álgebra de Borel do espaço topológico X
$M^+(U,\mathbb{B}_{T})$	Espaço das funções mensuráveis não negativas de $U\subseteq T$ com a σ -álgebra
	\mathbb{B}_T
XA	Função característica de um dado conjunto A
$\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$	C*-subálgebra da C*-álgebra de funções limitadas em \mathcal{E}^0 geradas por
	$\{\chi_{\mathcal{A}}: \mathcal{A} \in \mathcal{A}\}$
$\mathcal{L}(X(\mathcal{E},\mathcal{L},\mathcal{B}))$	C*-álgebra dos operadores adjuntáveis
$\mathcal{K}(X(\mathcal{E},\mathcal{L},\mathcal{B}))$	Ideal fechado dos operadores compactos generalizados
$C^*(\pi,t)$	C*-álgebra gerada pelas imagens da representação da C*-
	correspondência do espaço rotulado
$\mathcal{TC}^*(\mathcal{E},\mathcal{L},\mathcal{B})$	C*-álgebra de Toeplitz do espaço rotulado normal
$(X(\mathcal{E},\mathcal{L},\mathcal{B}),\varphi)$	C*-correspondência do espaço rotulado
$\mathcal{T}\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$	C*-subálgebra diagonal da C*-álgebra de Toeplitz do espaço rotulado
${\cal G}_{ult}$	Grupoide de germes oriundo da ação de S em $\hat{m{E}}_{ult}$
Γ	Grupoide étale de caminhos de fronteira relacionado a P
$C^*(\Gamma)$	C*-álgebra do grupoide étale Γ
$\mathit{C}_0(P) \rtimes_{\hat{oldsymbol{arphi}}} \mathbb{F}$	Produto cruzado parcial oriundo da ação parcial de ${\mathbb F}$ em P

SUMÁRIO

1	INTRODUÇÃO 12
2	PRELIMINARES 14
2.1	O ESPAÇO TOPOLÓGICO T 14
2.2	O ESPAÇO TOPOLÓGICO P
2.3	A C*-ÁLGEBRA DE UM ESPAÇO ROTULADO
2.4	MEDIDAS CONFORMES
3	ESTADOS KMS E GROUND DE $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$
3.1	ESTADOS KMS
3.2	ESTADOS GROUND
3.3	EXEMPLOS
4	C^* -ÁLGEBRA DE TOEPLITZ DO ESPAÇO ROTULADO 67
4.1	DEFINIÇÃO E PROPRIEDADES DE $\mathcal{TC}^*(\mathcal{E},\mathcal{L},\mathcal{B})$ 67
4.2	$\mathcal{TC}^*(\mathcal{E},\mathcal{L},\mathcal{B})$ COMO C^* -ÁLGEBRA DE GRUPOIDE 73
4.3	$\mathcal{TC}^*(\mathcal{E},\mathcal{L},\mathcal{B})$ COMO PRODUTO CRUZADO PARCIAL
5	ESTADOS KMS E GROUND DE $\mathcal{TC}^*(\mathcal{E},\mathcal{L},\mathcal{B})$ 84
5.1	ESTADOS KMS
5.2	ESTADOS GROUND
5.3	EXEMPLO
6	CONCLUSÃO
	REFERÊNCIAS

1 INTRODUÇÃO

Começamos comentando brevemente sobre alguns temas abordados ao longo do nosso trabalho. A definição de uma C^* -álgebra associada com um grafo rotulado, ou mais precisamente a um espaço rotulado, foi primeiramente dada em (BATES; PASK, 2007). Entre os exemplos dados pelos autores estão as classes de C^* -álgebras de grafos (KUMIJIAN *et al.*, 1997) e (RAEBURN, 2005), C^* -álgebras de ultragrafos (TOMFORDE, 2003), e álgebras de Carlsen-Matsumoto (CARLSEN; MATSUMOTO, 2004) e (CARLSEN, 2008). Estas classes incluem outras classes importantes de C^* -álgebras tais como álgebras de Cuntz (CUNTZ, 1977), álgebras de Cuntz-Krieger (CUNTZ; KRIEGER, 1980) e álgebras de Exel-Laca (EXEL; LACA, 1999). A definição original foi revisada primeiramente em (BATES; PASK, 2007) e depois em (BATES; CARLSEN; PASK, 2017). Além disso, lembramos que os autores em (BOAVA; DE CASTRO; MORTARI, 2017a) proporam independentemente a definição revisada em (BATES; CARLSEN; PASK, 2017).

Estados Kubo-Martin-Schwinger (KMS) em *C**-álgebras é assunto de intensa pesquisa tanto em Matemática, quanto em Física. O estudo matemático de estados KMS começou com a formulação *C**-algébrica da mecânica quântica estatística (HAAG; HUGENHOLTZ; WINNINK, 1967) e (BRATTELI; ROBINSON, 1979). Ao longo dos anos, uma ampla literatura sobre o tema foi desenvolvida. Temos estudos de estados KMS de *C**-álgebras associadas com aplicações expansivas (KUMJIAN; RENAULT, 2006), grafos (DE CASTRO; MORTARI, 2014) e (KAJIWARA; WATATANI, 2013), grafos relativos (CARLSEN; LARSEN, 2016), grafos higher-rank (AN HUEF *et al.*, 2014), homeomorfismos locais (AFSAR; AN HUEF; RAEBURN, 2014), ultragrafos (DE CASTRO; GONÇALVES, 2018), e grupóides sobre fibrados de Fell (AFSAR; SIMS, 2021), para citar alguns exemplos.

Em (FOWLER; RAEBURN, 1999) e (KATSURA, 2004), temos a definição da C^* -álgebra de Toeplitz de um grafo dirigido. Para a definição, os autores relacionam uma C^* -correspondência ao grafo dirigido e definem a C^* -álgebra de Toeplitz como a C^* -álgebra relacionada à representação de Toeplitz da C^* -correspondência. Em (AN HUEF et~al., 2013) e (CARLSEN; LARSEN, 2016), temos o estudo dos estados KMS e ground da C^* -álgebra de Toeplitz de grafos dirigidos olhando para estas álgebras como álgebras universais geradas por projeções e isometrias parciais. Sendo que em (CARLSEN; LARSEN, 2016) os autores usam a descrição da C^* -álgebra de Toeplitz como produto cruzado parcial para caracterizar os estados KMS e ground.

Um dos principais temas de pesquisa e uma das ferramentas mais poderosas na área de Álgebras de Operadores é descrever uma C^* -álgebra como uma C^* -álgebra de grupoide (RENAULT, 1980) e/ou como um produto cruzado parcial (EXEL; LACA, 2003) e (EXEL, 2017). Por exemplo, em (BOAVA; DE CASTRO; MORTARI, 2020) temos a

descrição da C^* -álgebra de um espaço rotulado como uma C^* -álgebra de grupoide, e em (DE CASTRO; VAN WYK, 2020) os autores descrevem a C^* -álgebra do espaço rotulado como um produto cruzado parcial e usam essa descrição para caracterizar condições de simplicidade da C^* -álgebra do espaço rotulado.

Agora vamos resumir o que fizemos no nosso trabalho. No Capítulo 2, lembramos da definição de espaços rotulados normais e do espaço topológico de filtros tight T, que nos foi útil no Capítulo 3. Além do mais, definimos e mostramos algumas propriedades de um novo espaço topológico de filtros P, chamado de espaço de caminhos de ultrafiltros, o qual foi usado nos Capítulos 4 e 5. Por fim, lembramos de algumas definições de medidas conformes (BISSACOT *et al.*, 2022), que usamos para caracterizar por mais vias os estados KMS nos Capítulos 3 e 5.

No Capítulo 3, usando a descrição da C^* -álgebra do espaço rotulado $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ como produto cruzado parcial (DE CASTRO; VAN WYK, 2020), caracterizamos os estados KMS e ground de $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$. Para as caracterizações dos estados KMS e ground, precisamos supor que a família acomodante e o alfabeto do espaço rotulado normal são enumeráveis. O que desenvolvemos nesse capítulo foi baseado em (CARLSEN; LARSEN, 2016) e (DE CASTRO; GONÇALVES, 2018). Na última seção do capítulo, damos dois exemplos mostrando que dependendo do espaço rotulado o estudo dos estados KMS e ground de $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ referentes às ações fortemente contínuas que estamos considerando é facilitado com as nossas caracterizações.

No Capítulo 4, começamos definindo a C^* -álgebra de Toeplitz de um espaço rotulado normal $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$. Fazemos essa definição usando a C^* -correspondência $(X(\mathcal{E},\mathcal{L},\mathcal{B}),\varphi)$ construída a partir de um espaço rotulado normal em (BATES; CARLSEN; PASK, 2017), e definimos $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ como sendo a C^* -álgebra associada à representação de Toeplitz de $(X(\mathcal{E},\mathcal{L},\mathcal{B}),\varphi)$. A seguir, mostramos algumas propriedades de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, sendo a principal delas o fato de que esta álgebra pode ser vista como uma álgebra universal gerada por projeções e isometrias parciais. É interessante observar que as propriedades das álgebras $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ e $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ são muito parecidas. Além disso, usando o espaço topológico de filtros P do Capítulo 2, conseguimos a versão C^* -algébrica grupoide e produto cruzado parcial de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, em que para isso nos baseamos em (BOAVA; DE CASTRO; MORTARI, 2020) e (DE CASTRO; VAN WYK, 2020), respectivamente.

No Capítulo 5, usando a descrição de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ como produto cruzado parcial do Capítulo 4, caracterizamos os estados KMS e ground de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ com relação a determinadas ações fortemente contínuas, e damos um exemplo mostrando que dependendo do espaço rotulado o estudo desses estados é simplificado com as nossas caracterizações. Assim como no Capítulo 3, para as caracterizações dos estados KMS e ground, precisamos supor que a família acomodante e o alfabeto do espaço rotulado normal são enumeráveis.

2 PRELIMINARES

Neste capítulo, lembramos a definição de espaços rotulados normais, que são nossos objetos de estudo durante todo o trabalho. Além disso, lembramos a definição do espaço topológico de filtros tight T e mostramos algumas propriedades desse espaço, que são utéis no Capítulo 2. Também definimos o espaço topológico de filtros P e mostramos algumas propriedades desse espaço, que são úteis nos Capítulos 3 e 4. Por fim, lembramos alguns conceitos de medidas conformes, que aparecem na caracterização de estados KMS nos Capítulos 2 e 4.

2.1 O ESPAÇO TOPOLÓGICO T

Começamos definindo um espaço rotulado normal. Um *grafo* ou *grafo dirigido* \mathcal{E} é um sistema $\mathcal{E}=(\mathcal{E}^0,\mathcal{E}^1,r,s)$ formado por dois conjuntos não vazios \mathcal{E}^0 de vértices, \mathcal{E}^1 de arestas, e funções $\mathit{range}\ r\colon \mathcal{E}^1\to \mathcal{E}^0$ e $\mathit{source}\ s\colon \mathcal{E}^1\to \mathcal{E}^0$. O vértice $v\in \mathcal{E}^0$ é um $\mathit{sink}\$ se o conjunto $\mathit{s}^{-1}(v)$ é vazio, e denotamos por $\mathcal{E}^0_{\mathit{sink}}$ o conjunto de todos os vértices sinks.

Dado um grafo \mathcal{E} , uma sequência de arestas $\lambda = \lambda_1 \lambda_2 \dots \lambda_n$ tal que $r(\lambda_i) = s(\lambda_{i+1})$ para todo $i = 1, \dots, n-1$ é um *caminho de comprimento n*, $|\lambda| = n$. Definimos os vértices como caminhos de comprimento 0, e para cada $n \in \mathbb{N}$, \mathcal{E}^n é o conjunto dos caminhos de comprimento n. Além disso, $\mathcal{E}^* = \bigcup_{n \geq 0} \mathcal{E}^n$. Uma sequência infinita de arestas $\lambda = \lambda_1 \lambda_2 \dots$ tal que $r(\lambda_i) = s(\lambda_{i+1})$ para todo $i \geq 1$ é um *caminho de comprimento infinito*, $|\lambda| = \infty$. Definimos o conjunto dos caminhos infinitos por \mathcal{E}^∞ .

Dado um conjunto não vazio \mathcal{A} , chamado *alfabeto*, e cujos elementos são chamados *letras*, um *grafo rotulado* é um grafo \mathcal{E} com uma *aplicação rotulante* sobrejetora $\mathcal{L}\colon \mathcal{E}^1\to \mathcal{A}$. Denotamos o conjunto das *palavras finitas* sobre \mathcal{A} por \mathcal{A}^* , e o conjunto das *palavras infinitas* por \mathcal{A}^∞ . A aplicação rotulante \mathcal{L} pode ser estendida para $\mathcal{L}\colon \mathcal{E}^n\to \mathcal{A}^*$ e $\mathcal{L}\colon \mathcal{E}^\infty\to \mathcal{A}^\infty$. Para cada $n\in\mathbb{N}$, o conjunto dos *caminhos rotulados* α *de comprimento* $|\alpha|=n$ é a imagem $\mathcal{L}^n=\mathcal{L}(\mathcal{E}^n)$, e o conjunto dos *caminhos rotulados infinitos* a imagem $\mathcal{L}^\infty=\mathcal{L}(\mathcal{E}^\infty)$. Consideramos a palavra vazia ω como um caminho rotulado de comprimento zero $|\omega|=0$, e definimos $\mathcal{L}^{\geq 1}:=\cup_{n\geq 1}\mathcal{L}^n$, $\mathcal{L}^*:=\{\omega\}\cup\mathcal{L}^{\geq 1}$, e $\mathcal{L}^{\leq \infty}:=\mathcal{L}^*\cup\mathcal{L}^\infty$.

Sendo $P(\mathcal{E}^0)$ o conjunto das partes de \mathcal{E}^0 , dados $\alpha \in \mathcal{A}^*$ e $A \in P(\mathcal{E}^0)$, a *imagem relativa de* α *com respeito a A* é o conjunto

$$r(A,\alpha) = \begin{cases} \{r(\lambda) : \lambda \in \mathcal{E}^*, \, \mathcal{L}(\lambda) = \alpha, \, s(\lambda) \in A\}, & \text{se } \alpha \in \mathcal{L}^{\geq 1} \\ A, & \text{se } \alpha = \omega. \end{cases}$$

A *imagem de* α , denotada por $r(\alpha)$, é o conjunto $r(\alpha) = r(\mathcal{E}^0, \alpha)$, em particular $r(\omega) = \mathcal{E}^0$. Outro conjunto importante é o subconjunto de letras associado ao elemento $A \in P(\mathcal{E}^0)$

$$\mathcal{L}(A\mathcal{E}^1) = {\mathcal{L}(e) : e \in \mathcal{E}^1 \text{ e } s(e) \in A} = {a \in \mathcal{A} : r(A, a) \neq \emptyset}.$$

Um caminho rotulado α é o começo de um caminho rotulado β se $\beta = \alpha \beta'$ para um conveniente caminho rotulado β' . Os caminhos rotulados α e β são *comparáveis* se um é o começo do outro. Se $1 \le i \le j \le |\alpha|$, então $\alpha_{i,j} = \alpha_i \alpha_{i+1} \dots \alpha_j$ caso $j < \infty$ e $\alpha_{i,j} = \alpha_i \alpha_{i+1} \dots$ caso $j = \infty$. Se j < i, tomamos $\alpha_{i,j} = \omega$. Definimos

$$\overline{\mathcal{L}^{\infty}} = \overline{\mathcal{L}(\mathcal{E}^{\infty})} = \{ \alpha \in \mathcal{A}^{\infty} : \alpha_{1,n} \in \mathcal{L}^* \text{ para todo } n \in \mathbb{N} \},$$

ou seja, o conjunto de todas as palavras infinitas tais que todo começo são caminhos rotulados finitos. Claramente, $\mathcal{L}^{\infty} \subseteq \overline{\mathcal{L}^{\infty}}$, entretanto a inclusão pode ser estrita. Também escrevemos $\overline{\mathcal{L}^{\leq \infty}} = \mathcal{L}^* \cup \overline{\mathcal{L}^{\infty}}$.

Um subconjunto $\mathcal{B}\subseteq P(\mathcal{E}^0)$ é uma família acomodante se é fechado sob interseções e reuniões finitas, contém $r(\alpha)$ para todo $\alpha\in\mathcal{L}^{\geq 1}$, e é fechado fechado

Um conjunto não vazio $A \in \mathcal{B}$ é chamado regular se para todo $B \in \mathcal{B}$ e $\emptyset \neq B \subseteq A$, temos $0 < |\mathcal{L}(B\mathcal{E}^1)| < \infty$. O subconjunto de todos os elementos regulares de \mathcal{B} junto com o conjunto vazio é denotado por \mathcal{B}_{reg} . É interessante observar que $A \in \mathcal{B}_{reg}$ não vazio se, e somente se, $0 < |\mathcal{L}(A\mathcal{E}^1)| < \infty$ e não existe $B \in \mathcal{B}$ tal que $\emptyset \neq B \subseteq A \cap \mathcal{E}_{sink}^0$.

Um filtro em um conjunto parcialmente ordenado $\mathbb P$ com menor elemento 0 é um subconjunto ξ de $\mathbb P$ tal que

- (i) $0 \notin \xi$;
- (ii) se $x \in \xi$ e $x \le y$, então $y \in \xi$;
- (iii) se $x,y \in \xi$, então existe $z \in \xi$ tal que $z \le x$ e $z \le y$.

Vamos trabalhar muito com o conceito de *ultrafiltro*, que é um filtro que não está contido propriamente em nenhum outro filtro.

Para $x \in \mathbb{P}$, definimos

$$\uparrow x = \{y \in \mathbb{P} : x \le y\}, \ \downarrow x = \{y \in \mathbb{P} : y \le x\},\$$

e para $X, Y \subseteq \mathbb{P}$, definimos

$$\uparrow X = \bigcup_{x \in X} \uparrow x = \{ y \in \mathbb{P} : x \le y \text{ para algum } x \in X \},$$

e $\uparrow_Y X = Y \cap \uparrow_X$; os conjuntos $\uparrow_Y x, \downarrow_Y x, \downarrow_X e \downarrow_Y X$ são definidos analogamente.

Proposição 2.1. Seja \mathbb{P} um conjunto parcialmente ordenado com menor elemento 0. Então, para todo $x \in \mathbb{P} \setminus \{0\}$, existe um ultrafiltro $\xi \subset \mathbb{P}$ tal que $x \in \xi$.

Demonstração. Podemos usar o Lema de Zorn observando que $\uparrow x$ é um filtro que contém x.

Um *reticulado* L é um conjunto parcialmente ordenado tal que todo subconjunto finito $\{x_1,\ldots,x_n\}$ tem uma menor cota superior, denotada por $x_1\vee\cdots\vee x_n$, e uma maior cota inferior, denotada por $x_1\wedge\cdots\wedge x_n$. Se ξ é um filtro em um reticulado L com menor elemento 0, dizemos que ξ é *primo* se para todo $x,y\in L$ com $x\vee y\in \xi$, então $x\in \xi$ ou $y\in \xi$. Em particular, toda álgebra Booleana generalizada $\mathbb B$ (como em (STONE, 1935)) é um reticulado com menor elemento, e temos o seguinte resultado que é bem conhecido em teoria de ordem.

Proposição 2.2. Seja ξ um filtro em uma álgebra Booleana generalizada \mathbb{B} . Então, ξ é um ultrafiltro se, e somente se, ξ é um filtro primo.

Dado $\alpha \in \mathcal{L}^*$, definimos a seguinte família

$$\mathcal{B}_{\alpha} = \mathcal{B} \cap P(r(\alpha)) = \{A \in \mathcal{B} : A \subseteq r(\alpha)\}.$$

Se um espaço rotulado é normal, então \mathcal{B}_{α} é uma álgebra Booleana para cada $\alpha \in \mathcal{L}^{\geq 1}$, e $\mathcal{B}_{\omega} = \mathcal{B}$ é uma álgebra Booleana generalizada. Pela dualidade de Stone, todo \mathcal{B}_{α} , com $\alpha \in \mathcal{L}^*$, é associado com um espaço topológico X_{α} , que é o conjunto formado pelos ultrafiltros de \mathcal{B}_{α} . Uma base para a topologia considerada em X_{α} é dada pela família $\{U_A\}_{A \in \mathcal{B}_{\alpha}}$, em que $U_A = \{\mathcal{F} \in X_{\alpha} : A \in \mathcal{F}\}$.

Agora, vamos descrever o semirreticulado E(S), cujos alguns conjuntos de filtros são usados durante todo nosso trabalho. Dado um espaço rotulado normal $(\mathcal{E}, \mathcal{L}, \mathcal{B})$, consideramos o conjunto

$$S = \{(\alpha, A, \beta) : \alpha, \beta \in \mathcal{L}^* \text{ e } A \in \mathcal{B}_\alpha \cap \mathcal{B}_\beta \text{ com } A \neq \emptyset\} \cup \{0\}.$$

Definimos uma operação binária em S como $s \cdot 0 = 0 \cdot s = 0$ para todo $s \in S$, e para $s = (\alpha, A, \beta), t = (\gamma, B, \delta) \in S$,

$$s \cdot t = \left\{ \begin{array}{l} (\alpha \gamma', r(A, \gamma') \cap B, \delta), \quad \text{se } \gamma = \beta \gamma' \text{ e } r(A, \gamma') \cap B \neq \emptyset, \\ (\alpha, A \cap r(B, \beta'), \delta \beta'), \quad \text{se } \beta = \gamma \beta' \text{ e } A \cap r(B, \beta') \neq \emptyset, \\ 0, \qquad \qquad \text{caso contrário.} \end{array} \right.$$

Dado $s = (\alpha, A, \beta) \in S$, definimos a involução de s como $s^* = (\beta, A, \alpha)$. Temos que S munido com as operações acima é um semigrupo inverso com elemento zero 0 ((BOAVA; DE CASTRO; MORTARI, 2017b), Proposição 3.4) cujo semirreticulado de idempotentes é

$$E(S) = \{(\alpha, A, \alpha) : \alpha \in \mathcal{L}^* \text{ e } A \in \mathcal{B}_{\alpha}\} \cup \{0\}.$$

A ordem natural no semirreticulado E(S) é caracterizada na próxima proposição.

Proposição 2.3. (BOAVA; DE CASTRO; MORTARI, 2017b, Proposição 4.1) Sejam $p = (\alpha, A, \alpha)$ e $q = (\beta, B, \beta)$ elementos não nulos em E(S). Então $p \le q$ se, e somente se, $\alpha = \beta \alpha'$ e $A \subseteq r(B, \alpha')$.

Denotamos o conjunto dos filtros de E(S) por F.

Um caracter de E(S) é uma função não-nula φ de E(S) na álgebra Booleana $\{0,1\}$ tal que: $\varphi(0)=0$; e $\varphi(x\wedge y)=\varphi(x)\wedge\varphi(y)$ para todo $x,y\in E(S)$. O conjunto de todos os caracteres de E(S) é denotado por \hat{E}_0 , e munimos \hat{E}_0 com a topologia da convergência pontual.

Podemos associar cada filtro ξ de E(S) com um caracter φ_{ξ} de E(S) dado pela função característica $\varphi_{\xi}(x) = 1$ se $x \in \xi$ e $\varphi_{\xi}(x) = 0$ caso contrário. Reciprocamente, quando φ é um caracter, $\xi_{\varphi} = \{x \in E(S) : \varphi(x) = 1\}$ é um filtro de E(S).

Essa correspondência define uma bijeção entre os conjuntos F e \hat{E}_0 , e usamos essa bijeção para munirmos F com a topologia pontual de \hat{E}_0 . Denotamos por \hat{E}_{∞} o conjunto dos caracteres φ de E(S) tais que ξ_{φ} é um ultrafiltro. Definimos o conjunto dos caracteres tight \hat{E}_{tight} como sendo o fecho de \hat{E}_{∞} em \hat{E}_0 . Denotamos o subconjunto correspondente em F ao subconjunto dos caracteres tight por T, o qual também é chamado de tight espectro tight. Para mais detalhes sobre a construção do espaço topológico T, o qual é um conjunto fechado de F, sugerimos (EXEL, 2008, Seção 12).

Lembramos que essa topologia induzida em F é a topologia gerada pela base de conjuntos abertos e compactos dada em (LAWSON, 2012). Para descrevermos essa base, dado $e \in E(S)$, definimos

$$U_e = \{ \xi \in F : e \in \xi \}.$$

Além disso, para um conjunto finito (possivelmente vazio) $\{e_1, \ldots, e_n\} \subset E(S)$, definimos

$$U_{e;e_1,\ldots,e_n} = U_e \cap U_{e_1}^c \cap \cdots \cap U_{e_n}^c$$

Observação 2.1. Como observado em (LAWSON, 2012),

$$U_{e;e_1,\ldots,e_n} = U_e \cap U_{e_1e}^c \cap \cdots \cap U_{e_ne}^c$$

tal que podemos assumir $e_i \le e$ para todo $i \in \{1, \ldots, n\}$. Ou seja, pela Proposição 2.3, podemos considerar todo $U_{(\alpha, A, \alpha); (\alpha^1, A_1, \alpha^1), \ldots, (\alpha^n, A_n, \alpha^n)}$ da forma

$$U_{(\alpha,A,\alpha);(\alpha\delta^1,A_1,\alpha\delta^1),...,(\alpha\delta^n,A_n,\alpha\delta^n)}$$

sendo $\delta^1, \ldots, \delta^n \in \mathcal{L}^*$, $A_i \subseteq r(A, \delta^i)$, e $\delta^i = \delta^i_1 \cdots \delta^i_{p_i}$ com $p_i \in \mathbb{N}$ para todo $i = 1, \ldots, n$.

Proposição 2.4. (LAWSON, 2012, Lemas 2.22 e 2.23) Os conjuntos $U_{e;e_1,...,e_n}$ formam uma base de conjuntos abertos e compactos para F tal que a topologia resultante é Hausdorff.

Como T é um subespaço topológico fechado de F, temos que a base da Observação 2.1 restrita a T também é uma base de conjunto abertos e compactos para a topologia desse subespaço. Além disso, vamos denotar

$$V_{e;e_1,\ldots,e_n} := U_{e;e_1,\ldots,e_n} \cap \mathsf{T}.$$

Para lembrarmos de mais uma caracterização do conjunto F, precisamos do conceito de *família completa*. Seja $\alpha \in \overline{\mathcal{L}^{\leq \infty}}$ e $\{\mathcal{F}_n\}_{0 \leq n \leq |\alpha|}$ (em que $0 \leq n \leq |\alpha|$ significa $0 \leq n < \infty$ quando $\alpha \in \overline{\mathcal{L}^{\infty}}$) uma família tal que \mathcal{F}_n é um filtro em $\mathcal{B}_{\alpha_{1,n}}$ para todo n > 0 e \mathcal{F}_0 é um filtro em \mathcal{B} ou $\mathcal{F}_0 = \emptyset$. A família $\{\mathcal{F}_n\}_{0 \leq n \leq |\alpha|}$ é uma *família completa para* α se

$$\mathcal{F}_n = \{ A \in \mathcal{B}_{\alpha_{1,n}} : r(A, \alpha_{n+1,m}) \in \mathcal{F}_m \}$$

para todo $n \ge 0$ e m > n.

Teorema 2.1. (BOAVA; DE CASTRO; MORTARI, 2017b, Teorema 4.13) Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado fracamente resolvente à esquerda e S seu semigrupo inverso associado. Existe uma correspondência bijetiva entre filtros de E(S) e pares $(\alpha, \{\mathcal{F}_n\}_{0 \le n \le |\alpha|})$, em que $\alpha \in \overline{\mathcal{L}^{\le \infty}}$ e $\{\mathcal{F}_n\}_{0 \le n \le |\alpha|}$ é uma família completa para α .

Um filtro $\xi \in F$ é de *tipo finito* se ele está associado com o par $(\alpha, \{\mathcal{F}_n\}_{0 \le n \le |\alpha|})$ tal que $|\alpha| < \infty$, e é de *tipo infinito* caso contrário.

Um filtro $\xi \in F$ que está associado com o caminho rotulado $\alpha \in \overline{\mathcal{L}^{\leq \infty}}$ é denotado por ξ^{α} . Além disso, os filtros na família completa associada com ξ^{α} são denotados por ξ^{α}_n . Especificamente,

$$\xi_n^\alpha = \{A \in \mathcal{B} : (\alpha_{1,n},A,\alpha_{1,n}) \in \xi^\alpha\}.$$

Segue de (BOAVA; DE CASTRO; MORTARI, 2017b, Proposições 4.4 e 4.8) que, para um filtro $\xi^{\alpha} \in F$ e um elemento $(\beta, A, \beta) \in E(S)$, temos $(\beta, A, \beta) \in \xi^{\alpha}$ se, e somente se, β é um começo de α e $A \in \xi^{\alpha}_{|\beta|}$.

Teorema 2.2. (BOAVA; DE CASTRO; MORTARI, 2017b, Teoremas 5.10 e 6.7) Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e S seu semigrupo inverso associado. Então os filtros tight de E(S) são:

- (i) Os filtros de tipo infinito tais que os elementos não vazios de suas famílias completas associadas são ultrafiltros.
- (ii) Os filtros de tipo finito ξ^{α} tais que $\xi^{\alpha}_{|\alpha|}$ é um ultrafiltro de \mathcal{B}_{α} e para cada $A \in \xi^{\alpha}_{|\alpha|}$ pelo menos uma das condições a seguir é válida:
 - (a) $\mathcal{L}(A\mathcal{E}^1)$ é infinito;
 - (b) Existe $B \in \mathcal{B}_{\alpha}$ tal que $\emptyset \neq B \subseteq A \cap \mathcal{E}^0_{sink}$.

Para $\alpha \in \mathcal{L}^*$, denotamos por T_α o conjunto de todos os filtros tight associados com o caminho rotulado α .

Para $\alpha \in \mathcal{L}^*$, seja X_{α} o espaço topológico associado com a álgebra Booleana \mathcal{B}_{α} via a dualidade de Stone. Vamos lembrar os processos de cortar e colar filtros de F, para maiores detalhes o leitor pode visitar (BOAVA; DE CASTRO; MORTARI, 2017a, Seção 4).

Dados $\alpha, \beta \in \mathcal{L}^{\geq 1}$ tais que $\alpha\beta \in \mathcal{L}^{\geq 1}$, a aplicação imagem relativa $r(\cdot, \beta)$: $\mathcal{B}_{\alpha} \to \mathcal{B}_{\alpha\beta}$ é um morfismo de álgebras Booleanas, e, logo, temos seu morfismo dual

$$f_{\alpha[\beta]}: X_{\alpha\beta} \to X_{\alpha}$$

dado por

$$f_{\alpha[\beta]}(\mathcal{F}) = \{A \in \mathcal{B}_{\alpha} : r(A,\beta) \in \mathcal{F}\}.$$

Se $\alpha = \omega$ e $\mathcal{F} \in \mathcal{B}_{\beta}$, então $f_{\omega[\beta]}(\mathcal{F}) = \{A \in \mathcal{B} : r(A,\beta) \in \mathcal{F}\}$ ou é um ultrafiltro em $\mathcal{B} = \mathcal{B}_{\omega}$, ou é o conjunto vazio, e consideramos $f_{\omega[\beta]} : X_{\beta} \to X_{\omega} \cup \{\emptyset\}$. As funções $f_{\alpha[\beta]}$ são contínuas e $f_{\alpha[\beta\gamma]} = f_{\alpha[\beta]} \circ f_{\alpha\beta[\gamma]}$.

Para descrevermos a aplicação colante, dados caminhos rotulados componíveis $\alpha \in \mathcal{L}^{\geq 1}$ e $\beta \in \mathcal{L}^*$ (ou seja, tais que $\alpha\beta \in \mathcal{L}^{\geq 1}$), consideramos o subespaço $X_{(\alpha)\beta}$ de X_{β} dado por

$$X_{(\alpha)\beta} = \{ \mathcal{F} \in X_{\beta} : r(\alpha\beta) \in \mathcal{F} \}.$$

Existe uma aplicação contínua

$$g_{(\alpha)\beta}$$
: $X_{(\alpha)\beta} o X_{\alpha\beta}$

que consiste em colar α no começo do caminho rotulado β dada por

$$g_{(\alpha)\beta}(\mathcal{F}) = \{C \cap r(\alpha\beta) : C \in \mathcal{F}\}.$$

Para caminhos rotulados $\alpha\in\mathcal{L}^{\geq 1}$ e $\beta\in\overline{\mathcal{L}^{\leq\infty}}$, seja $\mathsf{T}_{(\alpha)\beta}$ o subespaço de T_{β} dado por

$$\mathsf{T}_{(\alpha)\beta} = \{ \xi \in \mathsf{T}_{\beta} : \xi_0 \in \mathsf{X}_{(\alpha)\omega} \}.$$

Definimos a aplicação colante (BOAVA; DE CASTRO; MORTARI, 2017a, Teorema 4.12)

$$G_{(\alpha)\beta}$$
: $\mathsf{T}_{(\alpha)\beta} o \mathsf{T}_{\alpha\beta}$

que leva um filtro tight $\xi \in \mathsf{T}_{(\alpha)\beta}$ no filtro tight $\eta \in \mathsf{T}_{\alpha\beta}$ cuja família completa de ultrafiltros é obtida nas seguintes condições:

• Se $\beta = \omega$,

$$\eta_{|\alpha|}=g_{(\alpha)\omega}(\xi_0)=\{C\cap r(\alpha):C\in\xi_0\},$$

e, para $0 \le i \le |\alpha|$,

$$\eta_i = f_{\alpha_{1,i}[\alpha_{i+1,|\alpha|}]}(\eta_{|\alpha|}) = \{D \in \mathcal{B}_{\alpha_{1,i}} : r(D,\alpha_{i+1,|\alpha|}) \in \eta_{|\alpha|}\};$$

• Se $\beta \neq \omega$, para $1 \leq n \leq |\beta|$ (ou $n < |\beta|$ se β é infinito)

$$\eta_{|\alpha|+n} = g_{(\alpha)\beta_{1,n}}(\xi_n) = \{C \cap r(\alpha\beta_{1,n}) : C \in \xi_n\},\$$

e, para $0 \le i \le |\alpha|$,

$$\eta_{i} = f_{\alpha_{1,i} | \alpha_{i+1,|\alpha|} \beta_{1}}(\eta_{|\alpha|+1}) = \{D \in \mathcal{B}_{\alpha_{1,i}} : r(D, \alpha_{i+1,|\alpha|} \beta_{1}) \in \eta_{|\alpha|+1}\}.$$

Finalmente, para $\alpha = \omega$, consideramos $T_{(\omega)\beta} = T_{\beta}$ e $G_{(\omega)\beta}$ sendo a função identidade de T_{β} .

Agora, para descrevermos a aplicação cortante, para caminhos componíveis $\alpha \in \mathcal{L}^{\geq 1}$ e $\beta \in \mathcal{L}^*$, consideramos a aplicação contínua

$$h_{[\alpha]\beta}: X_{\alpha\beta} \to X_{(\alpha)\beta}$$

que consiste em cortar α do começo de $\alpha\beta$ dada por

$$h_{[\alpha]\beta}(\mathcal{F})=\uparrow_{\mathcal{B}_\beta}\mathcal{F}=\{C\in\mathcal{B}_\beta:D\subseteq C \text{ para algum }D\in\mathcal{F}\}.$$

Para caminhos rotulados componíveis $\alpha \in \mathcal{L}^{\geq 1}$ e $\beta \in \overline{\mathcal{L}^{\leq \infty}}$, temos a aplicação cortante (BOAVA; DE CASTRO; MORTARI, 2017a, Teorema 4.15)

$$H_{[\alpha]\beta}$$
: $T_{\alpha\beta} \to T_{(\alpha)\beta}$

que leva um filtro tight $\xi \in T_{\alpha\beta}$ no filtro tight $\eta \in T_{(\alpha)\beta}$ tal que, para todo n com $0 \le n \le |\beta|$,

$$\eta_n=h_{[\alpha]\beta_{1,n}}(\xi_{|\alpha|+n}).$$

Para $\alpha = \omega$, definimos $H_{[\omega]\beta}$ sendo a função identidade de T_{β} .

Teorema 2.3. (BOAVA; DE CASTRO; MORTARI, 2017a, Teorema 4.17) Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, $\alpha \in \mathcal{L}^{\geq 1}$ e $\beta \in \overline{\mathcal{L}^{\leq \infty}}$ tais que $\alpha\beta \in \overline{\mathcal{L}^{\leq \infty}}$. Então $H_{[\alpha]\beta} = (G_{(\alpha)\beta})^{-1}$.

Teorema 2.4. (BOAVA; DE CASTRO; MORTARI, 2017a, Lemas 4.13 e 4.16) Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, $\alpha, \beta \in \mathcal{L}^{\geq 1}$ e $\gamma \in \overline{\mathcal{L}^{\leq \infty}}$ tais que $\alpha\beta\gamma \in \overline{\mathcal{L}^{\leq \infty}}$. Então $G_{(\alpha\beta)\gamma} = G_{(\alpha)\beta\gamma} \circ G_{(\beta)\gamma}$ e $H_{[\alpha\beta]\gamma} = H_{[\beta]\gamma} \circ H_{[\alpha]\beta\gamma}$.

Para mostrarmos que os conjuntos da base do espaço topológico T possuem certa propriedade, vamos precisar de dois lemas.

Lema 2.1. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Dados $(\alpha, A, \alpha), (\beta, B, \beta) \in E(S)$, então

$$V_{(\alpha,A,\alpha)} \cap V_{(\beta,B,\beta)} = \begin{cases} V_{(\alpha,A \cap r(B,\alpha'),\alpha)} & \text{se } \alpha = \beta \alpha' \text{ e } r(B,\alpha') \cap A \neq \emptyset \\ V_{(\beta,B \cap r(A,\beta'),\beta)} & \text{se } \beta = \alpha \beta' \text{ e } B \cap r(A,\beta') \neq \emptyset \\ \emptyset & \text{caso contrário.} \end{cases}$$

Demonstração. É imediato da definição dos conjuntos.

Lema 2.2. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e $(\alpha_1, A_1, \alpha_1), \ldots, (\alpha_n, A_n, \alpha_n)$ elementos de E(S). Existem $B_1, \ldots, B_n \in \mathcal{B} \setminus \emptyset$ tais que $B_i \subseteq A_i$ para todo $i = 1, \ldots, n$ e

$$\bigsqcup_{i=1}^{n} V_{(\alpha_i,B_i,\alpha_i)} = \bigcup_{i=1}^{n} V_{(\alpha_i,A_i,\alpha_i)},$$

em que ⊔ representa união disjunta.

Demonstração. Vamos provar por indução sobre n. Começando com o caso n=2, pelo Lema 2.1, podemos supor, sem perda de generalidade, que $(\alpha_1, A_1, \alpha_1) = (\alpha, A, \alpha)$ e $(\alpha_2, A_2, \alpha_2) = (\alpha \delta, B, \alpha \delta)$ com $r(A, \delta) \cap B \neq \emptyset$. Afirmamos que

$$V_{(\alpha,A,\alpha)} \sqcup V_{(\alpha\delta,B \setminus r(A,\delta),\alpha\delta)} = V_{(\alpha,A,\alpha)} \cup V_{(\alpha\delta,B,\alpha\delta)}.$$

De fato, a união do lado esquerdo é disjunta pelo Lema 2.1 e, pela definição dos conjuntos, está contida na união do lado direito. Para provar a outra inclusão, seja $\xi \in V_{(\alpha\delta,B,\alpha\delta)}$. Como $\xi_{|\alpha\delta|}$ é um ultrafiltro que contém B, ou $r(A,\delta)\cap B$, ou $B\setminus r(A,\delta)$ pertence a $\xi_{|\alpha\delta|}$. No primeiro caso, $\xi \in V_{(\alpha,A,\alpha)}$, e, no segundo caso, $\xi \in V_{(\alpha\delta,B)}$.

Para o caso geral, sejam uma união disjunta $\bigsqcup_{i=1}^n V_{(\alpha_i,A_i,\alpha_i)}$ (considerando a hipótese de indução) e um conjunto aberto básico da forma $V_{(\alpha,A,\alpha)}$. Usamos o caso n=2 com $V_{(\alpha,A,\alpha)}$ e $V_{(\alpha_1,A_1,\alpha_1)}$ para encontrar $C_1\subseteq A$ e $B_1\subseteq A_1$ tais que $V_{(\alpha,A,\alpha)}\cup V_{(\alpha_1,A_1,\alpha_1)}=V_{(\alpha,C_1,\alpha)}\cup V_{(\alpha_1,B_1,\alpha_1)}$. Agora usamos o caso n=2 com $V_{(\alpha,C_1,\alpha)}\in V_{(\alpha_2,A_2,\alpha_2)}$

e repetimos o processo para encontrar conjuntos B_i e C_i tais que $B_i \subseteq A_i$, $C_i \subseteq C_{i-1}$ e $V_{(\alpha_i,C_{i-1},\alpha)} \cup V_{(\alpha_i,A_i,\alpha_i)} = V_{(\alpha,C_i,\alpha)} \cup V_{(\alpha_i,B_i,\alpha_i)}$. Definindo $B = C_n$, temos

$$V_{(\alpha,A,\alpha)} \cup \bigsqcup_{i=1}^{n} V_{(\alpha_i,A_i,\alpha_i)} = V_{(\alpha,B,\alpha)} \sqcup \bigsqcup_{i=1}^{n} V_{(\alpha_i,B_i,\alpha_i)}.$$

Definição 2.1. Sejam X um conjunto e S um conjunto de subconjuntos de X. Dizemos que S é um semianel se: $\emptyset \in S$; para todo $A, B \in S$, temos $A \cap B \in S$; para todo $A, B \in S$, existe uma sequência finita de conjuntos $C_1, C_2, \ldots, C_n \in S$ dois a dois disjuntos tais que $A \setminus B = \bigsqcup_{i=1}^n C_i$.

Proposição 2.5. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. O conjunto

$$S = \{V_{e;e_1,...,e_n} : e,e_1,...,e_n \in E(S) \text{ e } n \in \mathbb{N}\} \cup \{\emptyset\}$$

é um semianel.

Demonstração. Para verificarmos que a interseção de dois conjuntos de \mathcal{S} está em \mathcal{S} , sejam $E = V_{(\alpha,A,\alpha)} \cap V_{(\alpha_1,A_1,\alpha_1)}^c \cap \cdots \cap V_{(\alpha_n,A_n,\alpha_n)}^c$ e $F = V_{(\beta,B,\beta)} \cap V_{(\beta_1,B_1,\beta_1)}^c \cap \cdots \cap V_{(\beta_m,B_m,\beta_m)}^c$. Sem perda de generalidade, podemos considerar, pelo Lema 2.1, $\alpha = \beta \alpha'$ e $r(B,\alpha') \cap A \neq \emptyset$, daí

$$E \cap F = V_{(\alpha,A \cap r(B,\alpha'),\alpha)} \cap V_{(\alpha_1,A_1,\alpha_1)}^c \cap \cdots \cap V_{(\alpha_n,A_n,\alpha_n)}^c \cap V_{(\beta_1,B_1,\beta_1)}^c \cap \cdots \cap V_{(\beta_m,B_m,\beta_m)}^c$$

e, portanto, $E \cap F \in \mathcal{S}$. Salientamos que se $E \cap F = \emptyset$ então $E \cap F \in \mathcal{S}$.

Vamos provar que se $C, C_1 \in \mathcal{S}$ são tais que $C_1 \subseteq C$, então existe uma sequência finita $C_2, C_3, \ldots, C_k \in \mathcal{S}$ tal que C é igual a união disjunta $\bigsqcup_{i=1}^k C_i$. Para isso, consideramos $C = V_{(\alpha,A,\alpha)} \cap V_{(\alpha_1,A_1,\alpha_1)}^c \cap \cdots \cap V_{(\alpha_n,A_n,\alpha_n)}^c$ e $C_1 = V_{(\beta,B,\beta)} \cap V_{(\beta_1,B_1,\beta_1)}^c \cap \cdots \cap V_{(\beta_m,B_m,\beta_m)}^c$ tais que $C_1 \subseteq C$. Pelo Lema 2.2, podemos supor que a união $V_{(\beta_1,B_1,\beta_1)} \cup \cdots \cup V_{(\beta_m,B_m,\beta_m)}^c$ é disjunta, e faremos esta hipótese. Temos

$$C \setminus C_{1} = C \cap C_{1}^{c}$$

$$= \begin{bmatrix} V_{(\alpha,A,\alpha)} \cap V_{(\alpha_{1},A_{1},\alpha_{1})}^{c} \cap \cdots \cap V_{(\alpha_{n},A_{n},\alpha_{n})}^{c} \end{bmatrix} \cap$$

$$\cap \begin{bmatrix} V_{(\beta,B,\beta)}^{c} \cup V_{(\beta_{1},B_{1},\beta_{1})} \cup \cdots \cup V_{(\beta_{m},B_{m},\beta_{m})} \end{bmatrix}$$

$$= \begin{bmatrix} V_{(\alpha,A,\alpha)} \cap V_{(\alpha_{1},A_{1},\alpha_{1})}^{c} \cap \cdots \cap V_{(\alpha_{n},A_{n},\alpha_{n})}^{c} \end{bmatrix} \cap$$

$$\cap \begin{bmatrix} V_{(\beta,B,\beta)}^{c} \cup \left(V_{(\beta_{1},B_{1},\beta_{1})} \cap V_{(\beta,B,\beta)} \right) \cup \cdots \cup \left(V_{(\beta_{m},B_{m},\beta_{m})} \cap V_{(\beta,B,\beta)} \right) \end{bmatrix}$$

$$= \begin{bmatrix} V_{(\alpha,A,\alpha)} \cap V_{(\beta,B,\beta)}^{c} \cap V_{(\alpha_{1},A_{1},\alpha_{1})}^{c} \cap \cdots \cap V_{(\alpha_{n},A_{n},\alpha_{n})}^{c} \end{bmatrix} \cup$$

$$\cup \begin{bmatrix} V_{(\alpha,A,\alpha)} \cap V_{(\beta_{1},B_{1},\beta_{1})} \cap V_{(\beta,B,\beta)} \cap V_{(\alpha_{1},A_{1},\alpha_{1})}^{c} \cap \cdots \cap V_{(\alpha_{n},A_{n},\alpha_{n})}^{c} \end{bmatrix} \cup$$

$$\cup \begin{bmatrix} V_{(\alpha,A,\alpha)} \cap V_{(\beta_{m},B_{m},\beta_{m})} \cap V_{(\beta,B,\beta)} \cap V_{(\alpha_{1},A_{1},\alpha_{1})}^{c} \cap \cdots \cap V_{(\alpha_{n},A_{n},\alpha_{n})}^{c} \end{bmatrix},$$

logo podemos ver $C \setminus C_1$ como união disjunta de elementos de S, como queríamos. \Box

2.2 O ESPAÇO TOPOLÓGICO P

Nesta seção, dado $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, vamos definir e mostrar algumas propriedades do subconjunto de filtros $P \subseteq F$.

Definição 2.2. Denotamos por P o conjunto de todos os filtros em E(S) tais que os elementos não vazios das suas famílias completas associadas são ultrafiltros. Chamamos P de espaço de caminhos de ultrafiltros e denotamos seu subconjunto associado no conjunto dos caracteres por \hat{E}_{ult} .

Salientamos que, pelo Teorema 2.2, o conjunto P contém T e todos os ultrafiltros de E(S), mas que em geral é maior do que estes dois conjuntos.

Do homeomorfismo entre o conjunto dos filtros de E(S) e o conjunto dos caracteres de E(S), considerando uma net $(\xi_{\lambda})_{\lambda \in \Lambda}$ de filtros convergindo para o filtro ξ , temos, para dado $e_0 \in E(S)$, $e_0 \in \xi$ se, e somente se, existe $\lambda_0 \in \Lambda$ tal que para todo $\lambda \geq \lambda_0$ temos $e_0 \in \xi_{\lambda}$. Ou, equivalentemente, $e_0 \notin \xi$ se, e somente se, para todo $\lambda_0 \in \Lambda$ existe $\lambda \geq \lambda_0$ tal que $e_0 \notin \xi_{\lambda}$. Mas, devido às propriedades do espaço topológico considerado, como mostrado no lema a seguir, podemos melhorar essa propriedade de convergência.

Lema 2.3. Sejam $(\xi_{\lambda})_{\lambda \in \Lambda}$ uma net em F convergindo para o filtro $\xi \in F$ e $e_0 \in E(S)$. Então $e_0 \notin \xi$ se, e somente se, existe $\lambda_0 \in \Lambda$ tal que $e_0 \notin \xi_{\lambda}$ para todo $\lambda \geq \lambda_0$.

Demonstração. Consideremos $(\xi_{\lambda})_{\lambda\in\Lambda}$ uma net em F convergindo para o filtro $\xi\in F$ e $e_0\in E(S)$. Temos a projeção contínua e aberta $\pi_{e_0}:\{0,1\}^{E(S)}\to\{0,1\}$ dada por $\pi_{e_0}(\varphi)=\varphi(e_0)$. Disso, o conjunto $\pi_{e_0}^{-1}(\{0\})=\{\varphi\in\{0,1\}^{E(S)}:\varphi(e_0)=0\}$ é aberto em $\{0,1\}^{E(S)}$.

Daí, se $e_0 \notin \xi$, como $\pi_{e_0}^{-1}(\{0\}) \cap \hat{E}_0$ é uma vizinhança aberta do caracter φ_{ξ} associado ao filtro ξ , então existe $\lambda_0 \in \Lambda$ tal que $e_0 \notin \xi_{\lambda}$ para todo $\lambda \geq \lambda_0$.

Proposição 2.6. O conjunto P é fechado em F.

Demonstração. Para verificarmos que P é fechado em F, seja $(\xi_{\lambda})_{\lambda \in \Lambda}$ uma net em P convergindo para um filtro $\xi^{\alpha} \in F$. Suponha, por absurdo, que exista $n \in \mathbb{N}$ tal que ξ^{α}_{n} , que não é vazio, não seja um ultrafiltro. Usando a caracerização de ultrafiltro como filtro primo, existem $A, B \in \mathcal{B}_{\alpha_{1,n}}$ tais que $A \cup B \in \xi^{\alpha}_{n}$, mas $A, B \notin \xi^{\alpha}_{n}$. Ou seja, $(\alpha_{1,n}, A \cup B, \alpha_{1,n}) \in \xi^{\alpha}$ e $(\alpha_{1,n}, A, \alpha_{1,n}), (\alpha_{1,n}, B, \alpha_{1,n}) \notin \xi^{\alpha}$. Pelo Lema 2.3, existe $\lambda_{0} \in \Lambda$ tal que $(\alpha_{1,n}, A \cup B, \alpha_{1,n}) \in \xi_{\lambda_{0}}$ e $(\alpha_{1,n}, A, \alpha_{1,n}), (\alpha_{1,n}, B, \alpha_{1,n}) \notin \xi_{\lambda_{0}}$. Mas isso é impossível, pois $(\xi_{\lambda_{0}})_{n}$ é um filtro primo em $\mathcal{B}_{\alpha_{1,n}}$. Portanto, $\xi \in P$. □

Observação 2.2. Como P é um subconjunto fechado de F pela Proposição 2.6, os conjuntos definidos por

$$V_{e;e_1,\ldots,e_n} \coloneqq U_{e;e_1,\ldots,e_n} \cap \mathsf{P}$$

formam uma base de conjuntos abertos e compactos para a topologia Hausdorff induzida em P. Salientamos que a notação usada é a mesma que foi usada na base do espaço topológico fechado T da seção anterior. Como, ao longo do trabalho, nunca usamos os conjuntos P e T simultaneamente, não temos problema com a notação.

Usando o Teorema 2.1, para $\alpha \in \mathcal{L}^*$, denotamos por P_{α} o conjunto de todos os filtros de P associados com o caminho rotulado α .

Da mesma forma que temos as aplicações colante e cortante para o subespaço T, o leitor pode verificar facilmente em (BOAVA; DE CASTRO; MORTARI, 2017a, Seção 4) que também podemos definir aplicações com as mesmas propriedades para o subespaço P. Vamos resumir essa construção.

Para caminhos rotulados $\alpha\in\mathcal{L}^{\geq 1}$ e $\beta\in\overline{\mathcal{L}^{\leq\infty}}$, seja $P_{(\alpha)\beta}$ o subespaço de P_{β} dado por

$$\mathsf{P}_{(\alpha)\beta} = \{ \xi \in \mathsf{P}_\beta : \xi_0 \in X_{(\alpha)\omega} \}.$$

Definimos a aplicação colante

$$G_{(\alpha)\beta} \colon \mathsf{P}_{(\alpha)\beta} \to \mathsf{P}_{\alpha\beta}$$

que leva um filtro $\xi \in P_{(\alpha)\beta}$ no filtro $\eta \in P_{\alpha\beta}$ cuja família completa de ultrafiltros é obtida como segue:

• Se $\beta = \omega$,

$$\eta_{|\alpha|} = g_{(\alpha)(\alpha)}(\xi_0) = \{C \cap r(\alpha) : C \in \xi_0\},\$$

e, para $0 \le i \le |\alpha|$,

$$\eta_i = f_{\alpha_{1,i}[\alpha_{i+1,|\alpha|}]}(\eta_{|\alpha|}) = \{D \in \mathcal{B}_{\alpha_{1,i}} : r(D,\alpha_{i+1,|\alpha|}) \in \eta_{|\alpha|}\};$$

• Se $\beta \neq \omega$, para $1 \leq n \leq |\beta|$ (ou $n < |\beta|$ se β é infinito),

$$\eta_{|\alpha|+n}=g_{(\alpha)\beta_{1,n}}(\xi_n)=\{C\cap r(\alpha\beta_{1,n}):C\in\xi_n\},$$

e, para $0 \le i \le |\alpha|$,

$$\eta_i = f_{\alpha_{1,i}[\alpha_{i+1}|\alpha|\beta_1]}(\eta_{|\alpha|+1}) = \{D \in \mathcal{B}_{\alpha_{1,i}} : r(D,\alpha_{i+1,|\alpha|}\beta_1) \in \eta_{|\alpha|+1}\}.$$

Finalmente, para $\alpha = \omega$, consideramos $P_{(\omega)\beta} = P_{\beta}$ e $G_{(\omega)\beta}$ sendo a função identidade de P_{β} .

Para caminhos rotulados componíveis $\alpha\in\mathcal{L}^{\geq 1}$ e $\beta\in\overline{\mathcal{L}^{\leq\infty}}$, temos a aplicação cortante

$$H_{[\alpha]\beta} \colon \mathsf{P}_{\alpha\beta} \to \mathsf{P}_{(\alpha)\beta}$$

que leva um filtro $\xi \in \mathsf{P}_{\alpha\beta}$ no filtro $\eta \in \mathsf{P}_{(\alpha)\beta}$ tal que, para todo n com $0 \le n \le |\beta|$,

$$\eta_n=h_{[\alpha]\beta_{1,n}}(\xi_{|\alpha|+n}).$$

Para $\alpha = \omega$, definimos $H_{[\omega]\beta}$ sendo a função identidade de P_{β} .

Salientamos que a notação das funções colante e cortante para P é a mesma que foi usada para o espaço T na seção anterior, o que não é um problema, pois nunca trabalhamos com os espaços T e P simultaneamente.

Teorema 2.5. Sejam $(\mathcal{E},\mathcal{L},\mathcal{B})$ um espaço rotulado normal, $\alpha\in\mathcal{L}^{\geq 1}$ e $\beta\in\overline{\mathcal{L}^{\leq\infty}}$ tais que $\alpha\beta\in\overline{\mathcal{L}^{\leq\infty}}$. Então $H_{[\alpha]\beta}=(G_{(\alpha)\beta})^{-1}$.

Demonstração. É a mesma demonstração do Teorema 4.17 de (BOAVA; DE CASTRO; MORTARI, 2017a). □

Teorema 2.6. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, $\alpha, \beta \in \mathcal{L}^{\geq 1}$ e $\gamma \in \overline{\mathcal{L}^{\leq \infty}}$ tais que $\alpha\beta\gamma \in \overline{\mathcal{L}^{\leq \infty}}$. Então $G_{(\alpha\beta)\gamma} = G_{(\alpha)\beta\gamma} \circ G_{(\beta)\gamma}$ e $H_{[\alpha\beta]\gamma} = H_{[\beta]\gamma} \circ H_{[\alpha]\beta\gamma}$.

Demonstração. É a mesma demonstração dos Lemas 4.13 e 4.16 de (BOAVA; DE CASTRO; MORTARI, 2017a). □

Lema 2.4. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e $(\alpha_1, A_1, \alpha_1), \ldots, (\alpha_n, A_n, \alpha_n)$ elementos de E(S). Existem $B_1, \ldots, B_n \in \mathcal{B} \setminus \emptyset$ tais que $B_i \subseteq A_i$ para todo $i = 1, \ldots, n$ e

$$\bigsqcup_{i=1}^{n} V_{(\alpha_{i},B_{i},\alpha_{i})} = \bigcup_{i=1}^{n} V_{(\alpha_{i},A_{i},\alpha_{i})},$$

em que ⊔ representa união disjunta.

Demonstração. É a mesma demonstração do Lema 2.2.

Da mesma forma que para o subespaço T, os conjuntos da base do espaço topológico P possuem a propriedade da proposição a seguir.

Proposição 2.7. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. O conjunto

$$S = \{V_{e;e_1,\ldots,e_n} : e,e_1,\ldots,e_n \in E(S) \text{ e } n \in \mathbb{N}\} \cup \{\emptyset\}$$

é um semianel.

Demonstração. É a mesma demonstração da Proposição 2.5.

2.3 A C*-ÁLGEBRA DE UM ESPAÇO ROTULADO

Começamos a seção lembrando a definição da C^* -álgebra de um espaço rotulado normal $(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Definição 2.3. (BATES; CARLSEN; PASK, 2017, Definição 2.1)(BOAVA; DE CASTRO; MORTARI, 2017a, Definição 3.1) Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. A C^* -álgebra associada com $(\mathcal{E}, \mathcal{L}, \mathcal{B})$, denotada por $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$, é a C^* -álgebra universal

gerada por projeções $\{p_A : A \in \mathcal{B}\}$ e isometrias parciais $\{s_a : a \in \mathcal{A}\}$ satisfazendo as relações:

- (i) $p_{A\cap B} = p_A p_B$, $p_{A\cup B} = p_A + p_B p_{A\cap B}$ e $p_\emptyset = 0$ para todos $A, B \in \mathcal{B}$;
- (ii) $p_A s_a = s_a p_{r(A,a)}$ para todo $A \in \mathcal{B}$ e $a \in \mathcal{A}$;
- (iii) $s_a^* s_a = p_{r(a)}$ e $s_a^* s_b = 0$ se $b \neq a$ para todo $a, b \in A$;
- (iv) Dado $A \in \mathcal{B}_{reg}$,

$$p_A = \sum_{a \in \mathcal{L}(A\mathcal{E}^1)} s_a p_{r(A,a)} s_a^*.$$

Para cada palavra $\alpha = \alpha_1 \cdots \alpha_n$, definimos $s_{\alpha} = s_{\alpha_1} \cdots s_{\alpha_n}$. Para a palavra vazia ω , consideramos $s_{\omega} = 1$.

Observação 2.3. A C^* -álgebra $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ é gerada pelos elementos s_a e p_A . Assim, os elementos s_α definidos acima pertencem a $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ se α não é a palavra vazia. Se α é a palavra vazia, s_ω não pertence a $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$, exceto quando essa álgebra é unital. Trabalhamos com a notação s_ω para simplificar. Por exemplo, $s_\omega p_A s_\omega^*$ significa p_A . Nunca usamos s_ω sozinho.

Dado um espaço rotulado normal $(\mathcal{E}, \mathcal{L}, \mathcal{B})$, sabemos, pela Proposição 3.4 de (BOAVA; DE CASTRO; MORTARI, 2017a), que

$$C^*(\mathcal{E},\mathcal{L},\mathcal{B}) = \overline{\text{span}} \{ s_{\alpha} p_{\mathcal{A}} s_{\beta}^* : \alpha,\beta \in \mathcal{L}^* \text{ e } \mathcal{A} \in \mathcal{B}_{\alpha} \cap \mathcal{B}_{\beta} \}.$$

Pela Definição 3.5 de (BOAVA; DE CASTRO; MORTARI, 2017a), a C^* -álgebra diagonal associada com $(\mathcal{E}, \mathcal{L}, \mathcal{B})$, denotada por $\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})$, é definida como

$$\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B}) = C^*(\{s_{\alpha}p_{A}s_{\alpha}^* : \alpha \in \mathcal{L}^* \text{ e } A \in \mathcal{B}_{\alpha}\}) = \overline{\text{span}}\{s_{\alpha}p_{A}s_{\alpha}^* : \alpha \in \mathcal{L}^* \text{ e } A \in \mathcal{B}_{\alpha}\}.$$

Seguindo a mesma ideia de como foi feito para C^* -álgebras de grafos no livro do Raeburn (RAEBURN, 2005), temos a proposição a seguir, Proposição 2.8.

Proposição 2.8. Existe uma esperança condicional Ψ : $C^*(\mathcal{E},\mathcal{L},\mathcal{B}) \to \Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ tal que $\Psi(s_{\alpha}p_{A}s_{\beta}^*) = \delta_{\alpha,\beta} \ s_{\alpha}p_{A}s_{\beta}^*$ para todos $\alpha,\beta \in \mathcal{L}^*$ e $A \in \mathcal{B}_{\alpha} \cap \mathcal{B}_{\beta}$.

Agora vamos lembrar a construção de uma C^* -álgebra de espaço rotulado normal como produto cruzado parcial, como feito em (DE CASTRO; VAN WYK, 2020).

Na Definição 2.4, lembramos a definição de ação parcial topológica semissaturada e ortogonal.

Definição 2.4. (EXEL; LACA, 1999, Seção 2) Uma ação parcial de um grupo G em um espaço topológico X é o par

$$(\{V_t\}_{t\in G}, \{\varphi_t\}_{t\in G})$$

formado por conjuntos abertos $\{V_t\}_{t\in G}$ e homeomorfismos $\varphi_t\colon V_{t^{-1}}\to V_t$ tais que:

- (1) $V_e = V_{e^{-1}} = X e \varphi_e \acute{e} a identidade em X;$
- (2) $\varphi_{S}(V_{S^{-1}} \cap V_{t}) = V_{S} \cap V_{st}$; e
- (3) $\varphi_{s}(\varphi_{t}(x)) = \varphi_{st}(x)$ para todo $x \in V_{t-1} \cap V_{(st)-1}$.

Se a ação parcial é dada por um grupo livre $\mathbb F$ gerado por um conjunto, então a ação parcial é semissaturada se

$$\varphi_{s} \circ \varphi_{t} = \varphi_{st}$$

para todo $s, t \in \mathbb{F}$ tal que |st| = |s| + |t|, e ortogonal se $V_a \cap V_b = \emptyset$ para a e b no conjunto de geradores com a $\neq b$.

Dado $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, denotamos por \mathbb{F} o grupo livre gerado por \mathcal{A} . Definiremos uma ação parcial de \mathbb{F} em T (identificando a unidade de \mathbb{F} com ω). Definimos $P \subset \mathbb{F}$ por

$$P := \{a_1 \dots a_n \in \mathbb{F} : a_i \in A \text{ e } n > 1\}.$$

Para $a \in \mathcal{A}$, definimos

$$V_{\omega} := T$$
, $V_a := V_{(a,r(a),a)}$, e $V_{a^{-1}} := V_{(\omega,r(a),\omega)}$.

Além disso, temos

$$\varphi_a \colon V_{a^{-1}} \to V_a$$
 dada por $\varphi_a|_{\mathsf{T}_{(a)\beta}} \coloneqq G_{(a)\beta}, \ \mathsf{e}$

$$\varphi_a^{-1}: V_a \to V_{a^{-1}}$$
 dada por $\varphi_a^{-1}|_{\mathsf{T}_{a\beta}} \coloneqq H_{[a]\beta},$

sendo G e H as aplicações colante e cortante, respectivamente, e $\beta \in \overline{\mathcal{L}^{\leq \infty}}$ tal que $a\beta \in \overline{\mathcal{L}^{\leq \infty}}$. Para a palavra vazia, definimos φ_{ω} sendo a aplicação identidade id $_{\mathsf{T}}$ de T . Seja $t \in \mathbb{F}$ e suponha que $t = a_n \cdots a_1$ está na sua forma reduzida, com cada $a_i \in \mathcal{A} \cup \mathcal{A}^{-1}$ e $n \geq 2$. Estendemos as definições acima para φ_t indutivamente por

$$V_{t^{-1}} = V_{(a_n \cdots a_1)^{-1}} = \varphi_{a_{n-1} \cdots a_1}^{-1}(V_{a_n^{-1}}), \ \ e \ \varphi_t(\xi) = \varphi_{a_n \cdots a_1}(\xi) = \varphi_{a_n}(\varphi_{a_{n-1} \cdots a_1}(\xi))$$

para todo $\xi \in V_{(a_n \cdots a_1)^{-1}}$.

Observação 2.4. Se $t \in P$ não é um caminho rotulado, então V_t é vazio. Além disso, os conjuntos V_t são abertos e fechados, e as aplicações φ_t são homeomorfismos para todo $t \in \mathbb{F}$. O sistema $(\{V_t\}_{t \in \mathbb{F}}, \{\varphi_t\}_{t \in \mathbb{F}})$ é uma ação parcial semissaturada ortogonal de \mathbb{F} em T. Tal sistema induz uma ação parcial C^* -algébrica $(\{C_0(V_t)\}_{t \in \mathbb{F}}, \{\hat{\varphi}_t\}_{t \in \mathbb{F}})$ de \mathbb{F} em $C_0(T)$ sendo $\hat{\varphi}_t$: $C_0(V_{t^{-1}}) \to C_0(V_t)$ dada por $\hat{\varphi}_t(f) = f \circ \varphi_{t^{-1}}$.

Para $g \in \mathbb{F}$, denotamos por χ_{V_g} a função característica de V_g .

Proposição 2.9. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. A C^* -álgebra $C_0(T)$ é gerada pelo conjunto $H = \{\chi_{V_{(\alpha,A,\alpha)}} : \alpha \in \mathcal{L}^* \ e \ A \in \mathcal{B}_{\alpha}\}$. Além disso, para cada $0 \neq g \in \mathbb{F}$, a C^* -subálgebra $C_0(V_g)$ é gerada pelo conjunto $H_g = \{\chi_{V_g}\chi_{V_{(\alpha,A,\alpha)}} : \alpha \in \mathcal{L}^* \ e \ A \in \mathcal{B}_{\alpha}\}$.

Demonstração. Para a demonstração da primeira parte, veja Lema 4.3 de (DE CASTRO; VAN WYK, 2020). Para vermos que a subálgebra gerada por H_g , com 0 ≠ $g \in \mathbb{F}$, é densa em $C_0(V_g)$, temos que para $\xi \in V_g$ existe uma aplicação $f \in H$ tal que $f(\xi) \neq 0$. Assim, $\chi_{V_g}(\xi)f(\xi) \neq 0$. Além disso, para $\xi, \eta \in V_g$ com $\xi \neq \eta$, existe uma aplicação $h \in H$ tal que $h(\xi) \neq 0$ e $h(\eta) = 0$. Logo, $\chi_{V_g}(\xi)h(\xi) \neq 0$ e $\chi_{V_g}(\eta)h(\eta) = 0$. Portanto, como H_g não anula todo o V_g e separa pontos deste espaço, o resultado segue do Teorema de Stone-Weierstrass.

Para a demonstração do Teorema 2.7, que nos fornece um isomorfismo entre $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ e $C_0(\mathsf{T})\rtimes_{\hat{\mathcal{G}}}\mathbb{F}$, veja o Teorema 4.8 de (DE CASTRO; VAN WYK, 2020).

Teorema 2.7. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe um isomorfismo ψ de $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ em $C_0(\mathsf{T}) \rtimes_{\hat{\varphi}} \mathbb{F}$ tal que $\psi(p_\mathsf{A}) = \chi_{V_{(\omega, A, \omega)}} \delta_\omega$ e $\psi(s_\mathsf{a}) = \chi_{V_{(a, r(a), a)}} \delta_a$ para todos $a \in \mathcal{A} \in \mathcal{A} \in \mathcal{B}$.

Proposição 2.10. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe um isomorfismo $\Phi: \Delta(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to C_0(T)$ tal que $\Phi(p_B) = \chi_{V_{(\omega, B, \omega)}}$ para todo $B \in \mathcal{B}$ e $\Phi(s_{\alpha}p_{A}s_{\alpha}^*) = \chi_{V_{(\alpha, A, \alpha)}}$ para todo $\alpha \in \mathcal{L}^{\geq 1}$ e $A \in \mathcal{B}_{\alpha}$.

Demonstração. Sabemos que $C_0(T)$ é identificado com $C_0(T)\delta_\omega$. Daí, temos o resultado, pois a aplicação ψ do Teorema 2.7 é um isomorfismo (sobre sua imagem) de $\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ em $C_0(T)\delta_\omega$ associando p_B a $\psi(p_B)=\chi_{V_{(\omega,B,\omega)}}\delta_\omega$ e $s_\alpha p_A s_\alpha^*$ a

$$\psi(s_{\alpha}p_{\mathcal{A}}s_{\alpha}^{*}) = \psi(s_{\alpha})\psi(p_{\mathcal{A}})\psi(s_{\alpha})^{*} = (\chi_{V_{(\alpha,r(\alpha),\alpha)}}\delta_{\alpha})(\chi_{V_{(\omega,A,\omega)}}\delta_{\omega})(\chi_{V_{(\alpha,r(\alpha),\alpha)}}\delta_{\alpha})^{*} = \chi_{V_{(\alpha,A,\alpha)}}\delta_{\omega},$$

sendo as duas últimas igualdades por (ii) e (iii), respectivamente, do Lema 4.4 de (DE CASTRO; VAN WYK, 2020).

Na Proposição 2.11, caracterizamos uma propriedade de $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, usando apenas elementos do espaço rotulado $(\mathcal{E},\mathcal{L},\mathcal{B})$, que nos será muito útil ao longo do trabalho.

Proposição 2.11. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. São equivalentes:

- (1) $\{p_A\}_{A\in\mathcal{B}}$ é unidade aproximada de $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$;
- (2) $T = \bigcup_{A \in \mathcal{B}} V_{(\omega,A,\omega)};$
- (3) Para todo $\alpha \in \mathcal{L}^*$ e todo $A \in \mathcal{B}_{\alpha}$, existe $B \in \mathcal{B}$ tal que $A \subseteq r(B, \alpha)$.
- (4) Para todo $a \in A$, existe $D_a \in B$ tal que $r(D_a, a) = r(a)$.

Demonstração. Para (1) implica (2), temos que $\{p_A\}_{A\in\mathcal{B}}$ é unidade aproximada de $\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$. Pelo isomorfismo $\Phi:\Delta(\mathcal{E},\mathcal{L},\mathcal{B})\to C_0(\mathsf{T})$ da Proposição 2.10, $\{\chi_{V_{(\omega,A,\omega)}}\}_{A\in\mathcal{B}}$ é unidade aproximada de $C_0(\mathsf{T})$. Dado $\xi\in V_{(a,B,a)}$, como

$$\lim_{A \in \mathcal{B}} \left(\chi_{V_{(\omega,A,\omega)}} \chi_{V_{(a,B,a)}} \right) = \lim_{A \in \mathcal{B}} \chi_{V_{(a,B \cap r(A,a),a)}} = \chi_{V_{(a,B,a)}},$$

existe $A_0 \in \mathcal{B}$ tal que $\xi \in V_{(a,B \cap r(A_0,a),a)}$, daí $\xi \in V_{(\omega,A_0,\omega)}$.

Para (2) implica (1), vamos começar mostrando que $\{\chi_{V_{(\omega,A,\omega)}}\}_{A\in\mathcal{B}}$ é unidade aproximada de $C_0(T)$. Pela Proposição 2.9, podemos considerar uma função em $C_0(T)$ da forma $\chi_{V_{(\alpha,B,\alpha)}}$. Como $V_{(\alpha,B,\alpha)}\subseteq\bigcup_{A\in\mathcal{B}}V_{(\omega,A,\omega)}$ e $V_{(\alpha,B,\alpha)}$ é compacto, existem $A_1,\ldots,A_m\in\mathcal{B}$ tais que

$$V_{(\alpha,B,\alpha)} \subseteq V_{(\omega,A_1,\omega)} \cup \cdots \cup V_{(\omega,A_m,\omega)} = V_{(\omega,A_1\cup\cdots\cup A_m,\omega)},$$

sendo a última igualdade válida pois ultrafiltros são filtros primos. Daí, como $A_1 \cup \cdots \cup A_m \in \mathcal{B}$, temos

$$\lim_{A \in \mathcal{B}} \left(\chi_{V_{(\omega,A,\omega)}} \chi_{V_{(\alpha,B,\alpha)}} \right) = \chi_{V_{(\alpha,B,\alpha)}},$$

ou seja, $\{\chi_{V_{(\omega,A,\omega)}}\}_{A\in\mathcal{B}}$ é unidade aproximada de $C_0(\mathsf{T})$. Daí, pela Proposição 2.10, $\{p_A\}_{A\in\mathcal{B}}$ é unidade aproximada de $\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$. Além disso, como

$$\begin{split} \lim_{A \in \mathcal{B}} \left(p_{A} \left(s_{\alpha} p_{B} s_{\beta}^{*} \right) \right) &= \lim_{A \in \mathcal{B}} s_{\alpha} p_{B \cap r(A,\alpha)} s_{\beta}^{*} = \lim_{A \in \mathcal{B}} s_{\alpha} p_{r(\alpha)} p_{B \cap r(A,\alpha)} p_{r(\alpha)} s_{\beta}^{*} \\ &= s_{\alpha} s_{\alpha}^{*} \left(\lim_{A \in \mathcal{B}} s_{\alpha} p_{B \cap r(A,\alpha)} s_{\alpha}^{*} \right) s_{\alpha} s_{\beta}^{*} \\ &= s_{\alpha} s_{\alpha}^{*} \left(\lim_{A \in \mathcal{B}} \left(p_{A} \left(s_{\alpha} p_{B} s_{\alpha}^{*} \right) \right) \right) s_{\alpha} s_{\beta}^{*} = s_{\alpha} p_{B} s_{\beta}^{*}, \end{split}$$

temos que $\{p_A\}_{A \in \mathcal{B}}$ é unidade aproximada de $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Para (2) implica (3), sejam $\alpha \in \mathcal{L}^*$ e $A \in \mathcal{B}_{\alpha}$. Pelo mesmo argumento de (2) implica (1), existe $B \in \mathcal{B}$ tal que $V_{(\alpha,A,\alpha)} \subseteq V_{(\omega,B,\omega)}$. Daí, $A \subseteq r(B,\alpha)$, pois, caso contrário, teríamos

$$V_{(\alpha,A\setminus r(B,\alpha),\alpha)}\subseteq V_{(\alpha,A,\alpha)}\subseteq V_{(\omega,B,\omega)},$$

o que seria absurdo.

Para (3) implica (2), seja $\xi \in T$ tal que $(\alpha, A, \alpha) \in \xi$. Por hipótese, existe $B \in \mathcal{B}$ tal que $A \subseteq r(B, \alpha)$. Daí, $\xi \in V_{(\omega, B, \omega)}$.

Para (4) implica (3), dados $\alpha = \alpha_1 \cdots \alpha_{|\alpha|} \in \mathcal{L}^*$ e $A \in \mathcal{B}_{\alpha}$, existe $B := D_{\alpha_1} \in \mathcal{B}$ tal que $r(D_{\alpha_1}, \alpha_1) = r(\alpha_1)$. Daí, $A \subseteq r(B, \alpha) = r(\alpha)$.

Para (3) implica (4), dado $a \in \mathcal{A}$, como $r(a) \in \mathcal{B}_a$, existe $D_a \in \mathcal{B}$ tal que $r(a) \subseteq r(D_a, a)$. Daí, $r(D_a, A) = r(a)$.

Observação 2.5. Observamos que a condição (4) da Proposição 2.11 é usada no Exemplo 11.1 de (CARLSEN; ORTEGA; PARDO, 2017).

2.4 MEDIDAS CONFORMES

Nesta seção, vamos lembrar algumas definições de medidas conformes que usamos ao longo do nosso trabalho para caracterizarmos os estados KMS das *C**-álgebras de espaços rotulados normais. Para mais detalhes, sugerimos ao leitor o artigo (BISSACOT *et al.*, 2022), que é a nossa referência.

Vamos lembrar a definição do grupoide generalizado de Renault-Deaconu. Para mais detalhes indicamos (RENAULT, 2000), (DEACONU, 1995) e (RENAULT, 1980). Sejam X um espaço topológico localmente compacto, Hausdorff e segundo enumerável, e U um subconjunto aberto de X. Dado um homeomorfismo local $\sigma\colon U\to X$, o grupoide generalizado de Renault-Deaconu é formado pelo conjunto

$$\mathcal{G}(X,\sigma) = \{(x,k,y) \in X \times \mathbb{Z} \times X : k = n - m, m,n \in \mathbb{N}, x \in \mathsf{Dom}(\sigma^n), y \in \mathsf{Dom}(\sigma^m), \sigma^n(x) = \sigma^m(y)\}.$$

O produto em $\mathcal{G}(X, \sigma)$ é definido por

$$((x,k,z),(z,l,y)) \mapsto (x,k+l,y) \in \mathcal{G}(X,\sigma),$$

e a aplicação inversa por

$$(x,k,y)\mapsto (y,-k,x)\in \mathcal{G}(X,\sigma).$$

O espaço das unidades é o conjunto $\mathcal{G}^{(0)} := \{(x,0,x) : x \in X\}$. As aplicações range e source, respectivamente, $r : \mathcal{G}(X,\sigma) \to \mathcal{G}^{(0)}$ e $s : \mathcal{G}(X,\sigma) \to \mathcal{G}^{(0)}$, são dadas por

$$r((x,k,y)) = (x,0,x)$$
 e $s((x,k,y)) = (y,0,y)$.

Para a topologia em $\mathcal{G}(X,\sigma)$, sejam $m,n\in\mathbb{N}$ e V_1,V_2 subconjuntos abertos de $\mathsf{Dom}(\sigma^n)$ e $\mathsf{Dom}(\sigma^m)$, respectivamente, tais que $\sigma^n|_{V_1}$ e $\sigma^m|_{V_2}$ são injetivos. Definimos os conjuntos

$$W(n, m, V_1, V_2) = \{(x, n-m, y) : x \in V_1, y \in V_2, \sigma^n(x) = \sigma^m(y)\}.$$

Estes conjuntos formam uma base para a topologia de $\mathcal{G}(X,\sigma)$ tal que este grupoide é localmente compacto, Hausdorff, segundo enumerável e étale. O espaço das unidades $\mathcal{G}^{(0)}$ é identificado com X via o homeomorfismo canônico. Para uma função contínua $F\colon U\to \mathbb{R}$, pensando em \mathbb{R} como grupo aditivo, podemos definir um homomorfismo contínuo $c_F\colon \mathcal{G}(X,\sigma)\to \mathbb{R}$ como

$$c_{F}(x, n-m, y) = \begin{cases} \sum_{i=0}^{n-1} F(\sigma^{i}(x)) - \sum_{i=0}^{m-1} F(\sigma^{i}(y)), & \text{se } x, y \in U, \\ \sum_{i=0}^{n-1} F(\sigma^{i}(x)), & \text{se } x \in U \text{ e } y \in U^{C} \text{ } (m=0), \\ -\sum_{i=0}^{m-1} F(\sigma^{i}(y)), & \text{se } x \in U^{C} \text{ e } y \in U \text{ } (n=0), \\ 0, & \text{caso contrário;} \end{cases}$$
 2.1

em que $(x, n-m, y) \in W(n, m, V_1, V_2)$. O homomorfismo c_F é o *1-cocycle* associado ao potencial contínuo F.

Agora, vamos começar a falar das medidas conformes. Considere X um espaço topológico localmente compacto, Hausdorff e segundo enumerável munido com um homeomorfismo local $\sigma\colon U\to X$, sendo U um conjunto aberto de X. Seja $\mathcal{G}(X,\sigma)$ seu respectivo grupoide de Renault-Deaconu. Para um dado potencial contínuo $F\colon U\to \mathbb{R}$ e inverso da temperatura $\lambda>0$, que é o fator multiplicador de F, definimos, como na Definição 83 de (BISSACOT $et\ al.$, 2022), a transformação de Ruelle $L_{\lambda F}$, que é a versão generalizada do operador de Ruelle, como

$$L_{\lambda F}: C_{C}(U) \to C_{C}(X)$$

$$f \to L_{\lambda F}(f)(x) := \sum_{\sigma(y)=x} e^{\lambda F(y)} f(y).$$
2.2

Definição 2.5 (Automedidas associadas com a transformação de Ruelle). *Considere* \mathbb{B}_X a σ -álgebra de Borel de X, σ : $U \to X$ um homeomorfismo local, F: $U \to \mathbb{R}$ um potencial contínuo e $\lambda > 0$. Uma medida μ em \mathbb{B}_X é dita ser uma automedida com autovalor ζ para a transformação de Ruelle $L_{\lambda F}$ se

$$\int_{X} L_{\lambda F}(f)(x) d\mu(x) = \zeta \int_{U} f(x) d\mu(x)$$
 2.3

para todo $f \in C_c(U)$.

Em outras palavras, a equação 2.3 pode ser reescrita, usando 2.2, como

$$\int_{X} \sum_{\sigma(y)=x} e^{\lambda F(y)} f(y) d\mu(x) = \zeta \int_{U} f(x) d\mu(x)$$
 2.4

para todo $f \in C_c(U)$.

Outras noções importantes de medida conforme é no sentido de Denker-Urbański e Sarig.

Definição 2.6. Seja (X, \mathcal{F}) um espaço mensurável e σ : $U \to X$ um endomorfismo mensurável. Um subconjunto $B \subseteq U$ é chamado especial se $B \in \mathcal{F}$, $\sigma(B) \in \mathcal{F}$ e $\sigma_B := \sigma|_B \colon B \to \sigma(B)$ é injetivo.

Definição 2.7 (Medida conforme - Denker-Urbański). Sejam (X, \mathcal{F}) um espaço mensurável e $D: U \to [0, \infty)$ também mensurável. Uma medida μ em X é dita ser D-conforme no sentido de Denker-Urbański se

$$\mu(\sigma(B)) = \int_B Dd\mu$$

para todo conjunto especial $B \subset U$.

Vamos usar a σ -álgebra $\mathcal{F} = \mathbb{B}_{X}$.

Definição 2.8. Sejam X um espaço topológico localmente compacto, Hausdorff e segundo enumerável e σ : $U \subseteq X \to X$ um homeomorfismo local. Dada uma medida boreliana μ em X, definimos a medida $\mu \odot \sigma$ em U por

$$\mu \odot \sigma(E) := \sum_{i \in \mathbb{N}} \mu(\sigma(E_i))$$

para todo $E \subseteq U$ mensurável, sendo que os E_i são conjuntos especiais dois a dois disjuntos tais que $E = \sqcup_i E_i$.

Observação 2.6. Para a boa definição da medida $\mu \odot \sigma$, sugerimos a Observação 88 de (BISSACOT et al., 2022).

Definição 2.9 (Medida conforme - Sarig). *Uma medida boreliana* μ *em X é chamada medida* ($\lambda F, \zeta$)*-conforme no sentido de Sarig se existe* ζ > 0 *tal que*

$$\frac{d\mu\odot\sigma}{d\mu}(x)=\zeta e^{-\lambda F(x)}\,\mu\text{-a.e. }x\in U.$$

Usamos o resultado do teorema abaixo nos Capítulos 2 e 4.

Teorema 2.8 (Teorema 90, (BISSACOT et al., 2022)). Sejam X um espaço topológico localmente compacto, Hausdorff e segundo enumerável, e σ : $u \to X$ um homeomorfismo local com $U \subseteq X$ aberto. Seja μ uma medida boreliana que é finita em compactos. Para um dado potencial contínuo $F: U \to \mathbb{R}$, as seguintes afirmações são equivalentes.

- (i) μ é uma medida $e^{\lambda F}$ -conforme no sentido de Denker-Urbański;
- (ii) μ é uma automedida com autovalor 1 associada a transformação de Ruelle L $_{\lambda F}$, ou seja,

$$\int_X \sum_{\sigma(y)=x} f(y) e^{-\lambda F(y)} d\mu(x) = \int_U f(x) d\mu(x),$$

para toda $f \in C_c(U)$;

(iii) μ é $e^{-\lambda c_F}$ -quasi-invariante em $\mathcal{G}(X, \sigma)$, ou seja,

$$\int_X \sum_{r(\gamma)=x} e^{\lambda c_F(\gamma)} f(\gamma) d\mu(x) = \int_X \sum_{s(\gamma)=x} f(\gamma) d\mu(x),$$

para toda $f \in C_c(\mathcal{G}(X, \sigma))$;

(iv) μ é ($-\lambda F$, 1)-conforme no sentido de Sarig.

3 ESTADOS KMS E GROUND DE $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$

Neste capítulo, dado um espaço rotulado normal $(\mathcal{E}, \mathcal{L}, \mathcal{B})$, descrevemos os estados KMS e ground de certa ação fortemente contínua σ do grupo topológico aditivo \mathbb{R} na C^* -álgebra $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Ao longo do capítulo, supomos que $\{p_A\}_{A\in\mathcal{B}}$ é unidade aproximada de $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, em que esta propriedade foi caracterizada na Proposição 2.11.

A seguir, definimos os conceitos de estados KMS e ground de um C^* -sistema dinâmico algébrico.

Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e N uma função positiva no alfabeto \mathcal{A} tal que existe uma constante K > 0 tal que N(a) > K para todo $a \in \mathcal{A}$. Estendemos a função N a $N: \mathcal{L}^* \to (0, +\infty)$ definindo $N(\omega) = 1$ para a palavra vazia $\omega \in \mathcal{L}^*$ e $N(\alpha) = N(\alpha_1) \dots N(\alpha_n)$ para $\alpha = \alpha_1 \dots \alpha_n \in \mathcal{L}^{\geq 1}$.

A proposição a seguir mostra que a função N fornece uma ação do grupo topológico aditivo \mathbb{R} em $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$.

Proposição 3.1. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e $N: \mathcal{L}^* \to (0, +\infty)$ como acima. Então existe uma ação fortemente contínua $\rho: \mathbb{R} \to \operatorname{Aut}(C^*(\mathcal{E}, \mathcal{L}, \mathcal{B}))$ tal que $\rho_t(p_A) = p_A \ e \ \rho_t(s_a) = N(a)^{it} \ s_a$ para todo $t \in \mathbb{R}$, $A \in \mathcal{B}$ e $a \in \mathcal{A}$.

Demonstração. Fixe $t \in \mathbb{R}$. Para cada $a \in \mathcal{A}$, defina $T_a := N(a)^{it}s_a$. Como $T_a^*T_a = s_a^*s_a$, temos que $\{T_a : a \in \mathcal{A}\}$ e $\{p_A : A \in \mathcal{B}\}$ satisfazem as relações dos axiomas de C^* -álgebras de espaços rotulados. A propriedade universal garante um homomorfismo $\rho_t \colon C^*(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ tal que $\rho_t(p_A) = p_A$ e $\rho_t(s_a) = N(a)^{it}s_a$ para qualquer $A \in \mathcal{B}$ e $a \in \mathcal{A}$. Temos $\rho_t \circ \rho_{t'} = \rho_{t+t'}$ para todo $t, t' \in \mathbb{R}$, e que a aplicação identidade em $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ é ρ_0 . Daí, $(\rho_t)^{-1} = \rho_{-t}$, e assim $\rho_t \in \operatorname{Aut}(C^*(\mathcal{E}, \mathcal{L}, \mathcal{B}))$. Portanto, ρ é um homomorfismo de grupos de \mathbb{R} em $\operatorname{Aut}(C^*(\mathcal{E}, \mathcal{L}, \mathcal{B}))$.

Para ver que ρ é fortemente contínuo, devemos provar que $t\mapsto \rho_t(b)$ é contínuo para todo $b\in C^*(\mathcal{E},\mathcal{L},\mathcal{B})$. Fixe $\varepsilon>0$ e $b\in C^*(\mathcal{E},\mathcal{L},\mathcal{B})$. Existe uma combinação linear d de elementos da forma $s_{\alpha}p_{A}s_{\beta}^*$ de $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ tal que $\|b-d\|<\frac{\varepsilon}{3}$. Como $t\mapsto \rho_t(d)$ é contínuo, pois é a composta de aplicações contínuas, existe $\delta>0$ tal que se $|t-u|<\delta$, então $\|\rho_t(d)-\rho_u(d)\|<\frac{\varepsilon}{3}$. Daí, para $|t-u|<\delta$, temos que

$$\|\rho_{U}(b) - \rho_{t}(b)\| \le \|\rho_{U}(b - d)\| + \|\rho_{U}(d) - \rho_{t}(d)\| + \|\rho_{t}(b - d)\| < \varepsilon.$$

Sejam $N: A \to (0, +\infty)$ e ρ a ação associada como na Proposição 3.1. Para todo $s_{\alpha}p_{A}s_{\beta}^{*}\in C^{*}(\mathcal{E},\mathcal{L},\mathcal{B})$, a aplicação

$$t\mapsto \rho_t(s_{\alpha}p_{\mathcal{A}}s_{\beta}^*)=N(\alpha)^{it}\,N(\beta)^{-it}\,s_{\alpha}p_{\mathcal{A}}s_{\beta}^*$$

em \mathbb{R} se estende a uma função analítica em todo o plano complexo. Assim, existem elementos analíticos tais que o span é uma subálgebra densa em $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$, e, portanto, podemos estudar os estados KMS considerando apenas as triplas geradoras.

3.1 ESTADOS KMS

Usamos os próximos dois lemas para mostrar que existe uma bijeção convexa entre o conjunto dos estados KMS de $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ e um subconjunto de estados de $\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$.

Lema 3.1. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Dados $\alpha, \beta \in \mathcal{L}^{\geq 1}$, temos

$$s_{\alpha}^{*}s_{\beta} = \begin{cases} p_{r(\alpha)}s_{\alpha'}^{*} & \text{se } \alpha = \beta\alpha', \ \alpha' \neq \omega \\ p_{r(\alpha)}s_{\beta'} & \text{se } \beta = \alpha\beta', \ \beta' \neq \omega \\ p_{r(\alpha)} & \text{se } \alpha = \beta \\ 0 & \text{caso contrário.} \end{cases}$$

Demonstração. Para o caso $\alpha = \beta \alpha' \operatorname{com} \alpha' \neq \omega$, temos

$$s_{\alpha}^* s_{\beta} = s_{\beta\alpha'}^* s_{\beta} = s_{\alpha'}^* s_{\beta}^* s_{\beta} = s_{\alpha'}^* p_{r(\beta)} = p_{r(\beta\alpha')} s_{\alpha'}^*,$$

sendo que nas duas últimas igualdades usamos os itens (iii) e (ii), respectivamente, da Proposição 3.4 de (BOAVA; DE CASTRO; MORTARI, 2017a). Os casos $\beta = \alpha \beta'$ com $\beta' \neq \omega$ e $\alpha = \beta$ são análogos. Quando α e β não são comparáveis, usamos o item (iii) da Proposição 3.4 de (BOAVA; DE CASTRO; MORTARI, 2017a).

Lema 3.2. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, $N: \mathcal{A} \to (0, +\infty)$ tal que $N(\alpha) \neq 1$ para todo $\alpha \in \mathcal{L}^{\geq 1}$, e ρ a ação da Proposição 3.1 proveniente de N. Seja $\lambda \in \mathbb{R}$. Suponha que φ e φ' são estados KMS_{λ} de $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ coincidindo em $\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})$. Então $\varphi = \varphi'$.

Demonstração. Considere um elemento $s_{\alpha}p_{A}s_{\beta}^{*} \in C^{*}(\mathcal{E}, \mathcal{L}, \mathcal{B})$ com $\alpha \neq \beta$ e defina $\zeta = \varphi - \varphi'$. Queremos mostrar que $\zeta(s_{\alpha}p_{A}s_{\beta}^{*}) = 0$. Como ζ é um estado KMS_λ, aplicando a condição KMS, temos, usando o Lema 3.1,

$$\begin{split} & \zeta(s_{\alpha}p_{A}s_{\beta}^{*}) = \zeta(p_{A}s_{\beta}^{*}\,\rho_{i\lambda}(s_{\alpha})) = N(\alpha)^{-\lambda}\zeta(p_{A}s_{\beta}^{*}s_{\alpha}) = \\ & = \begin{cases} N(\alpha)^{-\lambda}\zeta(p_{A}p_{r(\beta)}s_{\alpha'}) & \text{se } \alpha = \beta\alpha', \ \alpha' \neq \omega \\ N(\alpha)^{-\lambda}\zeta(p_{A}p_{r(\beta)}s_{\beta'}^{*}) & \text{se } \beta = \alpha\beta', \ \beta' \neq \omega \\ 0 & \text{caso contrário.} \end{cases} \end{split}$$

Logo é suficiente mostrar que $\zeta(p_B s_\alpha) = \zeta(p_B s_\alpha^*) = 0$ para todo $B \in \mathcal{B}$ e $\alpha \in \mathcal{L}^{\geq 1}$. Se a $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ tem unidade, então

$$\zeta(p_{B}s_{\alpha}) = \zeta(p_{B}s_{\alpha}1) = \zeta(1\,\rho_{i\lambda}(p_{B}s_{\alpha})) = N(\alpha)^{-\lambda}\,\zeta(1\,p_{B}s_{\alpha}) = N(\alpha)^{-\lambda}\,\zeta(p_{B}s_{\alpha}).$$

Como $N(\alpha) \neq 1$, segue que $\zeta(p_B s_\alpha) = 0$. Se $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ não possui unidade, aplicamos o mesmo argumento para a unidade aproximada $\{p_A : A \in \mathcal{B}\}$ da Proposição 2.11. \square

Proposição 3.2. Sejam $N: A \to (0, +\infty)$ tal que $N(\alpha) \neq 1$ para todo $\alpha \in \mathcal{L}^{\geq 1}$ e ρ a ação proveniente de N. Suponha $\lambda \in \mathbb{R}$ e φ um estado KMS $_{\lambda}$ de $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$. Então a restrição $\psi := \varphi|_{\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})}$ satisfaz

$$\psi(s_{\alpha}p_{A}s_{\alpha}^{*}) = N(\alpha)^{-\lambda}\psi(p_{A\cap r(\alpha)}).$$
 3.1

Reciprocamente, para algum estado ψ em $\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})$ satisfazendo 3.1, $\varphi = \psi \circ \Psi$ é um estado KMS $_{\lambda}$ em $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$, em que Ψ é a esperança condicional da Proposição 2.8. Além disso, a correspondência obtida é uma bijeção afim.

Demonstração. Suponha que φ é um estado KMS_λ em $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ e seja ψ sua restrição a $\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})$. Considerando $s_{\alpha}p_{A}s_{\alpha}^* \in \Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})$ e a condição KMS, temos

$$\varphi(s_{\alpha}p_{A}s_{\alpha}^{*}) = \varphi(p_{A}s_{\alpha}^{*}\rho_{i\lambda}(s_{\alpha})) = N(\alpha)^{-\lambda}\varphi(p_{A}s_{\alpha}^{*}s_{\alpha}) = N(\alpha)^{-\lambda}\varphi(p_{A}p_{r(\alpha)}).$$

Portanto $\psi(s_{\alpha}p_{A}s_{\alpha}^{*})=N(\alpha)^{-\lambda}\psi(p_{A\cap r(\alpha)})$. Reciprocamente, consideramos ψ um estado em $\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ satisfazendo 3.1. Para ver que $\varphi=\psi\circ\Psi$ é um estado KMS $_{\lambda}$, é suficiente provar a condição KMS

$$\varphi(ab) = \varphi(b\rho_i(a)) = N(\alpha)^{-\lambda} N(\beta)^{\lambda} \varphi(ba),$$

em que $a=s_{\alpha}p_{A}s_{\beta}^{*}$ e $b=s_{\gamma}p_{B}s_{\delta}^{*}$. Temos

$$ab = (s_{\alpha}p_{A}s_{\beta}^{*})(s_{\gamma}p_{B}s_{\delta}^{*}) = \begin{cases} s_{\alpha\gamma'}p_{r(A,\gamma')\cap B}s_{\delta}^{*} & \text{se } \gamma = \beta\gamma' \\ s_{\alpha}p_{A\cap r(B,\beta')}s_{\delta\beta'}^{*} & \text{se } \beta = \gamma\beta' \\ 0 & \text{caso contrário} \end{cases}$$

е

$$ba = (s_{\gamma}p_{B}s_{\delta}^{*})(s_{\alpha}p_{A}s_{\beta}^{*}) = \begin{cases} s_{\gamma\alpha'}p_{r(B,\alpha')\cap A}s_{\beta}^{*} & \text{se } \alpha = \delta\alpha' \\ s_{\gamma}P_{B\cap r(A,\delta')}s_{\beta\delta'}^{*} & \text{se } \delta = \alpha\delta' \\ 0 & \text{caso contrário.} \end{cases}$$

Daí

$$\varphi(ab) = \begin{cases} N(\delta)^{-\lambda} \, \psi(p_{r(A,\gamma') \cap B}) & \text{se } \gamma = \beta \gamma', \, \delta = \alpha \gamma' \\ N(\alpha)^{-\lambda} \, \psi(p_{A \cap r(B,\beta')}) & \text{se } \beta = \gamma \beta', \, \alpha = \delta \beta' \\ 0 & \text{caso contrário} \end{cases}$$

е

$$\varphi(ba) = \begin{cases} N(\beta)^{-\lambda} \, \psi(p_{r(B,\alpha') \cap A}) & \text{se } \alpha = \delta \alpha', \, \beta = \gamma \alpha' \\ N(\gamma)^{-\lambda} \, \psi(p_{B \cap r(A,\delta')}) & \text{se } \delta = \alpha \delta', \, \gamma = \beta \delta' \\ 0 & \text{caso contrário.} \end{cases}$$

Se $\gamma = \beta \gamma'$ e $\delta = \alpha \gamma'$, então

$$N(\alpha)^{-\lambda} N(\beta)^{\lambda} \varphi(ba) = N(\alpha)^{-\lambda} N(\gamma')^{-\lambda} \psi(p_{B \cap r(A,\delta')}) = N(\delta)^{-\lambda} \psi(p_{B \cap r(A,\delta')}) = \varphi(ab).$$

Se $\beta = \gamma \beta'$ e $\alpha = \delta \beta'$, então

$$N(\alpha)^{-\lambda} N(\beta)^{\lambda} \varphi(ba) = N(\alpha)^{-\lambda} \psi(p_{r(B,\beta')\cap A}) = \varphi(ab).$$

Além disso, o Lema 3.2 nos garante a injetividade dessa correspondência entre estados KMS de $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ e estados de $\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})$ satisfazendo a condição 3.1. \square

Agora vamos usar a descrição da álgebra $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ como produto cruzado parcial (sugerimos a Seção 2.3) para continuarmos estudando seus estados KMS. Para isso, usamos as ideias da Seção 4 de (CARLSEN; LARSEN, 2016) e da Seção 4 de (DE CASTRO; GONÇALVES, 2018).

Lembramos que, do Teorema 4.3 de (EXEL; LACA, 2003), dada uma função $N\colon \mathcal{A}\to (1,\infty)$ existe uma única ação fortemente contínua σ do grupo \mathbb{R} no grupo de automorfismos de $C_0(\mathsf{T})\rtimes_{\hat{\omega}}\mathbb{F}$ tal que

$$\sigma_t(b) = N(a)^{it}b \in \sigma_t(c) = c$$
 3.2

para todos $a \in \mathcal{A}$, $b \in C_0(V_{(a,r(a),a)})\delta_a$ e $c \in C_0(T)\delta_0$.

Se $N(a)=\exp(1)$ para todo $a\in\mathcal{A}$, então σ_t é 2π -periódico. Daí existe uma ação fortemente contínua β do círculo unitário complexo \mathbb{T} no grupo de automorfismos de $C_0(\mathsf{T})\rtimes_{\hat{\varphi}}\mathbb{F}$ tal que $\beta_Z(\chi_{V_{(a,r(a),a)}}\delta_a)=z\chi_{V_{(a,r(a),a)}}\delta_a$ e $\beta_Z(f\delta_0)=f\delta_0$ para todos $z\in\mathbb{T}$, $a\in\mathcal{A}$ e $f\in C_0(\mathsf{T})$.

Temos, então, o seguinte resultado.

Proposição 3.3. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, β como acima, γ a ação de gauge em $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$, e ψ : $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to C_0(\mathsf{T}) \rtimes_{\hat{\varphi}} \mathbb{F}$ o isomorfismo do Teorema 2.7. Então

$$\psi \circ \gamma_Z = \beta_Z \circ \psi$$

para todo $z \in \mathbb{T}$.

Procedendo como em (CARLSEN; LARSEN, 2016), dada uma função $N \colon \mathcal{A} \to (1,\infty)$, e considerando σ a única ação fortemente contínua de \mathbb{R} no grupo de automorfismos de $C_0(T) \rtimes \mathbb{F}$ dado por 3.2, temos, pela Proposição 3.3, uma única ação fortemente contínua σ de \mathbb{R} no grupo de automorfismos de $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ tal que

$$\sigma_t(s_a) = N(a)^{it} s_a e \sigma_t(p_A) = p_A$$

para todos $a \in A$ e $A \in B$.

Observação 3.1. Vamos considerar somente funções $N: A \to (1, \infty)$. Além disso, a ação considerada acima é da mesma forma que a ação da Proposição 3.1.

Na próxima proposição, definimos a função F, que nos será útil mais à frente, e mostramos que ela é contínua.

Proposição 3.4. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e $U := \bigsqcup_{a \in \mathcal{A}} V_{(a,r(a),a)}$. Então a função $F : U \to \mathbb{R}$ definida por $F(\xi^{\alpha}) = \ln N(\alpha_1)$ é contínua.

Demonstração. Para a continuidade de F, seja $Y \subseteq \mathbb{R}$ aberto. Como

$$F^{-1}(Y) = \bigsqcup_{a \in \mathcal{A}: \ln N(a) \in Y} V_{(a,r(a),a)}$$

é aberto em *U*, temos o resultado.

A seguir, fixamos algumas notações.

Para $0 < \lambda < +\infty$, F da Proposição 3.4 e c_F de 2.1, definimos os conjuntos:

 A^{λ} : o conjunto dos estados KMS $_{\lambda}$ para $C^{*}(\mathcal{E}, \mathcal{L}, \mathcal{B})$;

 B^{λ} : o conjunto dos estados ω de $C_0(T)$ que satisfazem a condição de escala $\omega(f\circ \varphi_a^{-1})=N(a)^{-\lambda}\,\omega(f)$ para todo $a\in \mathcal{A}$ e $f\in C_0(V_{a^{-1}});$

 C^{λ} : o conjunto das medidas Borelianas regulares de probabilidade μ em T que satisfazem a condição de escala $\mu(\varphi_a(A)) = N(a)^{-\lambda}\mu(A)$ para todo $a \in \mathcal{A}$ e todo subconjunto Borel mensurável A de $V_{a^{-1}}$;

 D^{λ} : o conjunto das funções $m \colon \mathcal{B} \to [0,1]$ satisfazendo:

1. $\lim_{A \in \mathcal{B}} m(A) = 1$;

2. $m(A) = \sum_{a \in \mathcal{L}(A\mathcal{E}^1)} N(a)^{-\lambda} m(r(A, a))$ para todo $A \in \mathcal{B}_{reg}$;

3. dados $A \in \mathcal{B}$ e $F \subseteq \mathcal{L}(A\mathcal{E}^1)$ tal que $0 < |F| < +\infty$, temos

$$m(A) \geq \sum_{a \in F} N(a)^{-\lambda} m(r(A,a))$$
 e;

4. $m(A \cup B) = m(A) + m(B) - m(A \cap B)$ para todo $A, B \in \mathcal{B}$;

 E^{λ} : o conjunto dos estados ψ de $\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})$ satisfazendo

$$\psi(s_{\alpha}p_{A}s_{\alpha}^{*}) = N(\alpha)^{-\lambda}\psi(p_{A\cap r(\alpha)})$$

para todo $\alpha \in \mathcal{L}^*$ e $A \in \mathcal{B}_{\alpha}$.

 F^{λ} : o conjunto das medidas Borelianas de probabilidade μ em T que são $e^{\lambda F}$ conformes no sentido de Denker-Urbański;

 G^{λ} : o conjunto das medidas Borelianas de probabilidade μ em T que são automedidas com autovalor 1 associadas com a transformação de Ruelle $L_{-\lambda F}$, isto é,

$$\int_{\mathsf{T}} \sum_{\sigma(\xi)=n} f(\xi) e^{-\lambda F(\xi)} d\mu(\eta) = \int_{U} f(\eta) d\mu(\eta)$$

para todo $f \in C_c(U)$;

 H^{λ} : conjunto das medidas de Borel de probabilidade μ em T que são $e^{-\lambda c_F}$ -quasi-invariantes em $\mathcal{G}(\mathsf{T},\sigma)$, isto é,

$$\int_{\mathsf{T}} \sum_{f(\gamma)=n} e^{\lambda c_F(\gamma)} f(\gamma) d\mu(\eta) = \int_{\mathsf{T}} \sum_{s(\gamma)=n} f(\gamma) d\mu(\eta)$$

para todo $f \in C_{\mathcal{C}}(\mathcal{G}(\mathsf{T}, \sigma))$; e

 l^{λ} : o conjunto das medidas Borelianas de probabilidade μ em T que são $(-\lambda F, 1)$ conformes no sentido de Sarig.

No Teorema 3.1, nosso resultado principal, mostramos que existem bijeções convexas entre os conjuntos A^{λ} , B^{λ} , C^{λ} , D^{λ} , E^{λ} ,

Proposição 3.5. Seja $(\mathcal{E},\mathcal{L},\mathcal{B})$ um espaço rotulado normal. Se $m\colon \mathcal{B} \to [0,1]$ é uma função do conjunto D^{λ} e $V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),...,(\alpha\alpha^n,A_n,\alpha\alpha^n)} \in \mathcal{S}$, então

$$N(\alpha)^{-\lambda} m(A) \geq \sum_{i=1}^{n} N(\alpha \alpha^{i})^{-\lambda} m(A_{i}).$$

Demonstração. Sejam $m \in D^{\lambda}$ e $V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),...,(\alpha\alpha^n,A_n,\alpha\alpha^n)} \in \mathcal{S}$. Vamos mostrar o resultado por indução sobre $L = \max_{1 \leq i \leq n} \{|\alpha^i|\}$. Se L = 0, como $A_i \subseteq A$ para todo $i \in \{1,\ldots,n\}$, temos

$$m(A) = m\left(A \cap \left(\bigsqcup_{i=1}^{n} A_i\right)\right) + m\left(A \cap \left(\bigsqcup_{i=1}^{n} A_i\right)^{c}\right) \geq m\left(\bigsqcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} m(A_i),$$

e o resultado segue para esse caso.

Agora, suponha o resultado válido para todo número natural menor do que L. Podemos supor $\alpha^i \neq \omega$ para todo $i \in \{1, \ldots, n\}$, pois, caso contrário, trabalhamos com $A \setminus A_i$ em vez de A. Seja $\{\alpha_1^{i_1}, \ldots, \alpha_1^{i_r}\}$ o subconjunto das letras de $\{\alpha_1^1, \ldots, \alpha_1^n\}$ que são duas a duas distintas. Pela condição m3, temos

$$m(A) \ge \sum_{l=1}^{r} N(\alpha_1^{i_l})^{-\lambda} m(r(A, \alpha_1^{i_l})).$$
 3.3

Como

$$\bigsqcup_{j:\alpha_1^j=\alpha_1^{i_j}} V_{(\alpha\alpha^j,A_j,\alpha\alpha^j)} \subseteq V_{(\alpha\alpha_1^{i_j},r(A,\alpha_1^{i_j}),\alpha\alpha_1^{i_j})}$$

para todo $l \in \{1, ..., r\}$, podemos considerar

$$V_{(\alpha \alpha_1^{i_j}, r(A, \alpha_1^{i_j}), \alpha \alpha_1^{i_j})} \cap \left(\bigsqcup_{j: \alpha_1^j = \alpha_1^{i_j}} V_{(\alpha \alpha^j, A_j, \alpha \alpha^j)} \right)^c \in \mathcal{S}$$

para todo $l \in \{1, ..., r\}$. Multiplicando a desigualdade 3.3 por $N(\alpha)^{-\lambda}$, e considerando a hipótese de indução para todo $l \in \{1, ..., r\}$, temos o resultado.

Observação 3.2. Para mostrarmos a Proposição 3.6, precisamos supor que o alfabeto A é enumerável.

Proposição 3.6. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal tal que o alfabeto \mathcal{A} é enumerável. Então $\mu \in C^{\lambda}$ se, e somente se, $\mu \in G^{\lambda}$.

Demonstração. Primeiramente, vamos considerar $\mu \in G^{\lambda}$. Como toda medida Boreliana finita é regular, temos que verificar apenas a condição de escala. Para tanto, dados $a \in \mathcal{A}$ e $A \subseteq V_{a^{-1}}$ tal que $A \in \mathbb{B}_T$ (sendo \mathbb{B}_T a σ -álgebra de Borel de T), temos

$$\mu(\varphi_{a}(A)) = \int_{U} \chi_{\varphi_{a}(A)}(\xi) d\mu(\xi) = \int_{T} \sum_{\sigma(\xi)=\eta} \chi_{\varphi_{a}(A)}(\xi) e^{-\lambda F(\xi)} d\mu(\eta)$$

$$\stackrel{(1)}{=} \int_{T} \chi_{\varphi_{a}(A)}(\varphi_{a}(\eta)) e^{-\lambda F(\varphi_{a}(\eta))} \chi_{V_{a^{-1}}}(\eta) d\mu(\eta)$$

$$= N(a)^{-\lambda} \int_{T} \chi_{\varphi_{a^{-1}}(\varphi_{a}(A))}(\eta) \chi_{V_{a^{-1}}}(\eta) d\mu(\eta)$$

$$= N(a)^{-\lambda} \mu(\varphi_{a^{-1}}(\varphi_{a}(A))) = N(a)^{-\lambda} \mu(A),$$

sendo a igualdade (1) válida pois se $\sigma(\xi) = \varphi_{a^{-1}}(\xi) = \eta = \varphi_{a^{-1}}(\xi') = \sigma(\xi')$, então $\xi = \xi'$, pois $\xi, \xi' \in \varphi_a(A) \subseteq V_{(a,r(a),a)}$, e $\xi = \varphi_a(\eta)$. Portanto, $\mu \in C^{\lambda}$.

Por outro lado, considere $\mu \in C^{\lambda}$. Primeiramente, para $K \subseteq V_{(a,r(a),a)}$ tal que $K \in \mathbb{B}_{\mathsf{T}}$, temos $\chi_K \in M^+(U,\mathbb{B}_{\mathsf{T}})$ (sendo $M^+(U,\mathbb{B}_{\mathsf{T}})$ o conjunto das funções mensuráveis não-negativas de U com a σ -álgebra \mathbb{B}_{T}) e

$$\begin{split} \int_{U} \chi_{K}(\xi) d\mu(\xi) &= \mu(K) = N(a)^{-\lambda} \mu(\phi_{a}^{-1}(K)) = N(a)^{-\lambda} \mu(\sigma(K)) = N(a)^{-\lambda} \int_{T} \chi_{\sigma(K)}(\eta) d\mu(\eta) \\ &= \int_{T} \sum_{\sigma(\xi) = \eta} \chi_{K}(\xi) e^{-\lambda F(\xi)} d\mu(\eta). \end{split}$$

Para $K \subseteq U$ tal que $K \in \mathbb{B}_T$, temos $K = \bigsqcup_{a \in \mathcal{A}} K \cap V_{(a,r(a),a)} \operatorname{com} K \cap V_{(a,r(a),a)} \in \mathbb{B}_T$ para todo $a \in \mathcal{A}, \chi_K \in M^+(U,\mathbb{B}_T)$ e

$$\begin{split} \int_{U} \chi_{K}(\xi) d\mu(\xi) &= \mu(K) = \mu \left(\bigsqcup_{a \in \mathcal{A}} K \cap V_{(a,r(a),a)} \right) \stackrel{(2)}{=} \sum_{a \in \mathcal{A}} \mu(K \cap V_{(a,r(a),a)}) \\ &= \sum_{a \in \mathcal{A}} \int_{U} \chi_{K \cap V_{(a,r(a),a)}}(\xi) d\mu(\xi) = \sum_{a \in \mathcal{A}} \int_{T} \sum_{\sigma(\xi) = \eta} \chi_{K \cap V_{(a,r(a),a)}}(\xi) e^{-\lambda F(\xi)} d\mu(\eta) \\ &\stackrel{(3)}{=} \int_{T} \sum_{a \in \mathcal{A}} \sum_{\sigma(\xi) = \eta} \chi_{K \cap V_{(a,r(a),a)}}(\xi) e^{-\lambda F(\xi)} d\mu(\eta) \\ &= \int_{T} \sum_{\sigma(\xi) = \eta} \sum_{a \in \mathcal{A}} \chi_{K \cap V_{(a,r(a),a)}}(\xi) e^{-\lambda F(\xi)} d\mu(\eta) = \int_{T} \sum_{\sigma(\xi) = \eta} \chi_{K}(\xi) e^{-\lambda F(\xi)} d\mu(\eta), \end{split}$$

sendo (2) pois o alfabeto é enumerável, e (3) devido ao Teorema da Convergência Dominada de Lebesgue.

A igualdade também é válida para $\varphi \in M^+(U, \mathbb{B}_T)$ simples.

Agora, considere $f \in C_c(U)$. Podemos escrever $f = f_0 + f_1 i$ com $f_0, f_1 \in C_c(U)$ funções reais. Além disso, $f_0 = f_0^+ - f_0^-$ e $f_1 = f_1^+ - f_1^-$ com $f_0^+, f_0^-, f_1^+, f_1^- \in C_c(U)$ funções reais e positivas. Logo $f_0^+, f_0^-, f_1^+, f_1^- \in M^+(U, \mathbb{B}_T)$. Sabemos, por exemplo, que existe uma sequência $(\varphi_{0,n}^+)_{n\in\mathbb{N}}\subseteq M^+(U,\mathbb{B}_T)$ simples e pontualmente não decrescente tal que $(\varphi_{0,n}^+)_{n\in\mathbb{N}}$ converge pontualmente para f_0^+ . Daí,

$$\int_{U} f_0^+(\xi) d\mu(\xi) = \int_{U} \lim_{n \in \mathbb{N}} \varphi_{0,n}^+(\xi) d\mu(\xi) \stackrel{(4)}{=} \lim_{n \in \mathbb{N}} \int_{U} \varphi_{0,n}^+(\xi) d\mu(\xi)$$

$$= \lim_{n \in \mathbb{N}} \int_{T} \sum_{\sigma(\xi) = \eta} \varphi_{0,n}^+(\xi) e^{-\lambda F(\xi)} d\mu(\eta) \stackrel{(5)}{=} \int_{T} \sum_{\sigma(\xi) = \eta} f_0^+(\xi) e^{-\lambda F(\xi)} d\mu(\eta),$$

sendo (4) devido ao Teorema da Convergência Monótona, e (5) devido ao Teorema da Convergência Dominada de Lebesgue. Da mesma forma, temos a igualdade para f_0^- , f_1^+ e f_1^- . Portanto, temos a igualdade para f_1^- , ou seja, f_1^- e f_2^- .

Proposição 3.7. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal tal que o alfabeto \mathcal{A} é enumerável. Então os conjuntos C^{λ} , F^{λ} , G^{λ} , H^{λ} e I^{λ} são iguais.

Demonstração. Pela Proposição 3.6, temos a igualdade de C^{λ} e G^{λ} , e, pelo Teorema 2.8, temos a igualdade de F^{λ} , G^{λ} , H^{λ} e I^{λ} .

A partir de agora, vamos começar a construir isomorfismos convexos entre os conjuntos A^{λ} , B^{λ} , C^{λ} , D^{λ} e E^{λ} . Pela Proposição 3.2, já temos um isomorfismo convexo entre A^{λ} e E^{λ} . Para provar os outros isomorfismos, precisamos provar primeiramente alguns resultados auxiliares.

Proposição 3.8. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e M uma função de \mathcal{A} em [0,1]. Estendemos a função M a uma função $M: \mathcal{A}^* \to [0,1]$ dada por $M(\alpha) = M(\alpha_1) \cdots M(\alpha_n)$ para todo $\alpha = \alpha_1 \dots \alpha_n \in \mathcal{A}^* \setminus \{\omega\}$ e $M(\omega) = 1$. Existe uma correspondência injetiva e convexa entre o conjunto dos estados ω de $C_0(T)$ tais que $\omega(f \circ \varphi_a^{-1}) = M(a)\omega(f)$ para todo $a \in \mathcal{A}$ e $f \in C_0(V_a^{-1})$ e o conjunto das funções $m: \mathcal{B} \to [0,1]$ satisfazendo:

- 1. $\lim_{A \in \mathcal{B}} m(A) = 1$;
- 2. $m(A) = \sum_{a \in \mathcal{L}(A \mathcal{E}^1)} M(a) m(r(A,a))$ para todo $A \in \mathcal{B}_{reg}$;
- 3. dados $A \in \mathcal{B}$ e $F \subseteq \mathcal{L}(A\mathcal{E}^1)$ tal que $0 < |F| < +\infty$, então

$$m(A) \ge \sum_{a \in F} M(a)m(r(A,a)); e$$

4. $m(A \cup B) = m(A) + m(B) - m(A \cap B)$.

Além disso, a correspondência leva um estado ω na função m definida por $m(A) = \omega(\chi_{V_{(\omega,A,\omega)}})$ para todo $A \in \mathcal{B}$.

Demonstração. Ao longo da demonstração, estaremos usando o isomorfismo Φ da Proposição 2.10. Seja ω um estado de $C_0(T)$ tal que $ω(f \circ φ_a^{-1}) = M(a)ω(f)$ para todo $a \in \mathcal{A}$ e $f \in C_0(V_a^{-1})$. Como $φ_\alpha = φ_{\alpha_1} \circ \cdots \circ φ_{\alpha_n}$ para todo $α = α_1 \cdots α_n \in \mathcal{A}^* \setminus \{ω\}$ e $φ_ω$ é a identidade de T em T, temos que $ω(f \circ φ_\alpha^{-1}) = M(α)ω(f)$ para todo $α \in \mathcal{A}^*$ e $f \in C_0(V_\alpha^{-1})$. Definimos a função $m \colon \mathcal{B} \to [0,1]$ por $m(A) = ω(χ_{V_{(ω,A,ω)}})$ para todo $A \in \mathcal{B}$. Como $\{χ_{V_{(ω,A,ω)}}\}_{A \in \mathcal{B}}$ é uma unidade aproximada de $C_0(T)$ e ω um estado, temos

$$\lim_{A \in \mathcal{B}} m(A) = \lim_{A \in \mathcal{B}} \omega \left(\chi_{V_{(\omega,A,\omega)}} \right) = \|\omega\| = 1.$$

Daí, a condição m1' é satisfeita.

Para a condição m2', tomando $A \in \mathcal{B}_{reg}$, temos

$$m(A) = \omega \left(\chi_{V_{(\omega,A,\omega)}} \right) = \omega \left(\Phi(p_A) \right) = \omega \left(\Phi\left(\sum_{a \in \mathcal{L}(A\mathcal{E}^1)} s_a p_{r(A,a)} s_a^* \right) \right)$$

$$= \omega \left(\sum_{a \in \mathcal{L}(A\mathcal{E}^1)} \chi_{V_{(a,r(A,a),a)}} \right) \stackrel{(1)}{=} \omega \left(\sum_{a \in \mathcal{L}(A\mathcal{E}^1)} \chi_{V_{(\omega,r(A,a),\omega)}} \circ \varphi_a^{-1} \right)$$

$$= \sum_{a \in \mathcal{L}(A\mathcal{E}^1)} M(a) \omega \left(\chi_{V_{(\omega,r(A,a),\omega)}} \right) = \sum_{a \in \mathcal{L}(A\mathcal{E}^1)} M(a) m(r(A,a)),$$

sendo (1) devido ao item (i) da Proposição 4.4 de (DE CASTRO; VAN WYK, 2020). Para a condição m3', sejam $A \in \mathcal{B}$ e $F \subseteq \mathcal{L}(A\mathcal{E}^1)$ tal que $0 < |F| < +\infty$. Como

$$\chi_{V_{(\omega,A,\omega)}}\cdot\left(\sum_{a\in F}\chi_{V_{(a,r(A,a),a)}}\right)=\sum_{a\in F}\chi_{V_{(a,r(A,a),a)}},$$

então

$$\sum_{a \in F} \chi_{V_{(a,r(A,a),a)}} \leq \chi_{V_{(\omega,A,\omega)}}.$$

Daí,

$$\omega\left(\sum_{a\in F}\chi_{V_{(a,r(A,a),a)}}\right)\leq \omega\left(\chi_{V_{(\omega,A,\omega)}}\right)\Longrightarrow \omega\left(\sum_{a\in F}\chi_{V_{(\omega,r(A,a),\omega)}}\circ\varphi_a^{-1}\right)\leq \omega\left(\chi_{V_{(\omega,A,\omega)}}\right)$$

$$\sum_{a\in F}M(a)\omega\left(\chi_{V_{(\omega,r(A,a),\omega)}}\right)\leq \omega\left(\chi_{V_{(\omega,A,\omega)}}\right)\Longrightarrow \sum_{a\in F}M(a)m(r(A,a))\leq m(A).$$

Para a condição m4', dados $A, B \in \mathcal{B}$, temos

$$m(A \cup B) = \omega \left(\chi_{V_{(\omega,A \cup B,\omega)}} \right) = \omega \left(\chi_{V_{(\omega,A,\omega)}} + \chi_{V_{(\omega,B,\omega)}} - \chi_{V_{(\omega,A \cap B,\omega)}} \right)$$
$$= m(A) + m(B) - m(A \cap B).$$

Para a injetividade, sejam ω_1 e ω_2 estados em $C_0(T)$ tais que $\omega_1(\chi_{V_{(\omega,A,\omega)}}) = m_1(A) = m_2(A) = \omega_2(\chi_{V_{(\omega,A,\omega)}})$ para todo $A \in \mathcal{B}$. Temos que verificar que $\omega_1 = \omega_2$, e, pela Proposição 2.10, é suficiente verificar na imagem dos geradores de $\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ por Φ . Para isso, dados $\alpha \in \mathcal{L}^*$ e $A \in \mathcal{B}_{\alpha}$, temos

$$\begin{split} \omega_1 \left(\chi_{V_{(\alpha,A,\alpha)}} \right) &= \omega_1 \left(\chi_{V_{(\omega,A,\omega)}} \circ \varphi_\alpha^{-1} \right) = M(\alpha) \omega_1 \left(\chi_{V_{(\omega,A,\omega)}} \right) = M(\alpha) \omega_2 \left(\chi_{V_{(\omega,A,\omega)}} \right) \\ &= \omega_2 \left(\chi_{V_{(\omega,A,\omega)}} \circ \varphi_\alpha^{-1} \right) = \omega_2 \left(\chi_{V_{(\alpha,A,\alpha)}} \right). \end{split}$$

Portanto, $\omega_1 = \omega_2$.

Proposição 3.9. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m \colon \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Dado $V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),...,(\alpha\alpha^n,A_n,\alpha\alpha^n)} \in \mathcal{S}$, então

$$M(\alpha)m(A) \geq \sum_{i=1}^{n} M(\alpha \alpha^{i})m(A_{i}).$$

Demonstração. A demonstração é análoga à demonstração da Proposição 3.5.

Agora, vamos começar a construir uma correspondência entre funções $m \colon \mathcal{B} \to [0,1]$ satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8 e medidas Borelianas regulares de probabilidade em T satisfazendo certa condição de escala.

Proposição 3.10. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Se

$$V_{(\alpha,A,\alpha)} = \bigsqcup_{j=1}^{m} V_{(\beta^{j},B_{j},\beta^{j})},$$

então $M(\alpha)m(A) = \sum_{j=1}^{m} M(\beta^{j})m(B_{j}).$

Demonstração. Primeiramente, vamos supor

$$V_{(\alpha,A,\alpha)} = V_{(\beta,B,\beta)}$$
.

Neste caso, pela Proposição 2.1, podemos supor $\beta = \alpha \gamma$ para conveniente $\gamma = \gamma_1 \cdots \gamma_p \in \mathcal{L}^*$. Usando a condição m2' de m, como, para cada $1 \leq i < p$, $\mathcal{L}(r(A, \gamma_{1,i-1})\mathcal{E}^1) = \{\gamma_i\}$, temos

$$M(\alpha)m(A) = M(\alpha\gamma_1)m(r(A,\gamma_1)) = \cdots = M(\alpha\gamma_1\cdots\gamma_p)m(r(A,\gamma_1\cdots\gamma_p)) =$$
$$= M(\alpha\gamma)m(r(A,\gamma)).$$

Daí, como

$$V_{(\alpha\gamma,B,\alpha\gamma)} = V_{(\alpha\gamma,r(A,\gamma),\alpha\gamma)},$$

temos $B = r(A,\gamma)$ e o resultado. Agora, considere

$$V_{(\alpha,A,\alpha)} = \bigsqcup_{j=1}^{m} V_{(\beta^{j},B_{j},\beta^{j})}.$$
3.4

Podemos considerar que α é começo de todos os β^j , pois se tivermos $\alpha = \beta^j \alpha'$ para algum j com $\alpha' \neq \omega$, temos

$$V_{(\beta^j,B_j,\beta^j)} = V_{(\beta^j\alpha',r(B_j,\alpha'),\beta^j\alpha')},$$

e, pelo que foi mostrado inicialmente, $M(\beta^j)m(B_i) = M(\beta^j\alpha')m(r(B_i,\alpha'))$.

Com isso, considere $\beta^j = \alpha \gamma^j$ para todo $j \in \{1, ..., m\}$ com $\gamma^j \in \mathcal{L}^*$. Vamos provar o resultado por indução sobre $L = \max_{1 \le j \le m} |\gamma^j|$. Para L = 0, temos

$$V_{(\alpha,A,\alpha)} = \bigsqcup_{j=1}^{m} V_{(\alpha,B_{j},\alpha)} = V_{(\alpha,\bigsqcup_{j=1}^{m} B_{j},\alpha)}.$$

Logo,

$$M(\alpha)m(A) = M(\alpha)m\left(\bigsqcup_{j=1}^{m} B_j\right) = M(\alpha)\sum_{j=1}^{m} m(B_j).$$

Agora, para o caso geral, suponha o resultado válido para todo número natural menor do que *L*. Podemos considerar a igualdade 3.4 da forma

$$V_{(\alpha,A,\alpha)} = \left(\bigsqcup_{z} V_{(\alpha,B_{z},\alpha)}\right) \sqcup \left(\bigsqcup_{j} V_{(\alpha\gamma^{j},B_{j},\alpha\gamma^{j})}\right)$$

Seja $\{a_1,\ldots,a_q\}$ o conjunto das letras duas a duas distintas das letras γ_1^j 's. Considere $A'=A\setminus (\sqcup_Z B_Z)$. Como

$$V_{(\alpha a_k, r(A', a_k), \alpha a_k)} = \bigsqcup_{j: \gamma_1^j = a_k} V_{(\alpha \gamma^j, B_j, \alpha \gamma^j)}$$

para todo $k \in \{1, \dots, q\}$, pela hipótese de indução, temos

$$M(\alpha a_k) m(r(A', a_k)) = \sum_{j: \gamma_1^j = a_k} M(\alpha \gamma^j) m(B_j)$$

para todo $k \in \{1, \ldots, q\}$.

Daí, como $\mathcal{L}(A'\mathcal{E}^1) = \{a_1, \dots, a_q\}$ e não existe $F \in \mathcal{B}$ tal que $\emptyset \neq F \subseteq A' \cap \mathcal{E}^0_{sink}$, pela condição m2' de m,

$$M(\alpha)m(A) = M(\alpha)m\left(\bigsqcup_{Z} B_{Z}\right) + M(\alpha)m(A')$$

$$= M(\alpha)\sum_{Z} m(B_{Z}) + M(\alpha)\sum_{k=1}^{q} M(a_{k})m(r(A', a_{k}))$$

$$= \sum_{Z} M(\alpha)m(B_{Z}) + \sum_{k=1}^{q} \sum_{j:\gamma_{1}^{j} = a_{k}} M(\alpha\gamma^{j})m(B_{j})$$

$$= \sum_{Z} M(\alpha)m(B_{Z}) + \sum_{j} M(\alpha\gamma^{j})m(B_{j}),$$

e temos o resultado desejado.

Proposição 3.11. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Se

$$V_{(\alpha^1,A_1,\alpha^1)}\sqcup\cdots\sqcup V_{(\alpha^n,A_n,\alpha^n)}=V_{(\beta^1,B_1,\beta^1)}\sqcup\cdots\sqcup V_{(\beta^m,B_m,\beta^m)},$$

então $\sum_{i=1}^{n} M(\alpha^{i}) m(A_{i}) = \sum_{j=1}^{m} M(\beta^{j}) m(B_{j}).$

Demonstração. Considere

$$V_{(\alpha^1,A_1,\alpha^1)}\sqcup\cdots\sqcup V_{(\alpha^n,A_n,\alpha^n)}=V_{(\beta^1,B_1,\beta^1)}\sqcup\cdots\sqcup V_{(\beta^m,B_m,\beta^m)}=X.$$

Temos

$$X = X \cap X = \bigsqcup_{i=1}^{n} \bigsqcup_{j=1}^{m} V_{(\alpha^{i}, A_{i}, \alpha^{i})} \cap V_{(\beta^{j}, B_{j}, \beta^{j})},$$

$$V_{(\alpha^i,A_i,\alpha^i)} = \bigsqcup_{j=1}^m V_{(\alpha^i,A_i,\alpha^i)} \cap V_{(\beta^j,B_j,\beta^j)}$$

para todo $i \in \{1, \ldots, n\}$, e

$$V_{(\beta^{j},B_{j},\beta^{j})} = \bigsqcup_{i=1}^{n} V_{(\beta^{j},B_{j},\beta^{j})} \cap V_{(\alpha^{i},A_{i},\alpha^{i})}$$

para todo $j \in \{1, ..., m\}$. Com isso, descartando as interseções vazias, e usando a Proposição 3.10, temos $\sum_{i=1}^{n} M(\alpha^{i}) m(A_{i}) = \sum_{j=1}^{m} M(\beta^{j}) m(B_{j})$.

Proposição 3.12. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Se

$$V_{(\alpha,A,\alpha);(\alpha^{1},A_{1},\alpha^{1}),...,(\alpha^{n},A_{n},\alpha^{n})} = V_{(\beta,B,\beta);(\beta^{1},B_{1},\beta^{1}),...,(\beta^{m},B_{m},\beta^{m})},$$
 então $M(\alpha)m(A) - \sum_{i=1}^{n} M(\alpha^{i})m(A_{i}) = M(\beta)m(B) - \sum_{i=1}^{m} M(\beta^{i})m(B_{j}).$

Demonstração. Sem perda de generalidade, podemos considerar $\beta = \alpha \gamma$ para conveniente $\gamma \in \mathcal{L}^*$. Além disso, pela Observação 2.1, podemos trabalhar com a igualdade

$$V_{(\alpha,A,\alpha);(\alpha\eta^1,A_1,\alpha\eta^1),\dots,(\alpha\eta^n,A_n,\alpha\eta^n)} = V_{(\alpha\gamma,B,\alpha\gamma);(\alpha\gamma\delta^1,B_1,\alpha\gamma\delta^1),\dots,(\alpha\gamma\delta^m,B_m,\alpha\gamma\delta^m)}.$$

Temos que mostrar

$$M(\alpha)m(A) - \sum_{i=1}^{n} M(\alpha \eta^{i})m(A_{i}) = M(\alpha \gamma)m(B) - \sum_{j=1}^{m} M(\alpha \gamma \delta^{j})m(B_{j})$$

e vamos mostrar esta igualdade por indução sobre $L = |\gamma|$. Primeiramente, vamos supor L = 0, ou seja, $\gamma = \omega$. Neste caso, podemos escrever

$$V_{(\alpha,A,\alpha)} = V_{(\alpha\eta^{1},A_{1},\alpha\eta^{1})} \sqcup \cdots \sqcup V_{(\alpha\eta^{n},A_{n},\alpha\eta^{n})} \sqcup \left[V_{(\alpha,B,\alpha);(\alpha\delta^{1},B_{1},\alpha\delta^{1}),...,(\alpha\delta^{m},B_{m},\alpha\delta^{m})}\right], \quad 3.5$$

$$V_{(\alpha,A,\alpha)} \cup \left[V_{(\alpha\delta^{1},B_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{m},B_{m},\alpha\delta^{m})} \right] =$$

$$= \left[V_{(\alpha\eta^{1},A_{1},\alpha\eta^{1})} \sqcup \cdots \sqcup V_{(\alpha\eta^{n},A_{n},\alpha\eta^{n})} \right] \cup V_{(\alpha,B,\alpha)},$$

e, pela demonstração do Lema 2.2,

$$V_{(\alpha,A,\alpha)} \sqcup V_{(\alpha\delta^{1},B_{1}\backslash r(A,\delta^{1}),\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{m},B_{m}\backslash r(A,\delta^{m}),\alpha\delta^{m})}$$

$$= V_{(\alpha,B,\alpha)} \sqcup V_{(\alpha\eta^{1},A_{1}\backslash r(B,\eta^{1}),\alpha\eta^{1})} \sqcup \cdots \sqcup V_{(\alpha\eta^{n},A_{n}\backslash r(B,\eta^{n}),\alpha\eta^{n})}.$$

Pela Proposição 3.11, temos

$$M(\alpha)m(A) + M(\alpha\delta^{1})m(B_{1} \setminus r(A,\delta^{1})) + \cdots + M(\alpha\delta^{m})m(B_{m} \setminus r(A,\delta^{m}))$$

$$= M(\alpha)m(B) + M(\alpha\eta^{1})m(A_{1} \setminus r(B,\eta^{1})) + \cdots + M(\alpha\eta^{n})m(A_{n} \setminus r(B,\eta^{n})).$$

Daí,

$$M(\alpha)m(A) + M(\alpha\delta^{1})m(B_{1}) - M(\alpha\delta^{1})m(B_{1} \cap r(A,\delta^{1})) + \cdots$$

$$\cdots + M(\alpha\delta^{m})m(B_{m}) - M(\alpha\delta^{m})m(B_{m} \cap r(A,\delta^{m}))$$

$$= M(\alpha)m(B) + M(\alpha\eta^{1})m(A_{1}) - M(\alpha\eta^{1})m(A_{1} \cap r(B,\eta^{1})) + \cdots$$

$$\cdots + M(\alpha\eta^{n})m(A_{n}) - M(\alpha\eta^{n})m(A_{n} \cap r(B,\eta^{n})).$$

Se provarmos a igualdade

$$M(\alpha\delta^{1})m(B_{1}\cap r(A,\delta^{1}))+\cdots+M(\alpha\delta^{m})m(B_{m}\cap r(A,\delta^{m}))$$

$$=M(\alpha\eta^{1})m(A_{1}\cap r(B,\eta^{1}))+\cdots+M(\alpha\eta^{n})m(A_{n}\cap r(B,\eta^{n})),$$

temos o resultado, e iremos fazer isto. Pela igualdade 3.5, podemos considerar $\eta^i \neq \omega$ e $\delta^j \neq \omega$ para todo $i \in \{1, \ldots, n\}$ e $j \in \{1, \ldots, m\}$, pois, caso contrário, trabalhamos com $A \setminus A_i$ e $B \setminus B_j$. Pela mesma igualdade, se $B_j \cap r(A, \delta^j) \neq \emptyset$ para algum $j \in \{1, \ldots, m\}$, então $A_i \cap r(B, \eta^i) \neq \emptyset$ para algum $i \in \{1, \ldots, n\}$. Sejam $\eta_1^{i_1}, \ldots, \eta_1^{i_s}$ as primeiras letras distintas de η^1, \ldots, η^n . Se $B_j \cap r(A, \delta^j) \neq \emptyset$ para algum $j \in \{1, \ldots, m\}$, então $\delta_1^j = \eta_1^{i_r}$ para conveniente $r \in \{1, \ldots, s\}$. Com isso, temos

$$\begin{split} M(\alpha\delta^{1})m(B_{1} \cap r(A,\delta^{1})) + \cdots + M(\alpha\delta^{m})m(B_{m} \cap r(A,\delta^{m})) \\ &= \sum_{j:\delta_{1}^{j} = \eta_{1}^{i_{1}}} M(\alpha\delta^{j})m(B_{j} \cap r(A,\delta^{j})) + \cdots + \sum_{j:\delta^{j} = \eta_{1}^{i_{s}}} M(\alpha\delta^{j})m(B_{j} \cap r(A,\delta^{j})). \end{split}$$

Pela igualdade 3.5,

$$\bigsqcup_{j:\delta_1^j=\eta_1^{i_r}} V_{(\alpha\delta^j,B_j\cap r(A,\delta^j),\alpha\delta^j)} = \bigsqcup_{i:\eta_1^i=\eta_1^{i_r}} V_{(\alpha\eta^i,A_i\cap r(B,\eta^i),\alpha\eta^i)}$$

para todo $r \in \{1, \dots, s\}$. Portanto, pela Proposição 3.11, temos o resultado para L = 0. Agora, como hipótese de indução, suponha o resultado válido para todo $\gamma' \in \mathcal{L}^*$ tal que $|\gamma'| < L$. Considere

$$V_{(\alpha,A,\alpha);(\alpha\eta^{1},A_{1},\alpha\eta^{1}),...,(\alpha\eta^{n},A_{n},\alpha\eta^{n})} = V_{(\alpha\gamma,B,\alpha\gamma);(\alpha\gamma\delta^{1},B_{1},\alpha\gamma\delta^{1}),...,(\alpha\gamma\delta^{m},B_{m},\alpha\gamma\delta^{m})}$$

com $|\gamma| = L$. Podemos escrever

$$V_{(\alpha,A,\alpha)} = V_{(\alpha\eta^1,A_1,\alpha\eta^1)} \sqcup \cdots \sqcup V_{(\alpha\eta^n,A_n,\alpha\eta^n)} \sqcup \left[V_{(\alpha\gamma,B,\alpha\gamma);(\alpha\gamma\delta^1,B_1,\alpha\gamma\delta^1),...,(\alpha\gamma\delta^m,B_m,\alpha\gamma\delta^m)} \right].$$

Sejam $\eta_1^{i_1},\ldots,\eta_1^{i_s}$ as primeiras letras duas a duas distintas de η^1,\ldots,η^n que são diferentes de γ_1 . Temos $\mathcal{L}(A\mathcal{E}^1)=\{\eta_1^{i_1},\ldots,\eta_1^{i_s},\gamma_1\}$ e não existe $F\in\mathcal{B}$ tal que $\emptyset\neq F\subseteq A\cap\mathcal{E}^0_{sink}$, daí

$$M(\alpha)m(A)=M(\alpha\gamma_1)m(r(A,\gamma_1))+\sum_{r=1}^s M(\alpha\eta_1^{i_r})m(r(A,\eta_1^{i_r})).$$

Além disso,

$$V_{(\alpha\eta_1^{i_r}, r(A, \eta_1^{i_r}), \alpha\eta_1^{i_r})} = \bigsqcup_{i: \eta_1^i = \eta_1^{i_r}} V_{(\alpha\eta^i, A_i, \alpha\eta^i)}$$

para todo $r \in \{1, \ldots, s\}$ e

$$V_{(\alpha\gamma_{1},r(A,\gamma_{1}),\alpha\gamma_{1})} = \bigsqcup_{i:\eta_{1}^{i}=\gamma_{1}} V_{(\alpha\eta^{i},A_{i},\alpha\eta^{i})} \sqcup \left[V_{(\alpha\gamma,B,\alpha\gamma);(\alpha\gamma\delta^{1},B_{1},\alpha\gamma\delta^{1}),...,(\alpha\gamma\delta^{m},B_{m},\alpha\gamma\delta^{m})} \right].$$

Como $|\alpha y| - |\alpha y_1| < L$, usando a hipótese de indução, temos o resultado.

Definição 3.2. Sejam M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Vamos definir uma função $\kappa: \mathcal{S} \to \mathbb{R}_+$ no semianel \mathcal{S} da Proposição 2.5 dada por

$$\kappa\left(V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})}\right)=M(\alpha)m(A)-\sum_{i=1}^{n}M(\alpha\alpha^{i})m(A_{i}),$$

 $e \kappa(\emptyset) = 0.$

Observação 3.3. Pelas Proposições 3.9 e 3.12, a função k está bem definida.

Agora, vamos mostrar que a função κ é aditiva. Para tanto, vamos dividir a demonstração numa série de proposições que a primeira vista podem parecer iguais, mas cada uma tem sua particularidade.

Proposição 3.13. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Se

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),\dots,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\alpha,B_{j},\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),\dots,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})}$$

 $com B_i \cap B_i = \emptyset$ para todo $i \neq j$, então

$$M(\alpha)m(A) - \sum_{i=1}^n M(\alpha\alpha^i)m(A_i) = \sum_{j=1}^p \left[M(\alpha)m(B_j) - \sum_{l_j=1}^{p_j} M(\alpha\beta^{j,l_j})m(B_{j,l_j}) \right].$$

Demonstração. Vamos mostrar o resultado por indução sobre p. Para p=1, a Proposição 3.12 nos dá o resultado. Como hipótese de indução, suponha o resultado válido para todo caso em que a quantidade de parcelas do lado direito é menor do que p. Para o caso de termos uma quantidade de parcelas do lado direito igual a p, basta observar que podemos juntar duas parcelas preservando a aditividade de κ , pois se $B_i \cap B_j = \emptyset$, temos

$$\begin{split} V_{(\alpha,B_{i},\alpha);(\alpha\beta^{i,1},B_{i,1},\alpha\beta^{i,1}),...,(\alpha\beta^{i,p_{i}},B_{i,p_{i}},\alpha\beta^{i,p_{i}})} & \sqcup V_{(\alpha,B_{j},\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),...,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})} \\ &= V_{(\alpha,B_{i}\sqcup B_{j},\alpha);(\alpha\beta^{i,1},B_{i,1},\alpha\beta^{i,1}),...,(\alpha\beta^{i,p_{i}},B_{i,p_{j}},\alpha\beta^{i,p_{i}}),(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),...,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})} \end{split}$$

е

$$\kappa \left(V_{(\alpha,B_{i} \sqcup B_{j},\alpha);(\alpha\beta^{i,1},B_{i,1},\alpha\beta^{i,1}),...,(\alpha\beta^{i,p_{i}},B_{i,p_{i}},\alpha\beta^{i,p_{i}}),(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),...,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})} \right) \\
= M(\alpha)m(B_{i} \sqcup B_{j}) - \sum_{l=1}^{p_{i}} M(\alpha\beta^{i,l})m(B_{i,l}) - \sum_{r=1}^{p_{j}} M(\alpha\beta^{j,r})m(B_{j,r}) \\
= \left[M(\alpha)m(B_{i}) - \sum_{l=1}^{p_{i}} M(\alpha\beta^{i,l})m(B_{i,l}) \right] + \left[M(\alpha)m(B_{j}) - \sum_{r=1}^{p_{j}} M(\alpha\beta^{j,r})m(B_{j,r}) \right] \\
= \kappa \left(V_{(\alpha,B_{i},\alpha);(\alpha\beta^{i,1},B_{i,1},\alpha\beta^{i,1}),...,(\alpha\beta^{i,p_{i}},B_{i,p_{j}},\alpha\beta^{i,p_{i}})} \right) + \\
+ \kappa \left(V_{(\alpha,B_{j},\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),...,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})} \right).$$

Com isso, juntando duas parcelas e usando a hipótese de indução, temos o resultado da proposição.

Proposição 3.14. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Se

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\alpha,A,\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),...,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})},$$

então

$$M(\alpha)m(A) - \sum_{i=1}^{n} M(\alpha\alpha^{i})m(A_{i}) = \sum_{j=1}^{p} \left[M(\alpha)m(A) - \sum_{l_{j}=1}^{p_{j}} M(\alpha\beta^{j,l_{j}})m(B_{j,l_{j}}) \right].$$

Demonstração. Vamos mostrar por indução sobre p. Para isso, vamos juntar dois

conjuntos disjuntos da reunião e mostrar que os valores de κ são preservados. Temos

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1,1},A_{1,1},\alpha\alpha^{1,1}),...,(\alpha\alpha^{1,p_{1}},A_{1,p_{1}},\alpha\alpha^{1,p_{1}})} \sqcup V_{(\alpha,A,\alpha);(\alpha\alpha^{2,1},A_{2,1},\alpha\alpha^{2,1}),...,(\alpha\alpha^{2,p_{2}},A_{2,p_{2}},\alpha\alpha^{2,p_{2}})}$$

$$= V_{(\alpha,A,\alpha)} \cap \left[\left(\bigsqcup_{j=1}^{p_{1}} V_{(\alpha\alpha^{1,j},A_{1,j},\alpha\alpha^{1,j})} \right) \cap \left(\bigsqcup_{k=1}^{p_{2}} V_{(\alpha\alpha^{2,k},A_{2,k},\alpha\alpha^{2,k})} \right) \right]^{c}$$

$$= V_{(\alpha,A,\alpha)} \cap \left[\bigsqcup_{j=1}^{p_{1}} \bigsqcup_{k=1}^{p_{2}} V_{(\alpha\alpha^{1,j},A_{1,j},\alpha\alpha^{1,j})} \cap V_{(\alpha\alpha^{2,k},A_{2,k},\alpha\alpha^{2,k})} \right]^{c}$$

$$= V_{(\alpha,A,\alpha)} \cap \left[\left(\bigsqcup_{j,k} V_{(\alpha\alpha^{1,j},A_{1,j}\cap r(A_{2,k},\alpha^{1,j,k}),\alpha\alpha^{1,j})} \right) \sqcup \left(\bigsqcup_{j,k} V_{(\alpha\alpha^{2,k},A_{2,k}\cap r(A_{1,j},\alpha^{2,k,j}),\alpha\alpha^{2,k})} \right) \right]^{c},$$

sendo que na última igualdade os conjuntos que aparecem no primeiro parênteses são os que apresentam a seguinte configuração de palavras e conjuntos na interseção anterior: $\alpha^{1,j} = \alpha^{2,k}\alpha^{1,j,k}$ e $A_{1,j} \cap r(A_{2,k},\alpha^{1,j,k}) \neq \emptyset$ para conveniente $\alpha^{1,j,k} \in \mathcal{L}^*$; e os conjuntos que aparecem no segundo parênteses são referentes à configuração: $\alpha^{2,k} = \alpha^{1,j}\alpha^{2,k,j}$ e $A_{2,k} \cap r(A_{1,j},\alpha^{2,k,j}) \neq \emptyset$ para conveniente $\alpha^{2,k,j} \in \mathcal{L}^*$. Além disso,

$$\begin{split} &M(\alpha) m(A) - \sum_{j,k} M(\alpha \alpha^{1,j}) m(A_{1,j} \cap r(A_{2,k}, \alpha^{1,j,k})) - \sum_{j,k} M(\alpha \alpha^{2,k}) m(A_{2,k} \cap r(A_{1,j}, \alpha^{2,k,j})) \\ &= M(\alpha) m(A) - \sum_{j,k} \left[M(\alpha \alpha^{1,j}) m(A_{1,j}) - M(\alpha \alpha^{1,j}) m(A_{1,j} \setminus r(A_{2,k}, \alpha^{1,j,k})) \right] - \\ &- \sum_{j,k} \left[M(\alpha \alpha^{2,k}) m(A_{2,k}) - M(\alpha \alpha^{2,k}) m(A_{2,k} \setminus r(A_{1,j}, \alpha^{2,k,j})) \right]. \end{split}$$
 3.6

Os conjuntos isolados $A'_{1,j}s$ e $A'_{2,k}s$ que aparecem na igualdade 3.6 são os que intersecionam $r(A_{2,k},\alpha^{1,j,k})$ e $r(A_{1,j},\alpha^{2,k,j})$, respectivamente, ou seja, são os conjuntos das triplas dos V's que admitem comparação com outros V's e estão relacionados à palavra de maior comprimento da comparação. Temos

$$V_{(\alpha,A,\alpha)} = \left(V_{(\alpha\alpha^{1,1},A_{1,1},\alpha\alpha^{1,1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{1,p_{1}},A_{1,p_{1}},\alpha\alpha^{1,p_{1}})} \right) \cup \left(V_{(\alpha\alpha^{2,1},A_{2,1},\alpha\alpha^{2,1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{2,p_{2}},A_{2,p_{2}},\alpha\alpha^{2,p_{2}})} \right).$$
3.7

Sejam $\{j_1,\ldots,j_r\}$ e $\{k_1,\ldots,k_s\}$ subconjuntos de $\{1,\ldots,p_1\}$ e $\{1,\ldots,p_2\}$, respectivamente, tais que os V's vinculados às triplas

$$(\alpha\alpha^{1,j_{1}},A_{1,j_{1}},\alpha\alpha^{1,j_{1}}),\ldots,(\alpha\alpha^{1,j_{r}},A_{1,j_{r}},\alpha\alpha^{1,j_{r}}),(\alpha\alpha^{2,k_{1}},A_{2,k_{1}},\alpha\alpha^{2,k_{1}}),\ldots,(\alpha\alpha^{2,k_{s}},A_{2,k_{s}},\alpha\alpha^{2,k_{s}})$$

não são comparáveis ou são comparáveis, porém estão relacionados às palavras de

menor comprimento na comparação. Usando a igualdade 3.7, obtemos

$$\begin{split} V_{(\alpha,A,\alpha)} &= \left(\bigsqcup_{l=1}^{r} \left(V_{(\alpha\alpha^{1,j_{l}},A_{1,j_{l}},\alpha\alpha^{1,j_{l}})} \right) \sqcup \left(\bigsqcup_{l=1}^{s} V_{(\alpha\alpha^{2,k_{l}},A_{2,k_{l}},\alpha\alpha^{2,k_{l}})} \right) \sqcup \\ & \sqcup \left(\bigsqcup_{j,k} V_{(\alpha\alpha^{1,j},A_{1,j} \backslash r(A_{2,k},\alpha^{1,j,k}),\alpha\alpha^{1,j})} \right) \sqcup \left(\bigsqcup_{j,k} V_{(\alpha\alpha^{2,k},A_{2,k} \backslash r(A_{1,j},\alpha^{2,k,j}),\alpha\alpha^{2,k})} \right), \end{split}$$

sendo os conjuntos $A'_{1,j}s$ e $A'_{2,k}s$ os que aparecem na igualdade 3.6. Da Proposição 3.10, temos

$$M(\alpha)m(A) = \sum_{l=1}^{r} M(\alpha\alpha^{1,j_{l}})m(A_{1,j_{l}}) + \sum_{l=1}^{s} M(\alpha\alpha^{2,k_{l}})m(A_{2,k_{l}}) + \sum_{j,k} M(\alpha\alpha^{1,j})m(A_{1,j} \setminus r(A_{2,k},\alpha^{1,j,k})) + \sum_{j,k} M(\alpha\alpha^{2,k})m(A_{2,k} \setminus r(A_{1,j},\alpha^{2,k,j})).$$
3.8

Juntando as igualdades 3.6 e 3.8, temos

$$\begin{split} \kappa \left(V_{(\alpha,A,\alpha);(\alpha\alpha^{1,1},A_{1,1},\alpha\alpha^{1,1}),\dots,(\alpha\alpha^{1,p_{1}},A_{1,p_{1}},\alpha\alpha^{1,p_{1}})} \sqcup V_{(\alpha,A,\alpha);(\alpha\alpha^{2,1},A_{2,1},\alpha\alpha^{2,1}),\dots,(\alpha\alpha^{2,p_{2}},A_{2,p_{2}},\alpha\alpha^{2,p_{2}})} \right) \\ &= \kappa \left(V_{(\alpha,A,\alpha);(\alpha\alpha^{1,1},A_{1,1},\alpha\alpha^{1,1}),\dots,(\alpha\alpha^{1,p_{1}},A_{1,p_{1}},\alpha\alpha^{1,p_{1}})} \right) + \\ &+ \kappa \left(V_{(\alpha,A,\alpha);(\alpha\alpha^{2,1},A_{2,1},\alpha\alpha^{2,1}),\dots,(\alpha\alpha^{2,p_{2}},A_{2,p_{2}},\alpha\alpha^{2,p_{2}})} \right). \end{split}$$

Portanto, considerando

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\alpha,A,\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),...,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})},$$

basta usar o que fizemos para provar o resultado proposto por indução sobre p, sendo que para p = 1 a Proposição 3.12 nos dá o resultado.

Proposição 3.15. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Dados

$$V_{(\alpha,B_{1},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),...,(\alpha\beta^{1,p_{1}},B_{1,p_{1}},\alpha\beta^{1,p_{1}})},...$$

$$...,V_{(\alpha,B_{m},\alpha);(\alpha\beta^{m,1},B_{m,1},\alpha\beta^{m,1}),...,(\alpha\beta^{m,p_{m}},B_{m,p_{m}},\alpha\beta^{m,p_{m}})}$$

disjuntos em \mathcal{S} , existe $V_{(\alpha,C,\alpha);(\alpha\delta^1,C_1,\alpha\delta^1),...,(\alpha\delta^q,C_q,\alpha\delta^q)} \in \mathcal{S}$ tal que

$$\bigsqcup_{j=1}^{m} V_{(\alpha,B_{j},\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),\dots,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})} = V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),\dots,(\alpha\delta^{q},C_{q},\alpha\delta^{q})},$$

$$com$$

$$\sum_{j=1}^m \left[M(\alpha) m(B_j) - \sum_{l_j=1}^{p_j} M(\alpha \beta^{j,l_j}) m(B_{j,l_j}) \right] = M(\alpha) m(C) - \sum_{i=1}^q M(\alpha \delta^i) m(C_i).$$

Demonstração. Vamos mostrar o resultado para m = 3, pois a ideia da demonstração também se aplica para o caso geral, porém com notação mais densa. Daí, vamos considerar

$$\bigsqcup_{j=1}^{3} V_{(\alpha,B_{j},\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),\dots,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})}.$$

Considerando os conjuntos: $C_1 = B_1 \setminus (B_2 \cup B_3)$, $C_2 = B_2 \setminus (B_1 \cup B_3)$, $C_3 = B_3 \setminus (B_1 \cup B_2)$, $C_4 = (B_1 \cap B_2) \setminus B_3$, $C_5 = (B_1 \cap B_3) \setminus B_2$, $C_6 = (B_2 \cap B_3) \setminus B_1$ e $C_7 = B_1 \cap B_2 \cap B_3$; podemos decompor B_1 , B_2 e B_3 como reunião disjunta da seguinte forma: $B_1 = C_1 \sqcup C_4 \sqcup C_5 \sqcup C_7$, $B_2 = C_2 \sqcup C_4 \sqcup C_6 \sqcup C_7$ e $B_3 = C_3 \sqcup C_5 \sqcup C_6 \sqcup C_7$. Disso, temos

$$\begin{split} V_{(\alpha,B_{1},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),...,(\alpha\beta^{1,\rho_{1}},B_{1,\rho_{1}},\alpha\beta^{1,\rho_{1}})} &= V_{(\alpha,C_{1},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),...,(\alpha\beta^{1,\rho_{1}},B_{1,\rho_{1}},\alpha\beta^{1,\rho_{1}})} \sqcup \\ &\sqcup V_{(\alpha,C_{4},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),...,(\alpha\beta^{1,\rho_{1}},B_{1,\rho_{1}},\alpha\beta^{1,\rho_{1}})} \sqcup \\ &\sqcup V_{(\alpha,C_{5},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),...,(\alpha\beta^{1,\rho_{1}},B_{1,\rho_{1}},\alpha\beta^{1,\rho_{1}})} \sqcup \\ &\sqcup V_{(\alpha,C_{7},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),...,(\alpha\beta^{1,\rho_{1}},B_{1,\rho_{1}},\alpha\beta^{1,\rho_{1}})} \sqcup \\ &\sqcup V_{(\alpha,C_{7},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),...,(\alpha\beta^{1,\rho_{1}},B_{1,\rho_{1}},\alpha\beta^{1,\rho_{1}})} \vee \\ &V_{(\alpha,B_{2},\alpha);(\alpha\beta^{2,1},B_{2,1},\alpha\beta^{2,1}),...,(\alpha\beta^{2,\rho_{2}},B_{2,\rho_{2}},\alpha\beta^{2,\rho_{2}})} = V_{(\alpha,C_{2},\alpha);(\alpha\beta^{2,1},B_{2,1},\alpha\beta^{2,1}),...,(\alpha\beta^{2,\rho_{2}},B_{2,\rho_{2}},\alpha\beta^{2,\rho_{2}})} \sqcup \\ &\sqcup V_{(\alpha,C_{4},\alpha);(\alpha\beta^{2,1},B_{2,1},\alpha\beta^{2,1}),...,(\alpha\beta^{2,\rho_{2}},B_{2,\rho_{2}},\alpha\beta^{2,\rho_{2}})} \sqcup \\ &\sqcup V_{(\alpha,C_{6},\alpha);(\alpha\beta^{2,1},B_{2,1},\alpha\beta^{2,1}),...,(\alpha\beta^{2,\rho_{2}},B_{2,\rho_{2}},\alpha\beta^{2,\rho_{2}})} = e \\ &V_{(\alpha,B_{3},\alpha);(\alpha\beta^{3,1},B_{3,1},\alpha\beta^{3,1}),...,(\alpha\beta^{3,\rho_{3}},B_{3,\rho_{3}},\alpha\beta^{3,\rho_{3}})} \sqcup \\ &\sqcup V_{(\alpha,C_{5},\alpha);(\alpha\beta^{3,1},B_{3,1},\alpha\beta^{3,1}),...,(\alpha\beta^{3,\rho_{3}},B_{3,\rho_{3}},\alpha\beta^{3,\rho_{3}})} \sqcup \\ &\sqcup V_{(\alpha,C_{6},\alpha);(\alpha\beta^{3,1},B_{3,1},\alpha\beta^{3,1}),...,(\alpha\beta^{3,\rho_{3}},B_{3,\rho_{3}},\alpha\beta^{3,\rho_{3}})} \sqcup \\ &\sqcup V_{(\alpha,C_{6},\alpha);(\alpha\beta^{3,1},B_{3,1},\alpha\beta^{3,1}),...,(\alpha\beta^{3,\rho_{3}},B_{3,\rho_{3}},\alpha\beta^{3,\rho_{3}})} \sqcup \\ &\sqcup V_{(\alpha,C_{6},\alpha);(\alpha\beta^{3,1},B_{3,1},\alpha\beta^{3,1}),...,(\alpha\beta^{3,\rho_{3}},B_{3,\rho_{3}},\alpha\beta^{3,\rho_{3}})} \sqcup \\ &\sqcup V_{(\alpha,C_{7},\alpha);(\alpha\beta^{3,1},B_{3,1},\alpha\beta^{3,1}),...,(\alpha\beta^{3,\rho_{3}},B_{3,\rho_{3}},\alpha\beta^{3,\rho_{3}})} \sqcup \\ &\sqcup V_{(\alpha,C_{7},\alpha);(\alpha\beta^{3,1},B_{3,1},\alpha\beta^{3,1}),...,(\alpha\beta^{3,\rho_{3$$

em que garantimos a aditividade da função κ em cada uma das três igualdades pela Proposição 3.13, pois, como

$$\begin{aligned} V_{(\alpha,C_{i},\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),\dots,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})} \\ &= V_{(\alpha,C_{i},\alpha)} \cap \left[V_{(\alpha,C_{i},\alpha)} \cap \left(V_{(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1})} \sqcup \dots \sqcup V_{(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})} \right) \right]^{c} \end{aligned}$$

para todo i = 1, ..., 7 e todo conveniente j = 1, 2, 3, pela Proposição 3.12, podemos considerar (com abuso de notação) qualquer um dos dois conjuntos para a nossa análise, visto que os conjuntos são iguais e o valor de κ é preservado.

Para $i \in \{1, 2, ..., 7\}$ fixo, podemos juntar os conjuntos da forma

$$V_{(lpha,C_i,lpha)}\cap \left[V_{(lpha,C_i,lpha)}\cap \left(V_{(lphaeta^{j,1},B_{j,1},lphaeta^{j,1})}\sqcup\cdots\sqcup V_{(lphaeta^{j,
ho_j},B_{j,
ho_i},lphaeta^{j,
ho_j})}
ight)
ight]^c$$

para todo conveniente $j \in \{1,2,3\}$ como fizemos na demonstração da Proposição 3.14 num único conjunto da forma $V_{(\alpha,C_i,\alpha);(\alpha\delta^{i,1},C_{i,1},\alpha\delta^{i,1}),...,(\alpha\delta^{i,q_i},C_{i,q_i},\alpha\delta^{i,q_i})}$ preservando a aditividade de κ com

$$V_{(\alpha\delta^{i,1},C_{i,1},\alpha\delta^{i,1})},\ldots,V_{(\alpha\delta^{i,q_i},C_{i,q_i},\alpha\delta^{i,q_i})}\subseteq V_{(\alpha,C_i,\alpha)}.$$

Por fim, como os conjuntos C_i são disjuntos, pela demonstração da Proposição 3.13, temos

Proposição 3.16. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Se

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})}$$

 $com\ V_{(\beta^i,B_i,\beta^i)}\cap V_{(\beta^j,B_i,\beta^j)}=\emptyset\ para\ i,j\in\{1,\ldots,p\}\ e\ i
eq j,\ ent\~ao$

$$M(\alpha) m(A) - \sum_{i=1}^{n} M(\alpha \alpha^{i}) m(A_{i}) = \sum_{j=1}^{p} \left[M(\beta^{j}) m(B_{j}) - \sum_{l_{j}=1}^{p_{j}} M(\beta^{j} \beta^{j, l_{j}}) m(B_{j, l_{j}}) \right].$$

Demonstração. Seja

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})}$$

com $V_{(\beta^i,B_i,\beta^i)} \cap V_{(\beta^j,B_i,\beta^j)} = \emptyset$ para $i,j \in \{1,\ldots,p\}$ e $i \neq j$.

Podemos considerar que α é começo de todos os β^j , pois se tivermos $\alpha = \beta^j \alpha'$ para algum j com $\alpha' \neq \omega$, então

$$\begin{split} &V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),\dots,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})} = \\ &V_{(\beta^{j}\alpha',r(B_{j},\alpha'),\beta^{j}\alpha')} \cap \left[\left(V_{(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1})} \sqcup \dots \sqcup V_{(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})} \right) \cap V_{(\beta^{j}\alpha',r(B_{j},\alpha'),\beta^{j}\alpha')} \right]^{c}, \end{split}$$

e usamos a Proposição 3.12. Logo, podemos considerar a igualdade da forma

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),\dots,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),\dots,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})}.$$

Considerando $\delta \in \mathcal{L}^*$ o caminho rotulado de maior comprimento comum aos começos dos β^j para $j=1,\ldots,p$, existem $\gamma^j \in \mathcal{L}^*$ tais que $\beta^j = \delta \gamma^j$ para $j=1,\ldots,p$. Daí, temos

$$\begin{split} V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} &= \bigsqcup_{j=1}^{p} V_{(\alpha\delta\gamma^{j},B_{j},\alpha\delta\gamma^{j});(\alpha\delta\gamma^{j}\beta^{j,1},B_{j,1},\alpha\delta\gamma^{j}\beta^{j,1}),...,(\alpha\delta\gamma^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\delta\gamma^{j}\beta^{j,p_{j}})} &= \\ &= V_{(\alpha\delta,r(A,\delta),\alpha\delta)} \cap \left[\left(V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \right) \cap V_{(\alpha\delta,r(A,\delta),\alpha\delta)} \right]^{c} \end{split}$$

com $\gamma^j = \omega$ para algum j = 1, ..., p ou $\gamma_1^j \neq \gamma_1^i$ para algum par $i, j \in \{1, ..., p\}$. Ou seja, podemos considerar a igualdade inicial da seguinte forma geral

$$\begin{split} V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),\dots,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} &= \left(\bigsqcup_{z=1}^{r} V_{(\alpha,B_{z},\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),\dots,(\alpha\beta^{z,p_{z}},B_{z,p_{z}},\alpha\beta^{z,p_{z}})} \right) \sqcup \\ & \sqcup \left(\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),\dots,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right), \end{split}$$

com $\beta^j \neq \omega$ para j = 1, ..., m, em que temos uma parcela da forma

$$V_{(\alpha,B_z,\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),\dots,(\alpha\beta^{z,p_z},B_{z,p_z},\alpha\beta^{z,p_z})}$$

no lado direito ou $\beta_1^j \neq \beta_1^i$ para algum par $i, j \in \{1, \dots, m\}$ caso $m \geq 2$, ainda salientamos que podemos ter r = 0 ou m = 0. Pela Proposição 3.13 caso $r \geq 1$,

$$\begin{split} & \bigsqcup_{z=1}^{r} V_{(\alpha,B_{z},\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),\dots,(\alpha\beta^{z,p_{z}},B_{z,p_{z}},\alpha\beta^{z,p_{z}})} = \\ & = V_{(\alpha,\sqcup_{z=1}^{r}B_{z},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),\dots,(\alpha\beta^{1,p_{1}},B_{1,p_{1}},\alpha\beta^{1,p_{1}}),\dots,(\alpha\beta^{r,1},B_{r,1},\alpha\beta^{r,1}),\dots,(\alpha\beta^{r,p_{r}},B_{r,p_{r}},\alpha\beta^{r,p_{r}})} \end{split}$$

com a aditividade de κ preservada e $V_{(\alpha, \bigsqcup_{z=1}^r B_z, \alpha)} \cap V_{(\alpha\beta^j, B_j, \alpha\beta^j)} = \emptyset$ para todo $j = 1, \ldots, m$. Logo, podemos considerar o caso geral como

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})} \sqcup \left(\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right),$$

$$3.9$$

além disso $C \subseteq A$ e $C \neq A$, pois

$$V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})}$$

$$=V_{(\alpha,C\cap A,\alpha)}\cap\left[\left(V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})}\sqcup\cdots\sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})}\right)\cap V_{(\alpha,C\cap A,\alpha)}\right]^{c}$$

e $V_{(\alpha,C,\alpha)} \cap V_{(\alpha\beta^j,B_i,\alpha\beta^j)} = \emptyset$ para todo $j = 1, \ldots, m$.

Vamos mostrar a aditividade da função κ na Igualdade 3.9 por indução sobre a quantidade de parcelas do lado direito. Se tivermos apenas uma parcela, usamos a Proposição 3.12. Agora temos que considerar três casos possíveis de 3.9.

No primeiro caso, temos m=0 e usamos a Proposição 3.13 para garantirmos a aditividade.

No segundo caso, não temos a parcela $V_{(\alpha,C,\alpha);(\alpha\delta^1,C_1,\alpha\delta^1),\dots,(\alpha\delta^q,C_q,\alpha\delta^q)}$, e temos pelo menos um par de $i,j\in\{1,\dots,m\}$ tal que $\beta_1^j\neq\beta_1^i$. Neste caso, como hipótese de indução, suponha o resultado válido sempre que do lado direito a quantidade de parcelas é menor do que m. Sejam $\beta_1^{j_1},\dots,\beta_1^{j_s}$ as primeiras letras iniciais diferentes de β^1,\dots,β^m . Da Igualdade 3.9, temos

$$V_{(\alpha\beta_{1}^{j_{l}},r(A,\beta_{1}^{j_{l}}),\alpha\beta_{1}^{j_{l}})} \cap \left(\bigsqcup_{i:\alpha_{1}^{i}=\beta_{1}^{j_{l}}} V_{(\alpha\alpha^{i},A_{i},\alpha\alpha^{i})}\right)^{c} =$$

$$= \bigsqcup_{j:\beta_{1}^{j}=\beta_{1}^{j_{l}}} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})}$$
3.10

para todo $I=1,\ldots,s$, e, pela hipótese de indução, garantimos a aditividade de κ para todo $I=1,\ldots,s$. Como $\mathcal{L}(A\mathcal{E}^1)=\{\beta_1^{j_1},\ldots,\beta_1^{j_s}\}$ e não existe $\emptyset\neq F\subseteq A\cap\mathcal{E}_{sink}^0$, temos

$$M(\alpha)m(A) = \sum_{l=1}^s M(\alpha\beta_1^{j_l})m(r(A,\beta_1^{j_l})),$$

e juntando esta igualdade com as aditividades de κ em 3.10, temos o resultado para o segundo caso.

No terceiro caso, temos a parcela $V_{(\alpha,C,\alpha);(\alpha\delta^1,C_1,\alpha\delta^1),\dots,(\alpha\delta^q,C_q,\alpha\delta^q)}$ e $m\geq 1$ na Igualdade 3.9 com a possível existência de um par $i,j\in\{1,\dots,m\}$ tal que $\beta^j_1\neq\beta^i_1$ caso $m\geq 2$, ou não, pois a existência desse par não faz diferença na demonstração do terceiro caso. Como hipótese de indução, supomos que o resultado da proposição é válido sempre que a quantidade de parcelas do lado direito é menor do que m+1. Da Igualdade 3.9, temos

$$V_{(\alpha,A\cap C,\alpha);(\alpha\alpha^{1},A_{1}\cap r(A\cap C,\alpha^{1}),\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n}\cap r(A\cap C,\alpha^{n}),\alpha\alpha^{n})}$$

$$=V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})}$$

е

$$\begin{split} V_{(\alpha,A \backslash C,\alpha);(\alpha\alpha^{1},A_{1} \cap r(A \backslash C,\alpha^{1}),\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n} \cap r(A \backslash C,\alpha^{n}),\alpha\alpha^{n})} \\ &= \bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})}, \end{split}$$

em que temos a igualdade da função κ na primeira igualdade pela Proposição 3.12, e a aditividade na segunda igualdade pela hipótese de indução. Juntando os dois, temos o resultado para o terceiro caso, pois

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})}$$

$$=V_{(\alpha,A\cap C,\alpha);(\alpha\alpha^{1},A_{1}\cap r(A\cap C,\alpha^{1}),\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n}\cap r(A\cap C,\alpha^{n}),\alpha\alpha^{n})}\sqcup$$

$$\sqcup V_{(\alpha,A\setminus C,\alpha);(\alpha\alpha^{1},A_{1}\cap r(A\setminus C,\alpha^{1}),\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n}\cap r(A\setminus C,\alpha^{n}),\alpha\alpha^{n})},$$

e usamos a Proposição 3.13.

Portanto, conseguimos provar a proposição por indução.

Proposição 3.17. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Se

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})},$$

então

$$M(\alpha)m(A) - \sum_{i=1}^{n} M(\alpha \alpha^{i})m(A_{i}) = \sum_{j=1}^{p} \left[M(\beta^{j})m(B_{j}) - \sum_{l_{i}=1}^{p_{j}} M(\beta^{j}\beta^{j,l_{j}})m(B_{j,l_{j}}) \right].$$

Demonstração. Seja

$$V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),\dots,(\alpha\alpha^n,A_n,\alpha\alpha^n)} = \bigsqcup_{j=1}^p V_{(\beta^j,B_j,\beta^j);(\beta^j\beta^{j,1},B_{j,1},\beta^j\beta^{j,1}),\dots,(\beta^j\beta^{j,p_j},B_{j,p_j},\beta^j\beta^{j,p_j})}.$$

Podemos considerar que α é começo de todos os β^j , pois se tivermos $\alpha = \beta^j \alpha'$ para algum j com $\alpha' \neq \omega$, então

$$\begin{split} &V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),\dots,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})} = \\ &V_{(\beta^{j}\alpha',r(B_{j},\alpha'),\beta^{j}\alpha')} \cap \left[\left(V_{(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1})} \sqcup \dots \sqcup V_{(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})} \right) \cap V_{(\beta^{j}\alpha',r(B_{j},\alpha'),\beta^{j}\alpha')} \right]^{c}, \end{split}$$

e usamos a Proposição 3.12. Logo, podemos considerar a igualdade da forma

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),\dots,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),\dots,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})}.$$

Considerando $\delta \in \mathcal{L}^*$ o caminho rotulado de maior comprimento comum aos começos dos β^j para j = 1, ..., p, existem $\gamma^j \in \mathcal{L}^*$ tais que $\beta^j = \delta \gamma^j$ para j = 1, ..., p.

Daí, temos

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\alpha\delta\gamma^{j},B_{j},\alpha\delta\gamma^{j});(\alpha\delta\gamma^{j}\beta^{j,1},B_{j,1},\alpha\delta\gamma^{j}\beta^{j,1}),...,(\alpha\delta\gamma^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\delta\gamma^{j}\beta^{j,p_{j}})} = V_{(\alpha\delta,r(A,\delta),\alpha\delta)} \cap \left[\left(V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \right) \cap V_{(\alpha\delta,r(A,\delta),\alpha\delta)} \right]^{c}$$

com $\gamma^j = \omega$ para algum j = 1, ..., p ou $\gamma_1^j \neq \gamma_1^i$ para algum par $i, j \in \{1, ..., p\}$. Ou seja, podemos considerar a igualdade inicial da seguinte forma geral

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \left(\bigsqcup_{z=1}^{r} V_{(\alpha,B_{z},\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),...,(\alpha\beta^{z,p_{z}},B_{z,p_{z}},\alpha\beta^{z,p_{z}})} \right) \sqcup \left(\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right),$$

 $\operatorname{com} \beta^j \neq \omega$ para $j = 1, \dots, m$, em que temos uma parcela da forma

$$V_{(\alpha,B_z,\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),\dots,(\alpha\beta^{z,p_z},B_{z,p_z},\alpha\beta^{z,p_z})}$$

no lado direito ou $\beta_1^j \neq \beta_1^i$ para algum par $i, j \in \{1, \dots, m\}$ caso $m \geq 2$, ainda salientamos que podemos ter r = 0 ou m = 0. Pela Proposição 3.15 caso $r \geq 1$, existe

$$V_{(lpha,C,lpha);(lpha\delta^1,C_1,lpha\delta^1),...,(lpha\delta^q,C_q,lpha\delta^q)}\in\mathcal{S}$$

tal que

$$\bigsqcup_{z=1}^{r} V_{(\alpha,B_{z},\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),...,(\alpha\beta^{z,p_{z}},B_{z,p_{z}},\alpha\beta^{z,p_{z}})} = V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})}$$

com a aditividade de κ preservada. Logo, podemos considerar o caso geral como

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})} \sqcup \left(\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right),$$

$$3.11$$

além disso $C \subseteq A$, pois

$$V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})}$$

$$=V_{(\alpha,C\cap A,\alpha)}\cap\left[\left(V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})}\sqcup\cdots\sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})}\right)\cap V_{(\alpha,C\cap A,\alpha)}\right]^{c}.$$

Vamos mostrar a aditividade da função κ na Igualdade 3.11 por indução sobre a quantidade de parcelas do lado direito. Se tivermos apenas uma parcela, usamos a Proposição 3.12. Agora temos que considerar três casos possíveis de 3.11.

No primeiro caso, temos m=0 e usamos a Proposição 3.15 para garantirmos a aditividade.

No segundo caso, não temos a parcela $V_{(\alpha,C,\alpha);(\alpha\delta^1,C_1,\alpha\delta^1),...,(\alpha\delta^q,C_q,\alpha\delta^q)}$, e temos pelo menos um par de $i,j\in\{1,\ldots,m\}$ tal que $\beta_1^j\neq\beta_1^i$. Neste caso, como hipótese de indução, suponha o resultado válido sempre que do lado direito a quantidade de parcelas é menor do que m. Sejam $\beta_1^{j_1},\ldots,\beta_1^{j_s}$ as primeiras letras iniciais diferentes de β^1,\ldots,β^m . Da Igualdade 3.11, temos

$$V_{(\alpha\beta_{1}^{j_{l}},r(A,\beta_{1}^{j_{l}}),\alpha\beta_{1}^{j_{l}})} \cap \left(\bigsqcup_{i:\alpha_{1}^{i}=\beta_{1}^{j_{l}}} V_{(\alpha\alpha^{i},A_{i},\alpha\alpha^{i})}\right)^{c} =$$

$$= \bigsqcup_{j:\beta_{1}^{j}=\beta_{1}^{j_{l}}} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \qquad 3.12$$

para todo $I=1,\ldots,s$, e, pela hipótese de indução, garantimos a aditividade de κ para todo $I=1,\ldots,s$. Como $\mathcal{L}(A\mathcal{E}^1)=\{\beta_1^{j_1},\ldots,\beta_1^{j_s}\}$ e não existe $\emptyset\neq F\subseteq A\cap\mathcal{E}_{sink}^0$, temos

$$M(\alpha)m(A) = \sum_{l=1}^{s} M(\alpha\beta_1^{j_l})m(r(A,\beta_1^{j_l})),$$

e, juntando esta igualdade com as aditividades de κ em 3.12, temos o resultado para o segundo caso.

No terceiro caso, temos a parcela $V_{(\alpha,C,\alpha);(\alpha\delta^1,C_1,\alpha\delta^1),...,(\alpha\delta^q,C_q,\alpha\delta^q)}$ e $m\geq 1$ na Igualdade 3.11 com a possível existência de um par $i,j\in\{1,\ldots,m\}$ tal que $\beta^j_1\neq\beta^i_1$, ou não, pois a existência desse par não faz diferença na demonstração do terceiro caso. Como hipótese de indução, supomos o resultado válido sempre que a quantidade de parcelas do lado direito é menor do que m+1. Pela Igualdade 3.11,

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \cap \left(V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})}\right)^{c}$$

$$= \left(V_{(\alpha,A\setminus C,\alpha)} \sqcup V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})}\right) \cap \left(V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})}\right)^{c}$$

$$= \bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})}.$$
3.13

Vamos mostrar que

$$V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \subseteq V_{(\alpha,A\setminus C,\alpha)} \sqcup V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})}.$$

$$3.14$$

De imediato,

$$V_{(\alpha\alpha^1,A_1\cap r(A\setminus C,\alpha^1),\alpha\alpha^1)}\sqcup\cdots\sqcup V_{(\alpha\alpha^n,A_n\cap r(A\setminus C,\alpha^n),\alpha\alpha^n)}\subseteq V_{(\alpha,A\setminus C,\alpha)}.$$

Dado $\xi \in V_{(\alpha,C,\alpha)}$, temos

$$\xi \notin V_{(lpha \delta^1, C_1, lpha \delta^1)} \sqcup \cdots \sqcup V_{(lpha \delta^q, C_q, lpha \delta^q)} \Longrightarrow \xi \in V_{(lpha, C, lpha); (lpha \delta^1, C_1, lpha \delta^1), ..., (lpha \delta^q, C_q, lpha \delta^q)} \Longrightarrow$$

$$\xi \in V_{(lpha, A, lpha); (lpha lpha^1, A_1, lpha lpha^1), ..., (lpha lpha^n, A_n, lpha lpha^n)} \Longrightarrow$$

$$\Longrightarrow \xi \notin V_{(lpha lpha^1, A_1 \cap r(C, lpha^1), lpha lpha^1)} \sqcup \cdots \sqcup V_{(lpha lpha^n, A_n \cap r(C, lpha^n), lpha lpha^n)},$$

daí

$$V_{(\alpha\alpha^1,A_1\cap r(C,\alpha^1),\alpha\alpha^1)}\sqcup\cdots\sqcup V_{(\alpha\alpha^n,A_n\cap r(C,\alpha^n),\alpha\alpha^n)}\subseteq V_{(\alpha\delta^1,C_1,\alpha\delta^1)}\sqcup\cdots\sqcup V_{(\alpha\delta^q,C_q,\alpha\delta^q)}.$$
 Com isso, temos a Igualdade 3.14.

Pela Igualdade 3.13, temos as seguintes igualdades

$$\begin{split} V_{(\alpha,A \setminus C,\alpha)} \cap \left[V_{(\alpha,A \setminus C,\alpha)} \cap \left(V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \right) \right]^{c} = \\ &= V_{(\alpha,A \setminus C,\alpha)} \cap \left[\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right], \end{split}$$

е

$$V_{(\alpha\delta^{i},C_{i},\alpha\delta^{i})} \cap \left[V_{(\alpha\delta^{i},C_{i},\alpha\delta^{i})} \cap \left(V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})}\right)\right]^{c} =$$

$$= V_{(\alpha\delta^{i},C_{i},\alpha\delta^{i})} \cap \left[\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})}\right]^{c}$$

para todo i = 1, ..., q, sendo que a aditividade da função κ nestas igualdades é garantida pela hipótese de indução.

Bem como, temos as igualdades

$$\begin{split} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} = \\ &= \left(V_{(\alpha,A\setminus C,\alpha)} \sqcup V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})} \right) \cap \\ &\cap V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \end{split}$$

para todo j = 1, ..., m, sendo que a aditividade da função κ nas igualdades é garantida para todo j pela Proposição 3.16.

Além disso, pela inclusão 3.14,

$$V_{(\alpha\alpha^{i},A_{i},\alpha\alpha^{i})} = V_{(\alpha\alpha^{i},A_{i},\alpha\alpha^{i})} \cap \left(V_{(\alpha,A\setminus C,\alpha)} \sqcup V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})}\right)$$

para todo i = 1, ..., n, sendo que a aditividade da função κ nas igualdades é garantida para todo i pela Proposição 3.10. Juntando as aditividades da função κ , obtemos

$$M(\alpha)m(A \setminus C) + \left(\sum_{l=1}^{q} M(\alpha \delta^{l})m(C_{l})\right) - \left(\sum_{i=1}^{n} M(\alpha \alpha^{i})m(A_{i})\right) =$$

$$= \sum_{j=1}^{m} \left[M(\alpha \beta^{j})m(B_{j}) - \sum_{l_{j}=1}^{p_{j}} M(\alpha \beta^{j}\beta^{j,l_{j}})m(B_{j,l_{j}})\right],$$

$$3.15$$

e somando $M(\alpha)m(C)$ dos dois lados, conseguimos a aditividade de κ na Igualdade 3.11. Se A=C, não temos a parcela $V_{(\alpha,A\setminus C,\alpha)}$ na Igualdade 3.13, e somamos $M(\alpha)m(A)$ dos dois lados na Igualdade 3.15. Portanto, a proposição está provada por indução.

Proposição 3.18. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Se

$$\begin{split} & \bigsqcup_{i=1}^{q} V_{(\alpha^{i},A_{i},\alpha^{i});(\alpha^{i}\alpha^{i,1},A_{i,1},\alpha^{i}\alpha^{i,1}),...,(\alpha^{i}\alpha^{i,q_{i}},A_{i,q_{i}},\alpha^{i}\alpha^{i,q_{i}})} \\ & = \bigsqcup_{j=1}^{p} V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})}, \end{split}$$

então

$$\sum_{i=1}^{q} \left[M(\alpha^{i}) m(A_{i}) - \sum_{l_{i}=1}^{q_{i}} M(\alpha^{i} \alpha^{i,l_{i}}) m(A_{i,l_{i}}) \right] = \sum_{j=1}^{p} \left[M(\beta^{j}) m(B_{j}) - \sum_{l_{j}=1}^{p_{j}} M(\beta^{j} \beta^{j,l_{j}}) m(B_{j,l_{j}}) \right].$$

Demonstração. Considere

$$\bigcup_{i=1}^{q} V_{(\alpha^{i}, A_{i}, \alpha^{i}); (\alpha^{i}\alpha^{i,1}, A_{i,1}, \alpha^{i}\alpha^{i,1}), \dots, (\alpha^{i}\alpha^{i,q_{i}}, A_{i,q_{i}}, \alpha^{i}\alpha^{i,q_{i}})}$$

$$= \bigcup_{j=1}^{p} V_{(\beta^{j}, B_{j}, \beta^{j}); (\beta^{j}\beta^{j,1}, B_{j,1}, \beta^{j}\beta^{j,1}), \dots, (\beta^{j}\beta^{j,p_{j}}, B_{j,p_{j}}, \beta^{j}\beta^{j,p_{j}})} = Y.$$

Temos

$$Y = Y \cap Y = \bigsqcup_{i=1}^{q} \bigsqcup_{j=1}^{p} V_{(\alpha^{i}, A_{i}, \alpha^{i}); (\alpha^{i}\alpha^{i,1}, A_{i,1}, \alpha^{i}\alpha^{i,1}), \dots, (\alpha^{i}\alpha^{i,q_{i}}, A_{i,q_{i}}, \alpha^{i}\alpha^{i,q_{i}})} \cap V_{(\beta^{j}, B_{j}, \beta^{j}); (\beta^{j}\beta^{j,1}, B_{j,1}, \beta^{j}\beta^{j,1}), \dots, (\beta^{j}\beta^{j,p_{j}}, B_{j,p_{i}}, \beta^{j}\beta^{j,p_{j}})},$$

$$\begin{split} &V_{(\alpha^{i},A_{i},\alpha^{i});(\alpha^{i}\alpha^{i,1},A_{i,1},\alpha^{i}\alpha^{i,1}),...,(\alpha^{i}\alpha^{i,q_{i}},A_{i,q_{i}},\alpha^{i}\alpha^{i,q_{i}})} = \\ &\stackrel{p}{\bigsqcup_{j=1}} V_{(\alpha^{i},A_{i},\alpha^{i});(\alpha^{i}\alpha^{i,1},A_{i,1},\alpha^{i}\alpha^{i,1}),...,(\alpha^{i}\alpha^{i,q_{i}},A_{i,q_{i}},\alpha^{i}\alpha^{i,q_{i}})} \cap V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})} \\ &\text{para todo } i \in \{1,\ldots,q\}, \text{ e} \end{split}$$

$$V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,\rho_{j}},B_{j,\rho_{j}},\beta^{j}\beta^{j,\rho_{j}})} = q$$

$$\bigcup_{i=1}^{q} V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,\rho_{j}},B_{j,\rho_{j}},\beta^{j}\beta^{j,\rho_{j}})} \cap V_{(\alpha^{i},A_{i},\alpha^{i});(\alpha^{i}\alpha^{i,1},A_{i,1},\alpha^{i}\alpha^{i,1}),...,(\alpha^{i}\alpha^{i,q_{i}},A_{i,q_{i}},\alpha^{i}\alpha^{i,q_{i}})}$$

para $j \in \{1, ..., p\}$. Com isso, descartando as interseções vazias, e usando a Proposição 3.17, temos

$$\sum_{i=1}^{q} \left[M(\alpha^{i}) m(A_{i}) - \sum_{l_{i}=1}^{q_{i}} M(\alpha^{i} \alpha^{i,l_{i}}) m(A_{i,l_{i}}) \right] = \sum_{j=1}^{p} \left[M(\beta^{j}) m(B_{j}) - \sum_{l_{j}=1}^{p_{j}} M(\beta^{j} \beta^{j,l_{j}}) m(B_{j,l_{j}}) \right].$$

Proposição 3.19. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8. Então κ é uma medida no semianel \mathcal{S} tal que $\kappa(\varphi_a(V)) = M(a)\kappa(V)$ para todo $a \in \mathcal{A}$ e todo subconjunto V de $V_{a^{-1}} \cap \mathcal{S}$.

Demonstração. Temos que provar que κ é enumeravelmente aditiva em \mathcal{S} . Como os elementos de \mathcal{S} são conjuntos abertos e compactos, é suficiente mostrar que κ é aditiva em \mathcal{S} . Dado

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})},$$

pela Proposição 3.17, temos a aditividade de κ , ou seja,

$$\begin{split} \kappa \left(V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),...,(\alpha\alpha^n,A_n,\alpha\alpha^n)} \right) \\ &= \sum_{j=1}^{p} \kappa \left(V_{(\beta^j,B_j,\beta^j);(\beta^j\beta^{j,1},B_{j,1},\beta^j\beta^{j,1}),...,(\beta^j\beta^{j,p_j},B_{j,p_j},\beta^j\beta^{j,p_j})} \right). \end{split}$$

Para provar a condição de escala, se $V = V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),...,(\alpha\alpha^n,A_n,\alpha\alpha^n)} \in \mathcal{S}$ está contido em $V_{\alpha^{-1}}$, então

$$\begin{aligned} V &= V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \cap V_{a^{-1}} \\ &= V_{(\alpha,A\cap r(a\alpha),\alpha);(\alpha\alpha^{1},A_{1}\cap r(a\alpha\alpha^{1}),\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n}\cap r(a\alpha\alpha^{n}),\alpha\alpha^{n})} \end{aligned}$$

е

$$\varphi_{a}(V) = V_{(a\alpha,A\cap r(a\alpha),a\alpha);(a\alpha\alpha^{1},A_{1}\cap r(a\alpha\alpha^{1}),a\alpha\alpha^{1}),...,(a\alpha\alpha^{n},A_{n}\cap r(a\alpha\alpha^{n}),a\alpha\alpha^{n})}.$$

Daí, das propriedades de κ e da multiplicatividade de M, o resultado segue. \square

Observação 3.4. Para mostrarmos a Proposição 3.20, precisamos supor que os conjuntos \mathcal{B} e \mathcal{L}^* são enumeráveis. Como na Observação 3.2 já trabalhamos com o alfabeto \mathcal{A} enumerável, \mathcal{L}^* naquele caso também é enumerável.

Proposição 3.20. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal satisfazendo as condições da Observação 3.4 e M uma função de \mathcal{A} em [0,1]. Então existe uma aplicação

convexa entre o conjunto das funções $m \colon \mathcal{B} \to [0,1]$ satisfazendo as condições m1', m2', m3' e m4' da Proposição 3.8 e o conjunto das medidas Borelianas regulares de probabilidade μ em T satisfazendo $\mu(\varphi_a(V)) = M(a)\mu(V)$ para todo $a \in \mathcal{A}$ e todo subconjunto Borel mensurável V de V_{a-1} .

Demonstração. Usando o Teorema da extensão de Carathéodory, existe uma medida μ definida na σ -álgebra gerada por $\mathcal S$. Como $\mathcal S$ é uma base enumerável para a topologia de T, pois $\mathcal B$ e $\mathcal L^*$ são enumeráveis, sabemos que a σ -álgebra gerada por $\mathcal S$ é a σ -álgebra de Borel de T.

Para provar que μ é de probabilidade, como T = $\bigcup_{A \in \mathcal{B}} V_{(\omega,A,\omega)}$ e $\mu(V_{(\omega,A,\omega)})$ = $\kappa(V_{(\omega,A,\omega)})$ = m(A), usando a condição m1', temos $\mu(T)$ = 1. Isto também implica que μ é regular, pois toda medida de Borel finita é regular.

Além disso, uma combinação convexa de funções m é preservada quando passada a medidas κ em S, e portanto a medidas μ em T.

A medida μ satisfaz a condição de escala, pois φ_a é bijetora, logo preserva uniões e interseções, e a condição de escala de μ é válida para elementos no semianel \mathcal{S} .

Proposição 3.21. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe uma bijeção afim entre os conjuntos \mathcal{B}^{λ} e \mathcal{E}^{λ} .

Demonstração. Seja ψ um estado de $\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})$ satisfazendo

$$\psi(s_{\alpha}p_{A}s_{\alpha}^{*}) = N(\alpha)^{-\lambda}\psi(p_{A\cap r(\alpha)})$$

para todo $\alpha \in \mathcal{L}^*$ e $A \in \mathcal{B}_{\alpha}$. Defina um estado ω de $C_0(T)$ por $\omega = \psi \circ \Phi^{-1}$, sendo Φ o isomorfismo da Proposição 2.10. É suficiente verificar a condição de escala de ω nos elementos do conjunto H da Proposição 2.9.

Seja
$$a\in\mathcal{A}$$
. Se $\chi_{V_{(\omega,A,\omega)}}\in C_0(V_{a^{-1}})$, então $V_{(\omega,A,\omega)}\subseteq V_{a^{-1}}=V_{(\omega,r(a),\omega)}$. Daí,

$$\begin{split} \omega\left(\chi_{V_{(\omega,A,\omega)}}\circ\varphi_{\mathcal{A}^{-1}}\right) &= \psi\circ\Phi^{-1}\left(\chi_{V_{(\omega,A,\omega)}}\circ\varphi_{\mathcal{A}^{-1}}\right) \stackrel{(1)}{=} \psi\circ\Phi^{-1}\left(\chi_{V_{(a,A,a)}}\right) = \psi\left(s_{a}p_{A}s_{a}^{*}\right) \\ &= N(a)^{-\lambda}\psi\left(p_{A\cap r(a)}\right) = N(a)^{-\lambda}\psi\circ\Phi^{-1}\left(\chi_{V_{(\omega,A\cap r(a),\omega)}}\right) \\ &= N(a)^{-\lambda}\omega\left(\chi_{V_{(\omega,A,\omega)}}\right), \end{split}$$

sendo (1) devido ao Lema 4.4(i) de (DE CASTRO; VAN WYK, 2020).

Agora, sejam $\alpha \in \mathcal{L}^*$ e $A \in \mathcal{B}_{\alpha}$ tal que $\chi_{V_{(\alpha,A,\alpha)}} \in C_0(V_{a^{-1}})$. Como $\chi_{V_{(\alpha,A,\alpha)}} \in C_0(V_{a^{-1}})$, temos $V_{(\alpha,A,\alpha)} \subseteq V_{a^{-1}} = V_{(\omega,r(a),\omega)}$. Vamos começar verificando que $\chi_{V_{(\omega,A,\omega)}} = \chi_{V_{(\omega,A\cap r(a\alpha),\omega)}} \stackrel{\text{(3)}}{=} \chi_{V_{(\omega,A\cap r(a\alpha),\omega)}}$. Como $A\cap r(a\alpha) \subseteq A\cap r(\alpha)$, daí $V_{(\omega,A\cap r(a\alpha),\omega)} \subseteq V_{(\omega,A\cap r(\alpha),\omega)}$.

Além disso,

$$\begin{split} \eta^{\gamma} \in V_{(\omega,A \cap r(\alpha),\omega)} &\Longrightarrow \eta^{\gamma} \in V_{(\omega,A,\omega)} \cap V_{(\omega,r(\alpha),\omega)} \Longrightarrow \eta^{\gamma} \in \mathsf{T}_{(\alpha)\gamma} \, \mathsf{e} \, A \in \left(G_{(\alpha)\gamma} \left(\eta^{\gamma} \right) \right)_{|\alpha|} \\ &\Longrightarrow G_{(\alpha)\gamma} \left(\eta^{\gamma} \right) \in V_{(\alpha,A,\alpha)} \Longrightarrow G_{(\alpha)\gamma} \left(\eta^{\gamma} \right) \in V_{(\omega,r(a),\omega)} \\ &\Longrightarrow r(a\alpha) = r(r(a),\alpha) \in \left(G_{(\alpha)\gamma} \left(\eta^{\gamma} \right) \right)_{|\alpha|} \\ &\Longrightarrow H_{[\alpha]\gamma} \circ G_{(\alpha)\gamma} \left(\eta^{\gamma} \right) = \eta^{\gamma} \, \mathsf{\acute{e}} \, \, \mathsf{tal} \, \, \mathsf{que} \, r(a\alpha) \in \eta^{\gamma}_{0} \\ &\Longrightarrow A \cap r(a\alpha) \in \eta^{\gamma}_{0} \Longrightarrow \eta^{\gamma} \in V_{(\omega,A \cap r(a\alpha),\omega)}. \end{split}$$

Agora, vamos verificar que $\chi_{V_{(\alpha,A,\alpha)}} \circ \varphi_{a^{-1}} \stackrel{(2)}{=} \chi_{V_{(a\alpha,A\cap r(a\alpha),a\alpha)}}$. Temos

$$\chi_{V_{(\alpha,A,\alpha)}} \circ \varphi_{a^{-1}} \stackrel{\text{(1)}}{=} \chi_{V_{(\omega,A,\omega)}} \circ \varphi_{\alpha^{-1}} \circ \varphi_{a^{-1}} = \chi_{V_{(\omega,A,\omega)}} \circ \varphi_{(a\alpha)^{-1}} \stackrel{\text{(3)}}{=} \chi_{V_{(\omega,A\cap r(a\alpha),\omega)}} \circ \varphi_{(a\alpha)^{-1}} = \chi_{\varphi_{a\alpha}(V_{(\omega,A\cap r(a\alpha),\omega)})},$$

е

$$\begin{split} \chi_{\varphi_{a\alpha}\left(V_{(\omega,A\cap r(a\alpha),\omega)}\right)} &= \chi_{V_{(a\alpha,A\cap r(a\alpha),a\alpha)}} \Longleftrightarrow \varphi_{a\alpha}\left(V_{(\omega,A\cap r(a\alpha),\omega)}\right) = V_{(a\alpha,A\cap r(a\alpha),a\alpha)} \\ &\iff V_{(\omega,A\cap r(a\alpha),\omega)} \overset{(1)}{=} \varphi_{(a\alpha)^{-1}}\left(V_{(a\alpha,A\cap r(a\alpha),a\alpha)}\right). \end{split}$$

Logo,

$$\omega\left(\chi_{V_{(\alpha,A,\alpha)}}\circ\varphi_{a^{-1}}\right)\stackrel{(2)}{=}\omega\left(\chi_{V_{(a\alpha,A\cap r(a\alpha),a\alpha)}}\right)=\psi\left(s_{a\alpha}p_{A\cap r(a\alpha)}s_{a\alpha}^*\right)=N(a\alpha)^{-\lambda}\psi\left(p_{A\cap r(a\alpha)}\right)$$

$$=N(a\alpha)^{-\lambda}\psi\circ\Phi^{-1}\left(\chi_{V_{(\omega,A\cap r(a\alpha),\omega)}}\right)$$

$$\stackrel{(3)}{=}N(a)^{-\lambda}N(\alpha)^{-\lambda}\psi\circ\Phi^{-1}\left(\chi_{V_{(\omega,A\cap r(\alpha),\omega)}}\right)=N(a)^{-\lambda}N(\alpha)^{-\lambda}\psi\left(p_{A\cap r(\alpha)}\right)$$

$$=N(a)^{-\lambda}\psi\left(s_{\alpha}p_{A}s_{\alpha}^{*}\right)=N(a)^{-\lambda}\omega\left(\chi_{V_{(\alpha,A,\alpha)}}\right),$$

e a condição de escala é válida.

Por outro lado, dado um estado ω em $C_0(\mathsf{T})$ satisfazendo $\omega(f\circ\varphi_a^{-1})=N(a)^{-\lambda}\,\omega(f)$ para todo $a\in\mathcal{A}$ e $f\in C_0(V_{a^{-1}})$, definimos um estado em $\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ como $\psi=\omega\circ\Phi$. Temos $\psi\in E^\lambda$, pois, para todo $\alpha=\alpha_1\cdots\alpha_n\in\mathcal{L}^*$ e $A\in\mathcal{B}_\alpha$,

$$\begin{split} \psi\left(s_{\alpha}p_{A}s_{\alpha}^{*}\right) &= \omega\left(\chi_{V_{(\alpha,A,\alpha)}}\right) = \omega\left(\chi_{V_{(\omega,A,\omega)}}\circ\varphi_{\alpha^{-1}}\right) = N(\alpha_{1})^{-\lambda}\,\omega\left(\chi_{V_{(\omega,A,\omega)}}\circ\varphi_{\alpha_{n}^{-1}\cdots\alpha_{2}^{-1}}\right) \\ &= N(\alpha_{1})^{-\lambda}\,N(\alpha_{2})^{-\lambda}\,\omega\left(\chi_{V_{(\omega,A,\omega)}}\circ\varphi_{\alpha_{n}^{-1}\cdots\alpha_{3}^{-1}}\right) = \cdots \\ &\cdots = N(\alpha_{1})^{-\lambda}\,N(\alpha_{2})^{-\lambda}\,\cdots\,N(\alpha_{n})^{-\lambda}\,\omega\left(\chi_{V_{(\omega,A,\omega)}}\right) = N(\alpha)^{-\lambda}\,\omega\left(\chi_{V_{(\omega,A\cap r(\alpha),\omega)}}\right) \\ &= N(\alpha)^{-\lambda}\,\omega\circ\Phi\left(p_{A\cap r(\alpha)}\right) = N(\alpha)^{-\lambda}\,\psi\left(p_{A\cap r(\alpha)}\right). \end{split}$$

Proposição 3.22. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe uma bijeção afim entre os conjuntos \mathcal{B}^{λ} e \mathcal{C}^{λ} .

Demonstração. O Teorema da representação de Riesz nos fornece uma bijeção entre estados ω de $C_0(T)$ e medidas Borelianas regulares de probabilidade μ em T. Restringindo a medida correspondente μ a $V_{a^{-1}}$, observamos que $C_0(V_{a^{-1}})$ é denso em $L^1(V_{a^{-1}},\mu)$. Se ω é um estado em $C_0(T)$ satisfazendo a referida condição de escala, então a condição é válida para funções em $C_0(V_{a^{-1}})$ e se estende para elementos de $L^1(V_{a^{-1}},\mu)$ e, em particular, para funções características de conjuntos mensuráveis de $V_{a^{-1}}$. Por outro lado, se μ é uma medida em T satisfazendo as referidas condições, então a condição de escala no estado correspondente segue para funções características, podendo ser estendida a elementos de $L^1(V_{a^{-1}},\mu)$ e, em particular, para funções em $C_0(V_{a^{-1}})$.

Proposição 3.23. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal satisfazendo as condições da Observação 3.4. Existem isomorfismos convexos entre A^{λ} , B^{λ} , C^{λ} , D^{λ} e E^{λ} .

Demonstração. Da Proposição 3.2, temos um isomorfismo afim entre A^{λ} e E^{λ} . Da Proposição 3.21, um isomorfismo afim entre B^{λ} e E^{λ} . Da Proposição 3.22, um isomorfismo afim entre B^{λ} e C^{λ} . Tomando $M: \mathcal{A} \to [0,1]$ definida por $M(a) = N(a)^{-\lambda}$ na Proposição 3.8, obtemos uma correspondência afim injetora de B^{λ} a D^{λ} , e tomando o mesmo M na Proposição 3.20, obtemos uma aplicação afim de D^{λ} a C^{λ} . O resultado agora segue, pois a composição das aplicações de B^{λ} a D^{λ} , de D^{λ} a C^{λ} e C^{λ} a D^{λ} é a identidade. \square

Teorema 3.1. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal satisfazendo as condições das Observações 3.2 e 3.4. Existem isomorfismos convexos entre os conjuntos A^{λ} , B^{λ} , C^{λ} , D^{λ} , E^{λ} , F^{λ} , G^{λ} , H^{λ} e I^{λ} .

Demonstração. Segue das Proposições 3.7 e 3.23.

3.2 ESTADOS GROUND

Nesta seção aplicamos alguns dos resultados anteriores para caracterizar o conjunto dos estados ground de C^* -álgebras de espaços rotulados normais.

Dado $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, definimos os conjuntos:

 A^{gr} : o conjunto dos estados ground em $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$;

 \mathcal{B}^{gr} : o conjunto dos estados ω de $\mathcal{C}_0(\mathsf{T})$ tais que $\omega(\chi_{V_{(a,r(a),a)}})$ = 0 para todo $a\in\mathcal{A};$

 C^{gr} : o conjunto das medidas Borelianas regulares de probabilidade μ em T tais que $\mu(A)=0$ para todos $a\in \mathcal{A}$ e subconjunto Borel mensurável A de $V_{(a,r(a),a)}$;

 D^{gr} : o conjunto das funções $m: \mathcal{B} \to [0,1]$ satisfazendo:

- 1. $\lim_{A \in \mathcal{B}} m(A) = 1$;
- 2. m(A) = 0 para todo $A \in \mathcal{B}_{reg}$; e

3.
$$m(A \cup B) = m(A) + m(B) - m(A \cap B)$$
 para todo $A, B \in \mathcal{B}$.

Teorema 3.2. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal satisfazendo as condições da Observação 3.4. Existem isomorfismos convexos entre os conjuntos A^{gr} , B^{gr} , C^{gr} e D^{gr} .

Demonstração. A existência de um isomorfismo convexo entre A^{gr} e o conjunto dos estados ω de $C_0(T)$ tais que $\omega(f)=0$ para todos $a\in \mathcal{A}$ e $f\in C_0(V_{(a,r(a),a)})$ segue do Teorema 4.3 de (EXEL; LACA, 2003). Como ω é um estado, e $\chi_{V_{(a,r(a),a)}}$ é uma unidade para $C_0(V_{(a,r(a),a)})$, segue que se $\omega(\chi_{V_{(a,r(a),a)}})=0$, então $\omega(f)=0$ para todo $f\in C_0(V_{(a,r(a),a)})$. Portanto, temos que A^{gr} é isomorfo a B^{gr} , via um isomorfismo convexo.

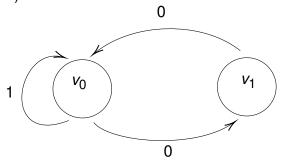
Assim como para os estados KMS, um isomorfismo convexo entre B^{gr} e C^{gr} é obtido analogamente à Proposição 4.8 de (CARLSEN; LARSEN, 2016).

Finalmente, um isomorfismo convexo entre B^{gr} e D^{gr} é obtido por aplicação das Proposições 3.8 e 3.20 com M(a)=0 para todo $a\in\mathcal{A}$, e procedendo como na demonstração da Proposição 3.23.

3.3 EXEMPLOS

Nesta seção vamos usar a teoria construída nos Teoremas 3.1 e 3.2 para mostrar que, dependendo do espaço rotulado, o estudo da existência ou não de estados KMS e ground é facilitado.

Exemplo 3.1. Pensando no espaço rotulado $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ do Exemplo 5.9 de (BOAVA; DE CASTRO; MORTARI, 2020), vamos fazer uma discussão sobre os estados KMS e estados ground de $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ com base nos conjuntos D^{λ} e D^{gr} dos Teoremas 3.1 e 3.2, respectivamente. Primeiramente vamos descrever o espaço rotulado em questão. Temos o conjunto de vértices $\mathcal{E}^0 = \{v_0, v_1\}$ e o conjunto de arestas $\mathcal{E}^1 = \{e_0, e_1, e_2\}$ com aplicações range e source dadas por $s(e_0) = v_0$, $s(e_1) = v_1$, $s(e_2) = v_0$, $s(e_1) = v_0$,



Temos que este espaço rotulado é normal e satisfaz as condições das Observações 3.2 e 3.4. Considere uma configuração inicial $N: \{0,1\} \to (1,\infty)$ e $\lambda \in (0,\infty)$ como discutido na Observação 3.1.

Com relação aos estados ground, eles não existem, pois, pela condição m1 de D^{gr} , temos $m(\{v_0, v_1\}) = 1$, e pela condição m2 de D^{gr} , temos $m(\{v_0, v_1\}) = 0$.

Para os estados KMS $_{\lambda}$, pelas condições de D^{λ} , qualquer função $m \colon P(\mathcal{E}^{0}) \to [0,1]$ que pertença ao conjunto D^{λ} deverá satisfazer:

- 1. $\lim_{A \in \mathcal{B}} m(A) = 1$;
- 2. a) $m(\{v_0\}) = N(1)^{-\lambda} m(\{v_0\}) + N(0)^{-\lambda} m(\{v_1\});$
 - b) $m(\{v_1\}) = N(0)^{-\lambda} m(\{v_0\});$
 - c) $m(\{v_0, v_1\}) = N(1)^{-\lambda} m(\{v_0\}) + N(0)^{-\lambda} m(\{v_0, v_1\});$
- Não precisa ser verificada, pois o espaço rotulado não tem sinks, e possui quantidade finita de letras rotulantes;
- 4. $m(\{v_0, v_1\}) = m(\{v_0\}) + m(\{v_1\})$.

De (m1), temos $m(\{v_0, v_1\}) = 1$. De (m2)(a) e (m2)(b), temos $N(1)^{-\lambda} + N(0)^{-2\lambda} = 1$. De (m4) e (m2)(b), temos $m(\{v_0\}) = 1/(1 + N(0)^{-\lambda})$. E de m(4), temos $m(\{v_1\}) = N(0)^{-\lambda}/(1 + N(0)^{-\lambda})$. Como $N(0) \in (1, \infty)$, temos por (m2)(b) que $m(\{v_0\}) > m(\{v_1\})$, ou seja, $m(\{v_0\}) > 1/2$.

Daí, partindo de valores iniciais de $N(0) \in (1, \infty)$ e $\lambda \in (0, \infty)$, encontramos um único $N(1) \in (1, \infty)$ satisfazendo a relação $N(1)^{-\lambda} + N(0)^{-2\lambda} = 1$, e definimos a função m como:

$$m(\emptyset) = 0; \ m(\{v_0, v_1\}) = 1; \ m(\{v_0\}) = \frac{1}{1 + N(0)^{-\lambda}}; \ e \ m(\{v_1\}) = \frac{N(0)^{-\lambda}}{1 + N(0)^{-\lambda}};$$

de tal forma que essa m é a única função, pertencente ao conjunto D^{λ} , possível para essa configuração partindo de valores de N(0) e λ .

Exemplo 3.2. Considerando o espaço rotulado $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ definido no começo da Seção 3 de (JEONG et al., 2017), e usando a sequência de Morse generalizada

$$\gamma = \cdots \gamma_{-3} \gamma_{-2} \gamma_{-1} \cdot \gamma_0 \gamma_1 \gamma_2 \gamma_3 \cdots = \cdots 10010110.011010011001 \cdots$$

do Exemplo 2.7 do mesmo artigo, vamos verificar que $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ com o tipo de ação que estamos considerando, como na Observação 3.1, não possui estados KMS e ground.

Para relembrar o espaço rotulado em questão, temos os conjuntos de vértices $\mathcal{E}^0 = \{v_n : n \in \mathbb{Z}\}\ e$ arestas $\mathcal{E}^1 = \{e_n : n \in \mathbb{Z}\}\$, sendo que cada e_n é uma seta de v_n a v_{n+1} para todo $n \in \mathbb{Z}$. O alfabeto considerado é o conjunto $\mathcal{A} = \{0, 1\}$, e a aplicação rotulante \mathcal{L} associa cada aresta e_n à letra γ_n para todo $n \in \mathbb{Z}$. A família acomodante \mathcal{B} considerada é a menor família acomodante normal.

$$\cdots \bigcirc \stackrel{\gamma_{-3}}{\longrightarrow} \bigcirc \stackrel{\gamma_{-2}}{\longrightarrow} \bigcirc \stackrel{\gamma_{-1}}{\longrightarrow} \bigcirc \stackrel{\gamma_0}{\longrightarrow} \bigcirc \stackrel{\gamma_1}{\longrightarrow} \bigcirc \stackrel{\gamma_2}{\longrightarrow} \bigcirc \stackrel{\gamma_3}{\longrightarrow} \cdots$$

Vamos usar a caracterização dos estados KMS e ground dos conjuntos D^{λ} e D^{gr} dos Teoremas 3.1 e 3.2, respectivamente. Para uma dada configuração $N: \mathcal{A} \to (1, \infty)$ e $\lambda \in (0, \infty)$, uma função $m: \mathcal{B} \to [0,1] \in D^{\lambda}$ deverá satisfazer:

- 1. $\lim_{A \in \mathcal{B}} m(A) = 1$;
- 2. a) $m(r(0)) = N(1)^{-\lambda} m(r(01)) + N(0)^{-\lambda} m(r(00));$
 - b) $m(r(1)) = N(1)^{-\lambda} m(r(11)) + N(0)^{-\lambda} m(r(10));$
- 3. Não vamos precisar desta propriedade para nossa análise;
- 4. a) $m(r(1)) = m(r(01) \sqcup r(11)) = m(r(01)) + m(r(11))$;
 - b) $m(r(0)) = m(r(00) \sqcup r(10)) = m(r(00)) + m(r(10)).$

Como $\mathcal{E}^0 = r(0) \sqcup r(1)$, por (m1) e (m4), temos $1 = m(\mathcal{E}^0) = m(r(0)) + m(r(1))$. Logo, usando as relações acima,

$$1 = m(r(0)) + m(r(1))$$

$$= N(1)^{-\lambda} m(r(01)) + N(0)^{-\lambda} m(r(00)) + N(1)^{-\lambda} m(r(11)) + N(0)^{-\lambda} m(r(10))$$

$$= N(1)^{-\lambda} m(r(1)) + N(0)^{-\lambda} m(r(0)) = N(1)^{-\lambda} m(r(1)) + N(0)^{-\lambda} [1 - m(r(1))]$$

$$= N(1)^{-\lambda} m(r(1)) + N(0)^{-\lambda} - N(0)^{-\lambda} m(r(1)),$$

daí

$$m(r(1)) = \frac{1 - N(0)^{-\lambda}}{N(1)^{-\lambda} - N(0)^{-\lambda}}.$$

Para $m(r(1)) \in [0,1]$, temos que ter $1 - N(0)^{-\lambda} \leq N(1)^{-\lambda} - N(0)^{-\lambda}$, ou seja, $N(1)^{-\lambda} \geq 1$. Mas isso é impossível, pois $N(1)^{-\lambda} < 1$ para quaisquer valores de $N(1) \in (1,\infty)$ e $\lambda \in (0,\infty)$. Portanto, $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ não admite estados KMS para o tipo de ação considerada.

Além disso, $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ também não admite estados ground, pois $m(\mathcal{E}^0)=1\neq 0$ e $\mathcal{E}^0\in\mathcal{B}$.

4 C*-ÁLGEBRA DE TOEPLITZ DO ESPAÇO ROTULADO

Neste capítulo, definimos a C^* -álgebra de Toeplitz, denotada por $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, de um espaço rotulado normal e mostramos algumas de suas propriedades. Além disso, usando o espaço topológico de filtros P do Capítulo 1, descrevemos essa álgebra de Toeplitz como uma C^* -álgebra de grupoide e como um produto cruzado parcial. Usamos a descrição de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ como produto cruzado parcial no Capítulo 4, em que caracterizamos os estados KMS e ground de certa ação fortemente contínua do grupo \mathbb{R} nessa álgebra de Toeplitz.

4.1 DEFINIÇÃO E PROPRIEDADES DE $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$

Seja $(\mathcal{E},\mathcal{L},\mathcal{B})$ um espaço rotulado normal. Para falarmos de C^* -álgebra de Toeplitz do espaço rotulado, precisamos estabelecer com qual C^* -correspondência estamos trabalhando. Neste trabalho vamos trabalhar com a C^* -correspondência $X(\mathcal{E},\mathcal{L},\mathcal{B})$ construída na Seção 3 de (BATES; CARLSEN; PASK, 2017), e o motivo dessa escolha é que a álgebra de Cuntz-Pimsner (sugerimos (KATSURA, 2004), (PIMSNER, 1997)) de $X(\mathcal{E},\mathcal{L},\mathcal{B})$ é isomorfa a C^* -álgebra do espaço rotulado $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$. Primeiramente, vamos relembrar essa construção.

Para cada $A \in P(\mathcal{E}^0)$, χ_A denota a função definida em \mathcal{E}^0 por $\chi_A(v) = 1$ se $v \in A$ e $\chi_A(v) = 0$ se $v \notin A$. Considerando χ_A como elemento da C^* -álgebra de funções limitadas em \mathcal{E}^0 , tomamos $\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$ como sendo a C^* -subálgebra da C^* -álgebra de funções limitadas em \mathcal{E}^0 geradas por $\{\chi_A : A \in \mathcal{B}\}$.

Proposição 4.1. (BATES; CARLSEN; PASK, 2017, Lema 3.3) Seja \mathcal{I} um ideal bilateral fechado de $\mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B})$. Então

$$\mathcal{I} = \overline{span}\{\chi_A : A \in \mathcal{B} \ e\chi_A \in \mathcal{I}\}.$$

Para cada $a \in \mathcal{A}$, seja X_a o ideal de $\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$ gerado por $\chi_{r(a)}$ de forma que $f \in X_a$ se, e somente se, f(v) = 0 para todo $v \in \mathcal{E}_0 \setminus r(a)$. Como X_a é um ideal, é fácil ver que X_a é um $\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$ -módulo de Hilbert à direita com produto interno definido por $\langle f,g\rangle = f^*g$ e ação à direita dada pela multiplicação usual de $\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$.

Seja $X(\mathcal{E},\mathcal{L},\mathcal{B})$ o $\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$ -módulo de Hilbert à direita $\bigoplus_{a\in\mathcal{A}} X_a$. Para definirmos uma ação à esquerda de $\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$ em $X(\mathcal{E},\mathcal{L},\mathcal{B})$, isto é, um *-homomorfismo $\varphi\colon \mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})\to \mathcal{L}(X(\mathcal{E},\mathcal{L},\mathcal{B}))$, em que $\mathcal{L}(X(\mathcal{E},\mathcal{L},\mathcal{B}))$ denota a C^* -álgebra dos operadores adjuntáveis em $X(\mathcal{E},\mathcal{L},\mathcal{B})$ (para mais detalhes sugerimos (KATSURA, 2004)), consideramos o seguinte lema.

Lema 4.1. (BATES; CARLSEN; PASK, 2017, Lema 3.4) Para cada $a \in \mathcal{A}$ existe um único *-homomorfismo $\varphi_a \colon \mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B}) \to X_a$ satisfazendo $\varphi_a(\chi_A) = \chi_{r(A,a)}$ para todo $A \in \mathcal{B}$.

Agora, para cada $f \in \mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B})$, a aplicação

$$\varphi(f): (x_a)_{a\in\mathcal{A}} \mapsto (\varphi_a(f)x_a)_{a\in\mathcal{A}}$$

é um operador adjuntável em $X(\mathcal{E}, \mathcal{L}, \mathcal{B})$, e a correspondência

$$\varphi: \mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to \mathcal{L}(X(\mathcal{E}, \mathcal{L}, \mathcal{B}))$$

define um *-homomorfismo. A C^* -correspondência $(X(\mathcal{E}, \mathcal{L}, \mathcal{B}), \varphi)$ sobre $\mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B})$ é a que vamos considerar no nosso trabalho.

Além disso, para $a \in \mathcal{A}$, considerando $e_a = (\delta_{a,b}\chi_{r(a)})_{b \in \mathcal{A}} \in X(\mathcal{E},\mathcal{L},\mathcal{B})$, sendo $\delta_{a,b}$ o delta de Kronecker, temos

$$X(\mathcal{E}, \mathcal{L}, \mathcal{B}) = \overline{\operatorname{span}}_{\mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B})} \{ e_a : a \in \mathcal{A} \}.$$
 4.1

Para $x, y \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$, o operador $\theta_{x,y} \in \mathcal{L}(X(\mathcal{E}, \mathcal{L}, \mathcal{B}))$ é definido por $\theta_{x,y}(z) = x\langle y, z\rangle_{X(\mathcal{E}, \mathcal{L}, \mathcal{B})}$ para $z \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$. O ideal $\mathcal{K}(X(\mathcal{E}, \mathcal{L}, \mathcal{B}))$ de $\mathcal{L}(X(\mathcal{E}, \mathcal{L}, \mathcal{B}))$ dos operadores compactos generalizados (para mais detalhes sugerimos (KATSURA, 2004)) é definido por

$$\mathcal{K}(X(\mathcal{E},\mathcal{L},\mathcal{B})) = \overline{\text{span}} \left\{ \theta_{X,Y} \in \mathcal{L}(X(\mathcal{E},\mathcal{L},\mathcal{B})) : x,y \in X(\mathcal{E},\mathcal{L},\mathcal{B}) \right\}.$$

Definição 4.1. (KATSURA, 2004, Definição 3.4) Uma representação de $(X(\mathcal{E}, \mathcal{L}, \mathcal{B}), \varphi)$ em uma C^* -álgebra \mathcal{X} é um par (π, t) sendo $\pi \colon \mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to \mathcal{X}$ um *-homomorfismo e $t \colon X(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to \mathcal{X}$ uma aplicação linear satisfazendo:

- (1) $t(x)\pi(f) = t(x \cdot f)$ para $x \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$ e $f \in \mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B})$;
- (2) $t(x)^*t(y) = \pi(\langle x, y \rangle)$ para $x, y \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$; e
- (3) $\pi(f)t(x) = t(\varphi(f)x)$ para $f \in \mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B})$ e $x \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Denotamos por $C^*(\pi, t)$ a C^* -álgebra gerada pelas imagens de π e t em \mathcal{X} .

Além disso, de (KATSURA, 2004, Definição 2.3), definimos um *-homomorfismo $\psi_t \colon \mathcal{K}(X(\mathcal{E},\mathcal{L},\mathcal{B})) \to \mathcal{X}$ para todo $x,y \in X(\mathcal{E},\mathcal{L},\mathcal{B})$ por

$$\psi_t(\theta_{X,Y}) = t(x)t(y)^*$$
.

Em (FOWLER; RAEBURN, 1999), por exemplo, vemos que toda C^* -correspondência admite uma representação. Além disso, toda C^* -correspondência admite uma representação universal, sendo que a universalidade é no sentido da proposição a seguir.

Proposição 4.2. Seja (X, φ) uma C^* -correspondência sobre uma C^* -álgebra A. Então existe uma C^* -álgebra \mathcal{T}_X e uma representação $i_X \colon X \to \mathcal{T}_X$ e $i_A \colon A \to \mathcal{T}_X$ tal que: (a) para toda representação (ψ, π) de X, existe um homomorfismo $\psi \times \pi$ de \mathcal{T}_X tal que $(\psi \times \pi) \circ i_X = \psi$ e $(\psi \times \pi) \circ i_A = \pi$; e

(b) \mathcal{T}_X é gerada como C^* -álgebra por $i_X(X) \cup i_A(A)$.

A tripla $(\mathcal{T}_X, i_X, i_A)$ é única: se (B, i_X', i_A') é uma representação com propriedades similares, existe um isomorfismo $\theta \colon \mathcal{T}_X \to B$ tal que $\theta \circ i_X = i_X'$ e $\theta \circ i_A = i_A'$. As aplicações i_X e i_A são injetivas. Existe uma ação fortemente contínua $\gamma \colon \mathbb{T} \to \operatorname{Aut} \mathcal{T}_X$ tal que $\gamma_Z(i_A(a)) = i_A(a)$ e $\gamma_Z(i_X(x)) = zi_X(x)$ para todo $a \in A$ e $x \in X$.

Na Proposição 4.2, chamamos a álgebra \mathcal{T}_X de C^* -álgebra de Toeplitz da C^* -correspodência (X, φ) .

Definição 4.2. Para a nossa C^* -correspondência $X(\mathcal{E}, \mathcal{L}, \mathcal{B})$, denotamos a C^* -álgebra de Toeplitz por $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Agora vamos mostrar que podemos ver a álgebra $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ como uma álgebra universal gerada por projeções, isometrias parciais e relações.

Lema 4.2. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe uma correspondência bijetiva entre representações de $X(\mathcal{E}, \mathcal{L}, \mathcal{B})$ e famílias de projeções $\{\tilde{p}_A\}_{A \in \mathcal{B}}$ e isometrias parciais $\{\tilde{s}_a\}_{a \in A}$ em uma dada C^* -álgebra \mathcal{X} satisfazendo as seguintes relações:

(i)
$$\tilde{p}_{A \cap B} = \tilde{p}_A \tilde{p}_B$$
, $\tilde{p}_{A \cup B} = \tilde{p}_A + \tilde{p}_B - \tilde{p}_{A \cap B}$ e $\tilde{p}_\emptyset = 0$ para todo $A, B \in \mathcal{B}$;

(ii)
$$\tilde{p}_{A}\tilde{s}_{a} = \tilde{s}_{a}\tilde{p}_{r(A,a)}$$
 para todo $A \in \mathcal{B}$ e $a \in \mathcal{A}$; e

(iii)
$$\tilde{s}_a^* \tilde{s}_a = \tilde{p}_{r(a)}$$
 e $\tilde{s}_b^* \tilde{s}_a = 0$ se $b \neq a$ para todo $a, b \in A$.

Demonstração. Seja (π, t) uma representação de $X(\mathcal{E}, \mathcal{L}, \mathcal{B})$ em uma C^* -álgebra \mathcal{X} . Definimos as famílias $\{\tilde{p}_A := \pi(\chi_A)\}_{A \in \mathcal{B}}$ e $\{\tilde{s}_a := t(e_a)\}_{a \in \mathcal{A}}$. Como $\chi_A \in \mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B})$ é projeção para todo $A \in \mathcal{B}$, então \tilde{p}_A é projeção para todo $A \in \mathcal{B}$. Além disso, temos a relação (i), pois $\chi_{A \cap B} = \chi_{A}\chi_{B}$, $\chi_{A \cup B} = \chi_{A} + \chi_{B} - \chi_{A \cap B}$, e $\chi_{\emptyset} = 0$ para todos $A, B \in \mathcal{B}$, e π é um homomorfismo. Para mostrar a relação (iii), dados $a, b \in \mathcal{A}$, temos

$$\tilde{s}_b^* \tilde{s}_a = t(e_b)^* t(e_a) = \pi(\langle e_b, e_a \rangle) = \delta_{a,b} \pi(\langle e_b, e_a \rangle) = \delta_{a,b} \pi(\chi_{r(a)}^* \chi_{r(a)}) \\
= \delta_{a,b} \pi(\chi_{r(a)}) = \delta_{a,b} \tilde{p}_{r(a)}.$$

Como $\tilde{s}_a^* \tilde{s}_a$ é projeção, pelo Teorema 2.3.3 de (MURPHY, 1990), temos que \tilde{s}_a é isometria parcial.

Para a relação (*ii*), dados $A \in \mathcal{B}$ e $a \in \mathcal{A}$, temos

$$\begin{split} \tilde{\rho}_{A}\tilde{s}_{a} &= \pi(\chi_{A})t(e_{a}) = t(\varphi(\chi_{A})(e_{a})) = t((\delta_{a,b}\chi_{r(A,a)})_{b\in\mathcal{A}}) = t(e_{a}\cdot\chi_{r(A,a)}) = t(e_{a})\pi(\chi_{r(A,a)}) \\ &= \tilde{s}_{a}\tilde{\rho}_{r(A,a)}. \end{split}$$

Se
$$a \notin \mathcal{L}(A\mathcal{E}^1)$$
, então $r(A, a) = \emptyset$ e $\tilde{p}_A \tilde{s}_a = 0 = \tilde{s}_a \tilde{p}_{r(A,a)}$.

Por outro lado, sejam $\{\tilde{p}_A\}_{A\in\mathcal{B}}$ e $\{\tilde{s}_a\}_{a\in\mathcal{A}}$ famílias de projeções e isometrias parciais, respectivamente, em \mathcal{X} satisfazendo as relações (i), (ii) e (iii). Vamos construir uma representação de $X(\mathcal{E},\mathcal{L},\mathcal{B})$, $\pi\colon \mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})\to \mathcal{X}$ e $t\colon X(\mathcal{E},\mathcal{L},\mathcal{B})\to \mathcal{X}$, tal que $\pi(\chi_A)=\tilde{p}_A$ para todo $A\in\mathcal{B}$ e $t(e_b\cdot\chi_B)=\tilde{s}_b\tilde{p}_B$ para todo $b\in\mathcal{A}$ e $b\in\mathcal{B}_b$.

Como a família acomodante \mathcal{B} é fechada para reuniões e interseções finitas e para complementos relativos, podemos considerar todo elemento de $\operatorname{span}_{vect}\{\chi_A: A \in \mathcal{B}\}$ da forma $\sum_{i=1}^n \lambda_i \chi_{A_i} \operatorname{com} \lambda_i \in \mathbb{C}, \ \emptyset \neq A_i \in \mathcal{B}$ para $i=1,\ldots,n$, e $A_i \cap A_j = \emptyset$ para $i \neq j$ e $i,j=1,\ldots,n$. Além disso, como $\operatorname{span}_{vect}\{\chi_A: A \in \mathcal{B}\} = \operatorname{span}_{alg}\{\chi_A: A \in \mathcal{B}\}$, definindo $\tilde{\pi}$: $\operatorname{span}_{vect}\{\chi_A: A \in \mathcal{B}\} \to \mathcal{X}$ por $\tilde{\pi}(\chi_A) = \tilde{p}_A$, temos que $\tilde{\pi}$ é linear e contínua, pois

$$\left\|\tilde{\pi}\left(\sum_{i=1}^n \lambda_i \chi_{A_i}\right)\right\| = \left\|\sum_{i=1}^n \lambda_i \tilde{\rho}_{A_i}\right\| \leq \max\left\{|\lambda_1|, \ldots, |\lambda_n|\right\} = \left\|\sum_{i=1}^n \lambda_i \chi_{A_i}\right\|.$$

Daí, podemos estender $\tilde{\pi}$ a um *-homomorfismo $\pi\colon \mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})\to \mathcal{X}$ tal que $\pi(\chi_A)=\tilde{p}_A$. Como a família acomodante \mathcal{B} é fechada para reuniões e interseções finitas e para complementos relativos, podemos considerar para os nossos cálculos um elemento de

$$\operatorname{span}_{\operatorname{span}_{\operatorname{vect}}\{\chi_A:A\in\mathcal{B}\}}\{e_a:a\in\mathcal{A}\}$$

da forma $\sum_{i=1}^{n} e_{a_i} \cdot (\sum_{j=1}^{p_i} \lambda_{i,j} \chi_{A_{i,j}})$ com $a_i \neq a_l$ para $i \neq l$ em $i, l = 1, \ldots, n, \lambda_{i,j} \in \mathbb{C}$, $\emptyset \neq A_{i,j} \in \mathcal{B}_{a_i}$ para $i = 1, \ldots, n$ e $j = 1, \ldots, p_j$, e $A_{i,j} \cap A_{i,k} = \emptyset$ para $j \neq k$ e $j, k = 1, \ldots, p_j$. Definindo \tilde{t} : span_{span_{vect}{ $\chi_A: A \in \mathcal{B}$ }{ $e_a: a \in \mathcal{A}$ } $\rightarrow \mathcal{X}$ por $\tilde{t}(\sum_{i=1}^{n} e_{a_i} \cdot (\sum_{j=1}^{p_i} \lambda_{i,j} \chi_{A_{i,j}})) = \sum_{i=1}^{n} \tilde{s}_{a_i}(\sum_{j=1}^{p_i} \lambda_{i,j} \tilde{p}_{A_{i,j}})$, como $\emptyset \neq A_{i,j} \subseteq r(a_i)$ para $i = 1, \ldots, n$ e $j = 1, \ldots, p_i$, temos que \tilde{t} está bem definida, é linear, e contínua, pois}

$$\left\|\tilde{t}\left(\sum_{i=1}^{n}e_{a_{i}}\cdot\left(\sum_{j=1}^{p_{i}}\lambda_{i,j}\chi_{A_{i,j}}\right)\right)\right\|^{2} = \left\|\sum_{i=1}^{n}\tilde{s}_{a_{i}}\left(\sum_{j=1}^{p_{i}}\lambda_{i,j}\tilde{p}_{A_{i,j}}\right)\right\|^{2}$$

$$= \left\|\left(\sum_{i=1}^{n}\left(\sum_{j=1}^{p_{i}}\overline{\lambda_{i,j}}\tilde{p}_{A_{i,j}}\right)\tilde{s}_{a_{i}}^{*}\right)\left(\sum_{i=1}^{n}\tilde{s}_{a_{i}}\left(\sum_{j=1}^{p_{i}}\lambda_{i,j}\tilde{p}_{A_{i,j}}\right)\right)\right\| = \left\|\sum_{i=1}^{n}\sum_{j=1}^{p_{i}}|\lambda_{i,j}|^{2}\tilde{p}_{A_{i,j}}\right\|$$

$$\leq \max_{i,j}|\lambda_{i,j}|^{2} = \left\|\sum_{i=1}^{n}\sum_{j=1}^{p_{i}}|\lambda_{i,j}|^{2}\chi_{A_{i,j}}\right\| = \left\|\sum_{i=1}^{n}\langle e_{a_{i}}\cdot\left(\sum_{j=1}^{p_{i}}\lambda_{i,j}\chi_{A_{i,j}}\right), e_{a_{i}}\cdot\left(\sum_{j=1}^{p_{i}}\lambda_{i,j}\chi_{A_{i,j}}\right)\rangle\right\|$$

$$= \left\|\langle\sum_{i=1}^{n}e_{a_{i}}\cdot\left(\sum_{j=1}^{p_{i}}\lambda_{i,j}\chi_{A_{i,j}}\right),\sum_{i=1}^{n}e_{a_{i}}\cdot\left(\sum_{j=1}^{p_{i}}\lambda_{i,j}\chi_{A_{i,j}}\right)\rangle\right\| = \left\|\sum_{i=1}^{n}e_{a_{i}}\cdot\left(\sum_{j=1}^{p_{i}}\lambda_{i,j}\chi_{A_{i,j}}\right)\right\|^{2}.$$

Daí, como a ação à direita de $\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$ em $X(\mathcal{E},\mathcal{L},\mathcal{B})$ é contínua podemos estender \tilde{t} a uma aplicação linear contínua \tilde{t}' : span $_{\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})}\{e_a:a\in\mathcal{A}\}\to\mathcal{X}$, e pela propriedade 4.1 estender \tilde{t}' para uma aplicação linear contínua $t\colon X(\mathcal{E},\mathcal{L},\mathcal{B})\to\mathcal{X}$ definida por

$$t(\sum_{i=1}^{n} e_{a_{i}} \cdot (\sum_{j=1}^{p_{i}} \lambda_{i,j} \chi_{A_{i,j}})) = \sum_{i=1}^{n} \tilde{s}_{a_{i}} (\sum_{j=1}^{p_{i}} \lambda_{i,j} \tilde{p}_{A_{i,j}})$$

para $\sum_{i=1}^{n} e_{a_i} \cdot (\sum_{j=1}^{p_i} \lambda_{i,j} \chi_{A_{i,j}}) \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$ com $a_i \neq a_l$ para $i \neq l$ em $i, l = 1, \ldots, n$, $\lambda_{i,j} \in \mathbb{C}$, $\emptyset \neq A_{i,j} \in \mathcal{B}_{a_i}$ para $i = 1, \ldots, n$ e $j = 1, \ldots, p_i$, e $A_{i,j} \cap A_{i,k} = \emptyset$ para $j \neq k$ e $j, k = 1, \ldots, p_i$.

Para as relações de representação, pela propriedade 4.1, como a ação à direita de $\mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$ em $X(\mathcal{E},\mathcal{L},\mathcal{B})$ é contínua, e as aplicações t e π também são contínuas e lineares, podemos considerar para $e_a \cdot \chi_A \in X(\mathcal{E},\mathcal{L},\mathcal{B})$ e $\chi_D \in \mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B})$ com $a \in \mathcal{A}$, $A \in \mathcal{B}_a$ e $D \in \mathcal{B}$

$$t((e_a \cdot \chi_A) \cdot \chi_D) = t(e_a \cdot (\chi_{A \cap D})) = \tilde{s}_a \tilde{p}_{A \cap D} = \tilde{s}_a \tilde{p}_A \tilde{p}_D = t(e_a \cdot \chi_A) \pi(\chi_D),$$

para $b \in \mathcal{A}$ e $B \in \mathcal{B}_b$

$$t(e_{a} \cdot \chi_{A})^{*}t(e_{b} \cdot \chi_{B}) = \tilde{p}_{A}\tilde{s}_{a}^{*}\tilde{s}_{b}\tilde{p}_{B} = \delta_{a,b}\tilde{p}_{A}\tilde{s}_{a}^{*}\tilde{s}_{b}\tilde{p}_{B} = \delta_{a,b}\tilde{p}_{A\cap B} = \delta_{a,b}\pi(\chi_{A\cap B})$$
$$= \delta_{a,b}\pi(\langle e_{a} \cdot \chi_{A}, e_{b} \cdot \chi_{B} \rangle) = \pi(\langle e_{a} \cdot \chi_{A}, e_{b} \cdot \chi_{B} \rangle),$$

e para $C \in \mathcal{B}$

$$t(\varphi(\chi_C)(e_b \cdot \chi_B)) = t((\delta_{a,b}\chi_{r(C,b)\cap B})_{a\in\mathcal{A}}) = t(e_b \cdot (\chi_{r(C,b)\cap B})) = \tilde{s}_b \tilde{\rho}_{r(C,b)} \tilde{\rho}_B = \tilde{\rho}_C \tilde{s}_b \tilde{\rho}_B$$
$$= \pi(\chi_C)t(e_b \cdot \chi_B).$$

Portanto, para nossa C^* -correspondência $(X(\mathcal{E},\mathcal{L},\mathcal{B}),\varphi)$, temos uma bijeção entre representações e famílias.

Observação 4.1. A família de projeções e isometrias parciais $\{\tilde{p}_A, \tilde{s}_a\}$ satisfazendo as relações que aparecem no Lema 4.2 é denominada, para cada representação (π, t) , uma família de Toeplitz-Cuntz-Krieger para $(X(\mathcal{E}, \mathcal{L}, \mathcal{B}), \varphi)$.

Teorema 4.1. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. A álgebra de Toeplitz do espaço rotulado $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ é a C^* -algebra universal gerada por projeções $\{\tilde{p}_A\}_{A\in\mathcal{B}}$ e isometrias parciais $\{\tilde{s}_a\}_{a\in\mathcal{A}}$ satisfazendo as relações:

- (i) $\tilde{p}_{A \cap B} = \tilde{p}_A \tilde{p}_B$, $\tilde{p}_{A \cup B} = \tilde{p}_A + \tilde{p}_B \tilde{p}_{A \cap B}$ e $\tilde{p}_\emptyset = 0$ para todo $A, B \in \mathcal{B}$;
- (ii) $\tilde{p}_{A}\tilde{s}_{a} = \tilde{s}_{a}\tilde{p}_{r(A,a)}$ para todo $A \in \mathcal{B}$ e $a \in \mathcal{A}$; e
- (iii) $\tilde{s}_a^* \tilde{s}_a = \tilde{p}_{r(a)}$ e $\tilde{s}_b^* \tilde{s}_a = 0$ se $b \neq a$ para todo $a, b \in A$.

Demonstração. Segue diretamente do Lema 4.2.

Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e considere a álgebra de Toeplitz $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$. Para cada palavra $\alpha = \alpha_1 \cdots \alpha_n$, defina $\tilde{s}_{\alpha} = \tilde{s}_{\alpha_1} \cdots \tilde{s}_{\alpha_n}$; e para a palavra vazia ω , consideramos $\tilde{s}_{\omega} = 1$.

Observação 4.2. A álgebra $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ é gerada pelos elementos \tilde{s}_a e \tilde{p}_A . Assim, os elementos \tilde{s}_α definidos acima pertencem a $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ se α não é a palavra vazia. Se α é a palavra vazia, \tilde{s}_ω não pertence a $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, exceto quando essa álgebra é unital. Trabalhamos com a notação \tilde{s}_ω para simplificar, por exemplo, $\tilde{s}_\omega \tilde{p}_A \tilde{s}_\omega^*$ significa \tilde{p}_A . Nunca usamos \tilde{s}_ω sozinho.

Na proposição seguinte, temos algumas propriedades da álgebra $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$. Vale ressaltar que são as mesmas propriedades válidas para a álgebra do espaço rotulado $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, como pode ser visto na Proposição 3.4 de (BOAVA; DE CASTRO; MORTARI, 2017a), por exemplo.

Proposição 4.3. As seguintes propriedades são válidas em $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$.

- (i) Se $\alpha \notin \mathcal{L}^*$, então $\tilde{s}_{\alpha} = 0$.
- (ii) $\tilde{p}_{A}\tilde{s}_{\alpha} = \tilde{s}_{\alpha}\tilde{p}_{r(A,\alpha)}$ para todos $A \in \mathcal{B}$ e $\alpha \in \mathcal{L}^{*}$.
- $\textit{(iii)}\ \tilde{s}_{\alpha}^*\tilde{s}_{\alpha}=\tilde{p}_{r(\alpha)}\ e\ \tilde{s}_{\beta}^*\tilde{s}_{\alpha}=0\ se\ \beta\ e\ \alpha\ n\~{a}o\ s\~{a}o\ compar\'{a}veis\ para\ todos\ \alpha,\beta\in\mathcal{L}^{\geq 1}.$
- (iv) Para todos $\alpha \in \mathcal{L}^*$, \tilde{s}_{α} é isometria parcial.
- (v) Sejam $\alpha, \beta \in \mathcal{L}^*$ e $A \in \mathcal{B}$. Se $\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\beta}^* \neq 0$, então $A \cap r(\alpha) \cap r(\beta) \neq \emptyset$ e $\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\beta}^* = \tilde{s}_{\alpha}\tilde{p}_{A\cap r(\alpha)\cap r(\beta)}\tilde{s}_{\beta}^*$.
- (vi) Sejam $\alpha, \beta, \gamma, \delta \in \mathcal{L}^*$, $A \in \mathcal{B}_{\alpha} \cap \mathcal{B}_{\beta}$ e $B \in \mathcal{B}_{\gamma} \cap \mathcal{B}_{\delta}$. Então

$$(\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\beta}^{*})(\tilde{s}_{\gamma}\tilde{p}_{B}\tilde{s}_{\delta}^{*}) = \left\{ \begin{array}{ll} \tilde{s}_{\alpha\gamma'}\tilde{p}_{r(A,\gamma')\cap B}\tilde{s}_{\delta}^{*}, & \text{se } \gamma = \beta\gamma', \\ \tilde{s}_{\alpha}\tilde{p}_{A\cap r(B,\beta')}\tilde{s}_{\delta\beta'}^{*}, & \text{se } \beta = \gamma\beta', \\ 0, & \text{caso contrário.} \end{array} \right.$$

Em particular, $\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\beta}^{*}$ é isometria parcial.

(vii) Todo produto finito não nulo de termos do tipo \tilde{s}_a , \tilde{p}_B e \tilde{s}_b^* pode ser escrito como $\tilde{s}_{\alpha}\tilde{p}_A\tilde{s}_B^*$, em que $A \in \mathcal{B}_{\alpha} \cap \mathcal{B}_{\beta}$.

$$\textit{(viii)} \ \mathcal{T}\textit{C}^*(\mathcal{E},\mathcal{L},\mathcal{B}) = \overline{\textit{span}} \{ \tilde{\textit{s}}_{\alpha} \tilde{\textit{p}}_{\textit{A}} \tilde{\textit{s}}_{\textit{\beta}}^* : \alpha, \beta \in \mathcal{L}^* \ \textit{e} \ \textit{A} \in \mathcal{B}_{\alpha} \cap \mathcal{B}_{\textit{\beta}} \}.$$

(ix) Os elementos da forma $\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\alpha}^{*}$, em que $\alpha\in\mathcal{L}^{*}$, são projeções comutantes. Além disso,

$$(\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\alpha}^{*})(\tilde{s}_{\beta}\tilde{p}_{B}\tilde{s}_{\beta}^{*}) = \left\{ \begin{array}{ll} \tilde{s}_{\beta}\tilde{p}_{r(A,\beta')\cap B}\tilde{s}_{\beta}^{*}, & \text{se } \beta = \alpha\beta', \\ \tilde{s}_{\alpha}\tilde{p}_{A\cap r(B,\alpha')}\tilde{s}_{\alpha}^{*}, & \text{se } \alpha = \beta\alpha', \\ 0, & \text{caso contrário.} \end{array} \right.$$

Demonstração. É a mesma demonstração da Proposição 3.4 de (BOAVA; DE CASTRO; MORTARI, 2017a). □

A seguir definimos a subálgebra $\mathcal{T}\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, que nos será de extrema importância quando formos descrever os estados KMS e ground de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ no Capítulo 4.

Definição 4.3. Definimos a C^* -subalgebra diagonal $T\Delta(\mathcal{E}, \mathcal{L}, \mathcal{B})$ de $TC^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ como

$$\mathcal{T}\Delta(\mathcal{E},\mathcal{L},\mathcal{B}) = C^*(\{\tilde{s}_{\alpha}\tilde{\rho}_{A}\tilde{s}_{\alpha}^*: \alpha\in\mathcal{L}^*\ e\ A\in\mathcal{B}_{\alpha}\}) = \overline{\textit{span}}\{\tilde{s}_{\alpha}\tilde{\rho}_{A}\tilde{s}_{\alpha}^*: \alpha\in\mathcal{L}^*\ e\ A\in\mathcal{B}_{\alpha}\}.$$

Seguindo a mesma ideia de como foi feito para C^* -álgebras de grafos no livro do Raeburn (RAEBURN, 2005), temos o próximo resultado.

Proposição 4.4. Existe uma esperança condicional $\Psi \colon \mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B}) \to \mathcal{T}\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ tal que $\Psi(\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\beta}^*) = \delta_{\alpha,\beta}\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\beta}^*$ para todos $\alpha,\beta \in \mathcal{L}^*$ e $A \in \mathcal{B}_{\alpha} \cap \mathcal{B}_{\beta}$.

4.2 $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ COMO C^* -ÁLGEBRA DE GRUPOIDE

Em (BOAVA; DE CASTRO; MORTARI, 2020), os autores descrevem a álgebra do espaço rotulado $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ como uma álgebra de grupoide. Usando as mesmas ideias dos autores, nesta seção vamos descrever a álgebra de Toeplitz $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ como uma álgebra de grupoide usando o espaço de caminhos de ultrafiltros P da Definição 2.2.

Começamos construindo um grupoide de germes \mathcal{G}_{ult} . Seja $(\mathcal{E},\mathcal{L},\mathcal{B})$ um espaço rotulado normal com semigrupo inverso S, como definido no Capítulo 1. Para cada idempotente $e \in E(S)$, definimos $D_e = \{\varphi \in \hat{E}_{ult} : \varphi(e) = 1\}$ e $\Omega = \{(s,\varphi) \in S \times \hat{E}_{ult} : \varphi \in D_{S^*S}\}$. A ação θ de S em \hat{E}_{ult} é dada por

$$\theta_{\mathcal{S}}(\varphi)(e) = \varphi(s^*es). \tag{4.2}$$

Observação 4.3. Dados um elemento não nulo $s = (\mu, A, v) \in S$ e $\varphi \in \hat{E}_{ult}$, vamos caracterizar quando $\varphi(s^*s) = 1$. Como $s^*s = (v, A, v)$, se ξ^{α} é o filtro em E(S) associado com φ , então $\varphi(s^*s) = 1$ se, e somente se, $(v, A, v) \in \xi^{\alpha}$. Sabemos que isso acontece se, e somente se, v é o começo de α e $A \in \xi^{\alpha}_{|v|}$.

Para vermos a boa definição da ação dada por 4.2, usamos o lema a seguir, cuja demonstração é a mesma do Lema 3.6 de (BOAVA; DE CASTRO; MORTARI, 2020).

Lema 4.3. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Seja (t, φ) um elemento de Ω com $t = (\beta, A, \gamma)$ e $\varphi \in \hat{E}_{ult}$ um caracter associado com ξ^{α} tal que $\alpha = \gamma \alpha'$ para algum $\alpha' \in \mathcal{L}^{\leq \infty}$. Então $\eta = (G_{(\beta)\alpha'} \circ H_{[\gamma]\alpha'})(\xi^{\alpha})$ está bem definido e é o filtro associado com o caracter $\theta_t(\varphi)$ dado por 4.2.

A seguinte relação é uma relação de equivalência em Ω : $(s, \varphi) \sim (t, \psi)$ se, e somente se, $\varphi = \psi$ e existe $e \in E(S)$ tal que $\varphi \in D_e$ e se = te. Seja $\mathcal{G}_{ult} = \Omega \setminus \sim$, e denotemos a classe de (s, φ) por $[s, \varphi]$. Considere

$$\mathcal{G}_{ult}^{(2)} = \left\{ ([s, \varphi], [t, \psi]) \in \mathcal{G}_{ult} \times \mathcal{G}_{ult} : \varphi = \theta_t(\psi) \right\},$$

e para ([s, arphi],[t, arphi]) $\in \mathcal{G}_{ult}^{(2)}$ definimos

$$[s, \varphi] \cdot [t, \psi] = [st, \psi].$$

Além disso, para $[s, \varphi] \in \mathcal{G}_{ult}$

$$[s, \varphi]^{-1} = [s^*, \theta_s(\varphi)].$$

Então G_{ult} é um grupoide com as operações definidas acima.

Agora vamos definir um grupoide análogo ao grupoide de caminhos de fronteira de um grafo ((YEEND, 2007), (FARTHING; MUHLY; YEEND, 2005)) no âmbito de espaços rotulados.

Proposição 4.5. Dado $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, definimos

$$\Gamma = \left\{ (\xi^{\alpha\gamma}, |\alpha| - |\beta|, \eta^{\beta\gamma}) \in \mathsf{P} \times \mathbb{Z} \times \mathsf{P} : H_{[\alpha]\gamma}(\xi^{\alpha\gamma}) = H_{[\beta]\gamma}(\eta^{\beta\gamma}) \right\}.$$

Então Γ é um grupoide com produto dado por

$$(\xi, m, \eta)(\eta, n, \rho) = (\xi, m + n, \rho)$$

e inverso dado por

$$(\xi, m, \eta)^{-1} = (\eta, -m, \xi).$$

Demonstração. É a mesma demonstração da Proposição 3.4 de (BOAVA; DE CASTRO; MORTARI, 2020). □

Na próxima proposição, temos que os grupoides \mathcal{G}_{ult} e Γ são isomorfos.

Proposição 4.6. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Então

$$\Phi \colon \mathcal{G}_{IIIt} \to \Gamma$$

que associa a classe $[t, \varphi]$ à tripla $((G_{(\beta)\alpha'} \circ H_{[\gamma]\alpha'})(\xi^{\alpha}), |\beta| - |\gamma|, \xi^{\alpha})$ é um isomorfismo bem definido de grupoides em que ξ^{α} é o filtro associado com φ e $t = (\beta, A, \gamma)$ de modo que $(\gamma, A, \gamma) \in \xi^{\alpha}$ e $\alpha = \gamma \alpha'$ para algum $\alpha' \in \mathcal{L}^{\leq \infty}$.

Demonstração. É a mesma demonstração do Teorema 3.7 de (BOAVA; DE CASTRO; MORTARI, 2020). □

Nosso objetivo agora é definir a topologia que usaremos em Γ , para que Γ seja um grupoide topológico étale.

Para a topologia em \mathcal{G}_{ult} dada em (EXEL, 2008), dados $s \in S$ e um conjunto aberto $\mathcal{U} \subseteq D_{S^*S}$, defina

$$\Theta(s, \mathcal{U}) = \{ [s, \varphi] \in \mathcal{G}_{ult} : \varphi \in \mathcal{U} \}.$$

Então a coleção de todos $\Theta(s,\mathcal{U})$ é base para uma topologia em \mathcal{G}_{ult} tal que esse grupoide é um grupoide topológico étale.

Definimos uma coleção de subconjuntos em Γ como segue. Dados $s=(\mu,A,v)\in S$ e $e,e_1,\ldots,e_n\in E(S)$, defina

$$Z_{s,e;e_1,\ldots,e_n} = \left\{ (\eta^{\mu\gamma},|\mu|-|\nu|,\xi^{\nu\gamma}) \in \Gamma : \xi \in V_{e;e_1,\ldots,e_n} \, \text{e} \, H_{[\mu]\gamma}(\eta) = H_{[\nu]\gamma}(\xi) \right\}.$$

Observação 4.4. Na definição acima, se $e = s^*s$, usamos a notação $Z_{s;e_1,...,e_n}$. Quando n é zero, denotamos $Z_{s;e}$ ou Z_s quando $e = s^*s$.

Proposição 4.7. Os conjuntos $Z_{s,e;e_1,...,e_n}$ definidos acima formam uma base de conjuntos abertos e compactos para a topologia Hausdorff em Γ induzida pela aplicação Φ da Proposição 4.6 da topologia em \mathcal{G}_{ult} dada pelos conjuntos $\Theta(s,\mathcal{U})$.

Demonstração. É a mesma demonstração da Proposição 4.4 de (BOAVA; DE CASTRO; MORTARI, 2020) e Corolário 4.7 de (BOAVA; DE CASTRO; MORTARI, 2020). □

Agora vamos mostrar que Γ pode ser visto como um grupoide de Renault-Deaconu, para mais detalhes sobre este grupoide sugerimos a Seção 2.4. Para isso, definimos, para cada $n \in \mathbb{N}$ com $n \geq 1$, $\mathsf{P}^{(n)} = \{\xi^\alpha \in \mathsf{P} : \alpha \in \mathcal{L}^{\leq \infty} \, \mathsf{e} \, |\alpha| \geq n \}$ e $\sigma \colon \mathsf{P}^{(1)} \to \mathsf{P} \, \mathsf{por} \, \sigma(\xi^\alpha) = H_{\mathsf{Ialv}}(\xi) \, \mathsf{se} \, \alpha = a\gamma$.

Proposição 4.8. Sejam $P^{(1)}$ e σ como acima. Então:

- (i) P⁽¹⁾ é aberto;
- (ii) σ é um homeomorfismo local.

Demonstração. É a mesma demonstração da Proposição 4.8 de (BOAVA; DE CASTRO; MORTARI, 2020). □

Para $\xi^{\alpha} \in \mathsf{P}^{(1)}$, o comprimento da palavra associada com $\sigma(\xi)$ é $|\alpha|-1$. Daí, para $n \in \mathbb{N}$ com $n \geq 1$, $\mathrm{dom}(\sigma^n) = \mathsf{P}^{(n)}$. Além disso, se $\xi = \xi^{\alpha\beta}$, então, pelo Teorema 2.6, $\sigma^{|\alpha|}(\xi) = H_{[\alpha]\beta}(\xi)$. Daí,

$$\Gamma = \left\{ (\eta, m - n, \xi) : m, n \in \mathbb{N}, \ \eta \in \text{dom}(\sigma^m), \ \xi \in \text{dom}(\sigma^n) \ \text{e} \ \sigma^m(\eta) = \sigma^n(\xi) \right\},$$

isto é, Γ é o grupoide de Renault-Deaconu associado com σ .

Além disso, usando um raciocínio análogo ao da demonstração da Proposição 4.10 de (BOAVA; DE CASTRO; MORTARI, 2020), temos que a topologia dada na Proposição 4.7 é a mesma que é dada em (RENAULT, 2000), a qual é a topologia definida pelos conjuntos abertos básicos

$$V(X, Y, m, n) = \{ (\eta, m - n, \xi) : (\eta, \xi) \in X \times Y e \sigma^{m}(\eta) = \sigma^{n}(\xi) \},$$
 4.3

em que X (respectivamente Y) é um subconjunto aberto de dom (σ^m) (respectivamente dom (σ^n)) tal que $\sigma^m|_X$ (respectivamente $\sigma^n|_Y$) é injetivo.

Corolário 4.1. O grupoide Γ é amenable, daí as suas C*-álgebras cheia e reduzida coincidem.

Demonstração. É a mesma demonstração do Corolário 4.11 de (BOAVA; DE CASTRO; MORTARI, 2020). □

Agora vamos começar a construir o isomorfismo entre $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ e $C^*(\Gamma)$. Lembramos de (RENAULT, 2000) que, como Γ é um grupoide étale, o sistema de Haar correspondente a Γ é dado por medidas de contagem e para $f,g\in C_{\mathcal{C}}(\Gamma)$ seu produto é dado por

$$(f * g)(\eta, n, \xi) = \sum_{\zeta, m: (\eta, m, \zeta) \in \Gamma} f(\eta, m, \zeta) g(\zeta, n - m, \xi).$$

$$4.4$$

Proposição 4.9. Considere as seguintes funções em $C_c(\Gamma)$

$$P_A = \chi_{Z_{(\omega,A,\omega)}}$$

$$S_a = \chi_{Z_{(a,r(a),\omega)}}$$

vistas como elementos de $C^*(\Gamma)$, em que $A \in \mathcal{B}$, $a \in \mathcal{A}$ e χ representa a função característica do conjunto dado. Então $(\{P_A\}_{A \in \mathcal{B}}, \{S_a\}_{a \in \mathcal{A}})$ é uma família de Toeplitz-Cuntz-Krieger para $(X(\mathcal{E}, \mathcal{L}, \mathcal{B}), \varphi)$ na C^* -álgebra $C^*(\Gamma)$.

Demonstração. É a mesma demonstração da Proposição 5.1 de (BOAVA; DE CASTRO; MORTARI, 2020), exceto a última relação que aparece na definição da C^* -álgebra do espaço rotulado, a qual não precisamos.

Observação 4.5. Vamos denotar a representação de $X(\mathcal{E}, \mathcal{L}, \mathcal{B})$ relativa à família de Toeplitz-Cuntz-Krieger da Proposição 4.9 por $(\tilde{\pi}, \tilde{t})$.

Usando a propriedade universal de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ do Teorema 4.1, existe um *-homomorfismo

$$\rho: \mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to C^*(\Gamma)$$
4.5

tal que $\rho(\tilde{p}_A) = P_A$ para todo $A \in \mathcal{B}$ e $\rho(\tilde{s}_a) = S_a$ para todo $a \in \mathcal{A}$. Nosso objetivo é mostrar que ρ é um isomorfismo. Para provar que ρ é injetivo, usamos o teorema da unicidade da invariância de gauge para a álgebra de Toeplitz, Teorema 4.2.

Definição 4.4. (KATSURA, 2004, Definição 5.8) Para uma representação (π, t) da C^* -correspondência $X(\mathcal{E}, \mathcal{L}, \mathcal{B})$, definimos

$$l_{(\pi,t)}' = \{ f \in \mathcal{A}(\mathcal{E},\mathcal{L},\mathcal{B}) : \pi(f) \in \psi_t(\mathcal{K}(X(\mathcal{E},\mathcal{L},\mathcal{B}))) \},$$

que é um ideal bilateral fechado de $A(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Definição 4.5. (KATSURA, 2004, Definição 5.6) A representação (π, t) de $X(\mathcal{E}, \mathcal{L}, \mathcal{B})$ admite uma ação de gauge se para cada $z \in \mathbb{T}$ existe um *-homomorfismo $\beta_z \colon C^*(\pi, t) \to C^*(\pi, t)$ tal que $\beta_z(\pi(f)) = \pi(f)$ e $\beta_z(t(x)) = zt(x)$ para todo $f \in \mathcal{A}(\mathcal{E}, \mathcal{L}, \mathcal{B})$ e $x \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Teorema 4.2. (KATSURA, 2004, Teorema 6.2) Seja X uma C^* -correspondência sobre uma C^* -álgebra A. Para uma representação (π,t) de X, a sobrejeção natural $\rho: \mathcal{T}_X \to C^*(\pi,t)$, que vem da propriedade universal da C^* -álgebra de Toeplitz, é um isomorfismo se, e somente se, (π,t) satisfaz $I'_{(\pi,t)}=0$ e admite uma ação de gauge.

Lema 4.4. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Para nossa C^* -correspondência $X(\mathcal{E}, \mathcal{L}, \mathcal{B})$, o ideal $I'_{(\tilde{\pi}, \tilde{t})}$ é nulo.

Demonstração. Para $x = e_a \cdot \chi_A = (\delta_{a,b}\chi_A)_{b \in \mathcal{A}} \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$ com $A \in \mathcal{B}_a$, $y = e_b \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$, e $D \in \mathcal{B}$, vamos considerar o caso particular

$$P_D = \tilde{\pi}(\chi_D) = \psi_{\tilde{t}}(\theta_{X,y}) = \tilde{t}(X)\tilde{t}(y)^* = \tilde{t}(e_a \cdot \chi_A)\tilde{t}(e_b)^* = \tilde{t}(e_a)\tilde{\pi}(\chi_A)\tilde{t}(e_b)^* = S_a * P_A * S_b^*.$$
4.6

Para a igualdade 4.6, vamos mostrar que $D=\emptyset$ necessariamente. Supondo $D\neq\emptyset$, seja $\eta\in P$ o filtro associado a palavra vazia ω e família completa formada apenas por um ultrafiltro contendo o elemento $D\in\mathcal{B}$. Considerando a tripla $(\eta,0,\eta)\in\Gamma$, temos $P_D(\eta,0,\eta)=1$, mas, por outro lado, $S_a(\eta,n,\zeta)=0$ para toda tripla $(\eta,n,\zeta)\in\Gamma$, pois η não é um ultrafiltro associado a uma palavra que começa com a, daí $S_a*P_A*S_b^*(\eta,0,\eta)=0$, o que é absurdo.

Pela igualdade 4.1, para $x, y \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$ quaisquer e $D \in \mathcal{B}$, se tivermos o seguinte caso particular

$$\tilde{\pi}(\chi_D) = \psi_{\tilde{t}}(\theta_{X,y}) = \tilde{t}(x)\tilde{t}(y)^*,$$

também temos que ter necessariamente $D = \emptyset$. Pela definição de $\mathcal{K}(X(\mathcal{E}, \mathcal{L}, \mathcal{B}))$, dado $u \in \mathcal{K}(X(\mathcal{E}, \mathcal{L}, \mathcal{B}))$, se tivermos o seguinte caso particular

$$\tilde{\pi}(\chi_D) = \psi_{\tilde{t}}(u),$$

também temos que ter necessariamente $D = \emptyset$. Por fim, pela Proposição 4.1, temos que o ideal $I'_{(\tilde{\pi},\tilde{t})}$ é nulo.

Lema 4.5. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Então $C^*(\tilde{\pi}, \tilde{t}) = C^*(\Gamma)$.

Demonstração. Segue da demonstração da Proposição 5.7 de (BOAVA; DE CASTRO; MORTARI, 2020).

Teorema 4.3. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe um isomorfismo

$$ho: \mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})
ightarrow C^*(\Gamma)$$

tal que $\rho(\tilde{p}_A) = P_A$ para todo $A \in \mathcal{B}$ e $\rho(\tilde{s}_a) = S_a$ para todo $a \in \mathcal{A}$.

Demonstração. Vamos usar o Teorema 4.2 e o homomorfismo ρ de 4.5. Pelo Lema 4.5, a aplicação ρ é sobrejetora e $C^*(\tilde{\pi}, \tilde{t}) = C^*(\Gamma)$. Pelo Lema 4.4, o ideal $I'_{(\tilde{\pi}, \tilde{t})}$ é nulo. Para encontrar a ação de \mathbb{T} em $C^*(\Gamma)$, consideramos o um-cocliclo $c: \Gamma \to \mathbb{R}$ dado por $c(\eta, k, \xi) = k$ analogamente ao que é feito em (DEACONU, 1995).

4.3 $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ COMO PRODUTO CRUZADO PARCIAL

Nesta seção vamos mostrar que a álgebra de Toeplitz do espaço rotulado $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ é isomorfa a um produto cruzado parcial, sendo que esse produto cruzado parcial vem da ação do grupo livre gerado por \mathcal{A} no espaço topológico de filtros P.

Nossa construção segue o mesmo modelo da construção para grafos (CARLSEN; LARSEN, 2016) e da descrição da álgebra do espaço rotulado $C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ como produto cruzado parcial (DE CASTRO; VAN WYK, 2020).

Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Vamos descrever os domínios e contradomínios abertos para a ação parcial em P. Seja $\alpha \in \mathcal{L}^*$. Então

$$\bigcup \{\mathsf{P}_{(\alpha)\beta}:\beta\in\overline{\mathcal{L}^{\leq\infty}}\,\mathsf{e}\,\alpha\beta\in\overline{\mathcal{L}^{\leq\infty}}\}$$

é o conjunto de todos os filtros de P cujo caminho rotulado associado pode ser colado a α , e

$$\bigcup \{\mathsf{P}_{\alpha\beta}: \beta \in \overline{\mathcal{L}^{\leq \infty}} \, \mathsf{e} \, \alpha\beta \in \overline{\mathcal{L}^{\leq \infty}} \}$$

é o conjunto de todos os filtros de P cuja palavra associada começa com α . Se $\beta, \gamma \in \overline{\mathcal{L}^{\leq \infty}}$ e $\beta \neq \gamma$, então $P_{\alpha\beta} \cap P_{\alpha\gamma} = \emptyset$ e $P_{(\alpha)\beta} \cap P_{(\alpha)\gamma} = \emptyset$ para todo $\alpha \in \mathcal{L}^*$. Assim, as uniões acima são uniões disjuntas para um α fixo. Para simplificar a notação, escrevemos $\bigsqcup_{\beta} P_{(\alpha)\beta}$ ficando subentendido que a união é tomada sobre todo $\beta \in \overline{\mathcal{L}^{\leq \infty}}$ tal que $\alpha\beta \in \overline{\mathcal{L}^{\leq \infty}}$. Além disso, $\bigsqcup_{\beta} P_{\alpha\beta} = \bigsqcup_{\beta} P_{(\alpha)\beta} = P$.

Lema 4.6. Seja $\alpha \in \mathcal{L}^{\geq 1}$. Então

(i)
$$V_{(\alpha,r(\alpha),\alpha)} = \bigsqcup_{\beta} P_{\alpha\beta}$$
, e
(ii) $V_{(\omega,r(\alpha),\omega)} = \bigsqcup_{\beta} P_{(\alpha)\beta}$.

Demonstração. É a mesma demonstração do Lema 3.4 de (DE CASTRO; VAN WYK, 2020). □

Agora vamos definir uma ação parcial do grupo livre $\mathbb F$ gerado por $\mathcal A$ (identificando a identidade de $\mathbb F$ com ω) em P. Seja $a\in \mathcal A$. Definimos

$$V_{\omega} := P,$$

 $V_a := V_{(a,r(a),a)}, e$
 $V_{a^{-1}} := V_{(\omega,r(a),\omega)}.$

Além disso, definimos $\varphi_a\colon V_{a^{-1}} o V_a$ por

$$\varphi_{a|_{\mathsf{P}_{(a)\beta}}} = G_{(a)\beta}, \qquad 4.7$$

e
$$\varphi_a^{-1}$$
 : $V_a o V_{a^{-1}}$ por

$$\varphi_a^{-1}|_{\mathsf{P}_{a\beta}} = H_{[a]\beta},\tag{4.8}$$

em que G e H são as aplicações colante e cortante definidas na Seção 2.2. Para a palavra vazia ω , definimos φ_{ω} sendo a aplicação identidade id $_{P}$ em P. Seja $t \in \mathbb{F}$

e suponha que $t = a_n \cdots a_1$ é a forma reduzida de t, com $a_i \in \mathcal{A} \cup \mathcal{A}^{-1}$ e $n \geq 2$. Estendemos as definições acima a φ_t indutivamente como segue: consideramos

$$V_{t^{-1}} = V_{(a_n \cdots a_1)^{-1}} = \varphi_{a_{n-1} \cdots a_1}^{-1}(V_{a_n^{-1}}); e$$

$$\varphi_t(\xi) = \varphi_{a_n \cdots a_1}(\xi) = \varphi_{a_n}(\varphi_{a_{n-1} \cdots a_1}(\xi))$$
4.9

para $\xi \in V_{(a_n \cdots a_1)^{-1}}$.

Observação 4.6. Como $G_{(a)\beta}$ e $H_{[a]\beta}$ são inversas uma da outra (Proposição 2.5), se $a \in \mathcal{A}$, então φ_a e $\varphi_{a^{-1}}$ são bijeções e $\varphi_a^{-1} = \varphi_{a^{-1}}$. Suponha que $\alpha\beta \in \mathbb{F}$ está na forma reduzida, sendo $\alpha = a_1 \cdots a_m$ e $\beta = b_1 \cdots b_n$ com $a_i, b_j \in \mathcal{A} \cup \mathcal{A}^{-1}$. Então pela Equação 4.9 temos

$$\varphi_{\alpha\beta} = \varphi_{a_1} \circ \cdots \circ \varphi_{a_m} \circ \varphi_{b_1} \circ \cdots \circ \varphi_{b_n} = \varphi_{\alpha} \circ \varphi_{\beta}$$

no domínio apropriado $V_{(a\beta)^{-1}}$. Além disso, $V_{(\alpha\beta)^{-1}}=\varphi_{\beta}^{-1}(V_{\alpha^{-1}})\subseteq V_{\beta^{-1}}$.

Na Proposição 4.10, mostramos que as aplicações definidas em 4.7, 4.8 e 4.9 fornecem uma ação parcial de \mathbb{F} em P. Para isso, precisamos de alguns lemas.

Lema 4.7. Se $\alpha \in \mathcal{L}^{\geq 1}$, então $V_{\alpha^{-1}} = V_{(\omega, r(\alpha), \omega)}$, $V_{\alpha} = V_{(\alpha, r(\alpha), \alpha)}$ e $\varphi_{a}(\xi^{\beta}) = G_{(a)\beta}(\xi^{\beta})$ para todo $\xi^{\beta} \in V_{\alpha^{-1}}$.

Demonstração. É a mesma demonstração do Lema 3.9 de (DE CASTRO; VAN WYK, 2020). □

Lema 4.8. Sejam $\alpha, \beta \in \mathcal{L}^{\geq 1}$ e suponha que $\alpha \beta^{-1} \in \mathbb{F}$ está na forma reduzida. Então as seguintes afirmações são equivalentes:

- (i) $r(\alpha) \cap r(\beta) \neq \emptyset$,
- (ii) $V_{\alpha^{-1}} \cap V_{\beta^{-1}} \neq \emptyset$, e
- (iii) $V_{(\alpha\beta^{-1})^{-1}} \neq \emptyset$.

Demonstração. É a mesma demonstração do Lema 3.10 de (DE CASTRO; VAN WYK, 2020). Na implicação (*i*) ⇒ (*ii*), pelo Lema de Zorn, conseguimos um ultrafiltro \mathcal{F}_0 em \mathcal{B} contendo $r(\alpha) \cap r(\beta)$. Seja $\xi \in P$ o filtro associado a palavra vazia ω e família completa formada apenas pelo ultrafiltro \mathcal{F}_0 . Como (ω , $r(\alpha)$, ω), (ω , $r(\beta)$, ω) ∈ ξ , então $\xi \in V_{\alpha^{-1}} \cap V_{\beta^{-1}}$.

Lema 4.9. Seja $t \in \mathbb{F}$ na forma reduzida. Então V_t e φ_t como definidos em 4.9 satisfazem as seguintes condições:

(i) Se $\alpha = a_1 \cdots a_n, \beta = b_1 \cdots b_m \in \mathcal{L}^{\geq 1}$ são tais que $a_n \neq b_m$ e $r(\alpha) \cap r(\beta) \neq \emptyset$, então $\emptyset \neq V_{\beta\alpha^{-1}} \subseteq V_{\beta}$ e $\varphi_{\alpha\beta^{-1}}(\xi^{\beta\gamma}) = G_{(\alpha)\gamma} \circ H_{[\beta]\gamma}(\xi^{\beta\gamma})$ para todo $\xi^{\beta\gamma} \in V_{\beta\alpha^{-1}}$. (ii) Se $t \notin \{\omega\} \cup \{\alpha : \alpha \in \mathcal{L}^{\geq 1}\} \cup \{\alpha^{-1} : \alpha \in \mathcal{L}^{\geq 1}\} \cup \{\beta\alpha^{-1} : \beta, \alpha \in \mathcal{L}^{\geq 1}, r(\alpha) \cap r(\beta) \neq \emptyset\}$,

então $V_t = V_{t-1} = \emptyset$.

Demonstração. É a mesma demonstração do Lema 3.11 de (DE CASTRO; VAN WYK, 2020). □

Proposição 4.10. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Então

$$(\{V_t\}_{t\in\mathbb{F}}, \{\varphi_t\}_{t\in\mathbb{F}})$$

é uma ação parcial semissaturada e ortogonal de \mathbb{F} em P.

Demonstração. É a mesma demonstração da Proposição 3.12 de (DE CASTRO; VAN WYK, 2020). □

Agora vamos mostrar que a C^* -álgebra produto cruzado parcial obtida da ação parcial da Proposição 4.10 é isomorfa a C^* -álgebra de Toeplitz do espaço rotulado $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$.

Começamos descrevendo a C^* -álgebra produto cruzado parcial $C_0(P) \rtimes_{\hat{\varphi}} \mathbb{F}$. Sejam $(\mathcal{E},\mathcal{L},\mathcal{B})$ um espaço rotulado normal e $(\{V_t\}_{t\in\mathbb{F}},\{\varphi_t\}_{t\in\mathbb{F}})$ a ação parcial associada com $(\mathcal{E},\mathcal{L},\mathcal{B})$ como na Proposição 4.10. Para todo $\alpha\in\mathcal{L}^*$ e $A\in\mathcal{B}_\alpha$, o subconjunto $V_{(\alpha,A,\alpha)}\subset P$ é compacto e aberto, com exceção de $V_\omega=P$ que pode não ser compacto. Assim, toda $f\in C_0(V_{(\alpha,A,\alpha)})$ pode e será vista como uma função em $C_0(P)$ tomando $f(\xi)=0$ se $\xi\notin V_{(\alpha,A,\alpha)}$. Além disso, $C_0(V_{(\alpha,A,\alpha)})$ é um ideal bilateral fechado de $C_0(P)$ e assim uma C^* -subalgebra. Em particular, isto se aplica aos conjuntos $\{V_t\}_{t\in\mathbb{F}\setminus\{\omega\}}$ pelo Lema 4.9. Consideramos

$$D_t = C_0(V_t) e D_{t-1} = C_0(V_{t-1}).$$

Definimos $\hat{\varphi}_t \colon D_{t^{-1}} \to D_t$ por

$$\hat{\varphi}_t(f) = f \circ \varphi_{t-1},$$

e definimos $\hat{\varphi}_{t^{-1}}$: $D_t \to D_{t^{-1}}$ analogamente. Então, ($\{D_t\}_{t \in \mathbb{F}}, \{\hat{\varphi}_t\}_{t \in \mathbb{F}}$) é um C^* -sistema dinâmico algébrico parcial, sugerimos, por exemplo, (EXEL; LACA, 2003). Assim, podemos considerar o produto cruzado parcial

$$C_0(\mathsf{P})
ightarrow_{\hat{\varphi}} \mathbb{F} = \overline{\mathsf{span}} \Biggl\{ \sum_{t \in \mathbb{F}} f_t \delta_t : f_t \in D_t \, \mathsf{e} \, f_t
eq 0 \, \mathsf{para} \, \mathsf{uma} \, \mathsf{quantidade} \, \mathsf{finita} \, \mathsf{de} \, t \in \mathbb{F} \Biggr\},$$

em que o fecho é relativo à norma universal (sugerimos por exemplo (EXEL, 2017, Definição 11.11)). Lembramos que a multiplicação e a involução em $C_0(P) \rtimes_{\hat{\varphi}} \mathbb{F}$ são dadas por

$$(a\delta_S)(b\delta_t) = \hat{\varphi}_S(\hat{\varphi}_{S^{-1}}(a)b)\delta_{St}$$
, e
 $(a\delta_S)^* = \hat{\varphi}_{S^{-1}}(a)\delta_{S^{-1}}$.

Pelo Teorema 4.1, a C^* -álgebra de Toeplitz do espaço rotulado $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ é gerada por um conjunto de projeções $\{\tilde{p}_A : A \in \mathcal{B}\}\$ e um conjunto de isometrias parciais $\{\tilde{s}_a:a\in\mathcal{A}\}$ sujeitas a certas relações. Se $A\in\mathcal{B}$ e $\alpha\in\mathcal{L}^*$, então tomamos $\chi_{V_{(\alpha,A,lpha)}}$ denotando a função característica de $V_{(\alpha,A,\alpha)}$. No Lema 4.10, mostramos que a álgebra $C_0(P)$ é gerada por essas funções características.

Lema 4.10. A C^* -álgebra $C_0(P)$ é gerada pelo conjunto

$$\{\chi_{V_{(\alpha,A,\alpha)}}: \alpha\in\mathcal{L}^*\ e\ A\in\mathcal{B}_{\alpha}\}.$$

Demonstração. É a mesma demonstração do Lema 4.3 de (DE CASTRO; VAN WYK, 2020).

Consideramos χ_A denotando a função característica de $V_{(\omega,A,\omega)}$ e χ_α a função característica de $V_{(\alpha,r(\alpha),\alpha)}$. Na Proposição 4.11, vemos que a C^* -subálgebra gerada por $\{\chi_A \delta_\omega, \chi_a \delta_a : a \in \mathcal{A} \in \mathcal{A} \in \mathcal{B}\}$ e a C^* -álgebra produto cruzado parcial $C_0(P) \rtimes_{\hat{\omega}} \mathbb{F}$ são as mesmas. No Lema 4.11, temos algumas propriedades de cálculos envolvendo essas funções características.

Lema 4.11. Seja $C^*(\{\chi_A\delta_\omega,\chi_a\delta_a\})\subset C_0(\mathsf{P})\rtimes_{\hat{\omega}}\mathbb{F}$ a C^* -subálgebra gerada pelo conjunto $\{\chi_A\delta_{\omega},\chi_a\delta_a:a\in\mathcal{A}\ e\ A\in\mathcal{B}\}$. Então

- $\begin{array}{l} \textit{(i)}\ \hat{\phi}_{\alpha^{-1}}(\chi_{V_{(\alpha,A,\alpha)}}) = \chi_{V_{(\omega,A,\omega)}}\ e\ \hat{\phi}_{\alpha}(\chi_{V_{(\omega,A,\omega)}}) = \chi_{V_{(\alpha,A,\alpha)}}\ \ \text{para todo}\ \alpha \in \mathcal{L}^{\geq 1}\ \ e\ A \in \mathcal{B}_{\alpha}. \\ \textit{(ii)}\ \chi_{\alpha}\delta_{\alpha} = (\chi_{a_{1}}\delta_{a_{1}}) \cdots (\chi_{a_{n}}\delta_{a_{n}})\ \ \text{para todo}\ \alpha \in \mathcal{L}^{\geq 1}\ \ \text{em que}\ \alpha = a_{1}a_{2}\cdots a_{n}. \end{array}$
- (iii) $(\chi_{\alpha}\delta_{\alpha})(\chi_{A}\delta_{\omega})(\chi_{\alpha}\delta_{\alpha})^{*} = \chi_{V_{(\alpha,A,\alpha)}}\delta_{\omega}$ para todo $\alpha \in \mathcal{L}^{\geq 1}$ e $A \in \mathcal{B}_{\alpha}$.
- (iv) $(\chi_{\alpha}\delta_{\alpha})^* = \chi_{r(\alpha)}\delta_{\alpha^{-1}} = \chi_{\alpha^{-1}}\delta_{\alpha^{-1}}$ para todo $\alpha \in \mathcal{L}^{\geq 1}$.
- $\textit{(v)}\ \chi_{\alpha\beta^{-1}}\delta_{\alpha\beta^{-1}}=(\chi_{\alpha}\delta_{\alpha})(\chi_{\beta^{-1}}\delta_{\beta^{-1}})\ \textit{para todo}\ \alpha,\beta\in\mathcal{L}^{\geq 1}\ \textit{tal que}\ \alpha\beta^{-1}\in\mathbb{F}\ \textit{está na forma}$ reduzida.
- (vi) $(\chi_A \delta_\omega)(\chi_a \delta_a) = (\chi_a \delta_a)(\chi_{r(A,a)} \delta_\omega)$ para todo $a \in \mathcal{A}$ e $A \in \mathcal{B}$.

Demonstração. É a mesma demonstração do Lema 4.4 de (DE CASTRO; VAN WYK, 2020).

Na próxima proposição, vemos que $C_0(P)\rtimes_{\hat{\omega}}\mathbb{F}$, assim como $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, possui geradores indexados por elementos $A \in \mathcal{B}$ e letras $a \in \mathcal{A}$. Essa informação será útil para definirmos um isomorfismo entre essas C^* -álgebras.

Proposição 4.11. Seja $C^*(\{\chi_A\delta_\omega,\chi_a\delta_a\})\subseteq C_0(\mathsf{P})\rtimes_{\hat{\omega}}\mathbb{F}$ a C^* -subálgebra gerada pelo conjunto $\{\chi_A\delta_{\omega}, \chi_a\delta_a : A \in \mathcal{B} \ e \ a \in \mathcal{A}\}$. Então

$$C_0(\mathsf{P}) \rtimes_{\hat{\omega}} \mathbb{F} = C^*(\{\chi_A \delta_\omega, \chi_a \delta_a\}).$$

Demonstração. É a mesma demonstração da Proposição 4.6 de (DE CASTRO; VAN WYK, 2020).

No Teorema 4.4, provamos o resultado principal desta seção.

Teorema 4.4. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe um *-isomorfismo ψ de $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ em $C_0(P) \rtimes_{\hat{\omega}} \mathbb{F}$ tal que

$$\psi(\tilde{p}_A) = \chi_A \delta_{\omega}$$
 e $\psi(\tilde{s}_a) = \chi_a \delta_a$.

Demonstração. Para garantirmos que as famílias de projeções $\{\chi_A\delta_\omega\}_{A\in\mathcal{B}}$ e isometrias parciais $\{\chi_a\delta_a\}_{a\in\mathcal{A}}$ satisfazem as relações do Teorema 4.1, usamos a verificação já feita no Teorema 4.8 de (DE CASTRO; VAN WYK, 2020), pois é a mesma verificação.

Pela propriedade universal de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ e pela Proposição 4.11, existe um homomorfismo sobrejetor $\psi\colon \mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})\to C_0(P)\rtimes_{\hat{\omega}}\mathbb{F}$ tal que

$$\psi(\tilde{\rho}_A) = \chi_A \delta_{\omega}$$
 e $\psi(\tilde{s}_a) = \chi_a \delta_a$.

Vamos denotar a representação da C^* -correspondência $(X(\mathcal{E},\mathcal{L},\mathcal{B}),\varphi)$ relativa a essa família de Toeplitz-Cuntz-Krieger por $(\tilde{\pi},\tilde{t})$. Para mostrarmos que ψ é injetora, vamos usar o Teorema 4.2. Como a ação parcial é semissaturada e ortogonal, segue de (EXEL; LACA, 2003, Teorema 4.3) e a discussão precedente a esse teorema que a representação $(\tilde{\pi},\tilde{t})$ admite uma ação de gauge. Por fim, vamos mostrar que o ideal $I'_{(\tilde{\pi},\tilde{t})}$ da Definição 4.4 é trivialmente nulo. Dados $x=e_a\cdot\chi_A=(\delta_{a,b}\chi_A)_{b\in\mathcal{A}}\in X(\mathcal{E},\mathcal{L},\mathcal{B})$ com $A\in\mathcal{B}_a,\ y=e_b\in X(\mathcal{E},\mathcal{L},\mathcal{B}),\ e\ D\in\mathcal{B},\ vamos\ considerar\ o\ caso\ particular$

$$\chi_{D}\delta_{\omega} = \tilde{\pi}(\chi_{D}) = \psi_{\tilde{t}}(\theta_{X,y}) = \tilde{t}(x)\tilde{t}(y)^{*} = \tilde{t}(e_{a} \cdot \chi_{A})\tilde{t}(e_{b})^{*} = \tilde{t}(e_{a})\tilde{\pi}(\chi_{A})\tilde{t}(e_{b})^{*} \\
= (\chi_{a}\delta_{a})(\chi_{A}\delta_{\omega})(\chi_{b}\delta_{b})^{*} = (\hat{\varphi}_{a}(\hat{\varphi}_{a^{-1}}(\chi_{a})\chi_{A})\delta_{a\omega})(\hat{\varphi}_{b^{-1}}(\chi_{b})\delta_{b^{-1}}) \\
= (\hat{\varphi}_{a}(\chi_{A})\delta_{a})(\chi_{r(b)}\delta_{b^{-1}}) = (\chi_{V_{(a,A,a)}}\delta_{a})(\chi_{V_{(\omega,r(b),\omega)}}\delta_{b^{-1}}) \\
= \hat{\varphi}_{a}(\hat{\varphi}_{a^{-1}}(\chi_{V_{(a,A,a)}})\chi_{V_{(\omega,r(b),\omega)}})\delta_{ab^{-1}} = \hat{\varphi}_{a}(\chi_{A}\chi_{r(b)})\delta_{ab^{-1}} = \chi_{V_{(a,A\cap r(b),a)}}\delta_{ab^{-1}}. \quad 4.10$$

Para a igualdade 4.10, vamos mostrar que $D=\emptyset$ necessariamente. Supondo $D\neq\emptyset$, primeiramente temos que ter a=b. Seja $\eta\in P$ o filtro associado a palavra vazia ω e família completa formada apenas por um ultrafiltro contendo o elemento $D\in\mathcal{B}$. Daí,

$$\chi_{V_{(\omega,D,\omega)}}(\eta)=1\neq 0=\chi_{V_{(a,A\cap r(b),a)}}(\eta),$$

o que é absurdo. Logo, $D = \emptyset$ e $\tilde{\pi}(\chi_D) = 0$.

Pela igualdade 4.1, para $x, y \in X(\mathcal{E}, \mathcal{L}, \mathcal{B})$ quaisquer e $D \in \mathcal{B}$, se tivermos o seguinte caso particular

$$\tilde{\pi}(\chi_D) = \psi_{\tilde{t}}(\theta_{X,Y}) = \tilde{t}(X)\tilde{t}(Y)^*,$$

também temos que ter necessariamente $D = \emptyset$. Pela definição de $\mathcal{K}(X(\mathcal{E}, \mathcal{L}, \mathcal{B}))$, dado $u \in \mathcal{K}(X(\mathcal{E}, \mathcal{L}, \mathcal{B}))$, se tivermos o seguinte caso particular

$$\tilde{\pi}(\chi_D) = \psi_{\tilde{t}}(u),$$

também temos que ter necessariamente $D=\emptyset$. Daí, pela Proposição 4.1, temos que o ideal $I'_{(\tilde{\pi},\tilde{t})}$ é nulo. Portanto, ψ é um isomorfismo e a prova está completa.

Proposição 4.12. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe um isomorfismo

$$\Phi \colon \mathcal{T}\Delta(\mathcal{E},\mathcal{L},\mathcal{B}) \to C_0(\mathsf{P})$$

 $\textit{tal que } \Phi(\tilde{p}_B) = \chi_{V_{(\omega,B,\omega)}} \textit{ para todo } B \in \mathcal{B} \textit{ e } \Phi(\tilde{s}_\alpha \tilde{p}_A \tilde{s}_\alpha^*) = \chi_{V_{(\alpha,A,\alpha)}} \textit{ para todo } \alpha \in \mathcal{L}^{\geq 1} \textit{ e } A \in \mathcal{B}_\alpha.$

Demonstração. É a mesma demonstração da Proposição 2.10.

Proposição 4.13. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. São equivalentes:

- (1) $\{\tilde{p}_A\}_{A\in\mathcal{B}}$ é unidade aproximada de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$;
- (2) $P = \bigcup_{A \in \mathcal{B}} V_{(\omega,A,\omega)}$;
- (3) Para todo $\alpha \in \mathcal{L}^*$ e todo $A \in \mathcal{B}_{\alpha}$, existe $B \in \mathcal{B}$ tal que $A \subseteq r(B, \alpha)$.
- (4) Para todo $a \in A$, existe $D_a \in B$ tal que $r(D_a, a) = r(a)$.

Demonstração. É a mesma demonstração da Proposição 2.11. □

5 ESTADOS KMS E GROUND DE $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$

Neste capítulo, dado um espaço rotulado normal $(\mathcal{E}, \mathcal{L}, \mathcal{B})$, descrevemos os estados KMS e ground de certa ação fortemente contínua σ do grupo topológico aditivo \mathbb{R} na C^* -álgebra de Toeplitz $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$.

Neste capítulo, supomos que $\{\tilde{p}_A\}_{A\in\mathcal{B}}$ é unidade aproximada de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, em que caracterizamos essa propriedade na Proposição 4.13. Para a definição de estados KMS e ground, o leitor pode consultar a Definição 3.1.

Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e N uma função positiva no alfabeto \mathcal{A} tal que existe uma constante K > 0 tal que N(a) > K para todo $a \in \mathcal{A}$. Estendemos a função N a $N: \mathcal{L}^* \to (0, +\infty)$ definindo $N(\omega) = 1$ para a palavra vazia $\omega \in \mathcal{L}^*$ e $N(\alpha) = N(\alpha_1) \dots N(\alpha_n)$ para $\alpha = \alpha_1 \dots \alpha_n \in \mathcal{L}^{\geq 1}$.

Na proposição a seguir, temos que a função N fornece uma ação do grupo topológico aditivo \mathbb{R} em $\mathcal{TC}^*(\mathcal{E},\mathcal{L},\mathcal{B})$.

Proposição 5.1. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e $N: \mathcal{L}^* \to (0, +\infty)$ como acima. Existe uma ação fortemente contínua $\rho: \mathbb{R} \to Aut(\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B}))$ tal que $\rho_t(\tilde{\rho}_A) = \tilde{\rho}_A \ e \ \rho_t(\tilde{s}_a) = N(a)^{it} \ \tilde{s}_a$ para todo $t \in \mathbb{R}$, $A \in \mathcal{B}$ e $a \in \mathcal{A}$.

Demonstração. É a mesma demonstração da Proposição 3.1.

Considerando uma função $N: \mathcal{A} \to (0, +\infty)$ e ρ a ação associada da Proposição 5.1, para todo $\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\beta}^{*} \in \mathcal{T}C^{*}(\mathcal{E}, \mathcal{L}, \mathcal{B})$, a aplicação

$$t\longmapsto \rho_t(\tilde{s}_\alpha\tilde{p}_A\tilde{s}_\beta^*)=N(\alpha)^{it}\,N(\beta)^{-it}\,\tilde{s}_\alpha\tilde{p}_A\tilde{s}_\beta^*$$

em \mathbb{R} se estende a uma função analítica em todo o plano complexo. Assim, existem elementos analíticos tais que o span é uma subálgebra densa em $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, e, portanto, podemos estudar os estados KMS considerando apenas as triplas geradoras do item (viii) da Proposição 4.3.

Seguindo a mesma ideia de como foi feito para C^* -álgebras de grafos no livro do Raeburn (RAEBURN, 2005), temos o próximo resultado.

Proposição 5.2. Existe uma esperança condicional $\Psi \colon \mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B}) \to \mathcal{T}\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ tal que $\Psi(\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\beta}^{*}) = \delta_{\alpha,\beta}\tilde{s}_{\alpha}\tilde{p}_{A}\tilde{s}_{\beta}^{*}$ para todos $\alpha,\beta \in \mathcal{L}^{*}$ e $A \in \mathcal{B}_{\alpha} \cap \mathcal{B}_{\beta}$.

5.1 ESTADOS KMS

Nesta seção caracterizamos os estados KMS de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ referentes a ação fortemente contínua definida na Proposição 5.1.

Lema 5.1. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, $N: \mathcal{A} \to (0, +\infty)$ tal que $N(\alpha) \neq 1$ para todo $\alpha \in \mathcal{L}^{\geq 1}$, e ρ a ação da Proposição 5.1 proveniente de N. Seja $\lambda \in \mathbb{R}$.

Suponha que φ e φ' são estados KMS $_{\lambda}$ de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ coincidindo em $\mathcal{T}\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$. Então $\varphi = \varphi'$.

Demonstração. É a mesma demonstração do Lema 3.2.

Proposição 5.3. Sejam $N: \mathcal{A} \to (0, +\infty)$ tal que $N(\alpha) \neq 1$ para todo $\alpha \in \mathcal{L}^{\geq 1}$ e ρ a ação proveniente de N. Suponha $\lambda \in \mathbb{R}$ e φ um estado KMS_{λ} de $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$. Então a restrição $\psi := \varphi|_{\mathcal{T}\Lambda(\mathcal{E}, \mathcal{L}, \mathcal{B})}$ satisfaz

$$\psi(\tilde{\mathbf{s}}_{\alpha}\tilde{\boldsymbol{p}}_{A}\tilde{\mathbf{s}}_{\alpha}^{*}) = N(\alpha)^{-\lambda}\psi(\tilde{\boldsymbol{p}}_{A\cap r(\alpha)}).$$
 5.1

Reciprocamente, para algum estado ψ de $\mathcal{T}\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ satisfazendo 5.1, $\varphi = \psi \circ \Psi$ é um estado KMS $_{\lambda}$ de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$, em que Ψ é a esperança condicional da Proposição 5.2. Além disso, a correspondência obtida é uma bijeção afim.

Demonstração. É a mesma demonstração da Proposição 3.2.

Agora, usaremos a descrição da álgebra $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ como produto cruzado parcial (veja Seção 4.3), para descrevermos seus estados KMS por outras vias. Vamos seguir as ideias da Seção 4 de (CARLSEN; LARSEN, 2016) e da Seção 4 de (DE CASTRO; GONÇALVES, 2018). Antes de prosseguirmos, lembramos a construção da ação fortemente contínua que estamos trabalhando via teoria de produtos cruzados parciais.

Do Teorema 4.3 de (EXEL; LACA, 2003), dada uma função $N: \mathcal{A} \to (1, \infty)$, existe uma única ação fortemente contínua σ de \mathbb{R} em $C_0(P) \rtimes_{\hat{\varphi}} \mathbb{F}$ tal que

$$\sigma_t(b) = N(a)^{it}b \in \sigma_t(c) = c$$
 5.2

para todos $t \in \mathbb{R}$, $a \in \mathcal{A}$, $b \in C_0(V_{(a,r(a),a)})\delta_a$ e $c \in C_0(P)\delta_0$.

Se $N(a)=\exp(1)$ para todo $a\in\mathcal{A}$, então σ_t é 2π -periódico, e, daí, induz uma ação fortemente contínua $\beta\colon\mathbb{T}\to\operatorname{Aut}(C_0(\mathsf{P})\rtimes_{\hat{\varphi}}\mathbb{F})$ tal que $\beta_Z(\chi_{V_{(a,r(a),a)}}\delta_a)=z\chi_{V_{(a,r(a),a)}}\delta_a$ e $\beta_Z(f\delta_0)=f\delta_0$ para todos $z\in\mathbb{T},\ a\in\mathcal{A}$ e $f\in C_0(\mathsf{P})$.

Proposição 5.4. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, β como acima, γ a ação de gauge em $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$, e $\psi \colon \mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B}) \to C_0(P) \rtimes_{\hat{\varphi}} \mathbb{F}$ o isomorfismo do Teorema 4.4. Então

$$\psi \circ \gamma_Z = \beta_Z \circ \psi$$

para todo $z \in \mathbb{T}$.

Procedendo como em (CARLSEN; LARSEN, 2016), dada uma função $N: \mathcal{A} \to (1, \infty)$ e considerando σ a única ação fortemente contínua dada por 5.2, temos, pela

Proposição 5.4 e pelo Teorema 4.4, uma única ação fortemente contínua σ de $\mathbb R$ em $\mathcal TC^*(\mathcal E,\mathcal L,\mathcal B)$ tal que

$$\sigma_t(\tilde{s}_a) = N(a)^{it}\tilde{s}_a \in \sigma_t(\tilde{p}_A) = \tilde{p}_A$$

para todos $t \in \mathbb{R}$, $a \in A$ e $A \in B$.

Observação 5.1. No restante do capítulo, vamos trabalhar apenas com funções $N: \mathcal{A} \to (1, \infty)$. Salientamos que a ação fortemente contínua σ de \mathbb{R} em $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ é a mesma ação da Proposição 5.1.

Na Proposição 5.5, temos a definição da função $F:U\to\mathbb{R}$ que nos será útil para definirmos nossos próximos objetos de estudo.

Proposição 5.5. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e $U := \bigsqcup_{a \in \mathcal{A}} V_{(a,r(a),a)}$. Então a função $F : U \to \mathbb{R}$ definida por $F(\xi^{\alpha}) = \ln N(\alpha_1)$ é contínua.

Demonstração. É a mesma demonstração da Proposição 3.4.

Para fixarmos algumas notações, sejam $0 < \lambda < +\infty$, F da Proposição 5.5 e c_F de 2.1. Definimos os conjuntos:

 A^{λ} : o conjunto dos estados KMS_{λ} para $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$;

 B^{λ} : o conjunto dos estados ω de $C_0(P)$ que satisfazem a condição de escala $\omega(f\circ \varphi_a^{-1})=N(a)^{-\lambda}\omega(f)$ para todo $a\in \mathcal{A}$ e $f\in C_0(V_{a^{-1}});$

 C^{λ} : o conjunto das medidas Borelianas regulares de probabilidade μ em P que satisfazem a condição de escala $\mu(\varphi_a(A)) = N(a)^{-\lambda}\mu(A)$ para todo $a \in \mathcal{A}$ e todo subconjunto Borel mensurável A de $V_{a^{-1}}$;

 \mathcal{D}^{λ} : o conjunto das funções $m \colon \mathcal{B} \to [0,1]$ satisfazendo:

- 1. $\lim_{A \in \mathcal{B}} m(A) = 1$;
- 2. dados $A \in \mathcal{B}$ e $F \subseteq \mathcal{L}(A\mathcal{E}^1)$ tal que $0 < |F| < +\infty$, então

$$m(A) \geq \sum_{a \in F} N(a)^{-\lambda} m(r(A,a));$$
 e

3. $m(A \cup B) = m(A) + m(B) - m(A \cap B)$ para todo $A, B \in \mathcal{B}$;

 E^{λ} : o conjunto dos estados ψ de $\mathcal{T}\Delta(\mathcal{E},\mathcal{L},\mathcal{B})$ satisfazendo

$$\psi(\tilde{s}_{\alpha}\tilde{\rho}_{A}\tilde{s}_{\alpha}^{*}) = N(\alpha)^{-\lambda}\psi(\tilde{\rho}_{A\cap r(\alpha)})$$

para todo $\alpha \in \mathcal{L}^*$ e $A \in \mathcal{B}$.

 F^{λ} : o conjunto das medidas Borelianas de probabilidade μ em P que são $e^{\lambda F}$ conformes no sentido de Denker-Urbański;

 G^{λ} : o conjunto das medidas Borelianas de probabilidade μ em P que são automedidas com autovalor 1 associadas com a transformação de Ruelle $L_{-\lambda F}$, isto é,

$$\int_{\mathsf{P}} \sum_{\sigma(\xi) = \eta} f(\xi) e^{-\lambda F(\xi)} d\mu(\eta) = \int_{U} f(\xi) d\mu(\xi)$$

para todo $f \in C_c(U)$;

 H^{λ} : o conjunto das medidas Borelianas de probabilidade μ em P que são $e^{-\lambda c_F}$ quasi-invariantes em $\mathcal{G}(P,\sigma)$, isto é,

$$\int_{\mathsf{P}} \sum_{r(\gamma)=\eta} e^{\lambda c_F(\gamma)} f(\gamma) d\mu(\eta) = \int_{\mathsf{P}} \sum_{s(\gamma)=\eta} f(\gamma) d\mu(\eta)$$

para todo $f \in C_{\mathcal{C}}(\mathcal{G}(\mathsf{P}, \sigma))$; e

 l^{λ} : o conjunto das medidas Borelianas de probabilidade μ em P que são $(-\lambda F, 1)$ conformes no sentido de Sarig.

No Teorema 5.1, nosso resultado principal, mostramos que existem bijeções convexas entre os conjuntos A^{λ} , B^{λ} , C^{λ} , D^{λ} , E^{λ} , F^{λ} , G^{λ} , H^{λ} e I^{λ} , mas antes vamos precisar de alguns resultados auxiliares.

Proposição 5.6. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Se $m: \mathcal{B} \to [0,1]$ é uma função do conjunto D^{λ} e $V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),...,(\alpha\alpha^n,A_n,\alpha\alpha^n)} \in \mathcal{S}$, então

$$N(\alpha)^{-\lambda} m(A) \geq \sum_{i=1}^{n} N(\alpha \alpha^{i})^{-\lambda} m(A_{i}).$$

Demonstração. É a mesma demonstração da Proposição 3.5.

Observação 5.2. Para mostrarmos a Proposição 5.7, precisamos supor que o alfabeto A é enumerável.

Proposição 5.7. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal tal que o alfabeto \mathcal{A} é enumerável. Então $\mu \in C^{\lambda}$ se, e somente se, $\mu \in G^{\lambda}$.

Demonstração. É a mesma demonstração da Proposição 3.6. □

Proposição 5.8. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal tal que o alfabeto \mathcal{A} é enumerável. Então os conjuntos C^{λ} , F^{λ} , G^{λ} , H^{λ} e I^{λ} são iguais.

Demonstração. É a mesma demonstração da Proposição 3.7.

Nosso objetivo agora é construir isomorfismos convexos entre os conjuntos A^{λ} , B^{λ} , C^{λ} , D^{λ} e E^{λ} . Pela Proposição 5.3, já temos um isomorfismo convexo entre A^{λ} e E^{λ} . Para provar os outros isomorfismos, precisamos de alguns resultados auxiliares.

Proposição 5.9. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal e M uma função de \mathcal{A} em [0,1]. Estendemos a função M a uma função M de \mathcal{A}^* a [0,1] dada por $M(\alpha) = M(\alpha_1) \cdots M(\alpha_n)$ para todo $\alpha = \alpha_1 \dots \alpha_n \in \mathcal{A}^* \setminus \{\omega\}$ e $M(\omega) = 1$. Existe uma correspondência injetiva e convexa entre o conjunto dos estados ω de $C_0(P)$ tais que $\omega(f \circ \varphi_a^{-1}) = M(a)\omega(f)$ para todo $a \in \mathcal{A}$ e $f \in C_0(V_a^{-1})$ e o conjunto das funções $m \colon \mathcal{B} \to [0,1]$ satisfazendo:

- 1. $\lim_{A \in \mathcal{B}} m(A) = 1$;
- 2. dados $A \in \mathcal{B}$ e $F \subseteq \mathcal{L}(A\mathcal{E}^1)$ tal que $0 < |F| < +\infty$, então

$$m(A) \geq \sum_{a \in F} M(a) m(r(A,a));$$
 e

3. $m(A \cup B) = m(A) + m(B) - m(A \cap B)$.

Além disso, a correspondência leva um estado ω na função m definida por $m(A) = \omega(\chi_{V_{(\omega A \omega)}})$ para todo $A \in \mathcal{B}$.

Demonstração. É a mesma demonstração da Proposição 3.8, salvo a condição *m2'* daquela proposição, a qual não temos aqui.

Proposição 5.10. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Dado $V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),...,(\alpha\alpha^n,A_n,\alpha\alpha^n)} \in \mathcal{S}$, então $M(\alpha)m(A) \geq \sum_{i=1}^n M(\alpha\alpha^i)m(A_i)$.

Demonstração. É a mesma demonstração da Proposição 3.9.

Agora, vamos começar a construir uma correspondência entre funções $m: \mathcal{B} \rightarrow [0,1]$ satisfazendo as condições m1', m2' e m3' da Proposição 5.9 e medidas Borelianas regulares de probabilidade em P satisfazendo certa condição de escala.

Proposição 5.11. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Se

$$V_{(\alpha,A,\alpha)} = \bigsqcup_{j=1}^{m} V_{(\beta^j,B_j,\beta^j)},$$

então $M(\alpha)m(A) = \sum_{j=1}^{m} M(\beta^{j})m(B_{j}).$

Demonstração. Primeiramente, vamos supor

$$V_{(\alpha,A,\alpha)} = V_{(\beta,B,\beta)}.$$

Podemos supor $\beta=\alpha\gamma$ para conveniente $\gamma=\gamma_1\cdots\gamma_p\in\mathcal{L}^*$. Além disso, $\gamma=\omega$, pois se $\gamma\neq\omega$, então poderíamos considerar um filtro em P associado a palavra α e contendo

no último ultrafiltro da família completa o elemento A, o que é absurdo, pois este filtro de P está em $V_{(\alpha,A,\alpha)}$, mas não está em $V_{(\beta,B,\beta)}$. Logo, $\alpha=\beta$ e A=B.

Como caso geral, consideramos

$$V_{(\alpha,A,\alpha)} = \bigsqcup_{j=1}^{m} V_{(\beta^j,B_j,\beta^j)}.$$
 5.3

Podemos considerar que α é começo de todos os β^j , pois se tivermos $\alpha = \beta^j \alpha'$ para algum j com $\alpha' \neq \omega$, então

$$V_{(\beta^j,B_i,\beta^j)} = V_{(\beta^j\alpha',r(B_i,\alpha'),\beta^j\alpha')}$$

Pelo que foi mostrado inicialmente, $M(\beta^j)m(B_i) = M(\beta^j\alpha')m(r(B_i,\alpha'))$.

Com isso, podemos considerar $\beta^j = \alpha \gamma^j$ para todo $j \in \{1, ..., m\}$ com $\gamma^j \in \mathcal{L}^*$. Vamos provar o resultado por indução sobre $L = \max_{1 \le j \le m} |\gamma^j|$. Para L = 0, temos

$$V_{(\alpha,A,\alpha)} = \bigsqcup_{j=1}^{m} V_{(\alpha,B_{j},\alpha)} = V_{(\alpha,\bigsqcup_{j=1}^{m} B_{j},\alpha)},$$

daí

$$M(\alpha)m(A) = M(\alpha)m\left(\bigsqcup_{j=1}^{m} B_j\right) = M(\alpha)\sum_{j=1}^{m} m(B_j).$$

Para um L qualquer, podemos considerar a igualdade 5.3 da forma

$$V_{(\alpha,A,\alpha)} = \left(\bigsqcup_{Z} V_{(\alpha,B_{Z},\alpha)}\right) \sqcup \left(\bigsqcup_{j} V_{(\alpha\gamma^{j},B_{j},\alpha\gamma^{j})}\right).$$

Caso $\gamma_j \neq \omega$ para algum j, se considerarmos um filtro em P associado a palavra α e que tem no último ultrafiltro da família o elemento $A \setminus (\sqcup_Z B_Z)$, então este filtro está em $V_{(\alpha,A,\alpha)}$ e teria que estar na reunião $(\sqcup_j V_{(\alpha\gamma^j,B_j,\alpha\gamma^j)})$, o que seria absurdo. Daí, $\gamma_j = \omega$ para todo j e temos o resultado.

Proposição 5.12. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Se

$$V_{(\alpha^1,A_1,\alpha^1)} \sqcup \cdots \sqcup V_{(\alpha^n,A_n,\alpha^n)} = V_{(\beta^1,B_1,\beta^1)} \sqcup \cdots \sqcup V_{(\beta^m,B_m,\beta^m)},$$

então $\sum_{i=1}^{n} M(\alpha^{i}) m(A_{i}) = \sum_{j=1}^{m} M(\beta^{j}) m(B_{j}).$

Demonstração. É a mesma demonstração da Proposição 3.11.

Proposição 5.13. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Se

$$V_{(\alpha,A,\alpha);(\alpha^{1},A_{1},\alpha^{1}),...,(\alpha^{n},A_{n},\alpha^{n})} = V_{(\beta,B,\beta);(\beta^{1},B_{1},\beta^{1}),...,(\beta^{m},B_{m},\beta^{m})},$$
 então $M(\alpha)m(A) - \sum_{j=1}^{n} M(\alpha^{j})m(A_{j}) = M(\beta)m(B) - \sum_{j=1}^{m} M(\beta^{j})m(B_{j}).$

Demonstração. Sem perda de generalidade, podemos considerar $\beta = \alpha \gamma$ para conveniente $\gamma \in \mathcal{L}^*$. Além disso, pela Observação 2.1, podemos trabalhar com a igualdade

$$V_{(\alpha,A,\alpha);(\alpha\eta^1,A_1,\alpha\eta^1),\dots,(\alpha\eta^n,A_n,\alpha\eta^n)} = V_{(\alpha\gamma,B,\alpha\gamma);(\alpha\gamma\delta^1,B_1,\alpha\gamma\delta^1),\dots,(\alpha\gamma\delta^m,B_m,\alpha\gamma\delta^m)}.$$

Temos que mostrar que

$$M(\alpha)m(A) - \sum_{i=1}^n M(\alpha \eta^i) m(A_i) = M(\alpha \gamma) m(B) - \sum_{j=1}^m M(\alpha \gamma \delta^j) m(B_j).$$

Se $\gamma \neq \omega$, existe um filtro associado a palavra α , e que tem no último ultrafiltro da família completa o elemento A contido no conjunto $V_{(\alpha,A,\alpha);(\alpha\eta^1,A_1,\alpha\eta^1),...,(\alpha\eta^n,A_n,\alpha\eta^n)}$, mas não contido no conjunto $V_{(\alpha\gamma,B,\alpha\gamma);(\alpha\gamma\delta^1,B_1,\alpha\gamma\delta^1),...,(\alpha\gamma\delta^m,B_m,\alpha\gamma\delta^m)}$, o que seria absurdo. Daí, temos que considerar somente o caso $\gamma = \omega$. Assim, podemos escrever

$$V_{(\alpha,A,\alpha)} = V_{(\alpha\eta^{1},A_{1},\alpha\eta^{1})} \sqcup \cdots \sqcup V_{(\alpha\eta^{n},A_{n},\alpha\eta^{n})} \sqcup \left[V_{(\alpha,B,\alpha);(\alpha\delta^{1},B_{1},\alpha\delta^{1}),...,(\alpha\delta^{m},B_{m},\alpha\delta^{m})} \right], \quad 5.4$$

$$V_{(\alpha,A,\alpha)} \sqcup \left[V_{(\alpha\delta^{1},B_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{m},B_{m},\alpha\delta^{m})} \right]$$

$$= \left[V_{(\alpha\eta^{1},A_{1},\alpha\eta^{1})} \sqcup \cdots \sqcup V_{(\alpha\eta^{n},A_{n},\alpha\eta^{n})} \right] \cup V_{(\alpha,B,\alpha)},$$

e, pelo Lema 2.4,

$$V_{(\alpha,A,\alpha)} \sqcup V_{(\alpha\delta^{1},B_{1}\backslash r(A,\delta^{1}),\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{m},B_{m}\backslash r(A,\delta^{m}),\alpha\delta^{m})}$$

$$= V_{(\alpha,B,\alpha)} \sqcup V_{(\alpha\eta^{1},A_{1}\backslash r(B,\eta^{1}),\alpha\eta^{1})} \sqcup \cdots \sqcup V_{(\alpha\eta^{n},A_{n}\backslash r(B,\eta^{n}),\alpha\eta^{n})}.$$

Pela Proposição 5.12, temos

$$M(\alpha)m(A) + M(\alpha\delta^{1})m(B_{1} \setminus r(A,\delta^{1})) + \cdots + M(\alpha\delta^{m})m(B_{m} \setminus r(A,\delta^{m}))$$

$$= M(\alpha)m(B) + M(\alpha\eta^{1})m(A_{1} \setminus r(B,\eta^{1})) + \cdots + M(\alpha\eta^{n})m(A_{n} \setminus r(B,\eta^{n})),$$

logo

$$M(\alpha)m(A) + M(\alpha\delta^{1})m(B_{1}) - M(\alpha\delta^{1})m(B_{1} \cap r(A,\delta^{1})) + \cdots$$

$$\cdots + M(\alpha\delta^{m})m(B_{m}) - M(\alpha\delta^{m})m(B_{m} \cap r(A,\delta^{m}))$$

$$= M(\alpha)m(B) + M(\alpha\eta^{1})m(A_{1}) - M(\alpha\eta^{1})m(A_{1} \cap r(B,\eta^{1})) + \cdots$$

$$\cdots + M(\alpha\eta^{n})m(A_{n}) - M(\alpha\eta^{n})m(A_{n} \cap r(B,\eta^{n})).$$

Se provarmos a igualdade

$$M(\alpha\delta^{1})m(B_{1}\cap r(A,\delta^{1}))+\cdots+M(\alpha\delta^{m})m(B_{m}\cap r(A,\delta^{m}))$$

$$=M(\alpha\eta^{1})m(A_{1}\cap r(B,\eta^{1}))+\cdots+M(\alpha\eta^{n})m(A_{n}\cap r(B,\eta^{n})),$$

temos o resultado, e iremos fazer isto. Pela igualdade 5.4, podemos considerar $\eta^i \neq \omega$ e $\delta^j \neq \omega$ para todo $i \in \{1, \ldots, n\}$ e $j \in \{1, \ldots, m\}$, pois, caso contrário, trabalhamos com $A \setminus A_i$ e $B \setminus B_j$. Pela mesma igualdade, se $B_j \cap r(A, \delta^j) \neq \emptyset$ para algum $j \in \{1, \ldots, m\}$, então $A_i \cap r(B, \eta^i) \neq \emptyset$ para algum $i \in \{1, \ldots, n\}$. Sejam $\eta_1^{i_1}, \ldots, \eta_1^{i_s}$ as primeiras letras distintas de η^1, \ldots, η^n . Se $B_j \cap r(A, \delta^j) \neq \emptyset$ para algum $j \in \{1, \ldots, m\}$, então $\delta_1^j = \eta_1^{i_r}$ para conveniente $r \in \{1, \ldots, s\}$. Com isso, temos

$$M(\alpha\delta^{1})m(B_{1}\cap r(A,\delta^{1})) + \cdots + M(\alpha\delta^{m})m(B_{m}\cap r(A,\delta^{m}))$$

$$= \sum_{j:\delta_{1}^{j}=\eta_{1}^{i_{1}}} M(\alpha\delta^{j})m(B_{j}\cap r(A,\delta^{j})) + \cdots + \sum_{j:\delta^{j}=\eta_{1}^{i_{s}}} M(\alpha\delta^{j})m(B_{j}\cap r(A,\delta^{j})).$$

Pela igualdade 5.4,

$$\bigsqcup_{j:\mathcal{S}_1^j=\eta_1^{i_r}} V_{(\alpha\delta^j,B_j\cap r(A,\delta^j),\alpha\delta^j)} = \bigsqcup_{i:\eta_1^i=\eta_1^{i_r}} V_{(\alpha\eta^i,A_i\cap r(B,\eta^i),\alpha\eta^i)}$$

para todo $r \in \{1, ..., s\}$. Portanto, pela Proposição 5.12, temos o resultado.

Definição 5.1. Sejam M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Definimos uma função $\kappa: \mathcal{S} \to \mathbb{R}_+$ no semianel \mathcal{S} da Proposição 2.7 dada por

$$\kappa\left(V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),\dots,(\alpha\alpha^n,A_n,\alpha\alpha^n)}\right)=M(\alpha)m(A)-\sum_{i=1}^nM(\alpha\alpha^i)m(A_i).$$

Além disso, $\kappa(\emptyset) = 0$.

Observação 5.3. Pelas Proposições 5.13 e 5.10, a função κ está bem definida.

Agora, vamos mostrar que a função κ é aditiva. Para tanto, vamos dividir a demonstração numa série de proposições que a primeira vista podem parecer iguais, mas cada uma tem sua particularidade.

Proposição 5.14. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Se

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\alpha,B_{j},\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),...,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})}$$

 $com B_i \cap B_j = \emptyset$ para todo $i \neq j$, então

$$M(\alpha)m(A) - \sum_{i=1}^{n} M(\alpha\alpha^{i})m(A_{i}) = \sum_{j=1}^{p} \left[M(\alpha)m(B_{j}) - \sum_{l_{j}=1}^{p_{j}} M(\alpha\beta^{j,l_{j}})m(B_{j,l_{j}}) \right].$$

Demonstração. É a mesma demonstração da Proposição 3.13.

Proposição 5.15. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Se

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\alpha,A,\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),...,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})},$$

então

$$M(\alpha)m(A) - \sum_{i=1}^{n} M(\alpha \alpha^{i})m(A_{i}) = \sum_{j=1}^{p} \left[M(\alpha)m(A) - \sum_{l_{j}=1}^{p_{j}} M(\alpha \beta^{j,l_{j}})m(B_{j,l_{j}}) \right].$$

Demonstração. É a mesma demonstração da Proposição 3.14.

Proposição 5.16. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Dados

$$V_{(\alpha,B_{1},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),...,(\alpha\beta^{1,p_{1}},B_{1,p_{1}},\alpha\beta^{1,p_{1}})},...$$

$$...,V_{(\alpha,B_{m},\alpha);(\alpha\beta^{m,1},B_{m,1},\alpha\beta^{m,1}),...,(\alpha\beta^{m,p_{m}},B_{m,p_{m}},\alpha\beta^{m,p_{m}})}$$

disjuntos em \mathcal{S} , existe $V_{(\alpha,C,\alpha);(\alpha\delta^1,C_1,\alpha\delta^1),\dots,(\alpha\delta^q,C_q,\alpha\delta^q)} \in \mathcal{S}$ tal que

$$\bigsqcup_{j=1}^{m} V_{(\alpha,B_{j},\alpha);(\alpha\beta^{j,1},B_{j,1},\alpha\beta^{j,1}),...,(\alpha\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j,p_{j}})} = V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})},$$

com

$$\sum_{j=1}^m \left[M(\alpha) m(B_j) - \sum_{l_j=1}^{p_j} M(\alpha \beta^{j,l_j}) m(B_{j,l_j}) \right] = M(\alpha) m(C) - \sum_{i=1}^q M(\alpha \delta^i) m(C_i).$$

Demonstração. É a mesma demonstração da Proposição 3.15, mas, ao invés de usarmos as Proposições 3.13, 3.12 e 3.14, usamos as Proposições 5.14, 5.13 e 5.15, respectivamente. □

Proposição 5.17. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Se

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})}$$

 $com\ V_{(\beta^i,B_i,\beta^i)}\cap V_{(\beta^j,B_i,\beta^j)}=\emptyset\ para\ i,j\in\{1,\ldots,p\}\ e\ i\neq j,\ ent\~ao$

$$M(\alpha)m(A) - \sum_{i=1}^{n} M(\alpha \alpha^{i})m(A_{i}) = \sum_{j=1}^{p} \left[M(\beta^{j})m(B_{j}) - \sum_{l_{j}=1}^{p_{j}} M(\beta^{j}\beta^{j,l_{j}})m(B_{j,l_{j}}) \right].$$

Demonstração. Seja

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})}$$

com
$$V_{(\beta^i,B_i,\beta^i)} \cap V_{(\beta^j,B_i,\beta^j)} = \emptyset$$
 para $i,j \in \{1,\ldots,p\}$ e $i \neq j$.

Podemos considerar que α é começo de todos os β^j , pois se tivermos $\alpha = \beta^j \alpha'$ para algum j com $\alpha' \neq \omega$, então

$$\begin{split} &V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})} = \\ &V_{(\beta^{j}\alpha',r(B_{j},\alpha'),\beta^{j}\alpha')} \cap \left[\left(V_{(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1})} \sqcup \cdots \sqcup V_{(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})} \right) \cap V_{(\beta^{j}\alpha',r(B_{j},\alpha'),\beta^{j}\alpha')} \right]^{c}, \\ &\text{e usamos a Proposição 5.13.} \end{split}$$

Daí, podemos considerar a igualdade da forma

$$\begin{split} V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),\dots,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} &= \left(\bigsqcup_{z=1}^{r} V_{(\alpha,B_{z},\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),\dots,(\alpha\beta^{z,p_{z}},B_{z,p_{z}},\alpha\beta^{z,p_{z}})} \right) \sqcup \\ & \sqcup \left(\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),\dots,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right) \end{split}$$

com $\beta^j \neq \omega$ para todo j = 1, ..., m, caso exista algum $\beta^j \neq \omega$, em que do lado direito temos que ter pelo menos uma parcela da forma

$$V_{(\alpha,B_z,\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),...,(\alpha\beta^{z,p_z},B_{z,p_z},\alpha\beta^{z,p_z})}$$

pois caso contrário podemos considerar um filtro $\xi \in P$ de comprimento $|\alpha|$ e $A \in \xi_{|\alpha|}$ do lado esquerdo que não está do lado direito. Além disso, pela Proposição 5.14,

$$\begin{split} & \bigsqcup_{z=1}^{r} V_{(\alpha,B_{z},\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),\dots,(\alpha\beta^{z,p_{z}},B_{z,p_{z}},\alpha\beta^{z,p_{z}})} = \\ & = V_{(\alpha,\sqcup_{z=1}^{r}B_{z},\alpha);(\alpha\beta^{1,1},B_{1,1},\alpha\beta^{1,1}),\dots,(\alpha\beta^{1,p_{1}},B_{1,p_{1}},\alpha\beta^{1,p_{1}}),\dots,(\alpha\beta^{r,1},B_{r,1},\alpha\beta^{r,1}),\dots,(\alpha\beta^{r,p_{r}},B_{r,p_{r}},\alpha\beta^{r,p_{r}})} \end{split}$$

preservando a aditividade da função κ . Com isso, vamos considerar a igualdade da forma

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})} \sqcup \left(\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right)$$

com $C \subseteq A$, pois

$$V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})}$$

$$=V_{(\alpha,A\cap C,\alpha)}\cap\left[\left(V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})}\sqcup\cdots\sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})}\right)\cap V_{(\alpha,A\cap C,\alpha)}\right]^{c},$$

e usamos a Proposição 5.13.

Se $\beta^j = \omega$ para todo $j = 1, \ldots, m$, pela Proposição 5.14, temos o resultado. Se existir algum $\beta^j \neq \omega$ e $C \neq A$, existe um filtro $\xi \in P$ de comprimento $|\alpha|$ e $A \setminus C \in \xi_{|\alpha|}$ de modo que ξ pertence ao lado esquerdo, mas não pertence ao lado direito, o que seria absurdo. Logo, se $C \neq A$, então $\beta^j = \omega$ para todo j e pela Proposição 5.14 temos o resultado. Além disso, como $V_{(\alpha,C,\alpha)} \cap V_{(\alpha\beta^j,B_j,\alpha\beta^j)} = \emptyset$, não podemos ter C = A e $\beta^j \neq \omega$ para algum j. Portanto, temos o resultado da proposição.

Proposição 5.18. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m: \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Se

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \bigsqcup_{j=1}^{p} V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})},$$

então

$$M(\alpha)m(A) - \sum_{i=1}^n M(\alpha\alpha^i)m(A_i) = \sum_{j=1}^p \left[M(\beta^j)m(B_j) - \sum_{l_i=1}^{p_j} M(\beta^j\beta^{j,l_j})m(B_{j,l_j}) \right].$$

Demonstração. Seja

$$V_{(\alpha,A,\alpha);(\alpha\alpha^1,A_1,\alpha\alpha^1),\dots,(\alpha\alpha^n,A_n,\alpha\alpha^n)} = \bigsqcup_{j=1}^p V_{(\beta^j,B_j,\beta^j);(\beta^j\beta^{j,1},B_{j,1},\beta^j\beta^{j,1}),\dots,(\beta^j\beta^{j,p_j},B_{j,p_j},\beta^j\beta^{j,p_j})}.$$

Podemos considerar que α é começo de todos os β^j , pois se tivermos $\alpha = \beta^j \alpha'$ para algum j com $\alpha' \neq \omega$, então

$$V_{(\beta^{j},B_{j},\beta^{j});(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1}),...,(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})} = V_{(\beta^{j}\alpha',r(B_{j},\alpha'),\beta^{j}\alpha')} \cap \left[\left(V_{(\beta^{j}\beta^{j,1},B_{j,1},\beta^{j}\beta^{j,1})} \sqcup \cdots \sqcup V_{(\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\beta^{j}\beta^{j,p_{j}})} \right) \cap V_{(\beta^{j}\alpha',r(B_{j},\alpha'),\beta^{j}\alpha')} \right]^{c},$$

e usamos a Proposição 5.13.

Daí, podemos considerar a igualdade da forma

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = \left(\bigsqcup_{z=1}^{r} V_{(\alpha,B_{z},\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),...,(\alpha\beta^{z,p_{z}},B_{z,p_{z}},\alpha\beta^{z,p_{z}})} \right) \sqcup \left(\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right)$$

com $\beta^j \neq \omega$ para todo j = 1, ..., m, caso exista algum $\beta^j \neq \omega$, em que do lado direito temos que ter pelo menos uma parcela da forma

$$V_{(\alpha,B_z,\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),\ldots,(\alpha\beta^{z,p_z},B_{z,p_z},\alpha\beta^{z,p_z})}$$

pois caso contrário podemos considerar um filtro $\xi \in P$ de comprimento $|\alpha|$ e $A \in \xi_{|\alpha|}$ do lado esquerdo que não está do lado direito. Se não existir $\beta^j \neq \omega$, pela Proposição 5.16, temos o resultado. Além disso, pela Proposição 5.16, existe um elemento de \mathcal{S} $V_{(\alpha,C,\alpha);(\alpha\delta^1,C_1,\alpha\delta^1),...,(\alpha\delta^q,C_q,\alpha\delta^q)}$ tal que

$$\bigsqcup_{z=1}^{r} V_{(\alpha,B_{z},\alpha);(\alpha\beta^{z,1},B_{z,1},\alpha\beta^{z,1}),...,(\alpha\beta^{z,p_{z}},B_{z,p_{z}},\alpha\beta^{z,p_{z}})} = V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})}$$

preservando a aditividade da função κ . Com isso, vamos considerar a igualdade da forma

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} = V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})} \sqcup$$

$$\sqcup \left(\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right)$$

$$5.5$$

 $\operatorname{\mathsf{com}} \beta^j
eq \omega$ para todo $j = 1, \ldots, m$ e $C \subseteq A$, pois

$$V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})}$$

$$=V_{(\alpha,A\cap C,\alpha)}\cap\left[\left(V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})}\sqcup\cdots\sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})}\right)\cap V_{(\alpha,A\cap C,\alpha)}\right]^{c},$$

e usamos a Proposição 5.13.

Vamos mostrar a proposição por indução sobre a quantidade de parcelas do lado direito de 5.5. Se tivermos uma parcela, usando a Proposição 5.13, temos o resultado. Como hipótese de indução, suponha o resultado válido para todo caso em que a quantidade de parcelas do lado direito é menor do que m + 1. Pela Igualdade 5.5,

$$V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \cap \left(V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})}\right)^{c} = \left(V_{(\alpha,A\setminus C,\alpha)} \sqcup V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})}\right) \cap \left(V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})}\right)^{c} = \bigsqcup_{i=1}^{m} V_{(\alpha\beta^{i},B_{j},\alpha\beta^{j});(\alpha\beta^{i}\beta^{j,1},B_{j,1},\alpha\beta^{i}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})}.$$

$$5.6$$

Vamos mostrar que

$$V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \subseteq V_{(\alpha,A\setminus C,\alpha)} \sqcup V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})}.$$
 5.7

De imediato,

$$V_{(\alpha\alpha^1,A_1\cap r(A\setminus C,\alpha^1),\alpha\alpha^1)}\sqcup\cdots\sqcup V_{(\alpha\alpha^n,A_n\cap r(A\setminus C,\alpha^n),\alpha\alpha^n)}\subseteq V_{(\alpha,A\setminus C,\alpha)}.$$

Dado $\xi \in V_{(\alpha,C,\alpha)}$, temos

$$\xi \notin V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})} \Longrightarrow \xi \in V_{(\alpha,C,\alpha);(\alpha\delta^{1},C_{1},\alpha\delta^{1}),...,(\alpha\delta^{q},C_{q},\alpha\delta^{q})} \Longrightarrow$$

$$\Longrightarrow \xi \in V_{(\alpha,A,\alpha);(\alpha\alpha^{1},A_{1},\alpha\alpha^{1}),...,(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \Longrightarrow$$

$$\Longrightarrow \xi \notin V_{(\alpha\alpha^{1},A_{1}\cap r(C,\alpha^{1}),\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n}\cap r(C,\alpha^{n}),\alpha\alpha^{n})},$$

daí

$$V_{(\alpha\alpha^1,A_1\cap r(C,\alpha^1),\alpha\alpha^1)}\sqcup\cdots\sqcup V_{(\alpha\alpha^n,A_n\cap r(C,\alpha^n),\alpha\alpha^n)}\subseteq V_{(\alpha\delta^1,C_1,\alpha\delta^1)}\sqcup\cdots\sqcup V_{(\alpha\delta^q,C_q,\alpha\delta^q)}.$$

Com isso, temos a Inclusão 5.7.

Pela Igualdade 5.6, temos as seguintes igualdades

$$\begin{aligned} V_{(\alpha,A \setminus C,\alpha)} \cap \left[V_{(\alpha,A \setminus C,\alpha)} \cap \left(V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \right) \right]^{c} &= \\ &= V_{(\alpha,A \setminus C,\alpha)} \cap \left[\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right] \end{aligned}$$

е

$$\begin{split} V_{(\alpha\delta^{i},C_{i},\alpha\delta^{i})} \cap \left[V_{(\alpha\delta^{i},C_{i},\alpha\delta^{i})} \cap \left(V_{(\alpha\alpha^{1},A_{1},\alpha\alpha^{1})} \sqcup \cdots \sqcup V_{(\alpha\alpha^{n},A_{n},\alpha\alpha^{n})} \right) \right]^{c} = \\ &= V_{(\alpha\delta^{i},C_{i},\alpha\delta^{i})} \cap \left[\bigsqcup_{j=1}^{m} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \right] \end{split}$$

para todo i = 1, ..., q, sendo que a aditividade da função κ nestas igualdades é garantida pela hipótese de indução.

Bem como, temos as igualdades

$$\begin{split} V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} = \\ = \left(V_{(\alpha,A\setminus C,\alpha)} \sqcup V_{(\alpha\delta^{1},C_{1},\alpha\delta^{1})} \sqcup \cdots \sqcup V_{(\alpha\delta^{q},C_{q},\alpha\delta^{q})} \right) \cap \\ \cap V_{(\alpha\beta^{j},B_{j},\alpha\beta^{j});(\alpha\beta^{j}\beta^{j,1},B_{j,1},\alpha\beta^{j}\beta^{j,1}),...,(\alpha\beta^{j}\beta^{j,p_{j}},B_{j,p_{j}},\alpha\beta^{j}\beta^{j,p_{j}})} \end{split}$$

para todo j = 1, ..., m, sendo que a aditividade da função κ nas igualdades é garantida para todo j pela Proposição 5.17.

Além disso, pela Inclusão 5.7,

$$V_{(\alpha\alpha^i,A_i,\alpha\alpha^i)} = V_{(\alpha\alpha^i,A_i,\alpha\alpha^i)} \cap \left(V_{(\alpha,A \setminus C,\alpha)} \sqcup V_{(\alpha\delta^1,C_1,\alpha\delta^1)} \sqcup \cdots \sqcup V_{(\alpha\delta^q,C_q,\alpha\delta^q)}\right)$$

para todo i = 1, ..., n, sendo que a aditividade da função κ nas igualdades é garantida para todo i pela Proposição 5.11. Juntando as aditividades da função κ , obtemos

$$M(\alpha)m(A \setminus C) + \left(\sum_{l=1}^{q} M(\alpha \delta^{l})m(C_{l})\right) - \left(\sum_{i=1}^{n} M(\alpha \alpha^{i})m(A_{i})\right) =$$

$$= \sum_{j=1}^{m} \left[M(\alpha \beta^{j})m(B_{j}) - \sum_{l_{j}=1}^{p_{j}} M(\alpha \beta^{j} \beta^{j,l_{j}})m(B_{j,l_{j}})\right],$$

$$5.8$$

e somando $M(\alpha)m(C)$ dos dois lados, conseguimos a aditividade de κ na Igualdade 5.5. Se A=C, não temos a parcela $V_{(\alpha,A\setminus C,\alpha)}$ na Igualdade 5.6, e somamos $M(\alpha)m(A)$ dos dois lados na Igualdade 5.8. Portanto, a proposição está provada por indução. \square

Proposição 5.19. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e m: $\mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Se

$$\bigsqcup_{i=1}^{q} V_{(\alpha^{i}, A_{i}, \alpha^{i}); (\alpha^{i}\alpha^{i,1}, A_{i,1}, \alpha^{i}\alpha^{i,1}), \dots, (\alpha^{i}\alpha^{i,q_{i}}, A_{i,q_{i}}, \alpha^{i}\alpha^{i,q_{i}})}
= \bigsqcup_{j=1}^{p} V_{(\beta^{j}, B_{j}, \beta^{j}); (\beta^{j}\beta^{j,1}, B_{j,1}, \beta^{j}\beta^{j,1}), \dots, (\beta^{j}\beta^{j,p_{j}}, B_{j,p_{j}}, \beta^{j}\beta^{j,p_{j}})},$$

então

$$\sum_{i=1}^{q} \left[M(\alpha^{i}) m(A_{i}) - \sum_{l_{i}=1}^{q_{i}} M(\alpha^{i} \alpha^{i,l_{i}}) m(A_{i,l_{i}}) \right] = \sum_{j=1}^{p} \left[M(\beta^{j}) m(B_{j}) - \sum_{l_{j}=1}^{p_{j}} M(\beta^{j} \beta^{j,l_{j}}) m(B_{j,l_{j}}) \right].$$

Demonstração. É a mesma demonstração da Proposição 3.18.

Proposição 5.20. Sejam $(\mathcal{E},\mathcal{L},\mathcal{B})$ um espaço rotulado normal, M uma função de \mathcal{A} em [0,1] e $m\colon \mathcal{B} \to [0,1]$ uma função satisfazendo as condições m1', m2' e m3' da Proposição 5.9. Então κ é uma medida no semianel \mathcal{S} tal que $\kappa(\phi_a(V)) = M(a)\kappa(V)$ para todo $a \in \mathcal{A}$ e todo subconjunto V de $V_{a^{-1}} \cap \mathcal{S}$.

Demonstração. É a mesma demonstração da Proposição 3.19. □

Observação 5.4. Para mostramos a Proposição 5.21, precisamos supor que os conjuntos \mathcal{B} e \mathcal{L}^* são enumeráveis. Como na Observação 5.2 já trabalhamos com o alfabeto \mathcal{A} enumerável, \mathcal{L}^* naquele caso também é enumerável.

Proposição 5.21. Sejam $(\mathcal{E},\mathcal{L},\mathcal{B})$ um espaço rotulado normal satisfazendo as condições da Observação 5.4 e M uma função de \mathcal{A} em [0,1]. Então existe uma aplicação convexa entre o conjunto das funções m: $\mathcal{B} \to [0,1]$ satisfazendo as condições m1', m2' e m3' da Proposição 5.9 e o conjunto das medidas Borelianas regulares de probabilidade μ em P satisfazendo $\mu(\varphi_a(V)) = M(a)\mu(V)$ para todo $a \in \mathcal{A}$ e todo subconjunto Borel mensurável V de V_{a-1} .

Demonstração. É a mesma demonstração da Proposição 3.20.

Proposição 5.22. Sejam $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe uma bijeção afim entre os conjuntos \mathcal{B}^{λ} e \mathcal{E}^{λ} .

Demonstração. É a mesma demonstração da Proposição 3.21. □

Proposição 5.23. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal. Existe uma bijeção afim entre os conjuntos \mathcal{B}^{λ} e \mathcal{C}^{λ} .

Demonstração. É a mesma demonstração da Proposição 3.22. □

Proposição 5.24. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal satisfazendo as condições da Observação 5.4. Existem isomorfismos convexos entre A^{λ} , B^{λ} , C^{λ} , D^{λ} e E^{λ} .

Demonstração. Da Proposição 5.3, temos um isomorfismo afim entre A^{λ} e E^{λ} . Da Proposição 5.22, um isomorfismo afim entre B^{λ} e E^{λ} . Da Proposição 5.23, um isomorfismo afim entre B^{λ} e C^{λ} . Tomando $M: A \rightarrow [0,1]$ definida por $M(a) = N(a)^{-\lambda}$ na Proposição 5.9, obtemos uma correspondência afim injetora de B^{λ} e D^{λ} , e tomando o mesmo M na Proposição 5.21, obtemos uma aplicação afim de D^{λ} a C^{λ} . O resultado agora segue, pois a composição das aplicações de B^{λ} a D^{λ} , de D^{λ} a C^{λ} e C^{λ} a D^{λ} é a identidade. □

Teorema 5.1. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal satisfazendo as condições das Observações 5.2 e 5.4. Existem isomorfismos convexos entre os conjuntos A^{λ} , B^{λ} , C^{λ} , D^{λ} , E^{λ} , F^{λ} , G^{λ} , H^{λ} e I^{λ} .

Demonstração. Segue das Proposições 5.8 e 5.24.

5.2 ESTADOS GROUND

Nesta seção aplicamos alguns dos resultados anteriores para caracterizar o conjunto dos estados ground de C^* -álgebras de Toeplitz de espaços rotulados normais.

Dado $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal, definimos os conjuntos:

 A^{gr} : o conjunto dos estados ground de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$;

 \mathcal{B}^{gr} : o conjunto dos estados ω de $\mathcal{C}_0(\mathsf{P})$ tais que $\omega(\chi_{V_{(a,r(a),a)}})$ = 0 para todo $a\in\mathcal{A};$

 C^{gr} : o conjunto das medidas Borelianas regulares de probabilidade μ de P tais que $\mu(A)=0$ para todos $a\in \mathcal{A}$ e subconjunto Borel mensurável A de $V_{(a,r(a),a)}$;

 D^{gr} : o conjunto das funções $m: \mathcal{B} \to [0,1]$ satisfazendo:

- 1. $\lim_{A \in \mathcal{B}} m(A) = 1$; e
- 2. $m(A \cup B) = m(A) + m(B) m(A \cap B)$ para todo $A, B \in \mathcal{B}$.

Teorema 5.2. Seja $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ um espaço rotulado normal satisfazendo as condições da Observação 5.4. Existem isomorfismos convexos entre os conjuntos A^{gr} , B^{gr} , C^{gr} e D^{gr} .

Demonstração. A existência de um isomorfismo convexo entre A^{gr} e o conjunto dos estados ω de $C_0(P)$ tais que ω(f) = 0 para todos $a \in A$ e $f \in C_0(V_{(a,r(a),a)})$ segue do Teorema 4.3 de (EXEL; LACA, 2003). Como ω é um estado, e $χ_{V_{(a,r(a),a)}}$ é uma unidade para $C_0(V_{(a,r(a),a)})$, se $ω(χ_{V_{(a,r(a),a)}}) = 0$, então ω(f) = 0 para todo $f \in C_0(V_{(a,r(a),a)})$. Portanto, temos que A^{gr} é isomorfo a B^{gr} , via um isomorfismo convexo.

Assim como para os estados KMS, um isomorfismo convexo entre B^{gr} e C^{gr} é obtido analogamente à Proposição 4.8 de (CARLSEN; LARSEN, 2016).

Finalmente, um isomorfismo convexo entre B^{gr} e D^{gr} é obtido por aplicação das Proposições 5.9 e 5.21 com M(a) = 0 para todo $a \in \mathcal{A}$, e procedendo como na demonstração da Proposição 5.24.

5.3 EXEMPLO

Nesta seção usamos a teoria construída nos Teoremas 5.1 e 5.2 para mostrar que, dependendo do espaço rotulado, o estudo da existência ou não de estados KMS e ground de $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ é facilitado.

Exemplo 5.1. Pensando no espaço rotulado $(\mathcal{E}, \mathcal{L}, \mathcal{B})$ descrito no Exemplo 3.1, vamos fazer uma discussão sobre os estados KMS e estados ground de $\mathcal{T}C^*(\mathcal{E}, \mathcal{L}, \mathcal{B})$ com base nos conjuntos D^λ e D^{gr} dos Teoremas 5.1 e 5.2, respectivamente. Primeiramente vamos descrever o espaço rotulado em questão. Temos o conjunto de vértices $\mathcal{E}^0 = \{v_0, v_1\}$ e o conjunto de arestas $\mathcal{E}^1 = \{e_0, e_1, e_2\}$ com aplicações range e source dadas por $s(e_0) = v_0$, $s(e_1) = v_1$, $s(e_2) = v_0$, $e(e_0) = v_0$, $r(e_1) = v_0$, $r(e_2) = v_1$. O alfabeto $\mathcal{A} = \{0, 1\}$ com aplicação rotulante dada por $\mathcal{L}(e_0) = 1$, $\mathcal{L}(e_1) = 0$, $\mathcal{L}(e_2) = 0$. E a família acomodante é o conjunto das partes de \mathcal{E}^0 , $\mathcal{B} = P(\mathcal{E}^0)$. Temos que este espaço rotulado é normal e satisfaz as condições das Observações 5.2 e 5.4. Considere uma configuração inicial $N: \{0,1\} \to (1,\infty)$ e $\lambda \in (0,\infty)$ como discutido na Observação 5.1.

Com relação aos estados ground, eles existem para qualquer configuração inicial, basta escolhermos uma função $m\colon \mathcal{B}\to [0,1]$ tal que $m(\{v_0\})+m(\{v_1\})=m(\{v_0,v_1\})=1$ e $m(\emptyset)=0$, sendo $m(\{v_0,v_1\})=1$ devido a condição m1 de D^{gr} . É

interessante observar que, para cada configuração inicial, existem infinitas funções m possíveis.

Para os estados KMS $_{\lambda}$, pelas condições de D^{λ} , qualquer função $m \colon \mathcal{B} \to [0,1]$ que pertença ao conjunto D^{λ} deverá satisfazer:

1.
$$\lim_{A \in \mathcal{B}} m(A) = 1$$
;

2. a)
$$m(\{v_0\}) \ge N(1)^{-\lambda} m(r(\{v_0\}, 1)) = N(1)^{-\lambda} m(\{v_0\});$$

b)
$$m(\{v_0\}) \ge N(0)^{-\lambda} m(r(\{v_0\}, 0)) = N(0)^{-\lambda} m(\{v_1\});$$

c)
$$m(\{v_0\}) \ge N(1)^{-\lambda} m(\{v_0\}) + N(0)^{-\lambda} m(\{v_1\});$$

d)
$$m(\{v_1\}) \ge N(0)^{-\lambda} m(r(\{v_1\}, 0)) = N(0)^{-\lambda} m(\{v_0\});$$

e)
$$m(\{v_0, v_1\}) \ge N(0)^{-\lambda} m(r(\{v_0, v_1\}, 0)) = N(0)^{-\lambda} m(\{v_0, v_1\});$$

f)
$$m(\{v_0, v_1\}) \ge N(1)^{-\lambda} m(r(\{v_0, v_1\}, 1)) = N(1)^{-\lambda} m(\{v_0\});$$

g)
$$m(\{v_0, v_1\}) \ge N(0)^{-\lambda} m(\{v_0, v_1\}) + N(1)^{-\lambda} m(\{v_0\});$$

3.
$$m(\{v_0, v_1\}) = m(\{v_0\}) + m(\{v_1\})$$
.

Se partirmos de valores de $N(0) \in (1, +\infty)$ e $\lambda > 0$, e tomarmos N(1) satisfazendo a condição $N(1)^{-\lambda} = 1 - N(0)^{-2\lambda}$, podemos definir a função m como:

$$m(\emptyset) = 0; \ m(\{v_0, v_1\}) = 1; \ m(\{v_0\}) = \frac{1}{1 + N(0)^{-\lambda}}; \ e \ m(\{v_1\}) = \frac{N(0)^{-\lambda}}{1 + N(0)^{-\lambda}}.$$

Temos que essa combinação satisfaz as condições (m1), (m2)(c), (m2)(d), (m2)(g) e (m3), e, logo, satisfaz todas as condições. Ou seja, essa função m representa um estado KMS_{λ} para a configuração inicial partindo de valores de N(0) e λ .

6 CONCLUSÃO

Ao longo do nosso trabalho, resolvemos dois problemas centrais.

O primeiro problema, desenvolvido no Capítulo 2, foi caracterizar os estados KMS e ground da C^* -álgebra do espaço rotulado $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ usando a descrição desse espaço como produto cruzado parcial, que já existia na literatura.

O segundo problema, desenvolvido nos Capítulos 4 e 5, foi estudar a C^* -álgebra de Toeplitz do espaço rotulado $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$. No Capítulo 4, definimos a C^* -álgebra $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ e descrevemos ela como C^* -álgebra de grupóide e produto cruzado parcial. No Capítulo 5, caracterizamos os estados KMS e ground dessa álgebra.

Para trabalhos futuros, recomendamos e pretendemos unificar o estudo que fizemos das duas álgebras $C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ e $\mathcal{T}C^*(\mathcal{E},\mathcal{L},\mathcal{B})$ em um único grupo de álgebras, como descrito em (CARLSEN; LARSEN, 2016), usando a noção de álgebras de Cuntz-Pimsner relativas.

REFERÊNCIAS

AFSAR, Z.; AN HUEF, A.; RAEBURN, I. KMS states on C^* -algebras associated to local homeomorphisms. English. **Int. J. Math.**, World Scientific, Singapore, v. 25, n. 8, p. 28, 2014. Id/No 1450066. ISSN 0129-167X.

AFSAR, Z.; SIMS, A. KMS states on the *C**-algebras of Fell bundles over groupoids. English. **Math. Proc. Camb. Philos. Soc.**, Cambridge University Press, Cambridge, v. 170, n. 2, p. 221–246, 2021. ISSN 0305-0041.

AN HUEF, A.; LACA, M.; RAEBURN, I.; SIMS, A. KMS states on C^* -algebras associated to higher-rank graphs. English. **J. Funct. Anal.**, Elsevier, Amsterdam, v. 266, n. 1, p. 265–283, 2014. ISSN 0022-1236.

AN HUEF, A.; LACA, M.; RAEBURN, I.; SIMS, A. KMS states on the *C**-algebras of finite graphs. English. **J. Math. Anal. Appl.**, Elsevier, San Diego, CA, v. 405, n. 2, p. 388–399, 2013. ISSN 0022-247X.

BATES, T.; CARLSEN, T. M.; PASK, D. *C**-algebras of labelled graphs. III: *K*-theory computations. English. **Ergodic Theory Dyn. Syst.**, Cambridge University Press, Cambridge, v. 37, n. 2, p. 337–368, 2017. ISSN 0143-3857.

BATES, T.; PASK, D. *C**-algebras of labelled graphs. English. **J. Oper. Theory**, Theta Foundation, Bucharest, v. 57, n. 1, p. 207–226, 2007. ISSN 0379-4024.

BISSACOT, R.; EXEL, R.; FRAUSINO, R.; RASZEJA, T. Thermodynamic Formalism for Generalized Markov Shifts on Infinitely Many States. **arXiv e-prints**, 2022.

BOAVA, G.; DE CASTRO, G. G.; MORTARI, F. L. *C**-algebras of labelled spaces and their diagonal *C**-subalgebras. English. **J. Math. Anal. Appl.**, Elsevier, San Diego, CA, v. 456, n. 1, p. 69–98, 2017. ISSN 0022-247X.

BOAVA, G.; DE CASTRO, G. G.; MORTARI, F. L. Groupoid models for the *C**-algebra of labelled spaces. English. **Bull. Braz. Math. Soc. (N.S.)**, Springer, Berlin/Heidelberg; Sociedade Brasileira de Matemática, Rio de Janeiro, v. 51, n. 3, p. 835–861, 2020. ISSN 1678-7544.

BOAVA, G.; DE CASTRO, G. G.; MORTARI, F. L. Inverse semigroups associated with labelled spaces and their tight spectra. English. **Semigroup Forum**, Springer US, New York, NY, v. 94, n. 3, p. 582–609, 2017. ISSN 0037-1912.

BRATTELI, O.; ROBINSON, D. W. **Operator algebras and quantum statistical mechanics 1. C*- and W*- algebras, symmetry groups, decomposition of states**. [*S.l.*]: Springer, New York, NY, 1979.

CARLSEN, T. M. Cuntz–Pimsner *C**-algebras associated with subshifts. English. **Int. J. Math.**, World Scientific, Singapore, v. 19, n. 1, p. 47–70, 2008. ISSN 0129-167X.

CARLSEN, T. M.; LARSEN, N. S. Partial actions and KMS states on relative graph C^* -algebras. English. **J. Funct. Anal.**, Elsevier, Amsterdam, v. 271, n. 8, p. 2090–2132, 2016. ISSN 0022-1236.

CARLSEN, T. M.; MATSUMOTO, K. Some remarks on the C^* -algebras associated with subshifts. English. **Math. Scand.**, Aarhus Universitet, Matematisk Institut, Aarhus; Societates Mathematicae Daniae, Fenniae, Islandiae, Norvegiae, Sveciae, København, v. 95, n. 1, p. 145–160, 2004. ISSN 0025-5521.

CARLSEN, T. M.; ORTEGA, E.; PARDO, E. *C**-algebras associated to Boolean dynamical systems. English. **J. Math. Anal. Appl.**, Elsevier, San Diego, CA, v. 450, n. 1, p. 727–768, 2017. ISSN 0022-247X.

CUNTZ, J. Simple C^* -algebras generated by isometries. English. **Commun. Math. Phys.**, Springer, Berlin/Heidelberg, v. 57, p. 173–185, 1977. ISSN 0010-3616.

CUNTZ, J.; KRIEGER, W. A class of C*-algebras and topological Markov chains. English. **Invent. Math.**, Springer, Berlin/Heidelberg, v. 56, p. 251–268, 1980. ISSN 0020-9910.

DE CASTRO, G. G.; GONÇALVES, D. KMS and ground states on ultragraph C^* -algebras. English. **Integral Equations Oper. Theory**, Springer (Birkhäuser), Basel, v. 90, n. 6, p. 23, 2018. Id/No 63. ISSN 0378-620X.

DE CASTRO, G. G.; MORTARI, F. L. KMS states for the generalized gauge action on graph algebras. English. **C. R. Math. Acad. Sci., Soc. R. Can.**, Academy of Science of the Royal Society of Canada c/o Carleton University, School of Mathematics e Statistics, Ottawa, ON, v. 36, n. 4, p. 114–128, 2014. ISSN 0706-1994.

DE CASTRO, G. G.; VAN WYK, D. W. Labelled space C^* -algebras as partial crossed products and a simplicity characterization. English. **J. Math. Anal. Appl.**, Elsevier, San Diego, CA, v. 491, n. 1, p. 34, 2020. Id/No 124290. ISSN 0022-247X.

DEACONU, V. Groupoids associated with endomorphisms. English. **Trans. Am. Math. Soc.**, American Mathematical Society (AMS), Providence, RI, v. 347, n. 5, p. 1779–1786, 1995. ISSN 0002-9947.

EXEL, R. Inverse semigroups and combinatorial *C**-algebras. English. **Bull. Braz. Math. Soc. (N.S.)**, Springer, Berlin/Heidelberg; Sociedade Brasileira de Matemática, Rio de Janeiro, v. 39, n. 2, p. 191–313, 2008. ISSN 1678-7544.

EXEL, R. **Partial dynamical systems, Fell bundles and applications**. [*S.l.*]: Providence, RI: American Mathematical Society (AMS), 2017. v. 224, p. vi + 321. ISBN 978-1-4704-3785-5; 978-1-4704-4236-1.

EXEL, R.; LACA, M. Cuntz-Krieger algebras for infinite matrices. English. **J. Reine Angew. Math.**, De Gruyter, Berlin, v. 512, p. 119–172, 1999. ISSN 0075-4102.

EXEL, R.; LACA, M. Partial dynamical systems and the KMS condition. English. **Commun. Math. Phys.**, Springer, Berlin/Heidelberg, v. 232, n. 2, p. 223–277, 2003. ISSN 0010-3616.

FARTHING, C.; MUHLY, P. S.; YEEND, T. Higher-rank graph *C**-algebras: an inverse semigroup and groupoid approach. English. **Semigroup Forum**, Springer US, New York, NY, v. 71, n. 2, p. 159–187, 2005. ISSN 0037-1912.

FOWLER, N. J.; RAEBURN, I. The Toeplitz algebra of a Hilbert bimodule. English. **Indiana Univ. Math. J.**, Indiana University, Department of Mathematics, Bloomington, IN, v. 48, n. 1, p. 155–181, 1999. ISSN 0022-2518.

HAAG, R.; HUGENHOLTZ, N. M.; WINNINK, M. On the equilibrium states in quantum statistical mechanics. **Communications in Mathematical Physics**, Springer, v. 5, n. 3, p. 215–236, 1967.

JEONG, J. A.; KANG, E. J.; KIM, S. H.; PARK, G. H. Finite simple labeled graph C^* -algebras of Cantor minimal subshifts. English. **J. Math. Anal. Appl.**, Elsevier, San Diego, CA, v. 446, n. 1, p. 395–410, 2017. ISSN 0022-247X.

REFERÊNCIAS 105

KAJIWARA, T.; WATATANI, Y. KMS states on finite-graph C^* -algebras. English. **Kyushu J. Math.**, Kyushu University, Faculty of Mathematics, Fukuoka, v. 67, n. 1, p. 83–104, 2013. ISSN 1340-6116.

KATSURA, T. On C^* -algebras associated with C^* -correspondences. English. **J. Funct. Anal.**, Elsevier, Amsterdam, v. 217, n. 2, p. 366–401, 2004. ISSN 0022-1236.

KUMIJIAN, A.; PASK, D.; RAEBURN, I.; RENAULT, J. Graphs, groupoids, and Cuntz-Krieger algebras. English. **J. Funct. Anal.**, Elsevier, Amsterdam, v. 144, n. 2, p. 505–541, 1997. ISSN 0022-1236.

KUMJIAN, A.; RENAULT, J. KMS states on *C**-algebras associated to expansive maps. English. **Proc. Am. Math. Soc.**, American Mathematical Society (AMS), Providence, RI, v. 134, n. 7, p. 2067–2078, 2006. ISSN 0002-9939.

LAWSON, M. V. Non-commutative Stone duality: inverse semigroups, topological groupoids and *C**-algebras. English. **Int. J. Algebra Comput.**, World Scientific, Singapore, v. 22, n. 6, p. 1250058, 47, 2012. ISSN 0218-1967.

MURPHY, G.J. **C*-Algebras and Operator Theory**. [*S.l.*]: Elsevier Science, 1990. ISBN 9780125113601.

PIMSNER, M. V. A class of C^* -algebras generalizing both Cuntz-Krieger algebras and crossed products by \mathbb{Z} . *In*: FREE probability theory. Papers from a workshop on random matrices and operator algebra free products, Toronto, Canada, Mars 1995. [*S.l.*]: Providence, RI: American Mathematical Society, 1997. P. 189–212. ISBN 0-8218-0675-0.

RAEBURN, I. **Graph algebras**. [*S.l.*]: Providence, RI: American Mathematical Society (AMS), 2005. v. 103, p. vii + 113. ISBN 0-8218-3660-9.

RENAULT, J. **A groupoid approach to C*-algebras**. [*S.l.*]: Springer, Cham, 1980. v. 793.

RENAULT, J. Cuntz-like algebras. *In*: OPERATOR theoretical methods. Proceedings of the 17th international conference on operator theory, Timişoara, Romania, June 23–26, 1998. [*S.l.*]: Bucharest: The Theta Foundation, 2000. P. 371–386. ISBN 973-99097-2-8.

REFERÊNCIAS 106

STONE, M. H. Postulates for Boolean algebras and generalized Boolean algebras. English. **Am. J. Math.**, Johns Hopkins University Press, Baltimore, MD, v. 57, p. 703–732, 1935. ISSN 0002-9327.

TOMFORDE, M. A unified approach to Exel-Laca algebras and C^* -algebras associated to graphs. English. **J. Oper. Theory**, Theta Foundation, Bucharest, v. 50, n. 2, p. 345–368, 2003. ISSN 0379-4024.

YEEND, T. Groupoid models for the C^* -algebras of topological higher-rank graphs. English. **J. Oper. Theory**, Theta Foundation, Bucharest, v. 57, n. 1, p. 95–120, 2007. ISSN 0379-4024.