

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS, TECNOLOGIAS, E SAÚDE (CTS-ARARANGUÁ) COORDENADORIA ESPECIAL DE FÍSICA, QUÍMICA E MATEMÁTICA (FQM) PLANO DE ENSINO

SEMESTRE 2022.2

I. IDENTIFICAÇÃO DA DISCIPLINA:				
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-A TEÓRICAS	ULA SEMANAIS PRÁTICAS	TOTAL DE HORAS-AULA SEMESTRAIS
FQM7111	Física B	04	-	72

HORÁRIO	MÒDULO	
TURMAS TEÓRICAS	TURMAS PRÁTICAS	
03653 - 3.16202	-	Presencial
5.16202		
04655 – 3.16202		
5.16202		

II. PROFESSOR(ES) MINISTRANTE(S)

Marcelo Freitas de Andrade marcelo.andrade@ufsc.br

III. PRÉ-RE	QUISITO(S)
CÓDIGO	NOME DA DISCIPLINA
FQM7110	Física A

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Graduação em Engenharia de Computação e Engenharia de Energia.

V. JUSTIFICATIVA

Esta disciplina justifica-se pela contribuição teórico-investigativa na formação básica de egressos da área de ciências naturais e tecnológicas. Ela é necessária para a complementação da formação do profissional em engenharia, fornecendo uma base para a compreensão de problemas relacionados à mecânica ondulatória, fluidos e termodinâmica.

VI. EMENTA

Estática e dinâmica dos fluidos. Temperatura e calor. Primeira lei da termodinâmica. Propriedades dos gases. Segunda lei da termodinâmica. Teoria cinética dos gases. Gravitação. Oscilações. Ondas Mecânicas. Ondas sonoras.

VII. OBJETIVOS

Objetivos Gerais:

Qualificar o graduando na compreensão de fenômenos físicos e solução de problemas em física básica relacionados aos temas gravitação, oscilações, movimento ondulatório, fluidos e termodinâmica.

Objetivos Específicos:

- Reconhecer as relações da Física e Matemática com problemas de Engenharia;
- Utilizar linguagem específica na expressão de conceitos físicos relativos à Mecânica dos Fluidos, Gravitação, Oscilações, Mecânica Ondulatória e Termodinâmica.
- Aplicar a lei da gravitação universal na abordagem e solução de problemas relacionados ao comportamento de corpos em campos gravitacionais;
- Descrever o comportamento de fluidos em repouso e movimento;
- Representar matematicamente as oscilações e os fenômenos ondulatórios.
- Estabelecer a relação entre som e ondas mecânicas;
- Compreender as leis da termodinâmica e suas consequências nos processos termodinâmicos e nas máquinas térmicas.
- Transmitir conhecimento, expressando-se de forma clara, formal e consistente na divulgação dos resultados científicos.

VIII. CONTEÚDO PROGRAMÁTICO

- a) Fluidos
 - Fluidos em repouso
 - Noções de hidrodinâmica
- b) Gravitação
 - Leis de Kepler
 - Lei da Gravitação Universal
 - Energia potencial gravitacional
 - O campo gravitacional
- c) Oscilações
 - Movimento harmônico simples
 - Energia no movimento harmônico simples
 - Outros sistemas oscilantes
 - Oscilações amortecidas
 - Oscilações forçadas
- d) Mecânica ondulatória
 - Ondas em uma dimensão
 - Cordas vibrantes
 - Intensidade de uma onda
 - Ondas sonoras
 - Ondas em três dimensões
 - Efeito Doppler
 - Superposição de ondas
 - Ondas estacionárias
- e) Temperatura e teoria cinética dos gases
 - Equilíbrio térmico e a lei zero da Termodinâmica
 - Temperatura
 - Propriedades dos gases ideais
 - A Teoria Cinética dos Gases
- f) Calor e a primeira lei da termodinâmica
 - Capacidade térmica e calor específico
 - Mudança de fase e calor latente
 - A primeira lei da termodinâmica
 - Processos reversíveis
 - Energia interna de um gás ideal
 - Capacidade térmica de um gás ideal
 - Capacidade térmica de sólidos
 - Exemplos de processos
- g) A segunda lei da termodinâmica
 - Máquinas térmicas e a segunda lei da termodinâmica
 - Refrigeradores e a segunda lei da termodinâmica
 - O ciclo de Carnot
 - Entropia
 - Variação de entropia em processos irreversíveis
 - Interpretação estatística da entropia
- h) Propriedades térmicas e processos térmicos
 - Expansão térmica
 - Transferência de calor

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Serão ministradas aulas teóricas em que o professor expõe o assunto ilustrando-o com exemplos e exercícios.

- A verificação do rendimento do aluno compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente - FS), ficando reprovado o aluno com mais de 25% de faltas (Frequência Insuficiente - FI).
- Serão realizadas três avaliações escritas. Assim, a média final (MF) será calculada como a média aritmética das três notas obtidas nas provas escritas. Trabalhos escritos poderão ser solicitados para fins de integralização da carga horária total de 72h/a.
- A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com média das notas de avaliações do semestre MF entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A Nota Final (NF) será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{(MF + REC)}{2}$$

 Ao aluno que não realizar a entrega das avaliações no prazo estipulado terá atribuída nota 0 (zero) nas mesmas. (Art. 70, § 4º da Res. nº 17/CUn/1997)

Observações:

Nova avaliação

 O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá formalizar pedido à Chefia do Departamento de Ensino (por meio da Secretaria Integrada de Departamento) ao qual a disciplina pertence, dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória.

XI. CRON	IOGRAMA TEÓ	PRICO
SEMANA	DATA	ASSUNTO
1 ^a	25/08 a 27/08	Apresentação do plano de ensino. Lei da gravitação universal.
2 ^a	29/08 a 03/09	Leis de Kepler. Energia potencial gravitacional. Órbitas.
3 ^a	05/09 a 10/09	Movimento de satélites e planetas; Densidade, Pressão e Empuxo;
4 ^a	12/09 a 17/09	Princípio de Pascal; Princípio de Arquimedes;
5 ^a	19/09 a 24/09	Equação de continuidade; Equação de Bernoulli;
6ª	26/09 a 01/10	Prova 1; Movimento harmônico simples; Energia no MHS; Pêndulos; Oscilações amortecidas; Ondas mecânicas; Ondas periódicas;
7 ^a	03/10 a 08/10	Energia no movimento ondulatório; Reflexão e interferência; Superposição de ondas; Modos normais de uma corda;
8ª	10/10 a 15/10	Ondas estacionárias longitudinais; Ressonância; Ondas sonoras; Intensidade do som; Batimento; Efeito Doppler; Ondas de choque;
9 ^a	17/10 a 22/10	Prova 2 Equilíbrio térmico; Escalas de temperatura e Termometria; Expansão térmica; Calorimetria; Transferência de calor; Equação de Estado;
10 ^a	24/10 a 29/10	Primeira lei da termodinâmica e Energia interna; Trabalho e diagrama P-V; Processos Termodinâmicos;
11 ^a	31/10 a 05/11	Modelo cinético; Gases ideais e Teorema da equipartição; Distribuição de velocidades moleculares; Capacidade calorífica; Mudanças de fase de agregação;
12 ^a	07/11 a 12/11	Calor específico dos gases ideais; Expansão quase-estática de um gás;
13 ^a	14/11 a 19/11	Feriado. A máquina de Carnot; Irreversibilidade e desordem; Segunda lei da termodinâmica; Máquinas térmicas; Refrigeradores;

14 ^a	21/11 a 26/11	Entropia de gás ideal;
15 ^a	28/11 a 03/12	Variações de entropia;
16 ^a	05/12 a 10/12	Interpretação estatística da Entropia;
17 ^a	12/12 a 17/12	Prova 3
18 ^a	19/12 a 23/12	Prova de Recuperação;

Atendimento aos alunos

A qualquer momento conforme demanda dos estudantes.

XII. Feriados e dias não letivos previstos para o semestre 2022.2		
DATA		
07/09	Independência do Brasil	
12/10	Nossa Senhora Aparecida	
28/10	Dia do Servidor Público	
02/11	Finados	
15/11	Proclamação da República	

XIII. BIBLIOGRAFIA BÁSICA

- 1 HALLIDAY, D; RESNICK, R; WALKER, J. **Fundamentos de Física : Gravitação, Ondas e Termodinâmica Vol. 2.** 9. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2012. 312p.
- 2 TIPLER, P. A.; MOSCA, G.. Física para Cientistas e Engenheiros: Mecânica, Oscilações e Ondas, Termodinâmica Vol1. 6. ed. São Paulo: Livros Técnicos e Científicos, 2009. 788p.
- 3 YOUNG, H. D.; FREEDMAN, R. A.; FORD, A. Lewis. **Física II Termodinâmica e Ondas.** 12. ed. São Paulo: Addison Wesley, 2008. 352p..

XIV. BIBLIOGRAFIA COMPLEMENTAR:

- 4 RESNICK, R.; HALLIDAY, D.; KRANE, K. S.; STANLEY, P. E. **Física** Vol. 2. 5. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2003. 352 p.
- 5 NUSSENZVEIG, H. M. **Curso de Física Básica: Fluidos, Oscilações e Ondas, Calor** Vol. 2. 5. ed. São Paulo: Edgard Blucher, 2014. 375 p.
- 6 SERWAY, R. A.; JEWETT JR., J. W. **Princípios de Física: Movimento Ondulatório e Termodinâmica** Vol. 2. 1. ed. São Paulo: Thomson, 2004. 344 p.
- 7 ALONSO, M.; FINN, E. J. **Física: Um Curso Universitário** Vol. 1. 2. ed. São Paulo: Edgard Blucher, 2014. 596 p.
- 8 ALONSO, M.; FINN, E. J. **Física: Um Curso Universitário** Vol. 2. 2. ed. São Paulo: Edgard Blucher, 2015. 581 p.
- 9 CHAVES, A. **Física Básica: Gravitação, Fluidos, Ondas, Termodinâmica**. 1. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2007. 260 p.
- 10 DA COSTA, E. C. **Física Aplicada à Construção: Conforto Térmico.** 4. ed. São Paulo: Edgar Blucher, 1991. 264 p.

Aprovado na Reunião do Colegiado do Curso//	Coordenador de Curso