

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE DEPARTAMENTO DE ENERGIA E SUSTENTABILIDADE PLANO DE ENSINO

SEMESTRE 2022.2

I. IDENTIFICAÇÃO DA DISCIPLINA:					
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-AULA SEMANAIS TEÓRICAS PRÁTICAS		TOTAL DE HORAS-AULA SEMESTRAIS	
EES7363	FUNDAMENTOS DE BIOQUÍMICA	04		72	
		HORÁRIO			
TURMAS TEÓRICAS		TURMAS PRÁTICAS		MODALIDADE	
3653	- 3.1010(2) 5.1010(2)				

II PROFESSOR(ES) MINISTRANTE(S)

Reginaldo Geremias (reginaldo geremias@ufsc.br

III PRÉ-REQUISITO(S)	
CÓDIGO	NOME DA DISCIPLINA
EES7362	Fundamentos de Química Orgânica

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Bacharelado em Engenharia de Energia

V. JUSTIFICATIVA

O estudo dos fundamentos teóricos acerca das biomoléculas e do metabolismo e suas aplicações em processos de geração e conversão de energia é de grande relevância para a formação acadêmica e profissional dos egressos em Engenharia de Energia.

VI. EMENTA

Introdução à Bioquímica. Química e funções biológicas de aminoácidos, proteínas, enzimas, carboidratos, lipídeos, nucleotídeos, ácidos nucleicos e vitaminas. Princípios de bioenergética. Metabolismo de carboidratos, lipídeos e aminoácidos

VII. OBJETIVOS

Objetivo Geral:

. Estudar os pressupostos teóricos acerca das biomoléculas, do metabolismo e suas aplicações em processos de geração e conversão de energia, com vistas a contribuir para o processo de formação acadêmica e profissional dos egressos do curso de Bacharelado em Engenharia de Energia.

Objetivos Específicos:

Estudar os pressupostos teóricos básicos da química e funções biológicas das biomoléculas e do metabolismo;

- . Compreender as principais aplicações das biomoléculas e seu metabolismo em processos de geração e conversão de energia;
- . Salientar a importância dos conteúdos propostos na formação do egresso em Engenharia de Energia

VIII. CONTEÚDO PROGRAMÁTICO

- 1. Introdução à Bioquímica.
- 2. Química e importância biológica dos aminoácidos, proteínas, enzimas, carboidratos, lipídeos, nucleotídeos, ácidos nucleicos

e vitaminas.

- 3. Bioenergética e visão geral do metabolismo.
- 4. Metabolismo de carboidratos.
- 5. Metabolismo de lipídeos.
- 6. Metabolismo de aminoácidos.
- 7. Biomoléculas e metabolismo: aplicações em processos de geração e conversão de energia

IX. COMPETÊNCIAS/HABILIDADES

- . Compreensão dos pressupostos teóricos básicos relacionados às biomoléculas e suas transformações químicas;
- . Compreensão das principais aplicações das biomoléculas e seu metabolismo em processos de geração e conversão de energia e nas atividades profissionais do egresso

X. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

O processo de ensino/aprendizagem dar-se-á através da seguinte metodologia:

- . Aulas teóricas com utilização de quadro, retroprojetor e multimídia.
- . Trabalho em Equipe
- . Roteiros de estudo
- . Observação: O professor estará disponível para atendimento em sua sala nos seguintes

horários: Segundas-feiras das 14 h às 16 h

Local: Bloco C, Sala 2

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70,§ 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = (MF + REC)/2$$

Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero).
 (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações

•

A nota das avaliações parciais (MF) será obtida a partir do cálculo que segue

Prova 1 = Prova com questões objetivas e/ou dissertativas do item 1 e 2 do conteúdo programático

Prova 2 = Prova com questões objetivas e/ou dissertativas do item 3 a 6 do conteúdo programático

<u>Trabalho em Equipe</u> = Apresentação de trabalho em equipe sobre do item 7 do conteúdo programático

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97

O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no
plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de

3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID).

AULA (semana) DATAS		ASSUNTO		
1a	25/08 a 27/08	Introdução à Bioquímica;		
		Química e importância biológica dos aminoácidos, proteínas, enzimas, carboidratos,		
		lipídeos, nucleotídeos, ácidos nucleicos evitaminas		
2a	29/08 a 03/09	Química e importância biológica dos aminoácidos, proteínas, enzimas, carboidratos		
		lipídeos, nucleotídeos, ácidos nucleicos evitaminas		
3ª	05/09 a 10/09	Química e importância biológica dos aminoácidos, proteínas, enzimas, carboidratos lipídeos, nucleotídeos, ácidos nucleicos e vitaminas		
4 ^a	12/09 a 17/09	Química e importância biológica dos aminoácidos, proteínas, enzimas, carboidratos lipídeos, nucleotídeos, ácidos nucleicos e vitaminas		
5 ^a	19/09 a 24/09	Química e importância biológica dos aminoácidos, proteínas, enzimas, carboidratos, lipídeos, nucleotídeos, ácidos nucleicos e vitaminas		
6 ^a	26/09 a 01/10	Bioenergética e visão geral do metabolismo		
7ª	03/10 a 08/10	Bioenergética e visão geral do metabolismo Prova 1 (20/10)		
8 ^a	10/10 a 15/10	Metabolismo de carboidratos		
9 ^a	17/10 a 22/10	Metabolismo de carboidratos		
10 ^a	24/10 a 29/10	Metabolismo de carboidratos		
11 ^a	31/10 a 05/11	Metabolismo de lipídeos		
12ª	07/11 a 12/11	Metabolismo de lipídeos		
13ª	14/11 a 19/11	Metabolismo de lipídeos		
14 ^a	21/11 a 26/11	Metabolismo de aminoácidos		
15 ^a	28/11 a 03/12	Metabolismo de aminoácidos		
16 ^a	05/12 a 10/12	Prova 2 (06/12)		
		Apresentação trabalho em equipe: (Biomoléculas e metabolismo: aplicações em		
		processos de geração e conversão de energia.)		
17 ^a	12/12 a 17/12	Apresentação trabalho em equipe: (Biomoléculas e metabolismo: aplicações em		
		processos de geração e conversão de energia.)		
18 ^a	19/12 a 23/12	Nova Avaliação para quem não relizou Provas (20/12)		
		Recuperação (22/12)		

Observação:

- . O calendário está sujeito a ajustes de acordo com as demandas
- . As aulas adicionais necessárias para cumprimento da carga horária serão realizadas em local/data/horários a serem definidos junto com os alunos

XIII. Feriados e dias não letivos previstos para o semestre 2022.2			
DATA	Feriados		
07/09	Independência do Brasil		
12/10	Nossa Senhora Aparecida		
28/10	Dia do servidor público		
02/11	Finados		
15/11	Proclamação da república		
09,10 e 12/12	Vestibular		

XIV. BIBLIOGRAFIA BÁSICA

- 1. LEHNINGER, Albert L.; NELSON, David L.; COX, Michael M. Princípios de bioquímica de Lehninger. 5. ed. Porto Alegre: Artmed, 2011. 1273 p. ISBN 9788536324180
- 2. VOET, Donald.; VOET, Judith G. Bioquímica. 4. ed. Porto Alegre: Artmed, 2013. xxix, 1482 p. ISBN 9788582710043
- 3. CHAMPE, Pamela C; HARVEY, Richard A; FERRIER, Denise R. Bioquímica ilustrada. 4. ed. Porto Alegre: Artmed, 2009. 520p. ISBN 9788536317137.

XV. BIBLIOGRAFIA COMPLEMENTAR

- 1. MURRAY, Robert K; HARPER, Harold A. Harper, Bioquímica ilustrada. 26. ed. São Paulo: Atheneu, c2006. 692p.
- 2. VOET, Donald; VOET, Judith G; PRATT, Charlotte W. Fundamentos de bioquímica: a vida em nível molecular. 4. ed. Porto Alegre: Artmed, 2014. xxxi, 1167 [1] p. ISBN 9788582710654.
- 3. BERG, Jeremy M.; TYMOCZKO, John L.; STRYER, Lubert. Bioquímica. 6. ed. Rio de Janeiro: Guanabara Koogan, 2008. xxxix, 1114 p. ISBN 9788527713696.
- 4. DEVLIN, Thomas M. Manual de bioquímica com correlações clinicas. 6. ed. São Paulo: Edgard Blucher, 2007. xxx,1186p. ISBN 9788521204060.
- 5. MAHAN, Bruce H.; MYERS, Rollie J. Química: um curso universitário. São Paulo: Edgard Blucher, c1995. xxi, 582 p. ISBN 8521200366

Professor:			
Aprovado pelo Colegiado do Curso em / /	2022	Presidente do Colegiado:	