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Abstract

Precision Agriculture is a very important field of application, which is mainly de-
termined by the use of high technology in agriculture. Its main goal is to increase
productivity and quality, while making use of good practices to preserve the environ-
ment and at the same time optimize the use of agricultural inputs. One of the tool used
in precision agriculture is the UAV, where an unmanned aerial vehicle used to image a
specific area, targeting a large sampling at reduced time and costs requirement. UAV
can be embedded by a light visible or multiespectral camera, allowing to identify in
image several interesting patterns. One particularly useful analysis is the identification
of weed, a very common kind of grass coexisting in the dominant culture. The present
work proposes an comparison between state of the art convolutional neural network for
identification and segmentation of weed Cynodon sp. in UAV images. Due its similarity
in the visible spectrum of light, segmentation methods based on classical linear color
metrics fail to properly identity the areas affected by this kind of grass. On the other
hand, the use of Convolutional Neural Networks have been employed in a series of
computer vision applications with success. The main goal of this work is to implement
and validate the use of such convolutional approaches as a general problem-solver for
weed mapping identification. The proposed approaches achieve 0.93 accuracy levels,
enabling

Key-words: Computer Vision. Convolutional Neural Network. Weed Mapping. Seg-
mentation
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1 Introduction
Precision agriculture (PA) is a relatively new field of application mainly charac-

terized by the use of high technology to increase productivity and quality in agriculture,
prioritizing the study and the use of good practices to achieve higher productivity while
preserving the environment in a sustainable manner (MCBRATNEY et al., 2005). Examples
of PA involves farm and data management, optimization of pesticides and nutrient appli-
cations according to the nutritional information on demand, and the business intelligence
area such as crop marketing and telematics services (LOUDJANI et al., 2014).

With the advent and price reduction of remote sensing devices, monitoring system
are becoming a very desirable tool for many areas. Multispectral sensors carried by
Unmanned Aerial vehicles (UAV) offers wide-range monitoring capacity, enabling high
accuracy data acquisitions for decision support systems (GARCIA-MARTINEZ et al.,
2020). Application of UAV in agriculture varies from geo-referencing and monitoring of huge
farming areas, security, animal livestock management to nutrient deficiency identification
in cultures (TANG et al., 2020).

Agriculture are taking advantage with the integration between remote sensing
solutions for variable rate(VR) applications methods in agriculture. Through the precise
analysis of nutrient or chemical demands (fungicides, insecticides, herbicide), applications
can be proportionated, resulting in significant decreasing costs since its not exceeds the
application rate indicated for the properly diagnoses (TIMMERMANN; GERHARDS;
KUHBAUCH, 2003). Studies suggest that 28% to 90% of cost savings can be obtained
by using a VR application (TIMMERMANN; GERHARDS; KUHBAUCH, 2003). En-
vironment is also benefited by VR applications, providing a decreasing in ground and
water contamination, soil dampening and compacting, and biodiversity influence impact.
Moreover, precision agriculture can be combined with UAV+VR for weed management and
control in a culture area. One example of weed is the Cynodon Sp. family, a very common
kind of grass that may coexists in a predominant culture area (e.g.: cotton, sugarcane,
tobacco), implying difficulties for productivity (REYNS et al., 2002). The manual inspec-
tion of UAV images looking for Cynodon Sp. presence is a laborious and an error-prone
task done by humans. According to the professional employed to label the infested areas,
Cynodon Sp. is very similar to the predominant culture in terms of color information when
the visual spectrum is used solely, and the correct discrimination by visual inspection may
be ambiguous and inaccurate.

The use of digital image processing and pattern recognition techniques can be used
for automating the identification of Cynodon Sp.. The literature reveals two main trends:
methods based on classical approaches and convolutional neural networks. However, for the
methods found over the literature several drawbacks can be verified, such as susceptibility
to invariance such as light variations, flight instability, flickering acquisition, as well as
shadow, brightness, white balance parameters (YAO; QIN; CHEN, X., 2019). On the other
spectrum related to the nature of the classification problem, classical approaches to be
effective need to be calibrated using a very specific domain, and this manner provides high
accuracy and specificity, with low generalization. Neural networks, however, need huge
amount of input samples to train the model properly, and may present limited specificity
since the model is restricted to the quality of the input sample (for example: model is
trained taking into account a specific domains) (ARAI; KAPOOR, 2020).

In this paper we explore computational approaches for weed segmentation in UAV
images. For this purpose, convolutional-based methods were implemented and compared
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against the validation step dataset and related works over the literature. The following
approaches include the Segnet and UNet convolutional neural network (CNN) architectures,
as preliminary results indicates that Segnet approach is the most suitable for the weed-
mapping segmentation, obtaining 72% overall accuracy with any training step, using only
default ImageNet model weights.

The remainder of this paper is organized as follows: Section 2, related works where
the research is shown and a comparison between classical and modern approaches are
analyzed. Section 3, theory fundamentals with all the basics definitions to the works
better understanding. Section 4, proposed approach for the selected challenge, an image
segmentation model for vegetation and invader discriminator.

2 Related Works
A systematic literature reviews (SLR) was conducted in order to identify the

state-of-the-art methods. Our SLR considered a window from 2017-2022 using the following
databases: Researchgate, ScienceDirect, IEEE Xplorer, for algorithms proposing a weed
mapping or segmentation of aerial images. Keywords used for such results: “UAV OR
Aerial”, “weed OR cynodon”, “detection OR segmentation OR mapping OR classification”,
some works discarded based on image dataset scope (culture area density, similarity, and
textures appearances).

2.1 Classical Approaches
Many methods were found using the criteria above, the related works were categori-

zed into classical and modern approaches. For the classical approaches, summarized in the
Table 1, the distribution of methods and dataset characteristics quantified as Ground to
Soil distance (GSD) commonly described as pixel size. Many works makes use of low GSD
to max out the information data of given culture, therefore limiting UAV coverage area in a
working Day (JIMÉNEZ-BRENES et al., 2019; CASTRO et al., 2017; GIROLAMO-NETO
et al., 2019). For the present development work, an acceptable 3 cm GSD value was
defined by the Team, including data processing time and UAV area coverage. Besides
interesting overall accuracy can be seen with the use of classical methods, it lacks in terms
of generalization, performing well for the set of input data they were designed.

Popular classifiers such as Random Forest and K-Means (GASPAROVIC et al.,
2020; GIROLAMO-NETO et al., 2019; GAO et al., 2018), needs extra dimensions to
describe the pixel more descriptively, reviewed articles makes the use of specific extra
descriptors surrounding spectral, geometric, texture and spatial features.

• Gao et al. (2018). Presents a hybrid manner of weed segmentation, conducted at
agricultural region of Merelbeke located in East-Flanders Province, Belgium, from
a total area of 0.015 ha, combining pixel and object based features, the proposed
method started from soil to vegetation discrimination making use of Excess of Green
Vegetation Index and otsu’s threshold method, texture(GLCM) and a set of Geometry
features, achieving results of 0.945 of overall accuracy.

• Jiménez-Brenes et al. (2019) suggests a deep research about vegetation index along
side with extra spectral and spacial/physical dimensions/channels making use o
RGB+RGNIR and Digital Surface Model (DSM), study happened at Cabra, Souther
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Spain at a total area of 0.05 ha, started by ranking 26 distinct vegetation indexes
and multiples threshold values, end up achieving 0.977 of overall accuracy

• Girolamo-Neto et al. (2019) Research occurred at Iraema Mill, located in São Paulo
State, Brazil in a total area of 3 ha, for a distinct but similar culture named: bermuda-
grass, making use of some color descriptors as: Green-Red Vegetation Index (GRVI),
texture descriptors: Grey level co occurrence matrix, and finally for classification
Random forest algorithm achieving 0.925 precision results for its set of tests.

• Gasparovic et al. (2020) follow an overall simple research using only color descriptors
as: normalized green red difference and brightness index, but having a large dataset.

Table 1 – Classical Approaches
Author Sensors Data points Features GSD OA
Gao et al. (2018) RGB 6.66 × 107 GLCM; Geometry 0.26 0.89
Jiménez-Brenes et al. (2019) RGB;NIR 7.49 × 108 VIs 0.70 0.93
Girolamo-Neto et al. (2019) RGB 1.74 × 1010 VIs; Texture 2.00 0.80
Gasparovic et al. (2020) RGB 3.40 × 108 VIs 3.50 0.85

2.2 Modern Approaches
For the modern counterpart, with the advent of the Convolutional Neural Networks,

several applications restricted due computational limitations are being implemented. Below
at Table 2, the same behavior of classical approaches happen to the GSD value, low values
contributes to great overall accuracy, but limiting UAV area coverage. Geo spacial area
diversity (GAD) are not so discussed, few works creates a well generalized data set: making
the use of data augmentation (KERKECH; HAFIANE; CANALS, 2020)(RAMIREZ et al.,
2020), extended temporal data acquisition (HAMYLTON et al., 2020), wide spectral range
(RAMIREZ et al., 2020).

Table 2 – CNN Approaches
Author Sensors Architecture Data set GSD OA
Barrero et al. (2016) RGB * 1 1.84 0.99
Huang et al. (2018) RGB FCN 1 0.30 0.92
Buddha et al. (2019) RGB Faster R-CNN 1 0.46 0.93
Kerkech, Hafiane e Canals (2020) RGB Segnet 1 1.00 0.95
Ramirez et al. (2020) RGB DeepLabv3 1 1.00 0.89
Hamylton et al. (2020) RGB LeNet 1 3.00 0.85
Zou et al. (2021) RGB UNET 1 0.50 0.98
Reedha et al. (2022) RGB ViT 1 0.50 0.98

3 Fundamentals Theory
The analysis stays upon a comparison between traditional computer vision and

convolutional neural networks techniques, using as metrics of best overall performance
the confusion matrix and processing time speed. Both methods were exposed to the same
dataset and same parameters and conditions.
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3.1 Precision Agriculture and UAV
Precision Agriculture is a management strategy that gathers, processes and analyzes

temporal, spatial and individual data and combines it with other information to support
management decisions according to estimated variability for improved resource use efficiency,
productivity, quality, profitability and sustainability of agricultural production (ISPAG,
2019).

Figure 1 – DJI Phanton UAV

Source: (DJI, s.d.)

Unmanned Aerial Vehicle (UAV), usually known as Drone, an aircraft with no
human pilot, have becoming a excellent tool for precision agriculture due to its excellent
spectral and temporal resolutions when compared with satellites imagery (MCBRATNEY
et al., 2005). Gathering great attention from many area due to its many benefits: data
acquisition, obtaining excellent resolution at multiples spectral bands, capturing vegetation
spectral reflectance and many other classes, minimizing time and resource for field campaign
to investigate weed occurrence. Each class acquired from UAV sensor has its own reflectance
signature for each wavelength of electromagnetic spectrum, its signature being a excellent
tool for crop monitoring, providing various spatial and temporal resolution results, easily
scalable implying for great crop coverage.

3.2 Digital Image Processing and Computer Vision for UAV
With the advent of computer capabilities recently, at both performance and

efficiency scopes, many areas were benefited by, enabling the use of never even thought
integration. Agriculture, health, education and energy sectors are being revolutionized,
moreover for the first segment, machine learning and all its derivatives(branches) has been
broadly employed for many purposes.

Growth rate prediction from climate data makes the use of artificial neural networks,
regression algorithms and gene-expression programming to achieve more precise reports
(LIU et al., 2021). Classification approaches uses convolutional neural networks, to digest
sensing data for agricultural crop management(JIANG et al., 2020; HAO et al., 2020;
PARVATHI; TAMIL SELVI, 2021). UAV image dataset are utilized for all cited approaches
yield to great advantage to inspect larger areas, providing high spacial and temporal
resolution at multi spectral images.
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Figure 2 – Drone Camera Sensor

Source: (DJI, s.d.)

Figure 3 – Crop Flight Plan

Source: (MACHADO et al., 2015)

3.3 Machine Learning
Described as branch from artificial intelligence, the use of computer systems to

reproduce human mind behavior, learning and adaptation capabilities from experience. The
term refers to the automated detection of substantial patterns in data, has become a widely
used tool in almost any application that requires large data sets extraction, being able
to be found from cars to medicine complex systems (SHALEV-SHWARTZ; BEN-DAVID,
2014).

Machine learning can be categorized at two main subdivisions: supervised and
unsupervised learning. At supervised learning, the objective is to predict an output measure
based upon a given input, alternatively unsupervised learning objective is not to predict
an output measure outcome but to describe the associations and patterns upon the given
input (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

At current article supervised learning is applied, where the human-labeled training
sets are composed by a pair of images and its associated area. From its fundamentals,
supervised learning, have as veracious and correct all training set, consequently its quality
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Figure 4 – Crop Result Zoom.

Source: created by author

and size are crucial to the success of the predictions made by the learner (MOHRI;
ROSTAMIZADEH; TALWALKAR, 2018).

3.4 Convolutional Neural Network
A branch from machine learning, a kind of neural network for processing matrix

structured data, has shown optimal results over the last decade to many areas, differing
from ANN (Artificial neural networks) by the lower numbers of parameters, being able to
be dismantle at main modules: Convolution, Pooling and Fully Connected Layers(Dense
Layers).

The main advantage from classical models as: linear regressions, decision trees and
random forest algorithm stays upon by the explicit instruction set absence, leading to
better results as: generality performance, processing times and precision results.

Dealing with algorithms and statistical models, large amount of data are needed to
models infers data patterns. The algorithm employs a method called by convolution , and
differs from ANN from its reduced sets of parameters and its capacity of extract abstract
features as the input goes deeper into the layers (ALBAWI; MOHAMMED; AL-ZAWI,
2017; GOODFELLOW; BENGIO; COURVILLE, 2016). With the advent of computational
developments and algorithmic optimizations, it has been more and more capable and easy
to integrate at several systems.

3.4.1 Convolution

Specific kind of linear mathematical operation defined at Yamashita et al. (2018a)
employed for feature extraction, where two dimensional array known as kernel (k) is applied
throw the entire image input also being two dimensional array (I), following the expression
below:
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S(i, j) = (K ∗ I)(x, y) =
m
2∑

i=− m
2

n
2∑

j=− n
2

K(i, j)K(x + i, y + j) (1)

Figure 5 – Convolution between Image ( I ) and Kernel ( K )

Source: created by author

Other use of this operation are in the use of filters for features image extractions as
edge detection proposed for the Sobel and Canny extractors (SOBEL; FELDMAN, 1968;
CANNY, 1986),

Figure 6 – Examples of the application of Canny (top row) and Sobel (bottom row) edge
detection filters applied to computer graphics test image Lena.

Source: Jovanovic, Tuba e Simian (2012)

One of the most important roles of convolution for CNNs, is the reduction at the
propagated information as it goes into the deeper layers, as exemplified at the figure 5,
where one input of 7x7px convoluted with an kernel of 3x3px results in a 5x5px output.

8



3.4.2 Pooling

Despite convolution layer, polling state have as principal and single objective lowe-
ring the dimension from previous layers creating a summary statistic of the features maps
(GOODFELLOW; BENGIO; COURVILLE, 2016). The most famous pooling algorithms
are: Max-pooling and Average-pooling, the first selects the greater value from a region
and the following selects the average value from a region as the below image (Figure 8)
exemplifies.

Figure 7 – Pooing

Source: created by author

3.4.3 Dense layer

Dense layer or deeply connected layer is where all inputs are connected to all
outputs by a learnable weight (YAMASHITA et al., 2018b). Once features extracted by
convolution layers, down sampled by polling step, its features are mapped by subsets of
dense layer the output of the network, where the classification occurs. Here is where the
high level logic operations occurs, having high computational demand due to high number
of parameters hence high complexity, a dropout layer are added previously to the dense
layer, inactivating some neurons (weights) reducing overall complexity avoiding over fitting.

Figure 8 – pooling most used methods

Source: created by author
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4 Proposed Approach
The proposed approach is summarized in the flow chart presented in the Figure 9.

In 4.1 the data acquisition procedure is described, where an UAV device is used to perform
data acquisition. In 4.2, a preprocessing step is applied where the source orthomosaic are
tilled and augmented. The labeling procedure is also performed in this step, where the
region of interest is marked in order to train the computational model. Using the labeled
vectors, the training step takes place as shown in 4.3. The training is performed using two
convolutional neural networks architecture. The final step of the proposed approach is the
validation procedure shown in 9 and explained in the Section 5.

Figure 9 – General Flow

Source: created by author

4.1 Data Acquisition
Data acquisition occurred over 4 distinct regions described below at table 3 perfor-

med by DJI Phanton 3 UAV equipped with 12.4 MP RGB sensor (4000x3000) , following
flight plan created by flight professional using Drone deploy software ensuring 75%/75%
overlaping and Lawnmower pattern for optimal image quality and minimal terrain distorti-
ons ensuring a 60m flight height. Sensors and flight height were normalized to the best
relationship related to time, cost and battery viability, ending at an optimized value at
3cm/pixel. From a set of overlapping images with the corresponding referencing information,
the orthomosaic generation workflow was performed by Agisoft Metashape PhotoScan
(DUTTA et al., 2021).

Local State Area(ha)
Guatapará SP 32.5
Magalhães SP 209.2
Santa Maria SP 214.9
Porto Pinheiro SP 93.3

Table 3 – Dataset Area
Source: created by author
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4.2 Pre Processing and Data Augmentation
After data acquisition and georeferenced orthomosaic generation, the final result

end up covering an total of 550 ha as presented above at Table 3. Before any step tilling
procedure are needed to the employment of CNN approaches. Geospatial Data Abstraction
Library (GDAL) was used for dataset transformations and for data augmentation, OpenCV
module utilities performed the desired image replications for the dataset (WARMERDAM
et al., s.d.).

a) GDAL Retile: for CNN approach, the dataset must be resized for a more optimal
size focusing at memory and performance balance. For resizing the dataset, Gdal
Retile tilled the dataset, as shown at Figure 10, resizes the dataset to smaller sizes:
eg.: Table 3 Guatapará region was translated from 1 image of 18982x51214 pixels to
969 images of 1024x1024 pixels.

b) GDAL Rasterize: having vectorized data files as source labels, the translation to ND
Array structures are needed. Gdal Rasterize burns vector geometries (points, lines,
and polygons) into the raster band(s) of a raster image. Vectors are read from OGR
supported vector formats(Shapefile), and from these ones RGB images are created
as input label, as it is the dataset are compose by pair of source RGB images and
binary image label.

c) Data Augmentation: Observable at Table 13 shows the current not balanced dataset,
for correction 8 data augmentation steps were applied, brightness( 3 levels ), blur ( 2
levels ), rotation ( 3 levels ) for the minority class of the dataset( Weed ) multiplying
its numbers for a more uniform class distribution.

Originating the following transformed dataset:

Local Ortho Chunks
Guatapará 1 x 18982 x 51214 1040 x 1024 x 1024
Magalhães 1 x 62977 x 71924 2464 x 1024 x 1024
Santa Maria 1 x 52831 x 64095 3368 x 1024 x 1024
Porto Pinheiro 1 x 45103 x 37353 1748 x 1024 x 1024
Total 8620 x 1024 x 1024

Table 4 – Dataset dimensions
Source: created by author

The dataset end up being composed by 2 classes: Weed (invader) and Non-Weed(
anything that do not correspond to the invader eg.: soil, vegetation, cars, objects). At
the figure 11 the dataset are shown, pair of images composed by source RBG and its
corresponding labels, following one samples for each region, from up-down order being:
Guaatapará-SP, Magalhães-SP, Porto Pinheiro-SP, Santa Maria-SP.
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Figure 10 – Tilling algorithm
Source: created by author

Figure 11 – Dataset Samples
Source: created by author
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Source: created by author
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4.3 Training and Recognize model Definition
The elected models for weed semantic segmentation from sugar cane crop images

were, following literature most consolidated models.

a) UNet: created at Computer Science Department of the University of Freiburg, based
upon fully connected neural network (FCN) family, successor from FCN where
poolling steps are replace for upsampling operators. Defined as an encoder-decoder,
it is characterized by it contract and expansive path, resulting at an U shape design
as shown at its architecture at figure 14

Figure 14 – UNet Architecture
Source: Ronneberger, P.Fischer e Brox (2015)

b) SegNet: defined as an encoder network, topologically identical to the 13 convolutional
layers in the VGG16 network containing layers composed by Convolutions + Batch
Normalization, and Activation ReLU functions. The decoder responsibility stays
upon mapping the low resolution features maps to a full input resolution feature
map as represented at figure 15

Figure 15 – SegNet Architecture
Source: Badrinarayanan, Kendall e Cipolla (2017)
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After model definition and implementation, the Dataset were splitted in a 70/15/15
ratio, 70% for model training, 15% for validation step, and 15% for final testing purposes.
All subsets were randomly selected following ratio commented above and also maintaining
homogeneous classes distribution. At the training step iterations all over given dataset
monitoring determined parameters for error minimization occurred, obtaining results of
accuracy evaluation for proposed models discussed at the next section.

4.4 Validation and prediction
After training, with the desired response from the model, all desires metrics were

calculated from confusion matrix from de 15% final dataset slice, shown at table 5. Finally,
the output needs an extra step: translating the binary image to an vectorized file (shapefile),
using Gdal for polygons creation and OpenCV module findCountours function for as the
funciton mentions, find contours, the method end up resulting at an georeferenced shapefile
output.

5 Experimental Results
Following training step, the proposed models presented accuracies up to 92%.

Although this accuracy shows the overall quality of prediction results, it cannot completely
evaluate the real performance of the models, more metrics are needed for a former discussion.
Precision and Recall metrics are calculated from the Confusion Matrix presented at Table
5, Precision representing all correctly predicted results, and Recall all incorrectly predicted
results. Finally, for a fair evaluation of Precision and Recall, F1-Score is denoted as:

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(2)

The final overall quality of each method can be seen at tables 6. For each parameter,
resolution, characteristic and method a private environment of test was created for the
experiment.

Table 5 – Confusion Matrix
Weed 0.9220 0.0970 0.8720 0.0970

Non-Weed 0.0880 0.9130 0.2380 0.9130
Weed Non-Weed Weed Non-Weed

SegNet UNet
Source: created by author

Table 6 – Model Results
Model F1-Score Precision Recall Accuracy
SegNet 0.9268 0.9420 0.9120 0.9280
Unet 0.8802 0.9180 0.8450 0.8850

Source: created by author
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Table 7 – Model Comparison
Author Model Dataset Ratio GSD Accuracy Precision
- SegNet 1.00 3.00 0.92 0.942
- UNet 1.00 3.00 0.88 0.918
Barrero et al. (2016) * 0.37 1.84 0.99 NE
Huang et al. (2018) FCN 0.10 0.30 0.92 NE
Buddha et al. (2019) FR-CNN 0.03 0.46 0.93 NE
Kerkech, et al. (2020) Segnet 1.58 1.00 0.93 NE
Ramirez et al. (2020) DeepLabv3 0.47 0.01 0.89 NE
Hamylton et al. (2020) LeNet 0.31 3.00 0.85 NE
Zou et al. (2021) UNet 0.01 0.50 0.98 NE
Reedha et al. (2022) ViT 0.11 0.50 0.98 NE

Source: Created by author

6 Conclusion and Discussions
This work proposed a solution for a weed mapping optimization problem, the two

following models implementations presented great results achieving >92% precision metrics
and successfully mapping infested areas, providing many savings for the current dataset
owner and farmer.

Analyzing final results and comparing it to literature similar solutions, as detailed
at table 7 the current dataset did not achieve comparable accuracy values, debatable
justification could be mentioned as, all cited works shows lower ground to soil distance
value hence having a better resolution it certainly contributed to the better results, an
important point as comment earlier at this work, smaller GSD results in a total area
coverage limitation.

Dataset difference at resolution and area coverage could result in a unfair results
comparisons, as presented similar projects using the same models resulted and contrasting
results, smaller train/validation set tends to result at a less generalization model. Applying
the same related work proposed model to the current work dataset could result at an even
lower accuracy results despite of lacking of pre processing data augmentation techniques.

Future remarks for the current proposed solution cloud be cited as, implementation
of newer convolution neural network models as BEiT-3 Wenhui Wang et al. (2022) showing
excellent quality and performance results at popular testing dataset over the literature.
Another method becoming very popular, visual transformers (ViTs) are overcoming top
notch CNN models, related works revels excellent result over differences dataset (COCO,
ImageNet, ADE20K) (WANG, Wenhai et al., 2022; CHEN, Z. et al., 2022; REEDHA et al.,
2022).
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