
UNIVERSIDADE FEDERAL DE SANTA CATARINA
DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA

BACHARELADO EM CIÊNCIAS DA COMPUTAÇÃO

Pedro Henrique Aquino Silva

Exploring Approximate Comparator Circuits in the Energy Efficient Design
of Decision Trees

Florianópolis
2022

Pedro Henrique Aquino Silva

Exploring Approximate Comparator Circuits in the Energy Efficient Design
of Decision Trees

Trabalho de Conclusão de Curso apresentado à Uni-
versidade Federal de Santa Catarina – UFSC como
requisito parcial para obtenção do título de bacharel
em Ciências da Computação.
Orientadora: Profa. Cristina Meinhardt, Dra.
Coorientador: Prof. Mateus Grellert, Dr.

Florianópolis
2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Silva, Pedro Henrique Aquino
 Exploring Approximate Comparator Circuits in the Energy
Efficient Design of Decision Trees / Pedro Henrique Aquino
Silva ; orientadora, Cristina Meinhardt, coorientador,
Mateus Grellert, 2022.
 79 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Ciências da Computação, Florianópolis, 2022.

 Inclui referências.

 1. Ciências da Computação. 2. computação aproximada. 3.
árvores de decisão. 4. circuitos comparadores. I.
Meinhardt, Cristina. II. Grellert, Mateus. III.
Universidade Federal de Santa Catarina. Graduação em
Ciências da Computação. IV. Título.

Pedro Henrique Aquino Silva

Exploring Approximate Comparator Circuits in the Energy Efficient Design
of Decision Trees

O presente trabalho em nível de Graduação foi avaliado e aprovado por banca
examinadora composta pelos seguintes membros:

Profa. Cristina Meinhardt, Dra.
Universidade Federal de Santa Catarina

Prof. Ismael Seidel, Dr.
Universidade Federal de Santa Catarina

Prof. José Luís Almada Güntzel, Dr.
Universidade Federal de Santa Catarina

Prof. Mateus Grellert, Dr.
Universidade Federal de Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi
julgado adequado para obtenção do título de Bacharel em Ciências da Computação.

Coordenação do Curso de Graduação em
Ciências da Computação

Profa. Cristina Meinhardt, Dra.
Orientadora

Florianópolis, 2022.

Este trabalho é dedicado a todos que comigo caminharam
até aqui.

ACKNOWLEDGEMENTS

Firstly, I wish to thank my family, who in spite of our differences, have continued
to support me in all the ways they can. Their careful maintenance of my health and
well-being, and their incentive for my personal and career development are sources of
immense inspiration that one day I hope to be able to replicate.

Thanks is overdue to my advisor, Cristina Meinhardt, who welcomed me to the
Embedded Computing Laboratory when I was all but starting my studies and barely knew
anything about circuits. I am grateful for her patience and kindness, and for her guidance
in all of our interesting discussions. I am also thankful to my co-advisor, Mateus Grellert,
for introducing me to a world very different to the one I was accustomed to and for his
knowledge and help in exploring it. I could not be more thankful for the opportunity to
work with them, and for the many lessons they continue to teach me.

I also wish to express my gratitude to my colleagues, who have been very under-
standing through the periods of anxiety while writing this text. Lastly, I would like to
thank my friends, with whom I have shared both incredibly hard and amazingly joyful
times. I have nothing but gratitude for all the support and encouragement they have
given me, and I will always cherish all the memories of food, music and dance we enjoyed
together. I hope to have been able to reciprocate their love in the same quantity, and I
truly wish for us to continue to grow together.

“Para de se comparar com todo mundo.”
(Minha mãe, sem saber que eu ia acabar trabalhando com comparadores, ∼2008)

“I don’t know where I’m going from here but I promise it won’t bore you.”
(David Bowie, 1997)

RESUMO

A Computação Aproximada aplicada ao projeto de circuitos digitais consiste em descrever
circuitos que eventualmente tenham resultados inexatos ou imprecisos, de modo a obter
arquiteturas mais eficientes em área, atraso ou dissipação de potência. Diversos trabalhos
recentes evidenciam os resultados desta técnica em circuitos aritméticos, principalmente
somadores e multiplicadores. Contudo, ainda existe uma lacuna no estudo de técnicas
voltadas para circuitos de comparação, os quais são amplamente utilizados por uma gama
de aplicações. Este trabalho investiga o uso de aproximação em comparadores em nível
de circuito visando eficiência energética, e sua aplicação em modelos de aprendizado de
máquina baseados em Árvores de Decisão (DT). A aproximação é inserida tanto em
circuitos dedicados (AxDC), como em comparadores baseados em full adders (FA), de
modo a minimizar a dissipação de potência do circuito. Foram propostas duas arquiteturas
dedicadas com aproximação em nível de portas lógicas, denominadas AxDC1 e AxDC2.
Estas arquiteturas exploram 25% ou 50% de aproximação dos bits menos significativos
respectivamente, por meio das técnicas de truncamento e cópia. Para as versões baseadas
em FA, foi utilizado um comparador ripple carry com 100% de blocos aproximados, por
meio de três FAs aproximados retirados da literatura (SMA, AMA1 e AMA2). Versões
de 8 bits dos circuitos foram descritos em tecnologia FinFET de 7 nm, e avaliados contra
um comparador exato de referência, utilizando-se de simulações elétricas. O impacto da
aproximação foi avaliado na caracterização elétrica e no estudo do erro dos comparadores.
Posteriormente, o efeito de se utilizar a aproximação como teste de atributo em DTs foi
estudado, empregando o algoritmo C5.0 e 5 datasets do UCI Machine Learning Repository.
Os resultados experimentais obtidos para cada aproximação de comparador sugerem que
o AxDC1 é o melhor candidato ao uso em uma implementação em hardware de DTs, uma
vez que tem um impacto mínimo na acurácia, de somente 0.12% em média, enquanto traz
uma redução de consumo energético de 28% na média em relação ao comparador exato
de referência. O AxDC2, por conta de sua aproximação mais agressiva, obteve resultados
insatisfatórios na acurácia, com piora de 65% em média, em relação ao comparador de
referência, ao passo que não houve melhoras na eficiência energética devido ao maior
número de operações realizadas na classificação com este comparador. Por fim,a versão
de comparador baseado no AMA1 também apresentou resultados promissores, obtendo o
maior ganho em eficiência energética, apesar da queda de acurácia na classificação.

Palavras-chave: Computação Aproximada. Árvores de Decisão. Comparadores.

ABSTRACT

Approximate Computing applied to the design of digital circuits consists in describing
circuits that eventually present inexact or imprecise results, with the goal of obtaining
architectures with improved characteristics in area, delay, or power dissipation. Various
studies highlight the results of this technique in arithmetic circuits, mainly adders and
multipliers. However, there is still a gap in the study of techniques focused on comparator
circuits, that are widely used in a range of applications. This work investigates the adoption
of approximation techniques in the design of comparators at the logic gate and circuit levels,
aiming to improve energy efficiency in Machine Learning models based on Decision Trees
(DTs). The approximation is inserted both in dedicated comparator circuits (AxDC) and
in comparators based on full adders (FA) with a focus on minimizing the area and power
dissipation of the circuit. Two architectures with gate-level approximation were proposed
for the dedicated comparators, called AxDC1 and AxDC2. These architectures exploit 25%
or 50% approximation of Least Significant Bits (LSB) respectively, through truncation
and copy strategies. For the FA-based versions, a Ripple Carry Comparator with 100%
approximation was used, where the approximation was inserted through three approximate
FAs taken from the literature (SMA, AMA1, and AMA2). 8-bit versions of the circuits
have been described in 7 nm FinFET process node, and evaluated against a reference
exact comparator, using electrical simulations. The impact of the approximation was first
evaluated in the electrical characterization and the error behavior of the comparators.
Subsequently, the impact of implementing the approximation on the attribute testing
of DT classifiers was studied using the C5.0 algorithm and 5 datasets from the UCI
Machine Learning Repository. The experimental results obtained for each comparator
version suggest that AxDC1 is the best candidate for use in an implementation in a DT
hardware implementation, since it has a minimal impact on accuracy, of only 0.12% on
average, while providing a reduction of nearly 28% on average in the energy consumption
of the inference, compared to the exact reference comparator. Due to its more aggressive
approach, the AxDC2 obtained unsatisfactory results in accuracy, with a decrease of 65%
on average, in relation to the reference comparator, while there were no improvements in
energy efficiency due to the greater number of operations carried out in the classification
with this comparator. Finally, just like the AxDC1, the AMA1-based comparator also
showed promising results, obtaining the greatest gain in energy efficiency, despite the drop
in classification accuracy.

Keywords: Approximate Computing. Decision Trees. Comparator circuits.

LIST OF FIGURES

Figure 1 – Example Decision Tree . 23
Figure 2 – Doublegate FinFET transistor . 28
Figure 3 – Logic diagram of a 3-output exact 4 – bit dedicated comparator 35
Figure 4 – Diagram of a single-output 4 – bit Exact Dedicated Comparator (EDC) 38
Figure 5 – Approximate Dedicated Comparators (AxDC) 39
Figure 6 – Ripple Carry Comparator (RCC) . 41
Figure 7 – Approximate FAs inspired by the exact Mirror Adder (MA) 42
Figure 8 – Error heatmap for the 8 – bit AMA1 and SMA-based comparators . . . 43
Figure 9 – Error heatmap for the 8 – bit AMA2-based comparator 44
Figure 10 – Evolution of the error rates for the AxDC1 design 45
Figure 11 – Error heatmap for the 8 – bit AxDC1 45
Figure 12 – Error heatmap for the 8 – bit AxDC1 46
Figure 13 – Error heatmap for the 8 – bit AxDC2 47
Figure 14 – Workflow for the evaluation of AxC comparators evaluation in C5.0 . . 51
Figure 15 – Average accuracy and energy consumption for each evaluated comparator 60

LIST OF CODE LISTINGS

Listing 1 – Inverter circuit description for HSPICE® using the ASAP7 PDK. . . 29
Listing 2 – C5.0 continuous node evaluation . 53
Listing 3 – C5.0 continuous attribute test . 53
Listing 4 – Approximate C5.0 continuous node evaluation 54

LIST OF TABLES

Table 1 – Comparison of Decision Tree algorithms. 27
Table 2 – Summary of Decision Tree related work 34
Table 3 – Summary of low-power comparator design related work 37
Table 4 – Error Metrics for the 8 – bit Comparator Circuits 43
Table 5 – Electrical Characteristics and Error Trade-Off for the 8– bit Comparator

Circuits . 48
Table 6 – Comparison of quantization-only and scaling pre-processing on the ac-

curacy over test examples . 57
Table 7 – Evaluation of the Comparison Circuits on Decision Trees Classification

Model – Mixed Attribute Datasets . 57
Table 8 – Evaluation of the Comparison Circuits on Decision Trees Classification

Model – Continuous Attribute Datasets 58

LIST OF ABBREVIATIONS AND ACRONYMS

AMA1 Approximate Mirror Adder 1
AMA2 Approximate Mirror Adder 2
ASIC Application Specific Integrated Circuit
AxC Approximate Computing
AxDC Approximate Dedicated Comparator
AxDC1 Approximate Dedicated Comparator 1
AxDC2 Approximate Dedicated Comparator 2
CART Classification and Regression Trees
CMOS Complementary Metal-Oxide-Semiconductor
DT Decision Tree
DUT Device Under Test
ED Error Distance
EDC Exact Dedicated Comparator
EDERP Energy-Delay-Error Rate Product
EDP Energy Delay Product
ER Error Rate
FA Full Adder
FinFET Fin Field-Effect Transistor
FO4 Fan-out of Four
FPGA Field-Programmable Gate Array
IoT Internet of Things
LSB Least Significant Bit
LUT Look-Up Table
MA Mirror Adder
ML Machine Learning
MSB Most Significant Bit
NN Neural Network
PDERP Power-Delay-Error Rate Product
PDK Process Design Kit
PDP Power-Delay Product
PTL Pass Transistor Logic
PTM Predictive Technology Model
RCC Ripple Carry Comparator
RTL Register-Transfer Level

SMA Simplified Mirror Adder
VFDT Very Fast Decision Tree

CONTENTS

1 INTRODUCTION . 16
1.1 OBJECTIVES . 17
1.2 STRUCTURE OF THIS WORK . 18

2 BACKGROUND . 19
2.1 APPROXIMATE COMPUTING . 19
2.1.1 Error assessment in AxC applications 21
2.2 DECISION TREES . 22
2.3 FINFET DEVICES AND ELECTRICAL CHARACTERIZATION WITH

SPICE . 27

3 RELATED WORK . 32
3.1 DECISION TREES AND HARDWARE ACCELERATION 32
3.2 LOW-POWER COMPARATOR DESIGN 34

4 PROPOSED APPROXIMATE COMPARATORS 38
4.1 ERROR AND ELECTRIC EVALUATION OF PROPOSED COM-

PARATORS . 41

5 USING APPROXIMATE COMPARATORS IN DECISION
TREES CLASSIFIERS . 50

5.1 THE WORKFLOW . 51
5.2 ANALYSIS OF PRE-PROCESSING TECHNIQUES: QUANTIZATION

AND SCALING OF DATASETS . 55
5.3 IMPACT OF APPROXIMATION IN THE C5.0 CLASSIFICATION

MODEL . 56
5.4 DISCUSSION . 59

6 CONCLUSIONS . 62
6.1 PUBLICATIONS . 64

REFERENCES . 66

ANNEX A PAPER PUBLISHED IN THE PROCEEDINGS
OF THE 2022 IFIP/IEEE 30TH INTERNA-
TIONAL CONFERENCE ON VERY LARGE
SCALE INTEGRATION (VLSI-SOC) 73

16

1 INTRODUCTION

In recent years, there has been increased interest in energy efficiency at all levels of
computer systems design. This has been partly fueled by the current ubiquity of battery-
powered and energy-restricted computer applications, such as mobile devices and sensor
networks (BARUA; CHANDRA MONDAL, 2018). Another source of this interest is
the ever-growing usage of computing and energy-intensive applications, such as Machine
Learning (ML) and Big Data analytics, which in due course has motivated the emergence
of concerns on the greenness of such systems (SINGH, S., 2015).

In this context, Machine Learning (ML) applications are present in our daily lives
through recommendation systems, healthcare, and various big data applications. To an in-
creasing extent, these ML algorithms are being introduced to mobile and battery-powered
devices. While training ML models for these use cases is generally extremely compute and
resource intensive (SINGH, S., 2015; BARUA; CHANDRA MONDAL, 2018), their opera-
tion in power-restricted environments also requires the use of low-power design techniques
to enhance battery life and reliability. These facts highlight the necessity for energy-efficient
ML systems (AL-JARRAH et al., 2015), recalling the demand for dedicated hardware
solutions. ML algorithms generally involve a large number of independent operations, en-
larging the design space to allow for hardware optimization, while being resilient to errors
due to the stochastic nature of the training algorithms. These facts indicate Approximate
Computing (AxC) as a suitable approach for improving energy efficiency in dedicated
hardware for ML systems (HAN, 2016; ABREU; GRELLERT; BAMPI, 2020).

Since the 2010s, approximation has been an increasingly popular research topic in
computer science and related fields, as a means of increasing the design space to consider
power reduction techniques in digital systems (BARUA; MONDAL, 2019). AxC is an
emerging research area that exploits the fact that many applications have soft constraints in
terms of accuracy, trading the exactness of operations for significant energy savings (HAN,
2016). These techniques have been explored in both hardware and software in different
contexts, such as Internet of Things (IoT) devices, video, and audio processing, ML
and other error-tolerant applications (MOREAU; SAMPSON; CEZE, 2015; STROLLO;
ESPOSITO, 2018; MARWAHA; SHARMA, A., 2018). When considering ML applications,
most recent projects have delved into developing AxC solutions with a particular focus
on Neural Networks (NNs) (REAGEN et al., 2016; ZHANG, B.; DAVOODI; HU, 2018;
GOEL et al., 2020). However, the use of NNs may still be costly in energy-restricted
environments, for example, due to a large number of multiplication operations necessary
and other architectural requirements (ABREU; GRELLERT; BAMPI, 2020). All the while,

Chapter 1. Introduction 17

simpler and cheaper ML models, such as Decision Trees (DTs), can provide satisfactory
results for a large number of inference problems in various fields of application (LI, Q.;
BERMAK, 2011; RUSSELL; NORVIG, 2009).

While most studies evaluating the usage of AxC techniques in ML models investi-
gate architectural and software approaches (KUMAR; GOYAL; VARMA, 2017; GARCÍA-
MARTÍN et al., 2021), there is much interest in investigating and designing AxC arithmetic
blocks (OSTA et al., 2017; SEKANINA; VASICEK; MRAZEK, 2022).

Be that as it may, most of these efforts concentrate on the proposal and development
of approximate adders, multiplexers, and multipliers. Note that during the classification
stage of a tree-based model, attribute tests are processed to determine the target path
on the tree for a given value under classification, guiding the tree traversal. These tests
are most frequently performed as comparisons, emphasizing the need for optimizations in
comparator circuits. Improvements in the delay and power of such circuits can significantly
reduce the hardware requirements on a decision tree synthesis flow. Thus, exploring
approximation and optimization solutions for the design of comparator circuits becomes
essential.

To the best of my knowledge, little research has been published on approximate
comparator circuits. Generally, these researches explore designs at the architectural level,
introducing approximations focused on delay optimizations for large input bit-widths, and
are less suited for applications with higher energy restrictions (ZHOU et al., 2018). After
my efforts in reviewing the literature, I believe this is the first prospective study on the
circuit-level approximation of comparators tailored for tree-based models.

1.1 OBJECTIVES

The main goal of this work is to propose a set of novel approximate comparator
circuits, alongside an automated workflow for evaluating the impact of their usage in tree-
based classification models. The proposed design flow allows the evaluation of trade-offs
between power and accuracy for continuous and mixed datasets and Decision Tree (DT)
algorithms. Specifically, this work aims to:

• Propose approximate comparator architectures;

• Evaluate and describe the performance of DT classification models trained with
the proposed comparators, observing the impact of each approximation;

• Compare obtained results from different approximation techniques and exact
versions, as well as compare results with related work.

The secondary objectives of this work include:

Chapter 1. Introduction 18

1. analyzing and characterizing the electrical behavior of each proposed compara-
tor;

2. evaluating the performance of each design in the complete operation of a DT
application.

1.2 STRUCTURE OF THIS WORK

The remaining of this document is organized as follows. Chapter 2 presents the
fundamental concepts of Decision Tree learning and Approximate Computing and elec-
trical characterization with SPICE. Chapter 3 describes the related work on low-power
comparator circuits, as well as the energy-efficient design of Decision Tree applications
in hardware. Chapter 4 highlights some existing techniques for comparator design, and
details the proposed approximations for n – bit comparator circuits, along with the elec-
trical and error behavior and characterization for each circuit. In Chapter 5 we discuss
the developed workflow for evaluating the insertion of approximation in tree-based appli-
cations, focusing on DTs models. Finally, Chapter 6 presents a summary of the author’s
conclusions and some insights regarding possible paths for the continuation of this work.

19

2 BACKGROUND

The development of this project involves three main topics: approximate computing,
decision trees, and nanometer technology. The following sections provide an overview of
the theoretical background necessary to understand, develop and evaluate the approximate
comparators proposed and their application in decision tree classifiers. To meet this goal,
firstly, we introduce Approximate Computing in Section 2.1 and give an overview of some
techniques for approximation of arithmetic operations at the circuit and gate level, which
in this work are employed in the design of approximate comparators. Then, Section 2.2
discusses a Decision Tree Learning strategy based on entropy and information gain, then
highlights the importance of the comparison operation in both the learning and usage of
Decision Trees for numeric-valued attributes. Finally, Section 2.3 describes the methods
for obtaining electrical information, such as power consumption and delay, for nanometer
technology nodes using SPICE simulations. These methods are used throughout this work
to estimate gains in the circuits proposed and are discussed here in detail.

2.1 APPROXIMATE COMPUTING

The specification of a computer application can be viewed as the set of outputs
accepted as correct or reliable for given inputs. Many important computing applications
are robust to noise or do not have exactness as the main requirement in their specifica-
tion (STANLEY-MARBELL et al., 2020). Examples of applications include nondetermin-
istic or probabilistic algorithms and applications where the outputs will be perceived by
the human senses. Such design cases are generally termed error-tolerant, and thus their
full reliability can be traded off for reduced resource usage.

In this context, the increase in nondeterministic applications and hardware-restricted
devices has triggered the interest in techniques that take advantage of the flexibility in a
system’s specification to achieve resource savings. Such techniques have been termed in
the literature as Approximate Computing (AxC).

AxC includes techniques on various levels of design, ranging from programming
languages and compilation techniques to hardware architectures that exploit nondeter-
minism exposed in the software or software hardware layer, to new dedicated hardware
designs with correctness versus resource usage trade-offs in mind.

To better discuss AxC techniques, we provide the definitions used in this work for
the terms error, precision, and accuracy, strongly inspired by the terminology defined by
Stanley-Marbell et al. (2020).

Chapter 2. Background 20

An error consists of a failure of the system to produce the expected output. We
note that errors may still be usable computations, in which case the system’s specification
is deemed error-tolerant.

Precision is defined here to mean the limits of possible exactness in a computing
system. For instance, the double-precision floating point number system is a system of
representation of real numbers in which each value is represented by 64 – bit arrays
organized according to the IEEE 754 standard. In this sense, the precision of a computer
system may be viewed as the degree of discretization of the data and operations used, in
our example, numbers have 64 – bit precision.

Accuracy is defined as a measure of the distance between the outputs provided by
the computing system and the results expected from the system’s specification. Note that,
in this work, we discuss two levels of accuracy: in the accuracy of the learned DT model
and in the inexact arithmetic blocks. In DTs and ML in general, the accuracy of a learned
model is the degree of correctness of the model itself in classification applications, this is
the rate of the model’s correct predictions over an input dataset. In AxC arithmetic, we
can also use the term accuracy for the rate of successes or exact results of an approximated
operation. To avoid confusion, here we only use accuracy in the context of ML, while for
approximation of functions, we use a set of error metrics.

In recent years, research focused on AxC has been centered around four major areas:
instruction processing, communication, hardware circuits and systems, and cloud com-
puting. When tackling hardware and circuits approximation, in particular, most research
efforts have been directed to the approximation of logic circuits, adders, multiplexers,
multipliers, neural accelerators, and memories, with various techniques ranging from the
architecture-level to gate and transistor-level approximation (BARUA; MONDAL, 2019).
Since this work focuses on arithmetic operations – namely comparisons –, we shall now
provide an overview of different techniques used in the design of approximate operators.
The information provided here is focused on the methods of approximation used in this
project, and the interested reader may find more detailed descriptions of these and other
techniques in Sekanina, Vasicek, and Mrazek (2022).

Approximate versions of digital circuits are frequently obtained by functional
approximation, in which we first start with an original exact circuit and modify its
logic behavior to obtain the desired trade-off of quality and the electrical characteristics
sought. These characteristics include, for example, power consumption, area, and delay.
Further improvements on these circuits may be obtained by other power reduction tech-
niques, such as voltage scaling or other technology-dependent methods. This method of
functional approximation provides various levels of abstraction or application, and the

Chapter 2. Background 21

designer may choose the level most applicable to the target technology. For example, if
the target technology for a given system is ASIC, the design might employ transistor-level
approximations, while for FPGA-based systems, gate-level or LUT-level approximations
should be preferred.

In application-specific designs, a common and straightforward way to approximate
an arithmetic operation is to perform truncation. This technique consists in discarding
the h least significant bits and performing the exact operation in the remaining n – h input
bits. The resulting circuit has, thus, a reduced area, delay, and power consumption. Due to
the simplicity and good results, along with well-understood error behavior, this technique
is usually used as a baseline implementation and it is only suitable for smaller circuits. The
technique used for approximation in this work is developed from the truncation method:
one performs the functional approximation on a smaller circuit, which is then generalized
to n – bit versions.

2.1.1 Error assessment in AxC applications

However, to fully characterize the approximated circuit, it is not enough to evaluate
the electrical gains from approximating the operation, which is necessary to establish
metrics for error analysis. While, according to Sekanina, Vasicek, and Mrazek (2022),
various researchers apply techniques from the formal verification of computer systems, in
this work, we decide to simplify our analysis, using two error metrics: Error Rate (ER)
and Error Distance (ED) (STANLEY-MARBELL et al., 2020). Error Rate is defined as
the ratio of inputs that cause an inexact output out of all possible inputs, while Error
Distance is the distance of the result to the correct output. In the case of circuits with
a single Boolean output, such as comparators returning a single bit, the ED is trivially
given by the total number of errors, and these two metrics become analogous. Despite this,
we still provide the numbers for both, since it is helpful to understand the error behavior
as both a percentage and an absolute number.

The calculation of ED for a binary function f and an approximation fax with 1– bit
outputs and n – bit input is defined in Eq. (1).

ED =
2n∑

i=0
[f (i) ̸= fax(i)] (1)

The formula uses Iverson notation, as used by Knuth (1992), defined in Eq. (2).

[P] =

1 if P is true;

0 otherwise.
(2)

Chapter 2. Background 22

Finally, we can define the ER in terms of ED, as shown in Eq. (3).

ER = ED
2n (3)

Finally, we reiterate that most AxC studies at the circuit level have been focused on
more hardware-intensive arithmetic units than the comparator, i.e. multipliers and adders.
That said, during the literature review, I found a few studies on the approximation of
comparisons, at both the circuit and software levels. The techniques employed and results
achieved will be further discussed in Chapter 3. Even so, it is important to highlight
that these circuits are present in a variety of error-tolerant systems, and as in the case of
hardware realizations of DTs, they are critical circuits to investigate power optimizations,
including with AxC techniques.

2.2 DECISION TREES

Decision Trees are one of the simplest yet most successful forms of machine learning
models. Their operation is quite easy to comprehend since it is a natural way humans
handle decision-making: normally, one gathers information around a certain goal or decision
to be made, which is then tested against the expected characteristics of the target. For
example, we may choose whether to watch a certain film by assessing the available options
for specific traits such as being an action and adventure movie, being suitable for children,
and having a specific runtime, among others. Similarly, one could then build a DT to filter
the films at each node of the tree, classifying them on whether or not they would want to
see the film.

A generic example of a Decision Tree is given in Figure 1. The tree traversal
is defined by attribute tests at each decision node starting on the root node, and the
classification is given at terminal nodes. Each decision node has n branches which may
be either subtrees or terminal nodes, that guide classification based on information from
the training data and learning method used. For a wide range of problems, the DT
format yields satisfactory and concise results, while also operating at considerably lower
computational cost when compared to more sophisticated models, such as Neural Networks
(NNs) (RUSSELL; NORVIG, 2009) (ABREU; GRELLERT; BAMPI, 2020).

In Machine Learning, our main interest is the automatic construction, or learning, of
efficient and accurate DTs from datasets, resulting in trees that can predict or categorize
new data in the fewest attribute tests. The following paragraphs give an overview of
this topic, though a more in-depth exploration may be found by the reader in Russell

Chapter 2. Background 23

Figure 1 – Example Decision Tree

x1

x2 x3

x2

< 5 ≥ 5

= B > 3 ≤ 3 = A

> 1 ≤ 1

1 2 1

2 3

= C

3

splitting

branch/
sub-tree

terminal nodes

root
node

Source: Pedro Silva, 2022.

and Norvig (2009). Throughout this text, we shall use the words attribute and feature
interchangeably.

Understanding the process of DT learning benefits from basic knowledge of some
concepts from Information Theory, specifically entropy and information gain. Entropy,
represented by the Greek letter eta (Η), is the fundamental quantity in Information Theory
and is defined as the measure of the uncertainty inherent to a random variable’s possible
outcomes (SHANNON; WEAVER, 1949). In layman’s terms, entropy quantifies how much
knowledge one has of the variable in question. The entropy of a random variable X with
possible values {x1, ..., xn} and probability mass function P(X) is defined in Equation (4).
Note that the unit for entropy calculated with logarithm base 2 is bits (or shannons).

Η (X) = –
n∑

i=1
P(xi) log2 P(xi) (4)

In DT learning, our goal is to minimize the entropy for the classes in the data set,
finding the configuration of the tree that provides the largest amount of "knowledge" of the
data set, that is, the one which correctly categorizes most of our data in the least amount
of nodes traversed. In other words, the goal is to find a tree that is consistent with the
examples provided as input and is as small as possible, which is an intractable problem,
as it would require searching through all possible trees. Instead, we use some heuristics to

Chapter 2. Background 24

find a satisfactory solution: Decision Tree Learning algorithms adopt a greedy divide and
conquer strategy to find a small, but not necessarily the smallest, tree that is consistent
with the input data. These algorithms recursively form sub-trees on each attribute test,
always attempting to start from the attribute which makes the most difference to the
classification of an example, until all relevant features have been identified and each
test has been converted into a node. Algorithm 1 presents the Decision Tree Learning
procedure with the heuristics discussed, as described by Russell and Norvig (2009). This is
a simplified version of the algorithm capable only of dealing with categorical features. The
function PluralityValue selects the most common output value in a set of examples,
breaking ties randomly, and the function Importance will be detailed in the following
paragraphs.

Algorithm 1 Decision tree learning algorithm.
1: function DecisionTreeLearning(examples, attributes, parentexamples) returns

a tree
2: if exemples is empty then return PluralityValue(parentexamples)
3: else if all examples have the same classification then return the classification
4: else if attributes is empty then return PluralityValue(examples)
5: else
6: A← argmaxa∈attributes Importance(a, examples)
7: tree ← a new decision tree with root test A
8: for each value vk of A do
9: exs ← {e : e ∈ examples and e.A = vk}

10: subtree ← DecisionTreeLearning(exs, attributes – A, examples)
11: add a branch to tree with label (A = vk) and subtree subtree

return tree
Source: Russell and Norvig (2009).

There are two main challenges involved in building decision trees. The first is how to
decide on the feature that will be picked to separate the classes of our data set into smaller
partitions. In the algorithm presented, this is done in line 6 by using the Importance
function, which computes the feature importance of the attribute being evaluated. By
always beginning with the most “important” attributes, we hope that the resulting tree
is shallow, meaning it will provide the correct classification with a small number of tests.
Thus, the idea is to find the attributes that go the furthest way in providing an exact
classification of the example data. Perfect features would divide the examples into sets
consisting entirely of one category, while useless ones would leave the examples with
roughly the same proportion of categories found before evaluating the split. The second
challenge is deciding if a node should be split further. Perfect leaf nodes would contain

Chapter 2. Background 25

instances of a single class, thus it may seem that we should continue splitting until this
happens. The problem with this approach is that this is known to create trees that have
very large depths, which ultimately causes overfitting. This is why most implementations
of DT Learning algorithms will define thresholds to stop splitting even in cases where
complete separation is not possible, as well as other mitigation strategies to avoid overfit
trees.

To address the first challenge, our example implementation in Algorithm 1 uses
the Importance function to find the attribute on which the examples will be split. An
implementation of this function should calculate a measurable quantity of the feature
importance, for instance, the information gain from splitting the data set on a specific
attribute. In the context of DTs, the information gained from splitting on a given attribute
is the reduction in entropy compared to the previous state, when the data set was not yet
split. To illustrate this, consider we have a data set S where each example is an array of
values for a given set of attributes A. For each attribute a ∈ A, we divide the examples on
the possible values of a and evaluate the entropy of the system considering the categories
present on each subset. The difference in entropy before and after splitting on attribute
a is the information gain. The attribute whose test most significantly minimizes entropy
in the data set, in other words, the one with maximum Importance, is the one that
produces the largest information gain, and is the attribute that should be tested in the
decision nodes, as shown in Fig. 1. Note that other metrics for importance may be used,
such as the Information Gain Ratio or Gini Impurity.

Testing the split on discrete-valued attributes is straightforward, as the dataset can
be trivially divided on each possible value or category. However, we can also build DTs
with continuous or integer-valued attributes, which have an infinite set of possible values.
Continuous or mixed attribute datasets are abundant, considering most financial and
real-world data is continuous (RUSSELL; NORVIG, 2009). For these types of attributes,
DT learning algorithms will generally attempt to find the best split value or threshold
which yields the highest information gain, i.e. provide the best separation of the dataset
on useful leaves.

For such cases, the Decision Node normally implements a comparison with the best
split value. This comparison effectively reduces the problem of separating the example
data into n possible classes to a binary problem – a given example can now be only one of
two classes: lower or equal to the threshold, or greater than the threshold. A consequence
of this fact is that the Decision Node for continuous attributes will always have two
children, as shown in Fig. 1. Note that the only node in the example that has more than
two children, x3, is a discrete-valued attribute, with three possible values, while the other

Chapter 2. Background 26

two attributes are continuous.
An algorithm to find this threshold value is given in Algorithm 2, inspired by the

implementation in the C5.0 classification model, a DT algorithm that will be further
discussed below (QUINLAN, J. Ross, 1993), and the description given by Russell and
Norvig (2009). Note that this is a simplified version of the algorithm, which is not optimized
for large datasets.

Algorithm 2 Method for finding the best split in a continuous feature. The function
CalculateInfo returns a measure of the reduction of entropy gained from the evaluated
split, e.g. the information gain.

1: function BestSplit(examples: set, a: attribute) returns a value
2: step ← k|k ∈ R and k <maxaexamples ▷ define arbitrary step size
3: t ← minaexamples + size
4: best ← t
5: info ← CalculateInfo(examples, a)
6: while t < maxaexamples do
7: lower ← {e : e.A ≤ t} ▷ split the examples with the current threshold t
8: higher ← {e : e /∈ lower}
9: newinfo ← CalculateInfo(lower , a) ⊕ CalculateInfo(higher , a)

10: if newinfo > info then
11: info ← newinfo
12: best ← t
13: t ← t + step

return best
Source: Pedro Silva, 2022.

Considering a dataset with the attribute Temperature in Celsius and the “yes/no”
classification of Snowing, we might find that a split value below or close to Temperature = 0
provides the best information gain for this goal. Note that, while there are efficient methods
for finding good split points, this is typically the most expensive part of DT learning
algorithms.

There are various implementations of these ideas that differ mostly on the split-
ting criterion, the capacity to handle missing data, support for both classification and
regression, and their overfitting mitigation criterion. Different versions also have diverging
approaches to treating the overfitting discussed in the second challenge. Nowadays, two
implementations are mostly used, notably the C5.0 Classification Model, developed by
J. Ross Quinlan (1993) and Classification and Regression Trees (CART), developed by
Breiman et al. (1984). A comparison of these models on the aspects highlighted is given
in Table 1, along with the ID3 algorithm, an earlier DT algorithm proposed by Ross
Quinlan, that has mostly historical importance (QUINLAN, J. R., 1986).

Chapter 2. Background 27

C5.0 is an open-source improved version of one of the most popular algorithms
for training Decision Trees called C4.5, also developed by Ross Quinlan. On the other
hand, CART is an algorithm popularized due to its ability to handle both numerical
and categorical data, and known for its implementation in the scikit-learn Python
library (PEDREGOSA et al., 2011). The version available in scikit-learn is an optimized
implementation that currently has no native support for categorical attributes. This
limitation is mostly overcome by using pre-processing workarounds, e.g. one-hot encoding.

Table 1 – Comparison of Decision Tree algorithms.

ID3 C5.0 CART
Splitting criterion Information Gain Information Gain Ratio Gini Impurity
Numeric attributes No Yes Yes
Type of tree Nonbinary Nonbinary Binary
Supports regression No No Yes
Overfitting treatment None Post-training pruning Post-training pruning

Source: Mateus Grellert, via Jupyter nbviewer.

Some methods employ multiple trees, or ensembles, to improve the quality and
reliability of tree-based predictors. The most notable ensemble methods are boosting and
bagging, while a successful form of using multiple trees in parallel is the use of Random
Tree Classifiers. These ensemble-based tree models highlight once again the importance
of optimizing DT classifiers for both power and accuracy since their training and usage
are much more resource intensive than single-tree models.

2.3 FINFET DEVICES AND ELECTRICAL CHARACTERIZATION WITH SPICE

As part of the efforts to propose approximate comparator architectures, this work
describes and evaluates a set of circuits at the electrical level, due to this level being
detailed enough to provide reliable data for a comparison between all circuits. Also,
electrical level evaluation is less time-consuming and computationally costly than, for
example, considering the layout level in a specific technology. It also enables us to use
newer device technologies in a very straightforward manner, with simple alterations in the
circuit description and different Predictive Technology Model (PTM).

For this evaluation, simulations in 7 nm Fin Field-Effect Transistor (FinFET) node
were performed in the electrical simulator HSPICE® from Synopsys, using the ASAP7
Predictive Technology Model (CLARK et al., 2016). FinFETs are multigate non-planar
transistors that have various advantages in contrast with the traditional planar transis-
tors, specifically concerning short-channel performance, while allowing for very similar

https://nbviewer.org/github/grellert/INE410146-machine-learning/blob/main/NOTEBOOKS/11-Trees_and_Ensembles.ipynb

Chapter 2. Background 28

fabrication processes (YU et al., 2002). Since the 2010s, it has been widely used in
nanoscale Complementary Metal-Oxide-Semiconductor (CMOS), due to its good charac-
teristics in performance, scalability, and manufacturability, especially under 20 nm process
nodes (Y. KAMAL, 2022). A diagram for a FinFET device is given in Fig. 2, where we
can see the vertical structure called fin surrounded by the vertical gate. These vertical
structures ensure better channel control, high mobility for electrons and holes, and better
manufacturability for nanometer nodes.

Figure 2 – Doublegate FinFET transistor

Source: Irene Ringworm, CC BY-SA 3.0, via Wikimedia Commons.

Differently from planar CMOS devices, which have continuous sizing parameters,
the sizing in FinFET transistors is discrete due to the vertical fin characteristics. Instead
of varying the width of the channel, in these devices, we use several fins placed side-by-
side and all covered by the same gate. The device acts electrically as a single gate and
has greater drive strength and throughput than planar CMOS gates. Thus, when sizing
FinFET transistor, we define only the number of fins present in each device. Specifically,
the ASAP7 Process Design Kit (PDK) recommends utilizing the minimum recommended
number of fins to ensure net routability, namely three fins per transistor (XU et al., 2017).
In the simulations, we found that this recommendation was well suited for our use case,
with good performance on all evaluated circuits. To illustrate, the description of an inverter
circuit for HSPICE® using the ASAP7 PDK is shown in Listing 1. The nominal voltage for
the 7 nm process node is 0.7 V, and the ASAP7 PDK device model chosen is considering
the fast-fast corner for PFET and NFET devices.

Once the technology has been decided and the circuits designed, we move to the
electrical characterization of the circuit. For the simulations to approximate reality, it is
necessary to emulate a scenario in which the circuit is connected to other devices and
logic cells. This is because, after the placement and routing of a circuit, there are other
blocks connected to both inputs and outputs acting as resistors and capacitors, which
interfere in the electrical behavior of the circuit of interest (WESTE; HARRIS, 2010). To

https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Doublegate_FinFET.PNG

Chapter 2. Background 29

Listing 1 – Inverter circuit description for HSPICE® using the ASAP7 PDK.

1 * PTM and simulation parameters
2 .include 7nm_FF.pm
3

4 .param vdd = 0.7 V
5 .param len = 7 nm
6 .param n = 3
7 .option post = 2
8

9 * supply and source voltages
10 Vvdd vdd gnd vdd
11 Vin in gnd pulse(0 vdd 1.0n 0.1n 0.1n 1.0n 2.2n)
12

13 * circuit description
14 Mp vdd in out in pmos_rvt L=len nfins=n
15 Mn out in gnd in nmos_rvt L=len nfins=n
16

17 .tran 0.1ns 5.0ns
18 .end

Source: Pedro Silva, 2022.

this goal, a common approach in testing and characterization is to connect a chain of an
even number of inverters 4× the minimum sizing to all inputs and outputs of the Device
Under Test (DUT). This gives the entry inverter enough current to deal with the DUT
input capacitance and provides enough charge for the DUT to be considered equivalent
to the Fan-out of Four (FO4) rule, usually employed in combinational cell design. The
FO4 rule is defined as the equivalent capacitance of a minimum-size inverter driving an
inverter 4x larger than itself. For the simulations in this work, a different approach was
used, where we connect the inputs and outputs of the DUT to 1 fF capacitors as load.
This also gives an equivalent setup to the FO4 rule and is as realistic as a complex system,
reducing the runtime of the electrical simulations.

After having defined the design, and obtained the description of each circuit, we
must decide which electrical metrics should be obtained and evaluated. Since this project
is focused on the reduction of energy consumption, it makes sense to calculate the metrics
of power and delay, whose trade-offs are considered in the Power-Delay Product (PDP).

Firstly, we consider the calculation of power dissipation on the simulation tool used.
To this end, HSPICE® only provides direct methods to measure the current, which can
then be used to calculate the average power dissipated by the circuit in the simulation
time frame. As shown in Equation (5), we compute the energy by taking the integral of
the measured current from a source voltage i(Vdd) over a time interval Δt, corresponding

Chapter 2. Background 30

to the simulation duration.

E =
∫
Δt

0
i(Vdd)dt (5)

With the total consumed energy, we apply Equation (6), determining the average
power dissipated by the relation of energy over time, multiplied by the supply voltage. In
all simulations for electrical characterization, we used the nominal supply voltage of 0.7V ,
and 3ns duration.

P(Vdd) = Vdd × E
Δt (6)

Timing characterization is helpful to evaluate the performance of logic blocks and
can be measured through their delays. For our purposes, only the propagation time of
a single signal is considered in the calculation of delay and used in the computation of
Power-Delay Product (PDP). The propagation delay indicates the time necessary for an
output to change state when there is a single transition in the inputs. These times are
measured from 50% of an input wave transition to 50% of the resulting output transition.
These times may be from high-to-low when the output goes from a logic 1 to a 0, or
low-to-high when the state changes in the opposite direction (WESTE; HARRIS, 2010).
To characterize a circuit, we are interested in the largest propagation delay, or critical
delay. In small circuits, it is possible to obtain this through exhaustive simulation, using
input waves called delay arcs containing all relevant transitions.

Finally, with both the critical delay and the average power dissipation P(Vdd), the
PDP is trivial to compute from Equation (7). This metric is useful for comparing which
circuit is more efficient by both metrics. A simplified physical interpretation for the PDP
is the energy consumed in transitions of all devices in the design when stimulating the
critical path.

PDP = Delay × P(Vdd) (7)

As the number of inputs of the circuits increases, this method of characterization
becomes prohibitively costly, due to the difficulty in determining the delay arcs, and our
strategy needs to be adapted. In this work, it was decided to characterize all logic gates
and full adders used, and analytically find the critical propagation path in the circuit
diagrams. Then, the critical delay of the logic blocks in the critical path is summed up to
find an estimate of the critical delay of the entire circuit. This approach to characterization
is only possible, of course, since our interest lies in how each proposed circuit compares

Chapter 2. Background 31

with the others. Thus, because we use the same methods and metrics on all evaluated
circuits, the values computed will be reliable enough for our use case.

32

3 RELATED WORK

Tree-based classification models are highly suitable for efficient hardware imple-
mentation. Compared to NNs, for example, DTs require the storage of a smaller num-
ber of coefficients and present linear computation (TORRES-ALVARADO et al., 2022).
Thus, there is a long reported history of hardware implementations, including both Field-
Programmable Gate Array (FPGA) designs and silicon integration in Application Specific
Integrated Circuit (ASIC) (LI, Q.; BERMAK, 2011). There have been various techniques
developed to improve hardware implementations of DTs, most of which require the use of
comparators for attribute tests in continuous features.

Since this work is focused on optimizing comparator circuits specifically, the follow-
ing sections will provide an overview of the state of the art of design and synthesis of DT
accelerators as well as low-power and approximate comparator circuits. Firstly, Section 3.1
discusses recent projects advancing the synthesis flow for DT classifiers and highlights
the efforts directed towards the approximate implementation of these systems. Section 3.2
discusses various techniques used on the low-power design of 2–bit and n – bit comparators
and comments on two papers proposing approximate versions of such circuits.

3.1 DECISION TREES AND HARDWARE ACCELERATION

The hardware implementation of DT models is mostly focused on applying these
systems in low-resource environments. For instance, Qingzheng Li and Bermak (2011)
develop an on-premise DT solution in ASIC for gas identification with 91% accuracy.
Since there are various alternative architectures for DT classifiers, early work on this topic
focused on evaluating these approaches.

J.R. Struharik (2011) provides insights on the topic of the hardware realization of
both single-tree and multiple-tree models (STRUHARIK, R. J. R.; NOVAK, 2013). In both
these works, the authors investigate several possible implementations of Decision Trees in
hardware. Notably, they explore the fact that there is an equivalence between Decision
Trees and a mathematical formulation named threshold networks. It is also highlighted
that during the classification of an instance using any DT, only a subset of the nodes will
be visited, meaning that if we have a single universal node that can evaluate every tree
node, the number of hardware node modules required to implement this decision tree is
equal to the depth of the tree. Going further, if the classification speed and throughput are
not critical requisites, all trees can be implemented with a single universal node, drastically
reducing the hardware cost of realizing the DT. These strategies have the downside of

Chapter 3. Related Work 33

requiring much larger storage for the coefficients of the threshold network. According to
the authors, the high throughput architecture proposed needs, on average, 56% fewer node
modules than previously proposed architectures.

More recent projects have increasingly delved into improving energy consumption
for embedded and mobile devices. García-Martín et al. (2021) develop a software-level
approach to design energy-aware Very Fast Decision Tree (VFDT) for streaming algorithms
requiring up to 31% less energy than the original VFDT while trading off around 1.7% of
accuracy. Abreu, Grellert, and Bampi (2020) analyze the effects of model complexity on
the power-accuracy trade-offs of hardware implementations, showing that quantization of
inputs may have an advantageous impact on accuracy in contrast with precise cases, and
evaluating the extent of the impact on power consumption when varying the maximum
tree-depth.

Finally, there is some interesting work exploring approximate computing on the
synthesis of DTs. Barbareschi, Barone, and Mazzocca (2021) explore a precision-scaling
technique, building multiple tree variants and employing a multi-objective optimization
algorithm to find optimal configurations targeting energy consumption, area occupation,
and accuracy of the final model. Balaskas et al. (2022) have an approach similar to the one
developed in this work, except targeting printed electronics. Using a dual-approximation
strategy, they employ both precision scaling and comparison-level approximations. The
comparators utilized in their architectures are “bespoke architectures”, taking a single
value as input and comparing it with hardwired coefficients. The precision scaling used
is also applied to the threshold value, and since the size of the comparator varies with
the hardwired value, they also approximate these thresholds to more hardware-friendly
coefficients, which reduces the total area of each comparator.

Table 1 summarizes the similarities and differences between the studies discussed in
this section. For each work, we identify the level of evaluation of the design, highlighting
the target technology used. We also consider the target applications, if any, although
most of the selected research is on general-purpose Decision Tree implementations. The
Architecture column details what are the particularities of each design. Note that most
works go further than we did, by implementing the entire DT in hardware, while we focus on
software-level evaluation, as our objective is to characterize the impact of the comparators
used. The AxC column includes any approximation techniques explored by the authors of
all projects. Most of them deal with some level of approximation, particularly in the form
of precision scaling. Here, our approach differs, as we investigate the approximation on
the circuit level, altering the comparators themselves in a fixed precision scenario. Finally,
the last column identifies which researches deal with comparisons and the techniques used

Chapter 3. Related Work 34

by them. As discussed previously, out of the selected projects, the only research focusing
on the approximation of comparisons is done by Balaskas et al. (2022), although their
approach to approximation is on the coefficients used in bespoke comparators and the
precision used, while our strategy concerns the comparator itself.

Table 2 – Summary of Decision Tree related work

Work Design
Target
applica-
tion

Architecture AxC technique Comparator
techniques

Qingzheng Li and
Bermak (2011)

ASIC 180nm
bulk

gas iden-
tification threshold networks None None

García-Martín et al.
(2021) software general

purpose VFTD software level hyperpa-
rameter tuning None

Abreu, Grellert,
and Bampi (2020)

ASIC 64nm
bulk

general
purpose

automatic tree-to-
VHDL translation

Precision scaling, depth
scaling None

Barbareschi,
Barone, and Maz-
zocca (2021)

FPGA 28nm
bulk

general
purpose

automatic tree-to-
VHDL translation Precision scaling None

Balaskas et al.
(2022) printed circuit general

purpose bespoke classifier Precision scaling, ap-
proximate coefficients

bespoke compara-
tors (coefficients-
specific design)

This work
software,
ASIC 7nm
FinFET

general
purpose

software-level
evaluation

circuit-level com-
parator approxima-
tion

truncated com-
parator, copy
strategy

Source: Pedro Silva, 2022.

These projects highlight the efforts already taken in the design of DT applications
using AxC techniques, in both software and hardware. They also present possible use cases
of the approximate comparator approaches developed in this work, most notably in the
usage of approximation in different levels of the design flow. For example, our approach
could be combined with techniques developed in Balaskas et al. (2022) for the design of
an ASIC implementation of a DT employing precision scaling, threshold approximation,
and comparator circuit approximation.

3.2 LOW-POWER COMPARATOR DESIGN

The comparison operation is traditionally implemented in two main approaches:
using Full Adders or dedicated circuits. Conventional comparators evaluate two n – bit
inputs and return three outputs: greater than, equal to, and lesser than, that may in
turn be combined to form other desired outputs. Full Adder-based comparators are built
using Full Adders (FAs) and traditional adder modules. The performance of FA-based
comparators can be improved using architectures focused on power reduction or reduced
delay. They also have the benefit of hardware reusability for applications that already
require adder-subtractor modules, as well as good scalability for large inputs, by simply
increasing the size of the adder used.

Chapter 3. Related Work 35

Despite the good performance in large bit widths and the incentive of hardware
reuse in FA-based comparators, dedicated circuits are known to achieve further energy
consumption and performance gains. The logic diagram for the conventional 3-output
implementation of a dedicated comparator is given in Fig. 3.

Figure 3 – Logic diagram of a 3-output exact 4 – bit dedicated comparator

Source: Younis and Zamli (2010).

Most work regarding low-power comparator design is centered on improving the
electrical characteristics of a circuit without impacting its accuracy. In fact, despite the
ubiquity of these logic blocks in digital design, to the best of the author’s knowledge, the
research on ultra-low-power comparators has been primarily concerned with applications
requiring comparators as control blocks or for analog to digital converters.

There is a lot of interest in the design of 2-bit comparators, being the focus of most
circuits the author encountered in the literature. These circuits can be chained to produce
larger comparators since they provide all three possible outputs: equal to, greater than,
and lesser than. Akash Gupta et al. (2017) propose a 2-bit low-power comparator topology
developed in 90 nm CMOS process node by introducing what the authors refer to as a
“swing domino logic with twisted transistors” to decrease dynamic power dissipation. This
change results in savings of up to 60% in power consumption. Vallabhuni et al. (2020)
design a comparator in 18 nm FinFET technology node, which is then analyzed on nominal
and low voltage to evaluate transient response, as well as power and delay measures.

Moving to n – bit comparators, Geetanjali Sharma, Nirmal, and Misra (2011) also
propose an 8 – bit Hybrid PTL comparator, removing the branches which compute lesser
than and equal to and using low-power Full Adders (FAs) to provide energy savings in
comparison with conventional dedicated comparators. This is possible due to the property
that, given two numbers A and B, ¬(A > B) =⇒ A ≤ B. Exploring this fact, Pranay

Chapter 3. Related Work 36

Singh and Jain (2018) and Munratiwar, Saikrishna, and Jyothi (2022) present very similar
designs which simplify the logic required for computing the less than operation by reusing
the branches responsible for the other two operations. This technique of reusing the
same hardware to perform different comparisons with the help of additional logic is fairly
common in n – bit comparator design, and will also be used in our approach. Efstathiou,
Agalioti, and Tsiatouhas (2022) propose a design based on dynamic logic, which shows
good results in PDP in up to a 64-bit version. Another possibility in low-power n – bit
circuits is presented in Tripathy et al. (2015), where a hybrid logic consisting of Pass
Transistor Logic (PTL), transmission gates, and static CMOS logic is used to explore
larger levels of parallelism in comparator design.

Most research in this area is focused on developing low-power comparators with
techniques that maintain accuracy, preserving the generality of novel topologies. However,
there are some studies considering the design of approximate comparators. Most notably,
the work developed by Kim, Yong Zhang, and Peng Li (2015) proposes a FA-based
approximate comparator unit for large bit widths in Register-Transfer Level (RTL) that
performs 18× more efficiently in terms of Energy Delay Product (EDP) than an equal bit
width Ripple Carry Comparator (RCC) while presenting less than 0.1% ER. Building on
this comparator, Zhou et al. (2018) design an architecture replacing the FAs in the prior
design with comparator logic blocks. The resulting architecture is 1.5× more efficient in
Energy-Delay-Error Rate Product (EDERP) than the previous version when both are
implemented in TSMC 90 nm bulk CMOS.

The selected work in this section describes various techniques for the design of
low-power comparators and is summarized in Table 3. We indicate the bit width of the
proposed comparators, explicitly indicating the generic ones, i.e., the techniques extendable
to n – bits. The column # Outputs summarizes if the proposed comparator circuit presents
individual outputs for the three comparative functions, or if it is simplified to provide
only one output function, e.g. only the greater-than operation. We also classified the
comparators by the type of circuit: FA-based or dedicated. We include the techniques
adopted in the conception of the circuits and the abstraction level of the design. In
this column, the CMOS refers to the CMOS topology, with topological complementary
networks.

In particular, the evaluation of the related work shows that for certain applications,
it is unnecessary to compute all three outputs conventionally present in a comparator,
since we can provide good results in the area, power dissipation, and delay by reducing the
comparator circuit to a single branch that computes either the greater-than or lesser-than
operation, and adopt the necessary comparisons accordingly. The designs dealing with

Chapter 3. Related Work 37

Table 3 – Summary of low-power comparator design related work
Work Bitwidth AxC # Outputs Type Technique Evaluation Level Technology
Geetanjali Sharma,
Nirmal, and Misra
(2011)

8 no 1 FA-based Hybrid
PTL/CMOS electrical 90 nm planar

bulk CMOS

Akash Gupta et al.
(2017) 2 no 3 dedicated CMOS, logic

coupling electrical 90 nm planar
bulk CMOS

Vallabhuni et al.
(2020) 2 no 3 dedicated basic CMOS electrical 18 nm FinFET

Pranay Singh and
Jain (2018) 4 no 3 dedicated circuit level,

CMOS layout 180 nm planar
bulk CMOS

Munratiwar, Saikr-
ishna, and Jyothi
(2022)

8 no 2 dedicated logic simplifica-
tion, RTL FPGA/RTL FPGA (Xilinx) †

Efstathiou, Agalioti,
and Tsiatouhas
(2022)

n no 3 dedicated dynamic logic electrical 90 nm planar
bulk CMOS

Tripathy et al.
(2015) 8 no 3 dedicated

PTL, static
CMOS, trans-
mission gate

schematic, layout 45 nm planar
bulk CMOS

Kim, Yong Zhang,
and Peng Li (2015) n yes 1 FA-based RTL std cells, electrical 90 nm planar

bulk CMOS

Zhou et al. (2018) n yes 1 dedicated logic gate prun-
ing, RTL std cells, electrical 90 nm planar

bulk CMOS

This work n, 8 yes 1 both circuit level,
CMOS electrical 7 nm FinFET

† Technology not informed by the authors.
Source: Pedro Silva, 2022.

AxC demonstrate the growing need to explore the combination of conventional low-power
design techniques with approximate computing methods in comparator design for error-
tolerant applications. Among the techniques exploring AxC, our approach differs from the
previous ones by proposing new dedicated circuits using the truncation and copy strategies
and comparing them with FA-based comparators.

38

4 PROPOSED APPROXIMATE COMPARATORS

This work proposes new approximate comparator circuits. These circuits are re-
duced versions of a conventional dedicated comparator (HOLDSWORTH; WOODS, 2002),
showed in Fig. 3. The proposed circuits are also compared with FA-based comparators.

In this work, the Exact Dedicated Comparator (EDC) was designed by remov-
ing the lesser-than and equal-to branches of a traditional comparator and inverting the
greater-than output, resulting in an architecture that computes only lesser-or-equal-than.
This comparator design is an adapted version of the architecture proposed by Geetanjali
Sharma, Nirmal, and Misra (2011). This reduction targets improvements in the area and,
consequently, power consumption, without any impact on the accuracy of the circuit. We
note that the other comparison operations can still be implemented by switching the input
order or inverting the output.

Figure 4 – 4-bit
Exact Dedicated Comparator (EDC)

XN1

XN2

XN3

A3
B3 A2

B2
N2

N3

B1
A1

N4
A0
B0

A3
B3

N1

A1
B1

A2
B2

LEQAND

Source: Pedro Silva, 2022.

The general equation for n – bits of the EDC is presented in Eq. (8), comprised
of three parts. The first line performs an equality test for both inputs in the form of an
XNOR operation, producing each EQi ; the terms Gi represent a larger than test in each
bit, accounting for all equality tests in more significant bits; and the last line computes
the operation A ≤ B with an AND operation over Gi .

Chapter 4. Proposed Approximate Comparators 39

EQi = Ai ⊙ Bi , 0 < i < n

Gi = [
∏n–1

k=i+1 EQk] · (Ai · Bi) , 0 ≤ i < n

A ≤ B =
∏n–1

i=0 Gi

(8)

To exemplify, a 4 – bit version of this exact dedicated comparator is presented
in Fig. 4. The diagram structure follows the same idea as that of n – bit comparators. This
circuit serves as the starting point for the proposed dedicated approximated comparators.

Considering the EDC, we propose two architectures for Approximate Dedicated
Comparators (AxDCs): the Approximate Dedicated Comparator 1 (AxDC1) and the
Approximate Dedicated Comparator 2 (AxDC2). The functional approximation technique
adopted removes logic gates from the EDC circuits. This approach is explored to improve
power consumption while attempting to have little impact on the application accuracy. To
illustrate, we present the 4 – bit versions of both comparators in Fig. 5, as a simplification
to introduce the approximations and to allow a direct comparison with the 4 – bits EDC
example.

Figure 5 – Approximate Dedicated Comparators (AxDCs)

XN1

XN2

A3
B3 A2

B2
N2

N3

B1
A1

A3 N1

LEQAND

A2
B2

B3

(a) 25% inputs approximation (AxDC1)

XN1A3
B3 A2

B2
N2

A3
B3

N1

LEQAND

B1
(b) 50% inputs approximation (AxDC2)

Source: Pedro Silva, 2022.

Chapter 4. Proposed Approximate Comparators 40

The first approximate dedicated comparator we will discuss is the AxDC1. The
general equation for n – bits is presented in Eq. (9), where the difference from the Eq. (8)
is that the range of operation is reduced to 3

4n in each input. In other words, the approx-
imation was achieved by truncating the n

4 Least Significant Bits (LSBs). In the 4 – bit
example, this corresponds to removing gates N4 and XN3 gates from the EDC.

[ht]

EQi = Ai ⊙ Bi , n
4 < i < n

Gi = [
∏n–1

k=i+1 EQk] · (Ai · Bi) , n
4 ≤ i < n

A ≤ B =
∏n–1

i= n
4

Gi

(9)

The AxDC2 implementation is shown in Eq. (10). This version limits the range
of operation to the n

2 Most Significant Bits (MSBs) in each input, also ignoring the n
4

LSBs. On the 4 – bit example, the gates XN2 and N3 are bypassed and removed from
the EDC circuit. The bit B1 was passed directly to the last AND gate, an approximation
technique we refer to as the “copy strategy”, that improved the error rate for this circuit in
comparison with directly truncating 50% of the inputs. This resulted in further reduction
in area and possibly power compared to the AxDC1.

EQi = Ai ⊙ Bi , n
2 < i < n

Gi = [
∏n–1

k=i+1 EQk] · (Ai · Bi) , n
2 ≤ i < n

A ≤ B =
∏n

2 –1
i= n

4
Bi ·

∏n–1
i= n

2
Gi

(10)

As generalized by the Eqs. (9) and (10), these approximations can be explored in
n – bit circuits, constructed by obeying the same conditions of approximation. For the
experiments, let us consider 8 – bit versions of each circuit, analogous to those presented
in the schematics for 4 – bits. To do so, we use slices of 25% of the full bit width instead
of individual bits. As an example, AxDC2 would ignore bits 0 and 1 from both inputs,
and pass bits B2 and B3 directly to the last AND gate.

To set a comparative environment for the proposed approximate circuits, we also
evaluated three FA-based approximate comparators. Let us consider a RCC. Beginning
with an adder-subtractor, we can evaluate a comparison by using a subtraction and
analyzing a specific output. For example, it is evident that if A – B ≥ 0, then A ≥ B.
In two’s complement arithmetic, that is equivalent to testing if the sign bit (the MSB in
the output) is equal to 0. Conversely, performing A < B is equivalent to the sign bit of

Chapter 4. Proposed Approximate Comparators 41

the operation A – B being equal to 1. To avoid the need for an inverter in lesser-or-equal
comparisons, the most frequent type in our use case, we modify this FA-based approach:
instead of evaluating A – B and taking the MSB, we analyze the carry out for the MSB
when calculating B – A. To illustrate, Fig. 6 provides an example of a Ripple Carry
Comparator (RCC) for A ≤ B.

Figure 6 – Ripple Carry Comparator (RCC)

FA3 FA2 FA1 FA0 '1'

LEQ

B3 A3 B2 A2 B1 A1 B0 A0

Source: Pedro Silva, 2022.

In these circuits, the approximation is trivially inserted by replacing exact FA cells
with three different approximate topologies: the Simplified Mirror Adder (SMA), the Ap-
proximate Mirror Adder 1 (AMA1), and the Approximate Mirror Adder 2 (AMA2) (GUPTA,
V. et al., 2011). The circuits of these approximate FAs are presented in Fig. 7. These AxC
FAs are explored due to the good outcomes of lower error distance and power savings com-
pared to the Mirror Adder (MA) (SILVA, P. A.; MEINHARDT, 2020). This approximation
has the added benefit of allowing a fine-grained tuning of the level of approximation, by
varying the number of bits that will use the AxC FAs and those that shall continue exact
sums. For this analysis, we approximated 100% of the FAs in the design.

As for the dedicated comparators, some existing designs provide support for larger
input bit widths. However, these are typically implemented following an architectural
approach targeting timing optimization (ZHOU et al., 2018). For our purposes, we will
consider approximated comparators topologies that have good scalability until 16 bits,
insofar as larger bit widths justify analyzing other solutions that reuse hardware or use be-
spoke comparators with hardwired constants. Nonetheless, generalized n–bit constructions
are presented for the dedicated approximations that will be discussed.

4.1 ERROR AND ELECTRIC EVALUATION OF PROPOSED COMPARATORS

To study the effects of approximation in each comparator, we developed an analysis
of their error distribution, error rates, and error distances. This evaluation has the objective
of understanding what is the expected behavior of the errors given the ranges of values

Chapter 4. Proposed Approximate Comparators 42

Figure 7 – Approximate FAs inspired by the exact Mirror Adder

(a) Simplified Mirror Adder (SMA) (b) Approximate Mirror Adder 1 (AMA1)

(c) Approximate Mirror Adder 2
(AMA2)

Source: Vaibhav Gupta et al. (2011)

in a dataset, and how the features are distributed. It also aids in the investigation of the
quality of approximations, allowing better-informed decision-making when opting for a
specific architecture during the design of a DT system.

The conventional error metrics of Error Distance (ED) and Error Rate (ER),
previously defined in Section 2.1, were calculated according to the Truth Tables of the
8–bit approximations. Since all comparators have the same bit width, it is more interesting
to focus on the ER, though the ED gives a better perspective on the full impact of
the approximation. The results for both metrics in all evaluated designs are presented
in Table 4. The error distribution, on the other hand, is shown in Fig. 8 and Fig. 9 for the
FA-based comparators, and Fig. 11 and Fig. 13 for the dedicated versions. These figures
contain heatmaps where the X and Y axes consist of 8 uniformly distributed ranges of A
and B values in the operation A ≤ B. Each cell contains the number of errors for the range
of A and B considered and the fraction of the total errors present in the cell. These graphs
help us understand the patterns through which the error is distributed on all possible
inputs.

Chapter 4. Proposed Approximate Comparators 43

Table 4 – Error Metrics for the 8 – bit Comparator Circuits

Circuit ED † ER (%)
AxDC1 384 0.59
AxDC2 24,384 37.21
SMA 10,795 16.47
AMA1 10,795 16.47
AMA2 16,384 25.00
† The maximum ED for 8 – bit comparators is 65,536.

Source: Pedro Silva, 2022.

In Table 4, note that the AMA1 and SMA FA-based comparators present the same
metrics, and thus the error heatmap in Fig. 8 is the same for both comparators. This
behavior is caused by the fact that the FA-based comparator only depends on the part of
the FA circuit that computes the carry-out, which is an identical transistor arrangement
for both FA topologies, as seen in Fig. 7b and Fig. 7a.

Figure 8 – Error heatmap for the 8 – bit AMA1 and SMA-based comparators

[0 - 31] [32 - 63] [64 - 95] [96 - 127] [128 - 159] [160 - 191] [192 - 223] [224 - 255]

B values

[0 - 31]

[32 - 63]

[64 - 95]

[96 - 127]

[128 - 159]

[160 - 191]

[192 - 223]

[224 - 255]

A
v
a
lu
es

496
4.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1024
9.5%

496
4.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1024
9.5%

1024
9.5%

496
4.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1024
9.5%

1024
9.5%

1024
9.5%

496
4.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

496
4.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1024
9.5%

496
4.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

496
4.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

155
1.4%

Source: Pedro Silva, 2022.

The AMA2-based version has a problematic distribution of errors. Fig. 9 indicates
that not only the AMA2 has the largest ER among the FA-based comparators, as the
errors caused by this comparator are much more evenly distributed in contrast to the

Chapter 4. Proposed Approximate Comparators 44

other FA-based comparators. For the SMA and AMA1 designs, the errors are mostly
concentrated in lower values of A and B, while in the AMA2, the error distribution gives
no indication of which range of values of a feature might incur in an incorrect classification.

As previously discussed, a fine-grained approximation strategy could be used to
improve the error behavior in FA-based comparators, by limiting the approximate FAs to
the LSBs and, for example, use an optimization algorithm to find the most appropriate
number of approximated bits in a given application.

Figure 9 – Error heatmap for the 8 – bit AMA2-based comparator

[0 - 31] [32 - 63] [64 - 95] [96 - 127] [128 - 159] [160 - 191] [192 - 223] [224 - 255]

B values

[0 - 31]

[32 - 63]

[64 - 95]

[96 - 127]

[128 - 159]

[160 - 191]

[192 - 223]

[224 - 255]

A
v
a
lu
es

528
3.2%

1024
6.2%

1024
6.2%

1024
6.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

528
3.2%

1024
6.2%

1024
6.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

528
3.2%

1024
6.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

528
3.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

496
3.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1024
6.2%

496
3.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1024
6.2%

1024
6.2%

496
3.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1024
6.2%

1024
6.2%

1024
6.2%

496
3.0%

Source: Pedro Silva, 2022.

Another interesting fact evident in Table 4 is the remarkably low error rate in the
AxDC1. Despite the design using truncation of 25% of input bits, the Error Rate (ER) is
only 0.59%. See that the ER for this circuit decreases exponentially with the number of
bits, as shown in 10.

In Fig. 11, we can also see that all the errors are concentrated in the principal
diagonal of the heatmap matrix, that is, the region where A and B values are the closest.
For DT applications, understanding this behavior is very desirable, thus a detailed heatmap
for the ranges of [0,32] is given in Fig. 12. Note that all other ranges follow the same
pattern. When considering an attribute test with this circuit, the incorrectly classified
examples would only be the ones where values are the closest to the threshold. By contrast,

Chapter 4. Proposed Approximate Comparators 45

Figure 10 – Evolution of the error rates for the AxDC1 design

4 6 8 10 12 14 16

Bitwidth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
rr
or
R
a
te

(E
R

)

Source: Pedro Silva, 2022.

a designer would need to be careful that the target dataset has less frequent examples in
the vicinity of the split to avoid an increased loss of accuracy from this comparator.

Figure 11 – Error heatmap for the 8 – bit AxDC1

[0 - 31] [32 - 63] [64 - 95] [96 - 127] [128 - 159] [160 - 191] [192 - 223] [224 - 255]

B values

[0 - 31]

[32 - 63]

[64 - 95]

[96 - 127]

[128 - 159]

[160 - 191]

[192 - 223]

[224 - 255]

A
v
a
lu
es

48
12.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

48
12.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

48
12.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

48
12.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

48
12.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

48
12.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

48
12.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

48
12.5%

Source: Pedro Silva, 2022.

Finally, we discuss the AxDC2 comparator. From Table 4, the large impact the
truncation had in its error metrics is unmistakable, resulting in the worst figures in ER

Chapter 4. Proposed Approximate Comparators 46

Figure 12 – Error heatmap for the 8 – bit AxDC1 in the range [0,32]

[0
-

1
]

[2
-

3
]

[4
-

5
]

[6
-

7
]

[8
-

9
]

[1
0

-
1

1
]

[1
2

-
1

3
]

[1
4

-
1

5
]

[1
6

-
1

7
]

[1
8

-
1

9
]

[2
0

-
2

1
]

[2
2

-
2

3
]

[2
4

-
2

5
]

[2
6

-
2

7
]

[2
8

-
2

9
]

[3
0

-
3

1
]

B values

[0 - 1]

[2 - 3]

[4 - 5]

[6 - 7]

[8 - 9]

[10 - 11]

[12 - 13]

[14 - 15]

[16 - 17]

[18 - 19]

[20 - 21]

[22 - 23]

[24 - 25]

[26 - 27]

[28 - 29]

[30 - 31]

A
v
a
lu
es

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1

Source: Pedro Silva, 2022.

and ED. Combined with the distribution of errors in Fig. 13, we expect this architecture
to cause a large degradation of the classification accuracy. Still, the distribution is more
well-behaved than in other adders, with most errors concentrated on larger figures of B,
likely a result of the copy strategy used, where 25% of magnitude tests were replaced
directly with the bits this input.

Moving on to the electrical evaluation of the comparator circuits, we start with
the description of the EDC and the proposed circuits for 8 – bit extensions of the EDC
and AxDCs, as well as the RCC with each approximated FA topology. As described
in Section 2.2, the circuits were described at the transistor level using the ASAP7 7 nm
FinFET PTM provided by Arizona State University (ASU) (CLARK et al., 2016). All
devices use 3 fins, recommended as the minimum sizing for standard cell design. Due to the
large number of inputs in 8– bit comparators, the critical delay was analytically estimated,
using the critical path in the circuit and each logic block delay characterization. The power
was estimated by a worst-case analysis, taking the sum of the average power consumption
measured for all logic blocks impacting the critical path in the design. For each cell, the
delay and average power dissipation were extracted through exhaustive simulation with
HSPICE® from Synopsys. The circuits were characterized under a nominal voltage of 0.7

Chapter 4. Proposed Approximate Comparators 47

Figure 13 – Error heatmap for the 8 – bit AxDC2

[0 - 31] [32 - 63] [64 - 95] [96 - 127] [128 - 159] [160 - 191] [192 - 223] [224 - 255]

B values

[0 - 31]

[32 - 63]

[64 - 95]

[96 - 127]

[128 - 159]

[160 - 191]

[192 - 223]

[224 - 255]

A
v
a
lu
es

360
1.5%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

0
0.0%

360
1.5%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

0
0.0%

0
0.0%

360
1.5%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

0
0.0%

0
0.0%

0
0.0%

360
1.5%

768
3.1%

768
3.1%

768
3.1%

768
3.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

360
1.5%

768
3.1%

768
3.1%

768
3.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

360
1.5%

768
3.1%

768
3.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

360
1.5%

768
3.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

360
1.5%

Source: Pedro Silva, 2022.

V, utilizing a 1 fF capacitor as load, equivalent to a fan-out of 4 (FO4), to emulate a more
realistic scenario.

Alongside the electrical characteristics discussed, another figure of merit is intro-
duced in this evaluation, to give insight into the trade-offs between power dissipation, delay,
and accuracy of the proposed circuits. The Power-Delay-Error Rate Product (PDERP) is
calculated through Eq. (11), where Pavg is the average power dissipation.

PDERP = Pavg × Delay × ER (11)

The idea behind this metric is that we desire the simultaneous reduction of all
metrics: power, delay, and error rate. In the face of the impracticality of this goal, we
become interested in minimizing their collective impact, since an approximated circuit
is only energy-efficient if it has a good trade-off of power and delay, usually measured
through the PDP, and is only usable if the impact in accuracy can be absorbed by the
target application. Therefore, despite the rule-of-thumb of “the lower the PDERP the
better” being somewhat reasonable, it is necessary to keep in mind that this analysis is
not a substitute for a more thorough evaluation in the context of the application.

Table 5 presents the electrical characteristics of delay and power for the 8 – bit

Chapter 4. Proposed Approximate Comparators 48

comparator circuits evaluated in this work, alongside the trade-offs measured through the
PDERP. It also includes the transistor count for the implementations used and recalls
the ER to aid the analysis. The first line identifies the EDC, adopted as the baseline
in the following discussions. The next two lines describe the results for the approximate
dedicated versions (AxDC1 and AxDC2) proposed in this work. The last three lines are
the results for the subtractor-based comparator circuits with approximation (SMA, AMA1
and AMA2).

Table 5 – Electrical Characteristics and Error Trade-Off for the 8–bit Comparator Circuits

Circuit # Devices Delay (ps) Power (nW) ER (%) PDERP
(ps × nW ×%)

EDC 150 79.45 3,421.23 N/A N/A
AxDC1 102 60.25 3,109.73 0.59 1,097.75
AxDC2 66 44.05 1,700.38 37.21 27,868.74
SMA 176 104.56 4,319.44 16.47 74,393.80
AMA1 120 75.60 5,278.00 16.47 65,725.65
AMA2 136 69.76 3,346.48 25.00 58,362.61

Source: Pedro Silva, 2022

From Table 5, we note that the dedicated comparators have an overall better
performance in most metrics when compared to the FA-based versions. Considering the
delay, this is a consequence of the linear increase in delay for FA-based versions, since they
depend on the evaluation of the entire carry chain. In contrast, the depth of the critical
path in dedicated comparators, and consequently the delay, is mostly constant. Out of
the evaluated architectures, the smallest delay was obtained in the AxDC2, due to the
critical path depending only on the evaluation of n

2 bits. For a similar reason, the AxDC1
presents the second lowest delay time.

When evaluating the power consumption, the worst-case analysis performed also
puts the dedicated comparators at an advantage. The reason for this is that they were
designed by pruning all unnecessary circuits in this comparison, while the FAs used in the
remaining designs have additional circuitry to compute the Sum output. Focusing on the
dedicated designs, the gains in power consumption are consistent with what was expected.
The AxDC2 dissipates about half as much power and is nearly twice as fast as the exact
version. On the other hand, the AxDC1 provides a somewhat modest improvement in
power, close to 10%, although it has almost 25% lower delay time. This is expected,
since removing the last 25% LSBs, representing the AxDC1, results in a proportionately
smaller number of logic gates removed than the 50% approximation applied to the other
comparator. This is also observed in the number of devices in both cases: the AxDC1 had

Chapter 4. Proposed Approximate Comparators 49

a reduction of 31% in the transistor count, while the AxDC2 uses 56% fewer transistors
than the exact version. From the circuit diagrams in Fig. 4 and 5, it is clear that the logic
is simplified in the AxDC2: the 5-bit NAND gate present in the EDC was only reduced
to a 3-bit in the AxDC1. The AxDC2 removed it completely, impacting the static power
dissipation as well.

Considering the FA-based comparators, note that despite having a lower transistor
count, the AMA1 has a higher power consumption than the AMA2. Recalling on the
diagrams in Fig. 7b and Fig. 7c, one finds that this is caused, in part, by the higher delay
times measured for the AMA1 Cout, as this signal is used to drive more internal transistors
compared to the AMA2 design. Since the power estimate given in Table 5 was calculated
by adding n times the worst-case power dissipation for each FA cell, it is understandable
that the AMA1 show a larger power consumption. As to why the AMA1 still has a larger
power consumption than the SMA-based comparator, we elicit the possibility that the
latter circuit has a smaller dynamic power consumption. This would still need to be further
evaluated in a more in-depth analysis.

Although it is important to properly understand both the error and electrical
characteristics of approximated circuits, it is vital to provide a way to evaluate the trade-
offs of the improvements in energy efficiency and the impact of approximation on the
accuracy of the results. To this end, let us turn our attention to the last column presented
in Table 5, referring to the PDERP. Once again, we observe that the dedicated circuits
outshine the FA-based designs. However, in this case, this advantage is caused by the
extremely low error in the AxDC1 and the drastic reduction in power dissipation in the
AxDC2. Out of the FA-based versions, the AMA2-based comparator has the best results
in PDERP, although an investigation as to whether the application tolerates the 25% ER
is still of key importance.

The approximate comparators discussed in this chapter were designed using various
techniques. The AxDC1 shows a rather conservative approximation, with minimal impact
on the accuracy, while the remaining circuits are more aggressive in their error charac-
teristics. The analysis provided is useful to guide the decision of which AxC comparator
is best suited for an application, as well as to provide a basis for better understanding
the results of employing them in a comparative evaluation, as shall be done over the next
sections.

50

5 USING APPROXIMATE COMPARATORS IN DECISION TREES
CLASSIFIERS

To evaluate the proposed approximate comparator circuits, this analysis uses the
General Public License (GPL) version of the C5.0 Decision Tree implementation as a
case study (QUINLAN, J. Ross, 1993). The GPL version of the C5.0 implementation is
available at Rulequest Research, with the limitation of being single-threaded and lacking
some optimizations done in the proprietary version. The C5.0 implementation is a well-
known and widely used implementation of the C4.5 algorithm (QUINLAN, J. Ross, 1993).
The main reason for selecting this implementation is that it is open source and available for
free, independent of a larger package, unlike, for example, the scikit-learn tree-based
classifiers. This allows us to easily understand and adapt the code to include modules
describing the proposed comparators’ behaviors and perform a software-level evaluation.

For continuous attributes, DTs algorithms typically compare their value with a
threshold that is tuned in the training step. However, for categorical attributes, differ-
ent implementations may have diverging philosophies. For instance, a common strategy
when using the scikit-learn version of CART is mapping the categorical features into
numerical values and testing them against a threshold. In this case, the comparator ap-
proximation developed in this work could be applied to all types of features present in the
dataset. In contrast, C5.0 maps their value as indices to an array of sub-trees, forming the
branches of a node. Therefore, in this study, our approximate operators are only applicable
to continuous features.

The comparison operations performed in the classification step were modified in the
C5.0 source code to analyze the behavior of the classifiers in the presence of approximate
attribute tests, enabling both precise and approximate comparators. On the other hand,
other operations such as the computation of the entropy and the information gain were
not altered, resulting in an approximation limited to the classification step of the DT
application. That is to say that the training step is not aware of the approximation, and
the DT is trained with the original C5.0 implementation.

We developed an automated framework to study the utilization of approximate
comparators in DT models, which evaluates the accuracy of all proposed comparators on
various datasets and provides an estimate of the energy consumed and power dissipation
per inference performed. This workflow gives the basis for an in-depth analysis of the
trade-offs of power and accuracy in a given model, specifically the C5.0 classifier, using the
various approximate comparators discussed proposed. However, we note that the proposed
workflow and comparators are easily adaptable to other tree-based classification models.

http://www.rulequest.com/see5-info.html

Chapter 5. Using approximate comparators in Decision Trees Classifiers 51

In the following sections, we further discuss the evaluation of using the comparators
in DT applications. Section 5.1 describes the workflow used to evaluate each inexact
version of the C5.0 classifier and compare their trade-offs against the version using the
EDC for attribute tests. In Section 5.2, we delve deeper into two quantization strategies
investigated to convert the numerical features in the evaluated datasets to 8–bit values that
can be used in our approximate comparators. Lastly, the results obtained from applying
the methods in the workflow on different numerical and mixed-attribute datasets are
presented in Section 5.3. Section 5.4 this chapter with an examination of the results and
limitations of the proposed methods.

5.1 THE WORKFLOW

This experiment consisted in implementing a method for the evaluation of each
architecture in the context of the C5.0 classification. The workflow is summarized in Fig. 14
was comprised of 4 stages: (1) pre-processing, (2) model training and classification, (3)
power/energy estimation, and (4) summary and evaluation of results. Each step of the
workflow developed is detailed in the following subsections.

Figure 14 – Workflow for the evaluation of AxC comparators evaluation in C5.0

Scale and quantize
values

Convert to fixed-point
representation

Train with default
C5.0 version

Test on default, EDC
and approximate

versions

Comparison logs for
power and energy

estimation

HSPICE simulations for
each comparison

Estimate for energy
consumpsion in

comparisons

Original
dataset

Preprocessed
dataset

1
2

3Train and test on
default C5.0

Accuracy evaluation
on test data

4

Source: Pedro Silva, 2022.

Pre-processing

In this study, we employed 8 – bit comparators, considering them large enough to
maintain performance in accuracy while providing good results in energy savings. Due
to the fixed bit-width in the comparators, a quantization pre-processing stage (step 1,
in Fig. 14) becomes necessary. This step prepared the datasets for use as inputs of the
unsigned 8–bit versions of the comparators proposed, by mapping the values in the dataset
to the range [0, 255] and then truncating them, a technique we refer to as scaling.

Chapter 5. Using approximate comparators in Decision Trees Classifiers 52

During the development of the flow, another pre-processing technique was consid-
ered. This technique is detailed in Section 5.2, confronting the impact on the accuracy
with the scaling approach. For now, it suffices to say that our tests indicated that scaling
was better suited to our use case. To guarantee that all other changes in accuracy were
solely caused by approximation in the comparators, we decided to apply only the scaling
in the pre-processing step.

Model training and classification

The model training and classification stage (step 2, in Fig. 14) consisted of running
a full classification for each selected dataset. In C5.0, after the tree is constructed, it is
validated on two separate sets of data. Firstly, the training set is used to validate the
tree, and then the test set is used to validate the accuracy of the tree. This way, we can
compare the accuracy of the original classifier with the accuracy of the approximated
classifiers through the outputs obtained for the test set of each approximate version of
the C5.0 model.

To approximate the C5.0 algorithm, we need to understand exactly how the decision
nodes are evaluated. In the source code, the classification of a case is done by a function
called FindLeaf, starting from the root node of the tree. The C code for this function is
shown in Source code 2.

Here, when the node is found to be a leaf, the classification is performed, and
the function returns with the class label. Otherwise, the function calls itself recursively,
passing the next node to be evaluated, depending on the type of feature the decision node is
testing and the result of the attribute test. In continuous attributes, the FindLeaf function
calls the Interpolate function in line 12, which in turn is responsible for computing the
weights of the branches, as shown in the rather convoluted Source code 3. The function
receives the node to be evaluated and the value of the attribute to be tested and returns
the weight of the branch that should be followed, depending on the value of the attribute.
The weight of a branch is binary or the interpolation of the threshold value of the node
with the value of the attribute. In our tests, we always used deterministic thresholds, thus
it is known that the function always returns either zero or one.

Considering the implementation details discussed, we can approximate the classifi-
cation of a constructed tree by replacing the comparisons made inside the Interpolate

function body with the corresponding approximate attribute test in lines 2-4. The code for
an approximate version of this function, using the 8– bit AxDC1 is shown in Source code 4,
where axdc1 is a C function that implements the same AxDC1 logic behavior described

Chapter 5. Using approximate comparators in Decision Trees Classifiers 53

Listing 2 – C5.0 continuous node evaluation

1 void FindLeaf(DataRec Case, Tree T, Tree PT, float Fraction) {
2 switch (T->NodeType)
3 {
4 case 0: /* leaf */
5 LeafUpdate:
6 ...
7 case BrThresh: /* test of continuous attribute */
8 ...
9 } else {

10 /* Find weights for <= and > branches, interpolating if
11 probabilistic thresholds are used */
12 BrWt[2] = Interpolate(T, CVal(Case, T->Tested));
13 BrWt[3] = 1 - BrWt[2];
14

15 ForEach(v, 2, 3) {
16 if ((NewFrac = Fraction * BrWt[v]) >= 0.01)
17 FindLeaf(Case, T->Branch[v], T, NewFrac);
18 }
19 ...
20 return;

Source: Adapted from Ross Quinlan, licensed through GPL via Rulequest Research.

Listing 3 – C5.0 continuous attribute test

1 float Interpolate(Tree T, ContValue Val) {
2 return (Val <= T->Lower ? 1.0 : Val >= T->Upper ? 0.0 :
3 Val <= T->Mid ? 1 - 0.5 * (Val - T->Lower) / (T->Mid - T->Lower + 1E-6) :
4 0.5 - 0.5 * (Val - T->Mid) / (T->Upper - T->Mid + 1E-6));
5 }

Source: Ross Quinlan, licensed through GPL via Rulequest Research.

in Eq. (9). Here, we unraveled the multiple ternary operators used in the original source
code to improve code readability and replaced the comparisons with our approximation
in lines 2, 4, and 6.

The procedure described for the approximation of the C5.0 classifiers was repeated
for all 5 comparators proposed in this work, allowing us to compare the accuracy of the
different designs in the DT models.

Energy consumption estimation

Along with the accuracy, two other aspects of the classifier are of key importance:
the energy consumption and the number of comparison operations. The energy consump-

Chapter 5. Using approximate comparators in Decision Trees Classifiers 54

Listing 4 – Approximate C5.0 continuous node evaluation

1 float Interpolate(Tree T, ContValue Val) {
2 if (axdc1(Val, T->Lower, 8))
3 return 1.0;
4 else if (axdc1(T->Upper, Val, 8))
5 return 0.0;
6 else if (axdc1(Val, T->Mid, 8))
7 return 1 - 0.5 * (Val - T->Lower)
8 / (T->Mid - T->Lower + 1E-6);
9 else

10 return 0.5 - 0.5 * (Val - T->Mid)
11 / (T->Upper - T->Mid + 1E-6);
12 }

Source: Pedro Silva, 2022.

tion is the total amount of energy consumed during the execution of the classifier, which is
important to determine the energy efficiency of the classifier. The number of comparison
operations, on the other hand, serves as a diagnostic tool to determine how the approxi-
mations impacted the depth of the traversal in the tree. It is evident that the larger the
number of operations, the larger the energy consumption. Thus, in addition to inserting
the AxC comparators in the C5.0 classification state, we also implemented a log to record
the number of operations performed by the classifier as well as the values used in each
comparison.

Since our analysis is based on electrical simulations of the comparators, we have
no way of accurately calculating the energy consumption of the entire classifier. Instead,
we focus on the gains provided by the approximations in the comparators and compare
them to the energy consumption of the comparators themselves. This way, we estimate
the energy savings that can be achieved by using the approximations in the DT. The
energy estimation constitutes the step in the workflow (step 3, in Fig. 14).

This estimate was done through the electrical simulation of each comparison
recorded in the log in the previous step with their respective approximated comparators.
The energy consumption of the comparators on the entire test dataset is then calculated
by adding the energy measured for each comparison simulated. Note that this estimate
was only done for quantized cases since we had no SPICE description of a full-precision
floating-point comparator. All the operations were simulated with HSPICE®, with a du-
ration of 2.5 ns under the nominal voltage of 0.7 V, measuring the energy consumption
for each comparator circuit evaluated according to Eq. (5). We observe that to obtain a
fully accurate energy estimation, it would be necessary to perform the synthesis of these

Chapter 5. Using approximate comparators in Decision Trees Classifiers 55

circuits and the overall application, which is currently beyond the scope of this project.
The SPICE simulation results obtained were a means to provide a concise analysis of the
gains in each approximation compared to the baseline version.

Summary and evaluation

Finally, the last stage of the workflow (step 4, in Fig. 14) consisted in summarizing
and understanding all produced metrics, to provide clearer insight into the characteristics
and behavior of each approximation in a given dataset. We analyze the accuracy, total
energy consumption for all comparison operations executed, and the number of oper-
ations needed. From these, another metric is calculated, measuring the average power
consumption per inference case. This metric is calculated by dividing the total energy
consumption by the duration of each simulation, and further dividing the result by the
number of test cases. This way, we can better compare the energy efficiency of the different
approximations of DTs.

The exact and approximate versions of C5.0 were assessed on 5 continuous and
mixed-attribute datasets provided by the University of California Irvine (UCI) Machine
Learning Repository (DUA; GRAFF, 2017), namely the Heart disease, Arrhythmia, Adult,
Iris and Forest fires datasets. The results were then analyzed using the unaltered C5.0
version as a benchmark, focusing on the accuracy of the model on both training and test
data, which corresponded respectively to 70% and 30% of each complete example set.

5.2 ANALYSIS OF PRE-PROCESSING TECHNIQUES: QUANTIZATION AND SCAL-
ING OF DATASETS

There are many alternatives to pre-process data according to the properties of
the dataset and ML model. We propose one generic flow independent of the features of
the dataset being classified, as a means to focus our analysis on the isolated impact of
approximation, minimizing the effect of pre-processing on the accuracy. To find the best
approach to this end, we observed two techniques, referred to as pure quantization and
scaling. The impact of these techniques on the accuracy was analyzed when adopted in
the exact version and together with the approximate comparators.

The pure quantization quantizes the dataset to 8 bits in fixed-point notation,
without any scaling. Firstly, a correction was applied to remove the negative values, not
applicable to the dedicated comparators. Then, we use an exhaustive search optimization
strategy to find the best size for the fractional part of the bit array. Note that this is only
possible due to the low number of bits in our target datasets.

Chapter 5. Using approximate comparators in Decision Trees Classifiers 56

The scaling maps the values in the dataset to the range [0, 255] and then quantizes
them to 8 bits. This technique was used to avoid the loss of information that occurs when
using pure quantization. Thus, it is a more robust quantization method than the pure
quantization approach.

In essence, the difference between both strategies is that in the case of pure quan-
tization, if a value is greater than the maximum value in the dataset, it will be quantized
to the maximum value, and if it is smaller than the minimum value, it will be quantized
to the minimum value. On the other hand, in the case of scaling, the values are mapped
to the range [0, 255] and then quantized, which avoids the loss of information.

A comparison of the accuracy results on the test accuracy when using both ap-
proaches is presented in Table 6. Baseline results were generated by training and testing
with the original C5.0 on three versions of the data set: raw, quantized, and scaled.

Together with the exact dedicated comparator, the approximate versions were
trained with the default C5.0 version on the pre-processed datasets. Then, they were
evaluated using the approximate comparators in each decision node. This way, we can
determine how the approximation affects the accuracy of the classifier for all considered
designs.

With the scaling technique, both the baseline and EDC represent pre-processing-
only approximations, considering that these versions have the same accuracy on all datasets
while showing an average deviation of only 0.01% to the classification with the raw dataset.
It is then safe to assume this difference is solely caused by the quantization error. Still, it
is curious that on the quantized data, the EDC performed considerably worse than the
baseline.

From this table, we see that the scaling approach provides overall better results
than the pure quantization approach, best seen in the Iris and Forest datasets. This
difference is because pure quantization loses more information when quantizing the data.
Scaling, on the other hand, allows the comparators to have a better resolution for the
values of the dataset. Thus, scaling was used in the rest of the experiments.

5.3 IMPACT OF APPROXIMATION IN THE C5.0 CLASSIFICATION MODEL

This section will discuss the results obtained by applying the experimental workflow
described to five different continuous and mixed-attribute datasets. Some of these results
were presented in Pedro Aquino Silva, Grellert, and Meinhardt (2022), although the
following discussion considers the most up-to-date data and more in-depth analysis. We
first present the results for the accuracy of the classifiers on the testing data, followed

Chapter 5. Using approximate comparators in Decision Trees Classifiers 57

Table 6 – Comparison of quantization-only and scaling pre-processing on the accuracy
over test examples

TEST ACCURACY (%) Iris Forest Adult Heart Disease Arrhythmia
RAW baseline 93.3 96.4 86.6 63.3 64.4

default C5.0 93.3 96.4 86.0 61.7 65.6
EDC 83.3 87.5 86.0 61.7 60.0
AxDC2 56.7 85.7 83.3 56.7 31.1
AxDC6 30.0 39.3 23.5 51.7 5.6
SMA 36.7 60.7 76.4 58.3 11.1
AMA1 36.7 60.7 76.4 58.3 11.1

QUANTIZED

AMA2 30.0 39.3 23.6 53.3 6.7
default C5.0 93.3 98.2 86.4 63.3 63.3
EDC 93.3 98.2 86.4 63.3 63.3
AxDC2 93.3 98.2 85.9 63.3 63.3
AxDC6 30.0 39.3 23.5 40.0 7.8
SMA 73.3 78.6 77.6 55.0 16.7
AMA1 73.3 78.6 77.6 55.0 16.7

SCALED

AMA2 33.3 60.7 24.2 46.7 6.7
Source: Pedro Silva, 2022.

by the energy consumption and the number of operations. Tables 7 and 8 summarize the
results obtained for each dataset test case.

Table 7 – Evaluation of the Comparison Circuits on Decision Trees Classification Model –
Mixed Attribute Datasets

Heart disease
Test samples = 60
Attributes = 13
(6 continuous)

Arrhythmia
Test samples = 90
Attributes = 279
(206 continuous)

Adult
Test samples = 16281

Attributes = 15
(6 continuous)

Comparator
circuit

Acc
(%)

Energy
(fJ) # Ops Acc

(%)
Energy

(fJ) # Ops Acc
(%)

Energy
(pJ) # Ops

EDC 63.3 220.89 178 63.3 1,580.66 1198 86.4 132.01 118,087
AxDC1 63.3 190.89 178 63.3 1,391.39 1198 85.9 94.15 119,006
AxDC2 40.0 101.97 262 7.8 698.77 1795 23.5 118.45 331,039
SMA 55.0 767.90 319 16.7 3,691.76 1666 77.6 346.30 227,379
AMA1 55.0 225.90 141 16.7 530.36 468 77.6 73.84 109,292
AMA2 46.7 349.78 271 6.7 3,443.67 2367 24.2 456.99 342,376

Source: Pedro Silva, 2022.

In terms of prediction performance, it is observed that the adoption of approximated
comparators on the classification of continuous datasets has a variable effect on the
accuracy in contrast with the exact version. All approximated comparators were analyzed
against the EDC, to account for both accuracy and energy performance, since we currently
have no estimates for the energy consumption of full-precision comparison, as used in
software-only classification.

Chapter 5. Using approximate comparators in Decision Trees Classifiers 58

Table 8 – Evaluation of the Comparison Circuits on Decision Trees Classification Model –
Continuous Attribute Datasets

Iris
Test samples = 30

Attributes = 5

Forest fires
Test samples = 56
Attributes = 13

Comparator
circuit

Acc
(%)

Energy
(fJ) # Ops Acc

(%)
Energy

(fJ) # Ops

EDC 93.3 122.91 91 98.2 89.61 79
AxDC1 93.3 105.92 91 98.2 84.46 79
AxDC2 30.0 65.99 141 39.3 37.24 112
SMA 73.3 454.14 167 78.6 402.48 145
AMA1 73.3 118.56 76 78.6 129.28 66
AMA2 33.3 229.62 120 60.7 86.96 56

Source: Pedro Silva, 2022.

Out of the Approximate Dedicated Comparators, the AxDC1 showed the closest
accuracy to the EDC. This result corroborates our expectations, since the AxDC1 is the
simplest approximation, and thus, the one that is expected to have the least impact on
the accuracy of the classifier. This was also validated through the error analysis presented
in Section 4.1, where we observed that the AxDC1 introduced only 0.59% error in the
comparison truth table. In terms of energy reduction, the estimates were also consistent
with the characterization analysis, where we observed that the AxDC1 had a modest
reduction of 9.10% in power dissipation. In classification, the AxDC1 has a larger gain on
energy consumption, of around 15% on average.

Interestingly, the only case where the AxDC1 had a different accuracy and number
of operations than the exact version was the Adult dataset, as shown in Table 7. However, it
may appear counter-intuitive that this was still the largest reduction of energy consumption
obtained by this design (28.7%), despite the increase in the number of operations. This
is explained by the fact that, in this dataset, the approximation caused the tree traversal
to differ, resulting in a change of the values evaluated, and since the power consumption
is related to the values being compared, the energy consumption was also affected. We
also highlight that this case represents the deepest tree out of the evaluated datasets,
which increases the probability of the traversal diverging from the path followed in the
classification with exact tests.

The AxDC2 reaches the highest energy reduction among all circuits. The largest
impact on energy is observed on the Forest fires dataset (58.45%), in Table 8, even though
the number of operations is almost 1.5× higher than the classification with the EDC.
Once again, this is in line with the characterization analysis, where we observed that the
AxDC2 had a reduction of 50.3% in power dissipation. In classification, this circuit has a
slightly lower gain in energy consumption, of around 45% on average.

Chapter 5. Using approximate comparators in Decision Trees Classifiers 59

However, as the approximation with the highest ER, the AxDC2 also showed
the worst performance in terms of accuracy, with an average reduction of accuracy of
about 65%. Recalling the approximation technique and the error heatmaps discussed
in Section 4.1, the results indicate that the only use case that would justify the use of the
AxDC2 is for features that present values concentrated on the furthest extremes of the data
range, resulting in the traversal path being less frequently affected by the approximation.
Currently, we have little information about the distribution of the values in the features,
and thus, we cannot make any more claims concerning the best use case for the AxDC2.

Focusing on the FA-based comparators, it was seen in Section 4.1 that the SMA
and AMA1 result in the same approximation, causing the accuracy of both classifiers to be
equal. These designs showed the second-best results in terms of accuracy, with an average
reduction of 28% accuracy, despite only the AMA1 presenting a net positive in energy
reduction.

While the AMA2 has the most promising results in the electrical evaluation, the
energy estimate was significantly impacted by the steep increase in the number of opera-
tions for this comparator, which resulted in a net negative in both energy reduction and
accuracy. In the worst case, the number of comparisons achieved nearly 3× that of the
exact version, whereas the energy consumption increased by a factor of 3.5.

Fortunately, the FA-based circuits allow for a straightforward optimization by lim-
iting the number of FAs approximated. This also enlarges the space to include strategies
for automatically searching for the best approximation range, which is currently beyond
the scope of this project. However, the energy results in the error and electric characteri-
zation indicate that the AMA1 and AMA2 are promising candidates for future work on
configurable approximation.

5.4 DISCUSSION

Considering the main concern of this analysis is evaluating the energy-accuracy
trade-off, Fig. 15 shows the average energy estimation and accuracy over all datasets, as
a means of condensing the information previously discussed. Here, we observe that the
AxDC1 is the most promising candidate as an EDC replacement, as it is very conservative
in the classification accuracy while providing good energy reduction. Nonetheless, the
AMA1-based comparator also appears as an apt candidate, especially considering it has
the lowest average energy consumption and, being an FA-based adder, has a large flexibility
in terms of the approximation range. On the other hand, the extent of approximation
in the AxDC2 led to the worst accuracy in the classification tests, despite its attractive

Chapter 5. Using approximate comparators in Decision Trees Classifiers 60

results in energy consumption. In fact, due to the diverging paths and increased number
of operations caused by using the AxDC2, the AxDC1 provides better results even for
energy consumption.

In the graphs presented in Fig. 15, it is vital to keep in mind that the energy
estimation depends on the number of operations performed. For example, in the Adult
dataset, the number of comparisons in each case is of the order of 105, as shown in Table 7.
Due to these large values, the average case is highly influenced by the performance of the
comparator in this dataset. Even so, this measure is still representative when confronting
all comparators, since they all have many comparisons of a similar order of magnitude
for most datasets. Furthermore, evaluating a case with large volumes of data is highly
desirable, as it is more representative of some real-world applications than the smaller
research-oriented test cases.

Figure 15 – Average accuracy and energy consumption for each evaluated comparator

E
D

C

A
xD

C
1

A
xD

C
2

S
M

A

A
M

A
1

A
M

A
2

0

20

40

60

80

A
cc

u
ra

cy
(%

)

E
D

C

A
xD

C
1

A
xD

C
2

S
M

A

A
M

A
1

A
M

A
2

0

20

40

60

80

E
n

er
g

y
(p
J

)

Source: Pedro Silva, 2022.

Regarding the poor results in accuracy for most comparators, we emphasize that our
intervention in the Interpolate function was only enough to consider the approximation
of already constructed trees. Recalling Section 2.2, this approximation could be improved
upon by adapting the construction algorithm itself to use the approximate attribute test
when calculating the threshold for each numerical feature. In our efforts to implement
an approximation-aware training algorithm, this alteration proved the need for a more
thorough understanding of the C5.0 algorithm and its implementation, which was not
possible in the time available for this project, leaving this implementation as future work.
Instead, we decided to focus on the approximation of the constructed trees, which is still
a valid approach for the use of the approximated comparators.

A known limitation of our current approach is the fact that the comparators are
constrained to fixed bit widths. That is, the precision of the comparators cannot be

Chapter 5. Using approximate comparators in Decision Trees Classifiers 61

changed during the workflow. This problem could be overcome by using a configurable
comparator, such as the FA-based circuits, as well as developing a tool to automatically
create SPICE descriptions for n – bit versions of the dedicated comparators, following the
equations presented in Chapter 4. By removing this restriction, more advanced power-
accuracy optimization strategies could be implemented, including the automatic search
for the best approximation range for FA-based adders, and the use of the precision-
scaling technique to identify the best bit width for each feature in a dataset with any
approximation configuration.

Finally, while this analysis focused on the C5.0 classifier, the automated workflow is
generic enough to be adapted with minimal intervention to any other classifier that employs
comparator-based testing. This includes the CART implementations in the scikit-learn

framework and the rpart package. The scikit-learn version, in particular, is a very
interesting candidate for future work, as it is a popular and widely used framework
for machine learning in Python, and it is also open-source, allowing for an in-depth
investigation of the implementation. As previously stated, since its implementation does
not currently support categorical data, a commonly used technique is the encoding of the
categorical features as numerical features. Exploring this encoding could enable the usage
of the approximated comparators developed here for categorical as well as continuous
attributes. Thus, the evaluation of other classifiers is also a promising avenue for future
work, as it would allow for a more thorough analysis of the impact of the approximation
on the classification accuracy, as well as the possibility of comparing the results with other
approximation techniques.

62

6 CONCLUSIONS

This work explored two approaches for approximation in comparator circuit design,
employing FA-based and dedicated architectures, and investigated the impact of their
usage in tree-based classification models. In this sense, the efforts detailed here led to an
approximation of already-constructed Decision Trees, where the numerical attribute test
was changed from an exact comparison with a threshold value to five different inexact
versions.

While the related work regarding the use of AxC in DT applications focused
mostly on approximating the threshold used for attribute testing or precision scaling, the
approach developed in this study consisted of approximating the circuits themselves while
maintaining the threshold values computed in the training stage, and using scaling and
quantization only as pre-processing techniques. As noted, the development of a method
for the approximation-aware construction of DTs is ongoing work.

The two approaches evaluated represent the most commonly used techniques for the
design of comparator circuits. The dedicated versions are capable of providing significant
improvements in power consumption, number of transistors, and delay characteristics,
while the FA-based designs are highly configurable and scalable. Here, approximation was
inserted using three main techniques: 25% input truncation, 50% bit truncation and copy
strategy, and FA replacement, representing the AxDC1, AxDC2 and FA-based comparators
respectively. For an electric evaluation, the circuits were contrasted with a single-output
Exact Dedicated Comparator (EDC), and 7 nm FinFET netlists for SPICE simulations
were produced for 8 – bit extensions of all designs.

The AxDC1 had the lowest level of approximation considered, incurring in an
Error Rate of only 0.59% in the 8 – bit version, which is further reduced up to 0.1% in
n – bit extensions. On the other hand, the most intensive approximation was done on the
AxDC2 circuit, which had an ER of ∼ 37%. The FA-based comparators had a variable
performance on error metrics, though the impact is most noticeable on the AMA2. It is
important to highlight that the error seen in FA-based circuits is more easily controlled,
since the approximation may be restricted to any fraction of the LSBs – here the extreme
case of 100% approximation was considered.

Following the analysis of the error behavior of the 8 – bit AxC comparators imple-
mented, the circuits were evaluated in a DT classification model. To do so, I used the
C5.0 classification algorithm as a case study, which employs comparisons in the decision
nodes testing numerical features. In essence, what was tested is the performance of each
architecture as a replacement of the EDC comparator. Here, the results were especially

Chapter 6. Conclusions 63

promising for the AxDC1 design, since it had a minimal impact on the accuracy of the
trained trees while providing consistent energy reduction compared to the EDC. The
AMA1 also comes across as a good alternative, mainly considering the good results in
energy consumption and the possibility of tuning the level of approximation to reduce the
impact of errors in the traversal of the tree.

The AxDC2 comparator had a low performance in most tests, due to its large
ER causing the tree traversal to follow a deeper path. This impacted both the accuracy
of the model and the energy consumption of each inference, as it increased the number
of attribute tests performed. It became clear that this circuit is not suitable to be a
replacement for the exact comparator in a hardware implementation, and verifying if it
can be used for any specific features in a dataset depending on their value distribution is
left as future work.

The results here presented help to clarify the extent of approximation acceptable
in single-tree DT models. Nonetheless, several possible improvements and avenues for
future work were identified during the development. These ideas include, for instance,
the implementation of a mechanism to explore configurability in FA-based comparators,
exploiting the fact that these circuits allow for finer tuning of approximation parameters.
Through this method, one could find the exact number of FAs that should be replaced
with approximate versions and which cells are the most critical to be maintained as exact
versions to improve the power-accuracy trade-offs. Another possible branch for future
research is the inclusion of an optimization algorithm to implement precision scaling,
tuning the bit width for any given approximate comparator and dataset.

Recalling the related work discussed in the literature review, several projects ex-
plore software-level approximation in tree-based models, opening yet another path of
investigation on the possibility of combining different levels of approximation to further
reduce the energy consumption of these models in a hardware implementation context.

Considering the cross-level nature of the work described in this text, I also identified
a few improvements on the circuits and systems perspective that should be given thought
in any further efforts. For example, the comparator circuits were described using mostly
a complementary MOS logic style, with only the XNOR gates using low-power design
techniques, namely PTL. Here, I highlight the opportunity for the inclusion of more
state-of-the-art low-power logic styles, i.e. dynamic CMOS, further use of PTL, transistor
pruning, etc.

In conclusion, the efforts constituting this work serve as first steps in a thorough
investigation of the role of comparators as decision-making circuits, and ways to improve
their energy efficiency in a world that increasingly requires solutions to process and analyze

Chapter 6. Conclusions 64

huge amounts of data. The tools here developed will aid in the future in-depth explorations
of the diverse research paths encountered when analyzing our results, and in advancing
our knowledge of approximation techniques and their impact on tree-based classification
systems.

6.1 PUBLICATIONS

The development of this work, starting in early 2021, has been documented and
published in events of regional and international impact. Early results, when we were
starting to get accustomed to the C5.0 source code, and developed the first iterations of
comparators presented here, were published in the 36o Simpósio Sul de Microeletrônica,
held in 2021, evaluating six different approximations for dedicated comparators in an early
version of the C5.0 workflow (SILVA, P.; GRELLERT; MEINHARDT, 2021). At this point,
we believed C5.0 to internally map the categorical features into numerical values, thus
using comparators for all features in mixed-attribute and categorical-only datasets. On
subsequent investigation, we noted that this was not the case, and adapted the workflow
accordingly. From these results, we also refined the approximations, evolving them to the
two dedicated circuits presented in this work.

After more extensive tests and improvements in our understanding of Decision
Tree Classifiers and their implementation, as well as the design of comparator circuits,
the new efforts of approximating the attribute test of continuous features only resulted
in the presentation in the same symposium the following year (SILVA, P.; GRELLERT;
MEINHARDT, 2022b). At this point, our evaluation workflow evolved to a form that
justified their presentation in an international forum, leading to the publication of a
complete paper in the 2022 IFIP/IEEE 30th International Conference on Very Large Scale
Integration (VLSI-SoC) (SILVA, P. A.; GRELLERT; MEINHARDT, 2022). Since our
efforts had already begun indicating the need to include the approximation in the learning
algorithm to improve the accuracy of the approximate classifiers, an extended abstract
was presented at the same conference, detailing the objective of achieving a complete
approximation-aware workflow for Decision Tree applications (SILVA, P.; GRELLERT;
MEINHARDT, 2022a).

Finally, the most recent results are being prepared for submission to an international
journal, yet to be defined. This paper will consider the effects of the approximation-aware
training on the accuracy and energy efficiency of the comparators presented here and will
be submitted after obtaining such experiment results.

Below, we present the complete list of publications from this project to date:

Chapter 6. Conclusions 65

1. Exploring 4 – bit Approximated Comparators on a Decision Tree Classification
Model, 36o Simpósio Sul de Microeletrônica, 2021 (SILVA, P.; GRELLERT;
MEINHARDT, 2021),

2. Energy-Efficient Approximate Comparators in Decision Tree Applications, 37o

Simpósio Sul de Microeletrônica, 2022 (SILVA, P.; GRELLERT; MEINHARDT,
2022b),

3. Exploring Approximate Comparator Circuits on Power Efficient Design of Deci-
sion Trees, IFIP/IEEE 30th International Conference on Very Large Scale Inte-
gration (VLSI-SoC), 2022 (SILVA, P. A.; GRELLERT; MEINHARDT, 2022),

4. Approximation Workflow for Energy-Efficient Comparators in Decision Tree
Applications, IFIP/IEEE 30th International Conference on Very Large Scale In-
tegration (VLSI-SoC), Student Forum, 2022 (SILVA, P.; GRELLERT; MEIN-
HARDT, 2022a).

The source code for the altered C5.0 implementation and the comparator circuits
described in this work are publicly available at the following link: https://github.com/

phaquinosilva/axc-dt. Results and figures presented in this work are also available in
the same repository.

https://github.com/phaquinosilva/axc-dt
https://github.com/phaquinosilva/axc-dt

66

REFERENCES

ABREU, Brunno A.; GRELLERT, Mateus; BAMPI, Sergio. VLSI Design of Tree-Based
Inference for Low-Power Learning Applications. In: 2020 IEEE International Symposium
on Circuits and Systems (ISCAS). [S.l.: s.n.], 2020. P. 1–5.

BALASKAS, Konstantinos; ZERVAKIS, Georgios; SIOZIOS, Kostas;
TAHOORI, Mehdi B.; HENKEL, Jorg. Approximate Decision Trees For Machine
Learning Classification on Tiny Printed Circuits. In: 2022 23rd International Symposium
on Quality Electronic Design (ISQED). [S.l.]: IEEE, Apr. 2022. P. 1–6.

BARBARESCHI, Mario; BARONE, Salvatore; MAZZOCCA, Nicola. Advancing
synthesis of decision tree-based multiple classifier systems: an approximate computing
case study. Knowledge and Information Systems, v. 63, p. 1577–1596, 6 June 2021.
ISSN 02193116.

BARUA, Hrishav Bakul; CHANDRA MONDAL, Kartick. Green Data Mining using
Approximate Computing: An experimental analysis with Rule Mining. In: 2018
International Conference on Computing, Power and Communication Technologies
(GUCON). [S.l.: s.n.], 2018. P. 115–120.

BARUA, Hrishav Bakul; MONDAL, Kartick Chandra. Approximate Computing: A
Survey of Recent Trends—Bringing Greenness to Computing and Communication.
Journal of The Institution of Engineers (India): Series B, v. 100, p. 619–626, 6
Dec. 2019. ISSN 22502114.

BREIMAN, Leo; FRIEDMAN, Jerome; STONE, Charles J.; OLSHEN, R. A.
Classification and Regression Trees. Andover, England, UK: Taylor & Francis, 1984.
ISBN 978-0-41204841-8.

CLARK, Lawrence T.; VASHISHTHA, Vinay; SHIFREN, Lucian; GUJJA, Aditya;
SINHA, Saurabh; CLINE, Brian; RAMAMURTHY, Chandarasekaran; YERIC, Greg.
ASAP7: A 7-nm finFET predictive process design kit. English (US). Microelectronics,
Elsevier Limited, v. 53, p. 105–115, July 2016. Publisher Copyright: © 2016 The Authors.
ISSN 0026-2692.

REFERENCES 67

DUA, Dheeru; GRAFF, Casey. UCI Machine Learning Repository. [S.l.: s.n.], 2017.
Available from: http://archive.ics.uci.edu/ml.

EFSTATHIOU, Constantinos; AGALIOTI, Laura; TSIATOUHAS, Yiorgos. Efficient
Dynamic Logic Magnitude Comparators. In: 2022 IFIP/IEEE 30th International
Conference on Very Large Scale Integration (VLSI-SoC). [S.l.: s.n.], 2022. P. 1–5.

GARCÍA-MARTÍN, Eva; LAVESSON, Niklas; GRAHN, Håkan;
CASALICCHIO, Emiliano; BOEVA, Veselka. Energy-aware very fast decision tree.
International Journal of Data Science and Analytics, v. 11, p. 105–126, 2 Mar.
2021. ISSN 23644168.

GOEL, Abhinav; TUNG, Caleb; LU, Yung Hsiang; THIRUVATHUKAL, George K. A
Survey of Methods for Low-Power Deep Learning and Computer Vision. In: IEEE World
Forum on Internet of Things, WF-IoT 2020 - Symposium Proceedings. [S.l.: s.n.], Mar.
2020. arXiv: 2003.11066.

GUPTA, Akash; KHATRI, Manohar; RAJPUT, Sachin Kumar; MEHRA, Anu;
BATHLA, Shikha. Design of low power magnitude comparator. In: 2017 7th
International Conference on Cloud Computing, Data Science & Engineering - Confluence.
[S.l.]: IEEE, Jan. 2017. P. 754–758.

GUPTA, Vaibhav; MOHAPATRA, Debabrata; PARK, Sang Phill;
RAGHUNATHAN, Anand; ROY, Kaushik. IMPACT: IMPrecise adders for low-power
approximate computing. In: IEEE/ACM International Symposium on Low Power
Electronics and Design. [S.l.: s.n.], 2011. P. 409–414.

HAN, Jie. Introduction to approximate computing. In: 2016 IEEE 34th VLSI Test
Symposium (VTS). [S.l.: s.n.], 2016. P. 1–1.

HOLDSWORTH, B.; WOODS, R.C. 5 - Combinational logic design with MSI circuits.
In: HOLDSWORTH, B.; WOODS, R.C. (Eds.). Digital Logic Design (Fourth
Edition). Fourth Edition. Oxford: Newnes, 2002. P. 105–141. ISBN 978-0-7506-4582-9.

http://archive.ics.uci.edu/ml
https://arxiv.org/abs/2003.11066

REFERENCES 68

AL-JARRAH, Omar Y.; YOO, Paul D.; MUHAIDAT, Sami;
KARAGIANNIDIS, George K.; TAHA, Kamal. Efficient Machine Learning for Big Data:
A Review. Big Data Research, v. 2, p. 87–93, 3 Sept. 2015. ISSN 22145796.

KIM, Yongtae; ZHANG, Yong; LI, Peng. Energy Efficient Approximate Arithmetic for
Error Resilient Neuromorphic Computing. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, v. 23, n. 11, p. 2733–2737, 2015.

KNUTH, Donald E. Two Notes on Notation. The American Mathematical Monthly,
Mathematical Association of America, v. 99, n. 5, p. 403–422, 1992. ISSN 00029890,
19300972.

KUMAR, Ashish; GOYAL, Saurabh; VARMA, Manik. Resource-Efficient Machine
Learning in 2 KB RAM for the Internet of Things. In: PROCEEDINGS of the 34th
International Conference on Machine Learning - Volume 70. Sydney, NSW, Australia:
JMLR.org, 2017. (ICML’17), p. 1935–1944.

LI, Qingzheng; BERMAK, Amine. A low-power hardware-friendly binary decision tree
classifier for gas identification. Journal of Low Power Electronics and
Applications, v. 1, p. 45–58, 1 Mar. 2011. ISSN 20799268.

MARWAHA, Damini; SHARMA, Anurag. A review on approximate computing and some
of the associated techniques for energy reduction in IOT. In: 2018 2nd International
Conference on Inventive Systems and Control (ICISC). [S.l.: s.n.], 2018. P. 319–323.

MOREAU, Thierry; SAMPSON, Adrian; CEZE, Luis. Approximate Computing: Making
mobile systems more efficient. IEEE Pervasive Computing, v. 14, n. 2, p. 9–13, Apr.
2015. ISSN 15361268.

MUNRATIWAR, Shubham; SAIKRISHNA, Y; JYOTHI, V. Design of High Speed 8 – bit
Magnitude Comparator for Security Application. In: 2022 IEEE International Conference
on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). [S.l.]:
IEEE, Apr. 2022. P. 1–6.

REFERENCES 69

OSTA, M.; IBRAHIM, A.; CHIBLE, H.; VALLE, M. Approximate Multipliers Based on
Inexact Adders for Energy Efficient Data Processing. In: 2017 New Generation of CAS
(NGCAS). [S.l.: s.n.], Sept. 2017. P. 125–128.

PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, v. 12, p. 2825–2830, 2011.

QUINLAN, J. R. Induction of Decision Trees. Mach. Learn., Kluwer Academic
Publishers, USA, v. 1, n. 1, p. 81–106, Mar. 1986. ISSN 0885-6125.

QUINLAN, J. Ross. C4.5 - Programs for Machine Learning. [S.l.]: Morgan
Kaufmann Publishers Inc., 1993. ISBN 1558602380.

REAGEN, Brandon; WHATMOUGH, Paul; ADOLF, Robert; RAMA, Saketh;
LEE, Hyunkwang; LEE, Sae Kyu; HERNÁNDEZ-LOBATO, José Miguel;
WEI, Gu-Yeon; BROOKS, David. Minerva: Enabling Low-Power, Highly-Accurate Deep
Neural Network Accelerators. In: 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). [S.l.: s.n.], 2016. P. 267–278.

RUSSELL, Stuart J.; NORVIG, Peter. Artificial Intelligence: a modern approach.
3. ed. [S.l.]: Pearson, 2009.

SEKANINA, Lukas; VASICEK, Zdenek; MRAZEK, Vojtech. Inexact Arithmetic
Operators. In: Approximate Computing Techniques: From Component- to
Application-Level. Ed. by Alberto Bosio, Daniel Ménard and Olivier Sentieys. Cham:
Springer International Publishing, 2022. P. 81–107. ISBN 978-3-030-94705-7.

SHANNON, Claude E.; WEAVER, Warren. The Mathematical Theory of
Communication. Urbana, IL: University of Illinois Press, 1949. ISBN
978-0-252-72548-7.

SHARMA, Geetanjali; NIRMAL, Umar; MISRA, Yogesh. A Low Power 8 – bit
Magnitude Comparator with Small Transistor Count using Hybrid PTL/CMOS Logic.
International Journal of Computational Engineering and Management, v. 12,
p. 110–115, 2011.

REFERENCES 70

SILVA, Pedro; GRELLERT, Mateus; MEINHARDT, Cristina. Approximation Workflow
for Energy-Efficient Comparators in Decision Tree Applications. In: 2022 IFIP/IEEE
30th International Conference on Very Large Scale Integration (VLSI-SoC). [S.l.: s.n.],
2022. P. 1–2.

SILVA, Pedro; GRELLERT, Mateus; MEINHARDT, Cristina. Energy-Efficient
Approximate Comparators in Decision Tree Applications. In: 37o Simpósio Sul de
Microeletrônica. [S.l.: s.n.], 2022. P. 1–4.

SILVA, Pedro; GRELLERT, Mateus; MEINHARDT, Cristina. Exploring 4 – bit
Approximated Comparators on a Decision Tree Classification Model. In: 36o Simpósio
Sul de Microeletrônica. [S.l.: s.n.], 2021. P. 1–4.

SILVA, Pedro Aquino; GRELLERT, Mateus; MEINHARDT, Cristina. Exploring
Approximate Comparator Circuits on Power Efficient Design of Decision Trees. In: 2022
IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC).
[S.l.: s.n.], 2022. P. 1–6.

SILVA, Pedro Aquino; MEINHARDT, Cristina. Energy-Efficient Design of Approximated
Full Adders. In: 2020 27th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). [S.l.: s.n.], 2020. P. 1–4.

SINGH, Pranay; JAIN, Pramod Kumar. Design and Analysis of Low Power, High Speed
4 - Bit Magnitude Comparator. In: 2018 International Conference on Recent Innovations
in Electrical, Electronics & Communication Engineering (ICRIEECE). [S.l.: s.n.], 2018.
P. 1680–1683.

SINGH, Shivam. Green computing strategies & challenges. In: 2015 International
Conference on Green Computing and Internet of Things (ICGCIoT). [S.l.: s.n.], 2015.
P. 758–760.

STANLEY-MARBELL, Phillip et al. Exploiting Errors for Efficiency: A Survey from
Circuits to Applications. ACM Computing Surveys, v. 53, 3 July 2020. ISSN
15577341.

REFERENCES 71

STROLLO, Antonio G. M.; ESPOSITO, Darjn. Approximate computing in the
nanoscale era. In: 2018 International Conference on IC Design & Technology (ICICDT).
[S.l.: s.n.], 2018. P. 21–24.

STRUHARIK, J.R. Implementing decision trees in hardware. In: 2011 IEEE 9th
International Symposium on Intelligent Systems and Informatics. [S.l.: s.n.], 2011.
P. 41–46.

STRUHARIK, Rastislav J. R.; NOVAK, Ladislav A. Hardware Implementation of
Decision Tree Ensembles. Journal of Circuits, Systems and Computers, v. 22,
p. 1350032, 05 June 2013. ISSN 0218-1266.

TORRES-ALVARADO, Alan; MORALES-ROSALES, Luis Alberto;
ALGREDO-BADILLO, Ignacio; LÓPEZ-HUERTA, Francisco;
LOBATO-BAEZ, Mariana; LÓPEZ-PIMENTEL, Juan Carlos. Trade-Off Analysis of
Hardware Architectures for Channel-Quality Classification Models. Sensors, v. 22,
p. 2497, 7 Mar. 2022. ISSN 1424-8220.

TRIPATHY, Suryasnata; MANDAL, Sushanta K.; PATRO, B. Shivalal;
OMPRAKASH, L. B. Low Power, High Speed 8 – bit Magnitude Comparator in 45nm
Technology for Signal Processing Application. Indian Journal of Science and
Technology, v. 8, p. 1–10, 1 Jan. 2015. ISSN 09746846.

VALLABHUNI, Rajeev Ratna; SRAVYA, D.V.L.; SHALINI, M. Sree;
MAHESHWARARAO, G.Uma. Design of Comparator using 18nm FinFET Technology
for Analog to Digital Converters. In: 2020 7th International Conference on Smart
Structures and Systems (ICSSS). [S.l.]: IEEE, July 2020. P. 1–6.

WESTE, Neil; HARRIS, David. CMOS VLSI Design: A Circuits and Systems
Perspective. 4th. USA: Addison-Wesley Publishing Company, 2010. ISBN 0321547748.

XU, Xiaoqing; SHAH, Nishi; EVANS, Andrew; SINHA, Saurabh; CLINE, Brian;
YERIC, Greg. Standard cell library design and optimization methodology for ASAP7
PDK: (Invited paper). In: 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). [S.l.: s.n.], 2017. P. 999–1004.

REFERENCES 72

Y. KAMAL, Kamal. The Silicon Age: Trends in Semiconductor Devices Industry.
Journal of Engineering Science and Technology Review, v. 15, p. 110–115, May
2022.

YOUNIS, Mohammed; ZAMLI, Kamal. A Strategy for Automatic Quality Signing and
Verification Processes for Hardware and Software Testing. Advances in Software
Engineering, v. 2010, Jan. 2010.

YU, Bin et al. FinFET scaling to 10 nm gate length. In: DIGEST. International Electron
Devices Meeting, [s.l.: s.n.], 2002. P. 251–254.

ZHANG, Boyu; DAVOODI, Azadeh; HU, Yu Hen. Exploring Energy and Accuracy
Tradeoff in Structure Simplification of Trained Deep Neural Networks. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, v. 8, n. 4, p. 836–848,
2018.

ZHOU, Yangcan; LIN, Jun; WANG, Jichen; WANG, Zhongfeng. Approximate
Comparator: Design and Analysis. In: 2018 IEEE International Workshop on Signal
Processing Systems (SiPS). [S.l.: s.n.], 2018. P. 1–5.

Exploring Approximate Comparator Circuits on
Power Efficient Design of Decision Trees

Pedro Aquino Silva, Mateus Grellert, Cristina Meinhardt
Departamento de Informática e Estatı́stica - PPGCC

Universidade Federal de Santa Catarina (UFSC), Brazil
pedro.aquino@grad.ufsc.br, {mateus.grellert, cristina.meinhardt}@ufsc.br

Abstract—In recent years, Approximate Computing has been
gaining space as a technique for tackling energy requirements in
error-resilient applications, while the usage of Machine Learning
systems has steadily increased. This work explores two different
approaches for approximation in comparator circuits and their
impact on Decision Tree applications, observing power and
accuracy metrics. Two gate-level architectures are proposed for
dedicated comparators, approximating 25% or 50% of least
significant bits using different techniques. The circuits were de-
scribed in 7 nm FinFET technology. The approximate compara-
tors were then evaluated in a Decision Tree classification model
using five continuous and mixed attribute datasets. The 25% LSB
approximate comparator proposed improves the energy efficiency
in Decision Tree applications, reducing from 12% up to 84%
the power per inference while presenting minor deviations in
accuracy compared to the exact baseline.

Index Terms—approximate computing, decision trees, energy
efficiency, comparators

I. INTRODUCTION

Nowadays, there is an increasing demand for energy-
efficient designs, as battery life has become a significant factor
in embedded and Internet of Things (IoT) devices. Moreover,
there is growing concern regarding energy savings of applica-
tions in accordance with Green Computing practices [1] [2].
In this context, dedicated hardware solutions are demanded, as
they can be associated with architectures optimized for energy
efficiency. With the massive amounts of data currently created,
many Machine Learning (ML) applications are available and
inserted in the our daily life. This also brings the necessity
for energy efficient ML systems [3], recalling on the demand
for dedicated hardware solutions. ML algorithms generally in-
volve a large number of operations that are independent, which
enlarges the design space to include hardware optimization.
These applications are also very resilient to errors, making
Approximate Computing (AxC) [4] [5] a suitable approach.

AxC is an emerging research area that exploits the fact that
many applications have soft constraints in terms of accuracy,
trading the exactness of operations for significant energy
savings [4] [6]. AxC techniques have been explored in both
hardware and software in different contexts, such as Internet
of Things (IoT) devices, video and audio processing, Machine
Learning and other error-tolerant environments [7] [8] [9].

Recent projects have looked into developing low-power ap-
proximate solutions for ML applications, focusing particularly

on Neural Networks (NNs) [10] [11]. However, the usage of
NNs may still be costly in energy-restricted environments, for
example due to the large number of multiplication operations
required. In this scenario, simpler and less costly learning
models might be preferred over NNs. For instance, Decision
Trees (DTs) can provide satisfactory and concise results for a
large number of inference problems [5] [12].

During the classification stage of Decision Trees, one of
the most frequently executed operations is the comparison.
These operations are processed to determine the target path
on the tree for the value under classification, guiding the tree
traversal. Optimizations on delay and power of comparator
circuits can significantly reduce the resource requirements on
a decision tree synthesis. Thus, optimizations and improve-
ments in comparator circuits are critical for tree-based models,
including functional approximation.

While most studies evaluating the usage of AxC tech-
niques in ML models investigate architectural and software
approaches, such as [13] [14], there are also some works
investigating AxC arithmetic blocks [15]. However, most of
these works concentrate on the proposal and development of
approximate adders and multipliers, with little to no litera-
ture investigating AxC approaches in the design of energy-
efficient comparators. To the best of our knowledge, this is
the first prospective study about the design of power efficient
comparator circuits for decision trees.

This work investigates the design of approximated compara-
tor circuits and their usage in Decision Trees classification
models, focusing on the gains in power efficiency within
acceptable accuracy constraints. Since many ML applications
specifically require the inference (or classification) step to
operate in low-power environments [5], we focused on the
classification operation of pre-trained trees. The main con-
tributions of this work are: 1) proposing two energy effi-
cient approximate comparator dedicated circuits; 2) exploring
approximation in classification with Decision Trees; and 3)
introducing a workflow for analyzing the energy savings of
AxC comparators in tree-based applications of continuous and
mixed datasets.

The remainder of this paper is organized as follows: Section
II introduces the approximate comparator circuits designed.
The approximation workflow for decision trees classification
are detailed in Section III. Section IV discusses the evaluation
of the approximated comparators on decision trees. Finally,978-1-6654-9005-4/22/$31.00 ©2022 IEEE

ANNEX A. Paper published in the proceedings of the 2022 IFIP/IEEE 30th
International Conference on Very Large Scale Integration (VLSI-SoC) 73

the main conclusions are presented in Section V.

II. PROPOSED APPROXIMATE COMPARATOR CIRCUITS

The comparison operation is traditionally implemented in
two main forms: with dedicated circuits or with subtractors.
Traditional dedicated comparators are designed to perform
greater, equal or lesser-than computations for a given number
of bits, and may be chained to accommodate desired bit
widths for the inputs. These architectures are generally used
for unsigned operands. Some designs for AxC comparator
blocks provide support for larger bit width, however, they
are typically implemented following a architectural approach
targeting timing optimization [16].

We propose an exact comparator targeting reduction in
area and, consequently, power consumption, named Exact
Dedicated Comparator (EDC). This circuit was designed by
reducing a CMOS unsigned comparator circuit to perform only
the lesser-or-equal than function. We note that other com-
parison operations can be trivially implemented by switching
the input order or inverting the output. In this circuit, the
branches that computed equal and less-than were removed,
and the greater-than branch was fed through an inverter.

The general equation for n-bits of the EDC is presented
in Eq. 1, comprised of three parts. The first line performs an
equality test for both inputs, producing each EQi; the terms
Gi represent a larger than test in each bit, accounting for
all equality tests in more significant bits; and the last line
computes the operation A ≤ B.

For the sake of compactness, a 4-bit version of this exact
dedicated comparator is presented in Fig. 1. The diagram
structure follows the same idea as the n-bit comparators. This
circuit is taken as the starting point and baseline for the
proposed dedicated approximated comparators.

EQi = Ai ⊕Bi , 0 < i < n

Gi = [
∏n−1

k=i+1 EQk] · (Ai ·Bi) , 0 ≤ i < n

A ≤ B =
∏n−1

i=0 Gi

(1)

XN1

XN2

XN3

A3
B3 A2

B2
N2

N3

B1
A1

N4
A0
B0

A3
B3

N1

A1
B1

A2
B2

LEQAND

Fig. 1: 4-bit Exact Dedicated Comparator (EDC)

A. Dedicated Approximate Comparators

We propose two architectures for Approximate Dedicated
Comparators (AxDCs): the AxDC1 and the AxDC2. The
functional approximation technique involved removing logic
gates from the EDC circuits while truncating the inputs. This
approach is employed to improve power consumption while
having little impact on the application accuracy. The for 4-
bit versions of both comparators are shown in Fig. 2, as a
simplification to introduce the idea, and to allow a direct
comparison with the 4-bit EDC example.

The first dedicated approximate comparator is the AxDC1.
The general equation to n-bit is presented in Eq. 2, in which
the difference from the Eq. 1 is that the range for the
operations is reduced to n/4 of the n more significant bits
(MSB). The approximation was achieved by truncation of the
Least Significant Bits (LSBs). Thus, in the 4-bit example,
the NAND4 and XNOR3 gates were removed from the EDC
circuit.

EQi = Ai ⊕Bi , n
4 < i < n

Gi = [
∏n−1

k=i+1 EQk] · (Ai ·Bi) , n
4 ≤ i < n

A ≤ B =
∏n−1

i=n
4
Gi

(2)
The AxDC2 implementation is shown in Eq. 3. This version
limits the range of exact operations to n/2 of the n more
significant bits (MSB), also truncating the n/4 LSBs. For
the 4-bit version, the gates XNOR2 and NAND3 were also
removed from the EDC circuit, and the bit 1 from the second
input (B) was routed directly to the last AND gate. This
resulted in an approximation of 50% of input bits and further
reduction in area.

XN1

XN2

A3
B3 A2

B2
N2

N3

B1
A1

A3 N1

LEQAND

A2
B2

B3

(a) 25% inputs approximation (AxDC1)

XN1A3
B3 A2

B2
N2

A3
B3

N1

LEQAND

B1

(b) 50% inputs approximation (AxDC2)

Fig. 2: Approximate Dedicated Comparators (AxDCs)

ANNEX A. Paper published in the proceedings of the 2022 IFIP/IEEE 30th
International Conference on Very Large Scale Integration (VLSI-SoC) 74

EQi = Ai ⊕Bi , n
2 < i < n

Gi = [
∏n−1

k=i+1 EQk] · (Ai ·Bi) , n
2 ≤ i < n

A ≤ B =
∏n

2 −1

i=n
4
Bi · ∏n−1

i=n
2
Gi

(3)
These approximations can be explored in n-bits circuits,

which are constructed by obeying the same conditions of ap-
proximation shown in Eqs. 2 and 3. For these experiments, we
employed 8-bit versions of the approximate circuits, analogous
to those presented in the schematics for 4-bits. For example,
the AxDC2 would ignore bits 0 and 1 from both inputs, and
pass bits B2 and B3 to the last AND gate.

B. Subtraction-based Comparators

In this work, the proposed dedicated approximate compara-
tors are confronted with comparators based on subtraction.
These circuits use full adders (FAs) to perform subtraction
and analyze a specific output for the operation required, for
either unsigned or signed inputs. In the case of unsigned
operands and the lesser-or-equal-than operation, we evaluate
the carry-out of the most significant bit (MSB) full adder (FA)
as the desired output. This approach also presents the benefit
of easy scalability, achieved simply by increasing the size of
the subtractor implemented.

For our case study, the subtraction-based comparators were
designed with a simple Ripple Carry Adder (RCA). In these
circuits, the approximation was achieved by substituting exact
FA cells with three different approximate topologies: the Sim-
plified Mirror Adder (SMA), the Approximate Mirror Adder 1
(AMA1), and the Approximate Mirror Adder 2 (AMA2) [17].
The circuits of these approximate FAs are presented in Fig.
3. These AxC FAs are explored due to the good outcomes
of lower error distance and power savings compared to the
Mirror and SERF Full Adders [18].

While dedicated circuits tend to be faster and more energy
efficient, the downsides of subtraction-based comparators can
be minimized using specialized low-power or faster architec-

tures, as the RCA design used generates longer carry chains
which result in increased delay.

III. ELECTRICAL EVALUATION OF THE COMPARATORS

The electrical evaluation of the comparator circuits begins
with the description of the Exact Dedicated Comparator and
each proposed circuits for 8-bit extensions of the EDC and
AxDCs, as well as the RCA with each approximated FA
topologies for the subtractor-based comparators. We note that
the proposed approaches can be easily adapted to larger inputs
according to the range of the data in the datasets, but for our
case study, 8-bit versions were justified by little impact in
accuracy from quantization of the data.

The circuits were described adopting the ASAP7 7 nm
FinFET PTM provided by Arizona State University (ASU)
[19]. All devices use 3 fins, recommended as the minimum
sizing for standard cell design [19]. Delay and power con-
sumption were extracted for each circuit by simulation with
Synopsys HSPICE. The circuits were electrically characterized
under nominal voltage of 0.7 V, utilizing a 1 fF capacitor as
load, equivalent to a fan-out of 4, to emulate a more realistic
scenario.

Due to the large number of inputs of 8-bit comparators, the
critical delay and power were analytically estimated, using the
critical path and logic cell electrical characterization. Finally,
the Total Error Distances (ED) and Error Rates (ER) were also
calculated through the Truth Tables of the 8-bit approximations
and considered in the analysis.

Table I presents the electrical characteristics of delay and
power for the 8-bit comparator circuits evaluated in this
work, as well as the ED and ER for each circuit. The first
line describes the EDC. The next two entries present the
results for the approximate dedicated versions (AxDC1 and
AxDC2) proposed in this work. Finally, the remaining lines
contain the results for the subtractor-based comparators with
approximation (SMA, AMA1 and AMA2).

The AxDC1 shows the best results for error metrics among
all the circuits evaluated, while presenting 24% of delay
reduction and 11% of power savings. Higher improvements
on power and delay are achieved with the version 2 of the
proposed approximations, AxDC2, which reduces over 44%

(a) Simplified Mirror Adder (SMA) (b) Approximate Mirror Adder 1 (AMA2) (c) Approximate Mirror Adder 2 (AMA2)

Fig. 3: Approximate FAs inspired by the Exact Mirror Adder (EMA) [17] [18]

ANNEX A. Paper published in the proceedings of the 2022 IFIP/IEEE 30th
International Conference on Very Large Scale Integration (VLSI-SoC) 75

TABLE I: Electrical Characteristics and Error Metrics for the
8-bit Comparator Circuits

Circuit Delay (ps) Power (nW) ED † ER (%)
EDC 79.45 1040.73 0 0
AxDC1 60.25 916.21 384 0.59
AxDC2 44.05 720.75 24,384 37.21
SMA 104.56 4,319.44 10,795 16.47
AMA1 75.60 5,278.00 10,795 16.47
AMA2 69.76 3,346.48 16,384 25.00
† The maximum ED for 8 bit comparators is 65,536.

and 30% for delay and power respectively. However, this
circuit has the largest ED due the 50% approximation of the
inputs.

The Mirror Adder inspired approximations explored in the
subtrator-based comparators show delay reduction for the
AMA versions. However, all subtractor comparators evaluated
had increased power consumption compared to the EDC,
and presented ER superior to 16%. These results indicate
that the dedicated approach is more advantageous for limited
energy environments and the approximations proposed in this
work can elevate the power efficiency, observing the quality
restrictions of the target application, while subtractor-based
comparators are more suitable for applications which already
provide approximate adder/subtractor modules.

IV. APPROXIMATION WORKFLOW FOR DECISION TREES
CLASSIFICATION

As a case study for this analysis, we used the General
Public License (GPL) version of the C5.0 Decision Tree
implementation [20]. C5.0 is an improved version of one of the
most popular algorithms for training Decision Trees developed
by Ross Quinlan, called C4.5. The C5.0 version contains
improvements in terms of memory and computing resources,
as well as extended features like boosting. For continuous
attributes, C5.0 compares their value with a threshold that
is tuned in the classification step. For categorical features,
C5.0 maps their value as indices to an array of sub-trees
(the branches of a node). Therefore, our approximate operators
only work on continuous attributes. The comparison operations

performed in the classification step were modified in the
C5.0 source code in order to enable precise and approximate
comparators.

This experiment consisted in implementing a method for
evaluation of each architecture in the context of C5.0 classi-
fication. Our workflow, summarized in Fig. 4 was comprised
of 4 stages: (1) pre-processing, (2) model training and classi-
fication, (3) power/energy estimation, and (4) comparison of
results.

In this study, we employed 8-bit comparators, as they were
large enough to maintain performance in accuracy, and provide
good results in energy savings. Due to the fixed bit width
in the datasets, a quantization pre-processing stage (1) was
necessary. This step prepared the datasets for use as inputs
of the unsigned 8-bit versions of the comparators proposed.
The quantization consisted of two steps: a scaling step, fitting
the continuous-attribute data in the range of 0 and 28 − 1;
then truncating the values to remove fractional information
that went beyond the limits of representation.

The model training and classification stage (2) consisted
of running classification for each tested dataset. The baseline
results are generated training and testing the original dataset on
the default C5.0. The approximate versions are trained with
the default C5.0 version adopting the results from the pre-
processing performed in the Stage 1. Thus, the test of the
classification adopts the EDC and approximated versions of
the comparator on the C5.0, emulating the results of using
each approximation circuit in the classification step.

The approximate versions of C5.0 were trained on 5 contin-
uous and mixed attribute datasets provided by the University
of California Irvine (UCI) Machine Learning Repository [21].
The results were then analyzed using the unaltered C5.0
version as benchmark, focusing on the error rates (ER) on
both training and test data, which correspond respectively to
80% and 20% of each complete dataset. The impact on the
quality of the Decision Tree output was analyzed using the
accuracy obtained on each approximation.

The third stage includes an electrical evaluation of all
comparisons done on the approximate operations added to

Scale and quantize
values

Convert to fixed-point
representation

Train with default
C5.0 version

Test on default, EDC
and approximate

versions

Comparison logs for
power and energy

estimation

HSPICE simulations for
each comparison

Estimate for energy
consumpsion in

comparisons

Original
dataset

Preprocessed
dataset

1
2

3Train and test on
default C5.0

Accuracy evaluation
on test data

4

Fig. 4: AxC comparators evaluation in C5.0 workflow

ANNEX A. Paper published in the proceedings of the 2022 IFIP/IEEE 30th
International Conference on Very Large Scale Integration (VLSI-SoC) 76

the C5.0 source code in stage 2. A log of all continuous
attribute test comparisons performed in the second stage is
recorded. These logs saved during classification were used
to generate sources for electrical simulation using the circuit
descriptions generated for electrical characterization. All the
operations were then simulated with HSPICE, with duration
of 2.5 ns under nominal voltage (0.7 V). The energy data
was collected from the simulations, which were summed to
provide an estimate of the total energy consumption for each
comparator in the entire test set classification.

The last stage (4) was the evaluation of all produced metrics,
to provide clearer insight into the characteristics and behavior
of each approximation in a given dataset. We analyze accu-
racy, total energy consumption for all comparison operations
executed, and the number of operations performed. With these
values, we can also calculate the average power consumption
of the comparators per inference.

V. EVALUATION ON DECISION TREES

Table II summarizes the results obtained for each dataset
employed, presenting the number of test samples and attributes
in each case. Furthermore, the table includes the accuracy
(Acc) achieved in classification, the energy estimate calculated
and the number of comparison operations (#Ops) done in
continuous attributes. Note that a larger number of continuous
attributes will incur in greater energy consumption.

In terms of prediction performance, we can observe that the
adoption of approximated comparators on the classification
of continuous datasets has varying effects on the accuracy
compared to the exact version. The EDC presents a very
similar behavior to the default C5.0 version, with an average
deviation of only 0.01%, caused by the quantization error.
All approximated comparators were thus analyzed against the
EDC, to account for both accuracy and energy performance.
For the approximated dedicated comparators, the AxDC1
showed the closest accuracy to the EDC, with a reduction
on accuracy of only 0.12% on average for evaluated datasets.
This is mostly due to the nearly negligible error rate of this
comparator.

The AxDC2 reaches the higher energy reduction with
more than 51% of savings compared to the EDC circuit
for all datasets evaluated. The highest impact on energy is
observed on the Iris dataset (86.64%) despite the fact that
this approximate circuit increases the number of comparison
operations executed in 81.8%. Despite reductions in resource
consumption, the accuracy for this circuit was significantly

worse than most other evaluated comparators, mostly due to
its large error metrics.

The variable number of operations seen in Tab. II is ex-
plained by the different paths taken in the traversal of the trees
when performing classification with each approximation. This
variation is directly related to the energy consumption of each
inference performed. In fact, the AxDC1 shows an average
reduction of 21.2% in the number of comparisons, while the
AxDC2 has an increase of 51.1%. This explains the similar
energy reductions obtained in both AxDC1 and 2, of 51%
and 46.3% respectively, especially relevant considering the
much more accurate results of the AxDC1. Notably, this effect
could be minimized by also applying the approximations the
construction of the DTs, in which the threshold for continuous
tests would be tuned for each different circuit.

Observing the experiment results by the metric of the power
per inference, we highlight the fact that the power consumption
calculated in this workflow is impacted directly by the number
of continuous attributes which are present in the target dataset.
For example, the Arrhythmia dataset shows the highest power
per inference due to the presence of a total of 279 attributes, of
which 206 were continuous. With the SMA-based comparator
each inference in this dataset consumes 10.08 µW, while the
adoption of the AxDC2 significantly reduces the power per
inference to 1.77 µW. This difference reinforces how the
approximate comparator proposed in this work can be applied
in the DT classification, achieving high power efficiency with
little to no interference on the accuracy of the application. We
can also note that the AMA1-based comparator also proves
to be a good choice, with an average reduction of 32% in
power per inference when compared to the EDC. The AxDC1
provided reduction of 12.5% up to 84.95% in power per
inference, with an average of 46.25% on all datasets.

VI. CONCLUSIONS

This work proposed two architectures for dedicated approx-
imate comparators, evaluating their usage in the classification
stage of Decision Trees. Along with this, we also evaluated an-
other approach utilizing subtractors and approximated FAs. All
circuits were described and studied in 8-bit versions, applied
to the classification stage of the a Decision Tree Classifier.
The proposed dedicated circuits circuits showed good overall
results in electrical characteristics, with reduction of up to
31% in power consumption in relation to the exact baseline
comparator. However, the AxDC2 provided significantly worse
accuracy, compared to the remaining comparators. We also

TABLE II: Evaluation of the Comparison Circuits on Decision Trees Classification Model
Heart disease

Test samples = 60
Attributes = 13 (6 continuous)

Iris
Test samples = 30

Attributes = 5 (4 continuous)

Arrhythmia
Test samples = 90

Attributes = 279 (206 continuous)

Adult
Test samples = 16281

Attributes = 15 (6 continuous)

Forest fires
Test samples = 56

Attributes = 13 (10 continuous)
Comparator

circuit
Acc
(%)

Energy
(fJ) # Ops Acc

(%)
Energy

(fJ) # Ops Acc
(%)

Energy
(fJ) # Ops Acc

(%)
Energy

(pJ) # Ops Acc
(%)

Energy
(fJ) # Ops

EDC 63.3 160.7 120 93.3 35.8 88 63.3 1,003.1 1,195 86.4 73.7 115,704 98.2 94.4 184
AxDC1 63.3 140.6 127 93.3 5.4 75 63.3 725.8 949 85.9 21.2 107,532 98.2 61.4 56
AxDC2 40.0 76.8 138 30.0 4.8 160 7.8 398.8 1,734 23.5 58.5 176,441 39.3 58.4 296
SMA 55.0 601.7 141 73.3 95.4 121 16.7 2,267.5 1,653 77.6 185.7 211,991 78.6 389.5 129
AMA1 55.0 174.2 21 73.3 16.1 30 16.7 334.2 456 77.6 29.5 96,287 78.6 106.1 102
AMA2 46.7 253.5 138 33.3 105.9 160 6.7 1,610.5 1,740 24.2 344.5 192,574 60.7 390.6 296

ANNEX A. Paper published in the proceedings of the 2022 IFIP/IEEE 30th
International Conference on Very Large Scale Integration (VLSI-SoC) 77

Dataset

P
ow

er
 p

er
 In

fe
re

nc
e

(µ
W

)

0

2

4

6

8

10

12

Iris Forest fires Adult Heart disease Arrhythmia

EDC AxDC1 AxDC2 SMA AMA1 AMA2

Fig. 5: Evaluation of the Power Consumption per Inference

investigated the effects of using subtractor-based approximated
comparators, which provide greater design usability in appli-
cations where AxC arithmetic blocks are present, with the
caveat of worse performance when compared to the dedicated
approach. Overall, the AxDC1 showed the best results in error
metrics, just of 0.59% error rate.

In general, the dedicated circuits show more advantages
in accuracy and energy savings compared to the versions
based on subtractors exploring approximations based on Mir-
ror Adder. From the FA-based comparators, the AMA1 was
especially competitive, providing gains of 32% in energy and
at the cost of 27.7% in accuracy, by decreasing the number of
operations by more than 54%, the largest reduction in number
of comparisons between evaluated options. The advantage
of this approach could be in an approximate environment,
where there is the demand for an approximate adder/subtractor
and the hardware can be reused. However, for dedicated
hardware design, the AxDC1 was still considered the best
option regarding the power-accuracy trade-off.

The proposed workflow has demonstrated to be able to deal
with mixed datasets, and data larger than the 8-bit representa-
tion limits used. Next steps include to include approximation in
the decision tree construction, and also combine other energy
efficient approaches together with the proposed comparator
circuits in a configurable environment.

ACKNOWLEDGMENT

This work was financed in part by National Council for
Scientific and Technological Development – CNPq and the
Propesq/UFSC.

REFERENCES

[1] S. Singh, “Green computing strategies & challenges,” in 2015
International Conference on Green Computing and Internet of Things
(ICGCIoT). IEEE, 10 2015, pp. 758–760. [Online]. Available:
http://ieeexplore.ieee.org/document/7380564/

[2] H. B. Barua and K. Chandra Mondal, “Green data mining using approx-
imate computing: An experimental analysis with rule mining,” in 2018
International Conference on Computing, Power and Communication
Technologies (GUCON), 2018, pp. 115–120.

[3] O. Y. Al-Jarrah, P. D. Yoo, S. Muhaidat, G. K. Karagiannidis,
and K. Taha, “Efficient machine learning for big data: A review,”
Big Data Research, vol. 2, pp. 87–93, 9 2015. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2214579615000271

[4] J. Han, “Introduction to approximate computing,” in Proceedings of
the IEEE VLSI Test Symposium, vol. 2016-May. IEEE, apr 2016, pp.
1–1. [Online]. Available: http://ieeexplore.ieee.org/document/7477305/

[5] B. A. Abreu, M. Grellert, and S. Bampi, “Vlsi design of tree-based
inference for low-power learning applications,” in Proceedings - IEEE
International Symposium on Circuits and Systems, vol. 2020-Octob.
IEEE, 10 2020.

[6] H. B. Barua and K. C. Mondal, “Approximate computing: A
survey of recent trends—bringing greenness to computing and
communication,” Journal of The Institution of Engineers (India):
Series B, vol. 100, pp. 619–626, 12 2019. [Online]. Available:
http://link.springer.com/10.1007/s40031-019-00418-8

[7] T. Moreau, A. Sampson, and L. Ceze, “Approximate Computing:
Making mobile systems more efficient,” IEEE Pervasive Computing,
vol. 14, no. 2, pp. 9–13, apr 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7093019/

[8] A. G. Strollo and D. Esposito, “Approximate computing in the
nanoscale era,” in ICICDT 2018 - International Conference on IC
Design and Technology, Proceedings. IEEE, 6 2018, pp. 21–24.
[Online]. Available: https://ieeexplore.ieee.org/document/8399746/

[9] D. Marwaha and A. Sharma, “A review on approximate computing
and some of the associated techniques for energy reduction in iot,”
in 2018 2nd International Conference on Inventive Systems and
Control (ICISC). IEEE, 1 2018, pp. 319–323. [Online]. Available:
https://ieeexplore.ieee.org/document/8399087/

[10] B. Zhang, A. Davoodi, and Y. H. Hu, “Exploring energy and
accuracy tradeoff in structure simplification of trained deep neural
networks,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 8, pp. 836–848, 12 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8354792/

[11] A. Goel, C. Tung, Y. H. Lu, and G. K. Thiruvathukal, “A
Survey of Methods for Low-Power Deep Learning and Computer
Vision,” in IEEE World Forum on Internet of Things, WF-IoT
2020 - Symposium Proceedings, mar 2020. [Online]. Available:
http://arxiv.org/abs/2003.11066

[12] Q. Li and A. Bermak, “A low-power hardware-friendly binary decision
tree classifier for gas identification,” Journal of Low Power Electronics
and Applications, vol. 1, pp. 45–58, 3 2011. [Online]. Available:
http://www.mdpi.com/2079-9268/1/1/45

[13] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine
learning in 2 kb ram for the internet of things,” in 34th
International Conference on Machine Learning, ICML 2017, vol. 4.
Springer New York, 2017, pp. 3062–3071. [Online]. Available:
http://link.springer.com/10.1007/978-1-4614-7138-7

[14] E. Garcı́a-Martı́n, N. Lavesson, H. Grahn, E. Casalicchio, and V. Boeva,
“Energy-aware very fast decision tree,” International Journal of Data
Science and Analytics, vol. 11, pp. 105–126, 3 2021. [Online].
Available: https://link.springer.com/10.1007/s41060-021-00246-4

[15] M. Osta, A. Ibrahim, H. Chible, and M. Valle, “Approximate multipliers
based on inexact adders for energy efficient data processing,” in 2017
New Generation of CAS (NGCAS), Sep. 2017, pp. 125–128.

[16] Y. Zhou, J. Lin, J. Wang, and Z. Wang, “Approximate
comparator: Design and analysis,” in IEEE Workshop on Signal
Processing Systems, SiPS: Design and Implementation, vol.
2018-Octob. IEEE, 10 2018, pp. 129–133. [Online]. Available:
https://ieeexplore.ieee.org/document/8598366/

[17] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: Imprecise adders for low-power approximate computing,” in
Proceedings of the International Symposium on Low Power Electronics
and Design. IEEE, 8 2011, pp. 409–414. [Online]. Available:
http://ieeexplore.ieee.org/document/5993675/

[18] P. A. Silva and C. Meinhardt, “Energy-efficient design of approximated
full adders,” in ICECS 2020 - 27th IEEE International Conference on
Electronics, Circuits and Systems, Proceedings. IEEE, 11 2020.

[19] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha,
B. Cline, C. Ramamurthy, and G. Yeric, “Asap7: A 7-
nm finfet predictive process design kit,” Microelectronics
Journal, vol. 53, pp. 105–115, 7 2016. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S002626921630026X

[20] J. R. Quinlan, C4.5 - Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., 1993.

[21] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

ANNEX A. Paper published in the proceedings of the 2022 IFIP/IEEE 30th
International Conference on Very Large Scale Integration (VLSI-SoC) 78

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Code Listings
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Objectives
	Structure of this work

	Background
	Approximate Computing
	Error assessment in AxC applications

	Decision Trees
	FinFET devices and electrical characterization with SPICE

	Related Work
	Decision Trees and hardware acceleration
	Low-power comparator design

	Proposed Approximate Comparators
	Error and electric evaluation of proposed comparators

	Using approximate comparators in Decision Trees Classifiers
	The workflow
	Analysis of pre-processing techniques: quantization and scaling of datasets
	Impact of approximation in the C5.0 classification model
	Discussion

	Conclusions
	Publications

	REFERENCES
	Paper published in the proceedings of the 2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC)

