UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DE JOINVILLE CURSO DE ENGENHARIA NAVAL

PATRICIA MISTURA KLIPPEL

ESTUDO PARAMÉTRICO DO SISTEMA DE ANCORAGEM DE UMA PLATAFORMA FPSO

Joinville 2022 PATRICIA MISTURA KLIPPEL

ESTUDO PARAMÉTRICO DO SISTEMA DE ANCORAGEM DE UMA PLATAFORMA FPSO

Trabalho apresentado como requisito para obtenção do título de bacharel no Curso de Graduação em Engenharia Naval do Centro Tecnológico de Joinville da Universidade Federal de Santa Catarina.

Orientador: Dr. Thiago Pontin Tancredi

PATRICIA MISTURA KLIPPEL

ESTUDO PARAMÉTRICO DO SISTEMA DE ANCORAGEM DE UMA PLATAFORMA FPSO

Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do título de bacharel em Engenharia Naval, na Universidade Federal de Santa Catarina, Centro Tecnológico de Joinville.

Joinville (SC), 13 de dezembro de 2022.

Banca Examinadora:

Prof. Dr. Thiago Pontin Tancredi Orientador/Presidente

Prof. Dr. Leonardo Moreto Elias Membro Universidade Federal de Santa Catarina

Prof. Dr. Lucas Weihmann Membro Universidade Federal de Santa Catarina

Dedico este trabalho primeiramente a Deus, por ser essencial em minha vida, sem ele nada seria possível. A minha mãe Justina e ao meu irmão Patrick que, com muito carinho e apoio, não mediram esforços para que eu chegasse até esta etapa da minha vida.

AGRADECIMENTOS

Primeiramente agradeço a Deus, que esteve presente em todos os momentos e por tornar tudo isso possível, proporcionando saúde e perseverança.

Ao meu orientador, professor Thiago Pontin Tancredi, por ter me recebido como orientanda, sempre me motivando, ensinando, aconselhando e o mais importante, compartilhando seu tempo e conhecimento para que eu realizasse a conclusão deste trabalho. Espero algum dia me tornar uma excelente profissional como o senhor.

À Universidade Federal de Santa Catarina que me proporcionou um ambiente de aprendizado, novas experiências, conhecimento e desenvolvimento.

A todos os professores da UFSC de Joinville, diretores e servidores pelo apoio e capacitação pessoal e profissional.

À minha mãe Justina, que sempre me apoiou em todas as decisões e me deu suporte independente da situação e dos problemas, e ao meu irmão Patrick que sempre me ajudou e esteve ao meu lado. Muito obrigada pela ajuda, compreensão, incentivo e amor.

Agradecimentos especiais a Petrobras S.A., que tornou possível a realização deste trabalho, por meio do fornecimento de informações e pelo financiamento da pesquisa através da Fundação de Ensino e Engenharia de Santa Catarina (FEESC), e ao Laboratório de Simulação Naval pelas instalações, que proporcionaram um ambiente adequado para o desenvolvimento do trabalho.

E por fim, a todos, que direta ou indiretamente participaram na realização deste trabalho.

"Que os nossos esforços desafiem as impossibilidades. Lembrai-vos de que as grandes proezas da história foram conquistadas do que parecia impossível".

(Charles Chaplin)

RESUMO

A exploração de petróleo em águas cada vez mais profundas requer o contínuo desenvolvimento tecnológico, o qual, no âmbito da Engenharia Naval, abrange o posicionamento, dimensionamento e instalação de sistemas de ancoragem. Dado que os sistemas flutuantes de produção sofrem a constante ação de forças ambientais (ondas, ventos e correntes) nas mais variadas intensidades e direções, cabe ao sistema de ancoragem manter a posição da plataforma, garantindo que os dutos de extração sofram níveis aceitáveis de deformação ao longo da operação. Com o intuito de atender aos requisitos de projeto, maximizar o desempenho e reduzir os custos de um sistema de ancoragem, este trabalho avalia as influências do número de linhas, dos azimutes e das trações no topo das linhas no peso do sistema, na integridade das linhas e no deslocamento de uma plataforma oceânica. Para a realização deste estudo, são consideradas linhas de ancoragem dispostas em catenária inelástica, cuja análise é realizada utilizando-se o programa Exmoor, desenvolvido pela Universidade de São Paulo em parceria com a Universidade Federal de Santa Catarina e a Petrobras. Por fim, é apresentado um estudo de caso referente a aplicação de técnicas de otimização realizado com o auxílio do programa Synapse Offshore. Os resultados obtidos permitem concluir que o deslocamento de um sistema flutuante é inversamente proporcional ao nível de tensão nas linhas e ao peso do sistema de ancoragem. Além disso, verificou-se que o uso de linhas mistas permite obter um sistema de ancoragem que, além de atender aos requisitos estabelecidos para o projeto, apresenta um peso total até 76,49% menor do que a solução considerando apenas linhas homogêneas fabricadas com cabos de aço e/ou amarras. Por fim, constatou-se que existe um número de linhas ótimo, o qual reduz o peso do sistema de ancoragem, sem comprometer os requisitos de projeto impostos. Já a utilização de técnicas de otimização permitiu obter um arranjo com 75,55% mais abertura na direção leste sem comprometer os requisitos de operação estabelecidos para o sistema.

Palavras-chave: Ancoragem. Otimização. FPSO. Sistemas Flutuantes. Sistemas Oceânicos.

ABSTRACT

Oil exploration in ever deeper waters requires continuous technological development, which, within the scope of Naval Engineering, includes the positioning, sizing and installation of anchoring systems. Given that floating production systems suffer the constant action of environmental forces (waves, winds and currents) in the most varied intensities and directions, it is up to the anchoring system to maintain the position of the platform, ensuring that the extraction ducts suffer acceptable levels of deformation throughout the operation. In order to meet the design requirements, maximize the performance and reduce the costs of an anchoring system, this work evaluates the influences of the number of lines, azimuths and tensions at the top of the lines on the weight of the system, the integrity of the lines and the displacement of an ocean shelf. To carry out this study, anchor lines arranged in inelastic catenary are considered, whose analysis is carried out using the Exmoor program, developed by the University of São Paulo in partnership with the Federal University of Santa Catarina and Petrobras. Finally, a case study is presented regarding the application of optimization techniques carried out with the help of the Synapse Offshore program. The results obtained allow us to conclude that the displacement of a floating system is inversely proportional to the tension level in the lines and to the weight of the anchoring system. In addition, it was verified that the use of mixed lines allows obtaining an anchoring system that, in addition to meeting the requirements established for the project, presents a total weight up to 76,49% less than the solution considering only homogeneous lines manufactured with steel cables and/or tethers. Finally, it was found that there is an optimal number of lines, which reduces the weight of the anchoring system, without compromising the imposed design requirements. The use of optimization techniques allowed obtaining an arrangement with 75,55% more opening in the east direction without compromising the operating requirements established for the system.

Keywords: Anchoring. Optimization. FPSO. Floating Systems. Ocean Systems.

LISTA DE FIGURAS

Figura 1 – Conceito de plataforma semissubmersível	16
Figura 2 – Conceito de plataforma FPSO	16
Figura 3 – Sistema de ancoragem	18
Figura 4 – Esquema de ancoragem	22
Figura 5 – Sistema convencional	23
Figura 6 – Raio de ancoragem e configuração geométrica	24
Figura 7 – Pontos de conexão em torno do FPSO	24
Figura 8 – Elo comum de uma amarra (com ou sem malhete)	26
Figura 9 – Carga de ruptura de amarras	27
Figura 10 – Configuração de um cabo de aço	28
Figura 11 – Principais tipos de cabos de aço	29
Figura 12 – Cabo de poliéster	31
Figura 13 – Mecanismos do fairlead	32
Figura 14 – Âncora do tipo torpedo	33
Figura 15 – Instalação da âncora torpedo	34
Figura 16 – Boias na superfície	34
Figura 17 – Tipos de apêndices	35
Figura 18 – Linhas de ancoragem	36
Figura 19 – Catenária e parábola	37
Figura 20 – Nomenclatura de uma linha em catenária	37
Figura 21 – Variação do comprimento do trecho	38
Figura 22 – Definições geométricas e do sistema de coordenadas	39
Figura 23 – Fluxograma de desenvolvimento das etapas do trabalho	45
Figura 24 – Configuração das linhas de ancoragem	50
Figura 25 – Arranjo das linhas de ancoragem	53
Figura 26 – Objetivo de maximização do ângulo de abertura do arranjo	55
Figura 27 – Restrições a serem alcançadas durante a otimização	55
Figura 28 – Ângulo das linhas e comprimento do 1º segmento	56
Figura 29 – Parte do modelo de otimização no Synapse Offshore	57
Figura 30 – Três segmentos de materiais	60
Figura 31 – Arranjo com 15 linhas de três segmentos	64

Figura 32 – Três segmentos e adição da linha em 0 grau e em 180 graus	66
Figura 33 – Três segmentos de materiais e duas linhas adicionadas	69
Figura 34 – Comparação dos resultados para o peso	71
Figura 35 – Comparação dos resultados para o offset final	71
Figura 36 – Comparação dos resultados para a máxima porcentagem da tração de ruptura	72
Figura 37 – Gráfico de dispersão em relação ao offset inicial e o peso próprio	72
Figura 38 – Evolução da otimização: abertura do arranjo (°)	73
Figura 39 – Arranjo da solução otimizada	74
Figura 40 – Arranjo da solução inicial e solução otimizada	76

LISTA DE QUADROS

Quadro 1 – Resultado referente a cada uma das linhas de ancoragem	58
Quadro 2 – Comparação dos resultados	58
Quadro 3 – Resultados para diminuição do peso	59
Quadro 4 – Comparação	59
Quadro 5 – Comparação dos resultados	60
Quadro 6 – Resultados viáveis para o dimensionamento do sistema de ancoragem	61
Quadro 7 – Resultado do estudo de caso 3	61
Quadro 8 – Verificação dos requisitos de projeto	62
Quadro 9 – Projeto racional visando a definição da linha para remoção	63
Quadro 10 – Resultado do estudo de caso 4	64
Quadro 11 – Comparação dos resultados	65
Quadro 12 – Projeto racional visando a definição do ângulo para a adição da linha	65
Quadro 13 – Resultados para o menor peso (0 grau)	67
Quadro 14 – Resultados para o menor peso (180 graus)	67
Quadro 15 – Comparação dos resultados (0 grau)	68
Quadro 16 – Comparação dos resultados (180 graus)	68
Quadro 17 – Projeto racional visando a adição de duas novas linhas ao sistema	68
Quadro 18 – Resultados para o menor peso considerando arranjo de 18 linhas	69
Quadro 19 – Comparação dos resultados	70

LISTA DE TABELAS

Tabela 1 – Propriedades do elemento de amarra de 84 mm	
Tabela 2 – Propriedades físicas do cabo de aço	
Tabela 3 – Propriedades físicas do cabo de poliéster	
Tabela 4 – Comparação entre os principais materiais usados em ancoragem	
Tabela 5 – Estudos de caso analisados	
Tabela 6 – Plataforma semissubmersível	
Tabela 7 – Ventos	
Tabela 8 – Ondas	
Tabela 9 – Correntes	
Tabela 10 – Propriedades do material	
Tabela 11 – Plataforma FPSO	
Tabela 12 – Combinações ambientais	
Tabela 13 – Estrutura das linhas	
Tabela 14 – Comparação dos resultados	74
Tabela 15 – Comparação dos azimutes	75
Tabela 16 – Comparação dos comprimentos dos segmentos iniciais (fairlead)	75

LISTA DE ABREVIATURAS E SIGLAS

BEN – Balanço Energético Nacional

FPSO – Floating Production Storage and Offloading

JONSWAP - Joint North Sea Wave Project

HMPE – High Modulus Polyethylene

MBL - Tensão Mínima de Ruptura

PETROBRAS – Petróleo Brasileiro S. A.

RIMA – Relatório de Impacto Ambiental

TDP - Touchdown Point

UFSC - Universidade Federal de Santa Catarina

SUMÁRIO

1. INTRODUÇÃO	15
1.1. OBJETIVOS	19
1.1.1. Objetivo geral	19
1.1.2. Objetivos específicos	19
1.2. ESTRUTURAÇÃO DO TRABALHO	19
2. FUNDAMENTAÇÃO TEÓRICA	21
2.1. SISTEMA DE ANCORAGEM	21
2.1.1. Ancoragem em catenária	22
2.2. PRINCIPAIS COMPONENTES DAS LINHAS DE ANCORAGEM	25
2.2.1. Amarras	25
2.2.2. Cabos de aço	28
2.2.3. Fibras sintéticas	30
2.2.4. Comparativo entre os três materiais mais recorrentes	32
2.2.5. Fairlead	32
2.2.6. Âncoras	33
2.2.7. Apêndices	34
2.3. ESTUDO DA CATENÁRIA	36
2.3.1. Equacionamento	38
2.4. FORÇAS AMBIENTAIS E EQUILÍBRIO DO SISTEMA	43
2.5. PROCESSO DE OTIMIZAÇÃO	43
3. METODOLOGIA	45
3.1. DESCRIÇÃO DA PLATAFORMA UTILIZADA NO ESTUDO RACIONAL	46
3.1.1. Definição das condições ambientais	47
3.2. PROJETO RACIONAL	49
3.2.1. Estudo de caso 1: linhas homogêneas com um único segmento	50
3.2.2. Estudo de caso 2: diminuição do peso do sistema para apenas um segmento	51
3.2.3. Estudo de caso 3: linhas com três segmentos	51
3.2.4. Estudo de caso 4: três segmentos com a remoção de uma linha (15 linhas)	51
3.2.5. Estudo de caso 5: três segmentos com adição de uma linha (17 linhas)	51
3.2.6. Estudo de caso 6: três segmentos com adição de duas linhas (18 linhas)	52
3.3. ESTUDO DE CASO 7: PARA UMA PLATAFORMA FPSO	52

3.3.1. Processo de otimização do sistema de ancoragem de uma plataforma FPSO	55
3.3.1.1. <u>Synapse Offshore</u>	56
4. RESULTADOS E DISCUSSÕES	58
4.1. RESULTADOS DO ESTUDO DE CASO 1	58
4.2. RESULTADOS DO ESTUDO DE CASO 2	59
4.3. RESULTADOS DO ESTUDO DE CASO 3	60
4.4. RESULTADOS DO ESTUDO DE CASO 4	62
4.5. RESULTADOS DO ESTUDO DE CASO 5	65
4.6. RESULTADOS DO ESTUDO DE CASO 6	68
4.7. ANÁLISE DOS RESULTADOS	70
4.8. RESULTADO PARA O ESTUDO DE CASO 7 PARA UMA PLATAFORMA FI	PSO.73
5. CONCLUSÃO	77
5.1. SUGESTÕES PARA TRABALHOS FUTUROS	78
REFERÊNCIAS	79
APÊNDICE A – NÚMERO DE LINHAS	83
A DÊNDICE D. CODDENTES VENTOS E ONDAS	84
APENDICE B – CORRENTES, VENTOS E ONDAS	
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C	OM 0
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND	OM O
APENDICE B-CORRENTES, VENTOS E ONDAS ANEXO A - TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B - TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E	OM O 95 TRÊS
APENDICE B-CORRENTES, VENTOS E ONDAS ANEXO A - TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B - TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS	OM O 95 TRÊS 98
APENDICE B-CORRENTES, VENTOS E ONDAS ANEXO A - TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B - TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS ANEXO C - TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS,	OM O 95 TRÊS 98 TRÊS
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS ANEXO C – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM REMOÇÃO DE 1 LINHA	OM O 95 TRÊS 98 TRÊS 105
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS ANEXO C – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM REMOÇÃO DE 1 LINHA ANEXO D – PROCESSO RACIONAL PARA DEFINIÇÃO DO ÂNGULO PA	OM O 95 TRÊS 98 TRÊS 105 ARA A
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS ANEXO C – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM REMOÇÃO DE 1 LINHA ANEXO D – PROCESSO RACIONAL PARA DEFINIÇÃO DO ÂNGULO PARA DIFERENTES	OM O 95 TRÊS 98 TRÊS 105 ARA A 107
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS ANEXO C – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM REMOÇÃO DE 1 LINHA ANEXO D – PROCESSO RACIONAL PARA DEFINIÇÃO DO ÂNGULO PARA LINHA ANEXO E – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS,	OM O 95 TRÊS 98 TRÊS 105 ARA A 107 TRÊS
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS ANEXO C – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM REMOÇÃO DE 1 LINHA ANEXO D – PROCESSO RACIONAL PARA DEFINIÇÃO DO ÂNGULO PA LINHA ANEXO E – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM ADIÇÃO DE 1 LINHA EM 0 GRAU	OM O 95 TRÊS 98 TRÊS 105 ARA A 107 TRÊS 110
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS ANEXO C – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM REMOÇÃO DE 1 LINHA ANEXO D – PROCESSO RACIONAL PARA DEFINIÇÃO DO ÂNGULO PA LINHA ANEXO E – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM ADIÇÃO DE 1 LINHA EM 0 GRAU ANEXO F – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS,	OM O 95 TRÊS TRÊS TRÊS 105 ARA A 107 TRÊS 110 TRÊS
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS ANEXO C – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM REMOÇÃO DE 1 LINHA ANEXO D – PROCESSO RACIONAL PARA DEFINIÇÃO DO ÂNGULO P. LINHA ANEXO E – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM ADIÇÃO DE 1 LINHA EM 0 GRAU ANEXO F – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM ADIÇÃO DE 1 LINHA EM 0 GRAU	OM O 95 TRÊS TRÊS TRÊS 105 ARA A 107 TRÊS 110 TRÊS S113
APENDICE B – CORRENTES, VENTOS E ONDAS ANEXO A – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS C MATERIAL SPIRAL STRAND ANEXO B – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS E SEGMENTOS DE MATERIAIS ANEXO C – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM REMOÇÃO DE 1 LINHA ANEXO D – PROCESSO RACIONAL PARA DEFINIÇÃO DO ÂNGULO PA LINHA ANEXO E – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM ADIÇÃO DE 1 LINHA EM 0 GRAU ANEXO F – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM ADIÇÃO DE 1 LINHA EM 0 GRAU ANEXO F – TRAÇÃO NO TOPO PARA DIFERENTES DIÂMETROS, SEGMENTOS DE MATERIAIS E COM ADIÇÃO DE 1 LINHA EM 180 GRAU	OM O 95 TRÊS TRÊS TRÊS 105 ARA A 107 TRÊS 110 TRÊS S113 TRÊS

1. INTRODUÇÃO

Atualmente, o petróleo é considerado uma das fontes não renováveis de energia mais empregadas no mundo, tendo forte impacto na economia nacional e internacional. Embora muito se fale sobre energias renováveis, é possível afirmar que a importância do petróleo permanecerá alta nos próximos anos, pois, de acordo com dados do Balanço Energético Nacional, a produção de petróleo em 2020, cresceu 5,7% atingindo a média de 2,94 milhões de barris diários, dos quais 96,8% são provenientes de exploração oceânica (BEN, 2021).

Nesse contexto, é interessante observar que, segundo a Petrobras (2018), o Brasil é um dos poucos países que desenvolve e opera tecnologias de exploração de petróleo e gás natural em águas profundas e ultra profundas. Em 2006, a descoberta de abundantes campos localizados na Bacia de Santos, motivou a pesquisa e o desenvolvimento da indústria oceânica, que buscou superar os desafios impostos na exploração dessas novas reservas.

Embora esforços sejam feitos para viabilizar a exploração submarina de petróleo (PEREIRA, 2015), usualmente, a exploração de tais reservas utiliza plataformas fixas (apoiadas diretamente no solo) ou plataformas flutuantes, cujo posicionamento pode ser mantido de diferentes formas.

A escolha do tipo de plataforma e do tipo de sistema de posicionamento dependerá da finalidade, das condições de operação e da profundidade de lâmina d'água da plataforma (AMORIM, 2010).

Dentre os diferentes tipos de unidades flutuantes utilizados na exploração em mares brasileiros, é possível destacar dois: as plataformas do tipo semissubmersíveis e as do tipo Floating Production, Storage and Offloading Systems (FPSO).

Segundo Chakrabarti (2003), as plataformas semissubmersíveis apresentam geometria constituída por um convés, múltiplos flutuadores e colunas, sendo caracterizadas por possuírem baixa área de flutuação e pequeno deslocamento. Em decorrência desse baixo deslocamento, a unidade é incapaz de realizar o armazenamento da produção, exigindo a constante presença de navios aliviadores (AMORIM, 2010).

Por outro lado, as unidades flutuantes do tipo FPSO apresentam geometrias semelhantes à de navios petroleiros, permitindo que, além de realizarem a produção, essas unidades realizem o processamento e o armazenamento do petróleo (SILVA, 2014).

Nas Figuras 1 e 2 é possível observar as principais características geométricas associadas a esses dois tipos de unidades flutuantes.

Figura 1 – Conceito de plataforma semissubmersível

Fonte: Adaptado de Neves (2015).

Figura 2 - Conceito de plataforma FPSO

Fonte: Adaptado de Neves (2015).

Segundo Souza (2012), o navio PP Moraes foi o primeiro FPSO instalado no Brasil e iniciou sua operação em 1979. Cerca de trinta e nove anos depois, em 2018, aproximadamente 183 FPSOs estavam em operação no mundo todo, sendo que a Petrobras operava cerca de 28 unidades desse tipo (INTELLIGENCE, 2020).

É importante observar que, além das dificuldades técnicas inerentes à exploração de petróleo em águas profundas, a operação de tais sistemas impõe desafios logísticos, além de

possibilitarem a ocorrência de graves incidentes, os quais podem causar significativa degradação ambiental.

Conforme definido por RIMA (2021, p. 27), o impacto ambiental refere-se a "[...] qualquer interferência de uma atividade sobre as características físicas, biológicas e/ou socioeconômicas de um ambiente". Nesse caso, as atividades de exploração podem afetar diretamente e indiretamente a vida marinha, podendo causar a degradação parcial ou integral deste habitat.

Além da perfuração, a produção de petróleo oceânica apresenta diariamente elevados riscos associados ao processamento, transporte e manuseio de petróleo e gás natural, cujas atividades podem resultar na poluição e na degradação ambiental, com potencial de provocar graves impactos ao meio ambiente (CAMPOS, 2012). Tais impactos estão diretamente relacionados com o risco de explosões, derramamentos de óleo, alterações nos ecossistemas marinhos, degradação ambiental, dentre outros (SANTOS, 2012). Nesse sentido, deve-se considerar um monitoramento contínuo dessas ocorrências, a fim de mitigar danos e prejuízos futuros ao meio ambiente, à saúde humana e à vida marinha (ALVES; GALLARDO; KNIESS, 2020).

A exploração petrolífera em águas profundas e ultraprofundas é algo recente, tanto do ponto de vista científico, quanto tecnológico. Conforme ressalta Apolinario (2019), entre os desafios dessa atividade, a manutenção do posicionamento da unidade flutuante é imprescindível, pois dela depende a integridade dos sistemas responsáveis pela extração de petróleo e gás natural.

Embora seja possível manter a posição de uma unidade flutuante usando propulsores azimutais, em geral, para unidades de produção cuja vida útil ultrapassa os 20 anos, o uso de sistemas de posicionamento dinâmico (propulsores) é inviável economicamente (SILVEIRA, 2014). Assim, tradicionalmente, a restrição dos movimentos de uma unidade flutuante destinada à produção de petróleo é realizada por meio de um conjunto de linhas de ancoragem dispostas em catenária (SILVA, 2016).

Na Figura 3 é possível observar um arranjo típico de linhas de ancoragem de uma plataforma FPSO, o qual, nesse caso, é composto por dezoito linhas dispostas em quatro agrupamentos (clusters).

Fonte: Adaptado de Marques (2010).

As plataformas oceânicas apresentam deslocamentos (offset¹) decorrentes das forças ambientais (vento, onda e corrente) atuantes no sistema (APOLINARIO, 2019). Assim, é função do sistema de ancoragem minimizar tais deslocamentos, garantindo que os dutos de extração (risers²) sofram baixa deformação ao longo da operação, assegurando a resistência e a durabilidade desses componentes. Diante disso, a definição do número de linhas, o posicionamento e as características de cada linha tornam-se elementos centrais para o projeto de sistemas oceânicos.

Além das análises de movimento, o projeto de um sistema de ancoragem requer a avaliação de diversas características, tais como o peso total, o ângulo de aproamento da plataforma, o raio das linhas etc. No entanto, embora o sistema de ancoragem represente uma parcela significativa do custo total de uma plataforma, o número de variáveis associadas ao projeto inviabiliza a busca racional por soluções de projeto eficientes, limitando o projetista, na maioria dos casos, a buscar apenas uma solução que satisfaça os requisitos impostos para a operação.

Diante da problemática apresentada, este trabalho descreve a aplicação de uma abordagem racional para o projeto do sistema de ancoragem de uma plataforma semissubmersível, além da aplicação de um processo de otimização para o projeto do sistema de ancoragem de uma plataforma do tipo FPSO.

Para o desenvolvimento proposto, são utilizados os programas EXMOOR e DYNASIM da Petrobras, além do programa SYNAPSE Offshore, os quais realizam o processo

¹ Em geral, o termo *offset* é utilizado para designar o passeio de uma unidade flutuante no plano da linha d'água.

² Em geral, o termo *riser* é utilizado para designar os dutos que levam o petróleo do poço até a plataforma.

de análise e otimização considerando tanto uma abordagem baseada no domínio da frequência quanto no domínio do tempo.

1.1. OBJETIVOS

Para resolver a problemática da análise e otimização do sistema de ancoragem das unidades flutuantes do tipo semissubmersível e FPSO, propõe-se neste trabalho os seguintes objetivos.

1.1.1. Objetivo geral

Realizar uma análise racional do sistema de ancoragem de uma plataforma semissubmersível e um estudo de otimização aplicado ao sistema de ancoragem de uma plataforma FPSO típica, as quais serão realizadas com o auxílio dos programas EXMOOR e SYNAPSE Offshore.

1.1.2. Objetivos específicos

Para alcançar o objetivo geral, elencou-se os seguintes objetivos específicos:

- Descrever as características de um sistema típico de ancoragem aplicado em plataformas oceânicas;
- Avaliar a influência do número de linhas no peso do sistema;
- Avaliar a influência do número de linhas no offset da plataforma;
- Avaliar a influência dos azimutes das linhas no peso e no offset da plataforma;
- Avaliar a influência da tração no topo das linhas no peso e no offset da plataforma;
- Realizar um estudo de caso aplicando técnicas de otimização para o projeto do sistema de ancoragem de uma plataforma do tipo FPSO.

1.2. ESTRUTURAÇÃO DO TRABALHO

Este trabalho está estruturado em cinco capítulos. O presente capítulo aborda a introdução, motivação, justificativa, objetivo e estruturação do trabalho. No capítulo 2 é apresentada a fundamentação teórica necessária para substanciar o desenvolvimento realizado,

além de serem descritas as características principais de um sistema de ancoragem, bem como das forças ambientais atuantes. Já no Capítulo 3 são descritas a metodologia e as ferramentas utilizadas, além de serem apresentadas as informações referentes aos estudos realizados. Em seguida, no capítulo 4 são apresentados os resultados obtidos, bem como as análises e discussões realizadas. Por fim, no capítulo 5, apresentam-se as conclusões e recomendações para trabalhos futuros.

2. FUNDAMENTAÇÃO TEÓRICA

Neste capítulo são abordados os fundamentos teóricos que substanciam o desenvolvimento proposto, bem como auxiliam no estabelecimento da metodologia a ser utilizada. Apresentam-se os conceitos referentes à definição do sistema de ancoragem, os principais componentes empregados nas linhas, a disposição típica dos arranjos, a modelagem das linhas em catenária e as forças ambientais atuantes. Por fim, discute-se a análise de equilíbrio do sistema flutuante e o processo de otimização empregado.

2.1. SISTEMA DE ANCORAGEM

O sistema de ancoragem consiste em um conjunto de linhas que conectam a plataforma às âncoras fixadas no leito marinho, as quais transmitem as solicitações impostas ao solo. Para Apolinario (2019), um sistema de ancoragem convencional é composto por um conjunto de linhas em catenária capazes de manter a unidade flutuante na sua posição de equilíbrio.

Como discutido por Leal (2016), um sistema de ancoragem pode ser dividido em elementos de fundação (âncoras), linhas e conectores, sendo que cada uma das linhas pode ser formada por diversos segmentos, combinando amarras e cabos de diferentes materiais. Essa combinação de materiais aumenta a rigidez e reduz o peso do sistema, além de aumentar a resistência à fadiga em pontos críticos (FALTINSEN, 1990).

Conforme já mencionado, as unidades flutuantes devem suportar esforços ambientais causados pela ação de ondas, correntes e ventos, que vão desde condições moderadas até as mais severas ocorrências observadas ao longo de um século. Tais esforços tendem a levar a plataforma a se afastar da posição de equilíbrio, o que coloca em risco a segurança dos trabalhadores e da operação como um todo (APOLINARIO, 2019), sendo justamente função do sistema de ancoragem restringir tais movimentos.

Além de operar na condição intacta, o sistema de ancoragem também deve prever a possibilidade de rompimento de uma ou mais linhas, mantendo níveis satisfatórios de eficácia mesmo nessa condição (NAZÁRIO, 2015).

Em relação ao dimensionamento do sistema, Kawasaki (2010) descreve diversas recomendações e normas referentes aos limites máximos admitidos durante a operação de plataformas flutuantes, os quais são definidos principalmente em função das características dos materiais e da localização da unidade. Na Figura 4 é apresentado um arranjo típico para o

sistema de ancoragem de uma plataforma FPSO, ancorada usando vinte e quatro linhas agrupadas em quatro clusters.

Figura 4 – Esquema de ancoragem

Fonte: Ferreira (2016, p. 103).

De acordo com Marques (2010), as linhas de ancoragem podem ser classificadas de acordo com a configuração geométrica utilizada, podendo ser do tipo tradicional (linhas em catenária) ou do tipo taut-leg (linhas retesadas). Apenas por limitação de escopo, este trabalho terá como foco a configuração em catenária, amplamente empregada na exploração de petróleo no Brasil.

2.1.1. Ancoragem em catenária

A ancoragem do tipo convencional é caracterizada pela disposição das linhas em catenária, cuja geometria apresenta um longo trecho apoiado no solo marinho (Figura 5), transmitindo apenas esforços horizontais para a âncora (KAWASAKI, 2010).

Tal como mencionado por Daer (2017), essa técnica constantemente utilizada para que plataformas flutuantes mantenham a posição durante a extração e/ou perfuração de poços, restringe o movimento da unidade graças a restauração inerente à configuração geométrica das linhas.

Figura 5 – Sistema convencional

Fonte: Bico (2013, p. 17).

No entanto, a eficiência desse tipo de sistema depende da existência dos trechos apoiados no solo, os quais dissipam parte da carga devido ao atrito da linha com o solo (KAWASAKI, 2010).

Segundo Nazário (2015), quanto mais rigorosos forem os critérios associados ao passeio da plataforma, maior deverá ser o trecho apoiado no solo, aumentando assim o raio de ancoragem³ do sistema.

Além disso, como as linhas necessitam de comprimentos elevados, isto pode aumentar o peso e o custo do sistema, além de aumentar a complexidade do projeto. Por fim, como ressalta Santos (2014), o aumento do raio de ancoragem pode gerar um congestionamento, interferindo nas linhas de outras unidades instaladas nas proximidades, ou ainda, interferindo com risers e equipamentos instalados no leito marinho.

Na Figura 6 é possível observar a nomenclatura usualmente empregada na modelagem de um sistema convencional de ancoragem, indicando o ponto de amarração (fairlead), a parte

³ Distância do centro da unidade flutuante até a âncora.

suspensa da linha em catenária, o ponto de toque (touchdown point), a parte apoiada da linha e, por fim, o ponto de ancoragem, marcado pela presença da âncora.

Fonte: Adaptado de Andrade et al (1995).

Em relação ao arranjo das linhas, normalmente emprega-se a configuração Spread Mooring System (SPM), na qual a amarração ocorre em vários pontos da plataforma (AMORIM, 2010). Além disso, para diminuir a interferência com os dutos e facilitar a operação de embarcações de apoio, as linhas são agrupadas em clusters (APOLINARIO, 2019), tal como pode ser visto na Figura 7.

Fonte: Carbono (2010).

A força exercida na unidade por cada uma das linhas pode ser calculada utilizando-se o equacionamento referente ao equilíbrio de uma catenária, cuja modelagem é apresentada na seção 2.3 desta monografia.

2.2. PRINCIPAIS COMPONENTES DAS LINHAS DE ANCORAGEM

Nesta seção são detalhadas as características de cada tipo de componente usualmente utilizado em um sistema de ancoragem, incluindo os diferentes tipos de materiais utilizados na fabricação das linhas.

Conforme já mencionado, as linhas de ancoragem podem ser constituídas de um único trecho de material ou inúmeros trechos de materiais diferentes, os quais são combinados para melhorar a resistência e a durabilidade, ou ainda, para reduzir o peso do sistema. Além disso, as linhas podem possuir diferentes dimensões, geometrias e propriedades de forma a satisfazer os requisitos de segurança e de desempenho.

Dentre os principais materiais empregados em linhas de ancoragem, destacam-se as amarras, cabos de aço e as fibras sintéticas (RIAL, 2017). Tais materiais possuem em comum a baixa rigidez à flexão, o que permite que as linhas assumam a forma de uma catenária (LEAL, 2016).

2.2.1. Amarras

É a denominação comumente utilizada para uma corrente formada por elos de aço, fabricados a partir de barras de aço laminadas de seção circular (NAZÁRIO, 2015). A Petrobras realiza testes em plataformas ancoradas com amarras desde 1986 (BICO, 2013).

Assim como mostrado na Figura 8, as amarras, em geral, são divididas em dois grupos: com e sem malhete ⁴. O malhete impede que os elos se atritem ou entrelaçam e, por isso, é mais utilizado em unidades flutuantes de perfuração, devido ao menor tempo de instalação associado a esse tipo de unidade (KAWASAKI, 2010). Já as correntes sem malhete são mais leves, sendo geralmente utilizadas em unidades de produção (SOUZA, 2012).

⁴ O termo estai é sinônimo de malhete.

Figura 8 – Elo comum de uma amarra (com ou sem malhete)

Fonte: Silva (2011).

Tal como visto em Apolinario (2019), em aplicações oceânicas, as amarras podem ser classificadas em seis categorias (ou graus), as quais variam de acordo com a resistência mecânica (ou tração de ruptura). Além de possíveis variações no material, o que confere uma maior ou menor resistência, é o tipo de tratamento térmico sofrido pelo elo durante sua fabricação (BICO, 2013). De acordo com Loureiro (2007), os graus de classificação das amarras são os seguintes:

- Grau 2;
- Grau 3;
- Grau ORQ (Oil Rig Quality)
- Grau ORQ + 10%;
- Grau ORQ + 20%;
- Grau 4.

Quanto à geometria, as correntes são classificadas de acordo com o diâmetro nominal da barra de aço utilizada na fabricação do elo (ANDRADE ET AL., 1995). No gráfico da Figura 9 são mostradas as cargas de ruptura para cada um dos graus existentes, considerando amarras de diferentes diâmetros.

Figura 9 – Carga de ruptura de amarras

Fonte: Silva (2011).

No que diz respeito aos tipos de material empregados, as amarras são aquelas que apresentam a maior relação massa/resistência, ou seja, para uma determinada tração de ruptura, a massa linear desse material é consideravelmente superior à dos cabos de aço ou das fibras sintéticas (SILVA, 2011).

Comparados aos cabos de aço, para uma mesma tração de ruptura, as amarras possuem uma massa linear de 3 a 5 vezes maior e, em relação aos cabos sintéticos, esse valor é aproximadamente 30 vezes maior (LEAL, 2016).

No entanto, em relação aos trechos de contato entre as linhas e o solo, essa maior massa linear representa uma vantagem, pois a força de atrito elevada resulta em uma maior dissipação da força transmitida para a âncora. Nesse sentido, o maior peso próprio das correntes passa a ser um beneficio, já que propicia uma força de atrito maior, colaborando assim com a capacidade de garra da âncora (SANTOS, 2014).

Além disso, as correntes têm uma resistência à abrasão consideravelmente maior do que os cabos de aço ou fibras sintéticas (AMORIM, 2010), sendo mais adequadas para os trechos das linhas que permanecem constantemente em contato com o fundo do mar ou com a plataforma.

A título de exemplo, na Tabela 1 são enumerados o peso linear e a tensão mínima de ruptura (MBL) da amarra, para cada um dos seis tipos de graus, considerando o diâmetro de 84 milímetros.

Tabela 1 – Propriedades do elemento de amarra de 84 mm					
Material	Grau	Diâmetro (m)	MBL (kN)	w (kN/m)	w (kN/m)
				seco	molhado
Amarra	Grau 2	0,084	5866	1,3982	1,2165
Amarra	Grau 3	0,084	5866	1,5159	1,3188
Amarra	Grau ORQ	0,084	6550	1,3982	1,2165
Amarra	Grau ORQ + 10%	0,084	6550	1,5159	1,3188
Amarra	Grau ORQ + 10%	0,084	7208	1,3982	1,2165
Amarra	Grau 4	0,084	7208	1,5159	1,3188
Fonte: $Bico (2013)$					

Fonte: B1co (2013).

2.2.2. Cabos de aço

Conforme pode ser visto na Figura 10, os cabos de aço são constituídos de fios de aço que são enrolados e agrupados formando pernas, as quais são enroladas em espirais no entorno de um elemento central, denominados de alma ou núcleo (LOUREIRO, 2007).

Figura 10 – Configuração de um cabo de aço

Fonte: Santos (2014).

Segundo Souza (2012), os cabos de aço foram introduzidos com o objetivo de reduzir o peso dos sistemas de ancoragem, sem, contudo, reduzir a resistência das linhas. Isso ocorre pois os cabos de aço, para uma mesma carga de ruptura, têm menor peso e uma maior elasticidade.

Os tipos mais comumente usados são o de seis pernas (six-strand) trançadas em torno de uma alma, e o spiral strand, onde camadas concêntricas consecutivas são enroladas em direções opostas (LEAL, 2016). Na Figura 11 é mostrada uma comparação entre a seção desses dois tipos de cabos de aços.

Fonte: Adaptado de Leal (2016).

Os cabos de seis pernas são mais flexíveis, sendo principalmente utilizados em unidades de perfuração devido ao seu fácil manuseio (SILVA, 2011). Já os cabos spiral strand, por outro lado, são mais rígidos, sendo mais utilizados em unidades de produção devido à sua resistência e durabilidade (PONS, 2017).

Assim como as amarras, os cabos de aço são classificados de acordo com suas características construtivas, sendo especificados por uma série de números e letras (KAWASAKI, 2010). Em geral, utiliza-se uma nomenclatura composta de dois números, sendo que o primeiro número indica a quantidade de pernas do cabo enquanto o segundo, indica a quantidade de fios em cada perna (APOLINARIO, 2019).

Outra característica usada para se especificar um cabo de aço é a sua torcedura. De acordo com Soares (2017), a torcedura do cabo indica como os fios são trançados para formar a perna, além de indicar o arranjo de cada perna em torno do núcleo.

Ademais, em cabos de mesma área transversal, o aumento do número de fios resulta em uma maior flexibilidade, uma maior resistência mecânica e uma maior resistência à fadiga (AMORIM, 2010). Contudo, além da quantidade, também é possível alterar o diâmetro dos fios visando a obtenção de propriedades físicas específicas. Na Tabela 2 são apresentados o peso linear seco e molhado, e a tensão mínima de ruptura (MBL) considerando um mesmo tipo de cabo de aço e diferentes diâmetros.

Material	Diâmetro (m)	MBL (kN)	w (kN/m) – seco	w (kN/m) – molhado
Aço (spiral strand)	0,051	2160	0,20993	0,16790
Aço (spiral strand)	0,076	4890	0,30019	0,24060
Aço (spiral strand)	0,089	6683	0,41791	0,32990
Aço (spiral strand)	0,102	8730	0,55721	0,43330
Aço (spiral strand)	0,127	12910	0,83679	0,67170
Aço (spiral strand)	0,152	19140	1,20173	0,96220
		Fonte: Lacerda	(2005)	

Tabela 2 – Propriedades físicas do cabo de aço

Fonte: Lacerda (2005).

Por fim, é importante destacar que, tal como alertado por Bico (2013), o problema associado a utilização desse tipo de material é a corrosão. Pois, dada a maior área em contato com a água salgada, a vida útil de um cabo de aço é inferior ao de uma amarra, exigindo a utilização de cabos galvanizados.

2.2.3. Fibras sintéticas

A Diretoria de Portos e Costas (2009), define um cabo de fibras sintéticas como sendo um cabo destinado a tração "formado por fios naturais ou sintéticos, torcidos e retorcidos em forma de hélice" (DIRETORIA DE PORTOS E COSTAS, 2009, p.62). Tais cabos, em geral, podem ter um revestimento externo cuja principal função é fornecer resistência à abrasão e, assim, garantir a integridade estrutural ao longo da vida útil do sistema (LACERDA, 2005).

Dentre as principais fibras sintéticas utilizadas em sistemas de ancoragem temporários ou permanentes, destacam-se o sisal, polietileno, aramida, poliamida (conhecido comercialmente como nylon), poliéster, polipropileno e o High Modulus Polyethylene (HMPE) (PAIS, 2020). As principais vantagens das fibras sintéticas em relação a outros materiais consistem no fato de que, para uma mesma resistência à tração, as fibras sintéticas possuem um menor peso linear e uma maior elasticidade (APOLINARIO, 2019).

Outro aspecto importante da utilização de cabos sintéticos, refere-se à baixa resistência à abrasão, fato que limita o seu uso em trechos nos quais a linha está em contato direto com o solo marinho ou com a plataforma (SVALASTOG, 2017).

Além disso, tais materiais possuem relaxação, ou seja, mudam de propriedade após serem tracionados. No que diz respeito ao relaxamento da linha, o procedimento adotado para permitir a utilização desses materiais consiste na adição de tração na linha após a deformação sofrida durante o período inicial de operação (LEAL, 2016).

Dentre as diversas alternativas de fibras sintéticas, os cabos de poliéster (Figura 12) têm sido utilizados com grande sucesso em linhas de ancoragem, graças à maior flexibilidade axial, ao baixo peso linear submerso, à baixa relação massa/resistência e à boa resistência à fluência e à fadiga (KAWASAKI, 2010).

Figura 12 – Cabo de poliéster

Fonte: Diretoria de Portos e Costas (2009).

Ressalta-se ainda que o Brasil foi pioneiro no desenvolvimento da tecnologia dos cabos de poliéster, graças aos estudos realizados pela Petrobras desde 1997 (LACERDA, 2005). Além disso, a utilização de cabos de poliéster proporciona uma diminuição no raio de ancoragem, já que a restauração é realizada também pela elasticidade do material (KAWASAKI, 2010).

Para exemplificar o desempenho mecânico deste material, na Tabela 3 são mostradas as propriedades de tensão mínima de ruptura (MBL) e peso linear seco e molhado de cabos de poliéster de diferentes diâmetros.

		1	1	
Material	Diâmetro (m)	MBL (kN)	w (kN/m) – seco	w (kN/m) – molhado
Poliéster	0,122	3924	0,09810	0,02580
Poliéster	0,136	4905	0,12160	0,03200
Poliéster	0,168	7848	0,18250	0,04800
Poliéster	0,210	12263	0,28450	0,07480
Poliéster	0,230	14715	0,34340	0,09030
Poliéster	0,262	19620	0,44150	0,11610
			1 (2005)	

Tabela 3 - Propriedades físicas do cabo de poliéster

Fonte: Lacerda (2005).

2.2.4. Comparativo entre os três materiais mais recorrentes

Para sintetizar a discussão sobre materiais utilizados em linhas de ancoragem, na Tabela 4 é apresentada uma comparação das propriedades dos três materiais (amarra, cabo de aço e poliéster) utilizados em linhas de ancoragem e que apresentam valores próximos de tensão mínima de ruptura (MBL).

Material	Diâmetro (mm)	w (kN/m) seco	w (kN/m) molhado	MBL (kN)	
Amarra (grau 4)	88	1,5348	1,3352	7843	
Cabo de aço (spiral strand)	97	0,4967	0,3889	7856	
Cabo de poliéster	170	0,1903	0,0539	7850	
Fonte: Adaptado de Bico, (2013).					

Tabela 4 – Comparação entre os principais materiais usados em ancoragem

Assim como descrito na literatura, os dados observados mostram que o peso linear do cabo de poliéster é muito inferior às demais linhas para valores próximos de tensão de ruptura, evidenciando a maior eficiência desse material na fabricação de linhas de ancoragem, especialmente no contexto de águas profundas e ultra profundas.

2.2.5. Fairlead

O fairlead corresponde ao ponto onde a linha de ancoragem se conecta à unidade flutuante. Nesse sentido, conforme mencionado por Silva (2017), as polias possuem a finalidade de direcionar a chegada das linhas aos guinchos, cuja função é realizar o tracionamento dos cabos (Figura 13).

Fonte: Adaptado de Silva (2017, p.13).

2.2.6. Âncoras

Na extremidade inferior das linhas de ancoragem existem dispositivos fixos ao leito marinho, cuja função é resistir aos esforços verticais e horizontais impostos pelo deslocamento da plataforma no plano de linha d'água (AGUIAR, 2011). Esses elementos, denominados de âncoras, devem ter uma rápida penetração e um alto poder de garra no solo, além de manterem a fixação independente de eventuais movimentos da linha (BRUM, 2009).

Entre os tipos de âncoras existentes, a âncora do tipo torpedo (Figura 14) vem sendo cada vez mais utilizada para a ancoragem de plataformas oceânicas, pois são capazes de resistir a elevadas cargas verticais.

Figura 14 – Âncora do tipo torpedo

Fonte: Laceo (2018).

Desenvolvida pela Petrobras por volta de 1996 e patenteada em 2003, a âncora torpedo foi projetada para reduzir o custo de fabricação e instalação dos sistemas de ancoragem de plataformas que operam em águas profundas e ultra profundas, ao mesmo tempo que reduz a perturbação nas estruturas locais e melhora a precisão do lançamento e cravação (MASTRANGELO et al., 2003).

Como o nome indica, essa âncora possui a forma de um torpedo e é instalada lançandose o dispositivo de uma altura tal que lhe permita, usando a energia cinética adquirida durante a queda livre, penetrar o solo marinho, se fixando sem a necessidade de uma fonte externa de energia (PINTO, 2014). Na Figura 15 é ilustrado o processo de cravamento de uma âncora torpedo instalada por gravidade.

Figura 15 – Instalação da âncora torpedo

Fonte: Mastrangelo et al. (2003).

2.2.7. Apêndices

Outros dispositivos utilizados no sistema de ancoragem são as boias e os pesos (clamp weight), os quais podem ser conectados em pontos específicos de uma linha visando suspender parte das linhas ou modificar suas curvaturas.

Conforme pode ser visto na Figura 16, as boias podem estar posicionadas na superfície ou podem estar submersas, a depender dos requisitos de projeto impostos para o sistema.

Figura 16 – Boias na superfície

Fonte: Adaptado de Global Marine (2014).

Em linhas gerais, o uso de boias guarda analogia com o uso de linhas de ancoragem fabricadas com materiais de menor peso linear, ou seja, busca-se aliviar o peso que o sistema de ancoragem exerce na unidade flutuante. Além disso, especialmente no caso de dutos, a mudança da geometria ocasionada pelas boias pode aliviar as tensões, reduzir os efeitos dinâmicos e aumentar a vida útil desses componentes (KAWASAKI, 2010).

Contudo, como desvantagem, o uso de apêndices resulta em uma maior complexidade do sistema e uma maior dificuldade no manuseio durante o lançamento e/ou recuperação desses dispositivos (SILVA, 2011).

Na Figura 17 é possível observar a geometria típica dos principais tipos de apêndices utilizados em sistemas de ancoragem: flat cylinder (cilindro plano), cylindrical (cilíndrica), spherical (esférica) e clamp weight (peso).

Figura 17 – Tipos de apêndices

Fonte: Adaptado de Exmoor (2022).

Para exemplificar o uso de apêndices, na Figura 18 são apresentadas três configurações de uma mesma linha de ancoragem, sendo uma sem a utilização de apêndices, outra com boias do tipo flat cylinder e, por fim, uma linha com a utilização de pesos. Nesse caso é possível visualizar as modificações geométricas causadas pela presença de apêndices em uma linha.

Figura 18 – Linhas de ancoragem

Fonte: Autoria própria (2022).

2.3. ESTUDO DA CATENÁRIA

Denomina-se de catenária a curva formada por um cabo suspenso pelas extremidades e sujeito apenas ao peso próprio. Nesse contexto, quando o peso próprio do cabo se torna preponderante na análise, considera-se que as tensões e deformações do cabo são decorrentes de uma carga uniformemente distribuída ao longo de toda a extensão da linha (LACERDA, 2005). Conforme descrito por Talavera (2008), tal situação é bastante similar ao observado em linhas de ancoragem e em dutos de extração.

Inicialmente é importante entender como uma curva catenária se difere de uma parábola. Matematicamente, as catenárias são descritas por funções exponenciais enquanto as parábolas são descritas por polinômios (SILVA, 2019), tal como pode ser visto na Figura 19.

Figura 19 - Catenária e parábola

No caso de sistemas de ancoragem, as curvas catenárias possuem nomenclatura própria, estabelecida em função dos pontos de apoio (JÚNIOR, 2002). Segundo Andrade et al. (1995), o ponto onde a linha deixa de tocar o fundo do mar é chamado de touchdown point (TDP) ou ponto de toque, enquanto a extremidade conectada a unidade flutuante é denominada de fairlead ou ponto de amarração (Figura 20).

Figura 20 - Nomenclatura de uma linha em catenária

Fonte: Adaptado de Andrade et al. (1995).

Dentro dessa abordagem, a catenária descrita por uma linha de ancoragem apresenta a sua extremidade inferior apoiada no fundo do mar, modificando de comprimento à medida que o passeio da unidade flutuante provoca a suspensão ou afundamento de uma parcela da linha (NETO, 2012).

Na Figura 21 é mostrada a variação do comprimento do trecho flutuante e a mudança na forma da catenária de uma linha considerando três posições da plataforma: a posição original, a condição fair e a condição close. O termo fair refere-se à condição em que a plataforma está mais longe da âncora, ou seja, com a linha mais retesada, enquanto o termo close refere-se à posição em que a plataforma está mais próxima da âncora, com a linha mais frouxa.

Fonte: Autoria própria (2022).

2.3.1. Equacionamento

O equacionamento da catenária é de grande importância para a definição da geometria da linha, incluindo a determinação do ponto de toque com o solo (LACERDA, 2005). Nesse contexto, a solução das equações analíticas apresentadas nesta seção é desenvolvida para o caso de linhas homogêneas inelásticas. Contudo, segundo Ferreira (2016), é possível realizar a generalização do equacionamento apresentado para considerar a elasticidade do material e/ou a existência de múltiplos materiais (linhas mistas, não homogêneas).

Matematicamente, a solução apresentada descreve a parcela suspensa da linha, não considerando a porção entre a âncora e o TDP (AMORIM, 2018). Na Figura 22 são mostrados as definições geométricas e o sistema de coordenadas utilizado na modelagem, sendo que nesse caso, a origem do sistema de coordenadas se encontra no ponto mais baixo da curva.

Figura 22 – Definições geométricas e do sistema de coordenadas

Fonte: Adaptado de Andrade et al. (1995).

Através das equações de equilíbrio e dos métodos analíticos descritos por Nazário (2015), é possível obter o clássico equacionamento para a catenária inelástica, assim como a equação referente ao cálculo do comprimento suspenso da linha. Dessa forma, na condição de equilíbrio, a catenária apresenta o somatório das forças horizontais igual a zero, portanto:

$$\sum F_H = 0 = H_f - H_o \tag{1}$$

Onde as forças podem ser escritas como:

$$Ho = T_o \cos(\theta_1) \tag{2}$$

$$Hf = T_f \cdot \cos(\theta_2) \tag{3}$$

Da mesma forma o somatório das forças verticais deve igualar a zero, logo:

$$\sum F_V = 0 = V_f - V_o - (w.\Delta s) \tag{4}$$

Onde:

$$V_0 = T_0 . \operatorname{sen} \left(\theta_1 \right) \tag{5}$$

$$V_f = T_f. \operatorname{sen} \left(\theta_2 \right) \tag{6}$$

Resultando em:

$$H.\Delta[\tan(\theta)] = w.\Delta_s \tag{7}$$

Onde:

- V é a força vertical;
- T é a tração na linha;
- *H* é a força horizontal;
- *w* é o peso linear submerso da linha;
- Δs é o comprimento do elemento infinitesimal.

Já o comprimento do elemento infinitesimal (Δs) pode ser definido a partir das seguintes relações trigonométricas:

$$\Delta_{\rm s}^{2} = \Delta_{\rm x}^{2} + \Delta_{\rm y}^{2} \tag{8}$$

$$\Delta_s = \Delta_x \cdot \sqrt{\left(1 + \left(\frac{\Delta y}{\Delta x}\right)^2\right)} \tag{9}$$

De acordo com a relação trigonométrica:

$$\tan(\theta) = \left(\frac{\Delta_y}{\Delta_s}\right) \tag{10}$$

Aplicando a Equação 9 e 10 na Equação 7, obtém-se:

$$H.\,\Delta.\left(\frac{\Delta y}{\Delta x}\right) = w.\,\Delta_{x}.\sqrt{1 + \left(\frac{\Delta_{y}}{\Delta_{x}}\right)^{2}}$$
(11)

Contudo, no limite quando $\Delta s \rightarrow 0$ obtêm-se:

$$H.\Delta.\left(\frac{d^2y}{d^2x}\right) = w.\Delta_x.\sqrt{1 + \left(\frac{d_y}{d_x}\right)^2}$$
(12)

Essa é a equação diferencial da catenária, a qual, quando integrada, fornece as equações de equilíbrio estático. Utilizando de alguns artifícios matemáticos tem-se:

$$\eta = \left(\frac{dy}{dx}\right) \tag{13}$$

Aplicando a Equação 13 em 12, e considerando que $\frac{d^2y}{d^2x}$ pode ser escrito como $\left(\frac{d}{dx}, \frac{dy}{dx}\right)$:

$$\frac{H}{w} \cdot \frac{d\eta}{dx} = \sqrt{1 + \eta^2} \tag{14}$$

$$\int dx = \frac{H}{w} \cdot \int \frac{d\eta}{\sqrt{1+\eta^2}} \tag{15}$$

A integral do segundo termo resulta em uma função de seno hiperbólico inverso, logo:

$$\int \frac{d\eta}{\sqrt{1+\eta^2}} = \sinh^{-1}(\eta) + c_1$$
 (16)

Dessa forma:

$$x = \frac{H}{w} sinh^{-1}(\eta) + c_1$$
 (17)

Ao se colocar η em evidência:

$$\eta = \sinh\left[\frac{w}{H} \cdot (x - c_1)\right]$$
 (18)

Assumindo que no caso da catenária o TDP inicia com ângulo zero: $\eta = \frac{dy}{dx} = 0$, para x = 0,

$$\sinh\left[\frac{w}{H} \cdot (-c_1)\right] = 0 \tag{19}$$

Nesse sentido, para a igualdade ser verdadeira o termo entre colchetes deve ser zero, assumindo que "H" e "w" são diferentes de zero para uma linha real, tem-se:

$$\left[\frac{w}{H} \cdot (-c_1)\right] = 0 \quad \therefore \quad c_1 = 0$$
 (20)

Retomando a Equação 18 com o resultado obtido pela Equação 20:

$$\eta = \frac{dy}{dx} = \sinh\left(\frac{w.x}{H}\right) \tag{21}$$

$$\int dy = \sinh \int \left(\frac{w \cdot x}{H}\right) dx \tag{22}$$

$$y = \frac{H}{w} \cdot \cosh\left(\frac{w \cdot x}{H}\right) + c_2 \tag{23}$$

Para aplicar a condição de contorno analisa-se a linha na origem (TDP), y = 0 e $\cosh\left(\frac{w.x}{H}\right)$ = 1, para x = 0, conclui-se que:

$$c_2 = -\frac{H}{w} \tag{24}$$

Chega-se na formulação da catenária inelástica:

$$x = \frac{H}{w} \cdot \left[\cosh^{-1}\left(\frac{w \cdot y}{H}\right) + 1\right]$$
(25)

Além da Equação 25, a caracterização do problema requer ainda uma segunda equação de equilíbrio. Assumindo a Equação 9 de forma diferencial:

$$\int ds = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \tag{26}$$

Da Equação 21 aplicada em 26 tem-se:

$$\int ds = \int \sqrt{1 + \sinh^2\left(\frac{w.\ x}{H}\right).\ dx}$$
(27)

Da trigonometria observa-se que:

$$1 + \sinh^2\left(\frac{w.\ x}{H}\right) = \cosh^2\left(\frac{w.\ x}{H}\right) + c_3 \tag{28}$$

E,

$$s = \int \cosh\left(\frac{w.x}{H}\right) dx = \frac{H}{w} \sinh\left(\frac{w.x}{H}\right) + c_3$$
 (29)

s = 0 para x = 0, portanto c_3 = 0

$$s = \frac{H}{w} \sinh\left(\frac{w.x}{H}\right) \tag{30}$$

Onde:

- x e y correspondem a posição de um ponto da linha descrita no sistema de coordenadas mostrado na Figura 22;
- *H* é a profundidade da lâmina d'água;
- *w* é o peso linear submerso da linha;
- *s* é o comprimento suspenso da linha.

A equação 30, portanto, representa o comprimento da linha em função da posição "x", assumindo os valores constantes de "w" e "H".

É importante mencionar que, assim como discutido por Andrade et al. (1995), o problema da catenária no sistema de ancoragem pode possuir inúmeras soluções dependendo das condições de contorno utilizadas na resolução do sistema de equações, as quais podem abranger o raio de ancoragem, a profundidade, o comprimento da linha, a tração no topo, o ângulo no topo da linha etc.

2.4. FORÇAS AMBIENTAIS E EQUILÍBRIO DO SISTEMA

Os esforços sofridos pelas linhas de ancoragem advêm de efeitos ambientais diretos, do atrito do fundo do mar e dos movimentos sofridos pela plataforma (GIRÓN, 2009).

Já entre os esforços que podem movimentar a plataforma, as forças causadas por ondas, ventos e correntes têm papel predominante, cujos efeitos são dependentes da intensidade e direção de tais ações, além da rigidez do sistema de ancoragem (CHAVES, 2020). Dessa forma, uma das primeiras etapas para o projeto de ancoragem consiste no cálculo das ações ambientais que atuam na plataforma.

Em geral, segundo Loureiro (2007), as ações ambientais são variáveis e aleatórias, e o projeto de ancoragem deve limitar o deslocamento em todas as combinações estatisticamente possíveis de ocorrerem. Além disso, na ausência de ações ambientais, a resultante referente à combinação das forças horizontais impostas por cada uma das linhas de ancoragem deve ser nula, de forma que a plataforma permaneça exatamente na posição especificada para o projeto.

2.5. PROCESSO DE OTIMIZAÇÃO

Os atuais mercados competitivos demandam sistemas cada vez mais eficientes e com menores custos, motivando a busca por processos e produtos que maximizem a eficiência e minimizem os custos de produção (FERRI, 2022).

Nesse contexto, encontrar os recursos mais adequados para um projeto requer a avaliação de diversos parâmetros até que seja identificada uma configuração que satisfaça as condições necessárias e minimize (ou maximize) os atributos que representem vantagens competitivas de mercado (OLIVEIRA, 2017).

Entre as abordagens possíveis, esse processo pode ser feito usando técnicas de otimização, as quais segundo Tancredi (2008), podem ser definidas como técnicas destinadas a busca sistemática, automática e direcionada da melhor solução dentro de um conjunto de possíveis soluções, de forma a transformar as necessidades subjetivas em requisitos objetivos de projeto.

Nesse sentido, o objetivo da otimização é alcançar o melhor resultado possível em uma determinada situação, aprimorando um ou mais atributos de desempenho, ao mesmo tempo que

respeita o conjunto de restrições estabelecidas para o projeto. Essa medida de eficiência é chamada de função objetivo e, em engenharia, pode representar o custo, o peso ou o desempenho do sistema (TANCREDI, 2008).

Outro ponto importante é que a função objetivo deve ser computável em função dos parâmetros de projeto, os quais podem ser tratados como valores fixos ou como variáveis a serem definidas durante o projeto.

Assim, a otimização também pode ser definida como o processo utilizado para se determinar um conjunto de variáveis que resultem na maximização (ou minimização) de uma ou mais funções objetivo (TANAKA, 2009).

3. METODOLOGIA

Neste capítulo é apresentada a metodologia estabelecida para o desenvolvimento proposto e cujos fundamentos foram discutidos no capítulo anterior.

O procedimento utilizado é sintetizado no fluxograma da Figura 23, sendo que as técnicas, abordagens e ferramentas empregadas em cada uma das etapas estabelecidas são discutidas ao longo deste capítulo

Figura 23 – Fluxograma de desenvolvimento das etapas do trabalho

A primeira etapa do desenvolvimento consistiu no levantamento de dados, o qual utilizou a pesquisa bibliográfica para identificar os trabalhos de maior relevância sobre o tema, além de auxiliar na identificação dos principais parâmetros de um sistema de ancoragem e das condições ambientais atuantes em plataformas oceânicas. Durante esta etapa foi utilizada a ferramenta Excel para a sistematização dos dados e a organização das informações obtidas.

Posteriormente realizou-se a elaboração do projeto racional, com o objetivo de realizar a análise de seis casos de projeto cujos sistemas de ancoragem foram analisados usando o programa Exmoor. Os detalhes referentes a cada um dos estudos de caso conduzidos nesta etapa são sintetizados na Tabela 5.

Identificação	Objetivo	Descrição
Caso 01	Obter solução viável	Linhas com um segmento de material
Caso 02	Diminuir o peso do sistema	Realização de um projeto racional
Caso 03	Obter solução viável	Linhas com três segmentos de materiais
Caso 04	Obter solução viável	Retirada de uma das linhas do sistema
Caso 05	Obter solução viável	Adição de uma linha ao sistema
Caso 06	Obter solução viável	Adição de duas linhas ao sistema
	Fonte: Autoria pré	(2022)

Tabela 5 – Estudos de caso analisados

Fonte: Autoria propria (2022).

A tabulação e a comparação dos resultados foram realizadas com o auxílio do programa Excel, o qual também foi utilizado para a análise estatística dos resultados.

Uma vez realizado o projeto racional, realizou-se o estudo de caso referente a aplicação de técnicas de otimização para o projeto do sistema de ancoragem de uma plataforma FPSO. Nessa etapa foi utilizado o programa Synapse Offshore, com o qual foi realizado um estudo de caso, cujos resultados foram analisados e tabelados com o auxílio do programa Excel.

3.1. DESCRIÇÃO DA PLATAFORMA UTILIZADA NO ESTUDO RACIONAL

O desenvolvimento realizado é iniciado com o levantamento das informações do sistema flutuante escolhido para este estudo de caso, as quais são sintetizadas na Tabela 6. É importante destacar que as informações representam uma plataforma semissubmersível típica projetada para operar na Bacia de Campos.

Dados Gerais						
Comprimento total (LOA)						
Comprimento entre perpendiculares (LPP)						
Boca (B)						
Calado (T)						
Pontal (D)	DADOS					
Deslocamento	SIGILOSOS					
KB						
KG						
Profundidade da localização						

Tabela 6 – Plataforma semissubmersível

Fonte: Autoria própria (2022).

Por limitações da atual versão do Exmoor, nesta etapa será desconsiderada a presença dos risers, o que, de certa forma, permitirá manter o foco no estudo do sistema de ancoragem, tema desta monografia.

O objetivo deste estudo consistiu na redução do peso do sistema de ancoragem, o que, em geral, implica na diminuição dos custos finais do projeto, ao mesmo tempo que maximiza a capacidade de armazenamento de petróleo a bordo da unidade flutuante.

3.1.1. Definição das condições ambientais

Conforme já estabelecido neste texto, o objetivo da análise do sistema de ancoragem de uma unidade flutuante é determinar as respostas do sistema decorrente da atuação das ações ambientais externas, determinando a tensão nas linhas, as cargas nas âncoras e os movimentos da plataforma.

Seguindo dados fornecidos no âmbito de projeto de pesquisa realizado em colaboração UFSC/Petrobras, o estudo de caso realizado considerou 17 condições de ventos, 17 condições de correntes e 17 condições de ondas, totalizando 51 diferentes ações ambientais. É importante ressaltar que a análise considerou apenas a ocorrência individual de cada ação ambiental, ou seja, não foram consideradas as combinações entre as diferentes ações ambientais estudadas.

Para que a análise seja realista, as condições usadas no projeto devem ser consistentes com os dados meteoceanográficos obtidos para a região de instalação da plataforma. Nesse sentido, as informações associadas à incidência de ventos, ondas e correntes consideradas no estudo são descritas nas Tabelas 7, 8 e 9, respectivamente.

				_				
Caso	Ângulo	Direção	Velocidade		Caso	Ângulo	Direção	Velocidade
	(°)		(m/s)			(°)		(m/s)
1	0	Ν	19,63	-	10	45	NE	28,42
2	45	NE	19,19		11	90	E	21,18
3	90	E	16,92		12	135	SE	27,01
4	135	SE	15,85		13	180	S	30,84
5	180	S	18,81		14	225	SW	29,98
6	225	SW	19,01		15	270	W	29,11
7	270	W	16,05		16	315	NW	22,54
8	315	NW	13,14		17	0	Ν	0,00
9	0	Ν	29,01					

Tabela 7 - Ventos

				10	
			Altura	Período entre	
Caso	Ângulo (°)	Direção	Significativa	zeros	Espectro de mar
			(Hs)	ascendentes (Tz)	
1	- 180	-	0,0	0,00	JONSWAP
2	- 135	-	3,9	6,03	JONSWAP
3	- 90	-	3,7	6,28	JONSWAP
4	- 45	-	4,5	7,27	JONSWAP
5	0	Ν	5,1	9,37	JONSWAP
6	45	NE	5,7	9,68	JONSWAP
7	90	Е	3,0	5,70	JONSWAP
8	135	SE	3,0	5,70	JONSWAP
9	- 180	-	6,3	7,07	JONSWAP
10	- 135	-	5,4	6,64	JONSWAP
11	- 90	-	4,7	6,51	JONSWAP
12	- 45	-	6,7	8,02	JONSWAP
13	0	Ν	7,0	10,39	JONSWAP
14	45	NE	7,8	10,85	JONSWAP
15	90	Е	4,6	5,79	JONSWAP
16	135	SE	4,6	5,79	JONSWAP
17	90	Е	0,0	0,0	JONSWAP

Tabela 8 – Ondas

Fonte: Autoria própria (2022).

Caso	Ângulo	Direção	Velocidade	Caso	Ângulo	Direção	Velocidade
	(°)		(m/s)		(°)		(m/s)
1	180	S	0,00	10	225	SW	1,34
2	225	SW	1,07	11	270	W	1,25
3	270	W	1,03	12	315	NW	1,75
4	315	NW	1,42	13	0	Ν	1,96
5	0	Ν	1,61	14	45	NE	1,89
6	45	NE	1,47	15	90	E	1,36
7	90	Е	1,05	16	135	SE	1,30
8	135	SE	1,08	17	180	S	0,00
9	180	S	1,32				

Fonte: Autoria própria (2022).

No entanto é importante destacar que, seguindo a convenção usualmente adotada na indústria offshore, enquanto o ângulo de incidência associado à ação de ventos e ondas referese à direção de origem do fenômeno, no caso das correntes, o ângulo de incidência refere-se à direção de propagação do fenômeno.

3.2. PROJETO RACIONAL

Iniciando o desenvolvimento proposto, nessa etapa é realizado o projeto racional do sistema de ancoragem de uma plataforma semissubmersível, o qual é composto por dezesseis linhas homogêneas, dispostas em catenária inelástica, cujo equacionamento foi discutido no capítulo 2.3.1.

A abordagem racional de projeto naval é bastante difundida e utilizada, podendo apresentar um sistema inferencial ou analítico que opera através de regras de raciocínio, com o objetivo estratégico de obter uma solução para um determinado projeto, com a utilização de metodologia clássica, sem a utilização de técnicas de otimização (SILVA, 2017).

Nesse caso, o uso da técnica racional visa ampliar e aprofundar o conhecimento acerca do tema, permitindo o uso consciente das técnicas de otimização a serem empregadas na fase posterior do trabalho.

Para as análises de desempenho, foi utilizado o programa Exmoor, o qual é fruto de uma parceria entre a Petrobras, a Universidade de São Paulo (USP) e a Universidade Federal de Santa Catarina. Especificamente destinado ao projeto, análise e verificação de sistemas de ancoragem, esse programa emprega o modelo de cálculo fundamentado nas hipóteses clássicas da análise quase-estática determinística e visa a obtenção de uma solução ótima para o arranjo de ancoragem, sempre buscando satisfazer as restrições de projeto (AUGUSTO et al., 2006).

O programa emprega o equacionamento da catenária descrito no capítulo 2 para buscar o equilíbrio estático e dinâmico de um sistema flutuante ancorado usando linhas dispostas em catenária inelástica. Para a resolução da equação da catenária é necessário definir os segmentos e apêndices de cada linha, o plano do fundo do mar, além de uma das inúmeras condições de contorno utilizáveis para a resolução do modelo matemático: raio de ancoragem, tensão no topo, ângulo no topo, força horizontal no topo ou projeção horizontal da linha.

Para esse estudo, foi considerado o projeto de uma plataforma semissubmersível ancorada em um fundo plano localizado a uma profundidade de 1800 metros e sujeita às condições ambientais (ondas, ventos, correntes) já descritas neste capítulo. Nesse caso, as variáveis de projeto estudadas foram: os diâmetros dos cabos utilizados em cada um dos segmentos, bem como o comprimento total das linhas de ancoragem. Por fim, a catenária foi resolvida sempre utilizando a tração no topo como parâmetro livre a ser modificado, mantendo fixos o ângulo das linhas no topo e o raio de ancoragem do sistema.

Conforme já mencionado, o sistema originalmente projetado é composto de dezesseis linhas, distribuídas em quatro clusters e cujos azimutes são mostrados na Figura 24.

Figura 24 – Configuração das linhas de ancoragem

Fonte: Autoria própria (2022).

Além disso, as restrições de projeto estabelecidas para este estudo foram:

- Offset inicial (sem ação ambiental) menor que 5 metros;
- Offset final sob ação ambiental menor que 10% da lâmina d'água;
- Tensão na linha de ancoragem sob ação ambiental menor que 60% da tensão de ruptura.

3.2.1. Estudo de caso 1: linhas homogêneas com um único segmento

Inicialmente realizou-se o estudo de caso considerando o sistema de ancoragem composto de todas as linhas formadas por apenas um segmento de cabo de aço, spiral strand, cujas características são enumeradas na Tabela 10. Esse material foi escolhido devido à alta resistência à tração, fadiga e corrosão.

Material	Spiral strand	Unidade
Diâmetro (D)	152	mm
Comprimento (s)	4850	m
Peso na água (w)	0,9622	kN/m

Tabela 10 – Propriedades do material

3.2.2. Estudo de caso 2: diminuição do peso do sistema para apenas um segmento

A segunda parte do projeto também teve como objetivo a realização da análise do sistema de ancoragem considerando apenas um segmento em cabo de aço, spiral strand, para todas as dezesseis linhas. Nesse estudo buscou-se modificar o diâmetro e o comprimento de cada linha até obter-se a configuração de menor peso capaz de atender às restrições estabelecidas.

3.2.3. Estudo de caso 3: linhas com três segmentos

Para a terceira análise, foi alterada a quantidade de segmentos e as características de cada segmento, para que ficassem com configurações próximas daquelas usualmente observadas em plataformas oceânicas. Dessa forma, foram considerados três segmentos, sendo que o primeiro (topo) e último (fundo) correspondem, cada um, a 10% do comprimento total da linha e, por causa do atrito, são feitos de amarras (chain R4). No entanto, para reduzir o peso, os 80% restantes são feitos de fibra sintética (poliéster).

A utilização de uma linha de ancoragem composta somente por amarras ou cabos de aço é inviável nesse caso, pois o elevado peso linear desses materiais representa um acréscimo de peso na unidade flutuante, podendo comprometer a flutuabilidade da plataforma.

3.2.4. Estudo de caso 4: três segmentos com a remoção de uma linha (15 linhas)

Para a quarta análise manteve-se as características das linhas utilizadas na análise anterior, ou seja, 10% do comprimento no topo e no fundo de chain R4 e os 80% restantes do comprimento feitos em poliéster. Contudo, removeu-se a linha 8 da análise para que fosse possível avaliar o desempenho do sistema considerando um arranjo com apenas 15 linhas.

A escolha da linha 8 partiu de uma análise racional realizada com base no arranjo obtido na terceira análise. No entanto, a mesma análise poderia ser feita retirando-se qualquer uma das outras linhas do arranjo original.

3.2.5. Estudo de caso 5: três segmentos com adição de uma linha (17 linhas)

Na quinta análise também foram mantidas as quantidades de segmentos e os materiais referentes ao arranjo obtido na terceira análise. Contudo, realizou-se a adição de uma linha, visando avaliar o desempenho do sistema considerando um arranjo com 17 linhas.

Para determinar a posição da nova linha, foi realizada uma análise racional buscando o menor offset inicial. A busca utilizou uma variação de azimute considerando incrementos de 2 em 2 graus. No entanto, observou-se que o comportamento da plataforma apresenta uma tendência de deslocamento natural na direção de 180 graus, e, por isso, decidiu-se realizar o mesmo estudo considerando a adição de uma linha neste azimute.

3.2.6. Estudo de caso 6: três segmentos com adição de duas linhas (18 linhas)

A última análise também manteve a quantidade de segmentos e os materiais da terceira análise. No entanto, nessa etapa foram adicionadas duas linhas ao sistema de forma a avaliar o comportamento do sistema considerando um arranjo com 18 linhas de ancoragem.

A posição das linhas adicionadas foi determinada em um processo racional que buscou o arranjo com menor offset inicial, utilizando variações na posição das linhas adicionadas de 2 em 2 graus. Os resultados dessa análise sugerem a adição das linhas nos azimutes 28 e 213 graus. No entanto, é importante ressaltar que quaisquer outros ângulos poderiam ser utilizados nesse estudo.

3.3. ESTUDO DE CASO 7: PARA UMA PLATAFORMA FPSO

Uma vez finalizadas as análises racionais, é possível iniciar um estudo complementar que considera a aplicação de técnicas de otimização ao projeto do sistema de ancoragem de uma plataforma oceânica. Para esse estudo foi selecionada uma plataforma do tipo FPSO tipicamente utilizada na exploração da Bacia de Santos e cujas dimensões principais são enumeradas na Tabela 11.

Dados Gerais	
Comprimento total (LOA)	
Comprimento entre perpendiculares (LPP)	DADOS
Boca (B)	DADOS
Calado (T)	SIGILOSOS
Pontal (D)	
Deslocamento	

Tabela 11 – Plataforma FPSO

Fonte: Autoria própria (2022).

Para a realização do processo de otimização, inicialmente foi considerado um sistema de ancoragem similar a aquele mostrado na Figura 4 e cujas características são enumeradas no Apêndice A e mostradas na Figura 25.

Fonte: Programa Exmoor (2022).

Conforme pode ser visto na Figura 25, o arranjo considerado para o estudo possui 24 linhas dispostas em 4 grupos, sendo que a numeração das linhas segue no sentido anti-horário. Além disso, a profundidade no local de operação é de cerca de 2300 metros.

Nesse caso são consideradas a ocorrência de 98 casos de ventos, 33 casos de correntes oceânicas e 1564 casos de ondas, totalizando 1695 diferentes ações ambientais. As tabelas contendo os dados referentes às diferentes ações ambientais consideradas no estudo podem ser vistas no Apêndice B.

É importante ressaltar que a análise considerou a ocorrência de combinações entre os diferentes comportamentos ambientais totalizando 57 combinações, as quais estão enumeradas na Tabela 12.

Combinação	Corrente	Vento	Onda
1	33	98	1564
2	29	14	163
3	29	14	164

Tabela 12 - Combinações ambientais

4	29	14	165	33	20	37	739
5	29	14	166	34	20	39	764
6	29	14	167	35	20	39	765
7	29	14	168	36	20	39	766
8	29	14	169	37	20	39	767
9	29	14	170	38	20	39	768
10	29	16	205	39	20	39	769
11	29	16	206	40	20	39	770
12	29	16	207	41	21	36	725
13	29	16	208	42	21	36	728
14	29	16	209	43	21	38	752
15	29	16	211	44	21	38	754
16	30	15	185	45	21	38	755
17	30	15	186	46	22	39	765
18	30	15	187	47	22	39	766
19	30	19	279	48	22	39	767
20	19	36	724	49	22	39	768
21	19	36	725	50	22	39	769
22	19	36	726	51	22	39	770
23	19	38	751	52	23	38	751
24	19	38	752	53	23	38	752
25	19	38	753	54	23	38	753
26	19	38	754	55	23	38	754
27	20	33	667	56	23	38	755
28	20	33	668	57	23	38	757
29	20	33	669				

Fonte: Autoria própria (2022).

Devido a maior lâmina d'água, cada uma das 24 linhas foi dividida em 7 segmentos de comprimentos, diâmetros e materiais diferentes. No entanto, o comprimento do primeiro segmento, junto ao fairlead, não está definido, pois é uma das variáveis estudadas durante o processo de otimização. Na Tabela 13 são sintetizadas as características das linhas do sistema de ancoragem.

Tabela 13 – Estrutura das linhas

Segmentos	Comprimento [m]	Material	Peso na água - w (kN/m)
1	Comprimento variável	R4 Studless Chain	2,48260
2	542,73	Polyester Ea Qestat	0,07200
3	7,50	R4 Studless Chain	2,48260
4	888,11	Polyester Ea Qestat	0,07200
5	7,50	R4 Studless Chain	2,48260
6	888,11	Polyester Ea Qestat	0,07200
7	360,00	R4 Studless Chain	2,48260

3.3.1. Processo de otimização do sistema de ancoragem de uma plataforma FPSO

A partir do modelo construído no programa Exmoor, utilizou-se o programa Synapse Offshore para maximizar o ângulo de abertura do arranjo na direção leste (Figuras 26). Esse objetivo visa simular um projeto no qual busca-se minimizar a interferência com risers e facilitar a operação de embarcações de suporte e navios aliviadores.

Figura 26 – Objetivo de maximização do ângulo de abertura do arranjo

Fonte: Programa Synapse Offshore (2022).

Como restrições do modelo de otimização, limitou-se o máximo offset da plataforma em 8% da lâmina d'água e a tensão em cada segmento em 60% do limite de ruptura do material, além de limitar a variação do ângulo de aproamento em 3° (Figura 27).

Figura 27 - Restrições a serem alcançadas durante a otimização

Fonte: Programa Synapse Offshore (2022).

Além disso, no processo de otimização, as variáveis de projeto consistem nas modificações do ângulo das linhas e do comprimento do segmento junto ao fairlead de cada uma das linhas do sistema (Figuras 28).

		Ângulo) das linhas					Comprime	nto do 1º segme	ento	
Ati	vo						Ativo				
Oma variation	ável por	linha				- 1	Uma variáve	l por linha			
O Uma vari	ável por	cluster				- 1	O Uma variáve	por cluster			
O Uma vari	ável para	todae a	e linhae			- 1	O Uma variáve	para todas	as linhas		
	averpare	100005 0	5 111105			_					
Descrição	Mínimo	Máximo	Resolução	Min. atual	Max. atual	^	Descrição	Delta Comp.	Delta Comp.	Delta Comp.	Comprimento A
	[*]	[*]	[*]	[*]	[*]			Mínimo [m]	Máximo [m]	Resolução [m]	Min. atual [m]
Azimute12	0.0	90.0	2.0	43.0	43.0		Comprimento12	-24.00	24.00	2.40	150.0
Azimute11	2.0	8.0	2.0	2.0	2.0		Comprimento11	-24.00	24.00	2.40	215.0
Azimute10	2.0	8.0	2.0	2.0	2.0		Comprimento10	-24.00	24.00	2.40	160.0
Azimute9	2.0	8.0	2.0	2.0	2.0		Comprimento9	-24.00	24.00	2.40	220.0
Azimute8	2.0	8.0	2.0	2.0	2.0		Comprimento8	-24.00	24.00	2.40	150.0
Azimute7	2.0	8.0	2.0	2.0	2.0		Comprimento7	-24.00	24.00	2.40	180.0
Azimute6	90.0	180.0	2.0	147.0	147.0		Comprimento6	-24.00	24.00	2.40	220.0
Azimute5	2.0	8.0	2.0	2.0	2.0		Comprimento5	-24.00	24.00	2.40	150.0
Azimuted	2.0	0.0	2.0	2.0	2.0		Comprimento4	-24.00	24.00	2.40	170.0
Azimute4	2.0	0.0	2.0	2.0	2.0		Comprimento3	-24.00	24.00	2.40	210.0
Azimute3	2.0	0.0	2.0	2.0	2.0		Comprimento2	-24.00	24.00	2.40	180.0
Azimute2	2.0	8.0	2.0	2.0	2.0		Comprimento1	-24.00	24.00	2.40	155.0
Azimutel	2.0	8.0	2.0	2.0	2.0		Comprimento24	-24.00	24.00	2.40	155.0
Azimute24	180.0	270.0	2.0	229.0	229.0		Comprimento23	-24.00	24.00	2.40	185.0
Azimute23	2.0	8.0	2.0	2.0	2.0		Comprimento22	-24.00	24.00	2.40	200.0
Azimute22	2.0	8.0	2.0	2.0	2.0		Comprimento21	-24.00	24.00	2.40	165.0
Azimute21	2.0	8.0	2.0	2.0	2.0		Comprimento20	-24.00	24.00	2.40	145.0
Azimute20	2.0	8.0	2.0	2.0	2.0		Comprimento 19	-24.00	24.00	2.40	205.0
Azimute19	2.0	8.0	2.0	2.0	2.0		Comprimento18	-24.00	24.00	2.40	185.0
Azimute18	270.0	360.0	2.0	326.0	326.0		Comprimento17	-24.00	24.00	2.40	200.0
Azimute17	2.0	8.0	2.0	2.0	2.0		Comprimento16	-24.00	24.00	2.40	175.0
Azimute16	2.0	8.0	2.0	2.0	2.0		Comprimento15	-24.00	24.00	2.40	195.0
Azimute15	2.0	8.0	2.0	2.0	2.0		Comprimento14	-24.00	24.00	2.40	150.0
Azimute14	2.0	8.0	2.0	2.0	2.0	i í	Comprimento13	-24.00	24.00	2.40	190.0
Azimute13	2.0	8.0	2.0	2.0	2.0	~	<	2.100	2.100		>

Figura 28 – Ângulo das linhas e comprimento do 1º segmento

Fonte: Programa Synapse Offshore (2022).

3.3.1.1. Synapse Offshore

Conforme já mencionado, o processo de otimização foi realizado com auxílio do programa Synapse Offshore, o qual é fruto de uma parceria entre a Petrobras S.A. e o Laboratório de Simulação Naval da Universidade de Santa Catarina.

Desenvolvido utilizando o ambiente Delphi, o programa permite a modelagem de problemas de otimização utilizando blocos que correspondem aos diferentes elementos que compõem o projeto, tais como variáveis, parâmetros, propriedades, resultados, operações, restrições e funções objetivo do modelo.

Na Figura 29 é mostrado uma parte do modelo de otimização construído no programa, onde é possível identificar o objetivo, as restrições, além de parte das variáveis referentes aos azimutes e aos comprimentos de cada uma das linhas de ancoragem do modelo.

Figura 29 - Parte do modelo de otimização no Synapse Offshore

Fonte: Programa Synapse Offshore (2022).

Para a realização da modelagem, foi utilizado um algoritmo genético padrão que empregou um número de gerações igual a 300 e um tamanho da população de 40 indivíduos. Além disso, foi utilizada uma taxa de mutação de 4% e uma taxa de cruzamento de 90%.

4. RESULTADOS E DISCUSSÕES

Nesta seção são apresentados e discutidos os resultados obtidos, aplicando-se a metodologia e os dados apresentados nos capítulos anteriores. Assim, são enumerados e comparados os resultados obtidos nas seis análises realizadas, além dos resultados obtidos no processo de otimização da plataforma FPSO estudada.

4.1. RESULTADOS DO ESTUDO DE CASO 1

Neste tópico são apresentados os resultados referentes à análise do sistema de ancoragem considerando apenas um segmento em cabo de aço, spiral strand, para todas as 16 linhas do sistema de ancoragem.

Conforme estabelecido na metodologia, nesta fase buscou-se apenas determinar os valores de diâmetro e comprimento que resultassem em um sistema capaz de atender às restrições estabelecidas para o projeto. Dessa forma, por meio de um processo iterativo, determinou-se a tração no topo, ou seja, o valor da força aplicada no segmento de linha junto ao fairlead de 4666,7 kN, um diâmetro de 152 milímetros e um comprimento de 4850 metros. O resultado referente ao projeto das linhas de ancoragem pode ser visto no Quadro 1.

Diâmetro	Peso na água	Comprimento	Tração no topo	Massa	
(mm)	(kN/m)	(m)	(kN)	(kg)	
d	W	S	Т	М	
152	0,9622	4850	4666,7	475870,97	
Eanta: Autoria mémia (2022)					

Quadro 1 – Resultado referente a cada uma das linhas de ancoragem

Fonte: Autoria própria (2022).

Analisando o desempenho do sistema, obteve-se um peso total de 7613,94 toneladas, um offset inicial de 0,8 metros, um offset final sob ação ambiental de 9,6% da lâmina d'água e, por fim, uma tensão máxima de 37,3% da tensão de ruptura dos cabos. Dessa forma, tal como pode ser visto no Quadro 2, as características definidas para o sistema de ancoragem permitiram que todos os requisitos estabelecidos para o projeto fossem atendidos.

· · · · · · · · · · · · · · · · · · ·				
Requisitos	Valores encontrados			
Offset inicial menor que 5 m	Offset inicial = 0.8 m			
Offset final sob ação ambiental menor que 10%	Offset final sob ação ambiental = $9,6\%$			
Tensão de ruptura menor que 60%	Tensão de ruptura = 37,3%			

Quadro 2 - Comparação dos resultados

4.2. RESULTADOS DO ESTUDO DE CASO 2

Finalizado o estudo de caso 1, no qual foi obtida uma solução viável para o projeto do sistema de ancoragem, nessa etapa busca-se reduzir o peso do sistema projetado. O processo consistiu em variar racionalmente os valores de diâmetro, comprimento do cabo e tração no topo de forma a buscar um arranjo com menor peso e que ainda assim atendesse aos requisitos de projeto estabelecidos.

O conjunto dos resultados obtidos nessa etapa podem ser vistos no Anexo A, enquanto os parâmetros referentes às soluções viáveis são sintetizados no Quadro 3.

		· ·	1	,	1		
	Peso						
	na		Tração no			Offset	Tração de
Diâmetro	água	Comprimento	topo	Massa	Offset	final	ruptura
(mm)	(kN/m)	(m)	(kN)	(kg)	(m)	(%)	(%)
d	W	S	Т	m	< 5 m	< 10%	< 60%
108	0,4880	6550	3196,40	325942,09	1,4	9,9	57,7
115	0,5460	6200	3385,20	345194,33	1,1	9,9	54,4
121	0,6072	6000	3643,20	371503,01	0,6	9,6	51,6
121	0,6072	6500	3946,80	402461,59	0,4	8,7	54,1
127	0,6717	5600	3761,52	383568,29	0,6	9,9	47,7
133	0,7395	5500	4067,25	414744,08	0,2	9,5	45,4
133	0,7395	6000	4437,00	452448,08	1,2	8,4	47,9
140	0,8105	5600	4538,80	462828,79	1,3	7,6	53,5
146	0,8847	6000	5308,20	541285,76	2,4	7,5	44,9
152	0,9622	4850	4666,70	475870,96	0,8	9,6	37,3

Quadro 3 – Resultados para diminuição do peso

Fonte: Autoria própria (2022).

Diante dos dados mostrados no Quadro 3, a solução definida por um diâmetro de 108 milímetros e um comprimento de 6550 metros apresentou o menor peso de 325,94 toneladas, sendo a solução adotada para essa etapa do trabalho.

Observando os dados do Quadro 4 é possível verificar que a solução obtida nesta etapa reduziu em cerca de 31,5% o peso do sistema de ancoragem determinado na seção 4.1.

Quadro 4 – Comparação						
Diâmetro	Peso na água	Comprimento	Tração no topo	Massa		
(mm)	(kN/m)	(m)	(kN)	(kg)		
d	W	S	Т	m		
152	0,9622	4850	4666,70	475870,97		
108	0,4880	6550	3196,40	325942,09		
	Modificação:		1470,30	149928,88		
			(31,5%)	(31,5%)		

Quadro 4 - Comparação

Por fim, no Quadro 5 é possível observar que a solução obtida atende a todos os requisitos estabelecidos para o projeto.

Requisitos	Valores encontrados
Offset inicial menor que 5 m	Offset inicial = $1,4 \text{ m}$
Offset final sob ação ambiental menor que 10%	Offset final sob ação ambiental = 9,9%
Tensão de ruptura menor que 60%	Tensão de ruptura = 57,9%
	: (2022)

Quadro 5 - Comparação dos resultados

Fonte: Autoria própria (2022).

4.3. RESULTADOS DO ESTUDO DE CASO 3

Conforme discutido no Capítulo 2, para unidades flutuantes operando em águas profundas e ultra profundas, torna-se impossível a utilização de sistemas convencionais compostos somente de amarras ou cabos de aço. Nesses casos o uso do poliéster mostra-se como alternativa viável, devido à maior flexibilidade e o menor peso linear. No entanto, devido à baixa resistência a abrasão, em geral, as plataformas utilizam amarras nos trechos iniciais e finais das linhas de ancoragem.

Assim, nesta fase do projeto busca-se realizar o dimensionamento do sistema de ancoragem considerando linhas formadas por três segmentos, sendo que o primeiro e o último segmentos são feitos de amarras (chain R4) e possuem 10% do comprimento total da linha, tal como pode ser visto na Figura 30.

Fonte: Autoria própria (2022).

Ao longo desta etapa, realizou-se a modificação racional dos valores de diâmetro, comprimento do cabo e tração no topo, de forma a encontrar o arranjo com menor peso e que satisfaça aos requisitos de projeto estabelecidos.

O conjunto dos resultados obtidos nessa fase podem ser vistos no Anexo B, enquanto no Quadro 6 são enumeradas apenas as soluções que atenderam os requisitos estabelecidos para o projeto.

-							U
	Peso na	~	Tração no			Offset	Tração de
Diâmetro	água	Comprimento	topo	Massa	Offset	final	ruptura
(mm)	(kN/m)	(m)	(kN)	(kg)	(m)	(%)	(%)
d	W	S	Т	m	< 5 m	< 10%	< 60%
117	2,36	420					
175	0,0534	3360	2161,824	220444,698	3,8	9,6	59,1
117	2,36	420					
117	2,36	375					
175	0,0534	3000	1930,200	196825,623	4,9	9,5	57,6
117	2,36	375					
117	2,36	380					
175	0,0534	3040	1955,936	199449,965	4,7	9,5	57,8
117	2,36	380					
120	2,4826	365					
179	0,0568	2920	1978,154	201715,570	4,9	9,2	58,5
120	2,4826	365					
122	2,566	365					
182	0,0588	2920	2044,876	208519,321	4,6	8,9	56,1
122	2,566	365	Í				

Quadro 6 – Resultados viáveis para o dimensionamento do sistema de ancoragem

Fonte: Autoria própria (2022).

Observando o Quadro 6, resta evidente que a solução de menor peso utilizou amarras (chain R4) de 117 milímetros de diâmetro no topo e no fundo, e um segmento de poliéster com 175 milímetros de diâmetro, totalizando um comprimento total de 3750 metros por linha do sistema. No Quadro 7, são apresentadas as propriedades, bem como os resultados da análise considerando a solução de menor peso total.

Diâmetro (mm)	Peso na água (kN/m)	Comprimento (m)	Tração no topo (kN)	Massa (kg)
d	W	S	Т	m
117	2,3600	375		
175	0,0534	3000	1930,2	196825,62
117	2,3600	375		

Quadro 7 - Resultado do estudo de caso 3

Ao comparar solução obtida nessa etapa com aquelas obtidas nas seções anteriores, observou-se uma redução de aproximadamente 58,64% em relação ao primeiro estudo e de 39,61% para o segundo estudo no peso de cada uma das linhas do sistema.

Um outro ponto a ser mencionado é que considerando o somatório do peso das 16 linhas empregadas no sistema de ancoragem, o valor total foi de 3149,21 toneladas, enquanto o valor do offset inicial foi de 4,9 metros, a porcentagem do offset final sob ação ambiental foi de 9,5% e a máxima tração alcançou 57,6% da tensão de ruptura.

Desse modo, tal como pode ser visto no Quadro 8, a solução obtida neste estudo de caso atendeu a todos os critérios estabelecidos para o projeto.

	1 1 5			
Requisitos	Valores encontrados			
Offset inicial menor que 5 m	Offset inicial = $4,9 \text{ m}$			
Offset final sob ação ambiental menor que 10%	Offset final sob ação ambiental = 9,5%			
Tensão de ruptura menor que 60%	Tensão de ruptura = 57,6%			
Fonte: Autoria própria (2022).				

Quadro 8 - Verificação dos requisitos de projeto

4.4. RESULTADOS DO ESTUDO DE CASO 4

A próxima análise consistiu em manter os segmentos utilizados no caso anterior, combinando segmentos de amarras no topo e no fundo, enquanto no segmento intermediário é utilizada a fibra sintética. Porém, nessa análise, considerou-se um sistema com apenas 15 linhas de ancoragem.

Como ponto inicial, realizou-se um projeto racional básico considerando como referência o diâmetro das amarras de 117 milímetros e um comprimento de segmento de 375 metros, enquanto o diâmetro do poliéster foi de 175 milímetros, com um comprimento de segmento de 3000 metros. Utilizando tais valores, os resultados referentes à análise de desempenho considerando a remoção de cada uma das linhas originalmente pertencentes ao sistema de ancoragem podem ser vistos no Quadro 9.

-			. ,
Linha removida	Offset inicial (m)	Offset final (%)	Tração de ruptura (%)
LINHA 01	16,5	9,2	55,0
LINHA 02	17,5	9,2	55,1
LINHA 03	10,7	10,8	73,2
LINHA 04	11,9	10,7	68,8
LINHA 05	16,8	9,2	55,1
LINHA 06	17,2	9,2	55,0
LINHA 07	11,2	10,8	73,6
LINHA 08	11,4	10,8	69,0
LINHA 09	17,0	9,2	55,1
LINHA 10	17,0	9,2	55,0
LINHA 11	11,7	10,7	74,0
LINHA 12	10,9	10,8	69,3
LINHA 13	17,3	9,2	55,1
LINHA 14	16,7	9,2	54,9
LINHA 15	12,2	10,7	74,1
LINHA 16	10,4	10,9	68,3

Quadro 9 - Projeto racional visando a definição da linha para remoção

Fonte: Autoria própria (2022).

Inicialmente arbitrou-se pela retirada da linha 08, contudo, depois de várias análises no programa Exmoor observou-se que para um sistema com apenas 15 linhas não seria possível encontrar uma solução de projeto com offset inicial inferior a 5 metros, tal como definido nos requisitos do projeto. Isso porque, ao se remover uma linha, ocorrerá o desbalanceamento do sistema, resultando em um maior passeio inicial que, em todos os casos, ultrapassou o limite estabelecido.

Usualmente a remoção de uma linha é acompanhada de um reposicionamento das linhas restantes, visando justamente reequilibrar o arranjo, minimizando assim, o offset inicial do sistema. No entanto, diante do escopo estabelecido para o estudo, essa possibilidade não foi explorada.

Nesse sentido, para a sequência desse estudo, a restrição de 5 metros referente ao offset inicial foi desconsiderada, focando na obtenção da solução de menor peso capaz de atender apenas às restrições de offset final e de tração na linha. Uma melhor representação das 15 linhas de ancoragem, seus ângulos de saída no plano de linha d'água e os segmentos empregados pode ser vista na Figura 31.

Figura 31 – Arranjo com 15 linhas de três segmentos

Fonte: Autoria própria (2022).

O quadro com os resultados dessa etapa do estudo encontra-se no Anexo C. No entanto, o resultado que apresentou o menor peso por linha, pode ser visto no Quadro 10.

	Peso na		Tração no			Offset	Tração de
Diâmetro	água	Comprimento	topo	Massa	Offset	final	ruptura
(mm)	(kN/m)	(m)	(kN)	(kg)	(m)	(%)	(%)
d	W	S	Т	m	< 5 m	< 10%	< 60%
124	2,6508	375					
197	0,0655	3000	2184,6	222767,20	9,9	9,5	58,3
124	2,6508	375					

Quadro 10 - Resultado do estudo de caso 4

Fonte: Autoria própria (2022).

Diante dos dados apresentados no Quadro 10, observou-se que o diâmetro que resultou no menor peso total (222,77 toneladas) é o de 124 milímetros para as amarras e 197 milímetros para o comprimento em fibra sintética, com um comprimento total de 3750 metros. Através da comparação com os resultados obtidos com a análise do sistema de 16 linhas, verificou-se que a busca racional permitiu obter um arranjo de 15 linhas que resultou em um aumento de aproximadamente 25,94 toneladas por linha em relação ao arranjo de 16 linhas.

Ainda, considerando a soma do peso das 15 linhas empregadas no sistema de ancoragem, obteve-se um valor total de 3341,51 toneladas, superando em 13,18% o peso total do sistema de 16 linhas. De fato, é possível constatar que a retirada de uma linha causaria um aumento no peso total do sistema, pois a tração no topo de cada linha irá aumentar.

Por fim, a análise mostrou que o arranjo de 15 linhas proposto nesta etapa resultou em um offset inicial de 9,9 metros, uma porcentagem do offset final sob ação ambiental de 9,5% e uma máxima porcentagem de 58,3% para a tensão de ruptura. A comparação entre os valores dos requisitos e os valores encontrados podem ser visualizados no Quadro 11, destacando que, conforme mencionado anteriormente, o offset inicial não atende ao critério estabelecido para o projeto.

Quadro 11 – Comparação dos resultados

Requisitos	Valores encontrados
Offset inicial menor que 5 m	Offset inicial = $9,9 \text{ m}$
Offset final sob ação ambiental menor que 10%	Offset final sob ação ambiental = 9,5%
Tensão de ruptura menor 60%	Tensão de ruptura = 58,3%
	: (2022)

Fonte: Autoria própria (2022).

4.5. RESULTADOS DO ESTUDO DE CASO 5

Seguindo a metodologia proposta, essa análise consistiu em manter os segmentos utilizados no caso anterior, combinando segmentos de amarras no topo e no fundo com um segmento intermediário de fibra sintética, porém, neste caso, considerou-se um sistema com a adição de uma linha, totalizando 17 linhas de ancoragem.

Para identificar o azimute de lançamento da nova linha foi realizado um projeto racional, no qual mantiveram-se exatamente as características dos segmentos utilizados no estudo de caso anterior. O conjunto completo de resultados para offset inicial, offset final e tração de ruptura, considerando diferentes ângulos de lançamento para a nova linha, pode ser visto no Anexo D, enquanto os valores selecionados para este estudo de caso são descritos no Quadro 12.

Quadro 12 - Projeto racional visando a definição do ângulo para a adição da linha

Adição	Offset inicial (m)	Offset final (%)	Tração de ruptura (%)
LINHA 17 (0 grau)	3,3	9,7	60,4
LINHA 17 (180 graus)	12,2	8,1	56,3

A partir dos dados do quadro anterior, observou-se que, com a adição da linha em 0 grau, o offset inicial se torna menor, diminuindo também o peso total do sistema, mesmo que o valor de tração de ruptura seja maior que o requisito do projeto.

Observando-se os resultados da análise de desempenho, verificou-se que a plataforma estava se movendo para a direção de 180 graus. Por essa razão, uma segunda análise foi realizada considerando a adição de uma linha nesse ângulo.

Contudo, após análises no programa Exmoor observou-se que para um sistema com a linha em 180 graus, não seria possível encontrar uma solução cujo valor de offset inicial fosse inferior a 5 metros, como definido nos requisitos do projeto. Isso ocorre devido ao desbalanceamento do arranjo causado pela adição de uma linha na posição oposta ao offset inicial do sistema. Por essa razão, se desconsiderou a restrição de 5 metros de offset inicial, focando na busca de uma solução que atendesse aos demais requisitos de projeto.

Na Figura 32 são representadas as 17 linhas de ancoragem, seus ângulos de saída no plano de linha d'água e os segmentos empregados, tanto no caso da linha adicionada à 0 grau, quanto da linha adicionada em 180 graus.

Figura 32 – Três segmentos e adição da linha em 0 grau e em 180 graus

Fonte: Autoria própria (2022).

O conjunto completo dos resultados das análises pode ser visto no Anexo E. No entanto, o resultado encontrado que estava dentro dos limites estabelecidos e que apresentou o menor peso por linha, pode ser visto no Quadro 13 para a linha adicionada à 0 grau.

	•		1	1 (0 /		
	Peso na		Tração no			Offset	Tração de
Diâmetro	água	Comprimento	topo	Massa	Offset	final	ruptura
(mm)	(kN/m)	(m)	(kN)	(kg)	(m)	(%)	(%)
d	W	S	Т	m	< 5 m	< 10%	< 60%
97	1,6221	310					
182	0,0588	2480	1151,526	117422,97	3,3	9,9	58,0
97	1,6221	310					
97 182 97	w 1,6221 0,0588 1,6221	310 2480 310	1151,526	117422,97	3,3	9,9	58,0

Quadro 13 – Resultados para o menor peso (0 grau)

Fonte: Autoria própria (2022).

Já os resultados para a adição da linha à 180 graus, desconsiderando a restrição para o offset inicial, podem ser vistos no Quadro 14.

			1	1 (0 /		
	Peso na		Tração no			Offset	Tração de
Diâmetro	água	Comprimento	topo	Massa	Offset	final	ruptura
(mm)	(kN/m)	(m)	(kN)	(kg)	(m)	(%)	(%)
d	W	S	Т	m	< 5 m	< 10%	< 60%
95	1,5559	310					
175	0,0534	2480	1097,09	111872,05	18,9	9,0	59,6
95	1,5559	310					

Quadro 14 – Resultados para o menor peso (180 graus)

Fonte: Autoria própria (2022).

Diante dos dados mostrados nos Quadros 13 e 14, o diâmetro que apresentou o menor peso para a linha em 0 grau (117,42 toneladas) é o de 97 milímetros para as amarras e 182 milímetros para a fibra sintética. Já o diâmetro que apresentou o menor peso para a linha em 180 graus (111,87 toneladas) é o de 95 milímetros para as amarras e 175 milímetros para a fibra sintética. Em ambos os casos foram consideradas linhas com o comprimento total de 3100 metros.

Através da comparação com os resultados da análise de 16 linhas, verificou-se que com o processo de análise e projeto racional obteve uma redução de 79,40 toneladas, considerando a adição da linha à 0 grau e de 84,95 toneladas considerando a adição da linha à 180 graus. Ainda, considerando o somatório do peso das 17 linhas empregadas no sistema de ancoragem, obteve-se um valor total de 1996,19 toneladas para 0 grau e de 1901,82 toneladas para 180 graus.

Já os atributos de desempenho referentes a análise do sistema considerando a adição de uma linha a 0 graus podem ser vistos no Quadro 15, onde é possível observar que a solução obtida atende aos requisitos estabelecidos para o projeto.

Requisitos	Valores encontrados
Offset inicial menor que 5 m	Offset inicial = $3,3 \text{ m}$
Offset final sob ação ambiental menor que 10%	Offset final sob ação ambiental = 9,9%
Tensão de ruptura menor que 60%	Tensão de ruptura = 58,0%

Quadro 15 – Comparação dos resultados (0 grau)

Fonte: Autoria própria (2022).

Já os resultados da análise de desempenho referentes à adição da linha a 180 graus podem ser vistos no Quadro 16. Neste caso, destaca-se que a solução não alcançou o requisito de offset inicial menor que 5 metros estabelecido para o projeto.

Quadro 16 – Comparação dos resultados (180 graus)				
Requisitos	Valores encontrados			
Offset inicial menor que 5 m	Offset inicial = 18,9 m			
Offset final sob ação ambiental menor que 10%	Offset final sob ação ambiental = $9,0\%$			
Tensão de ruptura menor que 60% Tensão de ruptura = 5				
Fonte: Autoria própria (2022)				

Fonte: Autoria propria (2022).

4.6. RESULTADOS DO ESTUDO DE CASO 6

Por fim, nessa análise realizou-se o estudo de caso considerando um sistema composto de 18 linhas de ancoragem. Seguindo a metodologia proposta, os azimutes das novas linhas foram determinados em um projeto racional que utilizou as mesmas características das linhas analisadas no estudo de caso anterior.

Considerando variações em intervalos de 2 graus, os resultados referentes aos diferentes arranjos propostos são sistematizados no Quadro 17.

<u> </u>	5	,	
Adicionando	Offset inicial (m)	Offset final (%)	Tração de ruptura (%)
(28 / 213) Graus	4,0	9,0	55,9
(28 / 223) Graus	4,0	9,3	57,9
(38 / 213) Graus	5,2	9,0	55,8
(38 / 223) Graus	4,0	9,3	57,9
(138 / 323) Graus	4,0	9,2	63,2
(138 / 333) Graus	4,2	9,2	63,6
(138 / 323) Graus	5,1	9,0	62,4
(138 / 333) Graus	4,0	9,1	62,8

Quadro 17 – Projeto racional visando a adição de duas novas linhas ao sistema

A partir dos dados do Quadro 17, observou-se que com a adição de duas linhas, uma em 28 graus e a outra em 213 graus, o offset inicial apresentou o menor valor, além de resultar no menor peso total do sistema.

Para facilitar a visualização, na Figura 33 são representadas as 18 linhas de ancoragem, seus ângulos de saída no plano de linha d'água e os segmentos empregados, considerando a adição de uma linha em 28 graus e de outra linha em 213 graus.

Figura 33 - Três segmentos de materiais e duas linhas adicionadas

Fonte: Autoria própria (2022).

O conjunto dos resultados obtidos neste estudo de caso é mostrado no Anexo F, enquanto no Quadro 18 são descritas as características da solução que alcançou o menor peso total do sistema e que foi capaz de atender aos requisitos estabelecidos para o projeto.

-		±	±		U		
	Peso na		Tração no			Offset	Tração de
Diâmetro	água	Comprimento	topo	Massa	Offset	final	ruptura
(mm)	(kN/m)	(m)	(kN)	(kg)	(m)	(%)	(%)
d	W	S	Т	m	< 5 m	< 10%	< 60%
105	1,9007	375					
218	0,0805	3000	1667,025	169989,24	4,8	8,1	53,2
105	1,9007	375					

Quadro 18 – Resultados para o menor peso considerando arranjo de 18 linhas

Comparando-se os resultados apresentados no Quadro 18 com aqueles obtidos na análise do sistema com 16 linhas, verificou-se que o projeto racional realizado por meio de um processo manual considerando a adição de duas linhas resultou na diminuição de 26,84 toneladas em cada uma das linhas do sistema. Além disso, o peso total do sistema, considerando as 18 linhas do arranjo foi de 3059,81 toneladas, 13,63 % menor do que aquele obtido no arranjo com 16 linhas de ancoragem.

Por fim, destaca-se que a solução obtida atende aos requisitos estabelecidos para o projeto, tal como pode ser visto no Quadro 19.

Comment is companyate and resummers				
Requisitos	Valores encontrados			
Offset inicial menor que 5 m	Offset inicial = $4,8 \text{ m}$			
Offset final sob ação ambiental menor que 10%	Offset final sob ação ambiental = 8,1%			
Tensão de ruptura menor que 60%	Tensão de ruptura = 53,2%			
Fonte: Autoria própria (2022)				

Quadro 19 - Comparação dos resultados

Fonte: Autoria própria (2022).

4.7. ANÁLISE DOS RESULTADOS

Conforme descrito na literatura (JÚNIOR et al., 2004), dentre as várias alternativas de cabos de aço, amarras e cabos sintéticos, a segmentação das linhas entre esses três tipos de materiais vem sendo aplicada com sucesso, pois apresenta como principal vantagem a redução do peso imerso e a diminuição do custo de fabricação.

Tal fato pode ser constatado observando-se os resultados obtidos neste trabalho, pois somente com a alteração do material, a realização de um projeto racional, diminuiu em mais de 278,99 toneladas o peso total do sistema de ancoragem da unidade flutuante.

Outro resultado importante, consiste na constatação de que o comprimento das linhas possui influência nos resultados, pois linhas mais frouxas imprimem menos restauração ao sistema flutuante, mas sofrem menores valores de tensão, tendo assim maior durabilidade.

Através dos cálculos e comparações realizadas, observou-se que os resultados obtidos nos casos analisados foram semelhantes aos encontrados na literatura, evidenciando que as linhas mistas podem melhorar o desempenho do projeto, em especial no que se refere a redução do peso total do sistema de ancoragem.

Desconsiderado o resultado da análise referente à um sistema com 15 linhas, o qual não atendeu a restrição de offset inicial, os demais resultados foram agrupados e comparados na forma gráfica, sendo que na Figura 34 são comparados os pesos totais de cada um dos arranjos, enquanto na Figura 35 são comparados os offsets finais de cada caso.

Figura 34 - Comparação dos resultados para o peso

Fonte: Autoria própria (2022).

Figura 35 - Comparação dos resultados para o offset final

Mesmo sendo um projeto racional realizado por meio de um processo manual, é possível observar o comportamento conflitante entre o peso do sistema de ancoragem e o offset da unidade flutuante, evidenciando a existência de um número ótimo de linhas capaz de reduzir o peso do sistema sem comprometer os requisitos de projeto.

Observando os resultados da Figura 35, nota-se que, considerando o arranjo com 17 linhas como ponto ótimo, a solução obtida apresenta o maior valor para o passeio da unidade flutuante no plano da linha d'água, chegando bem próximo dos 10% estabelecido como requisito de projeto.

Por fim, realizou-se a comparação dos resultados referentes à máxima porcentagem da tração de ruptura das linhas, cujos resultados podem ser vistos na Figura 36.

Fonte: Autoria própria (2022).

Figura 36 - Comparação dos resultados para a máxima porcentagem da tração de ruptura

Fonte: Autoria própria (2022).

Novamente é possível observar que a solução ótima, referente ao arranjo com 17 linhas, apresenta uma porcentagem da tensão de ruptura próxima ao limite de 60% estabelecido como requisito de projeto.

Diante disso, a partir das comparações realizadas é possível afirmar que, utilizando um processo racional de projeto, a solução ótima capaz de minimizar o peso total do sistema de ancoragem apresenta características próximas aos requisitos de projeto, tanto no que se refere a integridade das linhas, quanto ao passeio da unidade flutuante.

Por fim, por meio da representação gráfica mostrada na Figura 37 é possível analisar a relação entre duas variáveis: o peso do sistema e a porcentagem de offset final.

Figura 37 – Gráfico de dispersão em relação ao offset inicial e o peso próprio

Fonte: Autoria própria (2022).

Embora tenham sido realizados poucos estudos, os resultados mostrados na Figura 37 permitem verificar que existem duas soluções que se destacam, sendo que uma apresenta o menor peso e outra apresenta o menor offset, ambas marcadas em vermelho na figura.

4.8. RESULTADO PARA O ESTUDO DE CASO 7 PARA UMA PLATAFORMA FPSO

Inicialmente objetivava-se realizar o processo de otimização considerando uma abordagem no domínio da frequência. No entanto, por limitações no desenvolvimento, só foi possível realizar esse estudo de caso utilizando a abordagem no domínio do tempo. Além disso, por limitações nos recursos computacionais disponíveis, a simulação no domínio do tempo abrangeu apenas 100 segundos, o que é muito abaixo do tempo de simulação recomendado para que os resultados sejam realistas. Dessa forma, os resultados aqui apresentados servem apenas como prova de conceito do desenvolvimento proposto.

Conforme descrito na metodologia, nesta etapa aplicou-se técnicas de otimização visando aprimorar o sistema de ancoragem de uma plataforma FPSO dotada de 24 linhas e sujeita a 57 diferentes combinações de condições ambientais.

Nesse caso, objetivou-se maximizar a abertura do arranjo existente da direção leste, respeitando as restrições impostas para o projeto. Aplicando-se os parâmetros de otimização descritos na metodologia e utilizando o programa Synapse Offshore, a evolução do processo de otimização pode ser vista na Figura 38, a qual exibe a evolução da abertura do sistema de ancoragem na direção leste em função da iteração realizada durante a otimização.

Figura 38 - Evolução da otimização: abertura do arranjo (°)

Fonte: Autoria própria (2022).

Entre as diversas soluções com o mesmo valor de abertura a leste do sistema de ancoragem (131,98 graus), mostra-se na Figura 39 um arranjo que atendeu aos requisitos estabelecidos para o projeto.

Figura 39 - Arranjo da solução otimizada

Fonte: Autoria própria (2022).

Nas tabelas a seguir, é possível observar uma comparação entre a solução inicial e a solução otimizada considerando as principais caraterísticas do sistema de ancoragem projetado. Inicialmente na Tabela 14 são comparados os atributos de desempenho, enquanto na Tabela 15 são comparados os ângulos de lançamento de cada uma das 24 linhas que compõem o sistema de ancoragem. Por fim, na Tabela 16 são comparados os comprimentos dos segmentos iniciais junto ao fairlead de cada uma das 24 linhas.

I abela 14 – Comparação dos resultados									
Variáveis	Solução inicial	Solução otimizada							
Abertura do arranjo [°]	75,18	131,98							
Offset [%]	3,94	6,14							
Offset [m]	79,97	124,68							
Tensão [%] nas linhas	67,72	54,83							
Tensão [kN] nas linhas	7902,60	6398,20							
Delta yaw neutro [°]	1,56	1,94							

Ângulos	Solução inicial [°]	Solução otimizada [°]
Azimute 01	156	200
Azimute 02	154	198
Azimute 03	152	192
Azimute 04	150	188
Azimute 05	148	182
Azimute 06	146	174
Azimute 07	54	24
Azimute 08	52	22
Azimute 09	50	14
Azimute 10	48	10
Azimute 11	46	6
Azimute 12	44	0
Azimute 13	336	332
Azimute 14	334	328
Azimute 15	332	322
Azimute 16	330	314
Azimute 17	328	306
Azimute 18	326	298
Azimute 19	238	258
Azimute 20	236	256
Azimute 21	234	252
Azimute 22	232	248
Azimute 23	230	242
Azimute 24	228	238

Tabela 15 – Comparação dos azimutes

Tabela 16 - Comparação dos comprimentos dos segmentos iniciais (fairlead)

	1, 1	U		
 Comprimentos	Solução inicial [m]	Solução otimizada [m]	Delta [m]	
 Comprimento 01	155	169,4	-14,4	
Comprimento 02	180	170,4	9,6	
Comprimento 03	210	210,0	0,0	
Comprimento 04	170	167,6	2,4	
Comprimento 05	150	135,6	14,4	
Comprimento 06	220	198,4	21,6	
Comprimento 07	180	189,6	-9,6	
Comprimento 08	150	162,0	-12,0	
Comprimento 09	220	222,4	-2,4	
Comprimento 10	160	157,6	2,4	
Comprimento 11	215	193,4	21,6	

Comprimento 12	150	135,6	14,4
Comprimento 13	190	168,4	21,6
Comprimento 14	150	154,8	-4,8
Comprimento 15	195	209,4	-14,4
Comprimento 16	175	177,4	-2,4
Comprimento 17	200	195,2	4,8
Comprimento 18	185	206,6	-21,6
Comprimento 19	205	190,6	14,4
Comprimento 20	145	133,0	12,0
Comprimento 21	165	186,6	-21,6
Comprimento 22	200	185,6	14,4
Comprimento 23	185	194,6	-9,6
Comprimento 24	155	185,6	-14,4

Observando os resultados apresentados na Tabela 15, conclui-se que a aplicação do processo de otimização permitiu aumentar a abertura do sistema de ancoragem em 75,55%, passando de 75,18° para 131,98° (Figura 40), satisfazendo todas as restrições estabelecidas para o projeto.

Figura 40 - Arranjo da solução inicial e solução otimizada

5. CONCLUSÃO

Ao longo deste trabalho apresentou-se os aspectos mais relevantes sobre os sistemas de ancoragem utilizados em plataformas oceânicas, em especial aquelas ancoradas por linhas dispostas em catenária. Nesse sentido foram discutidos a nomenclatura, os componentes, os materiais e os tipos de ações ambientais envolvidos no projeto do sistema de ancoragem de plataformas oceânicas.

A seguir foi discutida a formulação da catenária utilizada para o dimensionamento de linhas de ancoragem, bem como o processo de projeto racional definido pelo equilíbrio de um arranjo com múltiplas linhas agrupadas em clusters.

Os estudos de caso realizados permitiram, de maneira racional, verificar a influência das características das linhas no desempenho de um sistema de ancoragem. Os resultados mostraram que linhas mistas permitem atender aos requisitos de projeto com sistema que possuem um peso total consideravelmente menor do que a utilização de linhas fabricadas apenas com amarras ou cabos de aço. No entanto, em virtude da baixa resistência à abrasão, a utilização de fibras sintéticas é pouco viável para os trechos em constante contato com a plataforma ou com o solo marinho.

Além disso, os resultados comprovaram que existe uma relação conflitante entre o peso do sistema e o deslocamento da plataforma (offset), e que o aumento da tração no topo retesa as linhas, aumentando a restauração do sistema e reduzindo o deslocamento da plataforma.

Por fim, mesmo considerando o baixo número de análises paramétricas realizadas, foi possível verificar que existe um número de linhas ótimo que permite obter um sistema de ancoragem que além de atender aos requisitos estabelecidos para o projeto, apresenta o menor peso total.

É importante destacar que, embora o peso do sistema de ancoragem seja um atributo importante, especialmente no caso de plataformas semissubmersíveis, em muitos casos o que se busca é o sistema de menor custo. Porém, não existem dados confiáveis disponíveis na literatura acerca do custo de cabos de ancoragem homologados para sistemas oceânicos, o que impediu análises envolvendo o custo das linhas.

Já em relação ao estudo de caso referente a aplicação de técnicas de otimização no projeto de sistemas de ancoragem, apesar da ferramenta Synapse Offshore ainda estar em

desenvolvimento, a versão disponibilizada foi estável, eficiente e eficaz na obtenção de uma solução otimizada para o modelo proposto.

A solução otimizada, além de atender aos requisitos estabelecidos para o projeto, alcançou um aumento de 75,55% na abertura do arranjo na direção leste. Contudo, é importante destacar que, por limitações computacionais, a simulação no domínio do tempo abrangeu somente 100 segundos, o que é um tempo muito abaixo dos valores recomendados para que os resultados sejam realistas. Diante disso, os resultados apresentados servem apenas como prova de conceito do desenvolvimento proposto.

5.1. SUGESTÕES PARA TRABALHOS FUTUROS

Existe uma grande quantidade de temas a serem estudados em trabalhos futuros. Dentre eles é possível citar:

a. Realizar uma análise considerando cada linha como um projeto individual;

b. Realizar a análise para diferentes trações no topo de cada linha;

c. Realizar um estudo envolvendo os custos finais do sistema de ancoragem;

d. Realizar o projeto racional considerando combinações de ações ambientais;

e. Realizar o estudo de otimização com o tempo de simulação adequado;

f. Realizar o estudo de otimização considerando a análise no domínio da frequência;

g. Realizar estudos mais detalhados sobre os diversos parâmetros envolvidos no processo de otimização;

h. Realizar estudos com diferentes modelos de otimização, variando a função objetivo e os requisitos estabelecidos para o projeto.

REFERÊNCIAS

AGUIAR. C. S. Análise da Interação Solo-Estrutura De Âncoras do Tipo Torpedo para Plataformas Offshore. 2011. Tese (Doutorado em Engenharia) – Programa de Pósgraduação em Engenharia Civil, UFRJ, Rio de Janeiro. 2011.

ALVES, E. M.; GALLARDO, A. L. C. F.; KNIESS, C. T. **Proposta de um plano de ajuda mútua para atendimento a emergências decorrentes da exploração de petróleo do présal na Bacia de Santos (SP)**. Política e Planejamento Regional. Rio de Janeiro, v. 8, n. 2, p. 253-272, maio/ago. 2021.

APOLINARIO, T. S. Análise do custo de substituição do sistema de ancoragem de plataformas de extração de petróleo. 2019. Trabalho de Conclusão de Curso (Graduação em Engenharia Naval) – Centro Tecnológico de Joinville, Universidade Federal de Santa Catarina, Joinville, 2019.

AMORIM, A. R. Estudo da Curvatura Residual Aplicada ao Problema da Compressão Dinâmica em Risers Rígidos em Catenária Livre. 2018. Dissertação (Mestrado em Engenharia Oceânica) – Universidade Federal do Rio de Janeiro, COPPE, Rio de Janeiro. 2018.

AMORIM, T. O. **Plataforma offshore**: uma breve análise a construção ao descomissionamento. 2010. Trabalho de Conclusão de Curso (Graduação em Tecnólogo em Construção Naval) – Centro Universitário Estadual da Zona Oeste, Fundação Centro Universitário da Zona Oeste, Rio de Janeiro, 2010.

ANDRADE, B. L. R.; BRINATI, H. L.; MORISHITA, H. M; FERRARI Junior, J. A. **Sistema de ancoragem e posicionamento.** 1 ed. São Paulo: Convênio Petrobrás – USP, 1995.

BICO, V. M. P. Amarração de plataformas offshore flutuantes com cabos de poliéster. 2013. Dissertação de Mestrado. Trabalho de Mestrado (Mestrado em Engenharia Civil) – Área Departamental de Engenharia Civil, Instituto Superior de Lisboa, Lisboa, 2013.

BALANÇO ENERGÉTICO NACIONAL. **Relatório síntese:** Ano Base 2020. Rio de Janeiro, maio de 2020. Disponível em: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico nacional-2021. Acesso em: 20 nov. 2021.

BRUM, S. A. J. Ensaio de centrifugação para avaliação do desempenho de penetrômetros dinâmicos para ancoragens de estruturas offshore. 2009. Dissertação (Mestrado em Engenharia Civil) – Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes. 2009.

CAMPOS, M. G. D. E. Abordagem de ciclo de vida na avaliação de impactos ambientais no processamento primário offshore. 2012. Trabalho de Conclusão de Curso (Graduação em Engenharia Ambiental) – Escola Politécnica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2012.

CHAVES, H. M. Modelo Reduzido de Linha de Ancoragem Offshore: Construção de um Sistema de Ensaio para Avaliar Atenuação de Cargas Estáticas. 2020. Dissertação

(Mestrado em Engenharia Civil) – Universidade Federal do Rio Grande do Sul, Porto Alegre. 2020.

DAER, T. M. Otimização evolutiva de uma rede neural aplicada no sistema de ancoragem de plataformas flutuantes. 2017. Trabalho de Conclusão de Curso (Graduação em Engenharia de Petróleo) – Escola de Engenharia Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Niterói, 2017.

DESSOY, E. S. M. **Energia e transporte:** uma opção de logística integrada no Brasil. 1. ed. São Paulo: Nelpa, 2014.

DIRETORIA DE PORTOS E COSTAS ENBA. Rio de Janeiro: Ensino Profissional Marítimo, 2009. 108p.

EXMOOR. Expert mooring system manual do usuário. Versão 4.06, 2006.

FALTINSEN, O.M. Sea Loads on Ships and Offshore Structures. Cambridge University Press, 1990.

FERREIRA, F. M. G. **Otimização de Sistema de Ancoragem Equivalente em Profundidade Truncada**. 2016. Dissertação (Doutor em Engenharia Civil) – Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Recife. 2016.

FERRI, M.M. **Projeto preliminar do sistema de ancoragem de uma plataforma oceânica:** validação e verificação de ferramentas computacionais. 2022. Trabalho de Conclusão de Curso (Graduação em Engenharia Naval) – Centro Tecnológico de Joinville, Universidade Federal de Santa Catarina, Joinville, 2022.

FIGUEIREDO, F. R. **Plataformas marítimas**. 2014. Trabalho de Conclusão de Curso (Graduação em Ciências Náuticas) – Centro de Instrução Almirante Graça Aranha, Rio de Janeiro, 2014.

GIRÓN, A. R. C. Aplicação de Metodologias de Projeto Integrado de Sistemas de Ancoragem e Risers na Explotação de Petróleo Offshore. 2018. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal do Rio de Janeiro, COPPE, Rio de Janeiro. 2009.

INTELLIGENCE, M. **FPSO market:** growth, trends, covid-19 impact, and forecasts (2021-2026). 2020. Disponível em: https://www.mordorintelligence.com/industry-reports/fpso-market#faqs. Acesso em: 01 dez. 2021.

JÚNIOR, J. A. F., ANDRADE, B. L. R., BRINATI, H. L., MORISHITA, H. M. E MARTINS, M. R., **Sistema de Ancoragem de Sistemas Flutuantes de Produção**. Apostila do Curso de Formação de Engenheiros Navais da Petrobras, 2004.

KAWASAKI, P. Y. Análise de linhas de ancoragem de plataformas oceânicas considerando diversos tramos e o trecho enterrado da linha. 2010. 68f. Trabalho de Conclusão de Curso – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2010.

LACERDA, T. A. G. Análise de sistemas de ancoragem de plataformas flutuantes. 2005. 63f. Trabalho de Conclusão de Curso – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2005. LEAL, G. S. Avaliação de metodologia de projeto de sistemas de ancoragem de plataformas flutuantes em relação à fadiga. 2016. Dissertação de Mestrado (Pós-graduação em Engenharia Oceânica) – Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2016.

LOUREIRO, R.R, Análise Numérico-Experimental de Anomalia de Sistema de Ancoragem em Catenária Devido à Falha de Manilhas de Linha de Poliéster, Dissertação de M.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 2007.

MASTRANGELO, C.F. et al. From early production systems to the development of ultradeepwater fields – experience and critical issues of floating production units. In: OFFSHORE TECHNOLOGY CONFERENCE, 2003, Houston. Proceedings Houston: OTC, 2003.

MEDEIROS, V. A. **O estado da arte do FPSO**. 2015. 68f. Trabalho de Conclusão de Curso – Universidade Federal do Rio de Janeiro, Rio de Janeiro. 2015.

NAZÁRIO. C. S. **Modelagem de Sistemas de Ancoragem Utilizando Catenária Inelástica**. 2011. Trabalho de Conclusão de Curso - Curso de Engenharia Naval, Universidade Federal de Santa Catarina, UFSC, Joinville. 2015.

RELATÓRIO DE IMPACTO AMBIENTAL. Atividade de perfuração marítima de moços nos Blocos SEAL-M-351, SEAL-M-428, SEAL-M-430, SEAL-M-501, SEAL-M-503 e SEAL-M-573, na Bacia de Sergipe-Alagoas. ExxonMobil, fev. 2021. Disponível em: https://www.gov.br/ibama/pt-br/assuntos/notas/2021/disponivel-rima-do-projeto-deperfuracao-maritima-de-pocos-de-petroleo-da-empresa-exxon-mobil. Acesso em: 28 fev. 2022.

PEREIRA, L. G. **Metodologia para Seleção Conceitual de Plantas de Processamento Submarino**. 2015. Dissertação (Mestrado em Ciências e Engenharia de Petróleo) – Universidade Estadual de Campinas, São Paulo, 2015.

PETRÓLEO BRASILEIRO S. A. **Pré-Sal**. 2018. Disponível em: https://petrobras.com.br/pt/nossas-atividades/areas-de-atuacao/exploracao-e-producao-depetroleo-e-gas/pre-sal/. Acesso em: 26 nov. 2021.

RIAL, B. V. M. Desafios no Transporte e Instalação de Plataformas para os Campos do **Pré-Sal Brasileiro.** 2017. Trabalho de Conclusão de Curso – Universidade Veiga de Almeida, Rio de Janeiro, 2017.

PINTO, G. M. Estudo Paramétrico da Atenuação de Cargas Estáticas em Sistemas de Ancoragem Offshore. 2014. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós Graduação em Engenharia Civil, UFRGS, Porto Alegre. 2014.

PONS, R. A. Aprimoramentos da metodologia para modelagem numérica de sistemas de ancoragem com base em levantamentos por ROV. 2017. 175f. Dissertação de Mestrado – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017.

SANTOS, L. F. **Manuseio de âncoras:** instalação da âncoras stevpris. 2014. Trabalho de Conclusão de Curso (Graduação em Ciências Náuticas da Marinha Mercante) – Centro de Instrução Almirante Graça Aranha, Rio de Janeiro, 2014.

SANTOS, P. V. **Impactos ambientais causados pela perfuração de petróleo**. Cadernos de Graduação – Ciências Exatas e Tecnológicas. Sergipe, v. 1, n.15, p. 153-163, out. 2012.

SILVA, A. L. R. B. Inspeções offshore: Análise de histórico de deficiências em plataformas FPSO operando no pré-sal brasileiro. 2017. 79f. Trabalho de Conclusão de Curso – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017.

SILVA, A. S. **Análise de cravabilidade de estacas torpedo**. 2008. Trabalho de Pósgraduação (Pós-graduação em Engenharia de Fundações) – Centro Universitário Estadual da Zona Oeste, Secretaria de Estado de Ciência e Tecnologia, Rio de Janeiro, 2008.

SILVA, F. S. Sistemas de ancoragem de unidades flutuantes. 2011. Trabalho de Conclusão de Curso (Graduação em Tecnologia em Construção Naval) – Centro Universitário Estadual da Zona Oeste, Secretaria de Estado de Ciência e Tecnologia, Rio de Janeiro, 2011.

SILVA, M. Z. Estudo da influência do desgaste na falha prematura de componentes de linhas de ancoragem. 2016. Dissertação de Mestrado (Ciências Mecânicas) – Universidade de Brasília, Faculdade de Tecnologia Departamento de Engenharia Mecânica, Brasília, 2016.

SILVEIRA, M. R. O sistema de posicionamento dinâmico nas operações offshore. 2014. Trabalho de Conclusão de Curso (Formação de Oficiais de Náutica/Máquinas da Marinha Mercante) – Centro de Instrução Almirante Graça Aranha, Marinha do Brasil, Rio de Janeiro, 2014.

SOUZA, C. L. F. Análise preliminar de riscos, perigos e os impactos ambientais. 2012. Trabalho de Conclusão de Curso (Graduação em Especialista em Gestão Ambiental) – Instituto A Vez do Mestre, Rio de Janeiro, 2012.

SOUZA, R. M. **Operação com a embarcação AHTS**. 2012. 64f. Monografia (Bacharelado em Curso de Aperfeiçoamento para Oficiais de Náutica) – Centro de Instrução Almirante Graça Aranha, Rio de Janeiro, 2012.

SOARES, P. V. L. P **Projeto de equipamento para corte de cabos de aço por acionamento hidráulico**. 2017. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecânica) – Escola Politécnica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017.

SVALASTOG, A. K. D. Analysis and design of mooring and turret systems for shipshaped floating production systems (FPSOs). 2017. 128f. Dissertação de Mestrado – Norwegian University of Science and Technology, Noruega. 2017.

TALAVERA, L. M. B. **Parábola e Catenária:** História e Aplicações. 2008. 96 f. Dissertação (Mestrado) – Curso de Matemática, Universidade de São Paulo, São Paulo, 2008.

TANCREDI, T. P. **Otimização multidisciplinar distribuída aplicada a projetos de engenharia**. 2008. Tese (Doutorado em Engenharia Naval e Oceânica) – Escola Politécnica, Universidade de São Paulo, São Paulo, 2008.

APÊNDICE A – Número de linhas	

Identificação	Quadrante	Posição
Linha 01	2	6
Linha 02	2	5
Linha 03	2	4
Linha 04	2	3
Linha 05	2	2
Linha 06	2	1
Linha 07	1	6
Linha 08	1	5
Linha 09	1	4
Linha 10	1	3
Linha 11	1	2
Linha 12	1	1

Fonte: Petrobras (2022).

APÊNDICE B – Correntes, ventos e ondas

<u>Correntes</u> <u>Número de correntes: 33</u>

Caso	Direção	Ângulo na	БТ	Ret.	Caso	Direção	Ângulo na	ET	Ret.
	Propag.	Superfície (°)	Commlet	Per.		Propag.	Superfície (°)	Complet.	Per.
			Complet.	(yrs)					(yrs)
1	Ν	0.00	Yes	100	18	NNE	22.50	Yes	10
2	NNE	22.50	Yes	100	19	NE	45.00	Yes	10
3	NE	45.00	Yes	100	20	ENE	67.50	Yes	10
4	ENE	67.50	Yes	100	21	Е	90.00	Yes	10
5	Е	90.00	Yes	100	22	ESE	112.50	Yes	10
6	ESE	112.50	Yes	100	23	SE	135.00	Yes	10
7	SE	135.00	Yes	100	24	SSE	157.50	Yes	10
8	SSE	157.50	Yes	100	25	S	180.00	Yes	10
9	S	180.00	Yes	100	26	SSW	202.50	Yes	10
10	SSW	202.50	Yes	100	27	SW	225.00	Yes	10
11	SW	225.00	Yes	100	28	WSW	247.50	Yes	10
12	WSW	247.50	Yes	100	29	W	270.00	Yes	10
13	W	270.00	Yes	100	30	WNW	292.50	Yes	10
14	WNW	292.50	Yes	100	31	NW	315.00	Yes	10
15	NW	315.00	Yes	100	32	NNW	337.50	Yes	10
16	NNW	337.50	Yes	100	33	Ν	0.00	No	-
17	Ν	0.00	Yes	10					

Fonte: Petrobras (2022).

Número de pontos de correntes: 14

Ponto	Pontal (m)	Velocidade (m/s)	Ângulo de Propagação (°)	Ponto	Pontal (m)	Velocidade (m/s)	Ângulo de Propagação (°)
 1	0.00	1.03	112.50	8	350.00	0.45	112.50
2	50.00	1.01	112.50	9	375.00	0.42	112.50
3	100.00	0.84	112.50	10	800.00	0.31	90.00
4	150.00	0.71	112.50	11	1200.00	0.29	90.00
5	200.00	0.61	112.50	12	1600.00	0.25	90.00
6	250.00	0.53	112.50	13	2000.00	0.27	90.00
7	300.00	0.49	112.50	14	2010.00	0.25	90.00

Fonte: Petrobras (2022).

Ventos	
Número de ventos: 98	

Caso	Velocidade média (m/s)	Ângulo (°)	Espectro	Setor	Caso	Velocidade média (m/s)	Ângulo (°)	Espectro	Setor
1	26.43	352.50	NPD	N*	50	21.17	0.00	NPD	N
2	26.43	0.00	NPD	Ν	51	21.17	7.50	NPD	N*
3	26.43	7.50	NPD	N*	52	21.07	15.00	NPD	NNE*
4	25.62	15.00	NPD	NNE*	53	21.07	22.50	NPD	NNE
5	25.62	22.50	NPD	NNE	54	21.07	30.00	NPD	NNE*
6	25.62	30.00	NPD	NNE*	55	21.08	37.50	NPD	NE*
7	25.48	37.50	NPD	NE*	56	21.08	45.00	NPD	NE
8	25.48	45.00	NPD	NE	57	21.08	52.50	NPD	NE*

10 25.42 60.00 NPD ENE* 59 20.95 67.50 NPD ENE* 11 25.42 75.00 NPD ENE* 61 20.44 82.50 NPD E* 13 25.05 82.50 NPD E* 62 20.44 90.00 NPD E* 14 25.05 97.50 NPD E* 64 19.94 105.00 NPD ESE* 16 24.71 105.00 NPD ESE* 65 19.94 112.50 NPD SE* 19 24.94 127.50 NPD SE* 67 20.08 135.00 NPD SE 20 24.94 142.50 NPD SE* 70 21.16 150.00 NPD SE 21 24.94 142.50 NPD SE* 71 21.16 157.50 NPD SE 22 26.28 155.00 NPD SSE 72 23.41 </th <th>9</th> <th>25.48</th> <th>52.50</th> <th>NPD</th> <th>NE*</th> <th>58</th> <th>20.95</th> <th>60.00</th> <th>NPD</th> <th>ENE*</th>	9	25.48	52.50	NPD	NE*	58	20.95	60.00	NPD	ENE*
11 25.42 67.50 NPD ENE* 60 20.95 75.00 NPD ENE* 12 25.42 75.00 NPD E* 62 20.44 82.50 NPD E 14 25.05 82.50 NPD E 63 20.44 97.50 NPD E 14 25.05 97.50 NPD ESE 65 19.94 112.50 NPD ESE* 16 24.71 10.50 NPD ESE* 67 20.08 127.50 NPD SE* 19 24.94 127.50 NPD SE 69 20.08 135.00 NPD SE* 20 24.94 142.50 NPD SE* 70 21.16 150.00 NPD SE* 21 24.94 142.50 NPD SE* 71 21.16 165.00 NPD SE* 22 26.28 157.50 NPD SE 72 21.16	10	25.42	60.00	NPD	ENE*	59	20.95	67.50	NPD	ENE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	25.42	67.50	NPD	ENE	60	20.95	75.00	NPD	ENE*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	25.42	75.00	NPD	ENE*	61	20.44	82.50	NPD	E*
1425.0590.00NPDE6320.4497.50NPDE*1525.0597.50NPDESE6419.94112.50NPDESE*1624.71105.00NPDESE6619.94112.50NPDESE*1724.71112.50NPDESE6619.94112.50NPDESE*1824.71120.00NPDESE6620.08135.00NPDSE2024.94135.00NPDSE6920.08142.50NPDSE*2124.94142.50NPDSE7021.16150.00NPDSSE*2226.28150.00NPDSSE*7121.16157.50NPDSSE*2326.28157.50NPDSSE7221.16150.00NPDSSE*2426.28165.00NPDSSE*7323.41172.50NPDS*2529.21172.50NPDS*7423.41180.00NPDS*2629.21187.50NPDS*7625.16202.50NPDS*2729.21187.50NPDSSW*7925.08217.50NPDSW*2831.56202.50NPDSW*8025.08217.50NPDSW*3131.66217.50NPDSW*8224.03240.00NPD	13	25.05	82.50	NPD	E*	62	20.44	90.00	NPD	Е
1525.0597.50NPDE*6419.94105.00NPDESE*1624.71105.00NPDESE*6519.94112.50NPDESE*1824.71120.00NPDESE*6720.08127.50NPDSE*1924.94127.50NPDSE*6820.08135.00NPDSE2024.94135.00NPDSE6920.08142.50NPDSE*2124.94142.50NPDSE*7021.16150.00NPDSSE*2226.28150.00NPDSSE*7121.16157.50NPDSSE*2426.28150.00NPDSSE*7323.41180.00NPDS*2529.21172.50NPDS*7623.16195.00NPDS*2629.21180.00NPDSW*7725.16195.00NPDS*2729.21187.50NPDSW*7725.16195.00NPDSW*3131.66202.50NPDSW*7925.08217.50NPDSW*3231.66225.00NPDSW*8025.08225.00NPDSW*3331.66225.00NPDSW*8224.0324.0324.750NPD3430.68240.00NPDSW*8523.06270.00NPD </td <td>14</td> <td>25.05</td> <td>90.00</td> <td>NPD</td> <td>Е</td> <td>63</td> <td>20.44</td> <td>97.50</td> <td>NPD</td> <td>E*</td>	14	25.05	90.00	NPD	Е	63	20.44	97.50	NPD	E*
16 24.71 105.00 NPD ESE* 65 19.94 112.50 NPD ESE 17 24.71 112.50 NPD ESE 66 19.94 12.00 NPD ESE* 18 24.71 120.00 NPD ESE* 67 20.08 127.50 NPD SE* 20 24.94 127.50 NPD SE 69 20.08 142.50 NPD SE* 21 24.94 142.50 NPD SE 70 21.16 150.00 NPD SSE* 22 26.28 157.50 NPD SSE 72 21.16 165.00 NPD SSE* 24 26.28 165.00 NPD SSE* 73 23.41 172.50 NPD S* 26 29.21 187.50 NPD S* 76 25.16 195.00 NPD SW* 27 29.21 187.50 NPD SW* 79 <	15	25.05	97.50	NPD	E*	64	19.94	105.00	NPD	ESE*
17 24.71 112.50 NPD ESE 66 19.94 120.00 NPD ESE* 18 24.71 120.00 NPD SE* 67 20.08 127.50 NPD SE 19 24.94 135.00 NPD SE 68 20.08 142.50 NPD SE 21 24.94 142.50 NPD SE 70 21.16 150.00 NPD SE 23 26.28 150.00 NPD SSE* 71 21.16 155.00 NPD SSE 24 26.28 165.00 NPD SSE* 73 23.41 172.50 NPD S* 25 29.21 172.50 NPD S* 76 23.41 187.50 NPD S* 26 29.21 187.50 NPD S* 77 25.16 202.50 NPD SW* 29 31.56 202.50 NPD SW* 80 25.0	16	24.71	105.00	NPD	ESE*	65	19.94	112.50	NPD	ESE
18 24.71 120.00 NPD ESE* 67 20.08 127.50 NPD SE* 19 24.94 127.50 NPD SE 68 20.08 142.50 NPD SE 20 24.94 142.50 NPD SE 69 20.08 142.50 NPD SE 21 24.94 142.50 NPD SE* 70 21.16 157.00 NPD SSE 22 26.28 157.50 NPD SSE 72 21.16 165.00 NPD SSE 24 26.28 165.00 NPD SSE* 73 23.41 172.50 NPD S* 26 29.21 172.50 NPD S* 76 25.16 210.00 NPD SSW* 28 31.56 195.00 NPD SSW* 77 25.16 210.00 NPD SSW* 30 31.56 210.00 NPD SSW* 80 <t< td=""><td>17</td><td>24.71</td><td>112.50</td><td>NPD</td><td>ESE</td><td>66</td><td>19.94</td><td>120.00</td><td>NPD</td><td>ESE*</td></t<>	17	24.71	112.50	NPD	ESE	66	19.94	120.00	NPD	ESE*
19 24.94 127.50 NPD SE* 68 20.08 135.00 NPD SE 20 24.94 135.00 NPD SE 69 20.08 142.50 NPD SE* 21 24.94 142.50 NPD SE* 70 21.16 150.00 NPD SSE* 22 26.28 150.00 NPD SSE* 71 21.16 165.00 NPD SSE 24 26.28 165.00 NPD SSE* 73 23.41 172.50 NPD S 26 29.21 180.00 NPD S* 76 25.16 195.00 NPD S* 27 29.21 187.50 NPD SW* 77 25.16 210.00 NPD SSW* 28 31.56 195.00 NPD SSW* 78 25.16 210.00 NPD SW* 30 31.66 217.50 NPD SW* 80 <td< td=""><td>18</td><td>24.71</td><td>120.00</td><td>NPD</td><td>ESE*</td><td>67</td><td>20.08</td><td>127.50</td><td>NPD</td><td>SE*</td></td<>	18	24.71	120.00	NPD	ESE*	67	20.08	127.50	NPD	SE*
20 24.94 135.00 NPDSE69 20.08 142.50 NPDSE*21 24.94 142.50 NPDSE*70 21.16 150.00 NPDSSE*22 26.28 150.00 NPDSSE*71 21.16 157.50 NPDSSE23 26.28 157.50 NPDSSE72 21.16 165.00 NPDSSE24 26.28 165.00 NPDSSE*73 23.41 172.50 NPDS*25 29.21 172.50 NPDS*74 23.41 180.00 NPDS26 29.21 187.50 NPDS*76 223.16 195.00 NPDSSW*27 29.21 187.50 NPDSSW*77 25.16 202.50 NPDSSW*28 31.56 195.00 NPDSSW*77 25.16 210.00 NPDSSW*30 31.56 217.50 NPDSSW*79 25.08 225.00 NPDSW*31 31.66 225.00 NPDSW* 80 225.08 225.00 NPDSW*33 31.66 247.50 NPDSW* 82 24.03 240.00 NPDWSW*34 30.68 247.50 NPDWSW 83 24.03 247.50 NPDWSW*33 31.66 232.50 NPDWSW 85 23.06 277.50 NPDWSW </td <td>19</td> <td>24.94</td> <td>127.50</td> <td>NPD</td> <td>SE*</td> <td>68</td> <td>20.08</td> <td>135.00</td> <td>NPD</td> <td>SE</td>	19	24.94	127.50	NPD	SE*	68	20.08	135.00	NPD	SE
21 24.94 142.50 NPDSE* 70 21.16 150.00 NPDSSE* 22 26.28 150.00 NPDSSE* 71 21.16 157.50 NPDSSE 23 26.28 157.50 NPDSSE* 72 21.16 165.00 NPDSSE* 24 26.28 165.00 NPDSSE* 73 23.41 172.50 NPDS* 25 29.21 172.50 NPDS* 74 23.41 180.00 NPDS 26 29.21 180.00 NPDS 75 23.41 187.50 NPDS* 27 29.21 187.50 NPDS* 76 25.16 205.00 NPDSSW 28 31.56 195.00 NPDSSW* 77 25.16 210.00 NPDSSW* 29 31.56 210.00 NPDSSW* 79 25.08 217.50 NPDSW 31 31.66 225.00 NPDSW* 80 25.08 225.00 NPDSW 31 31.66 232.50 NPDSW* 82 24.03 240.00 NPDSW* 34 30.68 247.50 NPDWSW 84 24.03 247.50 NPDWSW 35 30.68 247.50 NPDWSW* 85 23.06 277.50 NPDW 36 30.68 247.50 NPDWSW* 85 23.06 <td>20</td> <td>24.94</td> <td>135.00</td> <td>NPD</td> <td>SE</td> <td>69</td> <td>20.08</td> <td>142.50</td> <td>NPD</td> <td>SE*</td>	20	24.94	135.00	NPD	SE	69	20.08	142.50	NPD	SE*
22 26.28 150.00 NPD SSE* 71 21.16 157.50 NPD SSE 23 26.28 157.50 NPD SSE 72 21.16 165.00 NPD SSE* 24 26.28 165.00 NPD SSE* 73 23.41 172.50 NPD S* 25 29.21 172.50 NPD S* 74 23.41 180.00 NPD S 26 29.21 187.50 NPD S* 76 25.16 195.00 NPD SSW* 28 31.56 195.00 NPD SSW* 77 25.16 202.50 NPD SSW 30 31.56 210.00 NPD SW* 80 25.08 225.00 NPD SW* 31 31.66 232.50 NPD SW 81 25.08 232.50 NPD SW* 33 31.66 232.50 NPD SW* 82 <td< td=""><td>21</td><td>24.94</td><td>142.50</td><td>NPD</td><td>SE*</td><td>70</td><td>21.16</td><td>150.00</td><td>NPD</td><td>SSE*</td></td<>	21	24.94	142.50	NPD	SE*	70	21.16	150.00	NPD	SSE*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	26.28	150.00	NPD	SSE*	71	21.16	157.50	NPD	SSE
24 26.28 165.00 NPD SSE* 73 23.41 172.50 NPD S* 25 29.21 172.50 NPD S* 74 23.41 180.00 NPD S 26 29.21 180.00 NPD S 75 23.41 187.50 NPD S* 27 29.21 187.50 NPD S* 76 25.16 195.00 NPD SSW* 28 31.56 195.00 NPD SSW 77 25.16 210.00 NPD SSW 30 31.56 210.00 NPD SSW* 79 25.08 217.50 NPD SW 31 31.66 217.50 NPD SW 80 25.08 232.00 NPD SW* 33 31.66 232.50 NPD SW* 82 24.03 240.00 NPD WSW 34 30.68 240.00 NPD WSW 83 24.03	23	26.28	157.50	NPD	SSE	72	21.16	165.00	NPD	SSE*
25 29.21 172.50 NPD S* 74 23.41 180.00 NPD S 26 29.21 180.00 NPD S 75 23.41 187.50 NPD S* 27 29.21 187.50 NPD S* 76 25.16 195.00 NPD SSW* 28 31.56 195.00 NPD SSW* 77 25.16 210.00 NPD SSW* 30 31.56 210.00 NPD SSW* 79 25.08 217.50 NPD SW* 31 31.66 217.50 NPD SW 80 25.08 225.00 NPD SW* 32 31.66 225.00 NPD SW* 82 24.03 240.00 NPD WSW* 34 30.68 240.00 NPD WSW* 83 24.03 245.00 NPD WSW* 35 30.68 255.00 NPD WSW* 85 <t< td=""><td>24</td><td>26.28</td><td>165.00</td><td>NPD</td><td>SSE*</td><td>73</td><td>23.41</td><td>172.50</td><td>NPD</td><td>S*</td></t<>	24	26.28	165.00	NPD	SSE*	73	23.41	172.50	NPD	S*
26 29.21 180.00 NPD S 75 23.41 187.50 NPD S* 27 29.21 187.50 NPD S* 76 25.16 195.00 NPD SSW* 28 31.56 195.00 NPD SSW* 77 25.16 202.50 NPD SSW 30 31.56 200.00 NPD SSW* 79 25.08 217.50 NPD SW 31 31.66 217.50 NPD SW 80 25.08 225.00 NPD SW* 32 31.66 225.00 NPD SW 81 25.08 232.50 NPD SW* 33 31.66 232.50 NPD SW* 82 24.03 240.00 NPD WSW 34 30.68 247.50 NPD WSW 83 24.03 247.50 NPD WSW* 36 30.68 255.00 NPD WSW 85 2	25	29.21	172.50	NPD	S*	74	23.41	180.00	NPD	S
27 29.21 187.50 NPD S* 76 25.16 195.00 NPD SSW* 28 31.56 195.00 NPD SSW* 77 25.16 202.50 NPD SSW 29 31.56 202.50 NPD SSW 78 25.16 210.00 NPD SSW* 30 31.56 210.00 NPD SSW* 79 25.08 217.50 NPD SW* 31 31.66 217.50 NPD SW 80 25.08 232.50 NPD SW* 32 31.66 232.50 NPD SW* 82 24.03 240.00 NPD WSW* 34 30.68 247.50 NPD WSW* 83 24.03 245.00 NPD WSW* 36 30.68 245.50 NPD WSW* 85 23.06 262.50 NPD W <ttmask< td=""> 37 29.50 270.00 NPD W* 86</ttmask<>	26	29.21	180.00	NPD	S	75	23.41	187.50	NPD	S*
28 31.56 195.00 NPD SSW* 77 25.16 202.50 NPD SSW 30 31.56 202.50 NPD SSW 78 25.16 210.00 NPD SSW* 30 31.56 210.00 NPD SSW* 79 25.08 217.50 NPD SW* 31 31.66 217.50 NPD SW* 80 25.08 225.00 NPD SW 32 31.66 225.00 NPD SW* 82 24.03 240.00 NPD WSW* 34 30.68 247.50 NPD WSW 83 24.03 255.00 NPD WSW* 36 30.68 247.50 NPD WSW* 85 23.06 262.50 NPD W <ttm>37 37 29.50 262.50 NPD W* 86 23.06 270.00 NPD W<ttm>38 21.45 285.00 NPD WNW* 39 29.</ttm></ttm>	27	29.21	187.50	NPD	S*	76	25.16	195.00	NPD	SSW*
29 31.56 202.50 NPD SSW 78 25.16 210.00 NPD SSW* 30 31.56 210.00 NPD SSW* 79 25.08 217.50 NPD SW 31 31.66 217.50 NPD SW 80 25.08 225.00 NPD SW 32 31.66 225.00 NPD SW 81 25.08 232.50 NPD SW* 33 31.66 232.50 NPD SW* 82 24.03 240.00 NPD WSW* 34 30.68 240.00 NPD WSW* 83 24.03 247.50 NPD WSW 36 30.68 255.00 NPD WSW* 85 23.06 262.50 NPD W 37 29.50 270.00 NPD W 87 23.06 277.50 NPD W 38 29.50 277.50 NPD W 82 21.45	28	31.56	195.00	NPD	SSW*	77	25.16	202.50	NPD	SSW
30 31.56 210.00 NPD SSW* 79 25.08 217.50 NPD SW* 31 31.66 217.50 NPD SW 80 25.08 225.00 NPD SW 32 31.66 225.00 NPD SW 81 25.08 232.50 NPD SW* 33 31.66 232.50 NPD SW* 82 24.03 240.00 NPD WSW* 34 30.68 240.00 NPD WSW* 83 24.03 247.50 NPD WSW 36 30.68 247.50 NPD WSW 84 24.03 255.00 NPD WSW* 36 30.68 255.00 NPD WSW* 85 23.06 262.50 NPD W 37 29.50 270.00 NPD W 87 23.06 277.50 NPD W 39 29.50 277.50 NPD W 88 21.4	29	31.56	202.50	NPD	SSW	78	25.16	210.00	NPD	SSW*
31 31.66 217.50 NPD SW* 80 25.08 225.00 NPD SW 32 31.66 225.00 NPD SW 81 25.08 232.50 NPD SW* 33 31.66 232.50 NPD SW* 82 24.03 240.00 NPD WSW* 34 30.68 240.00 NPD WSW* 83 24.03 240.00 NPD WSW 35 30.68 247.50 NPD WSW 84 24.03 255.00 NPD WSW* 36 30.68 255.00 NPD WSW* 85 23.06 262.50 NPD W 37 29.50 262.50 NPD W 87 23.06 277.50 NPD W* 39 29.50 277.50 NPD W 87 23.06 277.50 NPD WNW 41 27.45 285.00 NPD WNW* 89 21	30	31.56	210.00	NPD	SSW*	79	25.08	217.50	NPD	SW*
32 31.66 225.00 NPD SW 81 25.08 232.50 NPD SW* 33 31.66 232.50 NPD SW* 82 24.03 240.00 NPD WSW* 34 30.68 240.00 NPD WSW* 83 24.03 247.50 NPD WSW 35 30.68 247.50 NPD WSW 84 24.03 255.00 NPD WSW* 36 30.68 255.00 NPD WSW* 85 23.06 262.50 NPD W* 37 29.50 262.50 NPD W 87 23.06 277.50 NPD W* 39 29.50 277.50 NPD W* 88 21.45 285.00 NPD WNW* 40 27.45 285.00 NPD WNW* 89 21.45 292.50 NPD WNW* 42 27.45 300.00 NPD WNW* 91	31	31.66	217.50	NPD	SW*	80	25.08	225.00	NPD	SW
33 31.66 232.50 NPD SW* 82 24.03 240.00 NPD WSW* 34 30.68 240.00 NPD WSW* 83 24.03 247.50 NPD WSW 35 30.68 247.50 NPD WSW 84 24.03 255.00 NPD WSW* 36 30.68 255.00 NPD WSW* 85 23.06 262.50 NPD W 37 29.50 262.50 NPD W 86 23.06 270.00 NPD W 39 29.50 277.50 NPD W* 88 21.45 285.00 NPD WNW* 40 27.45 285.00 NPD WNW* 89 21.45 292.50 NPD WNW* 42 27.45 300.00 NPD WNW* 90 21.45 300.00 NPD NW* 43 25.83 307.50 NPD NW* 91 <	32	31.66	225.00	NPD	SW	81	25.08	232.50	NPD	SW*
34 30.68 240.00 NPD WSW* 83 24.03 247.50 NPD WSW 35 30.68 247.50 NPD WSW 84 24.03 255.00 NPD WSW* 36 30.68 255.00 NPD WSW* 85 23.06 262.50 NPD W* 37 29.50 262.50 NPD W* 86 23.06 270.00 NPD W 38 29.50 270.00 NPD W 87 23.06 277.50 NPD W* 40 27.45 285.00 NPD W* 88 21.45 292.50 NPD WNW* 41 27.45 292.50 NPD WNW* 91 20.29 307.50 NPD NW* 43 25.83 307.50 NPD NW* 92 20.29 315.00 NPD NW* 44 25.83 315.00 NPD NW* 93 2	33	31.66	232.50	NPD	SW*	82	24.03	240.00	NPD	WSW*
3530.68247.50NPDWSW8424.03255.00NPDWSW*3630.68255.00NPDWSW*8523.06262.50NPDW*3729.50262.50NPDW*8623.06270.00NPDW3829.50270.00NPDW8723.06277.50NPDW*3929.50277.50NPDW*8821.45285.00NPDWNW*4027.45285.00NPDWNW*8921.45292.50NPDWNW4127.45292.50NPDWNW9021.45300.00NPDWNW*4227.45300.00NPDWNW*9120.29307.50NPDNW*4325.83307.50NPDNW*9220.29315.00NPDNW4425.83315.00NPDNW*9420.27330.00NPDNW4625.55337.50NPDNW9520.27337.50NPDNNW4725.55337.50NPDNNW9620.27345.00NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	34	30.68	240.00	NPD	WSW*	83	24.03	247.50	NPD	WSW
3630.68255.00NPDWSW*8523.06262.50NPDW*3729.50262.50NPDW*8623.06270.00NPDW3829.50270.00NPDW8723.06277.50NPDW*3929.50277.50NPDW*8821.45285.00NPDWNW*4027.45285.00NPDWNW*8921.45292.50NPDWNW4127.45292.50NPDWNW9021.45300.00NPDWNW*4227.45300.00NPDWNW*9120.29307.50NPDNW*4325.83307.50NPDNW*9220.29315.00NPDNW4425.83315.00NPDNW*9420.27330.00NPDNW4625.55330.00NPDNNW9520.27337.50NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	35	30.68	247.50	NPD	WSW	84	24.03	255.00	NPD	WSW*
3729.50262.50NPDW*8623.06270.00NPDW3829.50270.00NPDW8723.06277.50NPDW*3929.50277.50NPDW*8821.45285.00NPDWNW*4027.45285.00NPDWNW*8921.45292.50NPDWNW4127.45292.50NPDWNW9021.45300.00NPDWNW*4227.45300.00NPDWNW*9120.29307.50NPDNW*4325.83307.50NPDNW*9220.29315.00NPDNW4425.83315.00NPDNW9320.29322.50NPDNW*4525.83322.50NPDNW*9420.27330.00NPDNNW4625.55330.00NPDNNW9520.27337.50NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	36	30.68	255.00	NPD	WSW*	85	23.06	262.50	NPD	W*
3829.50270.00NPDW8723.06277.50NPDW*3929.50277.50NPDW*8821.45285.00NPDWNW*4027.45285.00NPDWNW*8921.45292.50NPDWNW4127.45292.50NPDWNW9021.45300.00NPDWNW*4227.45300.00NPDWNW*9120.29307.50NPDNW*4325.83307.50NPDNW*9220.29315.00NPDNW4425.83315.00NPDNW9320.29322.50NPDNW*4525.83322.50NPDNW*9420.27330.00NPDNNW4625.55330.00NPDNNW9520.27337.50NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	37	29.50	262.50	NPD	W*	86	23.06	270.00	NPD	W
3929.50277.50NPDW*8821.45285.00NPDWNW*4027.45285.00NPDWNW*8921.45292.50NPDWNW4127.45292.50NPDWNW9021.45300.00NPDWNW*4227.45300.00NPDWNW*9120.29307.50NPDNW*4325.83307.50NPDNW*9220.29315.00NPDNW4425.83315.00NPDNW9320.29322.50NPDNW*4525.83322.50NPDNW*9420.27330.00NPDNNW4625.55330.00NPDNNW9520.27337.50NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	38	29.50	270.00	NPD	W	87	23.06	277.50	NPD	W*
4027.45285.00NPDWNW*8921.45292.50NPDWNW4127.45292.50NPDWNW9021.45300.00NPDWNW*4227.45300.00NPDWNW*9120.29307.50NPDNW*4325.83307.50NPDNW*9220.29315.00NPDNW4425.83315.00NPDNW9320.29322.50NPDNW*4525.83322.50NPDNW*9420.27330.00NPDNWW4625.55330.00NPDNNW9520.27337.50NPDNNW4725.55337.50NPDNNW9620.27345.00NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	39	29.50	277.50	NPD	W*	88	21.45	285.00	NPD	WNW*
4127.45292.50NPDWNW9021.45300.00NPDWNW*4227.45300.00NPDWNW*9120.29307.50NPDNW*4325.83307.50NPDNW*9220.29315.00NPDNW4425.83315.00NPDNW9320.29322.50NPDNW*4525.83322.50NPDNW*9420.27330.00NPDNWW4625.55330.00NPDNNW9520.27337.50NPDNNW4725.55337.50NPDNNW9620.27345.00NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	40	27.45	285.00	NPD	WNW*	89	21.45	292.50	NPD	WNW
4227.45300.00NPDWNW*9120.29307.50NPDNW*4325.83307.50NPDNW*9220.29315.00NPDNW4425.83315.00NPDNW9320.29322.50NPDNW*4525.83322.50NPDNW*9420.27330.00NPDNNW4625.55330.00NPDNNW9520.27337.50NPDNNW4725.55337.50NPDNNW9620.27345.00NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	41	27.45	292.50	NPD	WNW	90	21.45	300.00	NPD	WNW*
4325.83307.50NPDNW*9220.29315.00NPDNW4425.83315.00NPDNW9320.29322.50NPDNW*4525.83322.50NPDNW*9420.27330.00NPDNNW4625.55330.00NPDNNW9520.27337.50NPDNNW4725.55337.50NPDNNW9620.27345.00NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	42	27.45	300.00	NPD	WNW*	91	20.29	307.50	NPD	NW*
4425.83315.00NPDNW9320.29322.50NPDNW*4525.83322.50NPDNW*9420.27330.00NPDNNW4625.55330.00NPDNNW9520.27337.50NPDNNW4725.55337.50NPDNNW9620.27345.00NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	43	25.83	307.50	NPD	NW*	92	20.29	315.00	NPD	NW
4525.83322.50NPDNW*9420.27330.00NPDNNW4625.55330.00NPDNNW9520.27337.50NPDNNW4725.55337.50NPDNNW9620.27345.00NPDNNW4825.55345.00NPDNNW970.000.00NPDN4921.17352.50NPDN*980.000.00NPDN	44	25.83	315.00	NPD	NW	93	20.29	322.50	NPD	NW*
46 25.55 330.00 NPD NNW 95 20.27 337.50 NPD NNW 47 25.55 337.50 NPD NNW 96 20.27 345.00 NPD NNW 48 25.55 345.00 NPD NNW 97 0.00 0.00 NPD N 49 21.17 352.50 NPD N* 98 0.00 0.00 NPD N	45	25.83	322.50	NPD	NW*	94	20.27	330.00	NPD	NNW
47 25.55 337.50 NPD NNW 96 20.27 345.00 NPD NNW 48 25.55 345.00 NPD NNW 97 0.00 0.00 NPD N 49 21.17 352.50 NPD N* 98 0.00 0.00 NPD N	46	25.55	330.00	NPD	NNW	95	20.27	337.50	NPD	NNW
48 25.55 345.00 NPD NNW 97 0.00 0.00 NPD N 49 21.17 352.50 NPD N* 98 0.00 0.00 NPD N	47	25.55	337.50	NPD	NNW	96	20.27	345.00	NPD	NNW
49 21.17 352.50 NPD N* 98 0.00 0.00 NPD N	48	25.55	345.00	NPD	NNW	97	0.00	0.00	NPD	Ν
	49	21.17	352.50	NPD	N*	98	0.00	0.00	NPD	Ν

Fonte: Petrobras (2022).

Ondas

Número de casos de ventos: 1564 Número de subdivisões de intervalo: 5 Número de frequências do período: 66 Número de ondas harmônicas: 326

Caso	Tp (s)	Periodo Sig. (s)	Hs (m)	Espectro	Gama	Alfa	Caso	Tp (s)	Periodo Sig. (s)	Hs (m)	Espectro	Gama	Alfa
1	6	3,8	352,5	JONSWAP	2.655.264	0,04	783	6,5	4,5	292,5	JONSWAP	2.552.934	0,04
2	6,5	4,1	352,5	JONSWAP	2.552.934	0,03	784	7	4,7	292,5	JONSWAP	2.461.710	0,03
3	7	4,3	352,5	JONSWAP	2.461.710	0,03	785	7,5	4,8	292,5	JONSWAP	2.379.715	0,03
4	7,5	4,4	352,5	JONSWAP	2.379.715	0,02	786	8	4,9	292,5	JONSWAP	2.305.488	0,02
5	8	4,5	352,5	JONSWAP	2.305.488	0,02	787	8,5	4,9	292,5	JONSWAP	2.237.872	0,02
6	8,5	4,6	352,5	JONSWAP	2.237.872	0,02	788	9	4,9	292,5	JONSWAP	2.175.940	0,01
7	9	4,6	352,5	JONSWAP	2.175.940	0,01	789	9,5	4,9	292,5	JONSWAP	2.118.935	0,01
8	9,5	4,5	352,5	JONSWAP	2.118.935	0,01	790	10	4,8	292,5	JONSWAP	2.066.236	0,01
9	10	4,1	352,5	JONSWAP	2.066.236	0,01	791	10,5	4,5	292,5	JONSWAP	2.017.326	0,01
10	6	3,8	0	JONSWAP	2.655.264	0,04	792	6	3,8	300	JONSWAP	2.655.264	0,04

11	6.5	4.1	0	JONSWAP	2.552.934	0.03	793	6.5	4.5	300	JONSWAP	2.552.934	0.04
12	7	4.2	Ő	IONSWAD	2 461 710	0.02	704	7	4.7	200	IONSWAD	2.661.710	0.02
12		4,5	0	JOINSWAF	2.401.710	0,05	794		4,/	300	JOINSWAF	2.401.710	0,05
13	7,5	4,4	0	JONSWAP	2.379.715	0,02	795	7,5	4,8	300	JONSWAP	2.3/9./15	0,03
14	8	4,5	0	JONSWAP	2.305.488	0,02	796	8	4,9	300	JONSWAP	2.305.488	0,02
15	8,5	4,6	0	JONSWAP	2.237.872	0,02	797	8,5	4,9	300	JONSWAP	2.237.872	0,02
16	9	4.6	0	IONSWAP	2 175 940	0.01	798	9	49	300	IONSWAP	2 175 940	0.01
17	0.5	4,0	0	IONEWAD	2.175.940	0,01	700	ó.5	4.0	200	IONEWAD	2.175.940	0,01
1/	9,5	4,5	0	JOINSWAP	2.118.935	0,01	/99	9,5	4,9	300	JUNSWAP	2.118.935	0,01
18	10	4,1	0	JONSWAP	2.066.236	0,01	800	10	4,8	300	JONSWAP	2.066.236	0,01
19	6	3.8	7.5	JONSWAP	2.655.264	0.04	801	10.5	4.5	300	JONSWAP	2.017.326	0.01
20	6.5	4.1	7.5	IONSWAP	2 552 034	0.03	802	6	3.8	307.5	IONSWAP	2 655 264	0.04
20	0,5	4,1	7,5	JONGWAR	2.332.734	0,05	002	~	5,0	207,5	JONGWAR	2.0553.204	0,04
21	/	4,3	7,5	JONSWAP	2.461./10	0,03	803	6,5	4,5	307,5	JONSWAP	2.552.934	0,04
22	7,5	4,4	7,5	JONSWAP	2.379.715	0,02	804	7	4,7	307,5	JONSWAP	2.461.710	0,03
23	8	4 5	75	JONSWAP	2 305 488	0.02	805	75	48	307 5	JONSWAP	2 379 715	0.03
24	° 5	1.6	7.5	IONSWAD	2.202.100	0,02	806	0	1.9	207.5	IONSWAD	2 205 499	0,02
24	0,5	4,0	7,5	JOINSWAF	2.237.072	0,02	800	0.5	4,0	307,3	JOINSWAF	2.303.466	0,02
25	9	4,6	7,5	JONSWAP	2.1/5.940	0,01	807	8,5	4,8	307,5	JONSWAP	2.237.872	0,02
26	9,5	4,5	7,5	JONSWAP	2.118.935	0,01	808	9	4,7	307,5	JONSWAP	2.175.940	0,01
27	10	4.1	7.5	JONSWAP	2.066.236	0.01	809	9.5	4.6	307.5	JONSWAP	2.118.935	0.01
28	6	3.8	15	IONSWAP	2 655 264	0.04	810	10	44	307.5	IONSWAP	2 066 236	0.01
20	6	5,0	15	JONGWAR	2.055.204	0,04	010	10 5	2,0	207,5	JONGWAR	2.000.230	0,01
29	0,5	4,1	15	JOINSWAP	2.552.954	0,03	811	10,5	3,9	307,5	JUNSWAP	2.017.326	0,01
30	7	4,4	15	JONSWAP	2.461.710	0,03	812	6	3,8	315	JONSWAP	2.655.264	0,04
31	7.5	4.8	15	JONSWAP	2.379.715	0.03	813	6.5	4.5	315	JONSWAP	2.552.934	0.04
32	8	5 1	15	IONSWAP	2 305 488	0.02	814	7	47	315	IONSWAP	2 461 710	0.03
32	0.5	5,1	15	JONGWAI	2.303.400	0,02	014	- '-	4.0	215	JONGWAI	2.401.710	0,05
33	8,5	5,4	15	JONSWAP	2.237.872	0,02	815	7,5	4,8	315	JONSWAP	2.3/9./15	0,03
34	9	5,7	15	JONSWAP	2.175.940	0,02	816	8	4,8	315	JONSWAP	2.305.488	0,02
35	9.5	6	15	JONSWAP	2.118.935	0.02	817	8.5	4.8	315	JONSWAP	2.237.872	0.02
36	10	63	15	IONSWAP	2 066 236	0.02	818	9	47	315	IONSWAP	2 175 940	0.01
27	10	0,5	15	JONGWAR	2.000.250	0,02	010		4,7	215	JONGWAR	2.175.940	0,01
31	10,5	6,4	15	JONSWAP	2.01/.326	0,01	819	9,5	4,6	315	JONSWAP	2.118.935	0,01
38	11	6,5	15	JONSWAP	1.971.770	0,01	820	10	4,4	315	JONSWAP	2.066.236	0,01
39	6	3.8	22.5	JONSWAP	2.655.264	0.04	821	10.5	3.9	315	JONSWAP	2.017.326	0.01
40	6.5	4.1	22,5	IONSWAP	2 552 034	0.03	822	6	3.8	322.5	IONSWAP	2 655 264	0.04
41	0,5	4.4	22,5	JONGWAD	2.332.734	0,05	022	6	3,0	222,5	JONGWAD	2.0553.204	0,04
41	/	4,4	22,5	JONSWAP	2.461./10	0,03	823	6,5	4,5	322,5	JONSWAP	2.552.934	0,04
42	7,5	4,8	22,5	JONSWAP	2.379.715	0,03	824	7	4,7	322,5	JONSWAP	2.461.710	0,03
43	8	5.1	22.5	JONSWAP	2.305.488	0.02	825	7.5	4.8	322.5	JONSWAP	2.379.715	0.03
11	8 5	5.4	22 5	IONSWAP	2 237 872	0.02	826	8	18	322.5	IONSWAP	2 305 488	0.02
45	0,5	5,4	22,5	JONGWAD	2.237.072	0,02	020	0.5	4.0	222,5	JONGWAD	2.303.400	0,02
45	9	5,7	22,5	JONSWAP	2.1/5.940	0,02	827	8,5	4,8	322,5	JONSWAP	2.237.872	0,02
46	9,5	6	22,5	JONSWAP	2.118.935	0,02	828	9	4,7	322,5	JONSWAP	2.175.940	0,01
47	10	6.3	22.5	JONSWAP	2.066.236	0.02	829	9.5	4.6	322.5	JONSWAP	2.118.935	0.01
48	10.5	64	22'5	IONSWAP	2 017 326	0.01	830	10	44	322 5	IONSWAP	2 066 236	0.01
40	10,5	0,4	22,5	JONGWAD	1.071.770	0,01	030	10 5	2,0	222,5	JOINSWAI	2.000.230	0,01
49	11	6,5	22,5	JONSWAP	1.9/1.//0	0,01	831	10,5	3,9	322,5	JUNSWAP	2.017.320	0,01
50	6	3,8	30	JONSWAP	2.655.264	0,04	832	6	3,8	330	JONSWAP	2.655.264	0,04
51	6,5	4,1	30	JONSWAP	2.552.934	0,03	833	6,5	4,3	330	JONSWAP	2.552.934	0,04
52	7	44	30	IONSWAP	2 461 710	0.03	834	7	44	330	IONSWAP	2 461 710	0.03
52	7 5	4.0	20	JONGWAD	2.401.710	0,05	0.25	7'5	4.5	220	JONGWAD	2.401.710	0,05
33	7,5	4,0	50	JOINSWAP	2.3/9./13	0,05	033	7,5	4,5	330	JOINSWAP	2.3/9./13	0,02
54	8	5,1	30	JONSWAP	2.305.488	0,02	836	8	4,5	330	JONSWAP	2.305.488	0,02
55	8,5	5,4	30	JONSWAP	2.237.872	0,02	837	8,5	4,4	330	JONSWAP	2.237.872	0,01
56	ģ	57	30	IONSWAP	2 175 940	0.02	838	6	3.8	337 5	IONSWAP	2 655 264	0.04
50	0.5	5,1	20	JONGWAD	2.175.940	0,02	030	6	1.2	227.5	JONGWAD	2.0553.204	0,04
5/	9,5	0	30	JOINSWAP	2.118.935	0,02	839	0,5	4,5	337,5	JUNSWAP	2.552.934	0,04
58	10	6,3	30	JONSWAP	2.066.236	0,02	840	7	4,4	337,5	JONSWAP	2.461.710	0,03
59	10,5	6,4	30	JONSWAP	2.017.326	0,01	841	7,5	4,5	337,5	JONSWAP	2.379.715	0,02
60	11	6.5	30	IONSWAP	1 971 770	0.01	842	8	45	337 5	IONSWAP	2 305 488	0.02
61	6	2,0	27.5	IONEWAD	2 655 264	0.04	012	05	1,5	227.5	IONEWAD	2.202.100	0,02
01	0	5,0	57,5	JOINSWAP	2.033.204	0,04	845	0,5	4,4	337,3	JOINSWAP	2.237.872	0,01
62	6,5	4,2	37,5	JONSWAP	2.552.934	0,04	844	6	3,8	345	JONSWAP	2.655.264	0,04
63	7	4,5	37,5	JONSWAP	2.461.710	0,03	845	6,5	4,3	345	JONSWAP	2.552.934	0,04
64	7.5	4.8	37.5	JONSWAP	2.379.715	0.03	846	7	4.4	345	JONSWAP	2.461.710	0.03
65	8	5 1	37.5	IONSWAP	2 305 488	0.02	847	75	15	345	IONSWAP	2 370 715	0.02
05	0.5	5,1	27,5	JONGWAD	2.303.400	0,02	040	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4,5	245	JOINSWAI	2.379.713	0,02
00	8,5	5,5	37,5	JONSWAP	2.237.872	0,02	848	8	4,5	345	JUNSWAP	2.305.488	0,02
67	9	5,7	37,5	JONSWAP	2.175.940	0,02	849	8,5	4,4	345	JONSWAP	2.237.872	0,01
68	9,5	6,1	37,5	JONSWAP	2.118.935	0,02	850	6	3,5	352,5	JONSWAP	2.655.264	0,03
69	10	6.2	37.5	IONSWAP	2 066 236	0.02	851	65	3.8	352 5	IONSWAP	2 552 934	0.03
70	10.5	6.5	37.5	IONSWAP	2 017 326	0.01	852	7	3.0	352,5	IONSWAP	2 461 710	0.02
70	10,5	0,5	27,5	JONGWAR	1.071.770	0,01	0.52	- '-	5,5	252,5	JONGWAR	2.401.710	0,02
/1	11	0,0	57,5	JOINSWAP	1.9/1.//0	0,01	855	1,5	4,1	332,3	JOINSWAP	2.3/9./13	0,02
72	11,5	6,6	37,5	JONSWAP	1.929.200	0,01	854	8	4,2	352,5	JONSWAP	2.305.488	0,02
73	6	3.8	45	JONSWAP	2.655.264	0.04	855	8.5	4.2	352.5	JONSWAP	2.237.872	0.01
74	65	42	45	JONSWAP	2 552 934	0.04	856	9	41	352 5	JONSWAP	2 175 940	0.01
75	7	4.5	15	IONEWAD	2 461 710	0,02	057	ć	2.5	0,0	IONEWAD	2 655 264	0,02
75		4,5	43	JOINSWAP	2.401.710	0,05	037	0	3,5	0	JOINSWAP	2.033.204	0,05
76	7,5	4,8	45	JONSWAP	2.379.715	0,03	858	6,5	3,8	0	JONSWAP	2.552.934	0,03
77	8	5,1	45	JONSWAP	2.305.488	0,02	859	7	3,9	0	JONSWAP	2.461.710	0,02
78	8 5	5 5	45	JONSWAP	2 237 872	0.02	860	75	41	0	JONSWAP	2 379 715	0.02
70	0,0	57	15	IONEWAD	2.175.040	0,02	961	0	4.2	õ	IONEWAD	2 205 499	0,02
/9	9	5,7	43	JOINSWAP	2.1/3.940	0,02	801	0	4,2	0	JOINSWAP	2.303.488	0,02
80	9,5	6,1	45	JONSWAP	2.118.935	0,02	862	8,5	4,2	0	JONSWAP	2.237.872	0,01
81	10	6,2	45	JONSWAP	2.066.236	0,02	863	9	4,1	0	JONSWAP	2.175.940	0,01
82	10.5	6.5	45	JONSWAP	2.017.326	0.01	864	6	3.5	7.5	JONSWAP	2.655.264	0.03
83	11	6.6	15	IONSWAD	1 971 770	0.01	865	6.5	2.8	75	IONSWAP	2 552 024	0.02
0.5	11	0,0	+3	JOINDWAP	1.2/1.//0	0,01	005	0,5	5,0	1,5	JOINGWAP	2.332.934	0,05
84	11,5	6,6	45	JONSWAP	1.929.200	0,01	866	1	3,9	7,5	JONSWAP	2.461.710	0,02
85	6	3,8	52,5	JONSWAP	2.655.264	0,04	867	7,5	4,1	7,5	JONSWAP	2.379.715	0,02
86	6.5	4.2	52.5	JONSWAP	2.552.934	0.04	868	8	4.2	7.5	JONSWAP	2.305.488	0.02
87	7	4.5	52 5	IONSWAD	2 461 710	0.03	860	85	42	75	IONSWAD	2 237 872	0.01
07		- , <i>J</i>	52,5	IONOWAP	2.701./10	0,05	007	0,5		7,5	IONOWAP	2.237.072	0,01
88	1,5	4,8	52,5	JUNSWAP	2.3/9./15	0,03	8/0	9	4,1	1,5	JUNSWAP	2.1/5.940	0,01
89	8	5,1	52,5	JONSWAP	2.305.488	0,02	871	6	3,5	15	JONSWAP	2.655.264	0,03
90	8,5	5,5	52,5	JONSWAP	2.237.872	0,02	872	6,5	3,8	15	JONSWAP	2.552.934	0,03
91	9	57	52.5	JONSWAP	2,175 940	0.02	873	7	4.1	15	JONSWAP	2,461 710	0.03
02	0.5	61	57 5	IONEWAR	2 1 1 2 0 2 5	0,02	974	7'=	л, 1 Л Л	15	IONSWAP	2 370 715	0,00
92	9,5	0,1	52,5	JOINSWAP	2.116.933	0,02	0/4	1,5	4,4	13	JOINSWAP	2.5/9./15	0,02
93	10	6,2	52,5	JONSWAP	2.066.236	0,02	875	8	4,7	15	JONSWAP	2.305.488	0,02
94	10,5	6,5	52,5	JONSWAP	2.017.326	0,01	876	8,5	5	15	JONSWAP	2.237.872	0,02
95	11	6,6	52.5	JONSWAP	1.971.770	0,01	877	9	5,2	15	JONSWAP	2.175.940	0,02
96	11.5	6.6	52 5	JONSWAP	1 929 200	0.01	878	95	53	15	IONSWAP	2 118 935	0.01
~~		0.0	24.2	201101111	1.747.400	0,01	0/0	1.0	2.2	1.5	- OT 10 11 / 11	JJJJ	0,01

97	6	3,8	60	JONSWAP	2.655.264	0,04	879	6	3,5	22,5	JONSWAP	2.655.264	0,03
08	65	15	60	IONSWAP	2 552 034	0.04	880	65	3.8	22.5	IONSWAP	2 552 034	0.03
20	0,5	4,5	00	JONSWAI	2.332.934	0,04	880	0,5	5,8	22,5	JOINSWAI	2.332.934	0,05
99	7	5,1	60	JONSWAP	2.461.710	0,04	881	1	4,1	22,5	JONSWAP	2.461.710	0,03
100	75	54	60	JONSWAP	2 379 715	0.04	882	75	44	22.5	JONSWAP	2 379 715	0.02
101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	57	60	IONEWAD	2 205 499	0,02	002	0	4.7	22,5	IONEWAD	2 205 499	0,02
101	8	5,7	60	JUNSWAP	2.305.488	0,03	883	ð	4,/	22,5	JONSWAP	2.305.488	0,02
102	8,5	5,8	60	JONSWAP	2.237.872	0,03	884	8,5	5	22,5	JONSWAP	2.237.872	0,02
103	9	61	60	IONSWAP	2 175 940	0.02	885	9	52	22.5	IONSWAP	2 175 940	0.02
103	6.5	6,1	60	JONGWAR	2.175.940	0,02	005		5,2	22,5	JONGWAD	2.175.940	0,02
104	9,5	6,2	60	JONSWAP	2.118.935	0,02	886	9,5	5,3	22,5	JONSWAP	2.118.935	0,01
105	10	64	60	IONSWAP	2 066 236	0.02	887	6	35	30	IONSWAP	2 655 264	0.03
100	10.5	6,1	60	JONGWAR	2.000.250	0,02	007	~~	2,0	20	JONGWAR	2.055.201	0,05
106	10,5	6,5	60	JONSWAP	2.01/.326	0,01	888	6,5	3,8	30	JONSWAP	2.552.934	0,03
107	11	6.6	60	JONSWAP	1.971.770	0.01	889	7	4.1	30	JONSWAP	2.461.710	0.03
100	11.7	6,6	<u> </u>	LONICIULAD	1 020 200	0.01	000	- -	4.4	20	IONGWAR	0.070.715	0,00
108	11,5	6,6	60	JONSWAP	1.929.200	0,01	890	7,5	4,4	30	JONSWAP	2.3/9./15	0,02
109	12	6.5	60	JONSWAP	1.889.305	0.01	891	8	4.7	30	JONSWAP	2.305.488	0.02
110	12.5	62	60	IONSWAP	1 851 813	0.01	802	85	5	30	IONSWAP	2 237 872	0.02
110	12,5	0,2	00	JOINSWAI	1.051.015	0,01	092	0,5	5	50	JOINSWAI	2.237.872	0,02
111	6	3,8	67,5	JONSWAP	2.655.264	0,04	893	9	5,2	30	JONSWAP	2.175.940	0,02
112	65	45	67.5	JONSWAP	2 552 934	0.04	894	95	53	30	JONSWAP	2 118 935	0.01
112	7	5 1	(7,5	IONGWAD	2.4(1.710	0.04	805	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,3	27.5	IONEWAD	2.1110.555	0,01
115	/	5,1	07,5	JONSWAP	2.401./10	0,04	895	0	3,4	37,5	JONSWAP	2.055.204	0,03
114	7,5	5,4	67,5	JONSWAP	2.379.715	0,04	896	6,5	3,7	37,5	JONSWAP	2.552.934	0,03
115	8	57	67.5	IONSWAP	2 305 488	0.03	897	7	4	37 5	IONSWAP	2 461 710	0.03
115	0.5	5,7	07,5	JONGWAN	2.303.400	0,05	000	- ´-		57,5	JONGWAN	2.401.710	0,05
116	8,5	5,8	67,5	JONSWAP	2.237.872	0,03	898	7,5	4,3	37,5	JONSWAP	2.3/9./15	0,02
117	9	6.1	67.5	JONSWAP	2.175.940	0.02	899	8	4.7	37.5	JONSWAP	2.305.488	0.02
110	0.5	6.2	67.5	IONGWAD	2 1 1 9 0 2 5	0,02	000	0 5	4.0	27.5	IONEWAD	2 227 872	0,02
110	9,5	0,2	07,5	JOINSWAP	2.118.955	0,02	900	0,5	4,9	57,5	JUNSWAP	2.237.872	0,02
119	10	6,4	67,5	JONSWAP	2.066.236	0,02	901	9	5,1	37,5	JONSWAP	2.175.940	0,02
120	10.5	6.5	67.5	IONSWAP	2 017 326	0.01	902	95	53	37 5	IONSWAP	2 118 935	0.01
120	10,5	0,5	67,5	JONGWIND	1.071.520	0,01	002	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5,5	27,5	JONGWAR	2.110.955	0,01
121	11	6,6	67,5	JONSWAP	1.971.770	0,01	903	10	5,4	37,5	JONSWAP	2.066.236	0,01
122	11.5	6.6	67.5	JONSWAP	1 929 200	0.01	904	10.5	53	37 5	JONSWAP	2 017 326	0.01
100	10	6,6	(7,5	IONICIUAD	1 000 205	0.01	005	, -	2,4	45	IONGWAD	2 (55 2(4	0,02
123	12	6,5	07,5	JONSWAP	1.889.305	0,01	905	0	3,4	45	JONSWAP	2.055.204	0,03
124	12.5	6.2	67.5	JONSWAP	1.851.813	0.01	906	6.5	3.7	45	JONSWAP	2.552.934	0.03
125	é.	20	75	IONGWAD	2655264	0.04	007	7	4	45	IONEWAD	2 461 710	0.02
123	0	3,8	73	JOINSWAP	2.033.204	0,04	907	_/	4	45	JUNSWAP	2.401./10	0,05
126	6,5	4,5	75	JONSWAP	2.552.934	0,04	908	7,5	4,3	45	JONSWAP	2.379.715	0,02
127	7	51	75	IONSWAP	2 461 710	0.04	909	8	47	45	IONSWAP	2 305 488	0.02
120		5,1	75	JONGWIND	2.101.710	0,01	210	~~~	1,7	15	JONGWAR	2.305.100	0,02
128	7,5	5,4	75	JONSWAP	2.379.715	0,04	910	8,5	4,9	45	JONSWAP	2.237.872	0,02
129	8	5.7	75	JONSWAP	2.305.488	0.03	911	9	5.1	45	JONSWAP	2.175.940	0.02
120	05	50	75	IONGWAD	2 227 872	0.02	012	0.5	5.2	45	IONEWAD	2 119 025	0.01
150	0,5	5,8	73	JOINSWAP	2.237.872	0,05	912	9,5	5,5	45	JUNSWAP	2.116.955	0,01
131	9	6,1	75	JONSWAP	2.175.940	0,02	913	10	5,4	45	JONSWAP	2.066.236	0,01
132	0.5	62	75	IONSWAP	2 118 035	0.02	014	10.5	53	15	IONSWAP	2 017 326	0.01
132	9,5	0,2	75	JONSWAI	2.110.955	0,02	914	10,5	5,5	45	JONGWAI	2.017.320	0,01
133	10	6,4	75	JONSWAP	2.066.236	0,02	915	6	3,4	52,5	JONSWAP	2.655.264	0,03
134	10.5	6.5	75	JONSWAP	2.017.326	0.01	916	6.5	3.7	52.5	JONSWAP	2.552.934	0.03
125	11	6.6	75	IONGWAD	1 071 770	0.01	017	7	4	52,5	IONEWAD	2 461 710	0.02
133	11	0,0	15	JOINSWAP	1.9/1.//0	0,01	91/	/	4	52,5	JUNSWAP	2.401./10	0,05
136	11,5	6,6	75	JONSWAP	1.929.200	0,01	918	7,5	4,3	52,5	JONSWAP	2.379.715	0,02
137	12	6.5	75	IONSWAP	1 889 305	0.01	919	8	47	52 5	IONSWAP	2 305 488	0.02
120	12	0,5	75	JONGWIND	1.007.505	0,01	200	~~~	1,7	52,5	JONGWAR	2.305.100	0,02
138	12,5	6,2	75	JONSWAP	1.851.813	0,01	920	8,5	4,9	52,5	JONSWAP	2.237.872	0,02
139	6	3.8	82.5	JONSWAP	2.655.264	0.04	921	9	5.1	52.5	JONSWAP	2.175.940	0.02
140	6.5	4.5	82,5	IONEWAD	2 552 024	0.04	022	0.5	5.2	52,5	IONEWAD	2 119 025	0.01
140	0,5	4,5	82,5	JOINSWAP	2.332.934	0,04	922	9,5	5,5	52,5	JOINSWAP	2.116.955	0,01
141	7	5,2	82,5	JONSWAP	2.461.710	0,04	923	10	5,4	52,5	JONSWAP	2.066.236	0,01
142	75	57	82.5	IONSWAP	2 370 715	0.04	024	10.5	53	52 5	IONSWAP	2 017 326	0.01
142	7,5	5,7	02,5	JONSWAI	2.379.713	0,04	924	10,5	5,5	52,5	JONGWAI	2.017.320	0,01
143	8	6	82,5	JONSWAP	2.305.488	0,03	925	6	3,8	60	JONSWAP	2.655.264	0,04
144	8.5	6.1	82.5	JONSWAP	2.237.872	0.03	926	6.5	4.2	60	JONSWAP	2.552.934	0.04
145	0	6.2	82,5	IONEWAD	2 175 040	0.02	027	7	4.5	60	IONEWAD	2 461 710	0.02
145	9	0,2	82,5	JOINSWAP	2.1/3.940	0,02	927	/	4,5	00	JOINSWAP	2.401./10	0,05
146	9,5	6,3	82,5	JONSWAP	2.118.935	0,02	928	7,5	4,7	60	JONSWAP	2.379.715	0,03
147	10	6.5	82.5	IONSWAP	2 066 236	0.02	929	8	49	60	IONSWAP	2 305 488	0.02
14/	10	0,5	02,5	JOINDWIN	2.000.250	0,02)2)		ч, <i>)</i>	00	JOINDWIN	2.303.400	0,02
148	10,5	6,5	82,5	JONSWAP	2.017.326	0,01	930	8,5	5,1	60	JONSWAP	2.237.872	0,02
149	11	6.6	82.5	JONSWAP	1.971.770	0.01	931	9	5.2	60	JONSWAP	2.175.940	0.02
150	11.5	6.6	82.5	IONSWAD	1 020 200	0.01	022	0.5	5.2	60	IONSWAD	2 118 025	0.01
150	11,5	0,0	02,5	JOINSWAF	1.929.200	0,01	932	9,5	5,5	00	JOINSWAF	2.116.955	0,01
151	12	6,5	82,5	JONSWAP	1.889.305	0,01	933	10	5,4	60	JONSWAP	2.066.236	0,01
152	12.5	65	82.5	IONSWAP	1 851 813	0.01	934	10.5	54	60	JONSWAP	2 017 326	0.01
1.50	12,0	6,5	02,5	IONGWAR	1.016.402	0,01	025	10,0	5.0	60	IONGWAR	1.071.770	0,01
153	13	6,3	82,5	JONSWAP	1.816.493	0,01	935	11	5,2	60	JONSWAP	1.9/1.//0	0,01
154	13,5	6,1	82,5	JONSWAP	1.783.143	0,00	936	11,5	4,8	60	JONSWAP	1.929.200	0,01
155	14	5.8	82.5	IONSWAP	1 751 585	0.00	037	6	3.8	67.5	IONSWAP	2 655 264	0.04
155	14	5,8	02,5	JONSWAI	1.731.365	0,00	937		5,8	07,5	JONGWAI	2.055.204	0,04
156	14,5	5,4	82,5	JONSWAP	1.721.664	0,00	938	6,5	4,2	67,5	JONSWAP	2.552.934	0,04
157	15	4.8	82.5	JONSWAP	1.693.242	0.00	939	7	4.5	67.5	JONSWAP	2.461.710	0.03
159	15.5	2 7	82.5	IONSWAD	1 666 200	0,00	040	75	47	67.5	IONSWAD	2 270 715	0.02
156	15,5	3,7	62,5	JOINSWAF	1.000.200	0,00	940	7,5	4,/	07,5	JOINSWAF	2.3/9./13	0,05
159	6	3,8	90	JONSWAP	2.655.264	0,04	941	8	4,9	67,5	JONSWAP	2.305.488	0,02
160	65	4 5	90	JONSWAP	2.552 934	0.04	942	85	51	67.5	JONSWAP	2.237 872	0.02
1.00	5,5	ч, <i>5</i>	20	JONGWAP	2.002.907	0,07	0.12	3,5	5,1	(7,5 (7,5	IONOWAF	2.257.072	0,02
161	1	5,2	90	JONSWAP	2.461.710	0,04	943	9	5,2	67,5	JONSWAP	2.175.940	0,02
162	7.5	5.7	90	JONSWAP	2.379.715	0.04	944	9.5	5.3	67.5	JONSWAP	2.118.935	0.01
162	0	6	00	IONEWAD	2 205 499	0.02	045	10	5.4	67.5	IONEWAD	2.066.226	0.01
103	8	0	90	JUNSWAP	2.305.488	0,03	945	10	5,4	67,5	JONSWAP	2.000.230	0,01
164	8,5	6,1	90	JONSWAP	2.237.872	0,03	946	10,5	5,4	67,5	JONSWAP	2.017.326	0,01
165	9	62	90	IONSWAD	2 175 940	0.02	947	11	52	67.5	IONSWAP	1 971 770	0.01
100	í.	6,2	20	IONOWAT	2.110.025	0,02	040	11.7	3,2	(7,5	IONOWAF	1.000.000	0,01
100	9,5	6,3	90	JONSWAP	2.118.935	0,02	948	11,5	4,8	67,5	JONSWAP	1.929.200	0,01
167	10	6.5	90	JONSWAP	2.066.236	0.02	949	6	3.8	75	JONSWAP	2.655.264	0.04
169	10.5	6.5	00	IONSWAD	2 017 226	0.01	050	6.5	4.2	75	IONEWAD	2 552 024	0.04
100	10,3	0,5	90	JOINSWAP	2.017.320	0,01	950	0,5	4,2	15	JOINSWAP	2.332.934	0,04
169	11	6,6	90	JONSWAP	1.971.770	0,01	951	7	4,5	75	JONSWAP	2.461.710	0,03
170	11.5	6.6	90	IONSWAD	1 929 200	0.01	952	75	47	75	IONSWAP	2 379 715	0.03
170	11,0	0,0	90	JOINS WAP	1.929.200	0,01	954	1,5	- ,/	75	JONSWAP	2.3/9./13	0,05
171	12	6,5	90	JONSWAP	1.889.305	0,01	953	8	4,9	75	JONSWAP	2.305.488	0,02
172	12.5	6.5	90	JONSWAP	1.851.813	0.01	954	8.5	5.1	75	JONSWAP	2.237.872	0.02
172	12,5	()		IONOWAR	1.016.402	0.01	0.5.5	0,5	5.1		IONOWAR	2.175.040	0,02
173	13	6,3	90	JONSWAP	1.816.493	0,01	955	9	5,2	15	JONSWAP	2.175.940	0,02
174	13.5	6.1	90	JONSWAP	1.783.143	0.00	956	9.5	5.3	75	JONSWAP	2.118.935	0.01
175	1/	5 9	00	IONSWAP	1 751 595	0.00	057	10	5 1	75	IONSWAP	2 066 226	0.01
1/3	14	5,0	90	JOINSWAP	1.751.365	0,00	931	10	5,4	15	JOINSWAP	2.000.230	0,01
176	14,5	5,4	90	JONSWAP	1.721.664	0,00	958	10,5	5,4	75	JONSWAP	2.017.326	0,01
177	15	4 8	90	JONSWAP	1 693 242	0.00	959	11	52	75	JONSWAP	1 971 770	0.01
170	15 5	-,0	20	JONGWAP	1.075.272	0,00	0.00	11 6	1.0	75	IONOWAF	1.000.000	0,01
1/8	15,5	3,1	90	JONSWAP	1.666.200	0,00	960	11,5	4,8	15	JONSWAP	1.929.200	0,01
179	6	3.8	97.5	JONSWAP	2.655.264	0,04	961	6	3.8	82.5	JONSWAP	2.655.264	0,04
180	6.5	15	07.5	IONSWAD	2 552 024	0.04	062	6.5	15	875	IONSWAD	2 552 024	0.04
100	0,5	4,3	97,3	JOINSWAP	2.552.934	0,04	902	0,5	4,5	02,3	JOINSWAP	2.332.934	0,04
181	7	5,2	97,5	JONSWAP	2.461.710	0,04	963	7	4,6	82,5	JONSWAP	2.461.710	0,03
182	7,5	5,7	97.5	JONSWAP	2.379.715	0,04	964	7.5	4.8	82.5	JONSWAP	2.379.715	0.03

183	8	6	97.5	JONSWAP	2.305.488	0.03	965	8	4.9	82.5	JONSWAP	2.305.488	0.02
184	8.5	6.1	97.5	IONSWAP	2 237 872	0.03	966	8 5	51	82.5	IONSWAP	2 237 872	0.02
104	0,5	()	97,5	JONGWAD	2.237.072	0,05	007	0,5	5,1	82,5	JONGWAD	2.237.072	0,02
185	9	0,2	97,5	JUNSWAP	2.1/5.940	0,02	967	9	5,2	82,5	JUNSWAP	2.1/5.940	0,02
186	9,5	6,3	97,5	JONSWAP	2.118.935	0,02	968	9,5	5,2	82,5	JONSWAP	2.118.935	0,01
187	10	6,5	97,5	JONSWAP	2.066.236	0,02	969	10	5,3	82,5	JONSWAP	2.066.236	0,01
188	10.5	65	97 5	IONSWAP	2 017 326	0.01	970	10.5	53	82 5	IONSWAP	2 017 326	0.01
180	11	6.6	07.5	IONSWAD	1 071 770	0.01	071	11	5 2	82,5	IONSWAD	1 071 770	0,01
109	11 6	0,0	97,5	JONSWAF	1.9/1.//0	0,01	9/1	11	5,5	02,5	JONGWAP	1.9/1.//0	0,01
190	11,5	6,6	97,5	JONSWAP	1.929.200	0,01	972	11,5	5,2	82,5	JONSWAP	1.929.200	0,01
191	12	6,5	97,5	JONSWAP	1.889.305	0,01	973	12	5,1	82,5	JONSWAP	1.889.305	0,01
192	12.5	6.5	97 5	JONSWAP	1 851 813	0.01	974	12.5	49	82.5	JONSWAP	1 851 813	0.00
102	12,0	6.2	07.5	IONEWAD	1 916 402	0.01	075	12,0	1.6	82,5	IONEWAD	1 916 402	0,00
195	15	0,5	97,5	JOINSWAP	1.810.495	0,01	975	15	4,0	82,5	JOINSWAP	1.810.495	0,00
194	13,5	6,1	97,5	JONSWAP	1.783.143	0,00	976	13,5	4,2	82,5	JONSWAP	1.783.143	0,00
195	14	5.8	97,5	JONSWAP	1.751.585	0,00	977	14	3,4	82,5	JONSWAP	1.751.585	0,00
196	14 5	54	97 5	IONSWAP	1 721 664	0.00	978	6	3.8	90	IONSWAP	2 655 264	0.04
107	15	19	07.5	IONEWAD	1 602 242	0,00	070	65	4.5	00	IONEWAD	2 552 024	0.04
19/	15	4,0	97,5	JONSWAP	1.095.242	0,00	9/9	0,5	4,5	90	JONSWAP	2.332.934	0,04
198	15,5	3,7	97,5	JONSWAP	1.666.200	0,00	980	1	4,6	90	JONSWAP	2.461./10	0,03
199	6	3,8	105	JONSWAP	2.655.264	0,04	981	7,5	4,8	90	JONSWAP	2.379.715	0,03
200	6.5	4.5	105	JONSWAP	2.552.934	0.04	982	8	4.9	90	JONSWAP	2.305.488	0.02
201	7	5.2	105	IONSWAP	2 461 710	0.04	083	8 5	51	90	IONSWAP	2 237 872	0.02
201	75	5,2	105	JONGWAD	2.401.710	0,04	905	0,5	5,1	20	JONGWAD	2.237.072	0,02
202	7,5	5,0	105	JUNSWAP	2.3/9./15	0,04	984	9	5,2	90	JUNSWAP	2.1/5.940	0,02
203	8	5,8	105	JONSWAP	2.305.488	0,03	985	9,5	5,2	90	JONSWAP	2.118.935	0,01
204	8,5	5,9	105	JONSWAP	2.237.872	0,03	986	10	5,3	90	JONSWAP	2.066.236	0,01
205	9	6.1	105	IONSWAP	2 175 940	0.02	987	10.5	53	90	IONSWAP	2 017 326	0.01
205	ó.5	6,1	105	JONGWAD	2.175.940	0,02	000	11	5,5	00	IONGWAD	1.071.770	0,01
200	9,5	6,2	105	JONSWAP	2.118.935	0,02	988	11	5,5	90	JONSWAP	1.9/1.//0	0,01
207	10	6,3	105	JONSWAP	2.066.236	0,02	989	11,5	5,2	90	JONSWAP	1.929.200	0,01
208	10,5	6,4	105	JONSWAP	2.017.326	0,01	990	12	5.1	90	JONSWAP	1.889.305	0,01
209	11	6.4	105	IONSWAP	1 971 770	0.01	991	12.5	49	90	IONSWAP	1 851 813	0.00
210	11 5	0,4	105	JONGWAD	1.020.200	0,01	002	12,5	4,5	00	IONGWAD	1.051.015	0,00
210	11,5	6,5	105	JONSWAP	1.929.200	0,01	992	13	4,0	90	JONSWAP	1.810.493	0,00
211	12	6,5	105	JONSWAP	1.889.305	0,01	993	13,5	4,2	90	JONSWAP	1.783.143	0,00
212	12,5	6,5	105	JONSWAP	1.851.813	0,01	994	14	3,4	90	JONSWAP	1.751.585	0,00
213	13	65	105	JONSWAP	1 816 493	0.01	995	6	38	97 5	JONSWAP	2 655 264	0.04
213	12.5	6.4	105	IONEWAD	1 792 142	0.01	006	65	4.5	07.5	IONEWAD	2.552.024	0,01
214	13,5	0,4	105	JUNSWAP	1./83.143	0,01	996	0,5	4,5	97,5	JUNSWAP	2.552.954	0,04
215	14	6,3	105	JONSWAP	1.751.585	0,00	997	7	4,6	97,5	JONSWAP	2.461.710	0,03
216	14,5	6,2	105	JONSWAP	1.721.664	0,00	998	7,5	4,8	97,5	JONSWAP	2.379.715	0,03
217	15	6	105	JONSWAP	1 693 242	0.00	999	8	49	97 5	JONSWAP	2 305 488	0.02
210	15.5	50	105	IONEWAD	1 666 200	0,00	1000	05	5 1	07.5	IONEWAD	2.202.100	0,02
210	15,5	5,8	105	JOINSWAP	1.000.200	0,00	1000	0,5	5,1	97,5	JOINSWAP	2.237.872	0,02
219	16	5,5	105	JONSWAP	1.640.428	0,00	1001	9	5,2	97,5	JONSWAP	2.175.940	0,02
220	16,5	5,1	105	JONSWAP	1.615.829	0,00	1002	9,5	5,2	97,5	JONSWAP	2.118.935	0,01
221	17	4.6	105	JONSWAP	1.592.317	0.00	1003	10	5.3	97.5	JONSWAP	2.066.236	0.01
222	17.5	1	105	IONSWAP	1 560 814	0.00	1004	10.5	5 3	07.5	IONSWAP	2 017 326	0.01
222	17,5	20	112.5	JONGWAD	2 (55 2(4	0,00	1004	10,5	5,5	97,5	JONGWAD	1.071.720	0,01
223	0	3,8	112,5	JONSWAP	2.035.204	0,04	1005	11	5,5	97,5	JONSWAP	1.9/1.//0	0,01
224	6,5	4,5	112,5	JONSWAP	2.552.934	0,04	1006	11,5	5,2	97,5	JONSWAP	1.929.200	0,01
225	7	5,2	112,5	JONSWAP	2.461.710	0,04	1007	12	5.1	97,5	JONSWAP	1.889.305	0,01
226	75	56	112 5	IONSWAP	2 379 715	0.04	1008	12.5	49	97 5	IONSWAP	1 851 813	0.00
220	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.0	112,5	JONGWAD	2.375.499	0,04	1000	12,5	4,5	07.5	IONGWAD	1.051.015	0,00
227	8	5,8	112,5	JUNSWAP	2.305.488	0,03	1009	13	4,0	97,5	JUNSWAP	1.816.493	0,00
228	8,5	5,9	112,5	JONSWAP	2.237.872	0,03	1010	13,5	4,2	97,5	JONSWAP	1.783.143	0,00
229	9	6,1	112,5	JONSWAP	2.175.940	0,02	1011	14	3,4	97,5	JONSWAP	1.751.585	0,00
230	95	62	112 5	IONSWAP	2 118 935	0.02	1012	6	3.8	105	IONSWAP	2 655 264	0.04
220	10	6,2	112,5	IONGWAD	2.110.755	0,02	1012	6	4.2	105	IONGWAD	2.655.201	0,01
231	10	0,5	112,5	JOINSWAP	2.000.250	0,02	1015	0,5	4,2	105	JOINSWAP	2.332.934	0,04
232	10,5	6,4	112,5	JONSWAP	2.017.326	0,01	1014	7	4,4	105	JONSWAP	2.461.710	0,03
233	11	6,4	112,5	JONSWAP	1.971.770	0,01	1015	7,5	4,6	105	JONSWAP	2.379.715	0,03
234	11.5	6.5	112.5	JONSWAP	1.929.200	0.01	1016	8	4.7	105	JONSWAP	2.305.488	0.02
235	12	6.5	112.5	IONSWAP	1 880 305	0.01	1017	85	1.8	105	IONSWAP	2 237 872	0.02
235	12	0,5	112,5	JONGWAD	1.069.000	0,01	1017	0,5	4,0	105	JONGWAD	2.237.072	0,02
230	12,5	6,5	112,5	JONSWAP	1.851.815	0,01	1018	9	4,9	105	JONSWAP	2.1/5.940	0,01
237	13	6,5	112,5	JONSWAP	1.816.493	0,01	1019	9,5	5,1	105	JONSWAP	2.118.935	0,01
238	13,5	6,4	112,5	JONSWAP	1.783.143	0,01	1020	10	5,1	105	JONSWAP	2.066.236	0,01
239	14	63	112.5	JONSWAP	1 751 585	0.00	1021	10.5	52	105	JONSWAP	2 017 326	0.01
240	14.5	6.2	112,5	IONSWAD	1 721 664	0,00	1022	11	5.2	105	IONSWAD	1 071 770	0.01
240	14,5	0,2	112,5	JONGWAI	1.721.004	0,00	1022	11	5,2	105	JONSWAI	1.9/1.//0	0,01
241	15	6	112,5	JONSWAP	1.693.242	0,00	1023	11,5	5,2	105	JONSWAP	1.929.200	0,01
242	15,5	5,8	112,5	JONSWAP	1.666.200	0,00	1024	12	5,2	105	JONSWAP	1.889.305	0,01
243	16	5,5	112,5	JONSWAP	1.640.428	0,00	1025	12,5	5,2	105	JONSWAP	1.851.813	0,00
244	16.5	5.1	112.5	JONSWAP	1.615.829	0.00	1026	13	5.1	105	JONSWAP	1.816.493	0.00
245	17	4.6	112.5	IONSWAP	1 502 317	0.00	1027	13.5	5	105	IONSWAP	1 783 1/3	0.00
245	17.5	4,0	112,5	JONSWAF	1.592.517	0,00	1027	13,5	10	105	JONGWAP	1.765.145	0,00
246	17,5	4	112,5	JONSWAP	1.569.814	0,00	1028	14	4,8	105	JONSWAP	1./51.585	0,00
247	6	3,8	120	JONSWAP	2.655.264	0,04	1029	14,5	4,6	105	JONSWAP	1.721.664	0,00
248	6.5	4.5	120	JONSWAP	2.552.934	0.04	1030	15	4.3	105	JONSWAP	1.693.242	0.00
249	7	52	120	IONSWAP	2 461 710	0.04	1031	15.5	3.0	105	IONSWAP	1 666 200	0.00
250	7 -	5,2	120	JONGWAD	2.401.710	0,04	1022	10,0	2,9	105	JONGWAD	1.000.200	0,00
250	7,5	5,6	120	JONSWAP	2.3/9./15	0,04	1032	10	3,3	105	JONSWAP	1.040.428	0,00
251	8	5,8	120	JONSWAP	2.305.488	0,03	1033	6	3,8	112,5	JONSWAP	2.655.264	0,04
252	8,5	5,9	120	JONSWAP	2.237.872	0,03	1034	6,5	4,2	112,5	JONSWAP	2.552.934	0,04
253	Ó	61	120	IONSWAP	2 175 940	0.02	1035	7	44	112 5	IONSWAP	2 461 710	0.03
255	0.5	60,1	120	IONSWAP	2.110.025	0.02	1024	7'5	1,-1 1 -	112,5	IONSWAP	2.101./10	0,05
254	9,5	0,2	120	JOINSWAP	2.116.933	0,02	1030	7,5	4,0	112,3	JOINSWAP	2.3/9./13	0,03
255	10	6,3	120	JONSWAP	2.066.236	0,02	1037	8	4,7	112,5	JONSWAP	2.305.488	0,02
256	10,5	6,4	120	JONSWAP	2.017.326	0,01	1038	8,5	4,8	112,5	JONSWAP	2.237.872	0,02
257	11	6.4	120	JONSWAP	1.971.770	0.01	1039	9	4.9	112.5	JONSWAP	2.175.940	0.01
258	11.5	6.5	120	IONSWAP	1 929 200	0.01	1040	9.5	5 1	112.5	IONSWAD	2 118 035	0.01
250	11,3	0,5	120	JOINGWAP	1.929.200	0,01	1040	7,5	5,1	112,3	JOINDWAP	2.110.933	0,01
259	12	6,5	120	JONSWAP	1.889.305	0,01	1041	10	5,1	112,5	JONSWAP	2.066.236	0,01
260	12,5	6,5	120	JONSWAP	1.851.813	0,01	1042	10,5	5,2	112,5	JONSWAP	2.017.326	0,01
261	13	6,5	120	JONSWAP	1.816.493	0,01	1043	11	5,2	112,5	JONSWAP	1.971.770	0,01
262	13.5	64	120	JONSWAP	1.783 143	0.01	1044	11.5	52	112 5	JONSWAP	1,929 200	0.01
262	14	6 2	120	IONSWAP	1 751 595	0.00	1045	12	5 2	112,5	IONSWAD	1 880 205	0.01
205	14	0,5	120	JOINSWAP	1.731.383	0,00	1045	12	5,2	112,3	JOINSWAP	1.009.303	0,01
264	14,5	6,2	120	JONSWAP	1./21.664	0,00	1046	12,5	5,2	112,5	JONSWAP	1.851.813	0,00
265	15	6	120	JONSWAP	1.693.242	0,00	1047	13	5,1	112,5	JONSWAP	1.816.493	0,00
266	15,5	5,8	120	JONSWAP	1.666.200	0,00	1048	13,5	5	112.5	JONSWAP	1.783.143	0,00
267	16	5 5	120	IONSWAP	1 640 428	0.00	1049	14	4 8	112 5	IONSWAP	1 751 585	0.00
207	10	5,5	120	IONOWAP	1.040.420	0,00	1047	14 7	-1,0	112,5	IONOWAP	1.701.000	0,00
20X	10.5	5,1	120	JOINSWAP	1.015.829	0.00	1050	14,5	4,0	112,5	JUNSWAP	1./21.664	0,00

200	17	1.0	120	ION CULL D	1 500 217	0.00	1051	1.5	1.2	110.5	IONOWAR	1 (02 242	0.00
269	1/	4,6	120	JONSWAP	1.592.317	0,00	1051	15	4,3	112,5	JONSWAP	1.693.242	0,00
270	17,5	4	120	JONSWAP	1.569.814	0,00	1052	15,5	3,9	112,5	JONSWAP	1.666.200	0,00
271	6	38	127.5	IONSWAP	2 655 264	0.04	1053	16	3 3	112 5	IONSWAP	1 640 428	0.00
2/1	0	5,8	127,5	JOINSWAI	2.033.204	0,04	1055	10	5,5	112,5	JOINSWAI	1.040.428	0,00
272	6,5	4,5	127,5	JONSWAP	2.552.934	0,04	1054	6	3,8	120	JONSWAP	2.655.264	0,04
273	7	5.2	127.5	JONSWAP	2.461.710	0.04	1055	6.5	4.2	120	JONSWAP	2.552.934	0.04
274	75	6	127.5	IONEWAD	2 270 715	0.04	1056	7	4.4	120	IONEWAD	2 461 710	0.02
2/4	1,5	0	127,5	JOINSWAF	2.3/9./13	0,04	1050		4,4	120	JOINSWAF	2.401.710	0,05
275	8	6,3	127,5	JONSWAP	2.305.488	0,04	1057	7,5	4,6	120	JONSWAP	2.379.715	0,03
276	8.5	6.5	127.5	JONSWAP	2.237.872	0.03	1058	8	4.7	120	JONSWAP	2.305.488	0.02
277	0,5	6,6	127,0	IONGWAD	2.175.040	0,02	1050	0,5	4.0	120	IONOWAD	2.2021.100	0,02
277	9	0,0	127,5	JONSWAP	2.1/5.940	0,03	1059	8,5	4,8	120	JONSWAP	2.237.872	0,02
278	9,5	6,8	127,5	JONSWAP	2.118.935	0,02	1060	9	4,9	120	JONSWAP	2.175.940	0,01
270	10	60	127 5	IONSWAP	2 066 236	0.02	1061	0.5	51	120	IONSWAP	2 118 035	0.01
219	10	0,9	127,5	JOINSWAI	2.000.230	0,02	1001	9,5	5,1	120	JOINSWAI	2.110.955	0,01
280	10,5	7	127,5	JONSWAP	2.017.326	0,02	1062	10	5,1	120	JONSWAP	2.066.236	0,01
281	11	71	127.5	IONSWAP	1 971 770	0.01	1063	10.5	52	120	JONSWAP	2 017 326	0.01
201	11.5	7.2	127,5	IONEWAD	1 020 200	0.01	1064	11	5.2	120	IONEWAD	1 071 770	0.01
202	11,5	7,2	127,5	JOINSWAP	1.929.200	0,01	1004	11	3,2	120	JOINSWAP	1.9/1.//0	0,01
283	12	7,2	127,5	JONSWAP	1.889.305	0,01	1065	11,5	5,2	120	JONSWAP	1.929.200	0,01
284	12.5	73	127.5	IONSWAP	1 851 813	0.01	1066	12	52	120	JONSWAP	1 889 305	0.01
201	12,5	7,5	127,5	JONGWAR	1.01(.402	0,01	1000	10.5	5,2	120	JONGWAR	1.007.003	0,01
285	13	/,3	127,5	JONSWAP	1.816.493	0,01	1067	12,5	5,2	120	JONSWAP	1.851.813	0,00
286	13,5	7,3	127,5	JONSWAP	1.783.143	0,01	1068	13	5,1	120	JONSWAP	1.816.493	0,00
287	14	72	127.5	IONSWAP	1 751 585	0.01	1069	13.5	5	120	IONSWAP	1 783 143	0.00
200	14.5	7,2	127,5	IONGWAD	1.701.000	0,01	1009	14	10	120	IONOWAD	1 751 505	0,00
288	14,5	/,1	127,5	JONSWAP	1./21.004	0,00	1070	14	4,8	120	JONSWAP	1./51.585	0,00
289	15	7	127,5	JONSWAP	1.693.242	0,00	1071	14,5	4,6	120	JONSWAP	1.721.664	0,00
290	15.5	69	127.5	IONSWAP	1 666 200	0.00	1072	15	43	120	IONSWAP	1 693 242	0.00
200	10,0	0,7	127,5	JONGWIND	1.640.420	0,00	1072	1.5.5	1,5	120	JONGWAR	1.075.212	0,00
291	16	6,7	127,5	JONSWAP	1.640.428	0,00	10/3	15,5	3,9	120	JONSWAP	1.666.200	0,00
292	16,5	6,5	127,5	JONSWAP	1.615.829	0,00	1074	16	3,3	120	JONSWAP	1.640.428	0,00
203	17	62	127 5	IONSWAP	1 502 317	0.00	1075	6	3.8	127.5	IONSWAP	2 655 264	0.04
295	17	0,2	127,5	JONGWAI	1.592.517	0,00	1075		5,8	127,5	JONGWAI	2.033.204	0,04
294	17,5	5,8	127,5	JONSWAP	1.569.814	0,00	1076	6,5	4,5	127,5	JONSWAP	2.552.934	0,04
295	18	5.3	127.5	JONSWAP	1.548.250	0.00	1077	7	4.7	127.5	JONSWAP	2.461.710	0.03
206	18.5	4.6	127.5	IONSWAP	1 527 561	0.00	1078	7.5	10	127.5	IONSWAP	2 370 715	0.03
290	10,5	4,0	127,5	JOINSWAI	1.527.501	0,00	1078	7,5	4,9	127,5	JOINSWAI	2.379.713	0,05
297	19	3,6	127,5	JONSWAP	1.507.690	0,00	1079	8	5,1	127,5	JONSWAP	2.305.488	0,02
298	6	3.8	135	JONSWAP	2.655.264	0.04	1080	8.5	5.3	127.5	JONSWAP	2.237.872	0.02
200	6.5	15	135	IONSWAP	2 552 034	0.04	1081	Ó	5.4	127.5	IONSWAP	2 175 940	0.02
299	0,5	4,5	133	JOINSWAF	2.332.934	0,04	1081	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5,4	127,5	JOINSWAF	2.1/5.940	0,02
300	7	5,2	135	JONSWAP	2.461.710	0,04	1082	9,5	5,5	127,5	JONSWAP	2.118.935	0,01
301	7.5	6	135	JONSWAP	2.379.715	0.04	1083	10	5.7	127.5	JONSWAP	2.066.236	0.01
202	0	6.2	125	IONEWAD	2 205 499	0.04	1094	10.5	57	107.5	IONEWAD	2 017 226	0.01
502	0	0,5	155	JOINSWAP	2.303.488	0,04	1084	10,5	3,7	127,5	JOINSWAP	2.017.320	0,01
303	8,5	6,5	135	JONSWAP	2.237.872	0,03	1085	11	5,8	127,5	JONSWAP	1.971.770	0,01
304	9	6.6	135	IONSWAP	2 175 940	0.03	1086	11.5	5.8	127.5	IONSWAP	1 929 200	0.01
205	ñ.5	6,0	125	IONGWAD	2.110.025	0,05	1000	12	5,0	127,5	IONOWAD	1.929.200	0,01
305	9,5	0,8	135	JOINSWAP	2.118.935	0,02	1087	12	5,8	127,5	JONSWAP	1.889.305	0,01
306	10	6,9	135	JONSWAP	2.066.236	0,02	1088	12,5	5,8	127,5	JONSWAP	1.851.813	0,01
307	10.5	7	135	IONSWAP	2 017 326	0.02	1089	13	5.8	127 5	IONSWAP	1 816 493	0.00
200	10,5	- í 1	135	JONGWAR	1.071.770	0,02	1000	12.5	5,0	127,5	JONGWAR	1.702.142	0,00
308	11	/,1	135	JONSWAP	1.9/1.//0	0,01	1090	13,5	5,7	127,5	JONSWAP	1./83.143	0,00
309	11,5	7,2	135	JONSWAP	1.929.200	0,01	1091	14	5,7	127,5	JONSWAP	1.751.585	0,00
310	12	72	135	IONSWAP	1 889 305	0.01	1092	14 5	55	127.5	IONSWAP	1 721 664	0.00
211	12.5	7,2	125	IONGWAD	1.051.012	0,01	1002	15	5,5	127,5	IONOWAD	1.(02.242	0,00
311	12,5	7,3	135	JONSWAP	1.851.815	0,01	1093	15	5,5	127,5	JONSWAP	1.093.242	0,00
312	13	7,3	135	JONSWAP	1.816.493	0,01	1094	15,5	5,1	127,5	JONSWAP	1.666.200	0,00
313	13.5	73	135	IONSWAP	1 783 143	0.01	1095	16	48	127.5	JONSWAP	1 640 428	0.00
214	10,0	7,5	135	JONGWAR	1.763.115	0,01	1000	16.5	1,0	127,5	JONGWAR	1.010.120	0,00
314	14	7,2	135	JONSWAP	1.751.585	0,01	1096	16,5	4,3	127,5	JONSWAP	1.615.829	0,00
315	14,5	7,1	135	JONSWAP	1.721.664	0,00	1097	17	3,8	127,5	JONSWAP	1.592.317	0,00
316	15	7	135	IONSWAP	1 693 242	0.00	1098	6	3.8	135	IONSWAP	2 655 264	0.04
217	15	<i>.</i>	135	JONGWAR	1.075.242	0,00	1000		5,0	155	JONGWAN	2.055.204	0,04
317	15,5	6,9	135	JONSWAP	1.666.200	0,00	1099	6,5	4,5	135	JONSWAP	2.552.934	0,04
318	16	6,7	135	JONSWAP	1.640.428	0,00	1100	7	4,7	135	JONSWAP	2.461.710	0,03
310	16.5	6.5	135	IONSWAP	1 615 820	0.00	1101	7.5	10	135	IONSWAP	2 370 715	0.03
220	10,5	0,5	135	JONGWAR	1.015.025	0,00	1101	1,5	ч, <i>у</i>	155	JONGWAN	2.377.713	0,05
320	17	6,2	135	JONSWAP	1.592.317	0,00	1102	8	5,1	135	JONSWAP	2.305.488	0,02
321	17,5	5,8	135	JONSWAP	1.569.814	0,00	1103	8,5	5,3	135	JONSWAP	2.237.872	0,02
322	18	53	135	IONSWAP	1 548 250	0.00	1104	ó	51	135	IONSWAP	2 175 940	0.02
322	10	5,5	135	JONGWAR	1.540.250	0,00	1104	~~-	5,4	155	JONGWAN	2.175.940	0,02
323	18,5	4,6	135	JONSWAP	1.527.561	0,00	1105	9,5	5,5	135	JONSWAP	2.118.935	0,01
324	19	3.6	135	JONSWAP	1.507.690	0,00	1106	10	5,7	135	JONSWAP	2.066.236	0,01
325	6	3.8	142.5	IONSWAP	2 655 264	0.04	1107	10.5	57	135	IONSWAP	2 017 326	0.01
323	0	5,8	142,5	JONGWAI	2.033.204	0,04	1107	10,5	5,7	135	JONGWAI	2.017.320	0,01
326	6,5	4,5	142,5	JONSWAP	2.552.934	0,04	1108	11	5,8	135	JONSWAP	1.9/1.7/0	0,01
327	7	5,2	142,5	JONSWAP	2.461.710	0,04	1109	11.5	5,8	135	JONSWAP	1.929.200	0,01
328	75	6	142.5	IONSWAP	2 379 715	0.04	1110	12	5.8	135	IONSWAP	1 889 305	0.01
220	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~	1 12,5	JONGWAR	2.205.400	0,01	1110	10.5	5,0	125	JONGWAR	1.007.000	0,01
329	8	6,3	142,5	JONSWAP	2.305.488	0,04	1111	12,5	5,8	135	JONSWAP	1.851.813	0,01
330	8,5	6,5	142,5	JONSWAP	2.237.872	0,03	1112	13	5,8	135	JONSWAP	1.816.493	0,00
331	ġ	6.6	142.5	IONSWAP	2 175 940	0.03	1113	13.5	57	135	IONSWAP	1 783 143	0.00
222	ó.	6,0	142,5	IONOWAR	2.110.025	0.00	111.0	14	5,7	100	IONOWAP	1.751.505	0,00
332	9,5	0,8	142,5	JUNSWAP	2.118.935	0,02	1114	14	5,/	135	JUNSWAP	1./31.383	0,00
333	10	6,9	142,5	JONSWAP	2.066.236	0,02	1115	14,5	5,5	135	JONSWAP	1.721.664	0,00
334	10.5	7	142 5	IONSWAP	2 017 326	0.02	1116	15	53	135	IONSWAP	1 693 242	0.00
225	10,5		142,5	JONGWAR	2.017.520	0,02	1110	15	5,5	155	JONGWAN	1.075.242	0,00
335	11	7,1	142,5	JONSWAP	1.9/1.7/0	0,01	1117	15,5	5,1	135	JONSWAP	1.666.200	0,00
336	11.5	7,2	142,5	JONSWAP	1.929.200	0,01	1118	16	4,8	135	JONSWAP	1.640.428	0,00
337	12	7 2	142 5	IONSWAD	1 889 305	0.01	1110	16.5	43	135	IONSWAD	1 615 820	0.00
220	12 5	7,4	142,5	IONOWAR	1 051 013	0.01	1120	17	2,5	100	IONOWAP	1 502 217	0,00
338	12,5	1,3	142,5	JOINSWAP	1.851.813	0,01	1120	1/	3,8	135	JOINSWAP	1.392.317	0,00
339	13	7.3	142,5	JONSWAP	1.816.493	0,01	1121	6	3.8	142,5	JONSWAP	2.655.264	0,04
340	13 5	73	142 5	JONSWAP	1 783 143	0.01	1122	65	4 5	142 5	IONSWAP	2 552 934	0.04
241	1.0,0	7,5	142,5	IONOWAP	1.705.145	0.01	1122	5,5	т, J 4 Г	1 42,5	IONOWAP	2.332.734	0,04
541	14	7,2	142,5	JONSWAP	1./51.585	0,01	1123	/	4,7	142,5	JUNSWAP	2.401./10	0,03
342	14,5	7,1	142,5	JONSWAP	1.721.664	0,00	1124	7,5	4,9	142,5	JONSWAP	2.379.715	0,03
343	15	7	142 5	IONSWAP	1 603 242	0.00	1125	8	51	142 5	IONSWAP	2 305 488	0.02
244	15	<i>(</i> ^	172,5	JOING WAP	1.075.242	0,00	1123	0.7	5,1	142,5	JOIND WAP	2.303.400	0,02
344	15,5	6,9	142,5	JONSWAP	1.666.200	0,00	1126	8,5	5,3	142,5	JONSWAP	2.237.872	0,02
345	16	6.7	142.5	JONSWAP	1.640.428	0.00	1127	9	5.4	142.5	JONSWAP	2.175.940	0.02
346	16.5	6.5	142.5	IONSWAP	1 615 820	0.00	1128	9.5	5 5	142 5	IONSWAD	2 118 035	0.01
247	10,5	0,5	142,5	IONGWAP	1.013.029	0,00	1120	2,5	5,5	142,5	JONGWAP	2.110.733	0,01
547	17	6,2	142,5	JONSWAP	1.592.317	0,00	1129	10	5,7	142,5	JONSWAP	2.066.236	0,01
348	17.5	5,8	142.5	JONSWAP	1.569.814	0,00	1130	10,5	5.7	142.5	JONSWAP	2.017.326	0,01
340	18	53	142 5	IONSWAP	1 548 250	0.00	1131	11	5.8	142 5	IONSWAP	1 971 770	0.01
272	10 7	5,5	142,5	IONOWAF	1.575.250	0,00	1122	11 -	5,0	1 40 5	IONOWAF	1.020.200	0,01
350	18,5	4,6	142,5	JUNSWAP	1.52/.561	0,00	1132	11,5	5,8	142,5	JONSWAP	1.929.200	0,01
351	19	3,6	142,5	JONSWAP	1.507.690	0,00	1133	12	5,8	142,5	JONSWAP	1.889.305	0,01
352	6	38	150	JONSWAP	2.655 264	0.04	1134	12.5	58	142 5	JONSWAP	1.851 813	0.01
222		2,0	100	20110111	2.000.204	0,04	1104	12,5	5,0	1.2,5	201101011		0,01
252	Č.E	4 -	150	IOMOWAR	2 552 024	0.04				1 4/1 /	IOMOWIAP	1 017 400	
353	6,5	4,5	150	JONSWAP	2.552.934	0,04	1135	13	5,8	142,5	JONSWAP	1.816.493	0,00

355	7,5	6	150	JONSWAP	2.379.715	0,04	1137	14	5,7	142,5	JONSWAP	1.751.585	0,00
356	8	62	150	IONSWAP	2 305 488	0.04	1138	14.5	55	142.5	IONSWAP	1 721 664	0.00
250	õ	6,2	150	JONGWAD	2.303.100	0,01	1120	17,5	5,5	1 12,5	JONGWAR	1.(02.242	0,00
357	8,5	6,4	150	JONSWAP	2.237.872	0,03	1139	15	5,3	142,5	JONSWAP	1.693.242	0,00
358	9	6.6	150	JONSWAP	2.175.940	0.03	1140	15.5	5.1	142.5	JONSWAP	1.666.200	0.00
350	0.5	6.8	150	IONSWAP	2 118 035	0.02	11/1	16	18	142 5	IONSWAP	1 640 428	0.00
339	9,5	0,8	150	JOINSWAF	2.116.955	0,02	1141	10	4,0	142,5	JOINSWAF	1.040.428	0,00
360	10	6,9	150	JONSWAP	2.066.236	0,02	1142	16,5	4,3	142,5	JONSWAP	1.615.829	0,00
361	10.5	71	150	IONSWAP	2 017 326	0.02	1143	17	38	142.5	IONSWAP	1 592 317	0.00
2.02	10,5	7,1	150	JONGWAN	2.017.520	0,02	1145	17	5,0	142,5	JONGWAD	1.572.517	0,00
362	11	7,3	150	JONSWAP	1.9/1.7/0	0,01	1144	6	3,8	150	JONSWAP	2.655.264	0,04
363	11.5	74	150	IONSWAP	1 929 200	0.01	1145	65	45	150	IONSWAP	2 552 934	0.04
205	11,5	7,4	150	JONGWAN	1.000.205	0,01	1145	0,5	4,5	150	JONGWAD	2.332.734	0,04
364	12	7,4	150	JONSWAP	1.889.305	0,01	1146	1	4,8	150	JONSWAP	2.461.710	0,04
365	12.5	75	150	IONSWAP	1 851 813	0.01	1147	75	5	150	IONSWAP	2 379 715	0.03
200	12,5	7,5	150	JONGWAR	1.016.402	0,01	1117	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		150	JONGWAR	2.375.113	0,05
366	13	7,6	150	JONSWAP	1.816.493	0,01	1148	8	5,2	150	JONSWAP	2.305.488	0,03
367	13.5	77	150	JONSWAP	1 783 143	0.01	1149	85	53	150	JONSWAP	2 237 872	0.02
200	14	7,7	150	IONEWAD	1 751 595	0,01	1150	0,0	5,5	150	IONGWAD	2.175.040	0,02
368	14	/,/	150	JONSWAP	1./51.585	0,01	1150	9	5,5	150	JONSWAP	2.1/5.940	0,02
369	14 5	77	150	JONSWAP	1 721 664	0.01	1151	95	56	150	JONSWAP	2 118 935	0.02
270	15	77	150	IONEWAD	1 602 242	0.01	1152	10	50	150	IONEWAD	2 066 226	0.01
570	15	/,/	150	JOINSWAP	1.095.242	0,01	1152	10	5,0	150	JOINSWAP	2.000.250	0,01
371	15,5	7,6	150	JONSWAP	1.666.200	0,00	1153	10,5	5,9	150	JONSWAP	2.017.326	0,01
372	16	75	150	IONSWAP	1 640 428	0.00	1154	11	6	150	IONSWAP	1 071 770	0.01
512	10	7,5	150	JOINSWAI	1.040.420	0,00	1154	11	0	150	JOINSWAI	1.9/1.//0	0,01
373	16,5	7,4	150	JONSWAP	1.615.829	0,00	1155	11,5	6,1	150	JONSWAP	1.929.200	0,01
374	17	72	150	IONSWAP	1 592 317	0.00	1156	12	61	150	IONSWAP	1 889 305	0.01
275	17.6	()	150	LONGWAR	1.5(0.014	0,00	1100	10.5	6,1	150	IONOWAD	1.051.012	0,01
3/5	17,5	6,9	150	JONSWAP	1.569.814	0,00	1157	12,5	6,2	150	JONSWAP	1.851.813	0,01
376	18	6.6	150	JONSWAP	1.548.250	0.00	1158	13	6.2	150	JONSWAP	1.816.493	0.01
277	105	6.2	150	IONEWAD	1 527 561	0.00	1150	12.5	60	150	IONGWAD	1 702 142	0.00
5//	16,5	0,2	150	JOINSWAP	1.527.501	0,00	1159	15,5	0,2	150	JOINSWAP	1./65.145	0,00
378	19	5,6	150	JONSWAP	1.507.690	0,00	1160	14	6,2	150	JONSWAP	1.751.585	0,00
370	10.5	16	150	IONSWAP	1 / 88 583	0.00	1161	14.5	61	150	IONSWAP	1 721 664	0.00
519	19,5	4,0	150	JONSWAI	1.400.303	0,00	1101	14,5	0,1	150	JOINSWAI	1.721.004	0,00
380	6	3,8	157,5	JONSWAP	2.655.264	0,04	1162	15	6	150	JONSWAP	1.693.242	0,00
381	65	45	157.5	IONSWAP	2 552 934	0.04	1163	15.5	5.8	150	IONSWAP	1 666 200	0.00
202	0,5	5.0	157,5	JONGWAD	2.352.751	0,01	1105	10,0	5,0	150	JONGWAR	1.600.200	0,00
382	1	5,2	157,5	JONSWAP	2.461.710	0,04	1164	16	5,6	150	JONSWAP	1.640.428	0,00
383	75	6	157.5	JONSWAP	2 379 715	0.04	1165	16.5	53	150	JONSWAP	1 615 829	0.00
201	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Č	157.5	IONEWAD	2 205 499	0,01	1100	17	4.0	150	IONGWAD	1 502 217	0,00
384	8	6,2	157,5	JONSWAP	2.305.488	0,04	1166	17	4,9	150	JONSWAP	1.592.317	0,00
385	8.5	6.4	157.5	JONSWAP	2.237.872	0.03	1167	17.5	4.3	150	JONSWAP	1.569.814	0.00
206	0	6.6	1575	IONEWAD	2 175 040	0.02	1169	6	20	157.5	IONGWAD	2 655 264	0.04
380	9	0,0	157,5	JOINSWAP	2.1/3.940	0,05	1108	0	5,0	157,5	JOINSWAP	2.033.204	0,04
387	9,5	6,8	157,5	JONSWAP	2.118.935	0,02	1169	6,5	4,5	157,5	JONSWAP	2.552.934	0,04
200	10	60	1575	IONSWAD	2 066 226	0.02	1170	7	1.0	157 5	IONSWAD	2 461 710	0.04
300	10	0,9	157,5	JOINSWAF	2.000.230	0,02	1170	/	4,0	157,5	JOINSWAF	2.401.710	0,04
389	10,5	7,1	157,5	JONSWAP	2.017.326	0,02	1171	7,5	5	157,5	JONSWAP	2.379.715	0,03
300	11	73	157 5	IONSWAP	1 071 770	0.01	1172	8	5.2	157.5	IONSWAP	2 305 488	0.03
590	11	7,5	157,5	JONSWAI	1.9/1.//0	0,01	1172	0	5,2	157,5	JOINSWAI	2.303.400	0,05
391	11,5	7,4	157,5	JONSWAP	1.929.200	0,01	1173	8,5	5,3	157,5	JONSWAP	2.237.872	0,02
392	12	74	157.5	IONSWAP	1 889 305	0.01	1174	9	55	157.5	IONSWAP	2 175 940	0.02
202	10.5	7,1	157,5	JONGWAD	1.007.000	0,01	1175		5,5	157,5	JONGWAR	2.110.025	0,02
393	12,5	7,5	157,5	JONSWAP	1.851.815	0,01	11/5	9,5	5,6	157,5	JONSWAP	2.118.935	0,02
394	13	7.6	157.5	JONSWAP	1.816.493	0.01	1176	10	5.8	157.5	JONSWAP	2.066.236	0.01
205	12.5	77	157.5	IONSWAD	1 792 142	0.01	1177	10.5	5.0	157.5	IONSWAD	2 017 226	0.01
393	15,5	/,/	157,5	JOINSWAF	1./03.145	0,01	11//	10,5	5,9	157,5	JOINSWAF	2.017.320	0,01
396	14	7,7	157,5	JONSWAP	1.751.585	0,01	1178	11	6	157,5	JONSWAP	1.971.770	0,01
397	14.5	77	157 5	IONSWAP	1 721 664	0.01	1179	11.5	6.1	157.5	IONSWAP	1 929 200	0.01
200	11,5	,,,	157,5	JONGWAR	1.002.040	0,01	11/2	11,5	6,1	157,5	JONGWAR	1.000.205	0,01
398	15	7,7	157,5	JONSWAP	1.693.242	0,01	1180	12	6,1	157,5	JONSWAP	1.889.305	0,01
399	15.5	7.6	157.5	JONSWAP	1.666.200	0.00	1181	12.5	6.2	157.5	JONSWAP	1.851.813	0.01
400	10,0	7,6	157.5	IONGWAD	1 (40 429	0,00	1102	12,0	(,2	157.5	IONGWAD	1 016 402	0,01
400	10	7,5	157,5	JONSWAP	1.040.428	0,00	1182	15	0,2	157,5	JONSWAP	1.810.493	0,01
401	16,5	7,4	157,5	JONSWAP	1.615.829	0,00	1183	13,5	6,2	157,5	JONSWAP	1.783.143	0,00
402	17	7.2	157 5	IONSWAP	1 502 317	0.00	1184	14	62	157 5	IONSWAP	1 751 585	0.00
402	1 /	1,2	157,5	JOINSWAF	1.392.317	0,00	1104	14	0,2	157,5	JOINSWAF	1./51.565	0,00
403	17,5	6,9	157,5	JONSWAP	1.569.814	0,00	1185	14,5	6,1	157,5	JONSWAP	1.721.664	0,00
404	18	6.6	157.5	IONSWAP	1 548 250	0.00	1186	15	6	157.5	IONSWAP	1 693 242	0.00
407	10	0,0	157,5	JONGWAN	1.540.250	0,00	1100	15	-	157,5	JONGWAR	1.075.242	0,00
405	18,5	6,2	157,5	JONSWAP	1.527.561	0,00	1187	15,5	5,8	157,5	JONSWAP	1.666.200	0,00
406	19	56	157.5	IONSWAP	1 507 690	0.00	1188	16	5.6	157.5	IONSWAP	1 640 428	0.00
407	10.5	4.6	157.5	IONEWAD	1 400 502	0,00	1100	165	5.0	157.5	IONGWAD	1 (15 920	0,00
40/	19,5	4,6	157,5	JONSWAP	1.488.583	0,00	1189	16,5	5,3	157,5	JONSWAP	1.615.829	0,00
408	6	3.8	165	JONSWAP	2.655.264	0.04	1190	17	4.9	157.5	JONSWAP	1.592.317	0.00
400	65	4.5	165	IONEWAD	2 552 024	0.04	1101	175	12	157.5	IONGWAD	1 560 914	0.00
409	0,5	4,5	105	JOINSWAF	2.332.934	0,04	1191	17,5	4,5	157,5	JOINSWAF	1.309.814	0,00
410	7	5,2	165	JONSWAP	2.461.710	0,04	1192	6	3,8	165	JONSWAP	2.655.264	0,04
411	75	6	165	IONSWAP	2 379 715	0.04	1193	65	45	165	IONSWAP	2 552 934	0.04
711	7,5	0	105	JOINDWIN	2.377.713	0,04	1175	0,5	4,5	105	JOINDWIN	2.332.934	0,04
412	8	6,2	165	JONSWAP	2.305.488	0,04	1194	1	4,8	165	JONSWAP	2.461.710	0,04
413	8.5	6.4	165	JONSWAP	2.237.872	0.03	1195	7.5	5	165	JONSWAP	2.379.715	0.03
414	0	6.6	165	IONEWAD	2 175 040	0.02	1106	0	50	165	IONEWAD	2 205 499	0.02
414	9	0,0	105	JOINSWAF	2.175.940	0,03	1190	0	5,2	105	JOINSWAF	2.303.488	0,05
415	9,5	6,8	165	JONSWAP	2.118.935	0,02	1197	8,5	5,3	165	JONSWAP	2.237.872	0,02
416	10	6.9	165	IONSWAP	2 066 236	0.02	1198	ġ	5 5	165	IONSWAP	2 175 940	0.02
410	10	0,9	105	JOINDWIN	2.000.250	0,02	1170	<i>.</i>	5,5	105	JOINDWIN	2.175.940	0,02
417	10,5	7,1	165	JONSWAP	2.017.326	0,02	1199	9,5	5,6	165	JONSWAP	2.118.935	0,02
418	11	73	165	JONSWAP	1 971 770	0.01	1200	10	58	165	JONSWAP	2 066 236	0.01
410	11.7	7,3	165	LONGWAR	1.020.200	0,01	1200	10.7	5,0	165	IONOWAD	2.000.200	0,01
419	11,5	/,4	165	JONSWAP	1.929.200	0,01	1201	10,5	5,9	165	JONSWAP	2.01/.326	0,01
420	12	74	165	JONSWAP	1 889 305	0.01	1202	11	6	165	JONSWAP	1 971 770	0.01
421	12.5	7,5	165	IONEWAD	1 051 012	0,01	1202	11.5	C 1	165	IONGWAD	1.020.200	0,01
421	12,5	7,5	165	JONSWAP	1.851.813	0,01	1203	11,5	6,1	165	JONSWAP	1.929.200	0,01
422	13	7.6	165	JONSWAP	1.816.493	0,01	1204	12	6,1	165	JONSWAP	1.889.305	0,01
122	12.5	77	165	IONSWAD	1 792 142	0.01	1205	12.5	62	165	IONSWAD	1 951 912	0.01
423	15,5	/,/	105	JOINSWAP	1./65.145	0,01	1205	12,5	0,2	105	JOINSWAP	1.651.615	0,01
424	14	7,7	165	JONSWAP	1.751.585	0,01	1206	13	6,2	165	JONSWAP	1.816.493	0,01
425	14 5	77	165	IONSWAD	1 721 664	0.01	1207	13.5	62	165	IONSWAP	1 783 1/12	0.00
125	17,0	<i>'</i> , <i>'</i>	105	JOIND WAP	1.721.004	0,01	1207		0,2	105	JOIND WAP	1.703.143	0,00
426	15	7,7	165	JONSWAP	1.693.242	0,01	1208	14	6,2	165	JONSWAP	1.751.585	0,00
427	15.5	76	165	JONSWAP	1.666 200	0.00	1209	14 5	6.1	165	JONSWAP	1.721 664	0.00
420	10	7,0	1/7	IONOWAR	1 640 400	0.00	1010	1.5		105	IONOWAR	1 602 242	0.00
428	16	7,5	165	JONSWAP	1.640.428	0,00	1210	15	6	165	JUNSWAP	1.693.242	0,00
429	16.5	7.4	165	JONSWAP	1.615.829	0.00	1211	15.5	5.8	165	JONSWAP	1.666.200	0.00
120	17	7 2	145	IONSWAP	1 502 217	0,00	1212	14	5 4	145	IONSWAD	1 640 420	0,00
430	1/	1,2	105	JOINSWAP	1.392.31/	0,00	1212	10	3,0	105	JOINSWAP	1.040.428	0,00
431	17.5	6.9	165	JONSWAP	1.569.814	0,00	1213	16.5	5.3	165	JONSWAP	1.615.829	0.00
422	19	6.6	165	IONSWAD	1 5/18 250	0.00	1214	17	10	165	IONSWAD	1 502 217	0.00
-132	10	0,0	105	JUNSWAP	1.540.230	0,00	1214	1/	7,7	105	JUNDWAP	1.374.31/	0,00
433	18,5	6,2	165	JONSWAP	1.527.561	0,00	1215	17,5	4,3	165	JONSWAP	1.569.814	0,00
434	19	56	165	JONSWAP	1 507 690	0.00	1216	6	3.8	172 5	JONSWAP	2 655 264	0.04
10 1	10.7	2,0	105	IONCHAR	1.400.505	0,00	1210	~-	3,0	172,5	IONCRAT	2.0553.204	0,04
435	19,5	4,6	165	JONSWAP	1.488.583	0,00	1217	6,5	4,5	172,5	JONSWAP	2.552.934	0,04
436	6	38	172.5	JONSWAP	2.655 264	0.04	1218	7	49	172.5	JONSWAP	2.461 710	0.04
427	Č-	3,0	172,5	IONOWAR	2.000.204	0.04	1010	-'-	-,-	170.5	IONOWICE	2.201.710	0.07
437	6,5	4,5	172,5	JONSWAP	2.552.934	0,04	1219	7,5	5,1	172,5	JONSWAP	2.379.715	0,03
438	7	5.2	172.5	JONSWAP	2.461.710	0.04	1220	8	5.4	172.5	JONSWAP	2.305.488	0.03
130	75	6	172.5	IONSWAD	2 370 715	0.04	1221	8 5	5 6	172.5	IONSWAD	2 22 972	0.02
439	7,5	0	1/2,5	JUNSWAP	2.5/9./15	0,04	1221	0,0	5,0	1/2,3	JUNSWAP	2.231.812	0,02
440	8	6,5	172,5	JONSWAP	2.305.488	0,04	1222	9	5,7	172,5	JONSWAP	2.175.940	0,02

441	8.5	6.8	172.5	JONSWAP	2.237.872	0.03	1223	9.5	5.9	172.5	JONSWAP	2.118.935	0.02
442	Ó	6.0	172.5	IONEWAD	2 175 040	0.02	1224	10	60	172.5	IONGWAD	2 066 226	0.02
442	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,9	172,5	JOINSWAF	2.1/5.940	0,05	1224	10	0,2	172,5	JOINSWAF	2.000.230	0,02
443	9,5	7,2	172,5	JONSWAP	2.118.935	0,03	1225	10,5	6,3	172,5	JONSWAP	2.017.326	0,01
444	10	73	172.5	IONSWAP	2 066 236	0.02	1226	11	65	172.5	IONSWAP	1 971 770	0.01
445	10.5	7,5	172,5	IONGWAD	2.000.250	0,02	1220	11.5	6,5	172,5	IONGWAD	1.020.200	0,01
445	10,5	7,6	1/2,5	JONSWAP	2.01/.326	0,02	1227	11,5	6,6	172,5	JONSWAP	1.929.200	0,01
446	11	7.8	172,5	JONSWAP	1.971.770	0,02	1228	12	6,7	172,5	JONSWAP	1.889.305	0,01
117	11.5	70	172.5	IONSWAP	1 020 200	0.01	1220	12.5	6.8	172 5	IONSWAP	1 851 813	0.01
	11,5	7,9	172,5	JOINSWAI	1.929.200	0,01	1229	12,5	0,8	172,5	JOINSWAI	1.051.015	0,01
448	12	8,1	172,5	JONSWAP	1.889.305	0,01	1230	13	6,9	172,5	JONSWAP	1.816.493	0,01
449	12.5	82	172.5	IONSWAP	1 851 813	0.01	1231	13.5	7	172.5	IONSWAP	1 783 143	0.01
150	12,5	0,2	172,5	JONGWAD	1.051.015	0,01	1231	15,5	<i>,</i>	172,5	JONGWAD	1.705.145	0,01
450	13	8,3	172,5	JONSWAP	1.816.493	0,01	1232	14	1	172,5	JONSWAP	1.751.585	0,01
451	13.5	85	172.5	IONSWAP	1 783 143	0.01	1233	14 5	7	172.5	JONSWAP	1 721 664	0.00
450	14	0,5	172,0	LONGWAR	1 751 505	0,01	1220	1.7	,	172,0	IONOWAD	1.(02.242	0,00
452	14	8,5	172,5	JONSWAP	1.751.585	0,01	1234	15	1	172,5	JONSWAP	1.693.242	0,00
453	14.5	8.6	172.5	JONSWAP	1.721.664	0.01	1235	15.5	7	172.5	JONSWAP	1.666.200	0.00
151	15	97	172.5	IONSWAD	1 602 242	0.01	1226	16	6.0	172 5	IONSWAD	1 640 428	0.00
434	15	0,7	172,5	JOINSWAF	1.093.242	0,01	1230	10	0,9	172,5	JOINSWAF	1.040.428	0,00
455	15,5	8,8	172,5	JONSWAP	1.666.200	0,01	1237	16,5	6,8	172,5	JONSWAP	1.615.829	0,00
456	16	8.8	172 5	IONSWAP	1 640 428	0.01	1238	17	6.6	172 5	IONSWAP	1 592 317	0.00
457	16.5	0,0	172,0	LONGWAR	1 (15 020	0,01	1220	17.5	6,0	172,0	IONOWAD	1.5(0.014	0,00
457	16,5	8,8	1/2,5	JONSWAP	1.615.829	0,00	1239	17,5	6,3	172,5	JONSWAP	1.569.814	0,00
458	17	8.7	172,5	JONSWAP	1.592.317	0,00	1240	18	6	172,5	JONSWAP	1.548.250	0,00
450	17.5	86	172 5	IONSWAD	1 560 814	0.00	1241	18.5	5.4	172 5	IONSWAP	1 527 561	0.00
459	17,5	0,0	172,5	JONGWAI	1.509.814	0,00	1241	10,5	5,4	172,5	JONGWAI	1.527.501	0,00
460	18	8,5	172,5	JONSWAP	1.548.250	0,00	1242	6	3,8	180	JONSWAP	2.655.264	0,04
461	18.5	83	172.5	IONSWAP	1 527 561	0.00	1243	65	45	180	JONSWAP	2 552 934	0.04
162	10	0,5	172,5	IONEWAD	1 507 600	0,00	1244	7	4.0	100	IONEWAD	2 461 710	0.04
402	19	0,1	172,5	JOINSWAP	1.307.090	0,00	1244	/	4,9	180	JOINSWAP	2.401./10	0,04
463	19,5	7,7	172,5	JONSWAP	1.488.583	0,00	1245	7,5	5,1	180	JONSWAP	2.379.715	0,03
464	20	72	172 5	IONSWAP	1 470 193	0.00	1246	8	54	180	IONSWAP	2 305 488	0.03
101	20	7,2	172,5	10110 10111	1.470.175	0,00	1240		5,4	100	JOINDWIN	2.303.400	0,05
465	20,5	6,4	172,5	JONSWAP	1.452.476	0,00	1247	8,5	5,6	180	JONSWAP	2.237.872	0,02
466	6	38	180	IONSWAP	2 655 264	0.04	1248	9	57	180	JONSWAP	2 175 940	0.02
407	Č.F.	4.5	100	IONEWAD	2.552.024	0.04	1240	Ó.5	5.0	100	IONGWAD	2 119 025	0,02
46/	6,5	4,5	180	JONSWAP	2.552.934	0,04	1249	9,5	5,9	180	JONSWAP	2.118.935	0,02
468	7	5.2	180	JONSWAP	2.461.710	0.04	1250	10	6.2	180	JONSWAP	2.066.236	0.02
460	7.5	6	190	IONEWAD	2 270 715	0.04	1251	10.5	6.2	190	IONEWAD	2 017 226	0.01
409	7,5	0	180	JOINSWAP	2.5/9./15	0,04	1231	10,5	0,5	180	JOINSWAP	2.017.520	0,01
470	8	6,5	180	JONSWAP	2.305.488	0,04	1252	11	6,5	180	JONSWAP	1.971.770	0,01
471	85	6.8	180	IONSWAP	2 237 872	0.03	1253	11.5	6.6	180	IONSWAP	1 929 200	0.01
4/1	0,5	0,0	100	10110 10111	2.237.072	0,05	1255	11,5	0,0	100	JOINDWIN	1.929.200	0,01
472	9	6,9	180	JONSWAP	2.175.940	0,03	1254	12	6,7	180	JONSWAP	1.889.305	0,01
473	9.5	7.2	180	JONSWAP	2.118.935	0.03	1255	12.5	6.8	180	JONSWAP	1.851.813	0.01
474	10	7.2	190	IONEWAD	2 066 226	0.02	1256	12	6.0	190	IONEWAD	1 916 402	0.01
4/4	10	7,5	180	JOINSWAP	2.000.250	0,02	1230	15	0,9	180	JOINSWAP	1.810.495	0,01
475	10,5	7,6	180	JONSWAP	2.017.326	0,02	1257	13,5	7	180	JONSWAP	1.783.143	0,01
176	11	78	180	IONSWAP	1 071 770	0.02	1258	14	7	180	IONSWAP	1 751 585	0.01
470	11	7,8	100	JOINSWAI	1.9/1.//0	0,02	1230	14	-	100	JOINSWAI	1.751.565	0,01
477	11,5	7,9	180	JONSWAP	1.929.200	0,01	1259	14,5	1	180	JONSWAP	1.721.664	0,00
478	12	8.1	180	JONSWAP	1 889 305	0.01	1260	15	7	180	JONSWAP	1 693 242	0.00
470	12.5	0,1	100	IONEWAD	1 051 012	0,01	1200	15.5	, 7	100	IONGWAD	1 (((200	0,00
4/9	12,5	8,2	180	JUNSWAP	1.851.815	0,01	1201	15,5	/	180	JONSWAP	1.000.200	0,00
480	13	8,3	180	JONSWAP	1.816.493	0,01	1262	16	6,9	180	JONSWAP	1.640.428	0.00
481	13.5	85	180	IONSWAP	1 783 1/3	0.01	1263	16.5	6.8	180	IONSWAP	1 615 820	0.00
401	15,5	0,5	180	JONSWAI	1.785.145	0,01	1203	10,5	0,8	180	JOINSWAI	1.013.829	0,00
482	14	8,5	180	JONSWAP	1.751.585	0,01	1264	17	6,6	180	JONSWAP	1.592.317	0,00
483	14 5	8.6	180	IONSWAP	1 721 664	0.01	1265	175	63	180	JONSWAP	1 569 814	0.00
404	1.5	0.7	100	IONEWAD	1 (02 242	0.01	12((10	6	100	IONGWAD	1 549 350	0,00
484	15	8,7	180	JONSWAP	1.693.242	0,01	1266	18	6	180	JONSWAP	1.548.250	0,00
485	15,5	8,8	180	JONSWAP	1.666.200	0,01	1267	18,5	5,4	180	JONSWAP	1.527.561	0,00
186	16	8.8	180	IONSWAP	1 640 428	0.01	1268	6	3.8	187.5	IONSWAP	2 655 264	0.04
400	10	0,0	100	JOINSWAI	1.040.420	0,01	1200	0	5,8	107,5	JOINSWAI	2.033.204	0,04
487	16,5	8,8	180	JONSWAP	1.615.829	0,00	1269	6,5	4,5	187,5	JONSWAP	2.552.934	0,04
488	17	8.7	180	JONSWAP	1.592.317	0.00	1270	7	4.9	187.5	JONSWAP	2.461.710	0.04
400	175	0,0	100	IONEWAD	1 5(0 014	0,00	1071	7.5	5 1	107.5	IONGWAD	2 270 715	0,02
489	17,5	8,0	180	JONSWAP	1.309.814	0,00	12/1	7,5	5,1	18/,5	JONSWAP	2.3/9./15	0,03
490	18	8,5	180	JONSWAP	1.548.250	0,00	1272	8	5,4	187,5	JONSWAP	2.305.488	0,03
/01	18.5	83	180	IONSWAD	1 527 561	0.00	1273	85	56	187 5	IONSWAP	2 237 872	0.02
100	10,5	0,5	100	10110 10111	1.527.501	0,00	1275	0,5	5,0	107,5	JOINDWIN	2.237.072	0,02
492	19	8,1	180	JONSWAP	1.507.690	0,00	1274	9	5,7	187,5	JONSWAP	2.175.940	0,02
493	19.5	7.7	180	JONSWAP	1.488.583	0.00	1275	9.5	5.9	187.5	JONSWAP	2.118.935	0.02
404	20	7.2	190	IONEWAD	1 470 102	0,00	1276	10	6.2	107.5	IONEWAD	2.066.226	0,02
494	20	7,2	180	JOINSWAF	1.4/0.195	0,00	1270	10	0,2	107,5	JOINSWAF	2.000.230	0,02
495	20,5	6,4	180	JONSWAP	1.452.476	0,00	1277	10,5	6,3	187,5	JONSWAP	2.017.326	0,01
496	6	38	187 5	IONSWAP	2 655 264	0.04	1278	11	6.5	187 5	IONSWAP	1 971 770	0.01
407	~~	3,0	107,5	JONGWAR	2.000.201	0,01	1270	11.7	6,5	107,5	JONGWAR	1.020.200	0,01
497	6,5	4,5	187,5	JONSWAP	2.552.934	0,04	12/9	11,5	6,6	187,5	JONSWAP	1.929.200	0,01
498	7	5,2	187,5	JONSWAP	2.461.710	0,04	1280	12	6,7	187,5	JONSWAP	1.889.305	0,01
499	75	6	187.5	IONSWAP	2 379 715	0.04	1281	12.5	6.8	187 5	IONSWAP	1 851 813	0.01
500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	65	107,5	JONGWAD	2.375.400	0,01	1201	12,5	6,0	107,5	JONGWAR	1.01(.402	0,01
500	8	6,5	187,5	JONSWAP	2.305.488	0,04	1282	13	6,9	187,5	JOINSWAP	1.816.493	0,01
501	8,5	6,8	187.5	JONSWAP	2.237.872	0,03	1283	13,5	7	187.5	JONSWAP	1.783.143	0,01
502	á	60	187 5	IONSWAD	2 175 040	0.03	1284	14	7	187 5	IONSWAP	1 751 585	0.01
502	~-	0,9	107,5	JOIND WAP	2.1/3.940	0,05	1204	14	<u>′</u>	107,5	JOINDWAP	1.731.303	0,01
503	9,5	7,2	187,5	JONSWAP	2.118.935	0,03	1285	14,5	7	187,5	JONSWAP	1.721.664	0,00
504	10	7.3	187.5	JONSWAP	2.066.236	0.02	1286	15	7	187.5	JONSWAP	1.693.242	0.00
505	10.5	7 6	1975	IONSWAD	2 017 226	0.02	1207	15.5	7	197 5	IONGWAD	1 666 200	0.00
505	10,5	7,0	187,5	JUNSWAP	2.017.326	0,02	1287	15,5	/	18/,5	JONSWAP	1.000.200	0,00
506	11	7,8	187,5	JONSWAP	1.971.770	0,02	1288	16	6,9	187,5	JONSWAP	1.640.428	0,00
507	11.5	70	187.5	IONSWAD	1 020 200	0.01	1280	16.5	6.8	187 5	IONSWAP	1 615 820	0.00
507	11,5	7,9	107,5	JOINSWAI	1.929.200	0,01	1209	10,5	0,8	107,5	JOINSWAI	1.015.029	0,00
508	12	8,1	187,5	JONSWAP	1.889.305	0,01	1290	17	6,6	187,5	JONSWAP	1.592.317	0,00
509	12.5	82	187.5	IONSWAP	1 851 813	0.01	1291	175	63	187 5	JONSWAP	1 569 814	0.00
510	12,0	0,2	107,5	IONEWAD	1 916 402	0.01	1202	10	6	107,5	IONEWAD	1 549 250	0,00
510	13	0,3	16/,5	JUNSWAP	1.010.493	0,01	1292	18	0	10/,3	JUNSWAP	1.346.230	0,00
511	13,5	8,5	187,5	JONSWAP	1.783.143	0,01	1293	18,5	5,4	187,5	JONSWAP	1.527.561	0,00
512	14	8 5	187 5	JONSWAP	1 751 585	0.01	1294	6	3.8	195	JONSWAP	2 655 264	0.04
512	14.7	0,5	107,5	IONOWAT	1 701 664	0.01	1207	~~~	3,0	105	IONOWAF	2.033.204	0,04
513	14,5	8,6	187,5	JONSWAP	1./21.664	0,01	1295	6,5	4,5	195	JONSWAP	2.552.934	0,04
514	15	8.7	187.5	JONSWAP	1.693.242	0.01	1296	7	5.2	195	JONSWAP	2.461.710	0.04
515	15.5	80	187.5	IONSWAD	1 666 200	0.01	1207	75	6	105	IONSWAD	2 370 715	0.04
515	15,5	0,0	10/,5	JOINSWAP	1.000.200	0,01	129/	1,5	0	193	JUNSWAP	2.319.113	0,04
516	16	8,8	187,5	JONSWAP	1.640.428	0,01	1298	8	6,8	195	JONSWAP	2.305.488	0,04
517	16.5	8.8	187 5	JONSW & P	1 615 829	0.00	1200	85	7	195	JONSWAP	2 237 872	0.04
510	10,5	0,0	107,5	IONOWAF	1.502.017	0,00	1200	0,5		195	IONOWAF	2.237.072	0,07
318	1/	8,7	187,5	JONSWAP	1.392.317	0,00	1300	9	1,3	195	JOINSWAP	2.1/5.940	0,03
519	17,5	8,6	187.5	JONSWAP	1.569.814	0,00	1301	9,5	7,7	195	JONSWAP	2.118.935	0,03
520	19	8 5	187 5	IONSWAD	1 5/18 250	0.00	1202	10	é	105	IONSWAD	2 066 226	0.02
520	10	0,5	107,5	JOINSWAP	1.5+0.230	0,00	1302	10	0	173	JOINDWAP	2.000.230	0,05
521	18,5	8,3	187,5	JONSWAP	1.527.561	0,00	1303	10,5	8,2	195	JONSWAP	2.017.326	0,02
522	19	8.1	187 5	JONSWAP	1.507 690	0.00	1304	11	8.4	195	JONSWAP	1.971 770	0.02
522	10.5	77	107 5	IONEWAR	1 400 500	0.00	1205	11 5	0,1	105	IONEWAR	1 020 200	0.02
323	19,5	/,/	18/,5	JOINSWAP	1.488.383	0,00	1305	11,5	8,0	195	JUNSWAP	1.929.200	0,02
524	20	7,2	187,5	JONSWAP	1.470.193	0,00	1306	12	8,8	195	JONSWAP	1.889.305	0,02
525	20.5	61	187 5	IONSWAD	1 452 476	0.00	1307	12.5	80	105	IONSWAP	1 851 813	0.01
525	20,5	0,4	107,5	JOINSWAP	1.732.470	0,00	1307	12,3	0,7	173	JUNDWAP	1.031.013	0,01
526	6	3,8	195	JONSWAP	2.655.264	0,04	1308	13	9,1	195	JONSWAP	1.816.493	0,01

527	65	45	195	IONSWAP	2 552 934	0.04	1309	13.5	92	195	IONSWAP	1 783 143	0.01
520	0,5	5.0	105	IONGWAD	2.352.754	0,04	1210	13,5	0,2	105	JONGWAD	1.765.145	0,01
528	_/	5,2	195	JONSWAP	2.461./10	0,04	1310	14	9,3	195	JONSWAP	1./51.585	0,01
529	7,5	6	195	JONSWAP	2.379.715	0,04	1311	14,5	9,3	195	JONSWAP	1.721.664	0,01
530	8	6.8	195	JONSWAP	2.305.488	0.04	1312	15	9.3	195	JONSWAP	1.693.242	0.01
531	85	7.4	105	IONSWAP	2 237 872	0.04	1313	15.5	0.2	105	IONSWAP	1 666 200	0.01
533	0,5	7, 1	105	JONGWAD	2.257.072	0,04	1214	10,0	0,1	105	JONGWAR	1.000.200	0,01
532	9	8,1	195	JONSWAP	2.1/5.940	0,04	1314	16	9,1	195	JONSWAP	1.640.428	0,01
533	9,5	8,8	195	JONSWAP	2.118.935	0,04	1315	16,5	8,8	195	JONSWAP	1.615.829	0,00
534	10	9.3	195	JONSWAP	2.066.236	0.03	1316	17	8.3	195	JONSWAP	1.592.317	0.00
535	10.5	07	105	IONSWAP	2 017 326	0.03	1317	6	3.8	202.5	IONSWAP	2 655 264	0.04
555	10,5	9,7	195	JOINSWAF	2.017.320	0,03	1317	0	5,0	202,5	JOINSWAF	2.055.204	0,04
536	11	9,9	195	JONSWAP	1.9/1.//0	0,03	1318	6,5	4,5	202,5	JONSWAP	2.552.934	0,04
537	11,5	10,2	195	JONSWAP	1.929.200	0,02	1319	7	5,2	202,5	JONSWAP	2.461.710	0,04
538	12	10 5	195	IONSWAP	1 889 305	0.02	1320	75	6	202 5	IONSWAP	2 379 715	0.04
520	12	10,5	105	IONGWAD	1.007.505	0,02	1220	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0	202,5	IONGWAD	2.375.113	0,04
539	12,5	10,6	195	JOINSWAP	1.851.815	0,02	1321	8	0,8	202,5	JOINSWAP	2.305.488	0,04
540	13	10,8	195	JONSWAP	1.816.493	0,02	1322	8,5	7	202,5	JONSWAP	2.237.872	0,04
541	13.5	11.1	195	JONSWAP	1.783.143	0.02	1323	9	7.3	202.5	JONSWAP	2.175.940	0.03
542	14	111	195	IONSWAP	1 751 585	0.01	1324	9.5	77	202 5	IONSWAP	2 118 935	0.03
542	14.7	11,1	105	JONGWAD	1.701.005	0,01	1224	10	,,,	202,5	JONGWAR	2.110.995	0,05
543	14,5	11,3	195	JONSWAP	1./21.664	0,01	1325	10	8	202,5	JONSWAP	2.066.236	0,03
544	15	11,4	195	JONSWAP	1.693.242	0,01	1326	10,5	8,2	202,5	JONSWAP	2.017.326	0,02
545	15.5	11.5	195	JONSWAP	1.666.200	0.01	1327	11	8.4	202.5	JONSWAP	1.971.770	0.02
546	16	11.6	105	IONSWAP	1 640 428	0.01	1328	11.5	86	202.5	IONSWAP	1 020 200	0.02
547	10	11,0	195	JONGWAI	1.040.428	0,01	1320	11,5	0,0	202,5	JONGWAD	1.929.200	0,02
547	16,5	11,6	195	JONSWAP	1.615.829	0,01	1329	12	8,8	202,5	JONSWAP	1.889.305	0,02
548	17	11,6	195	JONSWAP	1.592.317	0,01	1330	12,5	8,9	202,5	JONSWAP	1.851.813	0,01
549	175	11.5	195	IONSWAP	1 569 814	0.01	1331	13	91	202.5	JONSWAP	1 816 493	0.01
550	10	11,5	105	IONEWAD	1 549 250	0,01	1222	12.5	0,1	202,5	IONEWAD	1 792 142	0,01
550	10	11,5	193	JOINSWAP	1.348.230	0,01	1552	15,5	9,2	202,5	JOINSWAP	1./65.145	0,01
551	18,5	11,1	195	JONSWAP	1.527.561	0,00	1333	14	9,3	202,5	JONSWAP	1.751.585	0,01
552	19	10,6	195	JONSWAP	1.507.690	0,00	1334	14,5	9,3	202,5	JONSWAP	1.721.664	0,01
553	19.5	95	195	IONSWAP	1 488 583	0.00	1335	15	93	202 5	IONSWAP	1 693 242	0.01
555	1),5	2,0	202.5	IONGWAD	2 (55 2(4	0,00	1220	15 5	0,0	202,5	IONGWAD	1.075.242	0,01
554	0	3,8	202,5	JOINSWAP	2.035.204	0,04	1330	15,5	9,2	202,5	JONSWAP	1.000.200	0,01
555	6,5	4,5	202,5	JONSWAP	2.552.934	0,04	1337	16	9,1	202,5	JONSWAP	1.640.428	0,01
556	7	52	202.5	IONSWAP	2 461 710	0.04	1338	16.5	8.8	202 5	JONSWAP	1 615 829	0.00
557	75	6	202,5	IONSWAR	2 270 715	0.04	1220	17	0,0	202,5	IONSWAD	1 502 217	0,00
557	7,5	0	202,5	JOINSWAF	2.3/9./13	0,04	1339	17	0,5	202,5	JOINSWAF	1.392.317	0,00
558	8	6,8	202,5	JONSWAP	2.305.488	0,04	1340	6	3,8	210	JONSWAP	2.655.264	0,04
559	8,5	7,4	202,5	JONSWAP	2.237.872	0,04	1341	6,5	4,5	210	JONSWAP	2.552.934	0,04
560	9	8.1	202 5	IONSWAP	2 175 940	0.04	1342	7	52	210	IONSWAP	2 461 710	0.04
500	0.5	0,1	202,5	IONGWAD	2.175.940	0,04	1242	7'5	5,2	210	IONGWAD	2.401.710	0,04
201	9,5	8,8	202,5	JOINSWAP	2.118.935	0,04	1343	7,5	0	210	JONSWAP	2.3/9./15	0,04
562	10	9,3	202,5	JONSWAP	2.066.236	0,03	1344	8	6,8	210	JONSWAP	2.305.488	0,04
563	10.5	9.7	202.5	JONSWAP	2.017.326	0.03	1345	8.5	7	210	JONSWAP	2.237.872	0.04
564	11	00	202.5	IONSWAP	1 071 770	0.03	1346	0	73	210	IONSWAP	2 175 940	0.03
504	11 7	10.2	202,5	JONGWAD	1.971.770	0,05	1247	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7,5	210	JONGWAD	2.175.940	0,05
202	11,5	10,2	202,5	JONSWAP	1.929.200	0,02	1347	9,5	/,/	210	JONSWAP	2.118.935	0,03
566	12	10,5	202,5	JONSWAP	1.889.305	0,02	1348	10	8	210	JONSWAP	2.066.236	0,03
567	12.5	10.6	202.5	IONSWAP	1 851 813	0.02	1349	10.5	82	210	JONSWAP	2 017 326	0.02
569	12	10.8	202.5	IONSWAD	1 816 402	0.02	1250	11	8.4	210	IONSWAD	1 071 770	0.02
508	13	10,8	202,5	JOINSWAF	1.810.495	0,02	1350	11	0,4	210	JOINSWAF	1.9/1.//0	0,02
569	13,5	11,1	202,5	JONSWAP	1.783.143	0,02	1351	11,5	8,6	210	JONSWAP	1.929.200	0,02
570	14	11,1	202,5	JONSWAP	1.751.585	0,01	1352	12	8,8	210	JONSWAP	1.889.305	0,02
571	14 5	113	202 5	IONSWAP	1 721 664	0.01	1353	12.5	89	210	IONSWAP	1 851 813	0.01
570	15	11,5	202,5	IONGWAD	1.(02.242	0,01	1254	12,5	0,1	210	IONGWAD	1.01(.402	0,01
572	15	11,4	202,5	JONSWAP	1.693.242	0,01	1354	13	9,1	210	JONSWAP	1.816.493	0,01
573	15,5	11,5	202,5	JONSWAP	1.666.200	0,01	1355	13,5	9,2	210	JONSWAP	1.783.143	0,01
574	16	11.6	202.5	JONSWAP	1.640.428	0.01	1356	14	9.3	210	JONSWAP	1.751.585	0.01
575	16.5	11.6	202.5	IONSWAP	1 615 820	0.01	1357	14.5	03	210	IONSWAP	1 721 664	0.01
575	10,5	11,0	202,5	JONSWAI	1.015.829	0,01	1357	14,5	9,5	210	JONSWAI	1.721.004	0,01
576	17	11,6	202,5	JONSWAP	1.592.317	0,01	1358	15	9,3	210	JONSWAP	1.693.242	0,01
577	17,5	11,5	202,5	JONSWAP	1.569.814	0,01	1359	15,5	9,2	210	JONSWAP	1.666.200	0,01
578	18	113	202.5	IONSWAP	1 548 250	0.01	1360	16	91	210	JONSWAP	1 640 428	0.01
570	18.5	11.1	202.5	IONSWAP	1 527 561	0,00	1361	16.5	8.8	210	IONSWAP	1 615 820	0,00
500	10,5	11,1	202,5	JONGWAD	1.527.501	0,00	12(2	10,5	0,0	210	JONGWAD	1.013.829	0,00
580	19	10,6	202,5	JONSWAP	1.507.690	0,00	1362	17	8,3	210	JONSWAP	1.592.317	0,00
581	19,5	9,5	202,5	JONSWAP	1.488.583	0,00	1363	6	3,8	217,5	JONSWAP	2.655.264	0,04
582	6	38	210	IONSWAP	2 655 264	0.04	1364	65	4 5	217 5	JONSWAP	2 552 934	0.04
502	6.5	4.5	210	IONEWAD	2 552 024	0.04	1265	7	5.2	217.5	IONEWAD	2 461 710	0.04
565	0,5	4,5	210	JOINSWAF	2.332.934	0,04	1305		5,2	217,5	JOINSWAF	2.401.710	0,04
584	7	5,2	210	JONSWAP	2.461./10	0,04	1366	7,5	6	217,5	JONSWAP	2.3/9./15	0,04
585	7,5	6	210	JONSWAP	2.379.715	0,04	1367	8	6,8	217,5	JONSWAP	2.305.488	0,04
586	8	6.8	210	JONSWAP	2.305.488	0.04	1368	8.5	7.1	217.5	JONSWAP	2.237.872	0.04
587	85	7 /	210	IONSWAP	2 227 972	0.04	1360	0	7 /	217 5	IONSWAP	2 175 040	0.02
507	0,5	7,4	210	JONGWAI	2.237.072	0,04	1309	~ ~	7,4	217,5	JONGWAI	2.175.940	0,05
288	9	8,1	210	JONSWAP	2.1/5.940	0,04	13/0	9,5	/,6	217,5	JONSWAP	2.118.935	0,03
589	9,5	8,8	210	JONSWAP	2.118.935	0,04	1371	10	7,9	217,5	JONSWAP	2.066.236	0,03
590	10	9.3	210	JONSWAP	2.066.236	0.03	1372	10.5	8.2	217.5	JONSWAP	2.017.326	0.02
501	10.5	0.7	210	IONSWAD	2 017 226	0.02	1272	11	8.4	217.5	IONSWAD	1 071 770	0.02
591	10,5	9,7	210	JOINSWAP	2.017.520	0,05	13/3	11	0,4	217,5	JOINSWAP	1.9/1.//0	0,02
592	11	9,9	210	JONSWAP	1.9/1.//0	0,03	13/4	11,5	8,6	217,5	JONSWAP	1.929.200	0,02
593	11,5	10,2	210	JONSWAP	1.929.200	0,02	1375	12	8,8	217,5	JONSWAP	1.889.305	0,02
594	12	10 5	210	IONSWAP	1 889 305	0.02	1376	12.5	89	217 5	IONSWAP	1 851 813	0.01
505	12.5	10,5	210	IONGWAD	1.051.012	0,02	1277	12,5	0,5	217,5	IONGWAD	1.01(.402	0,01
393	12,5	10,6	210	JOINSWAP	1.851.815	0,02	13//	13	9	217,5	JOINSWAP	1.816.493	0,01
596	13	10,8	210	JONSWAP	1.816.493	0,02	1378	13,5	9,1	217,5	JONSWAP	1.783.143	0,01
597	13.5	11,1	210	JONSWAP	1.783.143	0,02	1379	14	9,2	217.5	JONSWAP	1.751.585	0,01
598	14	11 1	210	JONSWAP	1 751 585	0.01	1380	14 5	92	217 5	IONSWAP	1 721 664	0.01
500	145	11.1	210	IONOWAP	1.701.000	0.01	1201	17,5	0,2	217,5	IONOWAP	1 602 242	0,01
399	14,5	11,5	210	JUNSWAP	1./21.004	0,01	1381	15	9,1	21/,5	JOINSWAP	1.093.242	0,01
600	15	11,4	210	JONSWAP	1.693.242	0,01	1382	15,5	9	217,5	JONSWAP	1.666.200	0,01
601	15,5	11,5	210	JONSWAP	1.666.200	0,01	1383	16	8,5	217.5	JONSWAP	1.640.428	0,00
602	16	11.6	210	IONSWAD	1 640 428	0.01	1384	6	3.8	225	IONSWAP	2 655 264	0.04
602	10	11,0	210	JOINDWAP	1.040.428	0,01	1304	~	5,0	223	JOINDWAP	2.033.204	0,04
603	16,5	11,6	210	JONSWAP	1.615.829	0,01	1385	6,5	4,5	225	JONSWAP	2.552.934	0,04
604	17	11,6	210	JONSWAP	1.592.317	0,01	1386	7	5,2	225	JONSWAP	2.461.710	0,04
605	17.5	11.5	210	JONSWAP	1.569.814	0.01	1387	7.5	6	225	JONSWAP	2.379.715	0.04
606	18	11 2	210	IONSWAP	1 5/18 250	0.01	1299	8	6.9	225	IONSWAP	2 305 100	0.04
000	10	11,3	210	JOINSWAP	1.546.250	0,01	1368	°-	0,8	223	JOINSWAP	2.303.488	0,04
607	18,5	11,1	210	JONSWAP	1.527.561	0,00	1389	8,5	7,1	225	JONSWAP	2.237.872	0,04
608	19	10,6	210	JONSWAP	1.507.690	0,00	1390	9	7,4	225	JONSWAP	2.175.940	0,03
	1)		-	-		0.00			-í -	-	-		/
609	195	95	210	IONSWAP	1 488 583	()()()	1391	95	1/6	225	JONSWAP	2 118 935	0.03
609	19,5	9,5	210	JONSWAP	1.488.583	0,00	1391	9,5	7,6	225	JONSWAP	2.118.935	0,03
609 610	19,5 6	9,5 3,8	210 217,5	JONSWAP JONSWAP	1.488.583 2.655.264	0,00 0,04	1391 1392	9,5 10	7,6 7,9	225 225	JONSWAP JONSWAP	2.118.935 2.066.236	0,03 0,03
609 610 611	19,5 6 6,5	9,5 3,8 4,5	210 217,5 217,5	JONSWAP JONSWAP JONSWAP	1.488.583 2.655.264 2.552.934	$0,00 \\ 0,04 \\ 0,04$	1391 1392 1393	9,5 10 10,5	7,6 7,9 8,2	225 225 225	JONSWAP JONSWAP JONSWAP	2.118.935 2.066.236 2.017.326	0,03 0,03 0,02

613	7,5	6	217,5	JONSWAP	2.379.715	0,04	1395	11,5	8,6	225	JONSWAP	1.929.200	0,02
614	8	6.8	217.5	IONSWAP	2 305 488	0.04	1396	12	8.8	225	IONSWAP	1 889 305	0.02
615	~~~	7,4	217,5	JONGWAD	2.303.100	0,01	1207	12.5	0,0	225	JONGWAR	1.007.000	0,02
615	8,5	/,4	217,5	JONSWAP	2.237.872	0,04	1397	12,5	8,9	225	JONSWAP	1.851.813	0,01
616	9	8.1	217.5	JONSWAP	2.175.940	0.04	1398	13	9	225	JONSWAP	1.816.493	0.01
617	0.5	97	217.5	IONSWAD	2 119 025	0.04	1200	12.5	0.1	225	IONSWAD	1 792 142	0.01
017	9,5	0,7	217,5	JOINSWAF	2.116.935	0,04	1399	15,5	9,1	223	JOINSWAF	1.765.145	0,01
618	10	9,1	217,5	JONSWAP	2.066.236	0,03	1400	14	9,2	225	JONSWAP	1.751.585	0,01
619	10.5	94	217.5	IONSWAP	2 017 326	0.03	1401	14 5	92	225	IONSWAP	1 721 664	0.01
(20	11	0,5	217,5	IONGWAD	1.071.770	0,05	1402	15	0,1	225	IONGWAD	1.(02.242	0,01
620	11	9,5	217,5	JONSWAP	1.9/1.//0	0,03	1402	15	9,1	225	JONSWAP	1.693.242	0,01
621	11.5	9.8	217.5	JONSWAP	1.929.200	0.02	1403	15.5	9	225	JONSWAP	1.666.200	0.01
(22	12	10.1	217,0	IONGWAD	1 000 205	0,02	1404	10,0	0 E	225	IONGWAD	1 (40 420	0,01
622	12	10,1	217,5	JONSWAP	1.889.305	0,02	1404	10	8,5	225	JONSWAP	1.040.428	0,00
623	12.5	10.3	217.5	JONSWAP	1.851.813	0.02	1405	6	3.8	232.5	JONSWAP	2.655.264	0.04
(24	12	10.4	217.5	IONICIUAD	1 01 (402	0,02	1400	Č.E.	4.5	222,5	IONGWAD	2 552 024	0,04
624	13	10,4	217,5	JONSWAP	1.816.493	0,02	1406	6,5	4,5	232,5	JONSWAP	2.552.934	0,04
625	13.5	10.6	217.5	JONSWAP	1.783.143	0.01	1407	7	5.2	232.5	JONSWAP	2.461.710	0.04
626	14	10.8	217.5	IONSWAD	1 751 595	0.01	1409	7.5	6	222.5	IONSWAD	2 270 715	0.04
020	14	10,8	217,5	JOINSWAF	1./51.565	0,01	1408	7,5	0	232,5	JOINSWAF	2.3/9./15	0,04
627	14,5	10,9	217,5	JONSWAP	1.721.664	0,01	1409	8	6,8	232,5	JONSWAP	2.305.488	0,04
628	15	11	217 5	IONSWAP	1 693 242	0.01	1410	85	71	232 5	IONSWAP	2 237 872	0.04
028	15	11	217,5	JOINSWAI	1.095.242	0,01	1410	0,5	7,1	232,3	JOINSWAI	2.237.072	0,04
629	15,5	11,1	217,5	JONSWAP	1.666.200	0,01	1411	9	7,4	232,5	JONSWAP	2.175.940	0,03
630	16	11.2	217.5	JONSWAP	1 640 428	0.01	1412	95	7.6	232.5	JONSWAP	2 118 935	0.03
(21	165	11.2	217.5	IONICIUAD	1 (15 920	0.01	1412	10	7.0	222,5	IONGWAD	2.0((.22)	0,02
031	16,5	11,2	217,5	JONSWAP	1.015.829	0,01	1413	10	7,9	232,5	JONSWAP	2.000.230	0,03
632	17	11,1	217,5	JONSWAP	1.592.317	0,01	1414	10,5	8,2	232,5	JONSWAP	2.017.326	0,02
633	175	10.0	217 5	IONSWAP	1 560 814	0.01	1415	11	81	232 5	IONSWAP	1 071 770	0.02
055	17,5	10,5	217,5	JONGWAN	1.540.050	0,01	1415		0,4	232,5	JONGWAN	1.000.000	0,02
634	18	10,6	217,5	JONSWAP	1.548.250	0,00	1416	11,5	8,6	232,5	JONSWAP	1.929.200	0,02
635	6	38	225	JONSWAP	2 655 264	0.04	1417	12	8.8	232.5	JONSWAP	1 889 305	0.02
(20	Č.F.	4.5	225	IONGWAD	2.552.024	0.04	1410	12.5	0,0	222,5	IONGWAD	1 051 012	0,01
636	6,5	4,5	225	JONSWAP	2.552.934	0,04	1418	12,5	8,9	232,5	JONSWAP	1.851.813	0,01
637	7	5.2	225	JONSWAP	2.461.710	0.04	1419	13	9	232.5	JONSWAP	1.816.493	0.01
629	7.5	6	225	IONSWAD	2 270 715	0.04	1420	12.5	0.1	222.5	IONSWAD	1 792 142	0.01
038	7,5	0	225	JOINSWAF	2.3/9./13	0,04	1420	15,5	9,1	232,5	JOINSWAF	1./05.145	0,01
639	8	6,8	225	JONSWAP	2.305.488	0,04	1421	14	9,2	232,5	JONSWAP	1.751.585	0,01
640	85	74	225	IONSWAP	2 237 872	0.04	1422	14.5	9.2	232 5	IONSWAP	1 721 664	0.01
040	0,5	7,4	225	JOINDWIN	2.237.072	0,04	1422	14,5	,2	252,5	JOINDWIN	1.721.004	0,01
641	9	8,1	225	JONSWAP	2.175.940	0,04	1423	15	9,1	232,5	JONSWAP	1.693.242	0,01
642	95	87	225	JONSWAP	2 118 935	0.04	1424	155	9	232.5	JONSWAP	1 666 200	0.01
(12	10	0,1	225	IONGWAD	2.000.000	0,01	1425	10,0	0 E	222,5	IONGWAD	1 (40 420	0,01
643	10	9,1	225	JONSWAP	2.000.230	0,03	1425	10	8,5	232,5	JONSWAP	1.040.428	0,00
644	10,5	9,4	225	JONSWAP	2.017.326	0,03	1426	6	3,8	240	JONSWAP	2.655.264	0,04
645	11	0.5	225	IONSWAP	1 071 770	0.03	1427	6.5	12	240	IONSWAP	2 552 034	0.04
045	11	9,5	223	JOINSWAI	1.9/1.//0	0,05	1427	0,5	7,2	240	JOINSWAI	2.332.934	0,04
646	11,5	9,8	225	JONSWAP	1.929.200	0,02	1428	7	4,6	240	JONSWAP	2.461.710	0,03
647	12	10.1	225	IONSWAP	1 889 305	0.02	1429	75	49	240	IONSWAP	2 379 715	0.03
640	12	10,1	225	JONGWIND	1.007.000	0,02	1 120	,,5	-,-	210	JONGWAR	2.375.113	0,05
648	12,5	10,3	225	JONSWAP	1.851.813	0,02	1430	8	5,3	240	JONSWAP	2.305.488	0,03
649	13	10.4	225	JONSWAP	1.816.493	0.02	1431	8.5	5.6	240	JONSWAP	2.237.872	0.02
650	12.5	10.6	225	IONGWAD	1 792 142	0.01	1422	0	50	240	IONEWAD	2 175 040	0,02
030	15,5	10,0	223	JOINSWAP	1./65.145	0,01	1452	9	5,8	240	JUNSWAP	2.1/5.940	0,02
651	14	10,8	225	JONSWAP	1.751.585	0,01	1433	9,5	6,1	240	JONSWAP	2.118.935	0,02
652	14.5	10.9	225	IONSWAP	1 721 664	0.01	1434	10	64	240	IONSWAP	2 066 236	0.02
652	14,5	10,5	225	JONGWAN	1.721.004	0,01	1434	10	0,4	240	JONGWAN	2.000.250	0,02
653	15	11	225	JONSWAP	1.693.242	0,01	1435	10,5	6,6	240	JONSWAP	2.017.326	0,01
654	15.5	11.1	225	JONSWAP	1.666.200	0.01	1436	11	6.8	240	JONSWAP	1.971.770	0.01
655	16	11.2	225	IONEWAD	1 640 429	0.01	1427	11.5	6.0	240	IONEWAD	1 020 200	0,01
055	10	11,2	225	JOINSWAF	1.040.420	0,01	1437	11,5	0,9	240	JOINSWAF	1.929.200	0,01
656	16,5	11,2	225	JONSWAP	1.615.829	0,01	1438	12	6,9	240	JONSWAP	1.889.305	0,01
657	17	11.1	225	IONSWAP	1 592 317	0.01	1439	6	38	247.5	IONSWAP	2 655 264	0.04
650	17.6	10.0	225	JONGWAR	1.5/2.014	0,01	1440	~~	4.0	217,5	JONGWAR	2.055.201	0,01
658	17,5	10,9	225	JONSWAP	1.569.814	0,01	1440	6,5	4,2	247,5	JONSWAP	2.552.934	0,04
659	18	10.6	225	JONSWAP	1.548.250	0.00	1441	7	4.6	247.5	JONSWAP	2.461.710	0.03
660	6	2.9	222.5	IONSWAD	2 655 264	0.04	1442	7.5	10	247.5	IONSWAD	2 270 715	0.02
000	0	5,0	232,5	JOINSWAF	2.055.204	0,04	1442	7,5	4,9	247,5	JOINSWAF	2.3/9./15	0,05
661	6,5	4,5	232,5	JONSWAP	2.552.934	0,04	1443	8	5,3	247,5	JONSWAP	2.305.488	0,03
662	7	52	232.5	IONSWAP	2 461 710	0.04	1444	85	5.6	247.5	IONSWAP	2 237 872	0.02
662	- ´-	5,2	232,5	JONGWAN	2.401.710	0,04	1444	0,5	5,0	247,5	JONGWAN	2.237.072	0,02
663	7,5	6	232,5	JONSWAP	2.379.715	0,04	1445	9	5,8	247,5	JONSWAP	2.175.940	0,02
664	8	6.8	232.5	JONSWAP	2 305 488	0.04	1446	95	61	247 5	JONSWAP	2 118 935	0.02
665	° 5	7.4	222,5	IONEWAD	2.2021.00	0.04	1447	10	6.4	247,5	IONEWAD	2.066.226	0,02
005	8,5	/,4	232,3	JOINSWAP	2.237.872	0,04	144 /	10	0,4	247,5	JUNSWAP	2.000.250	0,02
666	9	8,1	232,5	JONSWAP	2.175.940	0,04	1448	10,5	6,6	247,5	JONSWAP	2.017.326	0,01
667	95	87	232.5	IONSWAP	2 118 935	0.04	1449	11	6.8	247.5	IONSWAP	1 971 770	0.01
6607	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,7	232,5	JONGWAN	2.110.755	0,04	1449		0,0	247,5	JONGWAN	1.000.000	0,01
668	10	9,1	232,5	JONSWAP	2.066.236	0,03	1450	11,5	6,9	247,5	JONSWAP	1.929.200	0,01
669	10.5	9.4	232.5	JONSWAP	2.017.326	0.03	1451	12	6.9	247.5	JONSWAP	1.889.305	0.01
670	11	0.5	222,5	IONEWAD	1 071 770	0.02	1452	6	20	255	IONEWAD	2 655 264	0,04
0/0	11	9,5	232,3	JUNSWAP	1.9/1.//0	0,05	1432	0	5,8	233	JOINSWAP	2.033.204	0,04
671	11,5	9,8	232,5	JONSWAP	1.929.200	0,02	1453	6,5	4,2	255	JONSWAP	2.552.934	0,04
672	12	10.1	232.5	IONSWAP	1 889 305	0.02	1454	7	46	255	IONSWAP	2 461 710	0.03
(72	12	10,1	232,5	JONGWAR	1.007.000	0,02	1455		1,0	200	JONGWAR	2.101.710	0,05
0/3	12,5	10,3	232,5	JOINSWAP	1.851.813	0,02	1455	7,5	4,9	255	JOINSWAP	2.3/9./15	0,03
674	13	10,4	232,5	JONSWAP	1.816.493	0,02	1456	8	5,3	255	JONSWAP	2.305.488	0,03
675	12.5	10.6	222 5	IONSWAD	1 782 142	0.01	1457	8 5	56	255	IONSWAD	2 227 072	0.02
075	15,5	10,0	232,5	JOINSWAF	1./03.145	0,01	1437	0,5	5,0	233	JOINSWAF	2.237.872	0,02
676	14	10,8	232,5	JONSWAP	1.751.585	0,01	1458	9	5,8	255	JONSWAP	2.175.940	0,02
677	14 5	10.9	232.5	IONSWAP	1 721 664	0.01	1459	95	6.1	255	IONSWAP	2 118 935	0.02
670	14,5	10,5	232,5	JONGWAN	1.721.004	0,01	1455	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,1	255	JONGWAN	2.110.955	0,02
6/8	15	11	232,5	JONSWAP	1.693.242	0,01	1460	10	6,4	255	JONSWAP	2.066.236	0,02
679	15.5	11.1	232.5	JONSWAP	1.666.200	0.01	1461	10.5	6.6	255	JONSWAP	2.017.326	0.01
690	16	11.2	222.5	IONSWAD	1 640 428	0.01	1462	11	6.9	255	IONSWAD	1 071 770	0.01
080	10	11,2	232,5	JOINSWAF	1.040.420	0,01	1402	11	0,8	235	JOINSWAF	1.9/1.//0	0,01
681	16,5	11,2	232,5	JONSWAP	1.615.829	0,01	1463	11,5	6,9	255	JONSWAP	1.929.200	0,01
682	17	11.1	232 5	IONSWAP	1 592 317	0.01	1464	12	69	255	IONSWAP	1 889 305	0.01
(02	17.6	10.0	222,5	IONOWAR	1 5/0 014	0.01	1465		2.0	200	IONOWICE	2.005.005	0,01
683	17,5	10,9	232,5	JONSWAP	1.569.814	0,01	1465	6	3,8	262,5	JONSWAP	2.055.264	0,04
684	18	10,6	232.5	JONSWAP	1.548.250	0,00	1466	6,5	4,5	262.5	JONSWAP	2.552.934	0,04
685	6	38	240	IONSWAD	2 655 264	0.04	1467	7	40	262 5	IONSWAD	2 461 710	0.04
005	0	5,0	240	JOINDWAP	2.035.204	0,04	1407		7,7	202,5	JOINSWAP	2.401./10	0,04
686	6,5	4,5	240	JONSWAP	2.552.934	0,04	1468	7,5	5,1	262,5	JONSWAP	2.379.715	0,03
687	7	5	240	JONSWAP	2 461 710	0.04	1469	8	53	262 5	JONSWAP	2 305 488	0.03
(00)		~ ~	240	IONOWAR	2.101.710	0.04	1470			202,5	IONOWICE	2.303.400	0,05
088	/,5	5,4	240	JONSWAP	2.3/9./15	0,04	14/0	8,5	5,5	262,5	JONSWAP	2.257.872	0,02
689	8	5.8	240	JONSWAP	2.305.488	0.03	1471	9	5.6	262 5	JONSWAP	2.175.940	0.02
600	o -	2 1	240	IONEWAR	2 2 2 2 2 1 0 0	0,02	1470	o .	5,0	262,5	IONEWAR	2 110 025	0.02
090	8,5	0,1	240	JOINSWAP	2.231.812	0,03	14/2	9,5	3,8	202,3	JOINSWAP	2.118.935	0,02
691	9	6,4	240	JONSWAP	2.175.940	0,02	1473	10	5,8	262,5	JONSWAP	2.066.236	0,01
692	9.5	6.6	240	IONSWAD	2 118 025	0.02	1474	10.5	57	262 5	IONSWAP	2 017 326	0.01
692	2,5	0,0	240	JOINS WAP	2.110.755	0,02	14/4	10,5	5,1	202,5	JONGWAP	2.017.320	0,01
693	10	7	240	JONSWAP	2.066.236	0,02	1475	11	5,3	262,5	JONSWAP	1.9/1.770	0,01
694	10.5	72	240	JONSWAP	2.017 326	0.02	1476	6	3.8	270	JONSWAP	2.655 264	0.04
605	11	7 /	240	IONEWAR	1 071 770	0,02	1477	65	1 5	270	IONEWAR	2 552 024	0.04
093	11	/,4	240	JOINSWAP	1.9/1.//0	0,02	14//	0,5	4,3	270	JOINSWAP	2.332.934	0,04
696	11,5	7,6	240	JONSWAP	1.929.200	0,01	1478	7	4,9	270	JONSWAP	2.461.710	0,04
697	12	7 8	240	IONSWAD	1 880 305	0.01	1470	75	51	270	IONSWAP	2 370 715	0.03
091	14	7,0	240	JOINDWAP	1.009.303	0,01	17/7	1,5	5,1	270	JOINDWAP	2.5/9./13	0,05
698	12.5	7,9	240	JONSWAP	1.851.813	0,01	1480	8	5,3	270	JONSWAP	2.305.488	0,03

699	13	7,9	240	JONSWAP	1.816.493	0,01	1481	8,5	5,5	270	JONSWAP	2.237.872	0,02
700	13,5	7,8	240	JONSWAP	1.783.143	0,01	1482	9	5,6	270	JONSWAP	2.175.940	0,02
701	6	3,8	247,5	JONSWAP	2.655.264	0,04	1483	9,5	5,8	270	JONSWAP	2.118.935	0,02
702	6.5	4 5	247.5	JONSWAP	2 552 934	0.04	1484	10	5.8	270	JONSWAP	2 066 236	0.01
703	7	5	247.5	IONSWAP	2 461 710	0.04	1485	10.5	57	270	IONSWAP	2 017 326	0.01
704	75	54	247.5	IONSWAP	2 379 715	0.04	1486	11	53	270	IONSWAP	1 971 770	0.01
704	8	5.8	247,5	IONSWAP	2 305 488	0.03	1/87	6	3.8	270	IONSWAP	2 655 264	0.04
705	85	6.1	247,5	JONSWAP	2.303.400	0,03	1/88	6.5	1.5	277,5	IONSWAP	2.055.204	0,04
700	0,5	0,1	247,5	JONSWAF	2.237.872	0,03	1400	0,5	4,5	277,5	JOINSWAF	2.332.934	0,04
707	9	0,4	247,5	JONSWAP	2.1/5.940	0,02	1489		4,9	277,5	JONSWAP	2.461./10	0,04
708	9,5	6,6	247,5	JONSWAP	2.118.935	0,02	1490	7,5	5,1	277,5	JONSWAP	2.3/9./15	0,03
709	10	7	247,5	JONSWAP	2.066.236	0,02	1491	8	5,3	277,5	JONSWAP	2.305.488	0,03
710	10,5	7,2	247,5	JONSWAP	2.017.326	0,02	1492	8,5	5,5	277,5	JONSWAP	2.237.872	0,02
711	11	7,4	247,5	JONSWAP	1.971.770	0,02	1493	9	5,6	277,5	JONSWAP	2.175.940	0,02
712	11,5	7,6	247,5	JONSWAP	1.929.200	0,01	1494	9,5	5,8	277,5	JONSWAP	2.118.935	0,02
713	12	7,8	247,5	JONSWAP	1.889.305	0,01	1495	10	5,8	277,5	JONSWAP	2.066.236	0,01
714	12,5	7,9	247,5	JONSWAP	1.851.813	0,01	1496	10,5	5,7	277,5	JONSWAP	2.017.326	0,01
715	13	7.9	247.5	JONSWAP	1.816.493	0.01	1497	11	5.3	277.5	JONSWAP	1.971.770	0.01
716	13.5	7.8	247.5	JONSWAP	1.783.143	0.01	1498	6	3.8	285	JONSWAP	2.655.264	0.04
717	6	3.8	255	IONSWAP	2 655 264	0.04	1499	6.5	4 2	285	IONSWAP	2 552 934	0.04
718	6.5	4 5	255	IONSWAP	2 552 934	0.04	1500	7	43	285	IONSWAP	2.352.551	0.03
710	7	5	255	IONSWAP	2.352.551	0.04	1500	75	1,5	285	IONSWAP	2 370 715	0.02
719	75	5 1	255	JONSWAP	2.401.710	0,04	1501	7,5	4,4	205	JOINSWAP	2.3/9./13	0,02
720	7,5	5,4	233	JONSWAP	2.3/9./13	0,04	1502	0	4,5	205	JOINSWAP	2.303.466	0,02
721	8	5,8	255	JONSWAP	2.305.488	0,03	1503	8,5	4,5	285	JONSWAP	2.237.872	0,02
722	8,5	6,1	255	JONSWAP	2.237.872	0,03	1504	9	4,4	285	JONSWAP	2.1/5.940	0,01
723	9	6,4	255	JONSWAP	2.175.940	0,02	1505	9,5	4,3	285	JONSWAP	2.118.935	0,01
724	9,5	6,6	255	JONSWAP	2.118.935	0,02	1506	10	3,7	285	JONSWAP	2.066.236	0,01
725	10	7	255	JONSWAP	2.066.236	0,02	1507	6	3,8	292,5	JONSWAP	2.655.264	0,04
726	10,5	7,2	255	JONSWAP	2.017.326	0,02	1508	6,5	4,2	292,5	JONSWAP	2.552.934	0,04
727	11	7,4	255	JONSWAP	1.971.770	0,02	1509	7	4,3	292,5	JONSWAP	2.461.710	0,03
728	11,5	7,6	255	JONSWAP	1.929.200	0,01	1510	7,5	4,4	292,5	JONSWAP	2.379.715	0,02
729	12	7,8	255	JONSWAP	1.889.305	0,01	1511	8	4,5	292,5	JONSWAP	2.305.488	0,02
730	12.5	7.9	255	JONSWAP	1.851.813	0.01	1512	8.5	4.5	292.5	JONSWAP	2.237.872	0.02
731	13	7.9	255	JONSWAP	1.816.493	0.01	1513	9	4.4	292.5	JONSWAP	2.175.940	0.01
732	13.5	7.8	255	IONSWAP	1 783 143	0.01	1514	95	43	292.5	IONSWAP	2 118 935	0.01
733	6	3.8	262.5	IONSWAP	2 655 264	0.04	1515	10	3,7	292,5	IONSWAP	2.066.236	0.01
733	6.5	1.5	262,5	JONSWAD	2.0552.024	0,04	1516	6	2.9	292,5	JONSWAI	2.000.230	0,01
734	0,5	4,5	202,5	JONSWAP	2.332.934	0,04	1510	65	3,0	200	JOINSWAP	2.033.204	0,04
/35		5,2	262,5	JONSWAP	2.461.710	0,04	1517	0,5	4,2	300	JONSWAP	2.552.934	0,04
/36	/,5	5,6	262,5	JONSWAP	2.3/9./15	0,04	1518		4,3	300	JONSWAP	2.461./10	0,03
131	8	5,9	262,5	JONSWAP	2.305.488	0,03	1519	7,5	4,4	300	JONSWAP	2.3/9./15	0,02
738	8,5	6,1	262,5	JONSWAP	2.237.872	0,03	1520	8	4,5	300	JONSWAP	2.305.488	0,02
739	9	6,3	262,5	JONSWAP	2.175.940	0,02	1521	8,5	4,5	300	JONSWAP	2.237.872	0,02
740	9,5	6,4	262,5	JONSWAP	2.118.935	0,02	1522	9	4,4	300	JONSWAP	2.175.940	0,01
741	10	6,5	262,5	JONSWAP	2.066.236	0,02	1523	9,5	4,3	300	JONSWAP	2.118.935	0,01
742	10,5	6,6	262,5	JONSWAP	2.017.326	0,01	1524	10	3,7	300	JONSWAP	2.066.236	0,01
743	11	6,6	262,5	JONSWAP	1.971.770	0,01	1525	6	3,8	307,5	JONSWAP	2.655.264	0,04
744	11,5	6,6	262,5	JONSWAP	1.929.200	0,01	1526	6,5	4,2	307,5	JONSWAP	2.552.934	0,04
745	12	6,3	262,5	JONSWAP	1.889.305	0,01	1527	7	4,3	307,5	JONSWAP	2.461.710	0,03
746	6	3.8	270	JONSWAP	2.655.264	0.04	1528	7.5	4.3	307.5	JONSWAP	2.379.715	0.02
747	65	4 5	270	IONSWAP	2 552 934	0.04	1529	8	43	307.5	IONSWAP	2 305 488	0.02
748	7	5.2	270	IONSWAP	2 461 710	0.04	1530	85	43	307.5	IONSWAP	2 237 872	0.01
740	75	5.6	270	JONSWAP	2 370 715	0.04	1530	0,5	4,5	307,5	IONSWAP	2.237.872	0,01
750	,5	5.0	270	JONSWAD	2.379.713	0,04	1522	0.5	2.0	207,5	JONSWAI	2.175.940	0,01
750	0	5,9	270	JONSWAP	2.303.466	0,05	1552	9,5	3,0	215	JOINSWAP	2.116.955	0,01
751	0,5	0,1	270	JONSWAP	2.237.872	0,05	1555	6	5,0	215	JOINSWAP	2.035.204	0,04
752	9	0,5	270	JONSWAP	2.1/5.940	0,02	1534	0,5	4,2	315	JONSWAP	2.552.934	0,04
753	9,5	6,4	270	JONSWAP	2.118.935	0,02	1535		4,3	315	JONSWAP	2.461.710	0,03
/54	10	6,5	270	JONSWAP	2.066.236	0,02	1536	/,5	4,3	315	JONSWAP	2.3/9./15	0,02
755	10,5	6,6	270	JONSWAP	2.017.326	0,01	1537	8	4,3	315	JONSWAP	2.305.488	0,02
756	11	6,6	270	JONSWAP	1.971.770	0,01	1538	8,5	4,3	315	JONSWAP	2.237.872	0,01
757	11,5	6,6	270	JONSWAP	1.929.200	0,01	1539	9	4,2	315	JONSWAP	2.175.940	0,01
758	12	6,3	270	JONSWAP	1.889.305	0,01	1540	9,5	3,8	315	JONSWAP	2.118.935	0,01
759	6	3,8	277,5	JONSWAP	2.655.264	0,04	1541	6	3,8	322,5	JONSWAP	2.655.264	0,04
760	6,5	4,5	277,5	JONSWAP	2.552.934	0,04	1542	6,5	4,2	322,5	JONSWAP	2.552.934	0,04
761	7	5,2	277,5	JONSWAP	2.461.710	0,04	1543	7	4,3	322,5	JONSWAP	2.461.710	0,03
762	7,5	5,6	277.5	JONSWAP	2.379.715	0,04	1544	7,5	4,3	322,5	JONSWAP	2.379.715	0,02
763	8	5.9	277.5	JONSWAP	2.305.488	0.03	1545	8	4.3	322.5	JONSWAP	2.305.488	0.02
764	8.5	6.1	277 5	JONSWAP	2.237.872	0.03	1546	8.5	4.3	322 5	JONSWAP	2.237.872	0.01
765	9	63	277 5	IONSWAP	2 175 940	0.02	1547	9	4 2	322,5	IONSWAP	2 175 940	0.01
766	Q 5	6.4	2775	IONSWAP	2 118 025	0.02	1549	6 5	3.8	377 5	IONSWAP	2 118 025	0.01
767	10	6.5	2775	IONSWAP	2.110.955	0.02	1540	6	3.0	320	IONSWAP	2.110.755	0.04
760	10 5	6,5	211,3	IONGWAP	2.000.230	0.02	1550	65	2.0	220	IONGWAP	2.033.204	0.04
/08	10,5	0,0	211,5	JOINSWAP	2.01/.320	0,01	1550	0,5	3,9	220	JOINSWAP	2.332.934	0,03
/69	11	6,6	2/7,5	JONSWAP	1.9/1.7/0	0,01	1551		4	330	JUNSWAP	2.461.710	0,03
7/0	11,5	6,6	277,5	JONSWAP	1.929.200	0,01	1552	1,5	4,1	330	JUNSWAP	2.3/9./15	0,02
771	12	6,3	277,5	JONSWAP	1.889.305	0,01	1553	8	4	330	JONSWAP	2.305.488	0,02
772	6	3,8	285	JONSWAP	2.655.264	0,04	1554	6	3,8	337,5	JONSWAP	2.655.264	0,04
773	6,5	4,5	285	JONSWAP	2.552.934	0,04	1555	6,5	3,9	337,5	JONSWAP	2.552.934	0,03
774	7	4,7	285	JONSWAP	2.461.710	0,03	1556	7	4	337,5	JONSWAP	2.461.710	0,03
775	7,5	4,8	285	JONSWAP	2.379.715	0,03	1557	7,5	4,1	337,5	JONSWAP	2.379.715	0,02
776	8	4,9	285	JONSWAP	2.305.488	0,02	1558	8	4	337,5	JONSWAP	2.305.488	0,02
777	8,5	4,9	285	JONSWAP	2.237.872	0,02	1559	6	3,8	345	JONSWAP	2.655.264	0,04
778	9	4,9	285	JONSWAP	2.175.940	0,01	1560	6,5	3.9	345	JONSWAP	2.552.934	0,03
779	9,5	4,9	285	JONSWAP	2.118.935	0,01	1561	7	4	345	JONSWAP	2.461.710	0,03
780	10	4.8	285	JONSWAP	2.066.236	0.01	1562	7.5	4.1	345	JONSWAP	2.379.715	0.02
781	10.5	4.5	285	JONSWAP	2.017.326	0.01	1563	8	4	345	JONSWAP	2.305.488	0.02
782	6	3.8	202 5	IONSWAP	2 655 264	0.04	1564	õ	0	0	IONSWAP	0	0.00
104	0	5,0	ر, 2 ر م	10110 IV AL	2.000.207	J,J-	1007	v	v	v	20110 H AI	v	0,00

Fonte: Petrobras (2022).

Diâmetro	Peso na água	Comprimento	Tração no	Massa	Offset	Offset	Tração de
(mm)	(kN/m)	(m)	topo	(kg)	inicial	final	ruptura
d	W	<u> </u>	(KN) T	m	(m)	(%) < 10%	(%) < 60%
51	0.1083	5000	5/1.5	55217.63	61.5	20.7	162.4
51	0,1083	5500	505.65	60730 30	50	20,7	162.3
51	0,1083	8000	866.4	883/8 21	24.1	20,7	102,3
57	0,1085	5000	682.5	60505.63	47.5	10.5	170,0
57	0,1365	5500	750.8	76560.29	38.6	19,5	120,0
57	0,1365	8000	1092	111353.01	17.6	19,5	127,0
57	0,1365	12000	1638	167029 51	7.2	13.5	127 5
64	0,1505	3100	520.49	53075 21	115.2	19,9	121.8
64	0,1679	4200	705.18	71908 35	55	19,9	121,0
64	0,1679	6000	1007.4	102726.21	24	17.0	106
64	0,1079	10000	1670	102720,21	24	17,5	114.2
70	0,1079	2100	628.06	64044.20	7,5	10.2	114,5
70	0,2026	3100	028,00	86769.69	93,0	19,5	105,2
70	0,2026	4200	830,92	80/09,09	44,1	18,0	95,5
70	0,2026	6000	1215,6	123956,70	19,1	16,9	91,6
/0	0,2026	10000	2026	206594,50	4,9	11,6	102,6
76	0,2406	6000	1443,6	14/206,23	14,7	15,9	80,8
76	0,2406	10000	2406	245343,72	3	10,2	94,1
83	0,2835	6000	1701	173453,73	11,1	14,9	72,4
83	0,2835	10000	2835	289089,55	1,4	9	90,3
89	0,3299	6000	1979,4	201842,63	8	10,5	90,5
89	0,3299	10000	3299	336404,38	0,1	8,1	82,4
89	0,3299	12000	3958,8	403685,25	1,5	6,8	91,7
96	0,3798	4200	1595,16	162661,05	19,1	16,5	58,5
96	0,3798	6000	2278,8	232372,93	5,9	12,9	60,9
96	0,3798	10000	3798	387288,22	1	7,3	78,6
102	0,4333	5600	2426,48	247432,10	5,6	12,9	55,5
102	0,4333	6000	2599,8	265105,82	4,2	12	56,9
102	0,4333	6200	2686,46	273942,68	3,8	11,5	57,7
102	0,4333	6500	2816,45	287197,97	2,9	10,8	59
102	0,4333	7000	3033,1	309290,12	1,7	9,9	61,3
102	0,4333	10000	4333	441843,03	1,8	6,6	75,4
102	0,4333	12000	5199,6	530211,64	2,9	5,6	85,6
108	0,488	4200	2049,6	209001,03	13,2	15,4	50,3
108	0,488	6000	2928	298572,91	2,8	11,1	55,2
108	0,488	6450	3147,6	320965,87	1,9	10,1	57,3
108	0,488	6500	3172	323453,98	2,3	10	57,8
108	0,488	6550	3196,4	325942,09	1,4	9,9	57,7

ANEXO A – Tração no topo para diferentes diâmetros com o material spiral strand

108	0,488	10000	4880	497621,51	2,4	6,1	74,9
115	0,546	4200	2293,2	233841,32	10,8	14,9	47,6
115	0,546	5600	3057,6	311788,42	2,8	11,3	51,6
115	0,546	5800	3166,8	322923,73	2,1	10,8	52,5
115	0,546	5900	3221,4	328491,38	1,9	10,6	53
115	0,546	6200	3385,2	345194,33	1,1	9,9	54,4
121	0,6072	3100	1882,32	191943,22	26,5	16,9	46,3
121	0,6072	4200	2550,24	260052,11	8,8	14,4	44,9
121	0,6072	6000	3643,2	371503,01	0,6	9,6	51,6
121	0,6072	6500	3946,8	402461,59	0,4	8,7	54,1
121	0,6072	10000	6072	619171,68	3,5	5,2	72,9
127	0,6717	3100	2082,27	212332,45	23,3	16,7	42,9
127	0,6717	4000	2686,8	273977,35	14,5	15,7	41,8
127	0,6717	5000	3358,5	342471,69	2,3	11,6	45
127	0,6717	5200	3492,84	356170,56	1,7	11	45,8
127	0,6717	5500	3694,35	376718,86	2,8	10,1	47,2
127	0,6717	5600	3761,52	383568,29	0,6	9,9	47,7
133	0,7395	4200	3105,9	316713,66	5,4	13,3	40,2
133	0,7395	5000	3697,5	377040,07	1,3	10,9	43
133	0,7395	5500	4067,25	414744,08	0,2	9,5	45,4
133	0,7395	6000	4437	452448,08	1,2	8,4	47,9
140	0,8105	4800	3890,4	396710,40	1	10,9	40,4
140	0,8105	5600	4538,8	462828,79	1,3	7,6	53,5
146	0,8847	4200	3715,74	378900,03	2,7	12,3	36,3
146	0,8847	6000	5308,2	541285,76	2,4	7,5	44,9
152	0,9622	4850	4666,7	475870,96	0,8	9,6	37,3

Fonte: Autoria própria (2022).

		RESULTAI	DOS DENTR	O DOS LIMITI	ES		
Diâmetro (mm)	Peso na água (kN/m)	Comprimento (m)	Tração no topo (kN)	Massa (kg)	Offset inicial (m)	Offset final (%)	Tração de ruptura (%)
d	W	S	Т	m	< 5 m	< 10%	< 60%
108	0,488	6550	3196,4	325942,09	1,4	9,9	57,7
115	0,546	6200	3385,2	345194,33	1,1	9,9	54,4
121	0,6072	6000	3643,2	371503,01	0,6	9,6	51,6
121	0,6072	6500	3946,8	402461,59	0,4	8,7	54,1
127	0,6717	5600	3761,52	383568,29	0,6	9,9	47,7
133	0,7395	5500	4067,25	414744,08	0,2	9,5	45,4
133	0,7395	6000	4437	452448,08	1,2	8,4	47,9
140	0,8105	5600	4538,8	462828,79	1,3	7,6	53,5
146	0,8847	6000	5308,2	541285,76	2,4	7,5	44,9
152	0,9622	4850	4666,7	475870,96	0,8	9,6	37,3

MELHOR RESULTADO ENCONTRADO									
Diâmetro (mm)	Peso na água (kN/m)	Comprimento (m)	Tração no topo (kN)	Massa (kg)	Offset inicial (m)	Offset final (%)	Tração de ruptura (%)		
d	W	S	Т	m	< 5 m	< 10%	< 60%		
108	0,488	6550	3196,4	325942,09	1,4	9,9	57,7		

COMPARAÇÃO COM O RESULTADO ANTERIOR											
Diâmetro	Peso na água Comprimento Tração no Massa Offset Offset Tração d										
(mm)	(kN/m)	(m)	topo	(kg)	inicial	final	ruptura				
	(kN) (m) (%) (%)										
d	W	S	Т	m	< 5 m	< 10%	< 60%				
108	0,488	6550	3196,4	325942,09	1,4	9,9	57,7				
152	0,9622	4850	4666,7	475870,96	0,8	9,6	37,3				

Diâmetro	Peso na	Comprimento	Tração no	Massa	Offset	Offset	Tração de
(mm)	água	(m)	topo	(kg)	inicial (m)	final	ruptura
d	(KIV/III) W	S	T T	m	< 5 m	< 10%	<60%
70	0,8448	310					
122	0,0258	2480	587,8	59938,92	26	16	99,8
70	0,8448	310					
70	0,8448	420					
122	0,0258	3360	796,32	81202,04	16,4	17,8	98,1
70	0,8448	420					
70	0,8448	600					
122	0,0258	4800	1137,6	116002,92	12,8	22,5	105,5
70	0,8448	600					
73	0,9187	310					
123	0,0266	2480	635,562	64809,29	24	15,7	100,7
73	0,9187	310					
73	0,9187	420					
123	0,0266	3360	861,084	87806,14	15	17,4	99,1
73	0,9187	420					
73	0,9187	600					
123	0,0266	4800	1230,12	125437,33	11,7	21,6	107,2
73	0,9187	600					
76	0,9958	310					
130	0,0294	2480	690,308	70391,83	20,6	14,5	100,6
76	0,9958	310					
76	0,9958	420					
130	0,0294	3360	935,256	95369,57	13,3	16	90,5
76	0,9958	420					
76	0,9958	600					
130	0,0294	4800	1336,08	136242,24	10	19,8	99,3
76	0,9958	600					
78	1,0489	310					
131	0,0315	2480	724,47	73875,38	20,6	14,3	92,5
78	1,0489	310					
78	1,0489	420					
131	0,0315	3360	981,54	100089,22	12,6	15,7	91,3
78	1,0489	420					
78	1,0489	600					
131	0,0315	4800	1402,2	142984,61	9,4	19,4	100,5
78	1,0489	600					

ANEXO B – Tração no topo para diferentes diâmetros e três segmentos de materiais

81	1,1311	310					
135	0,0315	2480	779,402	79476,886	18,9	13,7	84,7
81	1,1311	310					
81	1,1311	420					
135	0,0315	3360	1055,964	107678,36	11,4	15	84,1
81	1,1311	420					
81	1,1311	600					
135	0,0315	4800	1508,52	153826,23	8,4	18,4	93,1
81	1,1311	600					
84	1,2165	310					
136	0,032	2480	833,59	85002,52	17,5	13,5	85,4
84	1,2165	310					
84	1,2165	420					
136	0,032	3360	1129,38	115164,71	10,4	14,7	85,2
84	1,2165	420					
84	1,2165	600					
136	0,032	4800	1613,4	164521,01	7,6	18	94,6
84	1,2165	600					
87	1,3049	310					
142	0,0348	2480	895,342	91299,47	16	12,7	78
87	1,3049	310					
87	1,3049	420					
142	0,0348	3360	1213,044	123696,06	9,3	13,7	78,4
87	1,3049	420					
87	1,3049	600					
142	0,0348	4800	1732,92	176708,66	6,7	16,8	87,6
87	1,3049	600					
89	1,3656	310					
143	0,0351	2480	933,72	95212,94	7,6	18	94,6
89	1,3656	310					
89	1,3656	420					
143	0,0351	3360	1265,04	128998,18	15,3	12,7	78,4
89	1,3656	420					
89	1,3656	600					
143	0,0351	4800	1807,2	184283,11	8,9	13,7	79,1
89	1,3656	600					
90	1,3964	310					
146	0,0371	2480	957,776	97665,97	14,8	12,3	74
90	1,3964	310					
90	1,3964	420					
146	0,0371	3360	1297,632	132321,63	8,4	13,1	74,8
90	1,3964	420					
90	1,3964	600					
				•			

146	0,0371	4800	1853,76	189030,91	6	16	84,1
90	1,3964	600					
92	1,4592	310					
148	0,0374	2480	997,456	101712,20	14,1	12,1	74,6
92	1,4592	310					
92	1,4592	420					
148	0,0374	3360	1351,392	137803,63	7,1	12,3	76,4
92	1,4592	420					
92	1,4592	600					
148	0,0374	4800	1930,56	196862,33	5,6	15,7	85,4
92	1,4592	600					
95	1,5559	250					
150	0,0392	2000	856,35	87323,39	25,8	12,4	76,9
95	1,5559	250					
95	1,5559	310					
150	0,0392	2480	1061,874	108281,01	13	11,7	71,8
95	1,5559	310					
95	1,5559	420					
150	0,0392	3360	1438,668	146703,31	7,3	12,5	73,3
95	1,5559	420					
97	1,6221	250					
150	0,0395	2000	890,05	90759,84	24,6	12,3	77,4
97	1,6221	250					
97	1,6221	310					
150	0,0395	2480	1103,662	112542,20	12,4	11,6	72,4
97	1,6221	310					
97	1,6221	420					
150	0,0395	3360	1495,284	152476,53	6,9	12,3	74,2
97	1,6221	420					
100	1,724	250					
157	0,0426	2000	947,2	96587,52	22,7	11,7	71,1
100	1,724	250					
100	1,724	310					
157	0,0426	2480	1174,528	119768,52	11,4	11	66,5
100	1,724	310					
100	1,724	420					
157	0,0426	3360	1591,296	162267,03	6,3	11,6	68,5
100	1,724	420					
102	1,7937	250					
160	0,0446	2000	986,05	100549,12	21,5	11,4	70,9
102	1,7937	250					
102	1,7937	310					
160	0,0446	2480	1222,702	124680,91	10,8	10,8	66,5
L							

102	1,7937	310					
102	1,7937	420					
160	0,0446	3360	1656,564	168922,52	5,9	11,3	68,6
102	1,7937	420					
105	1,9007	250					
166	0,048	2000	1046,35	106698,01	20	11	64,2
105	1,9007	250					
105	1,9007	310					
166	0,048	2480	1297,474	132305,53	9,9	10,3	60,5
105	1,9007	310					
105	1,9007	420					
166	0,048	3360	1757,868	179252,65	5,4	10,7	62,5
105	1,9007	420					
107	1,9738	250					
168	0,048	2000	1082,9	110425,07	19,2	10,9	64,6
107	1,9738	250					
107	1,9738	310					
168	0,048	2480	1342,796	136927,08	9,5	10,2	61,1
107	1,9738	310					
107	1,9738	420					
168	0,048	3360	1819,272	185514,11	5,1	10,5	63,3
107	1,9738	420					
111	2,1242	250					
170	0,05	2000	1162,1	118501,22	17,7	10,6	61,5
111	2,1242	250					
111	2,1242	310					
170	0,05	2480	1441,004	146941,51	8,6	9,9	58,4
111	2,1242	310					
111	2,1242	420					
170	0,05	3360	1952,328	199082,05	4,6	10,1	60,6
111	2,1242	420					
114	2,2405	250					
173	0,0511	2000	1222,45	124655,21	16,7	10,4	62,3
114	2,2405	250					
114	2,2405	310					
173	0,0511	2480	1515,838	154572,46	7,9	9,6	59,3
114	2,2405	310					
114	2,2405	365					
173	0,0511	2920	1784,777	181996,60	5,7	10,1	61,1
114	2,2405	365					
114	2,2405	420					
173	0,0511	3360	2053,716	209420,75	4,2	9,8	61,7
114	2,2405	420					

117	2,36	250					
175	0,0534	2000	1286,8	131217,08	15,8	10,3	59,5
117	2,36	250					
117	2,36	310					
175	0,0534	2480	1595,632	162709,18	7,4	9,5	56,6
117	2,36	310					
117	2,36	420					
175	0,0534	3360	2161,824	220444,70	3,8	9,6	59,1
117	2,36	420					
117	2 36	MELHORA 365	ANDO O VA	LOR ENCON	TRADO		
175	0.0534	2920	1878.728	191576.94	5.3	9.5	57.3
117	2,36	365	10,0,720	1910 / 0,9 1	0,0	-,0	0,,0
117	2,36	375					
175	0,0534	3000	1930,2	196825,62	4,9	9,5	57,6
117	2,36	375					
117	2,36	380					
175	0,0534	3040	1955,936	199449,96	4,7	9,5	57,8
117	2,36	380					
120	2,4826	250					
179	0,0568	2000	1354,9	138161,35	14,9	10	60,5
120	2,4826	250					
120	2,4826	310					
179	0,0568	2480	1680,076	171320,07	6,8	9,2	57,7
120	2,4826	310					
120	2,4826	365					
179	0,0568	2920	1978,154	201715,57	4,9	9,2	58,5
120	2,4826	365					
122	2,566	310					
182	0,0588	2480	11736,74	1196814,8	6,4	9	55,3
122	2,566	310					
122	2,566	355					
182	0,0588	2840	1988,852	202806,46	5	8,9	55,9
122	2,566	355					
122	2,566	365					
182	0,0588	2920	2044,876	208519,32	4,6	8,9	56,1
122	2,566	365					
•	-		· · · ·	<i>i</i> : (2022)			

MELHOR RESULTADO ENCONTRADO										
Diâmetro (mm)	Peso na água (kN/m)	Comprimento (m)	Tração no topo (kN)	Massa (kg)	Offset inicial (m)	Offset final (%)	Tração de ruptura (%)			
d	W	S	Т	m	< 5 m	< 10%	< 60%			
117	2,36	375								
175	0,0534	3000	1930,2	196825,62	4,9	9,5	57,6			
117	2,36	375								

	MODIFICANDO O DIÂMETRO										
Diâmetro (mm)	Peso na água (kN/m)	Comprimento (m)	Tração no topo (kN)	Massa (kg)	Offset inicial (m)	Offset final (%)	Tração de ruptura (%)				
d	W	S	Т	m	< 5 m	< 10%	< 60%				
114	2,2405	250									
175	0,0534	2000	1227,05	125124,29	16,7	10,3	59,2				
114	2,2405	250									
114	2,2405	350									
175	0,0534	2800	1717,87	175173,99	6,2	9,5	56,6				
114	2,2405	350									
114	2,2405	420									
175	0,0534	3360	2061,44	210208,38	Valor	encontrado é	maior				
114	2,2405	420									
120	2,4826	250									
175	0,0534	2000	1348,1	137467,94	15	10,2	59,8				
120	2,4826	250									
120	2,4826	350									
175	0,0534	2800	1887,34	192455,12	5,4	9,3	57,4				
120	2,4826	350									
120	2,4826	375									
175	0,0534	3000	2022,15	206201,91	Valor	encontrado é	maior				
120	2,4826	375									
117	2,36	250									
173	0,0511	2000	1282,2	130748,01	15,8	10,3	62,6				
117	2,36	250									
117	2,36	350									
173	0,0511	2800	1795,08	183047,23	5,8	9,5	60				
117	2,36	350									
117	2,36	365									
173	0,0511	3920	1872,01	190892,10	5,4	9,5	60,4				
117	2,36	365									
117	2,36	365									
179	0,0568	3920	1888,65	192589,31	5,2	9,3	58				
117	2,36	365									

117	2,36	375					
179	0,0568	3000	1940,4	197865,73	4,8	9,3	58,3
117	2,36	375					

MELHOR RESULTADO ENCONTRADO											
Diâmetro (mm)	Peso na água (kN/m)	so naComprimentoTraçãoMassaOffsetOffsetTraçgua(m)no topo(kg)inicialfinalrup\/m)(kN)(m)(%)(%)									
d	W	S	Т	m	< 5 m	< 10%	<60%				
117	2,36	375									
175	0,0534	3000	1930,2	196825,62	4,9	9,5	57,6				
117	2,36	375									

ANEXO C – Tração no topo para diferentes diâmetros, três segmentos de materiais e com remoção de 1 linha

Diâmetro	Peso na	Comprimento	Tração no	Massa	Offset	Offset	Tração de
(mm)	água	(m)	topo	(kg)	inicial	final	ruptura
1	(KIN/M)		(KN)		(m)	(%)	(%)
d	W	S	1	m	< 5 m	< 10%	< 60%
117	2,36000	375	10000	10.000 - 00	10.1	10.0	(a. a.
175	0,05340	3000	1930,20	196825,62	10,4	10,9	68,3
117	2,36000	375					
114	2,24050	375					
173	0,05110	3000	1833,68	186982,81	11,6	10,9	71,4
114	2,24050	375					
120	2,48260	375					
179	0,05680	3000	2032,35	207242,02	10,6	10,6	69,3
120	2,48260	375					
122	2,56600	375					
182	0,05880	3000	2100,90	214232,18	10,6	10,2	66,4
122	2,56600	375					
124	2,65080	375					
187	0,05880	3000	2164,50	220717,57	10,6	10,0	67,3
124	2,65080	375					
122	2,56600	400					
182	0,05880	3200	2240,96	228514,32	11,4	10,4	66,7
122	2,56600	400					
122	2,56600	350					
182	0,05880	2800	1960,84	199950,03	10,00	10,1	66,3
122	2,56600	350					
122	2,56600	250					
182	0,05880	2000	1400,60	142821,45	11,6	10,8	70,6
122	2,56600	250					
122	2,56600	350					
191	0,06220	2800	1970,36	200920,80	9,9	9,9	64,1
122	2,56600	350					
124	2,65080	350					
187	0,05880	2800	2020,20	206003,07	10	9,9	67,2
124	2,65080	350					
124	2,65080	350					
191	0,06220	2800	2029,72	206973,84	10,1	9,9	64,3
124	2,65080	350	,	,	,	,	,
124	2,65080	375					
182	0,05880	3000	2164,50	220717,57	10,8	10,2	66,7
124	2,65080	375					
	,						

124	2,65080	375					
187	0,05880	3000	2164,5	220717,57	10,6	10,0	67,3
124	2,65080	375					
124	2,65080	375					
191	0,06220	3000	2174,7	221757,68	10,3	10,0	64,4
124	2,65080	375					
124	2,65080	375					
197	0,06550	3000	2184,6	222767,2	9,9	9,5	58,3
124	2,65080	375					

Âr	ngulos	Offset I.	Offset F.	Tração R.	Âng	gulos	Offset I.	Offset F.	Tração R.
0	Graus	3,3	9,7	60,4	84	Graus	14,6	9,8	60,7
2	Graus	3,4	9,7	60,4	86	Graus	14,7	9,8	60,7
4	Graus	3,5	9,0	60,4	88	Graus	14,8	9,8	60,7
6	Graus	3,7	9,7	60,4	90	Graus	14,9	9,8	60,7
8	Graus	3,9	9,8	60,4	92	Graus	15	9,8	60,8
10	Graus	4,2	9,8	60,3	94	Graus	15	9,8	60,9
12	Graus	4,5	9,8	60,3	96	Graus	15,1	9,8	60,9
14	Graus	4,8	9,8	60,3	98	Graus	15,1	9,7	61,0
16	Graus	5,2	9,8	60,3	100	Graus	15,1	9,7	61,0
18	Graus	5,6	9,8	60,3	102	Graus	15,1	9,7	61,1
20	Graus	6,0	9,8	60,3	104	Graus	15,2	9,7	61,1
22	Graus	6,4	9,8	60,2	106	Graus	15,2	9,7	61,2
24	Graus	6,8	9,8	60,2	108	Graus	15,1	9,6	61,2
26	Graus	7,2	9,8	60,2	110	Graus	15,1	9,6	61,2
28	Graus	7,6	9,8	60,2	112	Graus	15,1	9,6	61,3
38	Graus	9,5	9,8	60,1	112	Graus	15,1	9,5	61,3
40	Graus	9,9	9,8	60,1	114	Graus	15,0	9,5	61,3
42	Graus	10,2	9,8	60,1	116	Graus	15,0	9,5	61,3
44	Graus	10,6	9,8	60,1	118	Graus	14,9	9,4	61,3
46	Graus	10,9	9,8	60,2	120	Graus	14,9	9,4	61,3
48	Graus	11,2	9,8	60,2	122	Graus	14,8	9,4	61,3
50	Graus	11,5	9,8	60,2	124	Graus	14,7	9,3	61,3
52	Graus	11,8	9,8	60,2	126	Graus	14,6	9,3	61,3
54	Graus	12	9,8	60,2	128	Graus	14,5	9,2	61,2
56	Graus	12,3	9,8	60,2	130	Graus	14,4	9,2	61,2
58	Graus	12,6	9,8	60,3	132	Graus	14,3	9,1	61,6
60	Graus	12,8	9,8	60,3	134	Graus	14,2	9,1	61,0
62	Graus	13,0	9,8	60,3	136	Graus	14,1	9,0	60,9
64	Graus	13,2	9,8	60,4	138	Graus	14,0	9,0	60,8
66	Graus	13,4	9,8	60,4	148	Graus	13,4	8,7	60,1
68	Graus	13,6	9,8	60,4	150	Graus	13,3	8,7	59,9
70	Graus	13,8	9,8	60,5	152	Graus	13,2	8,7	59,6
72	Graus	14,0	9,8	60,5	154	Graus	13,1	8,7	59,4
74	Graus	14,1	9,8	60,5	156	Graus	13,0	8,6	59,1
76	Graus	14,3	9,8	60,5	158	Graus	12,8	8,6	58,8
78	Graus	14,4	9,8	60,6	160	Graus	12,7	8,5	58,5
80	Graus	14,5	9,8	60,6	162	Graus	12,7	8,5	58,2
82	Graus	14,6	9,8	60,7	164	Graus	12,6	8,5	57,9
168	Graus	12,4	8,3	57,1	266	Graus	14,9	9,8	59,2

ANEXO D – Processo racional para definição do ângulo para a linha
170	Graus	12,3	8,3	56,7	268	Graus	14,8	9,8	59,2
172	Graus	12,3	8,2	56,3	270	Graus	14,8	9,8	59,1
174	Graus	12,2	8,2	56,0	272	Graus	14,7	9,8	59,0
176	Graus	12,2	8,2	56,2	274	Graus	14,6	9,8	59,0
178	Graus	12,2	8,2	56,3	276	Graus	14,5	9,8	58,9
180	Graus	12,2	8,1	56,3	278	Graus	14,4	9,8	58,8
182	Graus	12,2	8,2	56,3	280	Graus	14,3	9,8	58,7
184	Graus	12,2	8,2	56,1	282	Graus	14,2	9,8	58,7
186	Graus	12,2	8,2	55,9	284	Graus	14,1	9,8	58,6
188	Graus	12,2	8,2	55,6	286	Graus	14,0	9,8	58,5
190	Graus	12,3	8,2	55,3	288	Graus	13,8	9,8	58,4
192	Graus	12,3	8,2	54,8	290	Graus	13,6	9,8	58,3
194	Graus	12,4	8,3	54,3	292	Graus	13,5	9,8	58,3
196	Graus	12,4	8,3	53,7	294	Graus	13,3	9,8	58,2
198	Graus	12,5	8,4	53,1	296	Graus	13,1	9,8	58,1
200	Graus	12,6	8,4	52,3	298	Graus	12,9	9,8	58,1
202	Graus	12,7	8,4	52,0	300	Graus	12,7	9,8	58,1
204	Graus	12,8	8,5	52,4	302	Graus	12,4	9,8	58,4
206	Graus	12,9	8,5	52,9	304	Graus	12,2	9,8	58,6
208	Graus	13,0	8,6	53,9	306	Graus	11,9	9,8	58,8
210	Graus	13,1	8,7	53,8	308	Graus	11,7	9,8	59,0
212	Graus	13,2	8,7	54,3	310	Graus	11,4	9,8	59,2
224	Graus	13,9	9,0	56,6	312	Graus	11,1	9,8	59,3
226	Graus	14,0	9,1	57,0	314	Graus	10,8	9,8	59,5
228	Graus	14,1	9,1	57,3	316	Graus	10,5	9,8	59,6
230	Graus	14,2	9,2	57,5	318	Graus	10,1	9,8	59,8
232	Graus	14,3	9,2	57,8	320	Graus	9,8	9,8	59,9
234	Graus	14,4	9,3	58,0	322	Graus	9,4	9,8	60,0
236	Graus	14,5	9,3	58,3	334	Graus	7,2	9,8	60,4
238	Graus	14,5	9,4	58,4	336	Graus	6,8	9,8	60,4
240	Graus	14,6	9,4	58,6	338	Graus	6,4	9,8	60,5
242	Graus	14,7	9,5	58,8	340	Graus	6,0	9,8	60,5
244	Graus	14,7	9,5	58,9	342	Graus	5,6	9,8	60,5
246	Graus	14,8	9,5	59,0	334	Graus	7,2	9,8	60,4
248	Graus	14,8	9,6	59,1	336	Graus	6,8	9,8	60,4
250	Graus	14,9	9,6	59,2	338	Graus	6,4	9,8	60,5
252	Graus	14,9	9,6	59,2	340	Graus	6,0	9,8	60,5
254	Graus	14,9	9,6	59,3	342	Graus	5,6	9,8	60,5
256	Graus	14,9	9,7	59,3	344	Graus	5,2	9,8	60,5
258	Graus	14,9	9,7	59,3	346	Graus	4,8	9,8	60,5
260	Graus	14,9	9,7	59,3	348	Graus	4,5	9,8	60,5
262	Graus	14,9	9,7	59,3	350	Graus	4,1	9,8	60,5
264	Graus	14,9	9,7	59,2	352	Graus	3,9	9,8	60,5
354	Graus	3,6	9,8	60,5					

356	Graus	3,5	9,7	60,4
358	Graus	3,4	9,7	60,4
360	Graus	3,3	9,7	60,4

Fonte: Autoria própria (2022).

ANEXO E – Tração no topo para diferentes diâmetros, três segmentos de materiais e com adição de 1 linha em 0 grau

Diâmetro	Peso na	Comprimento	Tração no	Massa	Offset	Offset	Tração de
(mm)	água (kN/m)	(m)	topo (kN)	(kg)	inicial (m)	final (%)	ruptura (%)
d	W	S	Т	m	< 5 m	< 10%	< 60%
81,0	1,13110	350					
191,0	0,06220	2800	965,93	98497,45	5,0	10,6	78,9
81,0	1,13110	350					
81,0	1,13110	340					
191,0	0,06220	2720	938,33	95683,24	5,6	10,6	78,9
81,0	1,13110	340					
81,0	1,13110	310					
191	0,06220	2480	855,54	87240,60	7,9	10,5	79,3
81	1,13110	310					
84	1,21650	350					
191	0,06220	2800	1025,71	104593,31	4,3	10,5	74,4
84	1,21650	350					
84	1,21650	350					
197	0,06550	2800	1034,95	105535,53	3,7	10,2	76,1
84	1,21650	350					
87	1,30490	350					
197	0,06550	2800	1096,83	111845,53	3,1	10,0	72,0
87	1,30490	350					
87	1,30490	375					
197	0,06550	3000	1175,18	119834,50	1,8	10,1	72,2
87	1,30490	375					
81	1,13110	375					
197	0,06550	3000	104,83	10689,18	3,1	10,5	80,9
81	1,13110	375					
81	1,13110	375					
201	0,06860	3000	1054,13	107490,84	3,0	10,5	81,7
81	1,13110	375					
89	1,36560	350					
170	0,05000	2800	1095,90	111750,70	2,8	10,9	63,7
89	1,36560	350					
89	1,36560	350					
168	0,04800	2800	1090,32	111181,70	3,0	11,1	63,2
89	1,36560	350					
89	1,36560	350					
173	0,05110	2800	1099,00	112066,81	2,8	10,7	64,3
89	1,36560	350					

90	1,39640	350					
173	0,05110	2800	1120,56	114265,32	2,6	10,7	63,1
90	1,39640	350					
90	1,39640	350					
175	0,05340	2800	1127,00	114922,02	2,4	10,6	63,6
90	1,39640	350					
90	1,39640	350					
210	0,07480	2800	1186,92	121032,16	1,9	9,6	70,8
90	1,39640	350					
90	1,39640	310					
210	0,07480	2480	1051,27	107199,91	4,5	9,5	71,1
90	1,39640	310					
92	1,45920	350					
168	0,04800	2800	1155,84	117862,88	2,2	11,0	61,6
92	1,45920	350					
92	1,45920	350					
170	0,05000	2800	1161,44	118433,92	2,2	10,8	60,5
92	1,45920	350					
92	1,45920	350					
173	0,05110	2800	1164,52	118747,99	2,2	10,6	61,1
92	1,45920	350					
95	1,55590	350					
160	0,04600	2800	1214,01	123794,57	1,6	11,3	68,3
95	1,55590	350					
95	1,55590	350					
166	0,04800	2800	1223,53	124765,34	1,5	10,9	61,7
95	1,55590	350					
95	1,55590	350					
168	0,04800	2800	1223,53	124765,34	1,5	10,9	62,1
95	1,55590	350					
95	1,55590	350					
150	0,03920	2800	1214,01	123794,57	1,6	11,3	68,3
95	1,55590	350					
95	1,55590	310					
160	0,04460	2480	1075,27	109646,62	4,3	11,2	68,3
95	1,55590	310					
97	1,62210	310					
160	0,04460	2480	1116,31	113831,94	3,8	11,1	68,6
97	1,62210	310					
97	1,62210	310					
170	0,05000	2480	1129,70	115197,54	3,5	10,5	59,2
97	1,62210	310					
97	1,62210	310					
173	0,05110	2480	1132,43	115475,72	3,4	10,3	59,7
97	1,62210	310					

97	1,62210	310					
175	0,05340	2480	1138,13	116057,37	3,4	10,3	56,8
97	1,62210	310					
97	1,62210	310					
179	0,05680	2480	1146,57	116917,19	3,3	10,1	57,5
97	1,62210	310					
97	1,62210	310					
182	0,05880	2480	1151,53	117422,97	3,3	9,9	58,0
97	1,62210	310					

Fonte: Autoria própria (2022).

ANEXO F – Tração no topo para diferentes diâmetros, três segmentos de materiais e com adição de 1 linha em 180 graus

Diâmetro	Peso na	Comprimento	Tração no	Massa	Offset	Offset	Tração de
(mm)	água (kN/m)	(m)	topo (kN)	(kg)	inicial (m)	final	Ruptura
d	W	S	T	m	< 5 m	< 10%	< 60%
70	0,84480	310			-		
182	0,05880	2480	669,6	68280,20	33,2	10,0	103,8
70	0,84480	310					
73	0,91870	310					
182	0,05880	2480	715,418	72952,33	31,1	9,8	96,3
73	0,91870	310					
78	1,04890	310					
182	0,05880	2480	796,142	81183,89	27,6	9,5	85,6
78	1,04890	310					
84	1,21650	310					
182	0,05880	2480	900,054	91779,97	23,0	9,2	75,2
84	1,21650	310					
84	1,21650	310					
150	0,03920	2480	851,446	86823,33	23,1	10,7	74,8
84	1,21650	310					
84	1,21650	310					
160	0,04460	2480	864,838	88188,93	23,0	10,1	69,4
84	1,21650	310					
87	1,30490	310					
160	0,04460	2480	919,646	93777,79	21,7	10,0	68,9
87	1,30490	310					
87	1,30490	310					
146	0,03710	2480	901,046	91881,12	22,0	10,9	77,7
87	1,30490	310					
87	1,30490	310					
152	0,03950	2480	906,998	92488,06	21,8	10,6	75,4
87	1,30490	310					
87	1,30490	310					
170	0,05000	2480	933,038	95143,40	21,3	9,5	67,9
87	1,30490	310					
87	1,30490	310					
191	0,06220	2480	963,294	98228,65	21,3	9,0	72,5
87	1,30490	310					
89	1,36560	310					
168	0,04800	2480	965,71	98475,22	20,9	9,5	64,7
89	1,36560	310					

89	1,36560	310					
170	0,05000	2480	970,672	98981,00	20,8	9,4	65,3
89	1,36560	310					
89	1,36560	310					
175	0,05340	2480	979,10	99840,82	20,6	9,3	66,4
89	1,36560	310					
89	1,36560	310					
150	0,03920	2480	943,888	96249,79	21,2	10,5	75,2
89	1,36560	310					
89	1,36560	310					
160	0,04460	2480	957,28	97615,39	21,0	9,9	69,0
89	1,36560	310					
89	1,36560	310					
182	0,05880	2480	992,496	101206,43	20,5	9,0	68,1
89	1,36560	310					
89	1,36560	310					
201	0,06860	2480	1016,8	103684,74	21,3	8,6	72,3
89	1,36560	310					
90	1,39640	310					
142	0,03480	2480	952,072	97084,33	21,1	11,1	82,4
90	1,39640	310					
90	1,39640	310					
150	0,03920	2480	962,984	98197,04	20,9	10,5	75,3
90	1,39640	310					
90	1,39640	310					
160	0,04460	2480	976,376	99562,64	20,6	9,9	69,1
90	1,39640	310					
90	1,39640	310					
168	0,04800	2480	984,808	100422,47	20,5	9,5	63,5
90	1,39640	310					
90	1,39640	310					
173	0,05110	2480	992,496	101206,43	20,4	9,2	64,7
90	1,39640	310					
90	1,39640	310					
170	0,05000	2480	989,768	100928,25	20,5	9,4	64,1
90	1,39640	310					
90	1,39640	310					
166	0,04800	2480	984,808	100422,47	20,6	9,6	63,2
90	1,39640	310					
90	1,39640	310					
182	0,05880	2480	1011,592	103153,68	20,3	8,9	66,8
90	1,39640	310					
90	1,39640	310					
201	0,06860	2480	1035,896	105631,99	20,7	8,6	70,9
90	1,39640	310					

92	1,45920	310					
160	0,04460	2480	1015,312	103533,01	20,0	9,8	69,2
92	1,45920	310					
92	1,45920	310					
168	48,00000	2480	1023,744	104392,84	19,9	9,4	63,0
92	1,45920	310					
92	1,45920	310					
173	0,05110	2480	1031,432	105176,79	19,8	9,2	62,4
92	1,45920	310					
92	1,45920	310					
179	0,05680	2480	1045,568	106618,26	19,8	9,0	63,6
92	1,45920	310					
92	1,45920	310					
175	0,05340	2480	1037,136	105758,44	19,8	9,1	62,8
92	1,45920	310					
95	1,45920	310					
175	0,05340	2480	1097,09	111872,05	18,9	9,0	59,6
95	1,45920	310					

Fonte: Autoria própria (2022).

ANEXO G – Tração no topo para diferentes diâmetros, três segmentos de materiais e com adição de 2 linhas

Diâmetro	Peso na	Comprimento	Tração no	Massa	Offset	Offset	Tração de
(mm)	água	(m)	topo	(kg)	inicial	final	ruptura
4				m	(III) < 5 m	(%)	(%)
117	2 36	375	1	111	< 5 III	< 1070	< 0070
175	0.0534	3000	1930.20	196825.62	4.0	9.0	55.9
117	2 36	375	1750,20	170025,02	ч,0),0	55,7
117	2,30	310					
175	0.0534	2480	1595.63	162709.18	6.1	9.1	56.3
117	236	310					;-
114	2,2405	310					
150	0.0392	2480	1521,54	155154,10	6,6	9,1	56
114	2,2405	310	,	,	,	,	
105	1,9007	310					
150	0,0392	2480	1275,65	130080,10	8,9	10,9	73,7
105	1,9007	310					
105	1,9007	375					
175	0,0534	3000	1543,13	157354,96	6,1	11,0	73,2
105	1,9007	375					
105	1,9007	375					
179	0,0568	3000	1585,73	161698,95	5,4	9,5	54,5
105	1,9007	375					
105	1,9007	375					
182	0,0588	3000	1595,93	162739,06	5,3	9,3	54,9
105	1,9007	375					
105	1,9007	375					
187	0,0588	3000	1601,93	163350,89	5,2	9,1	52,4
105	1,9007	375					
105	1,9007	375					
191	0,0622	3000	1601,93	163350,89	5,2	9,0	53
105	1,9007	375					
105	1,9007	375					
197	0,0655	3000	1612,13	164391,00	5,1	9,0	50,7
105	1,9007	375					
105	1,9007	375					
201	0,0686	3000	1622,03	165400,52	5,1	8,6	50,5
105	1,9007	375					
105	1,9007	375					
206	0,072	3000	1641,53	167388,97	5,0	8,4	51,7
105	1,9007	375					

105	1,9007	375					
210	0,0748	3000	1649,93	168245,53	5,0	8,4	52,1
105	1,9007	375					
105	1,9007	375					
211	0,0753	3000	1651,43	168398,48	5,0	8,3	52,2
105	1,9007	375					
105	1,9007	375					
214	0,0753	3000	1660,13	169285,64	5,0	8,2	52,2
105	1,9007	375					
105	1,9007	375					
218	0,0805	3000	1667,03	169989,24	4,8	8,1	53,2
105	1,9007	375					

Fonte: Autoria própria (2022).