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RESUMO

Embora a classe de remanescentes estelares que não são anãs brancas nem buracos
negros seja tradicionalmente chamada de estrelas de nêutrons, esses objetos não
são compostos apenas de nêutrons. Mesmo a descrição mais ingênua de tais objetos
deve incluir alguma quantidade de prótons e léptons para garantir sua estabilidade.
Neste trabalho, pretendemos obter uma descrição de estrelas compactas compostas
de matéria densa a partir de modelos relativísticos, com o objetivo de analisar pulsares
como estrelas hadrônicas, híbridas e/ou estranhas. Isso é feito dividindo o presente
estudo em duas partes: (i) estudar as implicações da inclusão de bárions delta na
composição da matéria estelar, e (ii) explorar o diagrama de fases QCD, em especial
a possibilidade de desconfinamento hadron-quark no contexto de estrelas compactas.
Em ambas as partes, os efeitos de campos magnéticos intensos também são levados
em consideração.

Palavras-chave: Modelos Efetivos; Estrelas de Nêutron; Matéria Assimétrica; Tran-
sição de Fases; Magnetares.





RESUMO EXPANDIDO

Devido à impossibilidade de se tratar a cromodinâmica quântica (QCD) perturbativa-
mente em regimes de alta densidade, o estudo completo do diagrama de fases da QCD
requer abordagens alternativas, e o uso de modelos efetivos relativísticos tem servido
como uma valiosa ferramenta para o entendimento conceitual e modelagem de muitos
fenômenos relacionados à interação nuclear. Estes modelos, originalmente desenvolvi-
dos tendo em vista suas aplicações no contexto microscópico, i.e., na descrição da
matéria nuclear, de colisões de íons pesados ou da subestrutura de hádrons, têm sido
extrapolados para o âmbito macroscópico da descrição de matéria densa contínua,
como é praxe no estudo de objetos estelares compactos.

Os remanescentes estelares, como são chamadas as estrelas compactas em conjunto
com buracos negros, são o estágio final da evolução das estrelas. O estudo destes
objetos se situa na intersecção da mecânica quântica, relatividade geral e física es-
tatística, grandes pilares conceituais da física contemporânea. Por isso, os métodos
utilizados nesta investigação e os resultados obtidos são de ampla aplicabilidade nos
mais diversos campos da física. Por exemplo, as condições extremas de densidade,
campo magnético, temperatura e pressão encontradas no interior ou nas imediações
desses objetos servem como um ‘laboratório natural’ para teorias que exigem parâmet-
ros em escalas irreprodutíveis nos laboratórios humanos, beneficiando principalmente
a física nuclear e de hádrons, astrofísica e cosmologia.

O caroço das estrelas de nêutrons apresenta a matéria bariônica na situação de mais
alta densidade observável atualmente, e é evidente que as partículas apresentam-
se em estados de alta energia em relação às suas massas de repouso. É razoável
conjecturar que, ao menos em regiões mais centrais, os núcleons tenham sua energia
elevada acima da barreira de massa, favorecendo energeticamente a existência de
espécies bariônicas mais massivas do que prótons e nêutrons (como os híperons ou
as ressonâncias de spin 3/2 do decupleto bariônico).

Outros tipos de matéria exótica também podem ser esperados devido às extremas
densidades de energia encontradas em tais objetos, como, por exemplo, matéria es-
tável de quarks desconfinados (chamada na literatura de matéria estranha). Embora a
totalidade da experiência física (e cotidiana) ateste que a matéria em seu estado fun-
damental se apresenta na forma de léptons e quarks confinados, não é possível excluir
teoricamente a possibilidade deste ser apenas um estado duradouro metaestável ao
invés de o verdadeiro estado fundamental da matéria bariônica. A hipótese de Bodmer-
Witten propõe que é possível a existência de matéria estável de quarks desconfinados,
desde que haja quarks u, d e s em porções equivalentes. A depender dos modelos
efetivos empregados na descrição das matérias hadrônica e estranha, uma transição
de fases é esperada no interior da estrela compacta, levando ao aparecimento de um
‘caroço’ de matéria de quarks livres ou, até mesmo, à total conversão de uma estrela
hadrônica metaestável em uma estrela estranha.

Por outro lado, uma classe distinta de estrelas de nêutrons é chamada de magnetares,
objetos compactos que possuem o maior campo magnético estável observado na



natureza. Embora a força do campo magnético na região central dessas estrelas per-
maneça desconhecida, estima-se que elas podem atingir magnitudes da ordem de
1018 G. Tais condições extremas certamente desempenham um papel considerável
na determinação da composição interna dos magnetares, em especial quando se con-
sideram espécies exóticas de partículas. Ainda, há uma quebra de simetria induzida
pela presença do campo magnético levando ao aumento da pressão transversal à
direção de B e à diminuição da pressão longitudinal. Para campos magnéticos fortes
o suficiente, isso provocará um achatamento nos pólos da estrela de nêutrons. Assim,
assumir a simetria esférica na dedução das equações de equilíbrio hidrostático, como
feito na obtenção das usuais equações de Tolman-Oppenheimer-Volkoff, não é mais
uma boa aproximação. Além disso, deve-se considerar uma dependência do campo
magnético com a densidade através de um perfil que não é conhecido de antemão.
Portanto, o cálculo numérico deve-se dar a partir das equações de estado levando
em consideração as equações de Einstein e de Maxwell para obter as soluções de
equilíbrio auto consistentemente.

Fazem parte dos objetivos deste estudo a implementação e refinamento de mode-
los efetivos para matéria hadrônica, em especial parametrizações de modelos tipo-
Walecka como o L3wr, modelos dependentes da densidade como o DDME2, ou ex-
tensões do modelo Nambu-Jona-Lasinio (NJL) como o PPM que concordem com
grandezas experimentais bem estabelecidas para matéria nuclear, e.g., o “módulo de
compressibilidade”, a “energia de simetria” e seu slope, tomados no ponto de satu-
ração nuclear. Além destas restrições, observações astronômicas colocam limites nos
valores de massas e raios de estrelas compactas. Com o objetivo de permitir a de-
scrição de matéria com híperons ou ressonâncias de spin 3/2 (bárions Δ), que devem
estar presentes na modelagem de estrelas compactas, exige-se a busca por melhores
esquemas de acoplamentos méson-híperon e méson-delta quando se opta por mode-
los tipo-Walecka. A inclusão de outras espécies bariônicas no modelo NJL estendido
para hádrons é consideravelmente mais complexa, pois esse formalismo exige que
se observe a simetria quiral. Tanto a busca por melhores esquemas de acoplamentos
para modelos tipo-Walecka quanto a completamente nova extensão do modelo NJL
hadrônico para híperons fazem parte do escopo deste trabalho.

A transição de desconfinamento entre matéria hadrônica e de quarks livres é tida como
sendo uma transição de fases de primeira ordem para o caso de T = 0. A descrição
termodinâmica desse tipo de processo pode ser obtida a partir da combinação das
equações de estado para as duas fases. A transição pode acontecer após a matéria
hadrônica metaestável sobre-pressurizada atingir o ponto de coexistência de fases com
a matéria estranha, o que, a depender dos parâmetros de ambos os modelos, pode per-
mitir a construção de uma equação de estado híbrida. O estudo dessas transições de
fase também faz parte dos objetivos desse projeto, e relaciona-se intimamente ao obje-
tivo anterior, uma vez que as populações de partículas exóticas na matéria hadrônica
(que é uma variável dependente do modelo) têm muita influência na transição para
matéria hadrônica.

Além da implementação numérica de modelos efetivos, sejam eles presentes na liter-
atura ou novos desenvolvimentos, pretende-se implementar a descrição de efeitos de
campos magnéticos extremos incluindo também momentos magnéticos anômalos das



partículas consideradas. Isso permitirá uma melhor descrição de matéria hadrônica (ou
estranha) em magnetares, porém traz as dificuldades adicionais de se ter que consid-
erar a anisotropia introduzida pelo campo magnético e de considerar as equações de
Einstein e de Maxwell auto consistentemente na obtenção das soluções de equilíbrio
(i.e., diagrama massa-raio, perfis de densidade e de campo magnético nos interiores
estelares,etc.).





ABSTRACT

Although the class of stellar remnants that are neither white dwarves nor black holes is
traditionally named neutron stars, these objects are not composed solely of neutrons.
Even the more naïve description of such objects must include some amount of protons
and leptons in order to guarantee their stability. In this work, we intend to obtain a
description of compact stars made up of dense matter from relativistic models, with the
purpose of analyzing pulsars as hadronic, hybrid and/or strange stars. This is done by
dividing the present study into two parts: (i) studying the implications of including delta
baryons in the stellar matter composition, and (ii) exploring the QCD phase diagram, in
special the possibility of hadron-quark deconfinement in the context of compact stars.
In both parts, the effects of intense magnetic fields are also taken into account.

Keywords: Effective Models; Neutron Stars; Asymmetric Matter; Phase Transitions;
Magnetars.
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1 INTRODUCTION

The contemporary understanding of all known physical phenomena can be re-
duced to four fundamental interactions (or forces). While the gravitational force has
not yet been described successfully in the form of a quantum field theory (QFT), the
theories of the other three forces can be pieced together in a single formalism, the
so-called standard model of particle physics. In this view, the particles of matter (in
the most elementar level, quarks and leptons) do not directly interact with each other,
but instead, their interactions are mediated by force fields, consequence of the fact
that these particles carry charges. In the perturbative quantum mechanics framework,
this process can be understood as the exchange of virtual particles (called gauge
bosons) between the interacting fermions. The four fundamental forces are presented
illustratively in Table 1.

Quarks were proposed as a way to explain the plethora of subatomic particles
discovered in accelerators during the 1960s. It was suggested by Gell-Mann and Zweig
that hadrons (protons, neutrons, pions, lambdas, and many others) were not truly
elemental, but rather exhibit a substructure of quarks, with the baryons being made
of three quarks and the mesons of a quark-antiquark pair. This hypothesis was later
confirmed by deep inelastic scattering experiments. By the time, three types (or flavors)
of quarks were employed to successfully explain the properties of all known hadrons
and predict some others, but this number counts six in the actual form of the standard
model.

In order to properly describe the existence of the delta and omega barions, that
would be constituted by three same-flavor quarks, an extra quantum number had to be
proposed to avoid the Pauli exclusion principle. This new quantum number of quarks
was called color charge, that can take three values (named red, green and blue). As
the composite particles do not show any color charge, it is imposed that quarks must
be combined in a colorless (or white) way, such as a combination of the three different
colors, in barions, or of a color and the respective anticolor, in mesons. Unlike other
particles of the standard model, quarks take part in all of the fundamental interactions.
They have mass and electric charge, so are subject to gravitational and electromagnetic
forces, carry color charge, so can feel the strong force, and can change their flavor in
radiative decays, which is explained through the weak interaction.

The quantum field theory that describes the strong interaction is called quantum
chromodynamics (QCD), and is briefly presented in the following, together with the
phase diagram of hadronic matter expected to follow from it. It is still not well under-
stood how some features of the QCD, like the confinement and asymptotic freedom
properties, arise from its mathematical structure. So, it is not possible to apply the per-
turbative methods typical to the particle physics to the low energy region of the QCD
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Table 1 – The fundamental forces of nature, corresponding QFT and mediating gauge
bosons. “Strength” is taken comparatively to the strong force and “range”
represents typical scales where the interaction is relevant [126, 74].

FORCE QFT PARTICLE STRENGTH RANGE (m)
Strong Chromodynamics Gluons 1 10–15

Electromagnetic Electrodynamics Photon 1
137 ∞

Weak Electroweak Theory1 W± and Z 0 10–20 10–18

Gravitational – “Graviton” 10–39 ∞

phase diagram, where many relevant phenomena are expected to occur. An option
to deal with this problem is to build effective models that emulate some of the QCD
relevant characteristics or symmetries, such as the quark confinement, the dynamic
mass production or the resulting nuclear interaction between hadrons.

The QCD Lagrangian density that contains all the dynamics of quarks and gluons
subject to the strong force, adopting the Einstein summation and the natural units sys-
tem
(c = h̄ = kB = 1), is given by

L = ψ̄qi iγ
μ

[
δij∂μ + ig

(
Gα
μ tα
)

ij

]
ψqj – mqψ̄qiψqi –

1
4

Gα
μνG

μν

α , (1)

where ψqi is the Dirac spinor of the quark field of flavor q, color i and mass mq, Gα
μ is

the four-potential of the gluon gauge fields (α = 1, . . . ,8), and

Gμν

α = ∂μGν
α – ∂νGμ

α – gfαβγGμ

β
Gν
γ (2)

is the color fields strength tensor, with tα being the Gell-Mann matrices, generators of
the SU(3) color group that have the structure constants fαβγ, and g being the color
charge, related to the strong coupling constant as g =

√
4παs [73].

Unlike photons in the quantum electrodynamics (QED), which do not directly
interact with each other because are electrically neutral, gluons have a color charge,
which makes them subject to chromodynamic interaction with other gluons. As the inter-
actions must conserve the global color charge, gluons must simultaneously carry one
color and one anticolor, which implies that the color charge of an individual quark is
not preserved by the strong interaction with a gluon, as opposed to the photon-electron
interaction. Thus, the gluon field tensor contains the additional term represening in-
teracion between color-charged gluons, making the QCD a non-abelian field theory in
contrast to the QED.

1 Also known as Glashow-Weinberg-Salam theory. In fact, it assembles the electromagnetic and weak
interactions in the form of an unified electroweak force. However, these two forces manifest themselves
in very distinct ways for most physical phenomena, what justifies the literature tendency of presenting
them as two different interactions [74].
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Figure 1 – Feynman diagram describing an Yukawa-type interaction between two pro-
tons p (uud) through the exchange of a virtual pion π0 (uū or dd̄), in terms
of QCD degrees of freedom, adapted from [74].

Therefore, many complex phenomena can emerge from a somewhat simple
mathematical structure. For example, it was observed in deep inelastic scatterings that
the quarks were practically free inside the hadrons they made up. It can be explained
through the gluon-gluon direct interactions allowed by the QCD, which leads to the
antiscreening effect of color charge. The strong force coupling constant decreases with
the four-momentum k2 approximately as

αs(k2) =
1

β0 ln
(

k2

Λ2
QCD

) (3)

where β0 is a constant [75, 195] and ΛQCD ≈ 220 MeV is called the QCD scale. This
renders the QCD interaction stronger at large distances (or low momenta), which leads
to the quark confinement that forbids quarks to be observed as isolated particles, and
implies the other way around in the so-called assymptotic freedom that enables the
application of perturbative methods in high energy or low density cases (as in heavy
ion collisions).

A further example of this complexity is the description of the force acting be-
tween two hadrons in terms of QCD degrees of freedom. The so-called nuclear force,
which initially motivated the study of strong force and was then taken as a fundamental
process, is a residual force arising from the non-trivial interaction between six quarks.
One of the possible diagrams for this phenomenon is shown in Figure 1, and refers to
the pioneering work of Yukawa [203, 202] who, anticipating QCD by nearly 40 years,
proposed a theory for the strong force in terms of the exchange of virtual mesons,
considering hadrons as elementary particles. Although, as it turned out, this is not the
most fundamental nature of the strong force, this approach is very useful in building
models for the interaction between hadrons and is still employed in several effective
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models.
Although it is possible to apply perturbative methods in high energy and low

density events, which complements experimental results obtained in high energy accel-
erators, most of the theoretical research on strong interactions relies on approximative
approaches. Hence, only a few results of the QCD phase diagram are known decisively.
The ordinary hadronic matter must be observed for lower temperatures and barionic
chemical potentials (or densities), but QGP and a color superconducting phase (named
color-flavor locked, CFL) are expected at asymptotically large temperatures and densi-
ties, respectively.

The only feasible non-perturbative method to explore the regions close to the
hadron-quark phase transition is called lattice quantum chromodynamics (LQCD),
which discretizes the spacetime in grid to search for numerical solutions for the quark
dynamics directly from the QCD Lagrangian. Although demanding a high computational
cost and still presenting technical difficulties that limit its applicability to the low density
regime, the LQCD is an important source of insights to the theoretical study of QCD.
The most remarkable result of this approach to the description of the QCD phase dia-
gram is the fact of the transition being of the crossover kind at zero chemical potential
and occurring around T = 160 MeV [171].

Another approach, that allows exploring the non-zero chemical potential regions
of the diagram, is the construction of effective models by the suggestion of Lagrangian
densities aiming to emulate, at least to some extent, the QCD symmetries and particle
dynamics in a system subjected to this type of interaction. Results obtained through
this approaches suggest the existence of a first-order phase transition [90]. These
two apparently contradictory perspectives can only be reconciled by the existence of a
critical endpoint (CEP) at the intersection of the transition curve from the LQCD domain,
i.e., the crossover at low chemical potentials and high temperatures, and that suggested
by the effective models, the phase transition for the high chemical potentials and low
temperatures. Nevertheless, the precise location of this critical point and even the order
of the phase transition are open questions hard to be dealt by the discussed methods
[173].

From experimental and phenomenological results, and information derived from
perturbative QCD, LQCD or effective models, it is possible to construct a phase diagram
for QCD, as the one shown in Figure 2. The first diagram of this type was proposed by
[23] but, due to the fast and constant development of research in the area, there are dif-
ferent proposals for the phase diagram, depending on the theoretical and experimental
results considered.
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Figure 2 – Conjectured form of the QCD phase diagram [3].

1.1 A BRIEF HISTORIC OVERVIEW

The research on compact stars in its modern form began with the study of white
dwarfs. At the end of the 19th century, Friedrich Bessel discovered that Sirius, one of
the brightest stars in the night sky, described an elliptical orbit, what suggested that
it was part of a binary system whose companion could not be observed. Nearly two
decades later, Sirius’ companion was identified by Alan Clark, who reported that it
had a brightness many orders of magnitude smaller but a mass equivalent to that of
Sirius, on the order of the mass of the Sun. In 1914, Walter Adams concluded, through
spectroscopy studies, that the surface temperature of the two companions should be
equivalent, but the density of one of them much higher than the other. This companion,
which came to be classified as a “white dwarf”, had its properties explained only in 1926
by Fowler, when he used knowledge of quantum mechanics to take into account the
fact that electrons are fermions and, therefore, obey the Fermi-Dirac statistic and the
Pauli Exclusion Principle. His hypothesis that the internal constituents of the white dwarf
must be degenerate electrons allowed him to state that it was the degeneracy pressure
of this electron gas that balanced the gravitational force. This hypothesis allowed the
studies of Chandrasekhar and Landau who, in 1930 [28], deduced the limit that bears
the name of the first, and that represents the maximum mass of an object so that the
gravitational collapse is avoided by the degeneracy pressure of the electrons. This
result was obtained by arguments from statistical mechanics, and gives the estimate
that the maximum mass of a white dwarf should be 1.44 M⊙.

At the same time, Lev Landau proposed the existence of stars made up of degen-
erate matter with masses above this limit, culminating in the proposal of the existence
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of dense stars “similar to giant atomic nuclei”. This can be regarded as an early theo-
retical prediction of the existence of neutron stars, even before the observation of the
existence of the neutron itself [199]. In 1939, Tolman and, independently, Oppenheimer
and Volkoff (TOV) [180, 139], obtained the relativistic equation for hydrostatic equilib-
rium from Einstein’s equations of general relativity. It was already evident at the time
that, unlike white dwarfs, where Newtonian gravitation was required, in neutron stars
it would be necessary to take into account the effects of relativistic gravitation, which
would arise due to the very high densities involved in this type of object.

While Tolman takes a more formal approach, focused on the analytical solution
of Einstein’s equations, the work of Oppenheimer and Volkoff is concerned with the
solution of the relativistic equation for hydrostatic equilibrium, presenting the ‘physical’
approach still usual for its solution, in addition to bringing the first application of this
method in neutron stars. This procedure takes the hydrostatic equilibrium equation
together with an equation of state for the matter that constitutes the object, a known re-
lationship between pressure and density a priori, in order to allow its numerical solution.
In this first study, the authors considered the equation of state of a free fermion (i.e.,
neutrons) gas as input to the hydrostatic equilibrium equation, and obtained a maxi-
mum mass of 0.71 M⊙, which was a little disappointing because it was smaller than
the Chandrasekhar limit. Quickly, the limitation of this equation of state was realized,
and it was concluded that the equation of state for the matter of neutron stars should
be obtained by a more adequate effective model, which takes into account interac-
tions between nucleons (protons and neutrons) in order to sustain the higher maximum
masses.

The unexpected discovery of the first pulsars took place in 1967, by Jocelyn Bell
and Antony Hewish, then graduate student and advisor, respectively [83]. The radio
pulses perceived by Bell lasted 0.04 s and repeated every precise 1.3373012 s. The
lack of a known natural phenomenon that produced radio signals so uniform in their
frequency led researchers to consider an artificial origin at first, even suggesting that
they had intercepted some form of alien communication (so much so that the signal was
named LGM-1, from Little Green Men). The subsequent observation of pulsar signals
in other regions of the sky overturned this working hypothesis, and it was proposed
that the captured signals could originate from compact stars. The discovery of pulsars
was the first observational evidence of neutron stars, which raised the relevance of the
discovery far beyond radio astronomy, currently being considered one of the greatest
advances of the 20th century in the understanding of the Universe.

Following the guidance of Bell (who was not awarded the 1974 Nobel Prize in
Physics with her professor, in a decision that generated much controversy and wide-
ranging discussions in the scientific community), many more pulsars were discovered in
the following years. Today this number exceeds two thousand, appearing dispersed in a
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wide range of frequencies and emitting several bands of the electromagnetic spectrum.
It was possible to establish, now observationally, that pulsars (and, by superposition,
neutron stars) are extremely dense objects, exceeding the nuclear saturation density
by up to an order of magnitude, so that they have gravitational masses between 1.4
and 2.2 M⊙ and radius from 10 to 12 km.

At the same time, in the 1960s, the hypothesis of compact stars made up of
other types of matter besides hadrons came to be considered. In the same way that
Chadwick’s discovery of the neutron in 1932 was followed almost immediately by the
proposal of the existence of astronomical objects made up of neutron matter, Ivanenko
and Kurdgelaidze [86, 87] proposed the existence of compact stars made up of quarks,
which had just been proposed as fundamental particles by Murray Gell-Mann and
George Zweig independently in 1964 [74]. Although the existence of this type of object
still lacks observational confirmation, this hypothesis has proved to be an interesting
topic of theoretical investigation. The so-called “strange stars” are formed entirely by
matter in which the quarks are unconfined, and the “hybrid stars” have a hadronic phase
at lower densities and a free quark phase in the stellar core region. The possibility that
some pulsars are, in fact, compact stars made up of a certain amount of unconfined
quark matter is seriously considered today.

Therefore, as briefly explained in this section, the establishment of the field
of studies on compact stars, which took place between the 1930s and 1960s, was
deeply related to the significant advances in theoretical and experimental physics of
the period. The initial works in the area are still relevant today and their methods and
results resonate with the current ones. Far from being exhausted, this field still raises an
immense number of questions and presents a research program that meets the central
points of contemporary physics.

1.2 RELATIVISTIC EFFECTIVE MODELS

Unfortunately, the treatment of the strong force from its fundamental theory is
precluded by mathematical difficulties intrinsic to the phenomenology of QCD (Eq. (1)),
as discussed in previous sections. One approach to circumvent this problem is to build
models that ignore the quark substructure of hadrons, approaching the dynamics in
terms of the degrees of freedom of the composite particles as if they were single
elementary objects, in order to simplify the complicated chromodynamic interaction
through the residual strong force.

The attractive character of this force can be modeled from the exchange of a
neutral scalar meson of mass m, which is directly related to the inaugural proposal of
Yukawa [203]. At the limit of static sources, this exchange can be translated into the
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famous “Yukawa potential”,

V (r ) = –k
e–mr

r
, (4)

where k is a scale constant, and the range of the interaction is related to the “Compton
wavelength” of the mediator, λC = 1/m. As the least massive meson, the meson π (or
pion), observed experimentally for the first time by Cesar Lattes [102], must be the
main actor in the attractive interaction between baryons2, and the exchange potential
of a pion is exact in the limit r → ∞ [191]. In turn, the characteristic of the nuclear
force being repulsive at short distances, which is of central importance in the descrip-
tion and application of hadronic matter, can be qualitatively understood in an analogy
with electrodynamics. QED deals with this interaction mediated by photons, which are
bosons described by a neutral vector field and by the conservation of electric current.
Assuming that the particle mediating the strong interaction is a neutral vector meson ω,
related to the conserved baryonic current, it is possible to infer several aspects of the
strong force in a parallel to the electromagnetic one. For example, baryonic numbers of
like signs repel each other (e.g., p–n or n̄–n̄) and of opposite signs attract each other
(e.g., n–n̄ and other mesons), as in the case of electrical interactions. Like mω ≠ 0, this
force has a limited range, unlike the photon, which is non-massive and represents an
interaction of infinite range. This confirms the analogy between the two mesons, since,
setting m = 0, the Yukawa potential ((4)) returns the Coulomb potential [191]. Therefore,
the strong interaction between baryons can be, in a first approximation, modeled by the
exchange of two mesons (σ and ω).

The construction of models for hadronic matter is of vital importance for under-
standing the properties of atomic nuclei, nuclear reactions and dense stellar objects,
since it is not possible to develop an ab initio approach for the description of this type
of matter.

The first models that sought to describe this matter in terms of its constituent
particles were based on the Skyrme proposal [170]. In this type of approach, we start
with a postulated potential in order to model the nuclear force, e.g., Paris or Bonn
potentials, conceptually similar to the equation ((4)), and of the Schrödinger Equation.
However, this type of model presents some problems, generally due to the fact that the
Schrödinger equation is applicable only to non-relativistic particles. The implications
of not considering relativistic effects are considerable, both in applying the model to
finite nuclei and to unlimited matter [53]. Thus, the construction and use of a relativistic
model for hadronic dynamics in the Quantum Field Theory formalism is imperative. The
QHD form used hereinafter was initially addressed by [88] and [49], but is usually called
“Walecka-type models”, as a result of the relevant work of this author [190].

2 Feynman’s rules for QCD diagrams allow the mediator of this interaction to be a meson other than
π (see Figure 1). However, as all other mesons are more massive than the pion, the term e–mr /r of
these vanishes more quickly with distance.
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In such models, the interaction among baryons is described through the the
exchange of mesons, and here we consider the scalar meson σ, the vector mesons ω

and φ (that carries hidden strangeness), isoscalars, and the isovector-vector meson ρ⃗.
In this approach the Lagrangian density reads as

L =
∑

b

ψ̄b

[
γμ

(
i∂μ – gωbω

μ – gφbφ
μ –

gρb

2
τ⃗ · ρ⃗μ

)
– (mb – gσbσ)

]
ψb

+
1
2

(∂μσ∂μσ – m2
σσ

2) –
λ1
3
σ

3 –
λ2
4
σ

4

–
1
4
ΩμνΩ

μν +
1
2

m2
ωωμω

μ –
1
4
ΦμνΦ

μν +
1
2

m2
φφμφ

μ

–
1
4

R⃗μν · R⃗μν +
1
2

m2
ρρ⃗μ · ρ⃗μ + gωρωμω

μ
ρ⃗μ · ρ⃗ μ, (5)

where mi is the mass associated with the i = σ,ω,φ,ρ meson field, Ωμν = ∂μων – ∂νωμ,
Φμν = ∂μφν – ∂νφμ R⃗μν = ∂μρ⃗ν – ∂νρ⃗μ – gρ(ρ⃗μ × ρ⃗ν), and τ⃗ is the isospin matrix (with
vectors in isospin space denoted by arrows). The sum on the index b runs over all
the baryonic species considered in the matter composition, described by the field ψb
with the mass mb. The scalar self-meson interactions σ3 and σ4, together with an
additional vector-isovector self-meson ωρ interaction, are fitted to improve the value of
the compressibility modulus and symmetry energy at saturation density, respectively.

At sufficiently large densities, there will be so many quanta (mediating mesons)
present in a given volume that it becomes reasonable to approximate the expected
values of the quantum fields as classical fields. This procedure is suitable for the scope
of hadronic matter applied to the study of compact stars, and is called the relativistic
Hartree approximation, mean-field or RMF (from Relativistic Mean-Field). It is under-
stood that the system studied is uniform and invariant by translation and rotation. This
implies that hadronic matter is free of currents and that, in this approximation, the classi-
cal fields must be spatially and temporally constant. Therefore, the RMF approximation
consists of the application of substitutions

σ → ⟨σ⟩ = σ0,

ω
μ → ⟨ωμ⟩ = δμ0ω0,

φ
μ → ⟨φμ⟩ = δμ0φ0,

ρ⃗
μ → ⟨ρ⃗ μ⟩ = δμ0τ3ρ̄0(3),

in the model, where δμ0 is the “Kronecker delta”, which ensures space-temporal con-
stancy of vector fields, and τ3 selects only the third component of vectors in isospin
space (denoted by the index in parentheses, suppressed henceforth), taking advantage
of the fact that isospin is invariant around the third axis.

From the Euler-Lagrange equations, one can obtain the equations of motion for
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the fields, [
γ
μ

(
i∂μ – gωbω0 – gφbφ0 –

gρb

2
τ3ρ̄0

)
– Mb

]
ψb = 0, (6)

for each baryon b, and

m2
σσ0 =

∑
b

gσbρsb – λ1σ
2
0 – λ2σ

3
0 (7)

m2
ωω0 =

∑
b

gωbnb – gωρω0ρ̄
2
0, (8)

m2
φφ0 =

∑
b

gφbnb (9)

m2
ρρ̄0 =

∑
b

gρbI3bnb – gωρω
2
0ρ̄0, (10)

where the effective mass of the baryon b is defined as

Mb = mb – gσbσ. (11)

The simplification promoted by the RMF considerably reduces the mathematical diffi-
culties of describing nuclear matter. Nevertheless, the variables of interest (i.e., meson
fields, densities, and baryon fields) are given as a function of each other, so they still
need to be resolved by some method. The equations for the mesonic fields ((7)–(10))
are coupled polynomial equations, which can be easily solved self-consistently by a
numerical algorithm. Thus, all mesonic fields were set, requiring only the determina-
tion of baryonic fields (ψ) for the complete description of the system and subsequent
calculation of the equations of state.

Let a generic operator Γ, we have the expected value of the quantity Γ for a
system in the ground state through the expression

⟨ψ̄Γψ⟩ =
λ

(2π)3

∫
dp⃗
[
ψ̄
(
p⃗
)
Γψ
(
p⃗
)]

Θ
[
μ – E

(
p⃗
)]

, (12)

where Θ is the Heaviside function, λ is the degeneracy of the ψ
(
p⃗
)

state and μ is the
“chemical potential”. The following calculations are done in detail by [68], where initially
we take ψ̄

(
p⃗
)
ψ
(
p⃗
)

= 1 as a scalar density normalization condition and

Γ =
∂H
∂M

in ((12)), where H is Dirac’s Hamiltonian operator, Hψ = Eψ, so that it is possible to
arrive at the expression for the scalar density,

ρsb =
λb

2π2

∫ pF b

0
dp

p2Mb√
p2 + Mb

2
, (13)
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where λb is the spin degeneracy. Similarly, imposing ψ† (p⃗)ψ (p⃗) = 1 as a baryonic
density normalization condition and making Γ = γ0, it is possible through this method to
arrive at the baryonic (or number) density,

nb =
λb

2π2

∫ pF b

0
dp p2 =

λb
6π2 pF

3
b, (14)

with pF denoting the Fermi momentum, i.e., the momentum of the most energetic
particle at the last occupied level.

We are aware that spin-3/2 baryons (as the Δs) are in fact described by the
Rarita-Schwinger Lagrangian density,

LRS = –
∑
b=Δ

1
2
ψ̄μb

(
ε
μηλν

γ5γη∂λ – imbσ
μν
)
ψνb , (15)

where εμηλν is the Levi-Civita symbol, σμν = i
2
[
γμ,γν

]
, and ψμb is a vector-valued spinor

with additional components (when compared to the four component spinor in the Dirac
equation), which would demand a discrimination on the Lagrangian of the models for
the terms when b = {Δ}. Nonetheless, the resulting equation of motion can be written
compactly as a Dirac equation (iγν∂ν – m)ψμ = 0 in the mean-field approximation,
allowing us to be less rigorous with the notation, see [144].

The “energy-momentum tensor” Tμν can be obtained through the expression

Tμν =
∑

j

∂L

∂
(
∂μφj

)∂νφj – Lgμν, (16)

where the φj are the fields of the particles and gμν represents the tensor of the metric. In
addition to being a conserved dynamic quantity, i.e., ∂μT μν = 0, the energy-momentum
tensor is useful in obtaining the EoS from the Lagrangian density, because, for a uniform
system in equilibrium, it takes the form〈

Tμν
〉

= (ε + P) uμuν – Pgμν, (17)

where ε is the energy density, P is the pressure, and uμ is the four-velocity of the fluid.
The chevrons ⟨ ⟩ represent the expected value, since this formalism is being applied
to continuous and unlimited matter [68]. For a perfect fluid in hydrostatic equilibrium,
uμ = (1,0,0,0), so that

u0
2 = 1 e

∣∣u⃗∣∣2 = 0.

Hence,

⟨T00⟩ = (ε + P) u0u0 – Pg00

= ε + P – P = ε
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and

⟨Tii⟩ = (ε + P) uiui – Pgii

= (ε + P)
∣∣u⃗∣∣2 – P(g11 + g22 + g33) = 3P.

Therefore, obtaining the energy-momentum tensor from the Lagrangian density (Eq. (16))
and relating it to the expected for a perfect fluid in hydrostatic equilibrium (Eq. (17)), we
obtain a prescription for the variables of the equation of state of matter in question,

P =
1
3
⟨Tii⟩ , (18)

ε = ⟨T00⟩ . (19)

The equation of state is obtained from the energy-momentum tensor once the
field equations ((7)–(10)) are solved. At T = 0, the total energy density ε is given by

ε =
∑

b

λb
2π2

∫ pFb

0
dp p2

√
p2 + M2

b +
1
2

m2
σσ

2
0 +

λ1
3
σ

3
0 +

λ2
4
σ

4
0

–
1
2

m2
ωω

2
0 –

1
2

m2
φφ

2
0 –

1
2

m2
ρρ

2
0 – gωρω

2
0ρ

2
0, (20)

and the pressure is given by the general thermodynamic expression

P = –ε +
∑

b

μbnb (21)

with the index b accounting for the baryon with the chemical potential μb. As the baryons
are fermions, it is possible to identify the chemical potential with te Fermi energy, i.e.,
EF b =

√
pF b

2 + M2
b = μb, where the Fermi momenta are given by Eq. (14).

It is convenient to define the asymmetry coefficient in the terms of the number
density of the individual particle species

α =
nn – np
nn + np

, (22)

such that

pF p = pF (1 – α)1/3 pF n = pF (1 + α)1/3 (23)

and pF b = 0 for other particles, so nB = 2p3
F

3π2 . The symmetric matter case is reached
simply taking α = 0 or, alternatively, np = nn = nB/2.

The saturation density n0 is defined as the density of symmetric nuclear matter
where the binding energy E(nB,α) = ε/nB – M0 reaches its minimum, where M0 =
939 MeV is the nucleon mass in vacuum, i.e., when

∂E
∂nB

∣∣∣∣
nB=n0

= 0, (24)
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with α = 0. All the following bulk quantities are, in some degree, known experimentally
or constrained theoretically at the saturation density of nuclear matter, or in some band
region around n0 (see, e.g., [52, 163] and references within). Furthermore, the index in
O0 indicates the quantity O taken at nB = n0.

From the equations of state, i.e., P and ε, it is possible to calculate the incom-
pressibility modulus [174]

K = 9
∂P
∂nB

∣∣∣∣
α=0

. (25)

and the skewness coefficient

Q = 27n3
B

∂3(ε/nB)
∂n3

B

∣∣∣∣∣
α=0

. (26)

Another set of bulk nuclear matter parameters follow from the symmetry energy, which
is an important quantity to model nuclear matter and finite nuclei by probing the isospin
part of nuclear interactions, given by

S =
1
2

∂2(ε/nB)
∂α2

∣∣∣∣∣
α=0

. (27)

One can expand the symmetry energy S around the saturation density n0 as

S(nB) = S0 + L0η +
1
2

K sym
0 η

2 +
1
6

Qsym
0 η

3 + O(η4), (28)

where η(nB) = (nB – n0)/3 and the coefficients of the expansion are the slope of the
symmetry energy,

L = 3nB
∂S
∂nB

, (29)

the curvature of the symmetry energy,

K sym = 9n2
B
∂2S
∂n2

B
, (30)

and the skewness of the symmetry energy,

Qsym = 27n3
B
∂3S
∂n3

B
, (31)

taken at nB = n0 [11].
It is also relevant to notice that the EoS of asymmetric nuclear matter, taken

as its binding energy per nucleon E , can be expanded around the isospin asymmetry
coefficient as

E(nB,α) = E(nB,0) + S2(nB)α2 + S4(nB)α4 + · · · , (32)

from where, excluding surface contributions, one can identify the n-th order symmetry
energy as

Sn =
1
n!

∂n(ε/nB)
∂αn

∣∣∣∣
α=0

. (33)



38 Chapter 1. Introduction

This expression leads to the well-known empirical parabolic law of asymmetric nuclear
matter binding energy, from where the symmetry energy can be obtained from the
difference between the binding energy of the pure neutron (α = 1) and symmetric
matters (α = 0), i.e., as S ≃ E(nB,1) – E(nB,0). At normal nuclear matter density, the
magnitude of the 4th order coefficient is estimated to be very small (less than 1 MeV).
At supra-saturation densities, however, there are very limited data available, making the
situation much less clear [24].

Due to the absence of an effective hegemonic model for matter in the QCD
regime, the description of dense hadronic matter can be done in several different ways.
In the most part of this work, the modeling was restricted to theories of the Walecka
type, but even this class of models may present differences in the number and type of
interactions considered. Furthermore, each individual modeling is dependent on a set
of free parameters, adjustable through empirical data, which allows a large amount of
adjustments (and, consequently, of models) for hadronic matter. Ref. [52] analyzed 263
representative models of this class, contrasting their predictions with well-established
experimental quantities for nuclear matter, e.g., the “compressibility modulus”, the “sym-
metry energy” and its slope, taken at and around the nuclear saturation point (n0). It
was verified that the theoretical results fit the empirical limits in only 35 of these models,
contained in two main categories of the non-linear Walecka-type, (i) models in which
the coupling constants are dependent on the baryonic density and that include the δ

meson (not included in any model discussed in this thesis), and (ii) models that consider
terms of cross-interaction of the mesonic fields.

The RMF models employed in this work are described in the following, and Table
2 shows the symmetric nuclear matter properties at saturation density of each one. The
parameter values of each individual model can be found in the respective reference.
As each author adopt distinct conventions for the Lagrangian terms (e.g., multiplicative
constants), we opt to do not show them here.

The fitting of the model free parameters are made by considering ordinary nu-
clear matter, composed only by nucleons. To account for other baryonic species, we
parametrize their couplings in terms of the nucleon-meson couplings. Considering the
baryons to include nucleons N = {p, n}, hyperons H = {Λ, Σ+, Σ0, Σ–, Ξ0,Ξ–} and/or
spin 3/2 resonances Δ = {Δ++, Δ+, Δ0, Δ–} (see Table 3 for the properties of the par-
ticles), the interaction coupling between each meson and each hyperon or Δ can be
defined in terms of a scaling of the meson-nucleon coupling giN , defining the coefficient
xib = gib/giN , with i = σ,ω,φ,ρ and b = {N},{H},{Δ}. The hyperon coupling scheme
parameters can be determined from fitting the hyperon potential depth for isospin-
symmetric matter at saturation, if its value is known, with the remaining relative strength
of the coupling constants determined by phenomenological inference, as done by [68],
or symmetry group arguments, as proposed by [114].
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Table 2 – Symmetric nuclear matter properties at saturation density for the models
employed in this work: the nuclear saturation density n0, the binding energy
per particle B/A, the incompressibility K , the symmetry energy S, the slope of
the symmetry energy L, and the nucleon effective mass M. All quantities are
in MeV, except for n0 that is given in fm–3, and the effective nucleon mass is
normalized to the nucleon mass.

Model n0 B/A K S L M/m
GM1 0.153 16.33 300.5 32.5 94 0.70

GM1ωρ 0.153 16.33 300.5 30 94 0.70
L3ωρ 0.156 16.20 256 31.2 74 0.69

DDME2 0.152 16.14 251 32.3 51 0.57
CMF 0.150 16.00 300 30 75 –

Constr. [52, 54] 0.148–0.170 15.8–16.5 220–260 28.6–34.4 36.0–86.8 0.6–0.8

The Δ couplings are treated more freely, as their behavior is not well known and to
study their role is one of the main objectives of this work. The scarce information present
in the literature, such as transport models and quasi-elastic scattering of electrons off
nuclei [36], allows us to infer that the nucleon-Δ potential is slightly more attractive
than the nucleon-nucleon one, so that, UN – 30 MeV ≲ UΔ ≲ UN , which implies xσΔ is
greater than 1. Also, the vector coupling is constrained by LQCD results as respecting
the relation

0 ≤ xσΔ – xωΔ ≤ 0.2, (34)

and no constraint is put in the xρΔ value [193, 156, 152]. All of these constraints will be
taken with a grain of salt, as we aim to explore the behavior of NS matter according to
these parameters in a comprehensive way, not discarding the whole regions of possible
values beforehand. Anyway, these constraints will be remembered in the evaluation of
the results.

1.2.1 GM1

The first relativistic mean-field (RMF) model we discuss is a version of the hadron-
dynamics model (5), in which the strong interaction is emulated by the exchange of
scalar-isoscalar meson σ, the vector-isoscalar meson ω, and the vector-isovector me-
son ρ. Here, we consider the GM1 parametrization [66], which was adjusted to repro-
duce nuclear saturation properties employing extra scalar self-meson interactions σ3

and σ4, together with an additional vector-isovector self-meson ωρ interaction, fitted to
improve the value reproduced by the symmetry energy at saturation density.

The original GM1 set yields an incompressibility modulus of K = 300.5 MeV and
a symmetry energy of S = 32.5 MeV at the saturation density. When the ωρ interaction
is introduced (called GM1ωρ parametrization), the coupling constant gωρ = 2.015×10–2

is numerically obtained so that the symmetry energy is fixed to be the same as the CMF
model described next, i.e., S = 30, and the remaining parameters are the same as in
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the standard GM1 parametrization. The GM1 parametrization does not satisfy all the
nuclear matter and astrophysical constraints [51, 117], however it is still widely employed
and it allows comparisons with a large amount of results available in the literature.
Recent results indicate that the symmetry energy slope constrained from the neutron
skin thickness measurement performed by PREX [155] can be larger that previously
accepted, reaching values in the range 106 ± 37 MeV. If this result is confirmed, the
GM1 parametrization still holds a good prediction power. The inclusion of the crossed
interaction between the mesonic fields, as performed here, reduces the symmetry
energy slope from 94 MeV in the original GM1 parametrization to 69 MeV in the GM1ωρ,
a value within the usually acceptable range [31, 81, 51]. There are other proposals in
the literature aiming to reconcile the GM1 model with observables, e.g., in Ref. [118] it
is suggested a parametrization with the same parameters as GM1, but with a density
dependent coupling for the ρ meson field.

1.2.2 L3ωρ

We also include in our discussions the recently proposed L3ωρ parametrization
[109], which includes an additional ωρ interaction that allows the correct prediction of
slope of the symmetry energy, neutron-star radii and tidal deformabilities. It is a non-
linear version of the Walecka model, where the baryon interactions are mediated by
the σ, ω, ρ and φ mesons, within the mean field approximation, as presented above.
The φ meson (with hidden strangeness) couples only to the hyperons, allowing a
higher maximum mass to be reproduced for neutron stars, thus circumventing the well-
known hyperon puzzle [27], that will be discussed in detail further in this work, with
an effect similar to the higher-order ω4 self interaction, also included. In addition to
satisfying standard astrophysical constraints from LIGO/VIRGO and NICER, the model
satisfies nuclear ground-state properties of finite nuclei and bulk properties of infinite
nuclear matter. It is also consistent with the PREX-2 results for the symmetry energy of
L = 106 ± 37 [155], though at the lower end of the error band. The fittings of the self
couplings λ and κ, and the couplings between the mesons i = {σ,ω, ρ,φ} and baryons
b, defined in terms of the ratios xib = gib/giN , are discussed in detail in [109].

Relevant for this work, the scalar meson couplings are fitted to reproduce the
hyperon potential depth UΛ = –28 MeV (for isospin-symmetric matter at saturation)
and the remaining relative strength of the coupling constants are determined by SU(3)
symmetry group arguments, as proposed by [114], determining the complete hyperon-
meson coupling scheme from a single free parameter, αv . Despite the value of αv ,
hyperons are always present in the neutron-star matter and the sequence of hyperon
thresholds is always the same, with an inversely proportional relationship between
αv and the stiffness of the EoS. In this work, we choose to use αv = 0.5, which
results in values for the additional potentials UΣ = +21.8 MeV and UΞ = +35.3 MeV,
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and a stiffer EoS with respect to the values αv = 0.75 or 1.0 that are considered in
[114]. Though the potential for the Ξ– mesons is repulsive in the parametrization used,
recent observational constraints predict it to be attractive [63], but to reproduce such an
attractive potential we would need an extra free parameter in the meson couplings [109].

1.2.3 DDME2

In this study, hadronic matter is also described within a relativistic mean-field
approach with density dependent couplings. This class of models is shown to be very
consistent in the description of nuclear matter experimental properties [50], and also
when astrophysical constraints are imposed [54, 117]. In such models, the interaction is
described through the the exchange of mesons, and here we consider the scalar meson
σ, the vector mesons ω and φ (that carries hidden strangeness), isoscalars, and the
isovector-vector meson ρ⃗. Differently from the previous models, the density-dependent
parameterizations do not include non-linear (self interaction or crossed) meson terms.
The density dependent coupling constants gσN , gωN and gρN are adjusted in order to
reproduce some of the nuclear matter bulk properties using the following scaling with
the baryonic density nB

giN (nB) = giN (n0)ai
1 + bi (η + di )2

1 + ci (η + di )2
(35)

for i = σ,ω and

gρN (nB) = gρN (n0) exp[–aρ(η – 1)], (36)

with η = nB/n0, where n0 is the nuclear saturation density. The Euler-Lagrange equa-
tions are used to calculate the equations of motion for the meson and baryon fields,
see for instance [185], and a complete description for the hadronic matter given by this
Lagrangian density can be derived from there. The model parameters considered here
are obtained from a fitting that considered known experimental constraints on values
of nuclear matter binding energy, compressibility modulus, symmetry energy and its
slope, as well the 208Pb neutron skin measurements. This parameterization is labeled
as DDME2 and its details can be found in [101].

The couplings of the σ meson to the Λ and Ξ hyperons were determined from
a fit to hypernuclear binding energies, while for the Σ, it has been fixed by imposing
that at saturation the Σ potential in symmetric nuclear matter is +30 MeV, i.e. we have
considered a repulsive interaction as seems to be the indication from experimental
measurements [64]. The couplings to the σ meson have been taken from [59, 60], as
being

xσΛ = 0.621, xσΣ = 0.467, xσΞ = 0.321.
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The magnitude of the couplings for the isoscalar-vector mesons are given by the SU(6)
symmetry

xωΛ = xωΣ =
2
3

, xωΞ =
1
3

, xφΛ = xφΣ = –
√

2
3

, xφΞ = –
2
√

2
3

.

The coupling of each hyperon to the ρ meson is defined by the product of the hyperon
isospin with the ρ meson coupling to the nucleon, i.e., xρH = τH .

1.2.4 CMF

An extra relativistic mean field model, based on a different formalism of the
previously discussed, is also included as a way of having more clarity in the evaluation
of the model dependency of the results. The chiral mean-field (CMF) model is based on
a nonlinear realization of the SU(3) sigma model. As in all chiral models, the masses
of the baryons are generated (and not just modified) by the medium. In this way, at
large temperatures and/or densities they decrease allowing chiral symmetry to be
restored, in agreement with LQCD results [1]. In this work, we restrict ourselves to
the hadronic version of the model (with leptons), which was fit to reproduce hadronic
vacuum masses, decay constants, nuclear saturation properties, and to reach ∼ 2.1
M⊙ stars containing nucleons and hyperons, developed by [43], and disregard the
possibility of phase transitions to quark matter. We add an additional ωρ interaction to
be in better agreement with data for the slope of the symmetry energy, neutron-star
radii, and tidal deformabilities [42, 46]. We also add a higher-order ω4 interaction to
reproduce more massive neutron stars [45].

The mean-field model Lagrangian density has the terms

Lb =
∑

b

ψ̄b[iγμ∂μ – γ0(gωbω + gρbI3b
ρ + gφbφ) – Mb]ψi , (37)

and

Lm =
1
2

(
m2
ωω

2 + m2
ρρ

2 + m2
φφ

2
)

+ g4

(
ω

4 +
φ4

4
+ 3ω2

φ
2 +

4ω3φ√
2

+
2ωφ3
√

2

)

– k0(σ2 + ζ
2 + δ

2) – k1(σ2 + ζ
2 + δ

2)2 – k2

(
σ4

2
+
δ4

2
+ 3σ2

δ
2 + ζ

4

)

– k3(σ2 – δ
2)ζ – k4 ln

(σ2 – δ2)ζ
σ2ζ

– m2
πfπσ –

(√
2m2

k fk –
1√
2

m2
πfπ

)
ζ , (38)

where the effective mass of baryons is Mb = gσbσ + gδbI3 bδ + gζbζ + mb, including
additional corrections given by the scalar-isovector δ and scalar-isoscalar (with hidden
strangeness) ζ mesons, and a small bare mass correction mb. The couplings were fitted
to reproduce hadronic vacuum masses, decay constants, nuclear saturation properties,
and to reach more than 2.1 M⊙ stars. See [160] for a complete list of coupling constants.



1.3. Compact Star Description 43

Following the SU(3) and SU(6) coupling schemes for the scalar and vector cou-
plings of the mesons to the baryons, there are only two free parameters left: one fitted
to reproduce a reasonable hyperon potential UΛ and another one (rV = gNΔ/gωΔ = 1.25)
chosen to reproduce the potential UΔ ∼ UN for symmetric matter at saturation, resulting
additionally in UΛ ∼ –27 MeV, UΣ = 6 MeV, UΞ = –17 MeV, and UΔ = –64 MeV (in the
presence of the additional interaction ω4). A much larger rV would suppress all Δ’s,
while a much lower value would suppress all hyperons.

This model was already used to investigate the influence of heavier resonances
[167] and magnetic fields [41, 61] in neutron stars. See Ref. [41] and references therein
for a complete list of coupling constants.

1.3 COMPACT STAR DESCRIPTION

The models presented above were originally developed for their applications in
the microscopic context, i.e., in the description of nuclear matter or heavy ion collisions.
In this work, these models will be extrapolated to the macroscopic scope of the descrip-
tion of dense continuous matter, as is customary in the study of compact stellar objects.
The procedure for moving from microphysics, in the form of effective relativistic models,
to macrophysics, in the form of observational variables of compact stellar objects, will
be discussed in this section.

Atomic nuclei are held together by the attraction arising from the strong residual
force between nucleons, which is the initial motivation for studying this interaction.
However, even in the case of nuclear matter, the strong force cannot sustain nuclei of
atomic number A greater than approximately 200, certainly much lower than that found
in neutron stars. Furthermore, as already discussed, the repulsive character of this
force is of central importance for the case of dense stellar matter, which also makes it
difficult for this force to guarantee the unity of the star. Therefore, it is noted that neutron
stars must be “gravitationally bound”, i.e., the degeneracy pressure of the hadrons is
counterbalanced by the gravitational force.

However, as the Coulomb repulsion force is much stronger than the gravitational
attraction, the condition is imposed

Zef e
2

R2 <
GAm2

R2 ⇒ Zef < 10–36A, (39)

where Zef is the net charge number of the particles contained in the star [68]. As
this condition is quite strong, compact stars are considered to be electrically neutral
objects, so stellar matter must be made up of several particles, whether leptons or other
baryonic species, negatively and positively charged. This implies that hadronic matter,
in this context, can be severely asymmetrical with respect to isospin (or the relative
amounts of baryonic species), while nuclear matter is, in general, nearly symmetrical.
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Free neutrons are unstable particles to the so-called β decay, with a half-life of
about 10 minutes [74]. It is expected, however, that this process is somehow counter-
balanced within neutron stars that are made up largely (although not entirely) of free
neutrons. This process, in which free leptons contained in matter ‘collide’ with a proton
and form a neutron and its neutrino, is called inverse β decay. This cycle of forward and
reverse β decays is the so-called Urca process, which plays a central role in the cooling
of neutron stars. Generalizing this type of process to other baryons, we have the Urca
process defined as

B1 → B2 + β + ν̄β ⇌ B2 + β → B1 + νβ, (40)

where Bi can represent any baryons, as long as they are suitable for energy and charge
conservation, and β is a negatively charged lepton, associated with the respective
neutrino (antineutrino) νβ (ν̄β). Baryons are understood to be degenerate inside neutron
stars, and this argument extends to lepton gas. This feature is important in the process
of defining the populations of particles inside the star, since the equilibrium state of
matter will be reached when the two reactions of the Urca process reach equilibrium.
This will occur when there are no more energy levels accessible to the leptons produced
in the direct β decay, since it imposes

EF B1
= EF B2

+ EF β, (41)

so that when all energy levels less than the Fermi energy are occupied, the process will
cease. Identifying that EF = μ for matter in the ground state, one can deduce the state
in which this stability is reached, in the so-called “chemical equilibrium” (or “β”). For the
fraction of matter consisting of baryons of type B, with charge qB, it is possible to show
that

μB = μn – qBμe–, (42)

from which it can be seen that the baryonic chemical potentials can be written directly
in terms of the independent neutron and electron potentials, respectively μn and μe–

[169].
Moving from micro to macrophysics requires submitting the EoS that describes

dense matter to conditions of mechanical (or hydrostatic) equilibrium, since compact
stars are understood to be sufficiently stable objects in their internal structure. It is
therefore necessary to determine the relationship between gravitational force and de-
generacy pressure of matter inside the star in the equilibrium situation. Compact stars
are bodies whose gravitational field is extremely intense, so the equilibrium relationship
must be established within the framework of general relativity. In this context, the way
in which spacetime geometry and its matter-energy content correlate is dictated by
Einstein’s Field Equation,

Rμν –
1
2

Rgμν = 8πTμν, (43)
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where Rμν is the “Ricci curvature tensor”, R is the “scalar curvature”, gμν is the metric
tensor and Tμν is the energy-momentum tensor, which is, in this case, the energy-
momentum tensor for an ideal fluid in equilibrium, because space-time is flat in the
distance scale of the interaction between the particles.

Thus, the relativistic hydrostatic equilibrium condition arises from the solution of
((43)) for the interior of a static spherical object, which employs the so-called “Schwarzschild
metric”, defined by the line element

ds2 = –e2φ(r )dt2 +
[
1 –

2 m(r )
r

]–1
dr2 + r2dΩ2, (44)

where m(r ) is the “gravitational mass” inside the sphere of radius r [128]. One can
determine φ (r ) taking advantage of the symmetries of the problem, which also allow,
together with the energy-momentum tensor for an ideal fluid, to rewrite ((44)) in the
form of the differential equation

dP
dr

= –
[ε(r ) + P(r )]

[
m(r ) + 4πr3P(r )

]
r [r – 2m(r )]

, (45)

where the gravitational mass is

m (r ) =
∫ r

0
dr ′4πr ′2ε

(
r ′
)

, (46)

and ε(r ) and P(r ) are the energy density and pressure in the spherical shell of ra-
dius r . The equation for relativistic hydrostatic equilibrium ((45)) is called the Tolman-
Oppenheimer-Volkoff (TOV) equation.

Comparing the TOV with its classical analogue, the Newtonian hydrostatic equi-
librium equation,

dP
dr

= –
ε(r ) m(r )

r2 , (47)

it is noted that the pressure decreases much more rapidly in the relativistic case, i.e.,
general relativity predicts that stationary spherical objects are subject to more intense
gravitational forces than predicted by Newtonian gravitation, which suggests that situa-
tions taken as stable by the classical description can collapse if relativistic effects are
taken into account [128].

This object will be perceived by a distant observer as having a radius r = R,
defined from the boundary condition P(R) = 0, and a gravitational mass M = m(R),
given by ((46)). Other boundary conditions are also important, such as m(0) = 0 and
the definitions of central pressure and central energy density,

P(0) = Pc e ε(0) = εc . (48)

It can be identified that the equation ((45)) will diverge for the radius RS = 2M, called
the “Schwarzschild radius”, which represents the minimum radius that the star can
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have, given its mass, so that its internal pressure is able to counterbalance gravity and
prevent the object’s gravitational collapse into a black hole.

The TOV solution starts from the equations of state, which dictate the behavior of
P and ε for the constituent matter of the star, but the equation ((45)) is exactly solvable
for a few cases of EoS . Numerically, the solution is made from a central energy density
εc and obtaining of the pressure gradient and, consequently, of the following values
of ε(r ). This procedure is repeated iteratively until the surface of the star, where the
pressure is zero, in the radius that corresponds to the radius of the star, P(R) = 0.
Solving the TOV for different values of central energy density εc , we arrive at the results
corresponding to a family of possible stars for the given EoS, which is illustrated through
a diagram of the gravitational mass versus the star radius.

Determining hydrostatic equilibrium solutions for the TOV does not in itself en-
sure the stability of the compact star. It is important for the correct interpretation of
mass-radius diagrams to understand under what conditions equilibrium can be reestab-
lished after the stars are removed from this situation. Analyzing the expected behavior
for the TOV solutions for a star of mass M and central energy εc , it is noted that (i) if
the star is compressed, its central density increases to a value ε′c > εc , so the pressure
in the new configuration must be sufficient to overcome gravity, returning the star to its
initial equilibrium state, which will only happen if the mass M ′, which the star must have
in order for it to be in equilibrium in the configuration ε′c , is greater than the initial mass
M, and (ii) if the star undergoes an expansion, its central density decreases to a value
ε′c < εc , so the gravitational attraction of the star must overcome the pressure, causing
the star to contract and return to the initial configuration, which demands that the mass
M ′, which the star would have in the new configuration if it were in equilibrium, is less
than the initial mass M. From these two situations, it can be seen that

dM
dεc

> 0 (49)

is a necessary condition for stable solutions of TOV [138]. Unstable solutions can
be seen in mass-radius diagrams from the point at which mass and radius begin to
decrease with increasing central energy density.

1.4 OBJECTIVES OF THE WORK

Starting from the topics exposed above, we intend to obtain a description of
compact stars made up of dense matter from relativistic models, with the purpose of
analyzing pulsars as hadronic, hybrid and/or strange stars. This is done by dividing
the present study into two parts. In a first moment, the implications of including delta
baryons in the stellar matter composition. In Chapter 2, results published in [123] are
discussed. We analyse the properties of two different matter compositions: nucleonic
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matter with delta baryons and nucleonic matter with hyperons and delta baryons, by ap-
plying a relativistic mean-field description of neutron star matter with density dependent
couplings. The delta-meson couplings are allowed to vary within a wide range of values
obtained by experimental data, while the hyperon-meson couplings are fitted to hyper-
nuclear properties. Neutron star properties with no deconfinement phase transition are
studied. In Chapter 3, we expand this investigation to magnetars, studying dense matter
with hyperons and deltas under the influence of strong magnetic fields considering the
effects of Landau levels, with and without taking into account the anomalous magnetic
moment, as published in [47] and [122].

The second part of this work is dedicated to the study of the QCD phase diagram,
in special to explore the possibility of hadron-quark deconfinement in the context of
compact stars. In Chapter 4, an extended version of the Nambu–Jona-Lasinio model
is developed for the description of hadronic matter, for the cases of nucleonic (protons
and neutrons only) and hyperonic (protons, neutrons and lambdas) matter. The latter
case was not previously discussed within the NJL model theoretical framework, and
it is a novel and relevant contribution to the exploration of the QCD phase diagram,
as describing matter with strangeness content is important to the study of the hadron-
quark phase transition. Different extensions of the Nambu-Jona-Lasinio model are used
to investigate a possible hadron-quark phase transition at zero temperature in Chapter
5, in order to check the possibility of a hadron-quark phase transition to occur in the
interior of compact stars, as published in [72]. Yet, we reproduce a comparison of
the phase diagram obtained in this framework with the vectorial MIT model one, as
published in [112]. Finally, in Chapter 6, we investigate the effects of strong magnetic
fields on the hadron-quark phase transition point at zero temperature, and compare
them with the results obtained with non-magnetised matter [121]. An investigation of
the phase transitions that could sustain hybrid stars is also performed, as published in
[9]. The conclusions are drawn in Chapter 7.
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2 DELTA BARYONS IN NEUTRON STARS

The starting point for determining the macroscopic structure of compact stars is
the assumption of a specific microscopic model, which leads to the calculation of an
equation of state (EoS) for dense matter. The EoS encodes the particle population of
baryons and leptons and how they interact through the strong interactions, constrained
by equilibrium conditions, such as β-stability and charge neutrality, as discussed in the
previous Chapter.

Although the class of stellar remnants that are neither white dwarves nor black
holes is traditionally named neutron stars (NS), these objects are not composed solely
of neutrons. Even the more naïve description of such objects must include some amount
of protons in order to guarantee the stability of the nuclear matter, and this fact was
already pointed out in the first proposals of the existence of NS by Landau, Baade and
Zwicky in the early 1930s. The extremely high energies estimated to occur in the core
of neutron stars are more than sufficient to create heavier particle species, beyond the
traditional proton-neutron-electron admixture.

Almost forty years ago, Glendenning [65] discussed in his seminal paper differ-
ent scenarios considering non-nucleonic degrees of freedom in NS matter, including
hyperons, delta baryons, pions and kaons, within a relativistic mean field approach. It
has since become common in the literature to consider the entire spin-1/2 baryon octet,
e.g. [67, 148, 10, 14, 135, 187, 121, 161, 168, 130]. In this work, Glendenning found
that the delta baryons do not nucleate inside the NS core. This result was due to the
coupling parameters chosen, as it was shown later that, with a convenient choice of
the couplings minimally constrained by the existing experimental measurements, delta
baryons may indeed occur inside neutron stars [198, 167], so recently the role of the
spin-3/2 decuplet has been slowly gaining attention, e.g. [104, 200, 129, 156, 118, 162,
153, 9, 179, 45, 119]. The lightest spin-3/2 baryons (the Δs) are only ∼ 30% heav-
ier than the nucleons (protons and neutrons) and are even lighter than the heaviest
spin-1/2 baryons of the octet (the Ξs). Thus, unless the Δs are subject to a very repul-
sive coupling, they are expected to appear at the same density range as the hyperons
(around 2 or 3 times the nuclear saturation density).

The knowledge of the NS composition and the signatures of this composition is
presently a field of intense investigation. To consider the entire spin-1/2 baryon octet
as part of the NS matter composition is almost the standard in the nuclear astrophysics
community but, more recently, there is a strong interest in understanding how the
presence of the delta baryons specifically may influence the properties of NS and their
evolution.

Not much is known about how Δ baryons couple in dense matter, but their poten-
tial for isospin-symmetric matter at saturation density is expected to be attractive and in
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Table 3 – Vacuum mass, electric charge, isospin 3rd component, spin, normalized mag-
netic moment, and normalized anomalous magnetic moment of baryons con-
sidered in this work. Electric charge is shown in units of the electron charge
and μN is the nuclear magneton.

Mb (MeV) qb(e) I3 b Sb μb/μN κb/μN
p 939 +1 +1

2 1/2 2.79 1.79
n 939 0 –1

2 1/2 –1.91 –1.91
Λ 1116 0 0 1/2 –0.61 –0.61
Σ+ 1193 +1 +1 1/2 2.46 1.67
Σ0 1193 0 0 1/2 1.61 1.61
Σ– 1193 –1 –1 1/2 –1.16 –0.37
Ξ0 1315 0 +1

2 1/2 –1.25 –1.25
Ξ– 1315 –1 –1

2 1/2 –0.65 0.06
Δ++ 1232 +2 +3

2 3/2 4.99 3.47
Δ+ 1232 +1 +1

2 3/2 2.49 1.73
Δ0 1232 0 –1

2 3/2 0.06 0.06
Δ– 1232 –1 –3

2 3/2 –2.45 –1.69

a range of 2/3 to 1 times the potential of the nucleons, which is of order –80 MeV [48,
152]. Different properties of baryons considered in this study are shown in Tab. 3.

In [37], the authors have studied the effect of heavy baryons on the constitu-
tion of hot non-homogeneous matter, in particular their effects on the light clusters
abundance and dissolution, using two relativistic mean-field nuclear models (FSU2H
[181], a model with non-linear mesonic terms, and DD2 [186], a model with density
dependent couplings). For the delta baryon, the couplings were restricted to values
compatible with experimental observations as discussed in [48, 156]. It was found that
the model FSU2H was much more restrictive, because most of the couplings would
not be acceptable to describe neutron stars since the effective nucleon mass would
become zero at densities below the maximum mass configuration. On the other hand,
the DD2 model seemed to show much more flexibility and allowed a wider range of
acceptable couplings. In [156], the FSU2H model has been fully investigated, but there
was no reference to the implications of the fact that the effective nucleon mass may
become null at still low densities. In [99], this problem was also encountered, but the
authors have modified their model in order to avoid this issue.

In this section of the work, we will explore in depth the effects of the delta baryon
couplings considering a the DDME2 model, that describes adequately nuclear matter
properties and NS observations, considering the Δ admixture, in both pure nucleonic
and hyperonic NS matters. For both matter competitions, we will study the behavior of
the nucleon effective mass, the speed of sound, the Δ and hyperonic fraction and the
electron chemical potential, and also discuss the star properties such as mass and ra-
dius. We will pay special attention to some interesting aspects, as the possible increase
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Figure 3 – Single-particle potentials of Δ baryons as a function of baryon number den-
sity in isospin-symmetric nuclear matter (dashed-dotted line) and pure neu-
tron matter (solid lines) for the L3ωρ model using two different Δ scalar
interaction strengths (left and middle panels) and for the CMF model (right
panel).

of the NS maximum mass as compared to hyperonic only stars, or the possibility of the
formation of stars with more than 80% of Δ-baryons at the core center. Also, special
compact stars may exist in some hyperon-free delta-dominated composition, the ones
we have named deltic stars.

We start our discussion with the single-particle interaction potential for the Δ

baryons in dense nuclear matter, which is a measure of the energy cost of adding one
particle b in a b-less matter with the given condition. For the L3ωρ model, it can be
written as

Ub = –gσbσ + gωbω + gρbI3bρ + gφbφ , (50)

and, for the CMF model,

Ub = gσbσ + gδbI3b
δ + gζbζ – mb,vac + gωbω + gρbI3bρ + gφbφ . (51)

In isospin-symmetric nuclear matter, all families of baryons experience the same po-
tential, since the meson field ρ (and δ) are null in this situation. In neutron rich matter,
particles with positive isospin projections (as the positively charged Δs) are more bound
than their zero- and negative-isospin counterparts, with the largest difference occurring
for pure neutron matter, that can be taken as an extrapolation of neutron-star matter
in β-equilibrium. The first two panels of Fig. 3 show how the L3ωρ model scalar and
vector interactions affect the Δ potentials. In all cases, the particle potentials eventually
become positive as the density increases, corresponding to unbound states, but they
stay negative in the relevant interval of densities around nuclear saturation, where their
depth determines how much they are bound.

For the L3ωρ model, the larger the scalar coupling value (i.e., the parameter
xσΔ), the lower the potentials are in the low density regions. Complementary to that, the
larger the vector coupling (i.e., the parameter xωΔ), the more repulsive the potentials
for Δs are, which reflect in more positive curves in the high density region, where the
repulsive channel dominates. Also, it can be seen that the potential depends less on
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Figure 4 – Particle relative populations as a function of the density for the DDME2
model, fixing xρΔ = 1.0, for the NΔ (left) and NHΔ (right) matter compositions.

the species of Δ in the CMF model. Magnetic-field effects are not included, but it was
verified that fields up to B = 3 × 1018 G do not affect the results shown in Fig. 3.

We now discuss the composition and expected onset of the different heavy
baryons in β-stable, charge-neutral NS matter, as described by the DDME2 model
formalism exposed in the previous section. Fig. 4 shows the particle fractions when
the baryonic composition considered is the hyperon-free matter, i.e., composed by
nucleons and delta baryons (labeled NΔ), and delta-admixed hypernuclear matter, i.e.,
composed by nucleons, hyperons and deltas (labeled NHΔ). The negatively charged
spin-3/2 baryons are favored when charge neutrality is enforced, while the positively
charged ones are suppressed, in the same way as what usually takes place with the
hyperons. Being negatively charged, the Δ– can replace a neutron-electron pair at the
top of their Fermi seas, being favored over the lighter Λ and Σ baryons because of the
fact that their potential is more attractive, to a proportion which the mass difference is
counterbalanced. When allowed, the first hyperon to appear is the Λ, as it is the lighter
one and neutrally charged.
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Figure 5 – Onset density of the hyperons and deltas in the NHΔ matter composition for
the DDME2 model, varying the xσΔ and xωΔ couplings.

Analysing Fig. 4, we conclude that if the coupling fractions are lager than one,
in hyperon free (NΔ) matter, having xσΔ > xωΔ favors the appearance of all Δ species,
even the one with charge +2; if xσΔ = xωΔ, the larger the coupling the less favored the
Δ-baryons are, due to the ω-dominance at large densities that occurs because the σ

field saturates; also, the electrons are efficiently replaced by Δ–-baryons if the xωΔ is
not too large. When hyperons are included in the (NHΔ) matter, the Λ-hyperon sets after
the Δ– and is pushed to quite high densities if xσΔ > xωΔ; if xσΔ = xωΔ the larger xωΔ the
more important is the contribution of the Ξ–-hyperon, and the smaller Δ– because the
larger the xωΔ, the more repulsive the Δ– interaction at high densities, see [156]. The
presence of hyperons strongly disfavors the increase of Δ fractions at high densities
because hyperons feel a much weaker repulsion since the coupling to the ω-meson is
smaller. This fact is exemplified by the competition between the Δ– and the Ξ–, as one
can notice in the bottom-right panel of Fig. 4, whith the former suppressing the first as
it is lighter and subject to a less repulsive coupling.

In Fig. 5, we show the onset of hyperons and deltas as function of the coupling
parameters. As expected, a large (attractive) xσΔ coupling favors the onset of the reso-
nances, while a large (repulsive) xωΔ postpones it. For a fixed xωΔ, there will always be
a xσΔ where the Δ– and the Λ appear at the same density, beyond which the resonances
are favored. If we impose the constraint given by Eq. (34), Δ– will always appear first,
further delaying the appearance of hyperons from the delta-free threshold of the model.

The families of stars that result from the input of the obtained equations of state
(EoS) in the Tolman-Oppenheimer-Volkoff (TOV) equations of relativistic hydrostatic
equilibrium are shown in Fig. 6 for hyperon-free matter and Fig. 7 for Δ-admixed matter
including hyperons. In each figure we show results for three values of the coupling-
fractions xωΔ (0.95, 1.0 and 1.1) and xρΔ (0.5, 1.0 and 1.5). The colorbar indicates the
xσΔ value which we vary between 0.8 to 1.2. In the following figures, the full black line
represents the results obtained with the pure nucleonic (N) EoS, and the black dash-
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Figure 6 – Mass-radius diagrams for the DDME2 model, for some choices of xρΔ and
xωΔ, varying the xσΔ parameter for the NΔ matter composition (color scale).
The solid and dot-dashed black lines represent the N and NH compositions,
respectively, and the black crosses indicate the maximum mass star if this
configuration is reached. The squares represent NICER constraints (see
text).

dotted line has been calculated for a hyperonic (NH) EoS. In these figures the crosses
indicate the maximum mass configuration. The top panels in both figures, and middle
panels of Fig. 7, show some EoS that do not reach the maximum mass star. In the
presence of hyperons, this happens for for xσΔ–xωΔ ≳ 0.1. Formally, the maximum mass
star is obtained when the TOV stability conditions of having a positive derivative of the
star mass with respect to its central density (∂M/∂εc ≥ 0) reaches a zero value. Black
crosses indicate the maximum mass star for each EoS if this criteria is attained. As
we will discuss later some mass-radius curves to not reach the maximum configuration
because the effective mass of the nucleon becomes zero at a too low density. This
problem was identified in other works [99, 105, 153, 37], but its consequences were not
fully explored until now. In [99], the authors have modified the model in order to avoid
negative effective masses for the nucleon.

The shaded squares in the figures represent observational constraints obtained
from NICER measurements, the blue and green squares are independent analysis of
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Figure 7 – Same as Fig. 6, but for NHΔ matter composition.

the pulsar PSR J0030+0451, that resulted in M = 1.34+0.15
–0.16 MSun and R = 12.71+1.14

–1.19
km according to Ref. [157], and in M = 1.44+0.15

–0.14 MSun and R = 13.02+1.24
–1.06 km accord-

ing to Ref. [127], respectively. The magenta square represents the recent measurement
of the pulsar PSR J0740+6620 [58] of M = 2.072+0.067

–0.066 MSun and R = 12.39+1.30
–0.98 km, at

a confidence interval of 68% [158]. The uncertainties associated with the observations
are not small enough to put strong constraints on the coupling parameters we are inves-
tigating. All models that reach the maximum mass configuration are compatible with the
observational constraints for the several scenarios of matter composition considered,
either with nucleons and deltas or including hyperons as well.

From the figures, we see that xσΔ competes with xωΔ and xρΔ, with greater values
of the first making the stellar radius decrease when compared with the delta-free matter
composition. Larger values of xσΔ are associated with a larger attraction, and therefore
a softer EoS at intermediate densities when the effect of the σ-meson dominates. A
similar effect occurs when smaller values of xρΔ are taken: the smaller the xρΔ, the
smaller the radii obtained for a given pair xσΔ- xωΔ. This can be understood because
a smaller xρΔ decreases the repulsion associated with the proton-neutron asymmetry.
Another interesting effect is the fact that the simultaneous presence of hyperons and
deltas increases the maximum mass above the hyperonic matter maximum mass limit
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Figure 8 – Nucleon effective mass as a function of the density for the DDME2 model,
taking xρΔ = 1.0, for some choices of xωΔ and varying the xσΔ parameter
for the NΔ matter composition (top panels) and for NHΔ matter composition
(bottom panels). The solid and dotted-dashed black lines represent the N
and NH compositions, respectively, and black crosses indicate the central
values of the maximum mass star if this configuration is reached.

if xωΔ ≥ 1. This is due to the fact that at high densities the effect of the vector meson
dominates over the sigma meson and the delta coupling to the ω-meson is larger than
the coupling of the nucleons or hyperons to the ω-meson. The role of the couplings
in the maximum mass is quite complex, and will be better understood later in the
discussion.

In Fig. 8 we plot the nucleon effective mass,

Mn = mn – gσNσ, (52)

as a function of the density. When we consider the nucleon-only neutron star matter
composition, Mn decreases asymptotically with nB. When other baryon species are
included in the matter composition (either hyperons, deltas, or both), we see a much
faster decrease of the nucleon effective mass. This behavior is understood from the
fact that each new particle present adds (through the scalar density dependence of
the σ field) to the negatively contributing term of Eq. (52). The greater the multiplicity
of baryons in the matter, the faster is the drop of Mn, as we can see from comparing
top and bottom panels of Fig. 8 or even comparing the delta admixed with the N
or NH compositions inside each panel, noting that the higher values of xσΔ produce
higher fractions of deltas. For some configurations, the drop is so fast that the nucleon
effective mass becomes too small and reaches zero before attaining the maximum
densities expected to occur in the maximum mass configuration. This behavior was
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already well-known for the hypernuclear star matter [165], but the inclusion of deltas
makes it even more pronounced.

These EoS do not describe neutron stars properly, and therefore must be dis-
carded from our analysis. We argue that these EoS would be valid if a phase transition
to deconfined quark matter could occur at a density below the one at which the nucleon
effective mass becomes zero. This scenario will be explored in a future work. For the
models with a non-vanishing effective nucleon mass, the EoS are computed while the
thermodynamic stability condition dP/dε ≥ 0 holds true. A liquid-gas type of phase
transition is expected to occur when the thermodynamic stability is lost but, as the EoS
can be computed to densities far beyond the ones present in stellar interiors (reaching
at least nB = 1.25 fm–3), and disregarding some unrealistic choices of very negative
values of the relation xσΔ – xωΔ, this behavior would not be prevalent in any physically
reasonable scenario. We will just consider unfitting the models that are not able to
attain the maximum mass configuration when their EoS is applied to the TOV equations,
as here we assume a scenario that does not allow for a hadron-quark deconfinement
phase transition. The delta couplings are also constrained by some unphysical behavior
such as the effective nucleon mass becoming zero at too low densities, or the EoS pre-
dicting a thermodynamic instability really near the saturation density that does not seem
to be observed, but no constraint can be implied from the astrophysical observations.

In Fig. 8, the results are shown considering the whole computed EoS, and black
crosses indicate maximum mass star if this configuration is reached for the scenario in
question. The maximum central density is around nB = 0.85 fm–3 for the NΔ composi-
tion, and around nB = 1.00 fm–3 for the NHΔ composition. When deltas are favored to a
point of suppressing all other species (higher values of xσΔ and/or lower values of xωΔ),
the situation reverts back to the N matter composition asymptotic behavior, leading to
the diminishing of the negatively contributing terms in Eq. (52), but now the Δ baryons
are the most abundant particles. In this extreme limit, the EoS reaches the maximum
mass star configuration once again, e.g., the indigo blue curve in Fig. 8 top left panel
(this configuration is composed by a fraction of 80% of deltas, see Fig. 10).

The derivative of the pressure with respect to the energy density is the speed of
sound, a quantity that provides information about shear viscosity, tidal deformability and
gravitational waves signatures [109]. At zero temperature, its square is simply defined
as

v2
s =

∂P
∂ε

. (53)

It can be interpreted also as a measure of the EoS stiffness, with a higher speed
generating a higher pressure at given energy density and, therefore, sustaining a bigger
star mass for a given radius. Results for the speed of sound are shown in Fig. 9, where
one can notice the kinks due the different particle onsets. If only nucleonic matter
is allowed in the N composition, quite high Fermi levels must be occupied. With the
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Figure 9 – Speed of sound squared as a function of the density for the DDME2 model,
taking xρΔ = 1.0, for some choices of xωΔ and varying the xσΔ parameter
for the NΔ matter composition (top panels) and NHΔ matter composition
(bottom panels). The solid and dotted-dashed black lines represent the N
and NH compositions, respectively, and black crosses indicate the central
values of the maximum mass star if this configuration is reached. The dotted
line represents the conformal limit v2

s = 1/3.

inclusion of new particles, the presence of more degrees of freedom, distributes the
Fermi pressure among the different particles and softnens the EoS. It holds true in
the intermediate densities (for nB < 0.50 fm–3) for the NΔ composition, and always
after the hyperon onset in the NH and NHΔ compositions. The behavior of hyperonic
neutron-star matter, however, is affected in a more complicated way by the inclusion of
delta baryons. The NHΔ composition is softer than the NH case at lower densities, but
this situation is reversed at the middle regions. This is due to the strong coupling of the
deltas to the ω-meson. For the same reason at high densities NΔ matter has a larger
speed of sound that N matter. This difference then is reduced in the higher densities
once again.

Perturbative QCD results for very high densities (more than 40 times the nuclear
saturation density) predict an upper limit of v2

s = 1/3 [5]. In such high densities, far
beyond the ones reached in the neutron star interiors, the baryonic matter is expected
to be deconfined in quark matter. However, several authors have discussed that the
two solar mass constraint requires a speed of sound well above the conformal limit,
indicating that matter inside NS is a strongly interacting system [4, 131, 177, 154].
Nevertheless, within the description undertaken in [5], it was shown that the size of the
quark core in hybrid stars is related to the speed of the sound of the quark matter, and
very massive quark matter cores are expected in the NS interiors if the conformal limit
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Figure 10 – Delta fraction for the DDME2 model, for the NΔ matter composition (top
panels) and for NHΔ matter composition (middle panels), and hyperon frac-
tion for NHΔ matter (bottom panels) as a function of the density, taking
xρΔ = 1.0, for some choices of xωΔ and varying the xσΔ parameter . Black
crosses indicate the central values of the maximum mass star if this config-
uration is reached.

is not strongly violated. As shown in Fig. 9, the onset of hyperons and deltas breaks
the monotonic behaviour of v2

s , reducing the speed of sound, but the conformal limit
is always violated due to the fact that we are describing hadronic (and not deconfined
quark) matter. The speed of sound behavior, showing a sudden decrease, is similar to
the one found in other works when new degrees of freedom set in, such as the onset
of hyperons in [110] or of s-quarks in [56].

The relative populations of each kind of baryon are shown in Fig. 10, where we
have defined the particle fractions as yi =

∑
b nb/nB, with i = {H,Δ} meaning that the

summation runs only over the hyperons or deltas, respectively. Very large delta fractions
are expected for the larger values of xσΔ, the effect being quite drastic if the xωΔ < 1. In
this case many EoS do no attain the maximum star mass and are considered invalid. In
the presence of hyperons the condition of attaining the maximum mass configuration
is stronger, because the nucleon effective mass goes to zero too soon. Taking xωΔ > 1
these difficulties cease to occur. The hyperon fractions are also shown in Fig. 10 bottom
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panels. As expected larger xσΔ couplings, which favor the appearance of deltas will
disfavor the appearance of hyperons. This completes the conclusion drawn from Fig.
10 middle panels where it is seen that for stars with both deltas and hyperons, large
delta contents do not reach the maximum mass configuration. We also conclude that
for models that are able to attain the maximum mass configuration identified by the
cross, the hyperon fraction at the center of the star is of the order of 50% and the
delta fraction is below 20%. In the presence of hyperons, the maximum delta fraction is
attained for densities between 2ρ0 and 3ρ0 and takes values below 30%. Although the
delta baryons set in first, they are replaced by hyperons at high densities because the
coupling of the delta baryons to the omega-meson is stronger.

Looking for, e.g., the upper-mid panel of Fig. 6, we identify an isolated config-
uration where the EoS reaches the maximum mass with a very large xσΔ. From the
respective left panel of Fig. 10, is it possible to see that this configuration is composed
of around 80% of delta baryons, considering all isospin projections together. It explains
why the nucleon effective mass reverts to the asymptotic behavior in order to allow the
description or higher densities (see the left panel of Fig. 8). These results suggest that
compact stars might exist in some hyperon free delta-dominated composition, that we
label deltic stars.

The bottom row of Fig. 6 allows us to see a rather unexpected behavior. For these
choices of xωΔ and xρΔ, the maximum masses increase with xσΔ, i.e., with a greater
fraction of deltas (see Fig. 10). It may be considered counter intuitive since, taking
as example the hyperon puzzle [27], the inclusion of more particles involves more
degrees of freedom, lowers the Fermi levels. Following this reasoning, it is expected
that the admixture of deltas in hypernuclear matter would make the EoS softer, but
it is not always the case. In Walecka-type relativistic models (a category in which we
include the DDME2 and other density-dependent parameterizations in), the attractive
σ field grows rapidly until about 3 times the saturation density, but then shows a softer
dependence on nB at higher densities. On the other hand, the repulsive ω field grows
indefinitely in a linear fashion and, then, becomes dominant in the denser regions. There
are more deltas in the matter composition for larger σ-delta couplings, and, since the
ω-delta coupling is always taken to be much greater than the ω-hyperon coupling (that
is not greater than ∼ 2/3gω), configurations where deltas are more abundant will have
a stronger repulsion than scenarios that only consider the NH composition, resulting in
a stiffer EoS and a higher maximum mass.

The effect of the meson-delta couplings on the maximum stellar mass is illus-
trated in Fig. 11. We note that, for a fixed xωΔ, increasing the parameter xσΔ will always
produce a more massive star. When the parameter xσΔ is fixed, the maximum mass will
reduce slightly for greater xωΔ. The main factor in play here is the balance between the
relative fractions of hyperons and deltas: a larger xσΔ favors larger delta fractions. The
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Figure 11 – Maximum stellar mass as a function of the xωΔ coupling for the DDME2
model, taking xρΔ = 1.0, varying the xσΔ parameter for the NHΔ matter
composition. The dotted-dashed black horizontal line represents NH com-
position maximum mass (M = 2.07 MSun), and the curves are plotted only
for values where the maximum mass star configuration is reached.
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Figure 12 – Radii of the maximum mass (left) and canonical (right) stars as a function
of the xωΔ coupling for the DDME2 model, taking xρΔ = 1.0, varying the
xσΔ parameter for the NHΔ matter composition. The dotted-dashed black
horizontal line represents NH composition radius (R = 11.67 km and R =
13.22 km, respectively), and the curves are plotted only for values where
the maximum mass star configuration is reached.

deltas couple more strongly to the omega fields. Even though, stronger sigma-meson
couplings are involved, the omega field dominance at large densities results in a stiffen-
ing of the EoS, and, therefore, larger masses. In [104], a similar conclusion was drawn,
although the maximum mass was obtained for 1.1 < xωΔ < 1.2, and smaller maximum
masses are obtained. This difference is probably occurring because a different hy-
peron interaction was considered. Notice, however, that we do not consider xωΔ > 1.2
and that with our parametrization we do not get maximum mass configurations for
xσΔ – xωΔ ≳ 0.1.

In Fig. 12, we perform a similar study for the radius of the maximum mass star
(left panel) and radius of the 1.4 M⊙ star (right panel). For xρΔ = 1.0, the presence of
Δs may reduce the maximum mass radius in 100-150 m, 11.5 km being the minimum,
and the 1.4 M⊙ star radius in 20-500 m, with a minimum of 12.7 km. Only models that
attain maximum mass configurations are represented in Fig. 11 and 12. In [104] smaller
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Figure 13 – Isospin asymmetry coefficient Eq. (54) as a function of the density for the
DDME2 model, taking xρΔ = 1.0, for some choices of xωΔ and varying the
xσΔ parameter for the NΔ matter composition (top panels) and for NHΔ

matter composition (bottom panels). The solid and dotted-dashed black
lines represent the N and NH compositions, respectively.

radii are obtained, and the presence of Δs may give rise to a reduction of the radius
of the canonical star of up to ≈ 2 km. However, it is not clear if the authors exclude
models that do not attain the maximum mass. In [156], the authors have obtained, with
FSU2H, effects of the order of the ones discussed in the present work with DDME2.
From Fig. 6 and 12, it is seen that the presence of Δs (induced by larger values of
xσΔ) cause a significant decrease in the radius of the stars with intermediate masses.
This is explained by the fact that the appearance of the deltas softens the EoS in the
intermediate density region, as clearly seen in the top panels of Fig. 9, the star matter
is further compressed and consequently its radius reduces [156].

The stiffening of the EoS due to the delta admixture, was also noticed in Ref.
[45], where it was suggested that it occurs due to the isospin asymmetry. At high
densities, however, the delta admixture makes the EoS stiffer, despite the fact that the
new degrees of freedom tend to soften the EoS. This was first noticed in Ref. [45],
where it was suggested that it occurs due to the isospin asymmetry. We define the
coefficient

δI =
∑

b I3 bnb∑
b nb

, (54)

that represents the average 3rd isospin component of a given matter composition,
weighted by each particle relative density, as shown in Fig. 13. The density at which the
curves with and without Δs split marks the appearance of the Δ– baryon, which turns the
isospin asymmetry more negative and, consequently, makes the EoS stiffer. It happens
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Figure 14 – Constraints on meson-delta couplings for the DDME2 model, for the NΔ

matter composition (top panels) and for the NHΔ matter composition (bot-
tom panels). The color gradient (a) indicates the compactness of the canon-
ical star. The black region (b) represents values for which dP

dε < 0 before
nB = 0.2 fm–3. The gray region (c) represents values where the maximum
mass star configuration is not reached when inputting the EoS in the TOV
equations. The white-shaded region (d) indicates the combinations of pa-
rameters that do not fulfill the constraint given by Eq. (34) [193].

earlier for larger xσΔ couplings, as this is the determinant parameter to favor the onset
of the deltas. For the NΔ composition (top panels of Fig. 13), the isospin asymmetry
coefficient tends to more negative values as the density increase, because the matter
turns to be dominated by the Δ–. This tendency is stronger for smaller xωΔ couplings, as
a strong ω coupling does not favor delta populations at higher densities. However, when
the NHΔ composition is considered (bottom panels of Fig. 13), the isospin asymmetry
coefficient becomes less negative once the hyperon threshold is reached and follows
the NH composition behavior after that, becoming less negative as the matter is more
dominated by the hyperons. Nevertheless, the configurations with relatively more deltas
present (i.e., bigger xσΔ, drawn in indigo blue in the plots) show more negative values
of δI .

In Fig. 14, we summarize the constraints on the values of the couplings that
ensure the existence of neutron stars compatible with the stability criteria and with
the observational results. For three values of the coupling xρΔ (0.5, 1 and 1.5), the
compactness of a 1.4 M⊙ star is plotted versus the xσΔ and xωΔ. The color gradient
indicates the compactness, defined as CM = M/R, of the canonical (M = 1.4 M⊙)
star. The compactness of the isolated neutron star RX J0720.4-3125 is inferred to be
C = 0.105 ± 0.002 MSun/km [78], which gives us an additional parameter for analysis,
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Figure 15 – Difference between the delta and the neutron chemical potentials as a
function of the density for the DDME2 model, for NΔ (top pannels) or NHΔ

(bottom panels) matter composition. The dashed line represents the vac-
uum π-meson mass.

specially focused on the less massive star radii. From the figures, we see the effect of
xρΔ in making the canonical star less compact as the parameter increases, improving
the agreement with this constraint. The black region on the upper-left corner represents
values for which dP/dε < 0 before nB = 0.2 fm–3, meaning that the thermodynamic
stability condition is not satisfied at quite low densities, when it would not be expected.
The gray region represents values where the maximum mass star configuration is not
reached because the effective nucleon mass goes to zero. Note that all configurations
approved by these two criteria fulfill the observational constraints shown in Fig. 6. The
white-shaded region indicates the combinations of parameters that do not fulfill the
constraint given by Eq. (34) [193]. The remaining points correspond to meson-delta
couplings that satisfy all constraints. Comparing with the coupling domain obtained in
[156], a larger domain was obtained, indicating that solutions with xωΔ>1.0 and xσΔ > 1.0
are possible. The difference are essentially connected with the model: DDME2 allows
for a larger parameter domain for which the effective mass does no go to zero before
the maximum mass configuration is attained. For a large enough xρΔ, the constraint
C = 0.105±0.002 MSun/km is satisfied for xσΔ and xωΔ larger than one. A smaller value
of xρΔ, e.g. 0.5 in the left panel, is more constraining with respect to the combination
xσΔ-xωΔ and does not allow for large values of xσΔ.

In the present work, we have considered that the delta baryons are stable in
stellar matter as done in many other works. This may be justified because the possible
final states for the decay of the delta to occur are blocked. The stability of this matter
must be checked, because the relatively low nucleon fractions could imply that their
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higher Fermi levels may not be occupied to block the delta decay. Generally, in vacuum
the delta Δ = {Δ++,Δ+,Δ0,Δ–} quickly decay via the strong force into a nucleon N = {p,n}
and a pion of appropriate charge,

Δ −→ N + π,

so the difference between the delta and the nucleon (effective) chemical potentials
should be less than the pion energy in the medium. Just for reference, we show in Fig.
15 the electron chemical potential (i.e., the difference between the Δ and the nucleon
(effective) chemical potentials), and indicate the vacuum pion mass with a dotted line,
mπ = 139.5 MeV. If final states are not Pauli blocked, the Δ– could decay into a neutron
and a π–, which in beta equilibrium would have a chemical potential equal to the electron
chemical potential. In several scenarios the electron chemical potential is larger than
the pion vacuum mass. This would indicate that indeed the pion condensate would be
favorable. However, in Refs. [65, 136], the authors showed that the repulsive s-wave
pion-nucleon interaction does not favor pion condensation because, in the medium, the
pion energy is above its vacuum mass.
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3 DELTA BARYONS IN MAGNETARS

Magnetars are a class of compact objects that possess the largest stable mag-
netic fields observed in nature, with surface magnitudes inferred for the poloidal com-
ponent in the range of 1011 – 1015 G at the surface [77] and values more than one
order of magnitude larger in the interior [38]. Although the strength of the magnetic
field in the central region of these stars remains unknown, they could reach ∼ 1018 G
according to the scalar virial theorem [100], and simultaneous solutions of Einstein and
Maxwells equations for poloidal and also toroidal configurations [183]. Such extreme
conditions certainly play a considerable role when determining the internal composition
and macroscopic structure of magnetars.

Additionally, it is of special interest to investigate how spin-3/2 baryons are af-
fected by the presence of strong magnetic fields due to the possibility of them having
large electric charge and additional spin and isospin projections. The effects of Landau
levels in dense stellar matter containing Δ baryons was first discussed in the context of
neutron-star matter by [178] and later by [45]. In this work we study for the first time the
effects of strong magnetic fields in Δ-admixed hypernuclear stellar matter, accounting
also for effects due to their anomalous magnetic moments (AMMs).

For magnetic fields larger than ∼ 1016 G, the deformation of the stellar geometry
away from spherical symmetry is above 2% [69]. Therefore, the usual relativistic hy-
drostatic equations usually employed when describing non-magnetised stars, i.e., the
Tolman-Oppenheimer-Volkoff equations, which assume spherical symmetry as part of
their derivation from the general relativity equations, cease to be adequate. For this
reason, we then make use of anisotropic solutions from the Einstein and Maxwell equa-
tions to explore for the first time the macroscopic structure of magnetars with strong
internal magnetic fields and containing Δ-admixed hypernuclear matter.

3.1 MATTER COMPOSITION UNDER EXTREME MAGNECTIC FIELDS

To consider the effects of an external magnetic field B on fermions, we modify the
calculation of thermodynamic quantities of each particle species with non-zero electric
charge q, at zero temperature, according to the rule∫

d3k → |q|B
(2π)2

∑
ν

∫
dkz , (55)

where k is the momentum, z is the direction of the magnetic field and the sum in ν, the
discretized orbital angular momentum that the charged particle acquires in the plane
transverse to B, goes until a maximum (integer) corresponding Landau level for which
its momentum is still real, i.e.,

ν ≤ νmax =

⌊
Ē2 – m̄2

2|q|B

⌋
, (56)
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where the relation

ν = n +
1
2

–
s
2

qb
|qb|

, (57)

depends on spin and electric charge. The number of Landau levels occupied by par-
ticles increases with density and temperature, but decreases with the magnetic field
strength, as seen in Ref. [6]. In the cases we study in this work, the number of Landau
levels goes from zero or 1 at low densities to a number ≤ 5 (for the proton) at large
densities, corresponding to the center of the neutron stars.

The anomalous magnetic moment (AMM) of a particle is a deviation from the
magnetic moment of that particle, as predicted by the “classical” tree-level prediction.
Historically, the term anomalous was used to describe the deviation from the Dirac
equation prediction for a system of fermions under the influence of a magnetic field, the
magnetic moment, and thus, refers to fundamental particles. Dipole moment, on the
other hand, is used for composite particles, such as baryons, since their value depends
on the configuration of quarks and gluons inside it, and thus, are not anomalous in the
strict sense. As commonly used in the literature and for simplicity, in this work we use
the term AMM in all cases.

The energy spectrum of baryons with an AMM can be empirically determined,
but a theoretical derivation of their values from first principles is yet an unaccomplished
task. The AMMs of nucleons are measured to a very high precision, with errors of the
order of 10–9 [166], but the same does not apply to heavier baryons. Measurements
of the hyperon AMMs are precise to an order of 10–2 [82], while Δs are experimentally
determined only for the positively charged Δ++ and Δ+. For the Δ+, there is a single mea-
surement of μΔ+/μN = 2.7+1.0

–1.3 ± 1.5 that comes from the γp → pπγ′ reaction, while for
the Δ++ there are several measurements coming from the π+p → π+pγ bremsstrahlung
cross section, with values in the range μΔ++/μN = 3.7 – 7.5 [115]. These measure-
ments include systematic uncertainties, but additional theoretical uncertainties lead to
errors ∼ ±3. Complementary to experimental results, lattice quantum chromodynamics
(LQCD) has been able to extract AMM values for Δ baryons. The values utilized in
this paper are based on the predictions from LQCD provided in [33] that lie within the
experimental uncertainties of the experimentally measured AMMs.

Different properties of baryons considered in this study are shown in Tab. 3.
The AMM strength coefficients κb are related to the magnetic moments μb through the
relation

κb = μb – qbμN
Mp
Mb

, (58)

which depends on the baryon charge qb, the nuclear magneton μN = e/2Mp, with e be-
ing the electron charge, and the ratio of the proton mass Mp to the baryon mass Mb. Al-
though the expression (58) is derived for spin-1/2 fermions in the non-relativistic regime,
it is still commonly employed to the description of the spin-3/2 particles [115, 116]. This
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subject is controversial, as the Rarita-Schwinger equation with minimal coupling pre-
dicts a gyromagnetic ratio of 2/3, while low energy/optical theorems predict a value of
2. For a more in-depth discussion we refer to [39], which studies a generic non-minimal
electromagnetic coupling in the Rarita-Schwinger formalism. In this work, we also ac-
count for the leptons (electron and muon) AMMs, given by κe/μBe

= 1.15965×10–3 and
κμ/μBμ

= 1.16592 × 10–3, respectively, with μBl
= e/2Ml , for l = {e,μ}.

The equations of motion for the mesonic fields are obtained from the model
Lagrangian densities via the Euler-Lagrange equations. When the AMM is considered,
the Fermi momentum (squared) can be calculated, in the presence of a magnetic field,
from the difference between the Fermi energy (squared) and

1. the square of the effective mass modified by the AMM for particles that are
not electrically charged (qb = 0),

k2
F ,b(s) = E∗

F b
2 –
(
M∗

b – sκbB
)2 ; (59)

2. the square of the effective mass modified by Landau quantization and AMM
for particles that are electrically charged (qb ̸= 0),

k2
F ,b(ν, s) = E∗

F b
2 –
(√

M∗2
b + 2ν|qb|B – sκbB

)2
. (60)

For the momentum of leptons, M∗ is simply M. In the latter case, the Fermi momentum
refers to the local direction of the magnetic field, hereafter defined as the z-axis. In
the transverse direction to the local magnetic field, the Fermi momentum is restricted
to discrete values 2ν|qb|B, where the Landau levels ν relate to the orbital angular
momentum n via the relation (57).

The degeneracy of each particle λν at B = 0 takes into account spin and/or
number of colors (λν = 2 for the spin-1/2 baryons and leptons, λν = 4 for the spin-3/2
baryons, and λν = 6 for quarks; note that λν=0, the degeneracy of the zeroth Landau
level, is always half of the usual value), but the presence of a magnetic field breaks the
spin degeneracy. For particles with spin 1/2, the first Landau level (ν = 0) is occupied by
a single spin projection: s = +1 for qb > 0 and s = –1 for qb < 0. The second level (ν = 1)
and above are occupied by both spin projections s = {±1}. For the spin-3/2 positively
charged Δs, the first level (ν = 0) is occupied by the spin projections s= {+3, +1}, the
second level (ν = 1) by s = {+3,±1}, and hereafter all spin states are occupied. For the
negatively charged Δ– spin projection, signs are reversed for the lowest levels.

When the AMMs are considered, the number density for each baryon is also
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defined separately for electrically charged and uncharged particles, respectively,

n(qb ̸=0)
b =

|qb|B
2π2

∑
ν,s

kF b(ν,s) ; (61)

n(qb=0)
b = ψ̄bψb =

1
2π2

∑
s

{
k3

F b(s)
3

–
sκbB

2

[ (
M∗

b – sκbB
)

kF b(s)

+ E∗2
F b

(
arcsin

(
M∗

b – sκbB
E∗

F b

)
–
π

2

)]}
, (62)

as well as the scalar densities,

n(qb ̸=0)
s b = ψ̄bγ0ψb =

|qb|BM∗
b

2π2

∑
s,ν

√
M∗

b
2 + 2ν|qb|B – sκbB√
M∗

b
2 + 2ν|qb|B

× ln

∣∣∣∣∣∣ kF b(ν,s) + E∗
F b√

M∗
b

2 + 2ν|qb|B – sκbB

∣∣∣∣∣∣ ; (63)

n(qb=0)
s b =

M∗
b

4π2

∑
s

[
E∗

F bkF b(s) –
(
M∗

b – sκbB
)2 ln

∣∣∣∣∣kF b(s) + E∗
F b

M∗
b – sκbB

∣∣∣∣∣
]

. (64)

A complete list of thermodynamic quantities for magnetized fermions at both
finite and zero temperature is given in Ref. [40]. For non-charged particle, the pressure
and energy density expressions take the usual form. In what follows, we consider that
the strength of the magnetic field B is a fixed quantity in the equation of state (EoS).
We refer to Refs. [148] for a more detailed discussion of the formalism involved in the
description of strong magnetic field effects on the equation of state of models with
interactions.

In a first moment, we disregard the AMM effects in order to study the effects of
the Δ coupling scheme in magnetized neutron star matter. Here we define the notation
β = xσΔ. The effects of the scalar-Δ coupling are shown in Figs. 16 and 17, when
comparing the top (β = 1.0) and bottom (β = 1.1) panels. The increase of this interaction
changes the overall Δ-particle threshold to lower densities, while it pushes the hyperon
threshold to higher densities. This effect is more pronounced when the ωρ interaction
and β = 1.1 are used (bottom panel of Fig. 17). In this case, the Λ’s are the only
hyperons present, while the four Δ species appear at relatively low densities. The
amount of leptons is reduced significantly. For comparison, see Fig. 18 for a more
extreme scenario in which the hyperons were artificially suppressed. In this case, as
expected, there is an even larger amount of different Δ species at a given density.

Concerning our choice of values for the parameter β, they cover the meaningful
range that switches from having many hyperons to having many spin 3/2 baryons. While
lower values would completely exclude the Δ’s from our density range, a larger value
would completely exclude the hyperons. As seen when comparing both panels of Fig.
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Figure 16 – Particle population for the RMF model with GM1, β = 1.0 parametrization
(top panel) and β = 1.1 parametrization (bottom panel) as a function of
the baryon number density. Full lines show results without magnetic fields,
while dashed lines show results including a magnetic field strength of B =
3 × 1018 G.
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Figure 17 – The same as in Fig. 16, but using the new GM1ωρ parametrization.

16, our choices of β are already very close to these extreme cases, in such a way that
increasing or decreasing β further would not alter significantly our results. On the other
hand, in the presence of the ωρ coupling, as seen in the top panel of Fig. 17, a lower
β could decrease further the amount of Δ’s, producing different results.

Another interesting feature is the interplay between the Ξ– and Δ– relative popula-
tions. In the top panel of Fig. 16, one can see that Δ–’s start to appear at nB ≈ 0.5 fm–3

(when the magnetic field is not considered), and their population keeps growing with
density until it represents 3% of the total baryon number density nB ≈ 0.8 fm–3. At this
point, the (lighter) Ξ–’s appear and rapidly suppress the other negative particles, domi-
nating over the Δ–’s soon afterwards. This dynamics is delayed in scenarios where the
hyperons are not preferred, e.g., in the scenario shown at the bottom panel of Fig. 17,
where the Δ’s show a fast uninterrupted increase with density. This characteristic fast
increase occurs for all Δ baryons when the hyperons are fully suppressed (see Fig. 18).
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Figure 18 – Particle population for the RMF model with GM1 parametrization (top panel)
and GM1ωρ parametrization (bottom panel), suppressing the hyperons
and taking β = 1.0. Once more, full lines show results without magnetic
fields, while dashed lines show results including a magnetic field strength
of B = 3 × 1018 G.
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Magnetic field effects on the particle populations are shown using dashed lines
in Figs. 16-18. We find that the magnetic field produces a significant enhancement in
the amount of most charged particles, including protons, electrons, muons, Σ–’s, and
Δ–’s, but an overall suppression of Δ+’s and Δ++’s when they are present. The latter
is related to the increased amount of protons. In the cases in which hyperons are not
present, the magnetic field induces a more significant change in the Δ population, as
shown in Fig. 18. The cusps in the dashed curves correspond to threshold crossings for
the maximum Landau levels, known as van Alphen oscillations [76]. In these figures, a
constant magnetic field of magnitude B = 3 × 1018 G was chosen. This corresponds to
about the largest magnetic field strength that can be reached in the center of magnetars,
as predicted by numerical calculations that solve Einstein’s and Maxwell’s equations for
a pure poloidal configuration. In reality, the magnetic field is not constant within neutron
stars, but was found to increase with density by less than one order of magnitude when
solving Einstein’s and Maxwell’s equations for a pure poloidal configuration [46].

In order to enrich and generalize our results, we repeat some of our analysis
for a second relativistic hadronic model, the CMF, already presented in the previous
chapter. In Fig. 19, we show for the first time the introduction of the ω4 interaction in the
population of pure hadronic matter (with coupling constant –4.7), and with additional
baryons from the decuplet Δ’s, Σ∗’s, Ξ∗’s, and Ω’s. Note that in Ref. [45] a phase transi-
tion to quark matter suppressed most of the hyperons. Here, although we include the
whole baryon decuplet, only the Δ’s appear in the relevant regime.

The difference between the two panels in Fig. 19 is only due to the addition
of the ωρ interaction (with normalized coupling constant 0 on the left panel and 62 in
the right panel). This interaction generates matter with a more soft symmetry energy
beyond saturation (lower value for slope), meaning a lower energy cost to produce
isospin and, therefore, a larger neutron-to-proton ratio, more Σ–’s and Δ–’s, but less
leptons and Λ’s. As a result, the Δ–’s appear before any hyperon species. The very slow
increase of Σ–’s with density (for zero magnetic field) barely affects the Δ– population.

Continuing our discussion with only configurations that include the ωρ interaction,
the top panel of Fig. 20 illustrates the case in which hyperons are suppressed. Note that
not even in this case the other baryons from the decuplet appear in the density regime
relevant for neutron stars, although a larger amount of Δ–’s appear at large densities.
As shown by the dashed lines of the figures, the magnetic field further enhances the
amount of negatively charged Δ’s.

For B = 0, the matter EoS (namely, P vs. ε) shows a simple monotonically
increasing behavior, however its derivatives show interesting features generated, e.g.,
by changes in particle composition. Next, we discuss the incompressibility modulus
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Figure 19 – Particle population for the CMF model without (top panel) and with (bottom
panel) the ωρ interaction as a function of the baryon number density. Full
lines show results without magnetic fields, while dashed lines show results
including a magnetic field strength of B = 3 × 1018 G.



78 Chapter 3. Delta Baryons in Magnetars

0 0.2 0.4 0.6 0.8 1
nB (fm­3)

10­3

10­2

10­1

100

n i (f
m

­3
)

n

p





e

Figure 20 – Same as the bottom panel of Fig. 19, but suppressing the hyperons.

(usually referred to simply as compressibility), given by

K = 9
∂P
∂nB

. (65)

At saturation density, compressibility values for isospin-symmetric matter can be com-
pared with laboratory data. We find values of 256 MeV and 300 MeV for the L3ωρ and
CMF models, respectively. Laboratory values range between 220 < K < 260 MeV [51,
109] and 250 < K < 315 MeV [175].

The top panel of Fig. 21 shows the effect of the inclusion of different parti-
cle species in the compressibility for the L3ωρ model, in the absence of an external
magnetic field. The kinks in the curves are consequence of the onset of new particle
species, which are shifted to lower densities by the inclusion of both Δs and respective
stronger scalar interactions. For xσΔ = 1, the effective mass of nucleons becomes zero
at nB ∼ 0.85 fm–3 and, for this reason we lack solutions at higher densities. The bottom
panel of Fig. 21 shows that in the CMF model the kinks are much smaller than in the
L3ωρ model, with the only displacement of the curve occurring at the onset of the first
non-nucleon baryon. As a consequence, the different CMF EoS behave more similarly
as the density increases.

The stiffer EoS are formally the ones with larger values of the speed of sound
vs, but here we discuss stiffness with respect to K , related to vs through v2

s = K /(9μ)
[43]. Isospin symmetric matter is softer at low densities, but becomes stiffer at large
densities due to the Pauli exclusion principle because, as only nucleonic matter is
considered, higher Fermi levels must be occupied. The behavior of neutron-star matter
(charge neutral and in chemical equilibrium) depends on the composition, but it is
always softer than the symmetric matter case after the hyperon or Δ onsets, as the
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Figure 21 – Compressibility as a function of baryon number density in isospin-
symmetric matter with only nucleons (dashed-dotted line) and neutron-star
matter (full lines) shown for different compositions and interaction strengths
for the L3ωρ (top panel) and for the CMF model (bottom panel). B = 0.

presence of new Fermi levels turns the EoS softer. Matter with hyperons but no Δs
is stiffer at intermediate densities (than matter with Δs), however it is softer at large
densities, especially in the case of strong scalar interaction (for the L3ωρ model). This
trend was noticed previously by [45], where we showed that the inclusion of Δs could
turn the EoS stiffer (than the cases where they were absent), despite the fact that the
new degrees of freedom soften the EoS. This is related to isospin asymmetry, which
we discuss in the following.

We define the isospin fraction as the average 3rd isospin component of a given
matter composition, weighted by the relative densities, i.e.,

YI3 =
∑

b I3 bnb∑
b nb

, (66)

as shown in Fig. 22. For nucleonic matter only, YI3 = 0 means matter with the same
amount of protons and neutrons, while YI3 = –0.5 means pure neutron matter. The
density at which the curves with and without Δs split marks the appearance of the
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Figure 22 – Isospin fraction as a function of baryon number density for neutron-star
matter with B = 0 (dotted lines) and with magnetic field B = 3 × 1018 G
when considering (solid lines) or disregarding (dashed lines) the effects of
the anomalous magnetic moments and shown for different compositions
and interaction strengths. The top and bottom panels show results for the
L3ωρ and CMF models, respectively.

Δ–s, which increase the isospin asymmetry (turn the isospin fraction more negative).
The effect is much larger for the L3ωρ model (top panel) than the CMF model (bottom
panel), which hints that the amount of Δs reproduced in each model is different. Both
effects generated by the magnetic fields, i.e. Landau quantization and AMM, decrease
the isospin asymmetry (less negative YI3) at low and intermediate densities.

A better understanding on the effects of the inclusion of Δ baryons, magnetic
fields, and AMM in neutron-star matter subject to strong magnetic fields can be obtained
from Fig. 23. Comparing the top row (B = 0) with the lower one (B = 3 × 1018 G), we
can see that some of the charged particles are favored when magnetic field effects
without AMMs are considered, an effect that is more pronounced for protons, whose
onset density is pulled to very low densities for both models. As a consequence, their
population becomes more similar to the neutron one in densities below ∼ 0.05 fm–3,
turning YI3 less negative. The inclusion of AMM enhances this effect. This explains
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Figure 23 – Particle composition of neutron-star matter with Δs, with B = 0 (top panels)
and magnetic field B = 3 × 1018 G (bottom panels), when considering
(solid lines) or disregarding (dashed lines) the effects of the anomalous
magnetic moment. The left and middle panels show results for the L3ωρ

model with different interactions, while the right panel shows results for the
CMF model.

why the isospin asymmetry depends both on the magnetic field and on the AMM in
the lower density region, as shown in Fig. 22. The Δ– threshold (at densities around
0.3 fm–3) coincides with the region at intermediate densities beyond which the N+H+Δ
EoS are softer than the respective N+H EoS. The Λ (and the Σ in the CMF model)
hyperons appear at larger densities than the Δ–s. The remaining Δs appear at much
larger densities and in amounts that depend on the interactions in the L3ωρ model.

To discriminate AMM effects on the particle composition is not trivial, as they
depend on the AMM coupling strength and sign, on the particle mass, charge, and
density. Additionally, different spin projections are separately enhanced or suppressed,
but this cannot be clearly seen in Fig. 23, as it follows the usual convention and shows
the sum of all spin projections for each particle. For this reason, we make use of
a quantity that reveals the degree of spin polarization, more suited to discuss spin
projection asymmetry of fermions.

We define the total spin polarization of a given matter composition, weighted by
the relative densities, in analogy to Eq. (66), i.e.,

Yspin =

∑
b,s snb(s)∑
b,s nb(s)

, (67)

and shown the results in Fig. 24. For a fixed magnetic field strength, all charged particles
are fully spin polarized at low densities: only spin projection 1/2 for protons and spin
projection 3/2 for positive Δs, only spin projection -1/2 for leptons and negative Σs, and
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Figure 24 – Spin polarization fraction as a function of baryon number density for
neutron-star matter with magnetic field B = 3 × 1018 G, when consider-
ing (solid lines) or disregarding (dashed lines) the effects of the anomalous
magnetic moments and shown for different compositions and interaction
strengths. The top and bottom panels show results for the L3ωρ and CMF
models, respectively.

spin projection -3/2 for negative Δs. When AMMs are considered, neutral particles obey
the same logic, presenting only positive (negative) spin projections according to their
positive (negative) sign of κb. At intermediate densities, full polarization is broken for
more massive particles, but not for leptons and Λs. But, regardless, the polarization
never goes to zero, meaning that partial spin projection imbalance remains at high
densities. Overall, spin polarization fraction is much stronger for the CMF model (bottom
panel) than for the L3ωρ model (top panel). Full polarization can be understood from
Eqs. (59), (60), and (57), which explains why particles with different isospin projections
present different momenta and why particles occupying the first Landau level (ν = 0) are
more abundant when only a few levels are occupied. This happens for strong magnetic
fields and low particle densities, or simply less massive particles.

It is a well-established concept that the magnetic field is not constant within
neutron stars, but increases towards their centers where the density is larger. But,
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before we discuss stellar configurations with macroscopic magnetic fields in detail, we
study how one more relevant quantity changes as a function of magnetic field strength.
The fraction of exotic particles can be defined as the following quantity

Yi =
∑

b∈i nb∑
b nb

, (68)

for i = H or Δ, shown in Fig. 25. On the left panel for the L3ωρ model, the amount of
Δs is slightly reduced at a given density but then increases tremendously at the larger
density when the AMM is included, a behaviour quantitatively not reproduced with larger
coupling constants, as seen on the middle panel. The amount of hyperons, on the other
hand, is not significantly modified by the magnetic field, only slightly decreases in the
presence of AMM and is affected by the small fluctuations related to the De Haas-Van
Alphen oscillations [76]. The right panel shows the same qualitative behavior for the
CMF model, which has a more clear substitution of hyperons in favor of deltas for higher
values of B, independently of the density or accounting for the AMM.

3.2 MACROSCOPIC STRUCTURE

For spherically symmetric neutron stars, given an EoS P(ε), the global structure
can be obtained by solving the Tolman-Oppenheimer-Volkoff (TOV) equations of hydro-
static equilibrium. For the crust, we use the BPS EoS [12]. As an startiing point, we only
analyze mass-radius curves produced from EoS without magnetic field effects, with the
purpose of comparing different cases and parametrizations with observational data. We
leave the study of mass-radius relations for magnetic neutron stars to a further section,
as this requires the solution of a more complicated system of equations in general
relativity [62, 147].

In Fig. 26, we show RMF model results without (left panel) and with (right panel)
the ωρ interaction. In both cases, the pure nucleonic stars are more massive, and the
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Figure 26 – Mass-radius diagram for the RMF model with GM1 parametrization (top
panel) and GM1ωρ parametrization (bottom panel), showing results without
magnetic field effects. The maximum stellar masses are indicated for all
cases.

ones that contain hyperons less massive. But, more interestingly, stars that include all
degrees of freedom are more massive than the ones that include only nucleons and
hyperons, and this effect is more obvious for the case with ωρ interaction and β = 1.1.
When the hyperons are suppressed, the stellar masses increase even more, in some
cases surpassing the nucleonic star masses.

This discussion is related to the well-known hyperon puzzle [27], but with a twist.
As shown in Fig. 27, going from dashed lines to solid or dot-dashed, the addition of Δ’s
decreases the fraction of nucleons (some neutrons) and hyperons (Λ’s) to create Δ’s and
some protons. The overall increase in isospin asymmetry makes the EoS stiffer, even
when more degrees of freedom are present. The larger population change caused by
the ωρ, β = 1.1 parametrization only enhances this effect. See Ref. [106] for a detailed
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Figure 28 – Mass-radius diagram for the CMF model showing results without magnetic
field effects. The maximum stellar masses are indicated for all cases.

study of the effect of the symmetry energy at larger densities on the properties of
neutron stars with Δ baryons. Concerning stellar radius modifications, the intermediate
density EoS softening caused by the ωρ interaction turns stars smaller in all cases.
Lower radii for ∼ 1.4 MSun stars improves the agreement of this model with NICER and
LIGO data [127, 157, 2].

In Fig. 28, the dashed curves show results without the ωρ interaction for the
CMF model. In this case, for our selected parametrization, the Δ’s are never present.
We show results for nucleons only, and also including hyperons, when the maximum
mass decreases. The remaining curves show results with the ωρ interaction. In this
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case, the radii of the ∼ 1.4 MSun stars and respective tidal deformabilities are again in
much better agreement with NICER and LIGO data. The pure nucleonic stars are more
massive, followed by the stars also including hyperons, also including Δ’s and, finally,
including all degrees of freedom, when the maximum allowed mass decreases still by
only a small amount. The difference when compared to the RMF model discussion in
the previous paragraph is that not many hyperons appear in the CMF model in any
case, so the suppression (mainly of Σ–’s) caused by the appearance of Δ’s is small, and
does not change significantly the isospin amount. From the right panel of Fig. 5 it can
be seen that the overall number of exotic baryons i) H’s+Δ’s in the N+H+Δ case, then
ii) Δ’s in the N+Δ case, then the iii) H’s in the N+H case, correspond inversely to the
maximum masses of neutron stars for each case. This dynamics works in the same
ways as the hyperon puzzle, but extended to include Δ’s.

The TOV equations cannot be applied to describe the structure of the magnetars
we study in this work because the spherical symmetries assumed in the Schwarzschild
line element will not hold. This is due to the strong magnetic fields we infer for such
objects, which produce highly deformed stellar shapes. Instead, the stellar structure
must be determined by solving equations in General Relativity describing the stationary
configuration for the fluid, coupled with Einstein field equations. The energy-momentum
tensor, which contains the information on the matter properties of stars, enters the
stellar structure equations as the source of the Einstein equations. Neglecting the
coupling to the electromagnetic field, one generally assumes a perfect fluid and the
energy-momentum tensor takes the form

T μν

f = (ε + P) uμuν + P gμν , (69)

where ε denotes the (matter) energy density, P the pressure, and uμ the fluid four-
velocity.

The EoS then relates pressure and energy density to the relevant thermody-
namic quantities. In [30], the general expression for the energy-momentum tensor in
the presence of an electromagnetic field was derived, starting from a microscopic La-
grangian including interactions between matter and the electromagnetic field

T μν = T μν

f +
1
μ0

(
–BμBν + (B · B)uμuν +

1
2

gμν(B · B)
)

+
x
μ0

(
BμBν – (B · B)(uμuν + gμν)

)
, (70)

where μ0 is the vacuum permeability, gμν the metric tensor, and x is the magnetisation.
The electromagnetic field tensor has been expressed as Fμν = εαβμνu

βBα , with εαβμν

being the four-dimensional Levi-Civita symbol [71]. Assuming an isotropic medium and
a magnetisation parallel to the magnetic field, the magnetisation tensor Mμν can be
written as

Mμν = εαβμνu
βaα , (71)
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Table 4 – Central baryon (nc) and energy (εc) densities as a function of magnetic field
strength for neutron stars of radius 12 km with L3ωρ model for xσΔ = xωΔ =
1.0(1.2) in the top panel and CMF model in the bottom panel

nc (fm–3) εc (MeV/fm3)
B (G) N+H N+H+Δ N+H N+H+Δ

0 0.672 0.618 (0.614) 742 658 (657)
5 × 1017 0.701 0.659 (0.653) 783 712 (708)
1 × 1018 0.747 0.714 (0.707) 850 786 (783)

0 0.629 0.625 678 672
5 × 1017 0.680 0.677 747 741
1 × 1018 0.749 0.746 843 837

with the magnetization four-vector defined as aμ = x
μ0

Bμ. In the absence of magneti-
sation, i.e. for x = 0, this expression reduces to the standard magnetohydrodynamics
form for the energy-momentum tensor [71].

Strong magnetic fields result in an anisotropy of the energy momentum tensor
and break spherical symmetry, such that with increasing strength of the magnetic field,
the shape of a magnetar departs more and more from a spherical shape. Interpreting
the spatial elements of the fluid rest frame energy-momentum tensor as pressures,
then there is a difference induced by the orientation of the magnetic field, commonly
referred to as “parallel” and “perpendicular” pressures. Several earlier works tried to
compute the mass-radius relations of strongly magnetised neutron stars through a first
approach using isotropic TOV equations [151, 57, 42]. In these works, the components
of the macroscopic energy-momentum tensor in the fluid rest frame are used to obtain
the energy density ε, parallel (P∥) and perpendicular (P⊥) pressures. In Heaviside-
Lorentz natural units, the pure electromagnetic contribution to the energy-momentum
tensor, which is anisotropic, has values of B2/2 and –B2/2 in the perpendicular and
parallel directions to the local magnetic field, respectively. However, this approach can
drastically overestimate the mass of neutron stars, as shown in Fig. 3 of [69].

Several works obtained the global structure models of magnetars by solving
coupled Einstein-Maxwell equations, taking into account the anisotropy of the stress-
energy tensor [140, 84, 93, 201, 62, 178, 183]. In these studies either a perfect fluid,
a polytropic EoS, or a realistic EoS was assumed, but do not take into account the
magnetic field modifications due to its quantisation.

Ideally, to explore magnetic field effects such as Landau quantisation and AMM
on the global properties of the star, one must solve the coupled Einstein-Maxwell
equations, along with a magnetic field dependent EoS. In [30] and [61], global numerical
models for magnetars were obtained by consistently solving Einstein-Maxwell equations
with magnetic field dependent quark EoS. It was however explicitly demonstrated by
[30, 29] that the maximum mass of a neutron star is minimally modified due to the
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Figure 29 – Stellar mass as a function of equatorial radius for different compositions
and interaction strengths, for central magnetic fields B = 0 (solid lines),
B = 5 × 1017 G (dashed lines), and B = 1018 G (dotted lines). The top and
bottom panels show results for the L3ωρ and CMF models, respectively.

magnetic field dependence of the microscopic EoS, even for the highest magnetic
fields. Therefore in this work, we assume a non-magnetic (B = 0) matter contribution to
the EoS to compute global neutron-star models and the magnetic field enters structure
calculations only through the dominant pure electromagnetic field contribution. Although
it remains to be checked explicitly in future work, the effects of Landau quantisation and
AMMs are not expected to sensibly affect the results of this study. Note however, that
this is not the case for microscopic properties of matter, as discussed in the following.

As described here, to compute the effect of the strong magnetic fields on the
structure of the magnetars, one must solve the coupled Einstein–Maxwell equations
with the equations of state. For the chosen poloidal field geometry, we solve the Ein-
stein–Maxwell equations within the numerical library LORENE1 using a multi-domain
spectral method. In Fig 29, we show the mass radius relations for the L3ωρ and the
CMF models, with and without Δs, as a function of equatorial radius for sequences of

1 http://www.lorene.obspm.fr

http://www.lorene.obspm.fr
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Figure 30 – Magnetic field distribution inside a neutron star of mass 1.8M⊙ and central
magnetic field of B = 5 × 1017 G for different compositions and interaction
strengths. Solid, dashed, dashed-dotted and dotted are, respectively, the
first four even multipoles of the magnetic field norm (l = 0,2,4,6), shown as
functions of the coordinate radius. The top and bottom panels show results
for the L3ωρ and CMF models, respectively.

constant stellar central magnetic field. Despite the fact that, for the choices discussed
here for xσΔ and xωΔ parameters in the L3ωρ model, the masses of N+H+Δ stars never
surpass the respective N+H configurations, we still observe that the the maximum mass
(shown in Fig. 29) follows the same ordering of a large (and most relevant) portion of
Fig. 22 for the compressibility.

In Fig. 29, any differences between the mass-radius curves for the B = 0 case
(solid lines) arise from the differences in the (non-magnetic) EoS, while the differences
with magnetic field come from the pure electromagnetic field contribution. We know that
the Lorentz force originating from the pure electromagnetic field affects the low density
part of the EoS. This is why the maximum mass of very massive stars does not change
with increasing magnetic field strength, but the mass and radius of less massive stars
increase significantly. For the L3ωρ model, the inclusion of Δs decreases modestly the
maximum stellar mass, especially for the larger coupling. However, for the CMF model,
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Figure 31 – Magnetic field distribution inside a neutron star of mass 1.8M⊙ and central
magnetic field of B = 5 × 1017 G for different compositions and interaction
strengths. Solid, dashed and dotted are the dominant monopolar (l = 0)
term at the polar (θ = 0), intermediate (θ = π/4) and equatorial (θ = π/2)
orientations, respectively, shown as functions of the coordinate radius. The
top and bottom panels show results for the L3ωρ and CMF models, respec-
tively.

we do not see meaningful changes on the mass-radius diagram with the inclusion of
Δs. From Table 4 we see that, keeping the radius of the neutron star fixed (going up
vertically in Fig. 29), the increase in the strength of the central magnetic field increases
both the central baryon and energy densities, as a larger matter pressure is necessary
to balance the Lorentz force. The addition of Δs decreases both quantities, as these
stars are naturally (at B=0) smaller.

At this point, we note that the maximum mass value of the stellar family described
by the L3ωρ model with Δs and xσΔ = 1.0 (the yellow curve) has not been attained be-
cause, as explained earlier, the EoS numerical code stops converging at large densities
due to reaching zero nucleon masses. Such behavior indicates that hadronic matter is
no longer stable at this point and deconfinement to quark matter must be considered.
We leave such analysis to a future work. But, since the trend of the yellow curve is quite
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obvious, we can conclude that its maximum mass is lower when compared to the other
coupling and composition.

Using the full numerical solution, we also study the effect of the EoS on the
magnetic field configurations inside a given star. We decompose the magnetic field
norm in terms of spherical harmonics

B(r ,θ) ≈
lmax∑
i=0

Bl (r )Y 0
l (θ) , (72)

and plot the first four even multipoles (l = 0,2,4,6) as function of coordinate radius
for both the EoS models and coupling strengths in Fig 30. We also plot the profile of
the dominant monopolar, spherically symmetric, term (l = 0) inside the star in Fig 31.
For L3ωρ model, specially if we include Δs, the magnetic field norm decreases slightly
inside the star but, for CMF model, we do not see any considerable changes.

The macroscopic properties of magnetars for the above choice of EoS models
were obtained by solving Einstein-Maxwell equations within the LORENE library. It was
found that maximum masses as high as 2 M⊙ can be attained even on inclusion of Δ
particles. This is due to isospin readjustment at large densities, which turns the EoS
stiffer. The Δs also respond more strongly to the AMM, which is expected due to the fact
that they present additional electric charges and isospin projections. As a consequence,
Δ-admixed hypernuclear stellar matter possesses larger spin polarization. The latter
effect is more dramatic for the L3ωρ model, which presents a larger number of exotic
particles than the CMF model. Considering strong magnetic fields, heavy stars tend
to contain more deltas in their interiors. They are not necessarily more massive than
their B = 0 counterparts, but are larger and, for a given radius, present larger central
number density and energy density. While Δs modify the magnetic field distribution
very little inside stars, they decrease their radii, improving the agreement with modern
observational data of neutron-star radii and tidal deformability.





Part II

The Hadron-Quark Phase Transition
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4 NAMBU–JONA-LASINIO DESCRIPTION OF HADRONIC MATTER

In confining theories as QCD, it is admitted that only gauge invariant objects
should be observable. So, as the QCD Lagrangian is invariant under local transfor-
mations in color space SU(3)c , only color singlet (white) objects are observable, i.e.,
hadrons (quark-antiquark and three-quark bound states). Equation ((1)) also exhibits
an approximate flavor symmetry in the light quarks sector (u, d , s), arising from the fact
of the mass differences between the flavors being much smaller than the QCD scale,
that leads to many relations for masses of hadrons within a specific multiplet, e.g., the
Gell-Mann–Okubo mass formula [164].

One more important feature of the QCD Lagrangian is the chiral symmetry,
meaning that left-handed and right-handed components of the quark fields can be
transformed independently by symmetry operations such that they make no difference
to the theory, i.e., by projecting ψ = ψL + ψR where

ψL,R =

(
1 ∓ γ5

2

)
ψ. (73)

Taking as an example the two-flavor QCD Lagrangian in the chiral limit (i.e., with mass-
less quarks since the term mψ̄ψ breaks chiral symmetry explicitly), the equation ((1))
can be written as

L = q̄Li /DqL + q̄R i /DqR + Lgluons, (74)

with q =
[
ψu ψd

]T and /D being the covariant derivative, which makes straightforward
to show this Lagrangian remains unchanged by any unitary transformations, indepen-
dently if acting on qL or qR in different ways. The group of this so-called flavor chiral
symmetry is denoted as U(2)L × U(2)R and decomposes into

SU(2)L × SU(2)R × U(1)V × U(1)A.

The singlet vector group U(1)V represents a true symmetry of the theory and, as so,
corresponds to the baryon number conservation, while the singlet axial group U(1)A
is explicitly violated by a quantum anomaly arising from the gluon sector of the QCD
Lagrangian. The remaining SU(2)L × SU(2)R group is spontaneously broken by non-
vanishing quark condensates

〈
q̄ a

Rq b
L

〉
= vδab, that occurs due to the non-perturbative

nature of the QCD vacuum state, amounting to the isospin symmetry group SU(2)V .
The three broken generators correspond to three Goldstone bosons, and quark masses
can be considered as being dynamically generated by the spontaneous chiral symmetry
breaking, since they were taken as massless particles in the initial QCD Lagrangian. As
the quarks do have a finite mass, the chiral symmetry of QCD is broken explicitly by this
terms. However, as quark masses are small compared to the interaction scale, the chiral
symmetry can still be seen as an approximate symmetry of the theory, which renders,
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through spontaneous breaking, light but not massless pseudo-Goldstone bosons that
can be identified as the three pions. This mechanism provides an explanation to the
huge difference between bound states observed masses and the sum of the masses
of their forming particles, e.g., the valence quarks bare masses in a proton contribute
to only 9.4 MeV of the barion total mass (mp ≈ 938 MeV). The same argument can be
traced for the light quarks sector (u, d , s) of the QCD Lagrangian, resulting in the final
unbroken group being the eightfold way group SU(3)V and the respective eight broken
generators corresponding to the meson octet [146].

The first theoretical approach to the chiral symmetry breaking in a fermionic quan-
tum field theory was performed by [134], anteceding the proposal of quarks and the
QCD formulation. The original Nambu–Jona-Lasinio (NJL) model aimed to describe in-
teracting nucleons, motivated by the fact that this interaction holds a partially conserved
axial vector current, associated to the approximate chiral symmetry. Since it imposes
the nucleon mass to be small in the Lagrangian level, the spontaneous symmetry break-
ing, in analogy to the BCS theory of superconductors, provides a mechanism which
generates dynamically the large nucleon mass.

The NJL Lagrangian can be written for one species of particles as

L = ψ̄ (i /∂ – m)ψ + G
[
(ψ̄ψ)2 +

(
ψ̄iγ5

ψ

)2
]

. (75)

It describes a four-fermions point-like interaction proportional to the dimensional cou-
pling constant G. It is relevant to notice that, while the axial term (that with γ5) vanishes
in the mean-field approximation, it is still required to keep the Lagrangian chirally sym-
metric and, in this sense, should be considered to be part of the model Lagrangian
even without having impact on the further derivation of the mean-field thermodynamics
[95].

Supposing the vacuum expectation ⟨0|ψ̄ψ|0⟩ being non-zero, thus responsible
for the breakdown of the chiral symmetry, the movement equation of the spinor field
can be obtained through the so-called Hubbard-Stratonovich transformation, i.e., the
bosonization of the model by auxiliary fields given by the non-vanishing condensates.
Only expectation values that are bilinear in the quark fields are allowed, which preserves
all original symmetries of the Lagrangian, apart from chiral symmetry (spontaneously
broken by the condensates) and Lorentz invariance (explicitly broken by the chemical
potential). So, neglecting quadratic terms in the fluctuations, the Lagrangian can be
linearized from taking

(ψ̄ψ)2 = 2ρs(ψ̄ψ) – ρ
2
s and (ψ̄γ

μ
ψ)2 = 2nB(ψ†

ψ) – n2
B, (76)

where the scalar and vector condensates are ρs = ⟨ψ̄ψ⟩ and nB =
〈
ψ†ψ

〉
, also called

scalar density and barionic density, respectively. In particular terms in channels without
condensate or the space components in the vector vertex drop out. From the variational



97

Figure 32 – Non-perturbative correction to the fermion propagator. The bare and
dressed propagator are denoted by the thin and bold line, respectively
[20].

principle, one can write

(i /∂ – m)ψ + 2G ⟨ψ̄ψ⟩ψ – 2G
〈
ψ̄γ

5
ψ

〉
γ

5
ψ = 0, (77)

that can be identified as the Dirac equation

(i /∂ – M)ψ = 0, (78)

where the constituent mass is given by the gap equation

M = m – 2G⟨ψ̄ψ⟩. (79)

This shift in the mass can be understood as a non-perturbative correction to the self-
energy, i.e., to consider the fermion propagator dressed by the one-loop correction as
depicted in Figure 32.

Also, the fermion condensate can be evaluated from the dressed fermion propa-
gator
S(p) = ( /p – M + iε)–1 as

⟨ψ̄ψ⟩ = –i
∫

d4p

(2π)4
TrS(p) = –4i

∫
d4p

(2π)4
M

p2 – M2 + iε
, (80)

with the trace to be taken in color, flavor, and Dirac space (only the latter contributes in
this example). As a consequence of the dimensionality of the coupling constant G, the
NJL model is not renormalizable, thus a regularization scheme must be employed to the
divergent integrals. Here, it is done by applying a sharp cutoff in the three-momentum
ultraviolet region of the above integration limits, often denoted as Λ.

Applying standard techniques of thermal field theory, as presented in Appendix
A, it is possible to evaluate the fermionic loop which enters the gap equation at non-
vanishing temperature or chemical potential. In this situation, the gap equation finally
reads

M = m + 4G
∫

d3p

(2π)3
M√

p2 + M2

[
1 – np(T ,μ) – n̄p(T ,μ)

]
, (81)

where, since quarks (or hadrons) are fermions, np and n̄p are the Fermi-Dirac distribu-
tion functions for the particles and antiparticles with momentum p, respectively given
by

np(T ,μ) =
1

1 + e(Ep–μ)/T and n̄(T ,μ) =
1

1 + e(Ep+μ)/T , (82)
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Figure 33 – Solution of equation ((81)) to the constituent mass for zero density and
non-zero temperatures (left panel) and for zero temperature and non-zero
densities (right panel). Dashed lines indicate the chiral limit (m = 0) of the
parameter choice indicated by solid lines [adapted from 20].

with Ep =
√

p2 + M2 such that, e.g., the total number density is

nB = 2
∫

d3p

(2π)3
[
n(T ,μ) – n̄(T ,μ)

]
. (83)

In general, the gap equation has more than one solution, e.g., in the chiral
limit, the trivial configuration M = 0 is always a valid solution, but non-trivial solutions
M = ±M0 ̸= 0 can occur as well. It is possible to show that the vacuum energy is
always minimized by the solution with the largest value of M [188]. Figure 33 illustrates
the behavior of the gap equation (Eq. (81)) solutions at non-vanishing temperature and
density. In this situation, where there is a medium, the occupation numbers are non-zero
and reduce the value of the constituent mass for low temperatures and densities. As the
temperature or the density increase, the particle distribution factor tends to zero, and
the constituent mass M approaches the value of the current mass m. This mechanism
is called chiral symmetry restoration, as the ground state solution goes back to the light
particle case.

This model has three free parameters to be fitted (m, G and Λ). When using the
NJL as a model of QCD, these parameters are usually fixed by fitting the pion mass
mπ and the pion decay constant fπ, that must satisfy the Gell-Mann–Oakes–Renner
relation

f 2
πm2

π = –m ⟨ψ̄ψ⟩ + O(m2). (84)

In the following, the NJL formalism briefly described above will be extended to more
complete approaches, better suited to describe both free quark and hadronic matter,
through the mean-field calculation of the grand-canonical thermodynamic potential.

Even though the original NJL model was proposed considering nucleonic de-
grees of freedom, the lack of confinement soon became a problem within the QCD
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theoretical framework, which made it to be reinterpreted as a schematic quark model
[96]. The fact that the NJL Lagrangian does not confine the fermion fields also implies
that it is unable to describe the saturation properties of the nuclear matter. However,
it can be easily fixed by the inclusion of an extra channel representing a scalar-vector
interaction. The same logic can be applied to many other channels of interaction, aim-
ing to improve the description of other important bulk properties, which give origin to
the so-called extended Nambu–Jona-Lasinio (eNJL) models family [98]. One version
of these eNJL models, partially developed in this work, is discussed ahead, where a
hadronic eNJL model is presented for the cases of nucleonic (protons and neutrons
only) and hyperonic (protons, neutrons and lambdas) matter. The latter case was not
previously discussed within the NJL model theoretical framework, and it is a novel and
relevant contribution to the exploration of the QCD phase diagram, as describing matter
with strangeness content (i.e., strange quark matter and hyperonic hadron matter) is
important to the study of the hadron-quark phase transition.

4.1 NUCLEONIC MATTER

The extended NJL Lagrangian density that models hadronic matter is given,
generically, by

LeNJL = ψ̄
(
i /∂ – m̂

)
ψ + LI . (85)

A rather broadened eNJL model able to describe hadronic matter constituted by pro-
tons and neutrons, named here as PPM NJL model, was proposed in a first version by
[142] and it is reobtained in the following including the treatment of non-zero temper-
ature to the authors original deductions. This model is constructed from ((85)), taking
ψ =

[
ψp ψn

]T to represent the nucleon fields of masses m̂ = diag(mp,mn), again
assuming isospin symmetry in the Lagrangian level, and the interaction part LI given by
several four-point and crossed eight-point interactions compatible with the SU(2) flavor
symmetry. Hence, the PPM NJL model is given by the Lagrangian density

LPPM = ψ̄
(
i /∂ – m̂

)
ψ + Gs[(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)2] – Gv (ψ̄γ

μ
ψ)2

+ Gρ[(ψ̄γ
μ
τ⃗ψ)2 + (ψ̄γ5γ

μ
τ⃗ψ)2] – χsv GsGv [(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)2](ψ̄γ

μ
ψ)2

+ χsρGsGρ[(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)2][(ψ̄γ
μ
τ⃗ψ)2 + (ψ̄γ5γ

μ
τ⃗ψ)2]

– χvρGv Gρ(ψ̄γ
μ
ψ)2[(ψ̄γ

μ
τ⃗ψ)2 + (ψ̄γ5γ

μ
τ⃗ψ)2], (86)

with Ga standing for the coupling constants for the different channels, the crossed
interactions between channels a and b weighted by the coefficient χab = Gab/GaGb,
and where τ⃗ is the Pauli isospin matrix. For nuclear matter, the simpler versions of the
NJL model does not lead to binding, the introduction of the term in Gsv copes with this
unwanted feature. Yet, the Gv term simulates a chiral-invariant short-range repulsion
between the nucleons, the Gρ term allows for the description of isospin asymmetric
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matter, the Gsv term accounts for the density dependence of the scalar coupling, and
the Gsρ and Gvρ terms make the density dependence of the symmetry energy softer.
As in the quark case, the theory is renormalized via a three momenta cutoff Λ.

So, the thermodynamic potential that follows from ((86)) reads

Ω(T ,μ; M, μ̃) =
∑

i=p,n

ΩMi
(T ,μ̃i ) + Gsρ

2
s – Gv n2

B + Gρρ
2
3 + χsv GsGvρ

2
sn2

B

–χsρGsGρρ
2
sρ

2
3 + χvρGv Gρn2

Bρ
2
3, (87)

where the displaced free Fermi gas contribution ΩMi
is given by ((108)), taking Nc = 1,

as hadrons do not show color degeneracy, and the gap equations

M = m – 2Gsρs – 2Gsvρsρ
2 + 2Gsρρsρ

2
3 (88)

μ̃i = μi – 2Gvρ± 2Gρρ3 + 2Gsvρρ
2
s ∓ 2Gsρρ3ρ

2
s + 2Gvρρρ3(ρ3 ± ρ), (89)

with the upper (lower) signs taken for i = p (i = n). The scalar and number total densities
are given by ρs = ρsp +ρsn and nB = np +nn, with ρsi and ni defined by equations ((111))
and ((112)), as usual, and the isospin density defined as ρ3 = np – nn. The procedure
of determining the free parameters of the theory, as applied in this work, is discussed
in the following, and the suitable sets found are shown in Table 5.

4.2 HYPERONIC MATTER

When describing hadronic matter at very high densities, the appearance of hy-
perons, i.e., baryons containing one or more strange quarks, is expected. The hyperon
formation process is a consequence of the fermionic nature of nucleons, which makes
their chemical potentials very rapidly increasing functions of the density. So, as, e.g.,
the chemical potential of the nucleons becomes sufficiently large, the most energetic
particles can decay via weak processes into Λ hyperons, creating a new Fermi sea for
this hadronic species and lowering the system total energy [16]. Such process could
take significant role in high baryonic density environments, as the expected to occur in
the core of compact stars or during heavy-ion collisions. In the first case, the presence
of hyperons turns the stellar matter equation of state softer and, as a consequence,
decreases the maximum gravitational mass sustained by this matter. The difficulty in
reconciling the high observed masses of neutron stars with the description of these
objects when there are hyperons in their interior is known as the hyperon puzzle. Also,
being able to describe hadronic matter with an initial content of strangeness is relevant
to study the QGP formation and to explore the QCD phase diagram, since the free
quark matter can be stable if containing s quarks, if so, and many processes of decon-
finement preserve the flavor fractions during the hadron-quark phase transition [137,
121].
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Starting from ((85)), a novel extended version of the NJL model suited to de-
scribe hadronic matter constituted by protons, neutrons and Λ hyperons is proposed, in
analogy to the PPM NJL model. This SU(3) eNJL model for hadrons, named PPMM NJL
model, is built assuming three species of barions, ψ = [p n Λ]T with current masses
m̂ = diag(mp,mn,mΛ). Similarly to the SU(3) quark matter description, the SU(3) sym-
metry is explicitly broken, even assuming the isospin symmetry (mp = mn) in the
Lagrangian level, because mΛ cannot be confidently chosen equal to the nucleon mass.
Hence, the PPMM NJL model is given by the Lagrangian density

LPPMM = ψ̄
(
i /∂ – m̂

)
ψ + Gs

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2] – Gv (ψ̄γ
μ
λ0ψ)2

+ Gρ

8∑
a=1

[
(
ψ̄γ

μ
λaψ

)2 +
(
ψ̄γ5γ

μ
λaψ

)2] – χsv GsGv

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2](ψ̄γ
μ
λ0ψ)2

+ χsρGsGρ

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2]
8∑

a=1

[
(
ψ̄γ

μ
λaψ

)2 +
(
ψ̄γ5γ

μ
λaψ

)2]

– χvρGv Gρ(ψ̄γ
μ
λ0ψ)2

8∑
a=1

[
(
ψ̄γ

μ
λaψ

)2 +
(
ψ̄γ5γ

μ
λaψ

)2], (90)

where λ0 =
√

2/3 I and λ1, . . . ,λ8 are the Gell-Mann matrices. The interaction terms in
((90)) do not represent the more general SU(3)-symmetric Lagrangian possible, but are
chosen this way in analogy to the form of ((86)). As in the PPM case, this model is a
generalization of ((113)), and the equations below should recall the results for three-
flavor quark matter presented in the following when assumed Gρ = χab = K = 0 [159,
97, 189].

The mean-field thermodynamic potential can be obtained from this Lagrangian
in the same way as presented before, through the bosonization of the model by the
auxiliary fields given by the non-vanishing condensates. In particular terms in channels
without condensate or the space components in the vector vertex drop out, and only the
Gell-Mann matrices with non-zero diagonals contribute, i.e., λ0, λ3 and λ8, as exchange
terms do not play a role (ψiψj = 0 for i ̸= j). Thus, the thermodynamic potential is given
by

Ω =
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where ΩMi
(T ,μi ) is the same as given in equation ((108)) with Nc = 1. The total number

density is given by ρs = ρsp + ρsn + ρsΛ, with ρsi and ni defined by equations ((111))
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Table 5 – Parameter sets for the PPM Lagrangian density ((86)). The units of Ga are
fm2, and of χab are fm4. Λ and m are in MeV.

Set Λ Gs Gv Gρ χsv χsρ χvρ m
PPM-1 407.89 3.60 3.450 -0.20 0.15 0.05 0 135
PPM-2 407.89 3.60 3.450 -0.20 0.15 0.05 0.05 135
PPM-3 417.60 3.30 3.15 -0.20 0.15 0.10 0 150
PPM-4 411.24 3.45 3.30 -0.20 0.15 0 0.10 150
PPM-5 411.24 3.45 3.30 -0.20 0.15 0 0.15 150
PPM-6 421.56 3.15 3.00 -0.20 0.15 0 0.05 165
PPM-7 396.96 3.75 3.45 -0.20 0.15 0 0 165
PPM-8 424.32 3.75 3.75 -0.25 0.10 0.40 0.10 0

Table 6 – Parameter sets for the PPMM Lagrangian density ((86)). The units of Ga are
fm2, and of χab are fm4. Λ and mi are in MeV.

Set Λ Gs Gv Gρ χsv χsρ χvρ mp,n mΛ

PPMM-1 628.05 1.050 2.70 -3.00 0.03 0.13 0.15 135 286.25
PPMM-2 619.58 1.05 3.00 -2.85 0.04 0.14 0 165 317.69
PPMM-3 606.89 1.35 2.85 -2.85 0.01 0.14 0.14 0 148.64

and ((112)), as usual. It also was convenient to define the quantities ρ3 = np – nn and
ρ8 = np + nn – 2nΛ.

The constituent mass and the renormalized chemical potential were introduced
during the deduction, in the same fashion of the previous ways, and reads

Mi = mi – 4Gsρsi –
8
3

Gsvρsi n
2
B + 4Gsρρsi

(
ρ

2
3 +

1
3
ρ

2
8

)
, (92)

for i = {p,n,Λ},
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with the upper (lower) signs taken for i = p (i = n), and
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The suitable sets found for the PPMM NJL Lagrangian ((90)) are shown in Table 6.
The application of the equations of state of hadronic matter obtained above to

the description of bulk nuclear matter quantities starts from taking the expressions of
P and ε in the zero-temperature limit (as presented in Appendix A) and for symmetric
matter, see Eqs. (184), (188), (185) and (189). So, the coupling parameters of the PPM
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Table 7 – Symmetric nuclear matter properties at saturation density n0 (in fm–3). The
other quantities are in MeV.

Set n0 E0 K0 Q0 S0 L0
PPM-1 0.147 -16.50 360.87 -453.85 30.02 75.31
PPM-2 0.147 -16.50 360.87 -453.85 30.08 75.89
PPM-3 0.155 -16.43 374.64 -532.25 30.45 75.87
PPM-4 0.148 -15.60 360.84 -502.12 30.01 75.12
PPM-5 0.148 -15.60 360.84 -502.12 30.07 75.69
PPM-6 0.157 -15.56 375.66 -326.77 30.75 75.71
PPM-7 0.148 -15.78 278.84 -374.25 30.18 75.69
PPM-8 0.159 -16.42 332.25 -423.31 34.93 99.80

Table 8 – Symmetric nuclear matter properties at saturation density n0. The units are
the same as in Table 7.

Set n0 E0 S0
PPMM-1 0.169 -15.74 31.61
PPMM-2 0.167 -15.41 32.12
PPMM-3 0.169 -16.21 31.74

(Eq. (86)) and PPMM (Eq. (90)) models were fitted from symmetric nuclear matter
properties at saturation density presented in Chapter 1. The cutoff Λ is determined from
a given choice of Gs and mp,n by imposing the effective mass observed in vacuum
to be the nucleon mass, i.e., M = 939 MeV. This procedure is redone for the PPMM
model, where the Gs and cutoff previously obtained is applied to set the bare mass
of the Λ hyperon (mΛ) to reproduce MΛ = 1115 MeV. In this work, the parameter sets
were investigated through a brute-force search in order to find parameterizations that
reproduce nuclear matter theoretical/experimental constraints. The acceptable range
of bulk nuclear matter quantities values used in this first investigation was slightly
broader than the suggested by [53, 52], and are explicitly given by –17 ≤ E0 ≤ –15,
200 ≤ K0 ≤ 380, –1200 ≤ Q0 ≤ –200, 30 ≤ S0 ≤ 35 and 40 ≤ L0 ≤ 76 (all quantities
given in MeV).

Table 5 shows all approved parameter sets found to the PPM model, the set
PPM-8 do not satisfy the constraint of the symmetry energy slope L0, but was included
in order to allow comparisons with chirally symmetric (m = 0) models for quark matter.
Table 7 gives the symmetric nuclear matter properties for these PPM model parame-
terizations. This first investigation failed to find parameter sets capable to fulfill all the
desired constraints for the PPMM model, Table 6 shows some representative parame-
terizations that satisfy only the constraints in E0 and S0, whose respective values are
given in Table 8. For this model, only very stiff EoS were found during the parameter
search, with K0 always exceeding 1500 MeV. Figures 34-36 show the behavior of the
more important quantities discussed here, illustrating the effects of the parameter set
choices or, in a given parameterization, taking different particle populations.
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The symmetry energy curve given by equation ((27)) is illustrated in Figure 37,
as well as two approximations of its value following equation ((32)), for the parameter
set PPM-7. Notice that high order symmetry energies seem to be more significant in
higher densities.

The symmetry energy curve given by equation ((27)) is illustrated in Figure 37,
as well as two approximations of its value following equation ((32)), for the parameter
set PPM-7. Notice that high order symmetry energies seem to be more significant in
higher densities.

It is important to stress the results shown here are preliminary, and a more
refined search of parameterizations must be performed in future works. In particular,
we intend to understand better the consequences of the crossed coupling terms and the
algebra SU(3) in the PPMM model that, e.g., make the effective mass of the Λ hyperon
dependent of the asymmetry between p and n, due to the term Gsρ in ((92)). After that,
a more refined search of parameterizations must be performed in future works, as well
as the inclusion of temperature and eventually, magnetic field.
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5 QCD PHASE DIAGRAM IN THE NJL MODEL FRAMEWORK

This part of the work aims to study the QCD phase transition taking a two-model
approach to describe hadron and free quark matters, but using, for the first time, chiral
symmetric NJL-type models for both EoS. The two EoS formalism has been applied
to the study of the hadron-quark phase transition in several studies of the QCD phase
diagram. In [26] and [121], the hadron-quark phase transition was investigated with the
help of two different models, namely, the non-linear Walecka model (NLWM) for the
hadronic phase and the MIT bag model for the quark phase. A formalism understood
as a more adequate one was used in [149, 150, 184] at zero temperature and by
[103] for finite temperatures, all considering NJL-type models for the two phases. This
formalism, which is also developed in this work, is arguably more adequate, because the
effective models employed here allow to describe chiral symmetry in both hadronic and
quark phases, which is demanded to take seriously the appearance of the quarkyonic
phase. It is argued that the phase transition in QCD can take place in two different
steps at low temperatures, first by the (partial) restoration of the chiral symmetry where
chromodynamic matter is still confined, giving rise to the so-called quarkyonic phase
[124], and only then by the deconfinement phase transition.

5.1 FORMALISM

The Nambu–Jona-Lasinio model does not reproduce the confinement of quarks
expected from the quantum chromodynamics. There are models that emulate this
feature, as the well-known MIT bag model (from Massachusetts Institute of Technology)
[32], but versions of the NJL model can be interpreted as an schematic quark model for
many situations where chiral symmetry breaking/restoration is the relevant feature of
QCD, as in the aforementioned understanding of the pseudo-Goldstone nature of pions
and in the description of interacting but deconfined quark matter (i.e., the QGP). In this
section, the formalism that allows the thermodynamical description of free quark matter
is obtained within the NJL model framework, for two and three quark flavors and in a
mean-field (Hartree) level, following [20].

The NJL Lagrangian ((75)) can be extended by the inclusion of a vector-isoscalar
interaction term, such that, considering two quark flavor fields ψ =

[
ψu ψd

]T , assumes
the form

L = ψ̄(i /∂ – m̂)ψ + Gs[(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)2] – Gv (ψ̄γ
μ
ψ)2, (95)

where m̂ = diag(mu,md ) is the quark bare masses (here the isospin symmetry is
assumed in the Lagrangian level, i.e., mu = md ), τ⃗ is the Pauli isospin matrix, and
Gs and Gv are the coupling constants. Both scalar and pseudoscalar (proportional to
Gs), and vector-isoscalar (proportional to Gv ) terms are symmetric in the chiral limit,
meaning that Lagrangian ((95)) exhibits a SU(2) flavor symmetry [159]. Other terms, e.g.
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Table 9 – Parameter sets for the NJL Lagrangian density ((95)). M is the constituent
mass at zero temperature and chemical potential [22, 20, 25].

Set Λ (MeV) Gs (fm2) Gv (fm2) m (MeV) M (MeV)
Buballa1 650 0.19721 0 0 313
Buballa2 600 0.26498 0 0 400
BuballaR-2 587.9 0.27449 ∝ Gs 5.6 400
PCPSU(2) 648 0.19565 ∝ Gs 5.1 312.6

an isovector term, could be added as well, but they would not contribute at mean-field
level with just one chemical potential for u and d quarks. As previously discussed, Gs,
m and Λ are fitted by the pion mass mπ = 135.0 MeV and its decay constant fπ = 92.4
MeV. Table 9 shows four possible parameter sets usually considered in the literature.

The grand-canonical thermodynamic potential per volume V at temperature T
can be obtained from the Lagrangian of the system through overall procedure dis-
cussed in the Appendix A, which essentially demands the knowledge of the quantity
L + μψ†ψ. In the mean-field level, Lagrangian ((95)) can be rewritten again through the
bosonization of the model, so it is straightforward to write

L + μψ
†
ψ = ψ̄ (i /∂ – m + 2Gsρs)ψ + (μ – 2Gv nB)ψ†

ψ – Gsρ
2
s – Gv n2

B

= ψ̄ (i /∂ – M)ψ + μ̃ ψ
†
ψ –

(M – m)2

4Gs
–

(μ – μ̃)2

4Gv
, (96)

where the constituent mass and renormalized chemical potential were introduced, re-
spectively,

M = m – 2Gsρs and μ̃ = μ – 2Gv nB. (97)

Equation ((96)) shows that, in the mean-field level, particles governed by the Lagrangian
((95)) behave as non-interacting particles with mass M subject to a chemical potential
μ̃, apart field-independent terms that give trivial contributions to the thermodynamic po-
tential. Thus, from the contribution of the displaced free fermion gas, given by equation
((167)), and the trivial terms arising from ((96)), the thermodynamic potential is

Ω(T ,μ; M,μ̃) = ΩM (T ,μ̃) +
(M – m)2

4Gs
–

(μ – μ̃)2

4Gv
, (98)

with

ΩM (T ,μ̃) = –2Nf Nc

∫
d3p

(2π)3
{

Ep + T ln
[
1 + e–(Ep–μ̃)/T

]
+ T ln

[
1 + e–(Ep+μ̃)/T

]}
, (99)

as presented in Appendix A, where now Ep =
√

p2 + M2, and Nf = 2 and Nc = 3
standing for the number of flavors and colors, respectively.
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From equations ((81)), ((83)) and ((97)), the coupled set of self-consistent equa-
tions for M and μ̃ that generalizes the gap equation for non-zero temperature and
chemical potential can be written as

M = m + 4Nf NcGs

∫
d3p

(2π)3
M√

p2 + M2

[
1 – np(T ,μ̃) – n̄p(T ,μ̃)

]
(100)

and

μ = μ̃ + 4Nf NcGv

∫
d3p

(2π)3
[
n(T ,μ̃) – n̄(T ,μ̃)

]
, (101)

which can be inverted to define μ̃ as a function of μ. The previous equations can also
be obtained by requiring a thermodynamically consistent treatment, which demands
the relations ∂Ω/∂μ̃ = 0 and ∂Ω/∂M = 0, that result in equations ((100))–((101)).

A constant term in the thermodynamic potential has no physical meaning, so
an irrelevant constant can be chosen such that the thermodynamic potential is zero
at M = Mvac, minimizing Ω at T = μ̃ = 0. This process may be represented by taking
Ωvac = Ω(0,0; Mvac, 0) such that

Ω̃(T ,μ; M, μ̃) = Ω(T ,μ; M, μ̃) – Ωvac. (102)

The constituent mass at zero temperature and chemical potential Mvac can be obtained
by taking the limits T → 0 and μ → 0 in equation ((98)),

Ω(0,0; M, 0) = –2Nf Nc

∫
d3p

(2π)3
Ep +

(M – m)2

4Gs
, (103)

and solving for Ω(0,0; Mvac, 0) = 0. From these results for the grand-canonical potential,
other thermodynamic quantities can be obtained in the standard way (see Appendix A).

The importance of the vector channel Gv can be highlighted by some later con-
siderations.The mathematical formalism of the vector interaction shows that it acts
similarly to the ω meson in quantum hadrodynamical models [52], creating an addi-
tional repulsion between the particles, so stiffening the EoS. This effect is desirable
once it has significant consequences to astrophysical applications of this results, such
as allowing the description of more massive neutron stars. Also, the vector term weak-
ens and delays the phase transition of the chiral restoration, and potentially makes the
first order transition between the chiral and CFL phases become weaker, leading to the
existence of the coexisting phase in which both the chiral and color-gauge symmetry
are dynamically broken in a wider range of the density and temperature [92]. Also, as
the additional term in ((98)) vanishes at zero chemical potential, there is no vacuum cor-
rection consequences due to the value of the coupling constant Gv . So, in principle, this
parameter can be almost arbitrarily chosen, allowing to write it as Gv = xGs. However,
in order to obtain feasible physical results, it is desirable to constrain the values that the
vector channel can take. From astrophysical considerations, [79] suggests that the free
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parameter x can vary in the range 0 ≤ x ≤ 1. Narrower ranges are proposed from direct
comparisons with LQCD results in [92] and [91], the first establishing 0.2 ≤ x ≤ 0.3
by studying the interplay between the chiral and color-gauge symmetry, and the latter
setting 0.25 ≤ x ≤ 0.4 through the fitting of LQCD pseudo-critical temperature. Yet,
[176] suggests the very restrictive choice of x = 0.33. Furthermore, these constraints
shall be taken into account during the discussion of results, and the parameterization
choice will be written as, e.g., PCPSU(2)-0.1, which reads as the PCPSU(2) parameter
set taken with x = 0.1.

To consider asymmetric matter is important to properly describe many relevant
situations found in nature. Up to this point, the isospin symmetry was assumed in the
Lagrangian level and the same chemical potential was taken for both flavors of quarks.
But, when generalizing the above results for the explicitly broken isospin symmetry
(mu ̸= md ) and different flavor fractions (nu ̸= nd ), the existence of two generally
different quark condensates must be assumed, i.e., ⟨ψ̄uψu⟩ ≠ ⟨ψ̄dψd ⟩ such that

ρsi = ⟨ψ̄iψi⟩ and ni = ⟨ψ†
i ψi⟩, i = u,d , (104)

and the total scalar and number densities can be written as

ρs = ρsu + ρsd , (105)

nB = nu + nd . (106)

The mean-field thermodynamic potential can be straightforwardly obtained through the
same arguments presented above, resulting in

Ω(T ,{μi }) =
∑

i=u,d

ΩMi
(T ,μ̃i ) + Gs

(
ρsu + ρsd

)2 – Gv (nu + nd )2 , (107)

where

ΩMi
(T ,μ̃i ) = –2Nc

∫
d3p

(2π)3
{

Epi + T ln
[
1 + e–(Epi–μ̃i )/T

]
+ T ln

[
1 + e–(Epi+μ̃i )/T

]}
, (108)

with

Mi = mi – 2Gs
(
ρsu + ρsd

)
, (109)

μ̃i = μi – 2Gv (nu + nd ) . (110)

and Epi =
√

p2 + M2
i , for i = u,d . Setting a quark fraction yi = ni /nB allows to fix the

chemical potentials during the solution of these equations for asymmetric matter, using

ρsi = –2Nc

∫
d3p

(2π)3
Mi√

p2 + M2
i

[
1 – np(T ,μ̃i ) – n̄p(T ,μ̃i )

]
(111)
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and

ni = 2Nc

∫
d3p

(2π)3
[
np(T ,μ̃i ) – n̄p(T ,μ̃i )

]
. (112)

It is relevant to notice that the i-flavor condensate, given by ((111)), depends only
on the constituent mass of the same flavor, while the constituent mass for one flavor
depends on both condensates, thus making both flavors coupled. Even so, in the isospin
symmetric model (mu = md ), one has Mu = Md for any quark fractions considered.

The presence of the strange quark (s) in the description of free quark matter is
relevant to many QCD phenomena taking place in the light quark sector. It is demanded
when the Bodmer-Witten conjecture for the stability of quark matter [15, 196, 55] is
considered, given that deconfined three-flavored quark matter (named strange matter )
might be energetically favored as compared with the two-quark ordinary hadronic matter.
It occurs because the inclusion of the s quark in the ordinary u-d matter represents a
new degree of freedom for the Fermi seas of the particles, lowering the total binding
energy of the system [192].

The NJL model version which incorporates the s-quark with the repulsive vector
interaction is given by the Lagrangian density,

LSU(3) = ψ̄
(
i /∂ – m̂

)
ψ + Gs

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2] – Gv (ψ̄γ
μ
ψ)2

– K {det[ψ̄(1 + γ5)ψ] + det[ψ̄(1 – γ5)ψ]}, (113)

which is analogous to equation ((95)), where now ψ is the three-flavor quark field,
ψ =

[
ψu ψd ψs

]T , and m̂ = diag(mu,md ,ms) is the quark bare masses, λ0 =
√

2/3⊮
and λ1, . . . ,λ8 are the SU(3) flavor group generators (the so-called Gell-Mann matrices),
and Gs, Gv and K are the coupling constants. Even assuming the isospin symmetry
(mu = md ) in the Lagrangian level, ms cannot be chosen equal to the non-strange quark
mass in realistic calculations, thus making the SU(3) symmetry explicitly broken.

The term proportional to K in ((113)) is known as ’t Hooft term, and is a determi-
nant in flavor space, i.e., for the SU(3) case,

det(ψ̄Oψ) =
∑
i ,j ,k

εijk (ψ̄uOψi )(ψ̄dOψj )(ψ̄sOψk ), (114)

where i ,j ,k ∈ {u,d ,s} and O = 1 ± γ5. The ’t Hooft interaction is chirally symmetric
but breaks down the U(1)A symmetry otherwise left unbroken by the other interaction
channels, thus emulating the relevant QCD feature of gluon-induced U(1)A anoma-
lous symmetry breaking by employing a maximally flavor-mixing six-point interaction
between quarks directly in the tree level of the NJL model. This term can be straightfor-
wardly generalized to any number of flavors, and it is already included in the SU(2) NJL
Lagrangian ((95)) for a specific choice of K . As in the SU(2) case, the free parameters
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Table 10 – Parameter sets for the NJL Lagrangian density ((113)). mi are the bare
masses, and Mi are the constituent masses at zero temperature and chemi-
cal potential (in MeV) [80, 25].

Set Λ (MeV) Gs (fm2) Gv (fm2) K (fm5) mu,d ms Mu,d Ms
RKH 602.3 0.19696 ∝ Gs 0.04665 5.5 140.7 367.7 549.5
HK 631.4 0.17922 ∝ Gs 0.02769 5.5 135.7 335.5 527
PCPSU(3) 630.0 0.17472 ∝ Gs 0.02800 5.5 135.7 312.2 508

of the model are fitted from properties of the pseudoscalar mesons, Table 10 shows
four possible parameter sets usually considered in the literature, where again it is taken
Gv = xGs as a free parameter.

The thermodynamic properties of the three-flavor NJL model given by Lagrangian
((113)) is obtained directly from the same procedure as the two-flavor case, just observ-
ing the inclusion of the six-point vertices the ’t Hooft interaction, which means that there
is an additional term involving two quark loops in the gap equation. The results of the
previous section can then be generalized for this model, starting from three independent
chemical potentials for the three flavors since the explicit breaking of the SU(3) symme-
try by the larger mass of the quark s. Then, the mean-field thermodynamic potential is
given by

Ω(T ,{μi }) =
∑

i=u,d ,s

ΩMi
(T ,μ̃i ) + 2Gs(ρs

2
u + ρs

2
d + ρs

2
s) – 2Gv (nu + nd + ns)2

– 4Kρsuρsdρss, (115)

where ΩMi
is the same as given in equation ((108)), the densities ρsi and ni are still

given by ((111)) and ((112)), respectively, and

Mi = mi – 4Gsρsi + 2Kρsjρsk (116)

μ̃i = μi – 2Gv (nu + nd + ns) , (117)

with i ̸= j ̸= k . Notice that there is a flavor mixing term in the mass gap equation,
proportional to the coupling constant K , coupling explicitly the i-flavor quark con-
stituent mass with all the other two condensates. However, that would not be true if the
’t Hooft interaction were disregarded (K = 0), which would make the equation ((116))
no longer dependent of the other flavors, in contrast to the SU(2) case (Eq. (109)). It
is a consequence of the underlying algebra, reflected, e.g., in the shape of the scalar
terms of the thermodynamic potentials ((107)) and ((115)). Also, since ms ≈ 135 MeV,
the chiral limit might not be a good approximation to the model with realistic masses,
so making the finite-mass effects much more pronounced here than in the two-flavor
model.

A cautionary word about the absolute stability of free strange matter is, however,
necessary. It is well known that the NJL model does not satisfy the Bodmer-Witten
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Table 11 – Parameter sets for the eNJL thermodynamic potential ((120)). The units of
Ga are fm2, and of Gab are fm8. Λ and m are in MeV [142].

Set Gs Gv Gsv Gρ Gvρ Gsρ Λ m
eNJL3σρ1 1.93 3.0 -1.8 0.0269 0 0.5 534.815 0
eNJL2mσρ1 1.078 1.955 -2.74 -0.1114 0 1 502.466 500

conjecture of absolutely stable deconfined quark matter [19]. However, the effects of a
magnetic field or a small increase of temperature seem to be enough to guarantee that
the strange matter acquires stability, as demonstrated by [44], and the Bodmer-Witten
conjecture is considered here in this context.

The equations of state, i.e., pressure P and energy density ε, are easily obtained
from the formalism discussed above in this chapter through the usual thermodynamic
relations

P(T ,μ) = –Ω̃(T ,μ; M, μ̃), (118)

and
ε(T ,μ) = –P(T ,μ) + Ts(T ,μ) +

∑
i

μini (T ,μ), (119)

where i = {u,d} or i = {u,d ,s} for the case of two or three quark flavors, respectively. The
entropy density is s = –∂Ω/∂T , given by the free fermion gas contribution alone (Eq.
(170)), taken for particles of mass Mi subject to a chemical potential μ̃. Employing the
prescription of vacuum subtraction (Eq. (102)) also guarantees that P and ε vanish at
zero temperature and density. The expressions to the zero temperature limit are derived
in the Appendix A.

The model employed next to describe the hadronic matter, named here eNJL,
is the original version proposed in [142], taken as a first version of the PPM model
described in Chapter 4. The thermodynamic potential of the eNJL, at zero temperature,
is given by

Ω(0,μ) = εkin–μpnp –μnnn–Gsρ
2
s +Gv n2

B +Gρρ
2
3+Gsvρ

2
sρ

2+Gsρρ
2
sρ

2
3+Gvρn2

Bρ
2
3, (120)

and

M = m – 2Gsρs + 2Gsvρsn2
B + 2Gsρρsρ

2
3, (121)

μi = μ̃i + 2Gv nB + 2Gsv nBρ
2
s ± 2Gρρ3 ± 2Gsρρ3ρ

2
s + 2Gvρ(ρ2

3nB ± n2
Bρ3), (122)

with the upper (lower) signs taken for i = p (i = n) and all other variables are the same
as presented in the PPM model discussion. Table 11, gives the eNJL model parameter
sets obtained by [142] that are successful in describing all important nuclear and stellar
constraints.

The vector contribution in the quark model has proved to make the quark EoS
stiffer and may have important consequences on the structure of hybrid or pure quark
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Figure 38 – Hadronic and quark matter pressures (i=H,Q) as functions of the baryonic
chemical potential μB for symmetric matter.

Table 12 – Values of nB and μi
B at the onset of chiral restoration for different NJL SU(2)

and eNJL model parameterizations (i=H,Q).

Set nB (fm–3) μi
B (MeV)

Buballa-1 0.27 941
Buballa-2 0.36 1035
PCP-0.0 0.29 1005
PCP-0.1 0.24 1011
PCP-0.2 0.20 1020
PCP-0.3 0.17 1032
PCP-0.4 0.17 1047
PCP-0.5 0.17 1059

eNJL3σρ1 1.0 1674
eNJL2mσρ1 1.0 1568

compact stars [94]. In particular, the inclusion of this term gives rise to larger star
masses although with smaller quark cores in the case of hybrid stars.

5.2 HADRON-QUARK PHASE TRANSITION

Figure 38 displays the EoS of both phases for two specific choices of parameters.
The discontinuities are related to the points where chiral symmetry is restored and the
points where the pressure becomes negative are omitted. Table 12 shows, for each
of the two flavor quark and hadronic parameterizations used in the present work, the
density and chemical potential for which chiral symmetry is restored.
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Figure 39 – Example of a combination of parameter sets for which hadron-quark phase
transitions are (left) or are not (right) allowed to happen in symmetric matter.

The QCD phase diagram is characterized by potentially multiple phases, whose
phase separation boundaries are referred as binodals [133]. Over those boundaries,
the phases from the regions of either side of the boundary can coexist. The binodals
may be determined using the Gibbs conditions [26],

μ
Q
B = μ

H
B , T Q = T H and PQ = PH , (123)

where the indexes H and Q refer to the hadronic and quark phases. The chemical
potentials are given by

μ
H
B =

μp + μn
2

and μ
Q
B =

3
2

(μu + μd ) = 3μq. (124)

At a certain fixed temperature (T = 0 in the present context), the phase coex-
istence condition may be obtained by plotting P i × μi

B, i = Q, H, and looking for the
intersection of both curves. See the left panel of Figure 39 for an example, where the
hadron pressure given by the eNJL3σρ1 parameterization is plotted together with the
quark pressure given by the PCP parameterization of the NJL model for several choices
of the vector interaction strength x such the coexistence of the hadron and the quark
phases occurs, allowing the phase transition to happen. Otherwise, the absence of
intersections imply that there are no phase transitions allowed between the phases
considered within a specific pair of models, as shown in the right panel of Figure 39,
where the hadronic matter is always more stable. The existence of a hadron-quark
phase transition depends on both the quark matter and hadronic matter EoS: the same
quark matter EoS, PCP-0.2, that predicts a phase coexistence with one hadronic EoS
(eNJL3σρ1) ceases to predict with a different one.

The value of chemical potential μi
B for which the phase transition takes place

for all combinations of parameter sets given in Tables 9 and 11 are determined, still
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restricting the treatment of the hadron phase to symmetric matter due to the fact that
here the quark phase is taken with equal fractions of u and d particles. This reflects
the fact that both particles are assumed to have the same bare masses and the same
chemical potentials. The results so obtained are displayed in Table 13. In particular
one may note that no combinations involving the BuballaR-2 set with Gv ̸= 0 give
rise to a phase transition. It should be pointed out the large differences among the
chemical potential and density at the hadron-quark transition predicted by the models
considered. Compatibility constraints between the hadronic and quark model should
be imposed when describing the hadron-quark phase transition within a two-model
description, which may reduce the phase transition uncertainties. In the present study,
chiral symmetry is present in both the hadron and quark model. Several compatibility
constraints could be considered: i) the quark phase should not be in a chiral broken
phase at deconfinement if the hadronic phase is already in a chiral symmetric phase.
This condition is fulfilled for all cases discussed above. ii) a more restrictive constraint
would be that at deconfinement the hadron and the quark phase have the same chiral
symmetry. From Tables 12 and 13, one may conclude that for symmetric matter only
quark models that predict a deconfinement chemical potential above 1674 (1568) MeV
are compatible with eNJL3σρ1 (eNJL2mσρ1). i.e. Buballa-2, Buballa-R2, and PCP-0.2;
iii) however, one may also interpret that the deconfinement coincides with chiral sym-
metry restoration. Moreover, in fact the eNJL2mσρ1 model has no chiral symmetric
phase because this is a model with a term breaking explicitly the chiral symmetry, and
the chemical potential indicated corresponds to half the vacuum mass. In this scenario
the mixed phase between a pure hadronic and a pure quark matter phase would be
constituted by clusters of non-chiral symmetric hadronic matter in a background of chiral
symmetric quark matter, or the other way around; iv) for asymmetric matter the possi-
ble scenarios are much more complex because two or more conserved charges may
be considered, and the restoration of chiral symmetry will occur at different baryonic
densities or chemical potentials for different species. In the following, the discussion is
based on interpretation iii).

As stated, the aim of this part of the work is to obtain the QCD phase diagram with
both hadronic and quark models based on the same underlying formalism, i.e., within
different versions of the NJL model. The study of the hadron-quark phase transition
at zero temperature and for symmetric matter is the first step, but the inclusion of
asymmetry, strangeness, temperature and eventually, magnetic field will be performed.

5.3 APPLICATION: METASTABLE STARS

In order to describe compact star matter, leptons are included and electric charge
neutrality and chemical equilibrium must be taken enforced. Leptons are introduced
in the system by adding them in the model Lagrangian density as a free fermionic
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Table 13 – Chemical potential, pressure, and barionic density at the coexistence point
for different parameterization combinations in symmetric matter. nB refers to
the hadronic phase. For BuballaR-2, in this table, Gv = 0 and eNJL2mσρ1
presents no chiral symmetric phase (see the text for details).

NJL SU(2) eNJL μB (MeV) P (MeV/fm3) nB (fm–3)

Buballa-2 eNJL2mσρ1 1674 504 1.420
eNJL3σρ1 1567 356 0.812

BuballaR-2 eNJL2mσρ1 1729 586 1.497
eNJL3σρ1 1585 373 0.839

PCP-0.0 eNJL2mσρ1 1312 158 0.506
eNJL3σρ1 1348 185 0.553

PCP-0.1 eNJL3σρ1 1544 336 0.780
PCP-0.2 eNJL3σρ1 1787 576 1.088

Lagrangian, i.e.,
L = ψ̄l (i /∂ – ml )ψl , (125)

where l refers to the leptons, and unless stated otherwise, electrons and muons are
considered, whose masses are, respectively, 0.511 MeV and 105.66 MeV. Thus, the
following constraints on chemical potential and baryonic number density have to be
imposed for hadronic star matter

μn = μp + μe, (126)

np = ne + nμ, (127)

and, similarly, for quark star matter,

μs = μd = μu + μe, (128)

ne + nμ =
1
3

(2nu – nd – ns). (129)

In both cases, μe = μμ. This is the same discussion already made in the first part of the
work, when stellar matter was discussed in the context of RMF models. The difference
is that now there are no hyperons or deltas.

To study the possibility of a hadron-quark phase transition to take place in the
interior of compact stars, it is considered in the description of hadronic stars the EoS
obtained from the eNJL model, presented above, with β-equilibrium and electric charge
neutrality enforced. As for the quark matter, the EoS discussed above are employed
to describe deconfined quark star matter, also imposing β-equilibrium and electric
charge neutrality. During the hadron-quark phase transition process, the composition
of quark matter is not expected to be β-stable [21]. However, as the main interest here
is the energetical content of the final quark or hybrid star, this intermediate stage is
disregarded next.

Figure 40 shows the quark matter EoS for some parameter choices, from where
one can see the hardening effect of the vector interaction in both situations, the same
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Figure 40 – Pressure versus baryonic density for NJL SU(3) parameterizations with dif-
ferent values of x . β-equilibrium and electric charge neutrality are enforced.

well known effect encountered in the SU(2) model for hadronic matter without equilib-
rium conditions [125]. The small bumps present in Figure 40 are a characteristic of the
chiral symmetry restoration associated with the s quarks. Moreover, at large densities,
after the total restoration of the chiral symmetry, the densities of the three quarks are
the same (1/3 of the total baryonic number density each).

In the same way as previously shown, the transition pressure and chemical
potential which satisfy the Gibbs conditions are obtained, now enforcing β-equilibrium
and charge neutrality within both phases. In stellar matter, the baryonic and quark
chemical potentials are usually defined in terms of the EoS variables as

μ
H
B =

εH + PH
nB

, μ
Q
B =

εQ + PQ
nB

, (130)

taking T = 0. The results obtained for the coexistence points of hadron and quark
stellar matter are displayed in Table 14. From it, one can see that the effect of the
vector interaction on the phase transition is a displacement of the phase transition point
towards higher pressures and higher chemical potentials.

Three diferent internal structures are next considered for the compact star fam-
ilies: (i) hadronic stars modeled by the eNJL equations of state; (ii) bare quark stars
modeled by the NJL SU(3) EoS; and (iii) hybrid stars, constituted by hadronic matter
in its outer region and deconfined quark matter in the center. The equation of state for
hybrid stars is built from the hadronic and quark EoS by performing a Maxwell construc-
tion. This method might seem naive since charge neutrality is imposed only locally and
results in the fact that the leptonic chemical potential suffers a discontinuity. But, as the
aim is to study the macroscopic properties and the energetical content of the compact
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Table 14 – Chemical potential and pressure at the coexistence point for different param-
eterization combinations for hadronic and three flavor quark stellar matter
with equilibrium conditions enforced.

NJL SU(3) eNJL μ0 (MeV) P0 (MeV/fm3)
HK-0.0 eNJL2mσρ1 1399 196
HK-0.1 eNJL2mσρ1 1529 297
HK-0.2 eNJL2mσρ1 1710 482
HK-0.3 eNJL2mσρ1 2122 1144
HK-0.0 eNJL3σρ1 1349 154
HK-0.1 eNJL3σρ1 1462 227
HK-0.2 eNJL3σρ1 1579 313
HK-0.3 eNJL3σρ1 1709 422
HK-0.4 eNJL3σρ1 1863 571

PCP-0.0 eNJL2mσρ1 1209 83
PCP-0.1 eNJL2mσρ1 1420 211
PCP-0.2 eNJL2mσρ1 1594 356
PCP-0.0 eNJL3σρ1 1170 64
PCP-0.1 eNJL3σρ1 1328 143
PCP-0.2 eNJL3σρ1 1481 239
PCP-0.3 eNJL3σρ1 1617 344
PCP-0.4 eNJL3σρ1 1768 477
PCP-0.5 eNJL3σρ1 1949 663

stars, this construction suffices as shown in [145]. The BPS EoS [12] is also included
to the hadronic matter results to account for the description of the low-density matter in
the hadronic and hybrid stars outer crusts.

The family of possible compact stars are straightforwardly obtained by using the
equations of state as input to the Tolman-Oppenheimer-Volkoff (TOV) equations for the
relativistic hydrostatic equilibrium. To solve the TOV equations one needs to impose
boundary conditions given by P(R) = 0 and P(0) = Pc , where R is the star radius and
Pc is the central pressure. In the following, M(R) and MB(R) are respectively the total
gravitational and total baryonic masses.

In the following, the conversion mechanism of hadronic to hybrid stars is investi-
gated. Similar analysis already exist in the literature [107, 145], but models based on
the same underlying field theory class in both hadron and quark phases were never
considered. If a compact star consisting only of hadrons and leptons in β-equilibrium,
electrically neutral and with no fraction of deconfined quark matter, sustains a central
pressure PC larger than the coexistence pressure of the hadron and quark phases,
i.e. P0, the hadronic star is said to be metastable to conversion to a quark or hybrid
star [121]. The possibility of the conversion depends on the values of the hadronic star
central pressure, PC , and the pressure that satisfies the condition of phase coexistence,
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Table 15 – Stellar macroscopic properties obtained with the two eNJL parameteriza-
tions. The first set of values refers to the maximum mass star and the later
to the canonical star.

eNJL2mσρ1 eNJL3σρ1
Mmax (M⊙) 2.02 2.19
MB (M⊙) 2.33 2.56
R (km) 11.19 11.37
CMmax

(M⊙/km) 0.180 0.192
nC (fm–3) 0.981 0.966
μC (MeV) 1623 1781
PC (MeV/fm3) 363 489
R1.4M⊙ (km) 12.20 12.94
C1.4M⊙ (km/M⊙) 0.114 0.108

P0, for a given pair of EoS obtained from the respective models.
Table 15 shows some basic properties of hadronic stars modeled with the pa-

rameterizations of the eNJL model discussed, for stars with the maximum mass and for
canonical stars with M = 1.4 M⊙. Two of these results are of special relevance following
recent observational and theoretical advances, namely the radius of the canonical neu-
tron star (R1.4M⊙) and the compactness of the maximum mass and the canonical star
(CMmax

and C1.4M⊙), defined as the ratio between masses and radii of the respective
compact stars. Both properties have been extensively discussed in the recent literature
[108, 120]. Different hypotheses lead to predictions of the radii of the canonical neutron
star varying from 9.7-13.9 km to 10.4-12.9 km [172] and from 10.1 to 11.1 km [141].
The results shown for the radii are not compatible with the predictions of very small radii
of [141] but lie within the other two constraints, as also obtained in [120] for a very large
number of models.

Similarly, properties of maximum mass configuration of quark and hybrid stars
for some parameter choices are shown in Table 16. It is worth noticing that larger vector
interaction parameters in the quark matter model result in more massive hybrid stars
with smaller quark cores, reflecting the stiffening of the EoS discussed in [125]. Indeed,
following the effect of the vector interaction in the displacement of the phase transition
point to higher pressures, as P0 approaches the maximum PC of the metastable star
family, the deconfined quark matter core is possible only inside the most massive stars.
As a result, the TOV stable solutions for hadronic and hybrid EoS differ only for a
narrow set of stars where the condition PC ≥ P0 is fulfilled. The compactness of both
pure hadronic and hybrid canonical star are close to the one recently measured for an
isolated neutron star as being equal to 0.105 ± 0.002 [78].

Moreover, one can see that the central pressures PC of the hadronic stars are
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Table 16 – Stellar macroscopic properties of quark and hybrid stars, obtained with some
different EoS parameterizations for the phases. The first set of values refers
to the maximum mass star and the second to the canonical star. For the
hybrid stars, nH and nQ denote the densities of the metastable and quark
matter at the phase coexistence point, and MH-Q denotes the gravitational
mass of the less massive star that sustains a deconfined quark core. The
units are the same as the Table 15.

Quark Star Hybrid Star
eNJL2mσρ1 eNJL3σρ1

PCP-x : 0.0 0.2 0.5 0.0 0.2 0.0 0.1 0.2 0.4

P
ro

pe
rt

ie
s

Mmax 1.63 1.79 1.97 1.80 2.02 1.63 1.97 2.18 2.19
MB 1.81 1.97 2.15 2.03 2.33 1.81 2.25 2.55 2.57
R 9.90 10.19 10.79 11.60 11.23 12.02 12.25 12.13 11.39
CMmax

0.164 0.175 0.182 0.155 0.179 0.135 0.160 0.179 0.192

nC 1.035 0.995 0.915 0.910 1.084 1.021 0.834 0.820 1.118
μC 1408 1527 1667 1380 1594 1408 1408 1481 1768
PC 230 283 332 202 356 227 205 239 477
R1.4M⊙ 10.00 10.43 11.05 12.20 12.20 12.94 12.94 12.94 12.94
C1.4M⊙ 0.140 0.134 0.126 0.114 0.114 0.108 0.108 0.108 0.108

nH 0.487 0.979 0.421 0.564 0.700 0.955
nQ 0.527 1.185 0.477 0.648 0.873 1.234
MH-Q 1.62 – 1.57 1.93 – –
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Figure 41 – Ratio between the gravitational and baryonic masses versus baryonic mass
of hadronic, hybrid and quark stars, for diferent EoS parameterizations.
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larger than some of the coexistence pressure values P0, as shown in Table 14, notably
for smaller values of the vector interaction parameter x in the quark matter modeling.
This is the first condition that enables the conversion of a metastable neutron star into
a quark or hybrid star. The other condition is that the gravitational mass of the initial
metastable hadronic star must be bigger than the gravitational mass of the final star,
either quark or hybrid star, for a given baryonic mass, so that the conversion can be
exothermal in rest while respecting the baryonic number conservation [121]. Figure
41 illustrates the results by plotting the ratio between the gravitational and baryonic
masses with respect to the baryonic mass, in a way that highlights the small differ-
ences between the curves while preserving the interpretation that the conversion is
energetically allowed only if the final configuration is below the initial one for MB fixed.

The gravitational masses of quark stars are bigger than the gravitational mass of
the hadronic star with the same baryonic mass, which is already expected from previous
results in literature, [e.g., 19]. Follows that the conversion of a hadronic star to a bare
quark star is always energetically forbidden for the parameterizations considered in this
work, even in cases where it would be allowed by the Gibbs thermodynamic condition.
This feature can be better understood looking for some notable cases. For the PCP-0.5
case, which results in a quark star with PC = 332 MeV/fm3, one sees in Table 14 that
the conversion is allowed by the Gibbs criteria only if the eNJL3σρ1 hadronic matter
is used in the modeling of the metastable star. However, the coexistence pressure is
much higher than the ones sustained by the compact stars described by each phase.
This feature prevents the conversion to take place, since it would occur at constant P,
i.e., both initial and final should sustain PC ≥ P0. Taking the PCP-0.2 case, instead, the
quark star sustains PC = 283 MeV/fm3, which allows a hadron-quark coexistence point
with both hadronic matter parameterizations, as seen in Table 14. If the eNJL2mσρ1
hadronic matter is considered, one has PH

C = 363 > P0 = 356 > PQ
C = 283 MeV/fm3. It

means that, despite the metastable hadronic star bulk is overpressured enough to allow
the phase transition to the PCP-0.2 quark matter, there are not such final compact object
constituted by the latter phase. The metastable star decays into a black hole or a hybrid
star. In other words, this set fulfills the thermodynamic criteria but the astrophysical
conditions do not allow the formation of a stable quark star. The last set to be analyzed
is when the PCP-0.2 quark matter is compared with the eNJL3σρ1 hadronic matter. In
this case PH

C = 489 > P0 = 239 MeV/fm3 and PQ
C = 283 > P0 = 239 MeV/fm3. The

main imposition to the hadron-quark phase transition to take place inside metastable
compact stars is to have PC ≥ P0 for both stars, which is fulfilled by this choice of
models. Nevertheless, a conversion process that preserves baryonic mass, requires
that the final state has the same baryonic mass and a smaller gravitational mass. Since
the quark star has a larger gravitational mass, the conversion is forbidden due to energy
arguments.
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A different situation occurs when hybrid stars are considered. In Figure 41, one
can see the hybrid star family curve differs from the respective pure hadronic star
family for stars with a central density above P0, i.e., for hadronic metastable stars
massive enough to sustain the conversion of their core from the hadronic matter to
a deconfined quark matter bulk. It follows from previous results that the branches
where the conversion is allowed are bigger for smaller values of the vector interaction
parameter x in the quark matter modeling. In fact, one can only get a quark core for
a low enough x value, which is 0.12 for nuclear matter model eNJL3σρ1 [143] and
0.1 for eNJL2mσρ1, as can be seen from table 16 by comparing the values of nC with
the values of nQ. Stable stars are only possible if nC is larger than nQ and P0 larger
than PC . Again, analysing the results shown in tables 14 and 16, one can see that in
most cases these pressures are identical and a stable star with a quark core is not
sustainable. Another feature worth noticing is that, even when the conversion from a
hadronic to a hybrid star is allowed, the mass-energy difference of the initial and final
objects are always small (a narrow gap of the order of 10–3–10–2 M⊙).

5.4 COMPARISON WITH THE VECTORIAL MIT MODEL

In this section we reproduce some results obtained with the Nambu–Jona-Lasinio
(NJL) model to compare with the ones obtained in [111, 112] using the MIT bag model
version on which both a vector field and a self-interacting term are introduced.

The MIT bag model considers that each baryon is composed of three non-
interacting quarks inside a bag. The bag, in turn, corresponds to an infinity potential,
which confines the quarks. In this simple model the quarks are free inside the bag and
are forbidden to reach out. All the information about the strong force lies in the bag
constant, also called the vacuum pressure. he MIT Lagrangian density reads

L =
∑

u,d ,s

{ψ̄q[iγμ∂μ – mq]ψq – B}Θ(ψ̄qψq), (131)

where mq is the q quark mass, ψq is the Dirac quark field, B is the constant vacuum
pressure and Θ(ψ̄qψq) is the Heaviside step function that is included to assure that the
quarks exist only confined inside the bag.

A quark interaction described by a vector channel Vμ analogous to the ω meson
in quantum hadrodynamics can be introduced via minimal coupling,

LV =
∑

u,d ,s

gqqV {ψ̄q[γμVμ]ψq}Θ(ψ̄qψq), (132)

as well as the mass term and a self-interaction on the vector field,

LV =
1
2

m2
V VμVμ + b4

(g2VμVμ)2

4
(133)
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where gqqV is the coupling constant of the quark q with the vector field Vμ. There are
two possibilities: an universal coupling with gssV = guuV = gddV , as well as a ratio that
comes from symmetry group calculations [112]: gssV = 2/5 · guuV = 2/5 · gddV ; mV is
the mass of the vector field, taken to be 780 MeV, b4 is a dimensionless parameter to
modulate the self-interaction of the vector field, and g = guuV for short. As in our work
guuV and gddV are always equal (and called only g for short), we define XV as the ratio
between gssV and guuV . Also, the strength of the vector channel is directly related to
(g/mV )2, so we define GV as this quantity:

XV
.=

gssV
guuV

and GV
.=
(

g
mV

)2
. (134)

It is impossible to use a single bag pressure value to describe the whole energy
spectrum with MIT-based models, so a possible prescription is to consider a tempera-
ture dependent bag model of the form

B(T ) = B0

[
1 +

(
T
T0

)4]
. (135)

Although the simplest versions of the NJL model does not reproduce the asymp-
totic freedom behavior of QCD, and thus cannot describe the quark confinement/decon-
finement transition, it can be interpreted as a schematic quark model for many situations
where chiral symmetry breaking/restoration is one of the most relevant features of QCD
[21]. Here the isospin symmetry is assumed in the Lagrangian level, i.e., mu = md = m,
and the situation of chemical equilibrium is considered, i.e., μu = μd = μq, with μq = μ/3.
The parameters Gs, m and Λ are fitted to reproduce the quark condensate value, the
pion mass and its decay constant. In the following, we set Λ = 590 MeV, GsΛ2 = 2.435
and m = 6.0 MeV [21]. The parameter Gv is usually taken as a free parameter, whith
some proposed constraints suggesting values between 0.25Gs and 0.5Gs [125]. We
consider 0 ≤ Gv /Gs ≤ 0.5.

The effective quark mass M is obtained solving the gap equations. This con-
stituent mass is larger than the bare quark mass m at lower temperatures and/or
densities, generating dynamically the larger particle mass expected in this region and
breaking the chiral symmetry of the model. As the temperature or the density increase,
M approaches the value of the current mass m, thus restorating the chiral symmetry. A
chiral phase transiton μ – T diagram can be drawn determining the behavior of the ther-
modynamic potential minima with respect to M, for given chemical potentials. In the low
temperature regime, several effective models predict a first order chiral phase transition
to occur. Results from LQCD for the low chemical potential region, however, point to a
crossover transition. These two seemingly contradictory pictures suggest that the first
order transition line starting at T = 0 ends at a critical end point (CEP), from which it
turns into a crossover [34, 35]. Figures 42 and 43 show that this behavior is reproduced
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Figure 42 – QCD phase diagram for different values of Gv /Gs, from the SU(2) NJL
model. A solid line represents a first order transition and a dashed line
represents a crossover, the intersection is the CEP. Selected curves from
the temperature dependent bag model are included for comparison, as well
as some estimations of the chemical freeze-out parameters in heavy ion
collisions [34, 109].

by the NJL model. Notice that, as the contribution associated to the vectorial coupling
vanishes at zero chemical potential, there is no vacuum correction consequences due
to the value of the coupling constant Gv . With the chosen parametrization, this model
renders the crossover temperature at μ = 0 being equal to 188 MeV, which is higher
than the values obtained from previously discussed MIT-type model calculations, but
also from the estimations of the chemical freeze-out parameters in heavy ion collisions
and expected from LQCD results, as can be seen in Figs. 42 and 43. As stated above,
the NJL model produces a first order phase transition for temperatures below the CEP,
where it acquires a second order phase transition point, before the crossover region.
Also, increasing the vector term weakens and delays the first order phase transition
of the chiral restoration, favoring the crossover transition on the majority of the QCD
phase diagram high temperature-low baryonic density part.

The purpose of the present section is to compare different model frameworks,
and hence it is useful to display both two and three-flavored matter results obtained
from the NJL-type models too. The extension of the NJL SU(2) to NJL SU(3) is not as
straightforward as the inclusion of the s quark in the MIT-like models. Thus, we refer
the interested reader to refs. [21]. The expressions for the grand-canonical potentials,
the related gap equations and the chosen parametrizations are the same as in ref. [7],
taking Λ = 631.4 MeV, GsΛ2 = 1.835, KΛ5 = 9.29, mu = md = 5.5 MeV and ms =
135.7 MeV. The strange quark is largely responsible for shaping the phase diagram
of QCD since its mass controls the nature of the chiral and deconfinement transitions.
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Figure 43 – QCD phase diagram for SU(2) and SU(3) NJL model (Gv /Gs = 0.0) [7]
and temperature dependent bag model (B1/4 = 165 MeV and GV = 0). A
solid line represents a first order transition and a dashed line represents a
crossover, the intersection is the CEP. The LQCD predicted critical temper-
ature for 2+1 quark flavors [13] is included for comparison.

Hence, to consider strangeness conservation without relying on the inclusion of β-
stable matter, which, as discussed below, is justified only at the lower temperature
range of the QCD phase transition diagram, we show the curves obtained with the
same chemical potential for the three quarks, i.e., μu = μd = μs in Fig. 43, for the NJL
and the MIT models. One can clearly see that within the SU(3) version of both models,
the transition temperature at low chemical potential is lowered considerably in relation
to the SU(2) curve and at low temperatures, the transition chemical potentials are also
shifted towards lower values. Also, the effects of the vector interaction are the same as
the ones just discussed for the SU(2) case, e.g. the transition point at μ = 0 would be
also kept fixed had different values of the vector interaction been plotted, as explained
above.

Analyzing this framework and the results presented in [111, 112] together, it
is possible to argue that the phase transition in QCD can take place either in one
or two different steps, depending on the parameter choice adopted for the MIT-type
model. From Figures 1 and 4 of Ref. [111], we can see that both MIT models allow
the deconfinement phase transition to take place around μ = 1200 MeV in the low
temperature region, at least for some sets. If this is the case considered, it suggests
that both deconfinement and chiral transition occur simultaneously in the QCD phase
diagram. It does happen at T = 0, e.g., when the parameters of the MIT model are
taken to be B1/4 = 165 MeV and GV = 0.8 fm2, while the vector coupling of the NJL
is set as Gv /Gs = 0.5, at μ = 1250 MeV. However, even in such case, the MIT and
NJL transition curves diverge rapidly for finite temperatures, as the dependence of the
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transition temperature on the chemical potential is noticeably more intense in the MIT
curves, specially for chemical potential greater than the μ at the CEP predicted for the
NJL-type models.

The description of stellar matter cannot be done using the two-flavor formalism
presented in this section, since strangeness is necessary to fulfill the Bodmer-Witten
conjecture (but it is still a possibility in the framework of quark-meson models). Both
hybrid and quark stars with vector NJL models have been described in several studies
[113]. It is worth noting, however, that these models do not produce stable quark matter
at zero temperature and/or magnetic field [22], but they can certainly describe the inner
matter of a hybrid star, which is enough to justify the application of this type of model in
theoretical studies, mainly the ones involving phase transitions. Increasing the vector
term stiffens the equation of state, thus sustaining larger maximum stellar masses,
but the macroscopic properties of the compact star depend strongly on the remaining
parameter choice.
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6 MAGNETIC FIELD EFFECTS ON THE DECONFINEMENT TRANSITION

The analysis of the QCD phase diagram points to a deconfined quark phase
standing from the region of high temperatures and low densities down to the region
of low temperatures and high densities. While lattice QCD (LQCD) can only describe
a small part of the diagram with high temperatures and chemical potentials close to
zero, effective models have been extensively used to investigate all other regions. From
the LQCD perspective, the transition between hadronic matter and deconfined quark
matter is a crossover. On the other hand, effective models foresee a first order phase
transition. These two lines can only join if a critical end point (CEP), which should be
a unique second order transition point, exists in between them. At low temperatures,
the possibility that a quarkyonic phase [124] exists is not overruled. This phase would
consist of matter with the chiral symmetry restored or partially restored but still confined.

But, what if matter is subject to strong magnetic fields, as in heavy ion collisions,
for instance? What do we know about the QCD phase diagram? In [7], it is shown
that the critical chemical potential oscillates around the zero magnetic field value for
magnetic fields within 1017 to 1018 G range. It is also shown that the CEP position is
affected. In this study, a unique model, the Nambu-Jona-Lasinio, with and without the
Polyakov loop, was used to display the transition line between the hadronic and the
quark phase.

Although many works have already investigated the hadron-quark phase tran-
sition at zero temperature [132, 182, 26, 121, 72] here we investigate the possible
transition if matter is subject to strong magnetic fields. This is an interesting subject
because of the existence of magnetars, which manifest themselves in quite different
ways as compared to the traditional pulsars. Could these objects become magnetised
quark stars? This is the question we try to answer in this part of the work. We use two
different models, a relativistic hadronic model within a mean field approximation (RMF
model) to describe hadronic matter [66], using the hyperon coupling scheme proposed
in [68], and a density dependent model [197] to describe quark matter. The motivation
behind the use of a density dependent quark model is two-fold: 1) such models were
never utilised in previous works regarding the hadron-quark phase transition and 2) the
description of quark stars could result in surface densities lower than the one of regular
nuclear matter [197], which is a clear signal that the phase transition may occur. This
suggests that the cases with low surface densities might be more appropriate to the
description of hybrid stars instead of quark stars.

The study of hybrid stars gained more interest since a model-independent anal-
ysis based on the sound velocity in both hadronic and quark matter suggested that
the cores of massive neutron stars should be composed of quark matter. In order to
fully investigate this case, a proper study of the hadron-quark phase transition is in
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order, further motivating the use of the density dependent model here considered. We
restrict ourselves to the zero temperature regime and follow the prescription given in [17,
121], which assumes that flavor is conserved during the phase transition, but chemical
equilibrium is not.

As we aim to observe how the phase transition point changes with the inclusion
of magnetic field, specifically when considering a density dependent quark model,
effects such as the inclusion of anomalous magnetic moments were neglected, since
they would not substantially change the qualitative results. Similarly, we also restrain
our study to isotropic matter and magnetisation is not taken into account.

In this work, the density dependent quark mass (DDQM) model is utilized to
describe quark matter, and the GM1 model is used to describe the hadronic phase.
Under this approach, the quark confinement is described by the density dependence
introduced in the quark masses:

mi = mi0 +
D

n1/3
b

+ Cn1/3
b = mi0 + mI , (136)

where mi0 (i = u, d , s) is the current mass of the i th quark, nb is the baryon number den-
sity and mI is the density dependent term that mimicks the interaction between quarks.
The model has two free adjustable parameters: D, that dictates linear confinement;
and C, that is responsible for leading-order perturbative interactions [197]. Whenever a
density dependent term is introduced, the issue of thermodynamic consistency arises.
To overcome this problem, we follow the formalism of [197], that presents a thermo-
dynamically consistent DDQM model. The introduction of magnetic field is done in a
similar way to [85], where the density dependent MIT Bag Model was thermodynami-
cally treated. Under this approach, magnetised quark matter will be treated as being
uniform and permeated by an external uniform magnetic field.

At zero temperature, the differential fundamental relation holds

dεm =
∑

i

μidni , (137)

where εm is the matter contribution to the energy density of the system, μi are the
particles chemical potentials and ni are the particle densities. One way of overcoming
thermodynamic inconsistency is by the introduction of effective chemical potentials.
Under this perspective, the energy density can be viewed as the one of a free system
with particle masses mi (nb) and effective chemical potentials μ∗i ,

εm = Ω
0
m({μ∗i },mi ,B) +

∑
i

μ
∗
i ni , (138)

where Ω0
m is the thermodynamic potential of a free system in the presence of an

external magnetic field. At a fixed B, the differential form of Eq. (138) is

dεm = dΩ0
m +

∑
i

μ
∗
i dni +

∑
i

nidμ
∗
i . (139)



133

Explicitly, we can write dΩ0
m as

dΩ0
m =

∑
i

∂Ω0
m

∂μ∗i
dμ∗i +

∑
i

∂Ω0
m

∂mi
dmi (140)

with
dmi =

∑
j

∂mi
∂nj

dnj , (141)

where the densities are connected to the effective chemical potentials by

ni = –
∂Ω0

m
∂μ∗i

(142)

to ensure thermodynamic consistency.
Eq. (139) can then be rewritten as

dεm =
∑

i

μ
∗
i +
∑

j

∂Ω0
m

∂mj

∂mj
∂ni

dni , (143)

that should be consistent with the fundamental equation. Comparing eqs. (137) and
(143), one gets the relation between the real and the effective chemical potentials

μi = μ
∗
i +
∑

j

∂Ω0
m

∂mj

∂mj
∂ni

. (144)

Considering magnetized quark matter to be an isotropic gas, the matter contri-
bution to the pressure, Pm, is then given by

Pm = –εm +
∑

i

μini . (145)

The introduction of the effective chemical potentials through Eq. (138) gives

Pm = – Ω
0
m +

∑
i

(μi – μ
∗
i )ni

= – Ω
0
m +

∑
i ,j

∂Ω0
m

∂mj
ni
∂mj
∂ni

. (146)

One can note that, from basic thermodynamics, we can write the matter contri-
bution to the thermodynamic potential, Ωm, as

Ωm = εm –
∑

i

μini , (147)

and plugging Eq. (138) yields

Ωm = Ω
0
m –

∑
i

(μi – μ
∗
i )ni , (148)
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Figure 44 – Baryon species populations from the RMF model for GM1 parameterization
(above) and the respective quark fractions (below). Full lines show results
without magnetic fields, while dashed lines show results including a mag-
netic field of B = 3 × 1018 G.

so that the thermodynamic relation Ωm = –Pm still holds.
It is worth noting that there are several different mass scaling relations for DDQM

models, such as the inverse linear scaling and the simple cubic scaling. All of them
remain thermodynamically consistent within this approach, and the main advantage of
using the scaling relation of Eq. (136) is that the inclusion of the parameter C enables
the attainment of more massive stars [8].

According to the Bodmer-Witten conjecture [15, 196], under certain circum-
stances, the electrically neutral and in chemical equilibrium hadronic matter is metastable
and can be converted into an energetically favored, deconfined quark phase. The de-
confinement of the hadronic matter into the quark phase must occur in the strong
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Figure 45 – Example of parameter sets that allow (left panel) and do not allow (right
panel) the hadron-quark phase transition to occur at B = 3 × 1018 G.

interaction time scale, which is many orders of magnitude smaller than the weak inter-
action time scale [137, 18]. It implies that the relative flavor fractions must be conserved
during the phase transition,

Yq =
1
3

∑
i

nqiYi , (149)

where the baryonic number densities of each particle species ni = YinB are related
by the number nqi of q flavored quark constituents of baryon i [137, 121]. As we con-
sider that the total baryonic mass and the lepton number are also conserved, Eq. (149)
determines the composition of the resulting quark phase from the initial hadronic mat-
ter in chemical equilibrium. Quark matter will not be in β-equilibrium, but the process
preserves charge neutrality, as explained in Ref. [121]. Figure 44 shows the particle
population obtained from the RMF model, considering the equilibrium conditions, and
the respective quark matter fractions associated with this hadronic distribution. Notice
that the leptons are present in both configurations and are more affected by the mag-
netic field than the baryons and the quarks. In fact, the lepton contribution is defined in
the hadronic phase, as stated above.

The deconfinement transition is assumed to be a first-order phase transition. The
thermodynamic description of this kind of process can be obtained from the matching
of the equations of state for the two phases. The transition can happen after the over-
pressured metastable matter reaches the phase coexistence point, defined according
to the Gibbs criteria as,

P(i) = P(f ) = P0,

μ
(i)(P0) = μ

(f )(P0) = μ0,
(150)

for the transition between the initial (i) and final (f ) phases considered homogeneous,
with

μ
(i ,f ) =

ε(i ,f ) + P(i ,f )

n(i ,f )
B

, (151)
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B = 0 B = 3 × 1018 G B-W
C = 0 no crossing no crossing yes√

D = 155 MeV
C = 0 μ0 = 960 μ0 = 958 yes√

D = 158.5 MeV P0 = 1.55 P0 = 1.80
C = 0 μ0 = 1062 μ0 = 1066 no√

D = 165 MeV P0 = 21.98 P0 = 24.70
C = 0.23 μ0 = 1130 μ0 = 1145 no√

D = 155 MeV P0 = 43.62 P0 = 51.32
C = 0.365 μ0 = 1105 μ0 = 1109 yes√

D = 142 MeV P0 = 34.98 P0 = 38.30
C = 0.5 μ0 = 1202 μ0 = 1242 yes√

D = 135.75 MeV P0 = 72.66 P0 = 94.93
C = 0.68 μ0 = 1440 μ0 = 1475 yes√

D = 130 MeV P0 = 215.50 P0 = 247.53

Table 17 – Values for μ0 (in MeV) and P0 (in MeV/fm3) for which the conditions of
phase coexistence are satisfied at T = 0. Results are shown for sets of
parameters C and D within and outside of the stability window of SQM,
for both magnetised and demagnetised matter. The latter column specifies
whether or not the Bodmer-Witten conjecture is satisfied.

where ε(i ,f ), p(i ,f ) and n(i ,f )
B are the total energy density, pressure and number density,

obtained from the effective model EoS. [18]. These conditions leave the values of P0
and μ0 to be determined from the equations of state of both phases. Notice that in the
results that follow, we neglect the B2/2 term in the pressure of both models and verify
only the crossing of the curves related to hadronic and quark matter, otherwise, it would
be impossible to compare our results with the ones obtained with non-magnetised
matter, since the contribution from the pure magnetic field (for a fixed value of B) is very
large as compared with the contribution of magnetised matter.

Since we utilise only one parameterization to describe the hadronic phase, the
condition of coexistence of phases may or may not be satisfied depending only on the
DDQM model free parameters, C and D. The procedure for checking the Gibbs criteria
is graphically shown in Figure 45, for sets of parameters that allow or do not allow the
phase transition to occur. For some sets of parameters, such as C = 0.5 and

√
D =

136.75 MeV, the conditions of Eq. (150) are satisfied more than once. Whenever such
double crossing occurs, only the hadron-quark phase transition is considered, since a
quark-hadron phase transition is not expected to exist.

In regard to the DDQM models free parameters, the adequate stability window
must be taken into account. We restrict our study to the sets of parameters that satisfy
the Bodmer-Witten conjecture or are barely outside of the stability window of non
magnetised strange quark matter [8], which is reasonable since the binding energy of
magnetised matter is lower than the one of non magnetised matter [70, 194].
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The results for μ0 and P0 are summarized in Table 17, where it can be seen that
the inclusion of magnetic field shifts the coexistence point towards higher pressures
and generally, also towards higher chemical potentials. The exception (second line on
the table) may be due to numerical uncertainties implicit to these simple models. This
shift tends to be higher when the perturbative parameter becomes larger. This result
goes in line with the general notion that the EoS stiffens as the magnetic field increases.
It was also observed that for a fixed value of D, the coexistence point occurs at higher
pressures when C increases. Similarly, for a fixed value of C, the coexistence point
occurs at higher pressures when D increases.

In Ref. [197], the same DDQM model used in this work is applied to the study
of strange stars. It was shown that the surface density of stars described with high C
parameters is even lower than nuclear saturation density, which points to the existence
of a phase transition. By analysing the results of Table 17, it is noticeable that as C
increases, the coexistence point indeed occurs at higher pressures. This result corrob-
orates the previous findings, suggesting that whenever a large perturbative parameter
is considered, the DDQM model could be more suitable for the description of hybrid
stars instead of strange ones. Since the issue of hadron-quark phase transition with the
DDQM model has already been addressed, we further analyse this possibility.

For large values of C, a double crossing can occur when one investigates the
Gibbs criteria of phase coexistence, as shown in Figure 45. Whenever there is a double
crossing, the first coexistence points (that predict a quark-hadron phase transition) are
always at low enough densities, below the cusp that can be observed in the EoS at
the point where strange quarks first appear, so that there are no strange quarks. Thus,
not only such a transition is not expected to exist from a phenomenological point of
view, but it is also not favorable since two flavor quark matter will always be unstable
against nuclear matter, respecting the Bodmer-Witten hypothesis [15, 196] that was
already considered for such quark model parameters [8]. Therefore, the first crossing
point must be disregarded so that matter is confined at the low density regime.

An EoS that describes hybrid stars can be built by a Maxwell construction, in-
terpolating the hadronic and the quark EoS at the coexistence point shown in Table
17. Figure 46 shows mass-radius curves produced from inserting some EoS obtained
with a Maxwell construction into the Tolman–Oppenheimer–Volkoff (TOV) equations
[180, 139] and adding the BPS EoS [12] for the low-density region of the crust. Our
results here consider only stellar matter without magnetic field effects, since the use
of the TOV-like equations for magnetised matter requires the solution of a more com-
plicated system of equations in general relativity, which goes beyond the objectives of
this part of the work. Pure strange stars would show maximum masses close to the
ones of the respective hybrid star (the values for strange star are M = 1.63 MSun for
the DDQM model parameters C = 0.0, D1/2 = 158.5 MeV; M = 1.78 MSun for C = 0.23,
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D1/2 = 145.75 MeV; and M = 1.92 MSun for C = 0.5, D1/2 = 135.75 MeV), but the profile
of the mass-radius curve would be different, as no crust is expected to remain in quark
stars, although such possibility can also be considered.

Following the stellar evolution scenario proposed by Refs. [121, 72], we can
assume the compact star as being initially a pure hadronic metastable star in the
early stages after its emergence. In this stage, the equilibrium conditions are reached
through the first deleptonization and cooling, and the resulting objects are the ones
described by the black curve in Fig. 46. After a finite time interval, this metastable
configuration can decay into an energetically more favorable one, and, according to
the Bodmer-Witten conjecture, it can be reached by the quark deconfinement. So, the
conversion of a metastable hadronic star into a hybrid (or strange) star can take place
via a first order transition. The transition dynamics we consider in this work assumes
flavor conservation in the first moment, as imposed by Eq. (149), and this condition is
taken to determine the phase coexistence points. Finally, the quark matter would seek
the chemical equilibrium soon after its formation, because this is the stable configuration
of stellar matter, and it justifies the use of this configuration in Fig. 46.

Notice that a deconfined quark core starts appearing at a very low masses
(M = 0.90 MSun) when the parameters C = 0.0, D1/2 = 158.5 MeV are considered. On
the other hand, the transition does not take place in the star matter density threshold for
the parameters C = 0.68, D1/2 = 130 MeV. In the stellar evolution scenario presented
above, the conversion of a metastable hadronic star to a strange or hybrid star could
take place if the initial object sustains a central pressure larger than the coexistence
pressure of the hadron and quark phases (P0). Yet, when the metastable hadronic
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star matter is overpressured enough to allow the appearance of a quark core, there
must exist a stable final compact object whose central density is that of the EoS latter
phase, i.e., we must also have a final object whose central pressure (which is the higher
pressure present in this object) is higher or equal P0, or the metastable star will not
have a stable compact star configuration to decay (if not a black hole). In the case of
parameters C = 0.68, D1/2 = 130 MeV, this constraint is not fulfilled, and the maximum
stable star would be a pure hadronic star of M = 1.96 MSun and R = 12.42 km, never
sustaining a quark core beyond this point, following the trend of hybrid star maximum
masses shown in Fig. 46. This set fulfills the thermodynamic criteria for the phase
transition, but the astrophysical conditions do not allow the formation of a stable hybrid
star.
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7 FINAL REMARKS

We obtained a description of compact stars made up of dense matter from
several relativistic models, with the purpose of analyzing pulsars as hadronic, hybrid
and/or strange stars. In a first moment, the implications of including delta baryons in
the stellar matter composition. In Chapter 2, results published in [123] are discussed.
Analyzing the properties of nucleonic matter with delta baryons and nucleonic matter
with hyperons and delta baryons, by applying a relativistic mean-field description of
neutron star matter with density dependent couplings, it is verified that many models are
excluded because the effective nucleon mass becomes zero before the maximum mass
configuration is attained. Hyperon-free with delta-dominated composition compact stars
are possible, the deltic stars. It is found that with a convenient choice of parameters the
existence of deltic stars with 80% of delta baryons at the center of the star is possible.
However, the presence of hyperons lowers the delta baryon fraction to values below
20% at the center and below 30% at 2-3 saturation densities. It is discussed that in
the presence of delta baryons, the hyperon softening is not so drastic because deltas
couple more strongly to the ω meson, and the stiffness of the equation of state is
determined by the ω-dominance at high densities. The speed of sound reflects very
well this behavior.

We then carefully investigated particle composition and spin polarization when
delta baryons are included in neutron-star matter under the influence of strong magnetic
fields with and without AMM corrections. Due to the effects of charge conservation and
chemical equilibrium, there is no common behavior for all the particles (as predicted by
their AMM signs and strengths). However, in general, while the population of charged
particles increases with the inclusion of AMM, the population of neutral particles tends
to decrease, as published in [47, 122].

In this work, different extensions of the NJL model, which are appropriate to
describe systems where chiral symmetry is an important ingredient, were revisited. In
special, one version of these NJL-type models, suitable to describe both nucleonic and
hyperonic matter, was partially developed, but a better description of these models and
more refined search of parameterizations must be performed in future works, as well
as the inclusion of temperature and eventually, magnetic field. In an early exploratory
study, NJL-type models were used to investigate a possible QCD hadron-quark phase
transition at zero temperature. It was shown that the transition point is very sensitive to
the model parameters and that both pressure and chemical potential increase drastically
with the increase of the vector interaction strength in the quark sector. Within the
same framework, the possibility of quark and hybrid star formation was analyzed. The
same conclusions drawn before with respect to the coexistence pressure and chemical
potentials are reinforced. One can concluded that even if a transition from a metastable
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hadronic star to a quark star is thermodinamically possible, it is either energetically
forbidden or gives rise to a blackhole. Nevertheless, conversions from metastable to
hybrid stars are possible, but the mass difference between both compact objects is very
small, as published in [72, 112].

Finally, we have analysed the conditions for a phase transition from a hadronic
to a quark phase with the help of two different models at zero temperature and under
the influence of a very strong magnetic field, possibly present in the core of magnetars.
With the chosen models we have, in general, obtained an increase of pressure and
chemical potential as compared with the transition point of non-magnetised matter. For
the sake of completeness, whenever the phase transition is possible, we have checked
whether stable hybrid stars would be allowed and if so, if their cores could indeed
contain deconfined quarks, as published in [9].

Several interesting research possibilities follow from the results obtained here.
The understanding of the meson-delta coupling parameters can be refined by symmetry
group considerations, as it is made for the hyperon coupling schemes. The magnetic
field effects on Δ-admixed matter can also be more robustly understood by having the
complete solution of the spin-3/2 Rarita-Schwinger equation under a magnetic field. It
would be a novel result, allowing us to calculate the parallel and perpendicular speeds of
sound, as well as other quantities related to the equations of state for these anisotropic
configurations. As the inclusion of deltas alter significantly the particle populations in
stellar matter, it is also interesting to analyze how it would affect the hadron-quark
deconfinement transition, considering that the conversion mechanism we explore in this
work takes into account the quark flavor conservation.

Regarding the overall aim of obtaining the QCD phase diagram with both hadronic
and quark models based on the same underlying formalism, i.e., within different ver-
sions of the NJL model, we need to improve the parameterizations of the two hadronic
matter models deduced here, making a more refined search on the parameters in order
to better satisfy nuclear matter constraints. If possible, find sets that also satisfy con-
straints of pure neutron matter, as it is intended to apply these models in contexts rich
in neutrons, as in the description of stellar matter in chemical equilibrium.
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APPENDIX A – BASICS OF THERMAL FIELD THEORY

The derivation of the quantities of interest in this work, essentially the equations
of state for dense matter, rely on quantum field theory methods and, in particular, on its
relationship with the thermodynamics of those systems. Thus, one needs to introduce
chemical potential and temperature in the QFT formalism that describes the vacuum
properties of the model through its Lagrangian. The case of the free fermion gas at
temperature T and chemical potential μ is specially relevant to the discussion of the
Nambu–Jona-Lasinio model, and it is presented next, following [89].

A system of free spin-1/2 fermions ψ of mass m is described by the Lagrangian
density

L = ψ̄ (i /∂ – m)ψ. (152)

The inclusion of the chemical potential in the Lagrangian must be associated with a
conserved charge. From the Noether’s theorem, it is known that a conserved current
is related to the symmetries of the Lagrangian, i.e., the global symmetry ψ → e–iθψ.
Hence, the conserved current is

jμ =
∂L

∂(∂μψ)
δψ

δθ
= ψ̄γ

μ
ψ, (153)

which, since ψ̄ = ψ†γ0, yields the conserved charge j0 = ψ†ψ, identified as the barionic
number density. Then, the Lagrangian with chemical potential simply is

L = ψ̄

(
i /∂ + γ

0
μ – m

)
ψ. (154)

The conjugate momentum is

π =
∂L

∂(∂μψ)
= iψ†, (155)

which means ψ and ψ† must be taken as independent variables and allows to write the
Hamiltonian as

H =
∫

β

0
dτ
∫

d3x ψ̄

(
–γ0∂τ – i γ⃗ · ∇ + γ

0
μ – m

)
ψ, (156)

where the temperature is introduced in replacement of the temporal degree of freedom
via the imaginary time formalism, with τ = it and β = 1/T .

The partition function Z = Tr exp(–βH) can then be written, taking the the path
integral representation of the trace, as

Z =
∫

Dψ
†Dψexp

[∫
β

0
dτ
∫

d3x ψ̄

(
–γ0∂τ – i γ⃗ · ∇ + γ

0
μ – m

)
ψ

]
. (157)

In the path integral formalism, the partition function can be derived from a transition
amplitude with identical initial and final states. In the case of fermions, the fields in-
tegral are Grassmann variables, as a consequence of the anticommutation relations
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of creation and annihilation operators. So, the trace involves a transition amplitude
where initial and final states differ by a sign, imposing the functional integration to be
performed over antiperiodic fields ψ(0,x⃗) = –ψ†(β,x⃗) and ψ(0,x⃗) = –ψ†(β,x⃗). Introducing
the dimensionless Fourier-transformed fields

ψ(x) =
1√
V

∑
k

e–ik ·x
ψ(k ) and ψ

†(x) =
1√
V

∑
k

eik ·x
ψ
†(k ), (158)

from where the Matsubara frequencies ωn were defined from the zeroth component
of the four-momentum k , i.e., k0 = –iωn. To fulfill the antiperiodicity requirement, one
must have eiβωn = –1 which implies that the fermionic Matsubara frequencies are

ωn = (2n + 1)πT , n ∈ Z. (159)

With the Fourier decomposition, ((157)) can be rewritten as

Z =
∫

Dψ
†Dψexp

[∑
k

ψ
†(k )

G–1(k )
T

ψ(k )

]
, (160)

with the free fermion inverse propagator in momentum space being

G–1(k ) = /k + γ
0
μ – m. (161)

The functional integration over Grassmann variables can be done using the
relation ∫ N∏

a
dη†adηexp

–
N∑
i ,j

η
†
i Mijηj

 = det M, (162)

allowing to get the partition function

Z = det

(
–

G–1(k )
T

)
= det

1
T

(
–(k0 + μ) + m –σ⃗ · k⃗

σ⃗ · k⃗ (k0 + μ) + m

)
, (163)

where the determinant is taken over Dirac and momentum spaces and σ⃗ is the Pauli
vector. With k0 = –iωn and using (σ⃗ · k⃗ )2 = k2, one can work out

ln Z =
∑

k

∑
n

ln

[
E2

k + (ωn + iμ)2

T 2

]2

(164)

=
∑

k

∑
n

{
ln

[
ω2

n + (Ek – μ)2

T 2

]
+ ln

[
ω2

n + (Ek + μ)2

T 2

]}
, (165)

where it was defined Ek =
√

k2 + m2. The sum over fermionic Matsubara frequencies is
performed via contour integration in the complex plane, the details of the calculation are
discussed in most textbooks that deal with thermal field theory and are not presented
here, c.f., [89]. For the free fermion case, this sum reads∑

n
ln

[
ω2

n + (Ek ± μ)2

T 2

]
=

Ek ± μ

T 2 + 2 ln
[
1 + exp

(
–

Ek ± μ

T

)]
+ const., (166)
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which, taking the thermodynamic limit, allows to get the grand-canonical thermodynamic
potential per volume for the free fermion gas at temperature T , from Ω = –T ln Z , as

Ω = –2
∫

d3k
(2π)3

{
Ek + T ln

[
1 + exp

(
–

Ek – μ

T

)]
+ T ln

[
1 + exp

(
–

Ek + μ

T

)]}
, (167)

where overall factor 2 accounts for the two spin states of the spin-1/2 fermion.
From these results for the grand-canonical potential, other thermodynamic quan-

tities can be obtained in the standard way. Since the system is uniform, pressure P and
energy density ε are obtained through

P(T ,μ) = –Ω(T ,μ), (168)

and
ε(T ,μ) = –P(T ,μ) + Ts(T ,μ) + μρ(T ,μ), (169)

where s = –∂Ω/∂T is the entropy density, given by

s(T ,μ) = 2
∫

d3k
(2π)3

[
Ek – μ

T
nk (T ,μ) +

Ek – μ

T
n̄k (T ,μ)

– ln (1 – nk (T ,μ)) – ln (1 – n̄k (T ,μ))

]
. (170)

Many applications of effective models of QCD are performed in the T = 0 limit.
It is a reasonable approximation in situations where the thermal energy is smaller
than the average kinetic energy of the particles of the system, i.e., when kBT ≪ Ep.
For the gases of light quarks or hadrons considered in this work, it remains true until
temperatures of the order of 1010 K, making the so-called degenerate case suitable to
the description of cold stellar remnants, as neutron stars some time after their formation
in supernovae, as well as to deal with nuclear matter.

In the Nambu–Jona-Lasinio model, the temperature dependence is embedded
in the scalar and number densities, ρsi and ρi , and in the displaced free fermion gas
contribution ΩMi

, given by equations ((111)), ((112)) and ((108)), respectively. In the
equations for the densities, the temperature is included via the Fermi-Dirac distribution
functions ((82)), remembering that they are here taken for particles of mass Mi subject
to a chemical potential μ̃i , from where is easy to verify that, for each species of fermion
i ,

lim
T→0

np(T ) =

0 if Epi – μ̃i > 0

1 if Epi – μ̃i < 0
, (171)

as illustrated in Figure 47. So, in the degenerate case, the particle distribution behaves
as the step function θ(μ̃i – Epi ), which implies that all states down to the state of eigen-
value Epi = μ̃i , are occupied and the remaining are empty. It is a direct consequence
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of the Pauli exclusion principle, since that, in the T = 0 limit, the fermions have to be in
the energy level with the lowest energy that are still unoccupied. The most energetic
level occupied is known as Fermi level, associated to the Fermi energy

EF i = μ̃i =
√

pF
2
i + M2

i , (172)

where pF i is the momentum associated to the most energetic particle, called Fermi mo-
mentum, which allows to redefine the step function as θ(pF i –p). It is also straightforward
to see that

lim
T→0

n̄p(T ) = 0, (173)

which means that there are no antiparticles present in the degenerate matter, as already
expected.

Figure 47 – Fermi-Dirac distribution functions for particles as a function of Ep – μ̃.

Hence, it is direct to obtain the density of a degenerate Fermi gas,

ρi = 2Nc

∫
Λ

0

d3p

(2π)3
θ(pF i – p) =

Nc

3π2 pF
3
i , (174)

where Nc is the color degeneracy factor (Nc = 3 for quarks and Nc = 1 for hadrons),
and pF i =

√
μ̃2

i – M2
i , always demanding pF i ≤ Λ. Also, the scalar density at T = 0 can

be written as

ρsi = –2Nc

∫
Λ

0

d3p

(2π)3
Mi√

p2 + M2
i

[
1 – θ(pF i – p)

]
= NcMi [F0(pF i ) – F0(Λ)], (175)

where it was defined the function

F0(x) =
∫ x

0

dp
π2

p2√
p2 + M2

i

. (176)

To evaluate the zero-temperature limit of the displaced free fermion gas contribution, it
is useful to define

f±(T ) = T ln
[
1 + e–(Epi±μ̃i )/T

]
, (177)
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such that
lim

T→0
f+(T ) = 0, (178)

and

lim
T→0

f–(T ) =

0 if Epi – μ̃i > 0

μ̃i – Epi if Epi – μ̃i < 0
, (179)

where the Epi – μ̃i < 0 case was evaluated through the generalized Puiseux series
expansion of ln(1 + x) around x = ∞, i.e.,

ln(1 + x) = – ln x +
1
x

–
1

2x2 +
1

3x3 + · · · (180)

and taking advantage that the terms of the type (nxn)–1 vanish for x → ∞. Again, both
possible outcomes can be written as a step function such that, taking θ(μ̃i – Epi ) in the
momentum space, the degenerate displaced free fermion gas contribution is given by

ΩMi
(0,μ̃) = – 2Nc

∫
Λ

0

d3p

(2π)3
[
Epi + (μ̃i – Epi )θ(pF i – p)

]
= Nc [F1(pF i ) – F1(Λ)] – μ̃iρi , (181)

where it was defined
F1(x) =

∫ x

0

dp
π2 p2

√
p2 + M2

i , (182)

and the result ((174)) was identified. It is convenient to define

εkin =
∑

Nc [F1(pF i ) – F1(Λ)], (183)

with the summation over all particles species.
Using the results presented above, it is straightforward to write the equations of

state for free quark and hadronic matter at T = 0 from the thermodynamic potentials.
Below, the expressions for degenerate matter that follow from the eNJL models con-
sidered in this work are shown. The same procedure allows us to get the equations
for quark matter, changing the hadronic parameters to the quark model one and disre-
garding the extra terms of the generalized case. From ((87)), one gets for the PPM NJL
model,

PPPM =
∑

i=p,n

μ̃iρi – εkin – Gsρ
2
s + Gvρ

2 – Gρρ
2
3

– Gsvρ
2
sρ

2 + Gsρρ
2
sρ

2
3 – Gvρρ

2
ρ

2
3 + Ωvac, (184)

and

εPPM =
∑

i=p,n

(μi – μ̃i )ρi + εkin + Gsρ
2
s – Gvρ

2 + Gρρ
2
3

+ Gsvρ
2
sρ

2 – Gsρρ
2
sρ

2
3 + Gvρρ

2
ρ

2
3 – Ωvac, (185)
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with

M = m – 2Gsρs – 2Gsvρsρ
2 + 2Gsρρsρ

2
3 (186)

μi =
√

pF
2
i + M2

i + 2Gvρ∓ 2Gρρ3 – 2Gsvρρ
2
s ± 2Gsρρ3ρ

2
s – 2Gvρρρ3(ρ3 ± ρ). (187)

Also, from ((91)), one gets for the PPMM NJL model,

PPPMM =
∑

i=p,n,Λ

μ̃iρi – εkin – 2Gs(ρ2
sp

+ ρ
2
sn

+ ρ
2
sΛ) +

2
3

Gvρ
2 – Gρ

(
ρ

2
3 +

1
3
ρ

2
8

)

–
4
3

Gsv (ρ2
sp

+ ρ
2
sn

+ ρ
2
sΛ)ρ

2 + 2Gsρ(ρ2
sp

+ ρ
2
sn

+ ρ
2
sΛ)
(
ρ

2
3 +

1
3
ρ

2
8

)
–

2
3

Gvρρ
2
(
ρ

2
3 +

1
3
ρ

2
8

)
+ Ωvac, (188)

and

εPPMM =
∑

i=p,n,Λ

(μi – μ̃i )ρi + εkin + 2Gs(ρ2
sp

+ ρ
2
sn

+ ρ
2
sΛ) –

2
3

Gvρ
2 + Gρ

(
ρ

2
3 +

1
3
ρ

2
8

)

+
4
3

Gsv (ρ2
sp

+ ρ
2
sn

+ ρ
2
sΛ)ρ

2 – 2Gsρ(ρ2
sp

+ ρ
2
sn

+ ρ
2
sΛ)
(
ρ

2
3 +

1
3
ρ

2
8

)
+

2
3

Gvρρ
2
(
ρ

2
3 +

1
3
ρ

2
8

)
– Ωvac, (189)

with
Mi = mi – 4Gsρsi –

8
3

Gsvρsiρ
2 + 4Gsρρsi

(
ρ

2
3 +

1
3
ρ

2
8

)
, (190)

for i = {p,n,Λ},

μi =
√

pF
2
i + M2

i +
4
3

Gvρ∓ 2Gρ

(
ρ3 ± 1

3
ρ8

)
–

4
3

Gsv (ρ2
sp

+ ρ
2
sn

+ ρ
2
sΛ)ρ± 4Gsρ(ρ2

sp
+ ρ

2
sn

+ ρ
2
sΛ)
(
ρ3 ± 1

3
ρ8

)
± 4

3
Gvρρ

[(
ρ

2
3 +

1
3
ρ

2
8

)
∓ ρ

(
ρ3 +

1
3
ρ8

)]
, (191)

with the upper (lower) signs taken for i = p (i = n), and

μΛ =
√

pF
2
i + M2

i +
4
3

Gvρ +
4
3

Gρρ8 –
4
3

Gsv (ρ2
sp

+ ρ
2
sn

+ ρ
2
sΛ)ρ

–
8
3

Gsρ(ρ2
sp

+ ρ
2
sn

+ ρ
2
sΛ)ρ8 –

4
3

Gvρρ

[(
ρ

2
3 +

1
3
ρ

2
8

)
–

2
3
ρρ8

]
, (192)

where, for both models, the upper (lower) signs taken for i = p (i = n) in the equations
of the chemical potential, and the number and scalar densities are given by ((174)) and
((175)).

Yet, the vacuum constant contribution Ωvac can be obtained noticing that, in the
T = 0 case, taking the limit μ → 0 implies μ̃ → 0, making pF i = 0 and, consequently,
ρi = 0.
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