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RESUMO

Pontes são estruturas importantes para possibilitar o funcionamento adequado de sistemas
de transporte ao redor do mundo. Essas estruturas permanecem ao longo de toda sua vida
útil sob efeito direto de condições ambientais, o que acelera sua degradação e aumenta as
incertezas relacionadas ao seu desempenho. Essas incertezas são ainda maiores em cenários em
que faltam informações confiáveis quanto às suas propriedades estruturais. Além disso, tanto
volume quanto cargas dos veículos estão continuamente crescendo ao longo dos anos, além
da presença de veículos acima do limite legal de peso. Esse contexto gera grandes desafios
para pontes, principalmente aquelas mais antigas. Sistemas Bridge weigh-in-motion (B-WIM)
são ferramentas poderosas para fornecer informações valiosas nesse tema. Sistemas B-WIM
permitem estimar o peso dos eixos de veículos enquanto eles trafegam sobre a ponte em
velocidade normal. Em especial, esses sistemas podem ajudar na fiscalização de limites legais
de peso, o que é uma tarefa importante para controlar o nível de solicitação da estrutura.
No entanto, a acurácia das estimativas reportadas por sistemas B-WIM ainda não atingiu o
patamar necessário para fiscalizar diretamente os limites legais de peso, principalmente para
peso por eixo, persistindo a necessidade de utilizar balanças estáticas para confirmação. O
objetivo deste estudo é contribuir para a tecnologia B-WIM e a melhoria do nível de acurácia
nas estimativas de peso é abordada. Primeiramente, um algoritmo B-WIM que inclui um modelo
dinâmico simplificado do comportamento da ponte devido à passagem de veículos pesados
é derivado. Ele difere dos métodos utilizados atualmente, que se baseiam em suposições
de comportamento estático, porém mantendo um custo computacional similar. Então, um
algoritmo B-WIM que inclui expectativas prévias quanto aos valores de peso por eixo a partir
de uma formulação Bayesiana é proposto. Ele utiliza um modelo autoregressivo de segunda
ordem (AR(2)) para modelar o erro entre respostas estimadas e medidas que evita a suposição
de independência geralmente empregada. Um segundo ponto que é abordado neste trabalho
é a dificuldade em se avaliar a real condição de pontes. Assim, propõe-se utilizar os dados
coletados durante a calibração de um sistema B-WIM para realizar atualização de modelo para
parâmetros estruturais da ponte. É importante salientar que parâmetros estruturais podem
apresentar uma variabilidade inerente entre diferentes passagens de veículos de calibração devido
a fatores externos, como condições climáticas. Dessa forma, visando uma melhor predição das
incertezas relacionadas, um modelo Bayesiano hierárquico é aplicado. Os resultados relacionados
com o processo de estimação de peso indicam que ambas as abordagens propostas foram
capazes de atingir melhores resultados para as situações analisadas do que os algoritmos B-
WIM estáticos geralmente empregados. Os melhores desempenhos foram observados para a
estratégia Bayesiana com modelo AR(2) quando estimando peso por eixo. A estratégia de
atualização de modelo Bayesiana hierárquica proposta também foi capaz de atingir seu objetivo,
fornecendo estimativas semelhantes mesmo quando utilizando dados produzidos por veículos
diferentes no processo de estimação. Apesar dos resultados serem obtidos para um conjunto
limitado de exemplos, eles indicam que as abordagens propostas são promissoras e podem ser
implementadas na prática para confirmar essas conclusões.

Palavras-chave: Pesagem em movimento em pontes. Linha de influência de pontes. Estimação
de peso de veículos. Identificação de peso de veículos. Inferência Bayesiana. Fiscalização de
excesso de peso. Atualização de modelo Bayesiana hierárquica.



RESUMO EXPANDIDO

Introdução
O sistema de transportes brasileiro é muito dependente do sistema rodoviário, visto que mais
de 60% do transporte de cargas e 90% dos deslocamentos de passageiros são realizados por
rodovias (CNT / SEST SENAT, 2018). Pontes são elementos fundamentais para o funciona-
mento desses sistemas, fornecendo maneiras de transpor obstáculos como rios, vales e estradas.
Em um trabalho recente, Lima e Oliveira, Greco, and Bittencourt (2019) analisaram um banco
de dados de milhares de pontes brasileiras, obtendo uma idade média de cerca de 40 anos para
aquelas cuja idade estava disponível. Os autores também concluíram que cerca de metade das
pontes analisadas estão atualmente sob alto volume de tráfego pesado. No geral, as pontes
brasileiras foram projetadas em um cenário onde tanto o volume de tráfego quanto as cargas
eram bastante diferentes do atual.

Veículos com sobrepeso são um dos principais pontos a serem resolvidos para melhorar a
segurança do tráfego em geral (XU et al., 2016). Eles geram problemas como alto impacto
na durabilidade da infraestrutura e deterioração da segurança da via (JACOB; FEYPELL-DE
LA BEAUMELLE, 2010). Falando especificamente de pontes, veículos com sobrepeso foram
responsáveis por mais de 40 colapsos de pontes durante o período de 1989 a 2000, apenas nos
Estados Unidos (DENG; WANG, W.; YU, 2016). Logo, percebe-se que, independentemente do
procedimento adotado para projetar e construir pontes, se veículos com sobrepeso não forem
adequadamente controlados, a segurança da estrutura não pode ser efetivamente garantida
(XU et al., 2016). A fiscalização de limites legais de peso é uma maneira reconhecidamente
efetiva de diminuir os problemas induzidos por esses veículos (DENG; WANG, W.; YU, 2016).
Por exemplo, o trabalho de Otto et al. (2019) mostrou que, para uma única seção monitorada,
o percentual de veículos com sobrepeso cresceu 87% em apenas um ano sem fiscalização.

Outro ponto relevante é o processo de degradação ao qual pontes estão sujeitas devido
à influências climáticas e ambientais durante toda sua vida útil. Esse processo é bastante
complexo e envolve diversos efeitos diferentes (FRANGOPOL; LIU, 2007). Como consequência,
as incertezas relacionadas ao comportamento estrutural da ponte aumentam com o passar do
tempo (LANTSOGHT et al., 2017). No pior dos casos, a maior dificuldade em se avaliar a
condição da estrutura pode levar a falta de manutenção, o que é uma importante causa de
falhas em pontes (XU et al., 2016). É importante destacar que, para o cenário brasileiro, essa
tarefa é ainda mais complexa devido a falta de informações disponíveis para muitas pontes
(LIMA E OLIVEIRA; GRECO; BITTENCOURT, 2019).

Sistemas Bridge weigh-in-motion (B-WIM) são ferramentas importantes para ajudar na avali-
ação da segurança de pontes. Esses sistemas surgiram a partir do trabalho de Moses (1979),
onde o peso dos veículos é obtido a partir do conhecimento das deformações induzidas e da
linha de influência. Para os sistemas atuais, a linha de influência da ponte é obtida experimen-
talmente a partir das deformações geradas por veículos com características conhecidas. Esse
processo é chamado de calibração. As informações fornecidas por esses sistemas têm muitas
aplicações como seleção de veículos com sobrepeso (MANDIĆ IVANKOVIĆ et al., 2019) e
avaliação de indicadores de desempenho de pontes (ŽNIDARIČ; KALIN, 2020).

Para algumas aplicações específicas, como a fiscalização direta dos limites de peso, as estimati-



vas de sistemas B-WIM ainda não atingiram o nível de acurácia necessário. Diversas instalações
B-WIM atingiram desempenho suficiente apenas para pré-seleção de veículos, restando a ne-
cessidade de utilizar balanças estáticas para confirmação (RICHARDSON et al., 2014). Nesse
contexto, um problema bem conhecido em sistemas B-WIM é que o nível de acurácia obtido
para peso por eixo é menor quando comparado a estimativas de peso bruto total (HE et al.,
2019; O’BRIEN et al., 2018; RICHARDSON et al., 2014; O’BRIEN et al., 2009). No entanto,
mesmo para estimativas de peso bruto total, atingir o nível de acurácia requerido ainda é raro
(ŽNIDARIČ; KALIN; KRESLIN, 2018).

Objetivos
O objetivo geral deste trabalho é contribuir para o desenvolvimento de sistemas B-WIM
cada vez mais eficientes. Para atingir esse objetivo, dois pontos em específico são abordados
por serem considerados os mais promissores, principalmente quando considerando o contexto
brasileiro. O primeiro ponto é a melhoria do nível de acurácia das estimativas de peso feitas
por sistemas B-WIM, principalmente referentes ao peso por eixo. Como a fiscalização direta
dos limites legais de peso por sistemas B-WIM ainda não foi atingida em campo, este tópico
permanece como um problema em aberto. O segundo ponto julgado como importante é uma
combinação entre falta de informações para muitas pontes e alto nível de incertezas quanto
ao desempenho de pontes devido ao processo de degradação que ocorre durante a vida útil
delas. Esse ponto é especialmente importante para muitas pontes brasileiras para as quais os
projetos não estão mais disponíveis.

Metodologia
O primeiro ponto a ser comentado aqui é o desenvolvimento de algoritmos para pesagem em
sistemas B-WIM que busquem uma melhora na acurácia das estimativas. Foram desenvolvidas
duas abordagens com esse objetivo, ambas baseadas em sugestões feitas no trabalho de
Carraro et al. (2019), que proporciona uma visão geral da literatura no tema. A primeira inclui
considerações da resposta dinâmica da estrutura nas predições B-WIM. Já a segunda utiliza
expectativas prévias quanto aos valores de peso por eixo para auxiliar o processo de estimação.

Os algoritmos B-WIM utilizados atualmente e que foram analisados em Carraro et al. (2019)
se baseiam em suposições estáticas apenas. No entanto, a resposta de uma ponte à passagem
de um veículo pesado tem efeitos dinâmicos importantes e levá-los em conta é uma opção
promissora para melhorar estimativas de peso. Logo, esse trabalho apresenta um algoritmo B-
WIM que emprega um modelo dinâmico simplificado para o sistema veículo-ponte, que pode ser
encontrado também em Gonçalves, Carraro, and Lopez (2021a). A principal contribuição desse
método é a definição de um algoritmo com custo computacional similar quando comparado aos
métodos estáticos atualmente utilizados (i.e., baseados apenas em poucas operações matriciais),
no entanto que também inclui o efeito da resposta dinâmica. Esse algoritmo é uma extensão
do trabalho de Ning-Bo Wang et al. (2017), que focou na extração da componente estática
da linha de influência da ponte para um único evento de calibração. No presente trabalho, esse
método foi modificado para permitir a consideração de múltiplos eventos de calibração a partir
da utilização do método de maximização da verossimilhança (IENG, 2015). Ainda, a resposta
dinâmica completa foi utilizada para calcular uma linha de influência paramétrica que inclui a
velocidade do veículo como um parâmetro do modelo e as equações utilizadas para estimação
de peso foram derivadas. Vale destacar que a velocidade é considerada constante ao longo da
passagem do veículo. O método proposto fornece linhas de influência que se adequam melhor
ao comportamento esperado para tais curvas (i.e., curvas contínuas ao invés de estimativas



pontuais (ŽNIDARIČ; KALIN; KRESLIN, 2018)). Essa característica deve também melhorar a
capacidade de generalização do método. Como menos parâmetros são ajustados, a probabilidade
de que a linha de influência extraída incorpore padrões específicos da resposta do veículo de
calibração é reduzida. Ademais, a utilização da velocidade do veículo como um parâmetro do
modelo é uma tentativa de modelar um efeito conhecido referente à dependência da resposta
do veículo a esse parâmetro (O’BRIEN; GONZÁLEZ; DOWLING, 2010).

Outro ponto abordado referente à estimação de peso de veículos por sistemas B-WIM está
relacionado à baixa acurácia geralmente reportada para previsões de peso por eixo quando
comparadas as estimativas de peso bruto total. Até mesmo previsões claramente irreais, como
peso por eixo negativo, podem ser observadas. Visando superar esse problema, o presente
trabalho apresenta um algoritmo de pesagem Bayesiano que leva em conta expectativas prévias
para os valores de peso por eixo para guiar as estimativas em direção a valores plausíveis
(GONÇALVES et al., 2022). A utilização dessa expectativa prévia é justificada pelo fato
de que o peso por eixo de veículos pesados não apresenta uma amplitude de variações tão
extensa (i.e., é irreal imaginar peso por eixo acima de 20 toneladas ou abaixo de zero, por
exemplo). A abordagem mais comum quando utilizando estratégias Bayesianas é assumir
que os erros entre respostas estimadas e medidas são independentes, como no trabalho de
Yoshida, Sekiya, and Mustafa (2021). Um ponto problemático importante notado ao longo da
derivação do método proposto, no entanto, está relacionado à presença de resíduos fortemente
autocorrelacionados. Essa autocorrelação tem um efeito indesejado para predições Bayesianas,
visto que a importância da likelihood é artificialmente aumentada, reduzindo a importância
da distribuição prior. Logo, em contraste com as estratégias usuais, no método proposto a
suposição de independência é evitada a partir da utilização de um processo autoregressivo de
segunda ordem (AR(2)) para modelar o erro supracitado.

A motivação para estudar também um tópico referente à avaliação de propriedades estruturais
de pontes a partir de dados de calibração para sistemas B-WIM é a falta de informações
observada para pontes brasileiras (LIMA E OLIVEIRA; GRECO; BITTENCOURT, 2019),
onde mesmo parâmetros básicos (e.g., a idade exata da ponte) podem não ser conhecidos.
Percebeu-se que o procedimento de calibração empregado para sistemas B-WIM gera um
grande volume de informações, que pode ser utilizado para aumentar o grau de conhecimento
relacionado ao comportamento estrutural da ponte. De fato, as informações coletadas durante
esse processo podem ser interpretadas como testes dinâmicos para diagnóstico de pontes
(OLASZEK; ŁAGODA; CASAS, 2014).

No presente trabalho, uma estratégia para atualização de modelo que utiliza os dados comen-
tados anteriormente é proposta (GONÇALVES; LOPEZ; VALENTE, 2022). Um importante
aspecto a se salientar é que esses dados provavelmente apresentam uma variabilidade inerente,
em que o valor para a quantidade de interesse pode variar ao longo do processo de calibração.
Essa variação pode ser melhor entendida quando relembrando que pontes estão diretamente
sob influência de condições climáticas ao longo de toda sua vida útil e, então, não há controle
completo sobre todas as características que afetam a resposta da ponte (e.g., temperatura,
velocidade do vento) durante a calibração. Portanto, a abordagem proposta utiliza um modelo
Bayesiano hierárquico que pode lidar com essa variabilidade inerente, como observado em es-
tudos anteriores em diferentes sistemas estruturais (BEHMANESH; MOAVENI, 2016; KWAG;
JU, 2020; SONG, M. et al., 2019). Essa estratégia proporciona uma melhor estimativa das
incertezas totais relacionadas aos parâmetros de interesse do que aquela obtida a partir de



métodos Bayesianos clássicos (SEDEHI; PAPADIMITRIOU; KATAFYGIOTIS, 2019). Como
resultado, permite-se que o procedimento de instalação e calibração de sistemas B-WIM possa
ser usado para atender duas demandas distintas: efetivamente calibrar o sistema e avaliar
parâmetros estruturais da ponte.

Resultados e Discussão
Para o algoritmo de pesagem com considerações quanto aos efeitos dinâmicos, três imple-
mentações distintas foram avaliadas, de acordo com as suposições feitas para o cálculo dos
parâmetros do modelo: Standard (aproximação estática + flutuação, análogo a Ning-Bo Wang
et al. (2017)), Analytical (quasi-estática + flutuação) e Static (aproximação estática apenas).
As simulações numéricas utilizadas incluíram pontes com comprimentos variando de 10 a 30
metros, diferentes perfis de pavimento e veículos de teste distintos daqueles utilizados para
calibração. Foram avaliados também: método da matriz (O’BRIEN; QUILLIGAN, M. J.; KA-
ROUMI, 2006); pBWIM (O’BRIEN et al., 2018) com a implementação proposta por Gonçalves,
Carraro, and Lopez (2021b); maximização da verossimilhança (IENG, 2015) e regularização
(O’BRIEN et al., 2009). As estimativas para ambos os métodos Analytical e Static foram
capazes de superar o erro médio absoluto reportado por todos os outros métodos avaliados. A
principal diferença ocorre para pontes de 30 metros, em que o método Analytical apresenta um
desempenho destacado. É importante notar que tais resultados ocorreram mesmo considerando
que as propriedades dinâmicas da ponte não eram precisamente conhecidas previamente, indi-
cando que a abordagem proposta é também robusta. Outro aspecto interessante de se observar
é que o método Analytical removeu uma grande parte do enviesamento presente no erro médio
absoluto devido à velocidade do veículo. Isso é um resultado direto da inclusão da velocidade do
veículo como um parâmetro do modelo, que permite que um mesmo veículo induza diferentes
respostas estruturais de acordo com essa velocidade. Os resultados para ambos os métodos
Static e Analytical indicam que eles atingiram seus objetivos, principalmente para pontes mais
longas. Apesar dos resultados para o método Analytical apresentarem robustez, tal método
não irá desempenhar adequadamente se nenhuma estimativa para as propriedades da ponte
estiver disponível. Nesse caso, pode-se empregar o método Static que deve ainda apresentar
melhores resultados para veículos diferentes daqueles utilizados para calibração.

Já a abordagem de pesagem Bayesiana com modelo AR(2) foi avaliada tanto em sinais
simulados quanto em um exemplo real de calibração de um sistema B-WIM, analisando
também predições fora da amostra (i.e., veículos de teste diferentes daqueles utilizados para
calibrar o sistema). Os resultados foram comparados com a solução por mínimos quadrados e
por regularização com parâmetros aproximadamente ótimos. O segundo método pode ser visto
com um exemplo de excelente desempenho, no entanto a estratégia aproximadamente ótima
utilizada para selecionar o parâmetro de regularização não é reprodutível na prática (visto
que se baseia no valor real dos pesos por eixo de cada veículo). Além disso, quatro variantes
da abordagem Bayesiana proposta foram testadas, visando verificar a influência tanto da
distribuição prior utilizada quanto do modelo para o termo de erro nos resultados. Por fim, como
a definição da distribuição prior é em certo grau subjetiva, análises de sensibilidade também
foram realizadas a partir da avaliação dos resultados para combinações diferentes de parâmetros
para a distribuição prior. Os resultados indicaram que a abordagem proposta foi capaz de evitar
estimativas espúrias como peso por eixo negativo, como pretendido. Ademais, o nível de
acurácia atingido superou, no geral, aquele obtido pelos outros algoritmos analisados, mesmo
considerando cenários que não se ajustam bem às expectativas iniciais definidas pela distribuição
prior (e.g., peso por eixo claramente acima do valor médio da distribuição prior) e a utilização



de parâmetros de regularização obtidos a partir do conhecimento do peso real dos veículos. Os
resultados são ainda melhores quando avaliamos as predições de peso por eixo, onde classes
de acuracidade similares àquelas obtidas para peso bruto total foram atingidas. Além disso, as
afirmações referentes à importância de modelar os erros autocorrelacionados se confirmaram. As
estimativas Bayesianas sem a utilização do modelo AR(2) foram bastante similares às soluções
obtidas pelo método dos mínimos quadrados, praticamente desconsiderando a informação
fornecida pela distribuição prior. Assim, a distribuição prior proposta, baseada em valores
esperados em aplicações práticas para o peso por eixo, necessita ser utilizado em conjunto
com o modelo AR(2) para efetivamente melhorar os resultados. As análises de sensibilidade
confirmaram a robustez da abordagem proposta quanto à definição da distribuição prior. Isso
já era esperado visto que a amplitude de valores para os parâmetros dessa distribuição, capaz
de cobrir pesos por eixo esperados na prática, não é tão abrangente. Isso é, de fato, a maior
vantagem prática do método proposto. A distribuição prior tem uma clara correspondência
com quantidades que são habituais para quem opera um sistema B-WIM, o que permite uma
boa base para a definição dessa distribuição.

A estratégia Bayesiana hierárquica de atualização de modelo também foi avaliada utilizando
sinais simulados, incluindo exemplos simplificados para ilustrar as vantagens da estratégia
hierárquica, e um exemplo real de dados de calibração de um sistema B-WIM. As estimativas
para sinais simulados se aproximaram bastante dos valores verdadeiros conhecidos para todos
os parâmetros analisados. Em especial, o método foi capaz de estimar adequadamente as
incertezas da quantidade de interesse, que é o maior objetivo em se utilizar uma estratégia
hierárquica. É importante destacar que tais resultados foram confirmados utilizando uma
quantidade de dados compatível com o coletado em situações práticas de calibrações de
sistemas B-WIM e considerando individualmente os dados gerados por cada veículo. A última
afirmação é importante visto que apenas poucos veículos são geralmente utilizados na calibração
e é importante que os resultados não sejam excessivamente dependentes das características
específicas de tais veículos. Quando avaliando os dados referentes ao exemplo real de calibração,
os resultados também são interessantes. Nesse caso, as diferenças entre estimativas feitas
utilizando dados de veículos distintos é maior do que para os sinais simulados, no entanto os
resultados ainda são consistentes. Como dados reais são mais complexos, esse comportamento
já era esperado. Além disso, as análises de propagação de incertezas foram capazes de prever
adequadamente a resposta para os dois veículos utilizados. Todas as análises indicam que tal
abordagem é promissora e capaz de fornecer informações úteis, principalmente num contexto
de falta de informações básicas. Apesar do modelo simplificado utilizado, esse trabalho fornece
uma fundamentação inicial para auxiliar no desenvolvimento de modelos que permitam uma
melhor avaliação da segurança de estruturas.

Considerações Finais
O presente trabalho destacou a importância prática de sistemas B-WIM, indicando também
possíveis caminhos para lidar com a falta de informação observada para muitas pontes brasileiras.
Após discutir as abordagens propostas, é possível afirmar que o objetivo dessa tese foi atingido.
Ela forneceu contribuições relevantes para aplicações de sistemas B-WIM em geral, sendo uma
pequena parte na contínua evolução da tecnologia B-WIM.

Palavras-chave: Pesagem em movimento em pontes. Linha de influência de pontes. Estimação
de peso de veículos. Identificação de peso de veículos. Inferência Bayesiana. Fiscalização de
excesso de peso. Atualização de modelo Bayesiana hierárquica.



ABSTRACT

Bridges are important structures for the proper operation of transportation systems around the
world. These structures remain over all their life-cycle under direct influence of environmental
conditions, which accelerates their structural degradation and increases uncertainties related
to their performance. These uncertainties are even higher for scenarios in which there is a lack
of reliable information related to their structural properties. Furthermore, traffic volume and
vehicle loads are continuously increasing over the last decades, which also includes the presence
of vehicles over the accepted weight limits. This scenario leads to a high challenge for bridge
structures, mainly the older ones. Bridge weigh-in-motion (B-WIM) systems are powerful tools
for providing valuable information in this regard. B-WIM systems allow the estimation of axle
weights for vehicles of the traffic flow whereas they travel over the bridge at their normal
speeds. In particular, it can help in the enforcement of legal weight limits, which is important
for controlling the applied loads. However, the accuracy of weight predictions reported by
current B-WIM systems still has not achieved the required level for direct enforcement of
legal weight limits, mainly when analyzing axle weights individually, remaining the necessity
to employ static scales to check it. The goal of the present work is contributing to B-WIM
technology and the improvement of accuracy level of such weight estimates is addressed. First,
a B-WIM algorithm that includes simplified dynamic modeling of the bridge behavior due to the
passage of heavy vehicles is derived. It differs from current employed methods, which rely on
static assumptions, however keeping a similar computational cost. Then, a B-WIM algorithm
that includes prior beliefs regarding the conventional values of axle weights by means of a
Bayesian formulation is proposed. It utilizes a second order autoregressive (AR(2)) process for
modeling the error between measured and predicted responses that avoids the usually employed
independence assumption. A second issue that is addressed in the present work is the difficulty
to assess real bridge conditions. Then, the data collected for calibrating the B-WIM systems
is employed to perform model updating of bridge structural parameters. It is important to
remark that structural parameters may present an inherent variability among the passage of
each calibration vehicle due to external factors, such as environmental conditions. Therefore, in
order to better predict related uncertainties, a hierarchical Bayesian framework is applied. The
results related to the weight estimation process indicate that both proposed approaches are
able to reach better results than the usually applied static B-WIM algorithms for the analyzed
situations. The main achievements are noticed for the Bayesian strategy with AR(2) model
when estimating individual axle weights. The proposed hierarchical Bayesian model updating
strategy was also able to reach its goal, providing consistent estimates. Although the results
were obtained for a limited set of examples, such results indicate that the proposed approaches
are promising and could be implemented in practice for further assessing their effectiveness.

Keywords: Bridge weigh-in-motion. Bridge influence line. Vehicle weight estimation. Vehicle
weight identification. Bayesian inference. Overweight enforcement. Hierarchical Bayesian model
updating.



LIST OF SYMBOLS (CHAPTERS 1 AND 2)

mg measured bending moment response vector of the g-th girder
E elastic modulus of bridge girders
Z section modulus of bridge girders
ug measured strain vector of the g-th girder
G total number of girders
M measured bending moment response vector
ˆ︂M theoretical bending moment response vector
J vehicle number of axles
dj distance between first and j-th axle
Cj number of scans between first and j-th axle
f sampling frequency
v vehicle speed
IL influence line ordinates vector
R error function
K total number of scans
A matrix of axle weights
W vector of axle weights
Λ matrix of influence line ordinates
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1 INTRODUCTION

The Brazilian logistic system is highly dependent on road traffic, since more than 60%
of the cargo transport and 90% of passenger travels are carried out across roads (CNT /
SEST SENAT, 2018). Bridges are key elements for its practical applicability, providing ways
to overcome obstacles such as rivers, valleys or roads. In a recent work, Lima e Oliveira,
Greco, and Bittencourt (2019) analyzed a dataset regarding hundreds of Brazilian bridges and
reported an average age of about 40 years for those whose age were available (for a high
number of bridges this information is not exactly known). Besides this, they also concluded
that approximately half of the analyzed bridges are currently under high levels of heavy vehicles
traffic. The tendency observed for the Brazilian truck fleet is also an important information in
this regard, which helps to illustrate the increasing level of loads over such bridges. Figure 1
presents the number of trucks traveling across Brazilian roads, in which a continuous growth
is noticed. In particular, it is seem that the number of trucks in Brazil increased by nearly 60%
in 15 years. All the previously discussed indicates that the majority of Brazilian bridges was
designed in a scenario where both traffic volume and truck loads were considerably distinct
from what is observed nowadays.

Figure 1 – Number of trucks in Brazil from 2006 to 2020
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When analyzing manners to improve the safety of road traffic in general, it is noticed
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Figure 2 – Bridge collapse due to overloaded vehicle

Source: Deng, Wei Wang, and Yu (2016)

that overloaded vehicles are one of the main issues to be solved (XU et al., 2016). Among
the troubles induced by overloaded vehicles, one could cite the high effect on the durability
of infrastructure, deterioration of road safety and increasing on risks for the own road users
(JACOB; FEYPELL-DE LA BEAUMELLE, 2010). For instance, Blower and Woodrooffe (2012)
reported that about 60% of trucks involved in crashes in Brazil were overloaded. This high
percentage is due to more likely mechanical failures and loss of control in vehicles under
such a condition. When observing the scenario for bridge structures in particular, it is noticed
that overloaded vehicles were responsible for more than 40 bridge collapses during the period
between 1989 and 2000 only in the United States (DENG; WANG, W.; YU, 2016). To illustrate
this comment, Figure 2 shows a bridge collapse attributed to the passage of an overloaded
vehicle. Therefore, independently of the procedure applied for designing and building bridges, if
overloaded vehicles are not properly controlled, the safety of the structure cannot be effectively
ensured (XU et al., 2016).

The enforcement of vehicle weight regulations is acknowledged as an effective way
to decrease the problems induced by overloaded vehicles (DENG; WANG, W.; YU, 2016).
Although the importance of respecting such limits, in many locations the usual traffic flow
usually contains a considerable number of vehicles that violate these regulations. For the
Brazilian context, the work of Otto et al. (2019) showed that, even with enforcement of
legal weight limits, the percentage of overloaded vehicles in the usual traffic flow were about
6.5%. This same work noticed that the situation quickly worsened when this enforcement was
suspended. For a single monitored section, the percentage of overloaded vehicles grew by 87%
in just one year without enforcement.

Another relevant aspect to discuss regarding the safety of bridges is the occurrence of
degradation processes in the structure due to the influence of environmental conditions. Indeed,
civil infrastructure networks are usually subjected to aging phenomena and natural hazards
during their life-cycle, which decreases the performance of the structure over time (BARONE;
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FRANGOPOL, 2014). The resulting deterioration process for bridge structures is very complex
and may include, for instance, alkali-silica reaction, chloride contamination, and sulfate attack
(FRANGOPOL; LIU, 2007). As a consequence of such complex and important effects, the
uncertainties regarding the bridge structural behavior increase over time (LANTSOGHT et al.,
2017). It is an additional difficulty for the assessment of the real condition of the structure.
In the worst scenario, it could lead to lack of necessary maintenance interventions, which is
an important cause of bridge failures (XU et al., 2016). It is worth to remark that, for the
Brazilian context, this task is even more complex due to a lack of information for many bridges
(LIMA E OLIVEIRA; GRECO; BITTENCOURT, 2019). Then, it is of paramount importance
that responsible authorities have reliable and accurate information regarding the safety of
such structures (SCHLUNE; PLOS; GYLLTOFT, 2009). In particular, both condition of the
structure and actual traffic loads are important factors to analyze when assessing bridge safety.

Bridge weigh-in-motion (B-WIM) systems arise as efficient tools for helping in bridges
safety assessment. B-WIM systems work relating strains, measured by sensors underneath the
bridge structure, with the axle weights of the vehicle that induced such strains. It enables real
time monitoring of traffic even with vehicles travelling at their usual speeds. The information
retrieved by such systems can be employed for many applications such as selection of overloaded
vehicles, traffic analyses, development of traffic models and bridge design and/or assessment
(MANDIĆ IVANKOVIĆ et al., 2019). In addition, some important bridge performance indicators
(e.g., influence lines and load distribution factors) can be evaluated employing the measured
strains (ŽNIDARIČ; KALIN, 2020). Damage detection utilizing B-WIM systems information was
also addressed by some recent works (CANTERO; GONZÁLEZ, 2015; CANTERO; KAROUMI;
GONZÁLEZ, 2015; O’BRIEN et al., 2021).

B-WIM systems have some interesting characteristics. Firstly, by the nothing-on-road
(NOR) approach, there is no need to install sensors directly on the road surface to detect
vehicle axles. It improves the durability of the overall system, since it prevents that heavy
traffic damages the sensors (LYDON et al., 2016). Furthermore, it is easy to implement, since
there is no need for disrupting the traffic flow during installation (YU; CAI; DENG, 2018).
Hence, among traffic monitoring systems, the cost of installing and maintaining a B-WIM
system is usually lower (FRØSETH et al., 2017). In addition, such systems are portable, since
transducers and electronics can be easily removed from one bridge and employed on another
(JACOB; FEYPELL-DE LA BEAUMELLE, 2010). Lastly, the system is not visible by truck
drivers, which makes difficult for overloaded vehicles to avoid it (JACOB; FEYPELL-DE LA
BEAUMELLE, 2010). Thus, B-WIM systems are able to provide unbiased traffic data (LYDON
et al., 2016).

Current B-WIM systems are based on the work of Moses (1979). The main idea utilized
is that measured strains can be estimated by knowing bridge influence line and axle loads. Thus,
given an influence line, obtained theoretically by Moses (1979), and measured strains, it is
possible to calculate the axle weights that generated it by solving an inverse problem. However,
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many distinct factors affect the bridge response and increase the difficult of calculating a
theoretical influence line (e.g., the rotational stiffness of the connections (ZHAO, Z.; UDDIN;
O’BRIEN, 2017)). For that reason, the theoretical influence line is not suitable for B-WIM
applications (QUILLIGAN, M., 2003). Thus, differently from the work of Moses (1979), current
methods perform a calibration step which aims to extract an experimental influence line. In the
calibration procedure, a set of vehicles with known axle weights travels the bridge at constant
speed and the strains are recorded. With measured strains and known vehicle properties, the
experimental bridge influence line can be estimated and applied to weigh any vehicle of the
traffic flow.

Although B-WIM systems have been applied in many sites across the world, providing
important information for many distinct purposes, for some specific applications the required
accuracy level was not achieved. The direct enforcement of weight limits is an example of task
that needs highly accurate weight predictions (JACOB; O’BRIEN; JEHAES, 2002). Several B-
WIM installations achieved performance sufficient just to indicate possible overloaded vehicles,
remaining the need of using static scales to effectively check it (RICHARDSON et al., 2014).
Hence, the use of B-WIM data for direct enforcement of legal weight limits is limited to an
accuracy level that has not been reached to date (LYDON et al., 2016). In this context, a well
acknowledged issue in B-WIM systems is the lower accuracy level reported for individual axle
weights when compared to gross vehicle weight (GVW) estimates (HE et al., 2019; O’BRIEN
et al., 2018; RICHARDSON et al., 2014; O’BRIEN et al., 2009). An argument that helps to
explain this fact is that the resulting equations are ill-conditioned, mainly for closely spaced
axles crossing long span bridges (ŽNIDARIČ; KALIN; KRESLIN, 2018; O’BRIEN et al., 2018,
2009; ROWLEY et al., 2008). However, even when evaluating only GVW predictions, achieving
the required accuracy classes is still rare (ŽNIDARIČ; KALIN; KRESLIN, 2018).

1.1 GOALS AND CONTRIBUTIONS

The general objective of this work is to contribute for the development of more efficient
B-WIM systems. From the discussion presented so far, two specific points are selected as
the most promising ones to be addressed in order to reach this goal and develop useful
contributions, mainly when considering the Brazilian context. The first one is the improvement
of accuracy level of B-WIM weight estimates, mainly referred to single axle predictions. As
the direct enforcement of legal weight limits by B-WIM systems has not been achieved in the
practical operation yet, this topic remains as an open problem. Moreover, the possibility of
application of B-WIM for direct enforcement has a remarkable importance in a scenario of
high volume of heavy vehicles traffic and, in particular, high occurrence of overloaded vehicles,
as observed in Brazil. The second important point remarked is a combination between lack
of information for many bridges and high level of uncertainties in the bridge performance due
to the degradation process that occurs during their life-cycle. In this work, it is attempted
to address this matter from a B-WIM perspective. The utilization of B-WIM systems rely on
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performing a calibration process, which generates a considerable amount of data. In the absence
of previous reliable information, the data can be utilized to improve the knowledge regarding
the bridge structure. It is specially important for many Brazilian bridges for which design
plans (i.e., blueprints, structural specifications) are no longer available. The two contributions
addressed are summarized as:

• the improvement in accuracy of B-WIM weight estimates, mainly related to single
axle estimates;

• the assessment of structural bridge properties by means of B-WIM system calibration
data.

In what follows the approaches adopted for addressing both issues are further described,
remarking the contributions that the present work leads to the current B-WIM technology.

1.1.1 Contributions regarding the weight estimation process

The approaches developed attempting to improve the accuracy of weight predictions
address two points suggested by Carraro et al. (2019), which conducted an overview of the
related literature: the consideration of dynamic response into B-WIM predictions and the
utilization of prior beliefs for helping in the weight estimation. The discussions are drawn
individually for each approach.

The current utilized B-WIM algorithms analyzed in Carraro et al. (2019) are based only
on static assumptions. However, the response of the bridge to the passage of a heavy vehicle has
important dynamic effects and accounting for them is a promising option for improving B-WIM
weight estimates. Therefore, this thesis presents a B-WIM algorithm that employs a simplified
dynamic model for the vehicle-bridge system, which can be found also in Gonçalves, Carraro, and
Lopez (2021a). Its main contribution is the development of an algorithm whose computational
cost is at a similar level when compared to the current applied static methods (i.e., based on
just a few matrix operations), however which also includes the effect of the dynamic response
in a simplified manner. This algorithm is an extension of the work of Ning-Bo Wang et al.
(2017), which focused on extracting the static component of the bridge influence line from
a single calibration run. In this study, the method was modified to allow multiple calibration
runs by employing the maximum likelihood approach (IENG, 2015). Furthermore, the complete
dynamic response was utilized to calculate a parametric influence line that includes the vehicle
speed as a model parameter and the equations utilized for weight estimation were derived. It is
worth to remark that the vehicle speed is assumed to be constant throughout its passage over
the bridge. The proposed method provides influence lines that better agree with the expected
behavior of such curves (i.e., continuous curves instead of pointwise estimates (ŽNIDARIČ;
KALIN; KRESLIN, 2018)). This characteristic should also improve the generalization capacity
of the method. As less parameters are adjusted, the probability that the extracted influence line
incorporates specific patterns from the response of the calibration vehicle is reduced. Moreover,
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the inclusion of the vehicle speed as a model parameter is an attempt to model a known effect
(illustrated in chapter 2) referred to the dependence of vehicle response to this parameter
(O’BRIEN; GONZÁLEZ; DOWLING, 2010).

A practical problem that often occurs in B-WIM weight estimation is the low accuracy
for individual axle predictions. Even clearly unreal estimates, such as negative axle predictions,
can be reported. In order to overcome this problem, this thesis presents a Bayesian algorithm
which accounts to prior beliefs in order to guide the estimates towards more likely values
(GONÇALVES et al., 2022). The prior definition was based on the values expected for axle
weights of heavy vehicles, which do not have a wide range of possible values (i.e., it is unreal
to expect axle weights above 20 tons or below 0). However, in order to allow that the prior
distribution has the desired effect, a second order autoregressive (AR(2)) process was employed
for modeling the error between measured and predicted responses. It was a necessary action,
since it was noticed that the aforementioned errors were highly correlated and assuming
independent errors in this scenario induces an artificially high importance to the likelihood
against the prior distribution (it is illustrated in chapter 2 and detailed in chapter 4). Deriving
an approach that relaxes the independence hypothesis is a clear contrast between the proposed
approach and other Bayesian strategies, such as Yoshida, Sekiya, and Mustafa (2021), which
was based in this independence assumption.

1.1.2 Contributions related to the assessment of structural bridge properties

The motivation for studying this topic is the lack of information noticed for Brazilian
bridges (LIMA E OLIVEIRA; GRECO; BITTENCOURT, 2019), in which even basic parameters
(e.g., the bridge exact age) may not be known. This aspect contributes for a higher difficult
for assessing the real bridge conditions. It was realized that the calibration procedure employed
for B-WIM systems generates a high amount of information (i.e., bridge response to distinct
vehicles whose properties are previously known, traveling at distinct speeds and road lanes),
which may be utilized for increasing the knowledge regarding the bridge structural behavior.
Indeed, the information collected during this procedure can be interpreted as a dynamic
diagnostic test for bridges (OLASZEK; ŁAGODA; CASAS, 2014). Furthermore, periodical
in-service verifications are recommended (JACOB; O’BRIEN; JEHAES, 2002). In this case,
more data from known vehicles are generated, allowing to follow the bridge structural behavior
over time.

In the present work, it is proposed a model updating strategy which utilizes the afore-
mentioned dataset (GONÇALVES; LOPEZ; VALENTE, 2022). An important aspect to remark
is that this dataset likely presents an inherent variability, in which the value for the quantity
of interest (QoI) may change throughout calibration events. This variation may be better
understood when recalling that bridges are under direct influence of environmental conditions
during all their life-cycle and, hence, there is no control over all the characteristics that affect
the bridge response (e.g., temperature, wind speed) along calibration. Therefore, the proposed
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approach utilized a hierarchical Bayesian framework that can deal with this inherent variability,
as observed in previous studies for distinct structural systems (BEHMANESH; MOAVENI,
2016; KWAG; JU, 2020; SONG, M. et al., 2019). It provides a better estimate of the total un-
certainty regarding the parameters of interest than those ones obtained from classical Bayesian
methods (SEDEHI; PAPADIMITRIOU; KATAFYGIOTIS, 2019). As a result, it is allowed that
the procedure of installation and calibration of B-WIM systems could be used for two distinct
goals: effectively calibrate the B-WIM system and assess bridge structural parameters.

1.2 DOCUMENT ORGANIZATION

The remaining of this thesis is divided into 5 chapters. Each of the contributions just
cited refers to a specific one. It results in 3 self-contained chapters, written in paper format
(all such chapters have been already published). In what follows these chapters are briefly
summarized:

• in chapter 2, an introductory content about B-WIM systems is presented, aiming to
show the main aspects regarding such systems for readers that are not well familiar-
ized with them. Moreover, an experimental dataset related to a field calibration of
a B-WIM system that is utilized throughout this thesis is detailed. Some challenges
for current B-WIM systems, including illustrative examples which give a better idea
of the contributions of this work are also discussed;

• chapter 3 introduces a new algorithm for weight estimation for B-WIM systems,
based on the work of Ning-Bo Wang et al. (2017). It relies on simplified dynamic
considerations regarding the vehicle-bridge system response. The idea for this work
was a direct result from the conclusions of the work presented in Carraro et al.
(2019), in which the inclusion of dynamic modeling was considered a promising
option to improve the accuracy of B-WIM systems. It is worth to mention that such
considerations for B-WIM exist, however not in a computationally way that enables
real-time monitoring as in the proposed approach. It is also available in Gonçalves,
Carraro, and Lopez (2021a);

• the chapter 4 also focused on the weight estimation process, however it employs a
Bayesian strategy to improve axle weight predictions. It is intended that this strategy
eliminates spurious estimates, such as negative axle predictions, which often occurs
for closely spaced axles. This approach combines a prior distribution based on the
expected values of axle weights in practice and an AR(2) process for modeling the
error between measured and predicted responses. It is also available in Gonçalves
et al. (2022);

• chapter 5 focus on performing model updating, applying Hierarchical Bayesian
modeling, for bridge structures for which some B-WIM system calibration data is
available. This model updating can be useful for many applications related to the
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safety of the structure, such as reliability analysis. It is also available in Gonçalves,
Lopez, and Valente (2022);

• chapter 6 draws the concluding remarks and some suggestions for future works.
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2 INTRODUCTION TO B-WIM SYSTEMS

Current B-WIM systems are based on the study of Moses (1979), which relates measured
strains with the axle weights that generated them. Thus, the estimated axle weights are those
which minimize some error function between the measured and theoretical response. It allows
the real time monitoring of vehicle weights, even with such vehicles traveling at their normal
speeds. Most studies and installations applying B-WIM systems employ flexural strains as
quantity of interest (HELMI; TAYLOR; ANSARI, 2015). In these systems, strain sensors are
attached on the bottom of bridge girders, usually at the mid-span, such as in Figure 3.

Figure 3 – Example of strain sensor placed at the mid-span of the bridge girder

(a) Lateral view of the bridge (b) Strain sensors

In what follows, a basic model representing the general procedure regarding B-WIM
systems is briefly described. For further information related to this subject, the reader is referred
to Junges (2017) and Heinen (2016).

First, the strains generated by a given vehicle are collected and converted to bending
moment:

mg = EgZgug , (1)

in which mg , Eg , Z g , and ug are the measured bending moment, elastic modulus, section
modulus and measured strain of the g girder, respectively.

Although some studies work with the individual response for each girder, such as Hua
Zhao et al. (2014), the most common approach for calculating the structural measured response
is to sum up the contribution of all girders:

M =
G∑︂

g=1
EgZgug , (2)

in which G represents the number of girders. It is worth to mention that measurements are
discrete in time, at a fixed sampling rate. Thus, M is defined as a vector, where each line
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Figure 4 – Example of a collected signal of measured moment
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k , called here as scan, represents the measurement at a certain time. Figure 4 presents an
example of the measured bending moment (M) for the passage of a single vehicle over a
given bridge. The measurement procedure starts before the vehicle effectively enters the bridge.
Hence, it could be noticed that nothing is measured at the initial phase. After the vehicle leaves
the structure, however, the bridge shows its free vibration response. The effectively employed
signal, therefore, is the central content, which really represents the event of a vehicle traveling
over the bridge. The measurements are collected for a fixed position of the bridge, where the
sensors are placed, and the measurements are a function of time (or scans). However, it is
common to refer to the horizontal axis in distance unities. Since the vehicle is assumed to
travel at constant speed, it is easy to convert the signal behavior from a function of the time to
a function of distance. It is useful due to the more convenient physical meaning. For instance,
the distance can easily relate the local that the vehicle is placed at each time step, using as
reference the first wheel, with the limits of the bridge structure.

The idea behind B-WIM systems is to match this measured response with some theoret-
ical one. For enabling the derivation of the theoretical response (ˆ︂M), the concept of influence
line is employed. The influence line describes the static bending moment at the sensor position,
usually the mid-span, under a unitary moving load (QUILLIGAN, M., 2003). In this case:

ˆ︂Mk =
J∑︂

j=1
Wj IL(k–Cj ), (3)

where:

Cj =
dj f
v

(4)
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and J is the number of axles, Wj is the weight of the j axle, IL(k–Cj ) is the influence ordinate
at the position of the j axle, dj is the distance between the first axle and j axle, Cj is the
number of scans corresponding to dj , f is the sampling frequency and v is the vehicle velocity.
It is worthwhile to point that IL and ˆ︂M are defined as vectors in order to match with the
discretized shape of the collected signals, whereas the index k arises as a consequence of
this discretization. In addition, if k – Cj results in an index that does not match an influence
line ordinate, it is attributed the value of zero for IL(k–Cj ). This last situation occurs when
some vehicle axle is not over the bridge structure. Furthermore, one could observe that this
theoretical response is derived based only in the static structural behavior.

The procedure for calculating the theoretical response is better presented by Figure 5.
For a given scan k , the vehicle is positioned over the bridge as shown, with each axle related to
a specific influence line ordinate. Thus, the total moment (ˆ︂Mk ) at the scan k is the sum of the
contribution of each axle, resulting of the product of influence line (IL(k–Cj )) and axle weight
(Wj). It is worth to point out that d1 and, consequently, C1 are zero since the reference for
calculating the distance is the own first axle. In addition, the relation between distances and
the corresponding number of scans can be clearly observed.

One could notice that, in order to enable the proper theoretical response calculation,
the vehicle speed is necessary. This parameter is usually assumed to be constant, which is a
reasonable assumption for short-span highway bridges (LANSDELL; SONG, W.; DIXON, 2017).
In order to calculate the vehicle velocity, some additional sensors are commonly employed. The
NOR B-WIM approach, applied in the present study, provides this desired parameter without
the need of traffic interruption for sensor installation (YU; CAI; DENG, 2018), also improving
its durability (LYDON et al., 2016). Figure 6 presents examples of signals from such sensors,
called Free-of-Axle Detector (FAD). Two distinct signals are noticed, related to sensors at the
same lane, but longitudinally apart from each other. The peaks observed are related to each
detected axle, indicating the number of axles. Hence, the time delay between the passage of
the same axle by each sensor is used to calculate the vehicle speed, since the distance among
both sensors is known. In addition, usually one sensor is placed at the center of the structure,
enabling that time be converted to distance from the center in an easy way. In other words,
the instant that each axle passes the sensors also is useful for working as a reference point on
the structure. Such aspects are better discussed in section 2.1, in which the B-WIM calibration
procedure that generated the experimental dataset utilized in the present study is detailed.

The last point to be addressed to create a functional B-WIM system is the definition of
the bridge influence line, since axle weights are the unknowns calculated by such systems. In the
first work in this subject, performed by Moses (1979), the bridge influence line was approached
just with theoretical analysis. The theoretical influence line, however, is currently recognized
as unsuitable for B-WIM applications (QUILLIGAN, M., 2003), since some simplifications are
done in its derivation procedure. Thus, most of recent methods employ a calibration step in
order to estimate an experimental influence line. The calibration procedure relies on performing
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Figure 5 – Example of theoretical moment calculation for a four-axle truck

Source: Adapted from Junges (2017)

a set of runs at controlled conditions, such as constant speed and known axle weights, and
recording the resulting strains. The measured strains together with the weights that generated
it are enough to estimate the experimental bridge influence line, which can be applied for
effectively monitoring the traffic over the bridge. More details referred to practical aspects in
the calibration procedure are addressed in section 2.1.

Thus, since the axle weights are known in calibration, it is realized that the same
procedure of matching theoretical and experimental responses can also be applied to calculate
the experimental bridge influence line. In other words, one could select the influence line
ordinates that minimize the error function R. This function usually is based on the sum of the
squares of differences between the measured (M) and the theoretical (ˆ︂M) bending moment,
which corresponds to the least squares formulation. It reads as:
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Figure 6 – Example of FAD signals, considering a three-axle vehicle
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R =
K∑︂

k=1

(︂
Mk – ˆ︂Mk

)︂2
, (5)

where k represents each scan and K the total number of scans. Minimizing R results in a
closed-form solution for the influence line:

IL = (AT A)–1(AT M), (6)

where A is a Toeplitz matrix, employed to perform the discrete convolution related to the
passage of the axle weights through the bridge. In other words, this matrix allows that the
theoretical response of Equation (3) can be easily written as a function of the influence line
ordinates vector:

ˆ︂M = AIL. (7)

The matrix A is defined as:

Apq =

⎧
⎪⎨
⎪⎩

Wj , if p = q + Cj

0, otherwise
. (8)

The shape of matrix A is presented in Figure 7, where each symbol represents the respective
axle weight value and all the remaining terms are zero. It can be noticed that each line is a
shifted version of the previous one, which can be understood as the passage of the vehicle
through the bridge, one scan at time. The first and last lines represent the instants that the
first axle enters the bridge and the last axle leaves it, respectively. Moreover, the columns can
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Figure 7 – Example of matrix A shape for a four-axle vehicle
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be seen as the respective positions over the bridge, with the first and last columns indicating
the bridge limits.

If multiple calibration runs are available, one could proceed by averaging the resulting
influence lines. However, this needs to properly take into account the vector sizes, which
normally differ in distinct runs, since vehicle speed usually is not the same for all runs. As a
consequence, interpolating signals is often necessary.

It could be noticed that the expression of Equation (6) results in an influence line
that adjust all the discretized ordinates, without ensuring any relation among them. Distinct
approaches can be applied in this step to overcome this issue, such as associating mathematical
functions for the influence line and founding the parameters that define such expressions instead
of the own ordinates (WANG, N.-B. et al., 2017; ŽNIDARIČ; KALIN; KRESLIN, 2018).

After the influence line based on direct measurements has been found, one can proceed
similarly in order to find the unknown axle weights of the vehicles of the traffic flow. That is,
the same expression of Equation (5) is minimized, however considering the axles weights as
unknowns and employing the influence line just derived:

W = (ΛT Λ)–1ΛT M (9)

where W is the vector of predicted axle weights and Λ is a matrix based on the influence line
ordinates, shifted according to the axle spacing, defined as:

Λkj = ILk–Cj
. (10)

Thus, Λ is a K × J matrix. Furthermore, the same observation done for ILk–Cj
in Equation (3)

holds here. That is, if k – Cj results in an index that does not match an influence line ordinate,
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Figure 8 – Example of the matrix Λ behavior for a four-axle vehicle
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it is attributed the value of zero for ILk–Cj
. Figure 8 shows an example of this matrix Λ for a

four-axle vehicle, where the horizontal axis refers to the lines of this matrix and the columns are
represented by each distinct curve. Then, the shifted behavior of this matrix can be clearly seen.
For each line of this matrix, the influence line ordinates related to each axle at a specific instant
are represented. For instance, the only non-zero initial values (up to scan 400 approximately)
are related to the first axle, since just this axle is over the bridge at such instants. As long
as the vehicle moves, the contribution of other axles is also added, which is observed by the
presence of more non-zero values.

It is worth to mention that the approach just described is useful for showing the main
aspects regarding B-WIM systems and the way that they work. However, many distinct ap-
proaches can be conducted in each step. For instance, the weigh procedure can consider a
regularization procedure instead of the simple least squares (O’BRIEN et al., 2009), the influ-
ence line extraction can consider the maximum likelihood approach, enabling the simultaneous
consideration of multiple calibration vehicles (IENG, 2015), among many other possibilities.

2.1 DESCRIPTION OF THE EMPLOYED EXPERIMENTAL DATA

No matter how elaborated the model utilized for simulating a real B-WIM system
application, it is not able to reproduce all the complexities inherent to the actual problem.
Therefore, analyses employing experimental data are important tools for assessing the practical
suitability of proposed approaches and are employed in the next chapters whenever possible. For
all analyses regarding real-world signals presented in the following chapters, the data collected
for the calibration procedure of a B-WIM system in the Itinguijada bridge is utilized. The
Itinguijada bridge is located at BR-153, km 148, between Uruaçu and Porangatu cities, in the
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Figure 9 – Itinguijada bridge

state of Goiás, Brazil. The structure is comprised of two girders and five cross beams, resulting
in a total length of 29.70 meters. Figures 9, 10 and 11 present the structure, its mid-span
cross section and lateral view, respectively. The calibration procedure was carried out between
September 23 and 24, 2016. This same dataset was also employed in the work of Junges
(2017).

Figure 10 – Mid-span cross section dimensions (values in cm)

Figure 11 – Lateral view dimensions (values in cm)
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Table 1 – Axle weights and spacing for calibration vehicles

Axle mass (kg)
Vehicle Axle 1 Axle 2 Axle 3 Axle 4 Axle 5

Three-axle vehicle 6,900 14,900 12,900 - -
Five-axle vehicle 7,500 14,100 13,300 11,100 9,200

Axle position (m)
Vehicle Axle 1 Axle 2 Axle 3 Axle 4 Axle 5

Three-axle vehicle 0 4.78 6.07 - -
Five-axle vehicle 0 3.57 9.16 10.43 11.66

The data was gathered at a frequency of acquisition of 512 Hz, employing a commercial
system from CESTEL, named SiWIM (CESTEL, 2017). Two sets of sensors were utilized:

• Free-of-Axle Detectors (FAD): such sensors were placed under the bridge slab and
were utilized for both detecting the presence of axles and calculating the vehicle
speed, as previously commented. Two sensors were placed under each traffic lane:
one at the mid-span and the other spaced longitudinally 4 meters from it;

• weigh sensors: such sensors were attached underneath bridge girders and measured
the strains generated by passing vehicles, which are the main inputs for B-WIM
purposes as already discussed. Two weigh sensors were positioned under each girder,
at the mid-span of the structure since this is the region where such strains are
higher. The effectively utilized signal for each girder is, then, the average from the
measurements of the two sensors.

It is worth to remark that the calibration procedure took two consecutive days and, hence,
no seasonality effects are present. In addition, all sensors are self-temperature-compensating
transducers. Therefore, the effect of temperature variations are argued to be small in the
present dataset. In what follows the measurements from weigh sensors are referred simply as
strains signals, whereas the output from Free-of-Axle Detectors is called FAD signals.

Two vehicles were utilized in the calibration process, whose main characteristics are
described in Table 1. The number of runs and range of vehicle velocities adopted were defined
in order to follow the procedure defined by Jacob, O’Brien, and Jehaes (2002). It suggests the
acquisition of signals from at least 10 valid runs per vehicle in each traffic lane. The vehicle
speeds employed in each run oscillated between 40 km/h and 80 km/h, covering the expected
range of speeds for the usual traffic flow. The resulting calibration dataset comprised a total of
83 runs. It is noticed that the total number of runs was somewhat higher than the minimum
necessary to achieve the recommended values. This was necessary since not all runs were
suitable for effectively calibrating the system, as will be discussed in what follows.

The main goal of the calibration step in B-WIM systems is to enable the calculation of
the bridge influence line that provides the best agreement between measured and theoretical
responses. The properties of the vehicles that induce every measured signal are necessary in
the process. In this context, it is noticed that a wrong value for vehicle properties, such as
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axle weights, may lead the calculation of an influence line that does not reflect the real bridge
behavior. It is an important aspect to remark since the traffic flow was not closed to perform
calibration due to practical limitations. Therefore, it is possible that other vehicles of the traffic
flow travels the bridge at the same time than the calibration vehicle, corrupting the results. In
this case, the measured response is no longer useful and such an event needs to be discarded. It
is just an example of a unsuitable vehicle run. Multiple presences, troubles in signal acquisition
and a time window that does not cover the whole vehicle passage are examples of issues that
turn a signal useless. Thus, before any further analysis, all events were checked and those ones
that do not match the desired behavior were discarded. Figure 12 depicts the FAD signals from
an event in which another vehicle followed the calibration vehicle in the same traffic lane. It
also presents the strains of this event in comparison with the signals from valid events of the
same vehicle and traffic lane. A remarkable difference in the strains at the end of the signal is
noticed, due to the contribution from the second vehicle.

Figure 12 – Example of FAD signal for an event in which two vehicles travel the bridge in
sequence (above) and the comparison of the strains from this event with samples
from valid signals from other events related to the same vehicle and lane (below).
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From the total of 83 initial calibration events, 49 were effectively suitable for further
analyses. The next step was to identify the axles of the vehicle into FAD signals and calculate
vehicle speed. This process is illustrated in Figure 13, in which signals from the two FAD
sensors under the traffic lane in which the vehicle is currently travelling are presented. The
response from the other two sensors under the other traffic lane were omitted since the values
are negligible. It is noticed that each signal is a time-shifted version of each other and 5 axles
are identified by peaks into signals. The similarity between signals from sensors under the same
traffic lane is expected, since every axle will pass over both sensors and they are longitudinally
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apart. The vehicle speed can be calculated as the ratio between the distance from one FAD
sensor to its pair (Δx) and the time interval that the vehicle took to travel this distance (Δt).

Figure 13 – Example of FAD signals together with the parameters employed for calculating
the vehicle speed.
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The events related to each vehicle run were previously selected from the continuously
monitored signal, aiming to avoid losing any information. Then, for most events, the signal
was considerably larger than the necessary for covering the passage of the calibration vehicle,
including sometimes information from other vehicles of the usual traffic flow. It indicates that
some splitting process is needed for separating signals related only to the passage of a single
calibration vehicle over the structure. It is not a straightforward procedure since no specific
sensors were utilized for measuring the time instants that a given vehicle arrives and leaves the
bridge in the present study. Thus, in order to overcome this issue, the information collected by
the FAD sensors was employed. First, the speed of the vehicle in each specific run was calculated
as previously discussed. This velocity was assumed to be constant, as already commented. In
addition, the time instant that the vehicle crosses the middle of the bridge was known, since,
for the present study, a FAD sensor was located at this position. Such information together
with the length of the bridge, frequency of the acquisition system and the distance between
first and last vehicle axles were, then, employed for estimating the time instant that the vehicle
enters and leaves the bridge. This procedure is illustrated by Figure 14 and was based in the
FAD signal from the sensor positioned at the middle of the structure. It remarks the instant
that the first axle passed this FAD sensor (P1). Knowing this value, the length of the bridge
and the estimated velocity, the instant where this axle enters (P2) and leaves (P3) the bridge
could be calculated. Such points together with the distance between first and last axle were,
then, applied to calculate the instant that the last axle leaves the bridge (P4).
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Figure 14 – Example of process performed for selecting the time window related to the passage
of the vehicle. It presents both the FAD signal from the sensor attached to the
middle of the structure (above) and the selected strains signal (below).
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After all the discussed operations, the signals of both sensors attached to a same girder
were averaged to produce a single result per girder. Those averaged signals can, then, be applied
in Equation (2) for calculating the effectively monitored quantity. The dataset related to the
calibration procedure is comprised of the resulting strains together with the characteristics of
the vehicle which generated such strains (speed, axle weights and spacings). Further signal
processing procedures, such as decimation, are not the same for all studies performed in the
following chapters. Thus, they are detailed in each specific chapter.

2.2 SOME CHALLENGES IN B-WIM SYSTEMS

In previous sections both theoretical and practical aspects related to the application of
B-WIM systems were briefly introduced, without many comments related to difficulties that
may arise in the process. When observing the operation of such systems in more details, it is
noticed that many issues may negatively affect the results provided. For instance, the weight
prediction is an inverse problem in which multiple highly distinct solutions may fit similarly to
the measured data. The present study was performed aiming to deal with some of such issues,
intending to collaborate for the development of more efficient B-WIM systems. As a result,
three distinct approaches, with different goals, were proposed. They are individually detailed
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in chapter 3, chapter 4 and chapter 5, respectively. In order to improve the understanding of
the present study as a whole, this section illustrates the troublesome issues that are directly
addressed by the proposed approaches.

2.2.1 Response variation due to vehicle speed

Most algorithms employed for weight estimation in B-WIM systems disregard the direct
influence of vehicle speed into the theoretical response, applying it only to determine the
number of scans in Equation (4). However, the dynamic behavior presented by the bridge due
to the passage of a heavy vehicle is dependent of such a parameter. For instance, Figure 15
presents a real example of the variation of strains response for the same three-axle vehicle due
to distinct traveling speeds. It can be noticed that this variation exists and is not negligible.
Furthermore, the effect of changing the velocity has a clear non-linear impact in the total
response, which makes even more difficult the proper accounting of this parameter. This aspect
is addressed in chapter 3, in which a B-WIM algorithm that takes the vehicle speed as a
parameter is derived.

Figure 15 – Variation of measured response within vehicle speed
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2.2.2 Influence of vehicle characteristics

The calibration procedure of B-WIM system is usually limited to a few vehicles, due to
financial restrictions. However, the structural response is highly dependent on many aspects
related to the vehicle applied for calibration, such as the kind of suspension system and vehicle
configuration. Thus, it is already expected that the calibration procedure could not present all
the possible vehicle configurations for the system. As a result, bias could be introduced into
the process as a whole. For instance, Figure 16 illustrates this aspect by comparing the mean



Chapter 2. Introduction to B-WIM systems 35

Figure 16 – Influence lines calculated based only in one vehicle type
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influence line, from a total of 10 distinct runs, reached when considering either the three-axle
or the five-axle vehicle. It is clear that the influence line based only on the three-axle truck is
considerably distinct from that one provided by the five-axle one. This is not desired, since
the influence line is a bridge property and should be independent of the characteristics of
calibration vehicles. It indicates that the calculated influence line, adjusted to provide the best
match between theory and measurements, can represent unreal patterns. It happens since the
theoretical response is not able to precisely predict the experimental results and the model is
adjusted without any restriction on its shape. For instance, the dynamic response can introduce
undesired oscillations in the static influence line, which appears evidently in the shape of these
curves, mainly for the influence line based only in the five-axle vehicle. If one influence line is
applied for weighing the other vehicle, unsuitable results may be achieved. Thus, this is another
aspect that needs attention, indicating that approaches that adjust many parameters at the
same time may fit just the calibration vehicles. The approach described in chapter 3 addresses
this issue by employing a simplified dynamic model to extract the bridge influence line which
results in a parametric curve with few parameters.

2.2.3 Multiple solutions

The process of estimating weights from measured strains can be seen as an inverse
problem, susceptible to ill-posedness and ill-conditioning. Hence, the stability, uniqueness and
existence of the solution is not ensured (SIMOEN; DE ROECK; LOMBAERT, 2015). In order
to better understand how these points bring additional difficulties for B-WIM systems, the issue
of uniqueness is better illustrated. Figure 17 presents a toy example, referred to the theoretical
response generated by two largely distinct axle weight distributions. The length of the bars are
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proportional to the axle weight whereas the spacing of bars is related to the axle position. The
numeric values are omitted since the shape of both response and axle weights is enough to
understand the overall behavior. It is noticed that the structural response is almost the same,
even with the vehicle 2 presenting an axle with negative weight. As it is possible that multiple
solutions equally match to the measurements, finding the right one becomes a really hard task.
In addition, solutions with negative weights can also be reported, even that it is a clear physical
violation. Thus, the developed methods must give special attention for the issues just cited for
ensuring that accurate results be reported. The approach described in chapter 4 addresses this
issue by employing a Bayesian strategy that utilizes a prior distribution, based on the expected
values for axle weights and their correlations, to guide the estimation towards more plausible
values, avoiding spurious predictions.

Figure 17 – Example of the similarity of response due to two quite distinct vehicle configurations
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2.2.4 Serial correlation in error terms

When working with Bayesian strategies, it is often assumed that the errors between
measured and theoretical responses are independent. Although it is usually a suitable option,
for the present context such hypothesis does not hold. As the model employed for estimating
the response induced by a given vehicle is not able to describe all the patterns present in the
measured signal and the frequency of the acquisition system is usually high, the error between
theoretical and measured responses is correlated. It was noticed, for instance, in the work of
Yoshida, Sekiya, and Mustafa (2021). Figure 18 depicts an example of measured and theoretical
responses together with the respective residuals. It could be seen that residuals show a clear
pattern instead of just random fluctuations, which indicates the presence of serial correlation.
A simple illustrative example is presented to show how this correlation affects estimates.
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Figure 18 – Example of residuals between theoretical and measured responses.

Time (s)
0 0.5 1 1.5

B
en

di
ng

 m
om

en
t (

N
m

)
#10 5

-4

-2

0

2

4

6

8

Estimated
Measured

Time (s)
0 0.5 1 1.5

#10 4

-8

-6

-4

-2

0

2

4

6

8

10

12

Residuals

The illustrative example utilized is based on a simple two-axle vehicle, traveling over
a simply supported bridge, and is better described in chapter 4. The goal is to estimate axle
weights and a Bayesian framework is utilized. Two examples are analyzed, differing just by the
number of data points since in example 2 the dataset is interpolated until achieve five times the
dataset size employed in example 1. Hence, no additional information is introduced in example
2, it is just an artificial way of increasing the amount of data. Figure 19 depicts the probability
distributions associated to the axle weights. The prior is the initial belief without observing the
measurements, the likelihood reflects the most likely weights when observing just the measured
data and the posterior is the effective output of the Bayesian analysis, which weighs both prior
and likelihood. The point estimates related to the least squares solution and the most probable
point in the Bayesian analysis are also presented. Whereas the least squares estimate does not
change in the presence of the artificially generated data, the Bayesian solution is considerably
shifted. The extra amount of data increases the influence of the likelihood function into the
final output of the Bayesian approach, shifting the posterior distribution towards the likelihood.
However, this shift is not desirable, since no extra information is really added to the model. As
the independence assumption is being employed, the model interprets the extra data points
added in Example 2 as new data and narrows the likelihood. Then, it is noticed that the prior
distribution guides the solution of Example 1 towards the real value but has little effect in
example 2. This aspect is important for chapter 4 and chapter 5. In chapter 5 the negative
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effect of correlation is mitigated by the application of a decimation procedure for reducing the
effective sample rate of the signal. In chapter 4, a decimation strategy is combined with the
utilization of a second order autoregressive model for relaxing the assumption of independence
among error terms.

Figure 19 – Resulting probability distributions and main estimates for the axle weights regarding
the first and second examples
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3 A B-WIM ALGORITHM CONSIDERING THE MODELING OF THE BRIDGE
DYNAMIC RESPONSE

ABSTRACT

A Bridge weigh-in-motion (B-WIM) system is able to estimate vehicle weights based on data
gathered by sensors underneath the bridge structure. It is a valuable tool for many applications
related to the assessment of bridges safety, already operating in many sites around the world.
Although the dynamic behavior of the bridge structure is a well recognized troublesome point for
the improvement in B-WIM algorithm performance, most of the current employed methods rely
only on static assumptions. The main goal of the present study is to adapt a simplified dynamic
modeling, proposed by a recent study, to work as a B-WIM algorithm. Three main modifications
are performed: the implementation of a maximum likelihood approach to perform the influence
line assembly strategy for data regarding multiple runs, the derivation of a weigh procedure and
the inclusion of the full analytical dynamic model. As a result, the method described is able to
calculate influence lines that are both continuous curves and a direct function of the vehicle
speed. Furthermore, the overall procedure needs only simple matrix operations, resulting in a
computational cost similar to the static algorithms. Numerical simulations related to bridges
with distinct span lengths and road roughness profiles indicated that the adapted method
is able to overcome the results of the current state-of-the-art methods, specially for longer
bridges.
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LIST OF SYMBOLS (CHAPTER 3)

Z section modulus of bridge girders
G total number of girders
Mr measured bending moment response vector
ε measured strains response vector
M t theoretical bending moment response vector
wj weight of j-th axle
n vehicle number of axles
dj distance between first and j-th axle
bj number of scans between first and j-th axle
f sampling frequency
v vehicle speed
L influence line ordinates vector
x position along the bridge span
ℓ bridge span length
X matrix of positions
A matrix of axle weights
S static structural response vector
λ coefficients of the cubic polynomial
t time
H(.) Heaviside function
tpi time that axle i enters the bridge
tqi time that axle i leaves the bridge
ωm natural frequency of the m-th mode
ζm damping ration of the m-th mode
E elastic modulus of bridge girders
I moment of inertia of bridge girders
F fluctuation response vector
ψ fitted coefficients for fluctuation response
η theoretical vs measured difference vector
Y t vector comprising theoretical response and constraint conditions
Y r vector comprising measured response and constraint conditions
c number of calibration events
θ vector comprising fitted parameters
D matrix combining static and dynamic effects
W vector of axle weights
C matrix employed to perform the weigh procedure
ρ fitted coefficients for quasi-static response
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3.1 INTRODUCTION

Bridge Weigh-in-motion (B-WIM) systems are efficient tools for providing real time
monitoring of traffic, with vehicles travelling at their usual speeds. It works employing sensors
located underneath the bridge to measure the strains generated by passing vehicles, aiming
to estimate their weight. B-WIM systems have some interesting characteristics. Firstly, by
the nothing-on-road (NOR) approach, there is no need to install sensors directly under the
traffic to detect vehicle axles, which improves the durability of the overall system, since it
prevents that heavy traffic damages the sensors (LYDON et al., 2016). Furthermore, it is easy
to implement, since there is no need for disrupting the traffic flow during installation (YU;
CAI, C.; DENG, 2018). Hence, among traffic monitoring systems, the cost of installing and
maintaining a B-WIM system is usually lower (FRØSETH et al., 2017). In addition, such
systems are portable, since transducers and electronics can be easily removed from one bridge
and employed on another one (JACOB; FEYPELL-DE LA BEAUMELLE, 2010). Lastly, as
the system is not visible by truck drivers, it makes difficult for overloaded vehicles to avoid it
(JACOB; FEYPELL-DE LA BEAUMELLE, 2010). Thus, B-WIM system are able to provide
unbiased traffic data (LYDON et al., 2016).

Current B-WIM systems are based on the work of Moses (1979). The main idea utilized
is that measured strains can be related with the bridge influence line and axle loads. Thus,
given an influence line, obtained theoretically by Moses (1979), and measured strains, it is
possible to calculate the axle weights that generated it. However, the real influence line usually
is between the one obtained for simply supported and fixed boundary conditions (ŽNIDARIČ;
BAUMGARTNER, 1998). This is due to some factors not included in the theoretical structural
model, such as the rotational stiffness of the connections (ZHAO; UDDIN; O’BRIEN, 2017). By
this reason, the theoretical influence line is not suitable for B-WIM applications (QUILLIGAN,
M., 2003). Thus, differently from the work of Moses, current methods perform the calibration
step which aims to extract an experimental influence line. In the calibration procedure, a set
of vehicles with known weight travels the bridge at constant speed and the resulting data is
recorded. With the previously known axle weights together with measured strains and axle
detection information, the experimental influence line of the bridge can be estimated and
applied to weigh any vehicle of the traffic flow.

Although B-WIM systems are currently applied in many sites across the world, several
installations achieved performance sufficient just to indicate possible overloaded vehicles, re-
maining the need of using static scales to effectively check it (RICHARDSON et al., 2014).
Hence, the use of B-WIM data for direct enforcement of legal weight limits is limited to the
accuracy level that still has not been reached to date (LYDON et al., 2016). When analyzing
the difficulty to develop B-WIM systems with high accuracy level, it is widely reported in the
literature that the dynamic oscillations of the vehicle and bridge are the main source of error
(RICHARDSON et al., 2014). It also helps to explain why the overall accuracy of B-WIM
systems are dependent of some site characteristics such as bridge span and road roughness
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profile (JACOB; O’BRIEN; JEHAES, 2002), since these parameters are directly related to the
vehicle-bridge dynamics.

The methods that directly employ considerations regarding dynamic effects, mainly
related to moving force identification (MFI) (ROWLEY et al., 2009; FITZGERALD et al.,
2017; DOWLING; O’BRIEN; GONZÁLEZ, 2012; DENG; CAI, C. S., 2010), have potential
to be very accurate (YU; CAI, C. S.; DENG, 2016). However, these methods normally are
too computationally expensive to be applied for real-time measurements (RICHARDSON et
al., 2014). Therefore, in the current B-WIM literature most of methods are limited to static
formulations, which do not make any direct consideration regarding dynamic behavior. As a
consequence, previous studies observed that the results of these static methods are highly
dependent on the bridge length, which could lead to undesirable performance (CARRARO
et al., 2019).

Thus, it was noticed that there is a lack of B-WIM algorithms that perform approximate
dynamic modeling with a computational cost close to the static methods on the current
literature. In order to overcome this issue, this paper aims to adapt a recent method developed
by Wang et al. (2017), which was proposed for extracting influence lines from measurements
by an approximate dynamic modeling of the vehicle-bridge interaction process, to work as a
B-WIM algorithm. The method of Wang et al. (2017) assumes the dynamic problem to be
the passing of multiple moving forces through the bridge, applying a Euler-Bernoulli simply
supported beam approximation. The analytical response of the bridge structure was divided into
a fluctuation and a quasi-static parts. The former is related to the oscillation of the bridge due
to the moving load, which remains after the vehicle leaves the bridge, while the latter is argued
to be closely related with the static response. Hence, Wang et al. (2017) proposed to replace
the quasi-static sinusoidal expression by a piece-wise cubic polynomial. Consequently, the
response of the structure is considered as the superposition of the polynomial and fluctuation
terms. Thus, the coefficients of the polynomial, which are extracted by least-squares, define
the bridge influence line. By such an approach, the extraction of influence line requires only
simple matrix operations, similarly to the current static B-WIM methods.

Although the approach proposed by Wang et al. (2017) is able to properly extract the
bridge influence line, for both simulated signals and real bridge data, some of their points must
be improved for it to work as a B-WIM method. Firstly, such conclusions were drawn based
only on the analysis of a single vehicle run. That is, no procedure was proposed to assemble
data from multiple runs, which is the usual case for the calibration step of B-WIM algorithms.
As this method relies on determining the coefficients of functions, the procedure of taking the
average of such coefficients does not seem to be a suitable procedure. Then, to perform the
assembly strategy, in the present work, this algorithm is coupled with the maximum likelihood
approach, analogously to the study of Ieng (2015). It results that the coefficients obtained are
the maximum likelihood estimates for the set of all calibration runs, for the case of independent
and identically distributed Gaussian error.
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A second important point is the fact that the work of Wang et al. (2017) was done
aiming only to extract influence lines. Then, it is still necessary the derivation of a procedure
able to find the axle weights of the passing vehicle given that the influence line is known.
This issue is addressed in the present paper by manipulating the expressions for influence line
extraction, which also results in simple matrix operations. Thus, both influence line extraction
and weigh procedure are maintained at a computational cost close to the one required by the
state-of-the-art static methods.

Lastly, the formulation of Wang et al. (2017) has a clear advantage of including
only continuous expressions, which are functions of the vehicle speed. Applying a continuous
curve for influence line is interesting since it is the expected characteristic for a real bridge
(ŽNIDARIČ; KALIN; KRESLIN, 2018). Moreover, the vehicle velocity plays a central role
in B-WIM approaches, what led some authors to suggest that one influence line should be
generated for each vehicle speed (O’BRIEN; GONZÁLEZ; DOWLING, 2010). However, the
replacement of the quasi-static part by a polynomial could bias the solution with respect to
the vehicle speed, since some part of the effect of this parameter on the bridge response is
disregarded. Thus, it is proposed here that the full analytical model be applied into the B-WIM
algorithm, aiming to represent as closely as possible the real dynamic behavior of the system.
By this approach, the desired effect of the influence line being a function of the vehicle speed
is achieved without the need of an extensive calibration procedure, based on several runs
for a large set of vehicle speeds. In addition, all the equations of the proposed method are
parametric, and consequently, the obtained influence lines are all continuous functions, which
are in theoretical accordance with the behavior of real bridges.

The remaining of this paper is organized as follows. In Section 2, a discussion regarding
some basic concepts of B-WIM systems is presented. Section 3 briefly describes the most
important issues related to the approach proposed by Wang et al. (2017). In Section 4,
the modifications applied in this work are detailed. The Section 5 addresses the numerical
experiments performed to analyze the proposed adaptation into distinct scenarios. Section 6
presents some important remarks and suggestions for future works. At the end, Section 7 draws
the main conclusions.

3.2 BASIC ASPECTS REGARDING B-WIM SYSTEMS

The usual B-WIM approach consists of transforming the bridge in a weighing mechanism.
This tool enables monitoring vehicle weights at real time, providing valuable information for
decision-making. It works by correlating data gathered from strain gauge sensors and the
theoretical behavior of the structure, aiming to find the axle weights that provide the better
agreement between theoretic and experimental results. For B-WIM applications, most studies
relies on measuring flexural strains (HELMI; TAYLOR; ANSARI, 2015), which are collected
by sensors attached to the bottom of bridge girders, usually at its mid-span. Hence, in this
presentation, the bending moment at the cross section where the sensors are attached is
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considered the monitored quantity. It is estimated from measured strains, referred to the
bottom of bridge girders, through the following relation:

Mr =
G∑

g=1
EgZgεg , (1)

where Eg and Z g are the elastic modulus and section modulus for girder g, from a total of
G girders. In addition, Mr is the measured bending moment and εg represents the measured
strain for the girder g, both defined as vectors recording the evolution of such quantities as
the vehicle moves along the bridge.

The theoretical bending moment (M t ), in contrast, is usually computed considering the
application of the influence line concept. The influence line represents the bending moment at
the sensor position due to a unit moving load, as it travels over the bridge. Thus, the resulting
bending moment could be calculated by summing up the contribution of each axle, quantified
based on the influence line ordinate related to the current axle position. For a given scan k , it
reads as:

M t
k =

n∑

j=1
wjL(k–bj ), (2)

where:

bj =
dj f
v

(3)

and wj is the weight of the j axle, from a total of n. In addition, L(k–cj ) refers to the influence
line ordinate at the position of the j axle, dj is the distance between the first axle and j axle,
bj is the number of scans corresponding to dj , f is the sampling frequency of the strain sensors
and v is the vehicle speed. Parameters v and dj are usually obtained from an axle detection
system. For further details, the reader is referred to Carraro et al. (2019).

For defining the bridge influence line, one could proceed with just theoretical assump-
tions. However, as it is often the case, the real behavior of the bridge does not match the
one resulted from a theoretical influence line, obtained from the bridge project, for example.
In order to estimate a more suitable influence line, most recent methods employ a calibration
procedure. In calibration, vehicles with known weight cross the bridge and the generated signals
are recorded. Then, using the same principle of matching theory and experimental results, one
could apply the known axle weights for obtaining a more accurate influence line estimate.
Moreover, for a proper calibration procedure, it is desirable that as much data as possible be
employed. It comprises distinct vehicles, traveling multiple times for a set of previously defined
vehicle speeds. The passage of any single vehicle over the bridge is what is referred throughout
this study as run. Therefore, it is often the case that multiple runs are necessary for calibrating
the system and obtaining a more accurate influence line.
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Figure 1 – Example of extracted influence line for data related to two distinct vehicles
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Although the calibration procedure may seem a simple concept, the proper extraction
of the bridge influence line may present several practical complications. For instance, in an
ideal scenario, influence lines estimated considering distinct vehicles in calibration process
should represent equally well the real structure behavior. However, such an influence line
could be excessively dependent of vehicle configuration, as illustrated by Figure 1. It employed
numerically simulated signals for two distinct vehicles with the same velocity, available in
Gonçalves, Carraro, and Lopez (2019). Each influence line was extracted utilizing the Matrix
method (O’BRIEN; QUILLIGAN, M. J.; KAROUMI, 2006), considering just one specific signal
for generating each curve. It could be observed that significant deviation occurs among each
other. Furthermore, some dynamic oscillations seem to be incorporated in the influence lines,
indicating that it was not able to distinguish among the bridge behavior and the vehicle-specific
response.

The application of B-WIM systems relies on estimating the weight of passing vehicles.
The weigh procedure is the methodology employed to join the influence line extracted and
measured strains for reaching this goal. Then, at this step, the influence line is already known
and the most likely axle weights that generated a given set of strain measurements are estimated.
It is the dual problem of the calibration procedure. Thus, given that the influence line for the
structure being analyzed is known, the weight of any passing vehicle can be readily calculated,
for instance, from a least-squares procedure.

Summarizing, current B-WIM systems work with two clearly distinct phases. In the first,
named calibration, vehicles with known weight cross the bridge structure and the recorded
strains are employed to derive the bridge influence line. The second, called here weigh procedure,
is the effective application of the system to weigh vehicles of the traffic flow. In this case,
the influence line obtained in the calibration process is employed together with the collected
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measurements to provide estimates for the weight of each travelling vehicle.

3.3 THE DYNAMIC MODEL FOR EXTRACTING THE BRIDGE INFLUENCE LINE

In what follows a brief description of the main aspects of the approach proposed by
Wang et al. (2017) are discussed. Some notations and interpretations are slightly different from
the original work, aiming to better relate it to B-WIM applications. For more details, including
the full analytic treatment, the reader is referred to Wang et al. (2017).

The main idea behind the method is that the bridge measured response could be divided
into two parts: the first one is due to the static response of the vehicle passing over the bridge,
which is a function of the product of the vehicle weight and influence line ordinates, and the
second one is a dynamic fluctuation response. Thus, the total response is the sum of both
components, which should match the measured one.

The bridge influence line is represented as a piece-wise cubic polynomial. The reason
behind such an assumption is that it is able to model the analytic static response of beams
with boundary conditions ranging from simply supported to fixed at both ends, enabling also
consideration of rotational stiffness. Furthermore, it is general enough to account for continuous
bridges. For the case of a one span bridge, it reads as:

L =





a1x3 + a2x2 + a3x + a4 0 ≤ x ≤ ℓ
2

a5x3 + a6x2 + a7x + a8
ℓ
2 < x ≤ ℓ

(4)

where L is the influence line ordinates, x is the respective position along the bridge span, ai are
the coefficients to be obtained through least squares and ℓ is the bridge span length. Therefore,
the main goal of this method is to find the best values for the polynomial coefficients.

In order to easily perform this operation, the matrix X of the positions of the L ordinates
on the bridge, is defined as:

X =




x3
1 x2

1 x1 1 0 0 0 0
... ...

(
ℓ
2

)3 (
ℓ
2

)2 ℓ
2 1 0 0 0 0

0 0 0 0
(

ℓ
2

)3 (
ℓ
2

)2 ℓ
2 1

... ...
0 0 0 0 x3

o x2
o xo 1




(o×8)

, (5)

where o is the total number of influence line ordinates and xi is the position on the bridge
related to each ordinate i . The initial and final positions, x1 and xo, are usually defined as 0
and ℓ, respectively. It could be observed that there are two cubic polynomials in the formulation
presented here, which represent the case of a one span bridge. For a continuous bridge, the
number of terms increases.
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In addition, the matrix of the axles weights (A), applied to perform the discrete
convolution related to the passage of the axles through the bridge, at each influence line
ordinate, is defined as:

Apq =





wj , if p = q + bj

0, otherwise
, (6)

where bj is defined as in Equation (3). Therefore, the matrix A results in a Toeplitz shape. By
making,

Dα = AX , (7)

the vector of structural response due to its static effect (S) could be written in matrix notation
as:

S = Dαλ, (8)

in which the vector λ is related to the coefficients that define the cubic polynomial, such as:

λ =
[

a1 a2 a3 a4 a5 a6 a7 a8
]T

. (9)

It is worth to mention that the number of measurements collected and the number of influence
line ordinates must match for the matrix operation be possible. Thus, some procedure of
interpolating the collected signals should be performed and the increment value between xi
and xi+1 should be suitably chosen for ensuring that such dimensions match each other .

The dynamic model of the vehicle bridge system assumes that each vehicle axle is a
concentrated force, equal to the axle weight. It is an extension of the work of Yang and Lin
(2005), which considered a single force for the whole vehicle. As a result, it provides a closed-
form solution, through modal superposition, for the multi-axle vehicle case. As commented
previously, the structural response could be divided into two parts: quasi-static (u1) and
fluctuation (u2), related to the vertical displacement of the structure. Such expressions for
vertical displacement are useful to achieve the goal of deriving a formulation based on bending
moment and can be derived as:

u1(x ,t) =
∑

m


sin

(mπx
ℓ

) n∑

i=1

Δm,i

1 – s2
m

(
H
(
t – tpi

)
sin

mvπ(t – tpi )
ℓ

+H
(
t – tqi

)
sin

mvπ(t – tqi )
ℓ

)) (10)

and
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u2(x ,t) =
∑

m


sin

(mπx
ℓ

) n∑

i=1

–smΔm,i(
1 – s2

m
)√

1 – ζ2
m




H
(
t – tpi

)
sin

(ωm
(
t – tpi

))

exp
(ζmωm

(
t – tpi

)) +
H
(
t – tqi

)
sin

(ωm
(
t – tqi

))

exp
(ζmωm

(
t – tqi

))






(11)

where x and t are the position of the sensor and time, m is related to the modes of vibration
considered, n is the number of axles, H(.) is the Heaviside function, v is the vehicle speed, tpi
and tqi are the times that the axle i enters and leaves the bridge, ωm and ζm are the natural
frequency and damping ratio of the m mode.

Furthermore, Δm,i is defined as:

Δm,i = –
2wiℓ

3

m4π4EI
(12)

where E is the elastic modulus and I is the moment of inertia including the effect of all bridge
girders, which are assumed to be constant throughout the structure. In addition, the sm is
calculated as:

sm =
mπv
ℓωm

(13)

Recalling, for B-WIM applications usually a measure of the bending moment at the
cross section is employed as quantity of interest. In order to adapt the analyzed formulation
to this scenario, it is realized that for the Euler-Bernoulli beam theory the resulting moment
could be written as a function of the vertical displacement:

M(x ,t) = EI
∂2u(x ,t)

∂x2 , (14)

again, assuming that both E and I are constant. Thus, it is allowed to represent the bending
moment due to both components as:

M1(x ,t) = –EI
∑

m



(mπ

ℓ

)2
sin

(mπx
ℓ

) n∑

i=1

Δm,i

1 – s2
m

(
H
(
t – tpi

)
sin

mvπ(t – tpi )
ℓ

+H
(
t – tqi

)
sin

mvπ(t – tqi )
ℓ

)) (15)

and

M2(x ,t) = –EI
∑

m



(mπ

ℓ

)2
sin

(mπx
ℓ

) n∑

i=1

–smΔm,i(
1 – s2

m
)√

1 – ζ2
m




H
(
t – tpi

)
sin

(ωm
(
t – tpi

))

exp
(ζmωm

(
t – tpi

)) +
H
(
t – tqi

)
sin

(ωm
(
t – tqi

))

exp
(ζmωm

(
t – tqi

))




 .

(16)
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The fluctuation part is applied to simulate the vibration of the structure. The quasi-
static is replaced by the polynomial equations, since for low speed it is argued to be closely
related with the static response of the structure. In other words, the response related to M1 is
replaced by S (Equation (8)).

Similarly to the static part, the fluctuation part could be written as a matrix operation.
For this, the definition of the auxiliary matrix Dβ is necessary:

Dβ(t ,m) = –
2ℓsm sin

(
mπx

ℓ

)

(mπ)2
(
1 – s2

m
)√

1 – ζ2
m

n∑

i=1
wi




H
(
t – tpi

)
sin

(ωm
(
t – tpi

))

exp
(ζmωm

(
t – tpi

))

+
H
(
t – tqi

)
sin

(ωm
(
t – tqi

))

exp
(ζmωm

(
t – tqi

))




. (17)

It is worth to mention that equations are displayed in their full form in the present
work, whereas the original study opted for a slightly more simplified notation, omitting some
constant terms. Both ways are equivalent since a distinct constant coefficient is fitted for each
vibration mode through standard least squares and such coefficients are scale invariant when
estimated by this method (JAMES et al., 2013).

Therefore, Dβ is a matrix which has in each column the values of the fluctuation part
related to the vibration mode m as a function of the time. In this matrix, each line corresponds
to one discrete time step.

The vector of fluctuation response (F ) is simplified by the expression:

F = Dβψ, (18)

where ψ is a vector comprised of coefficients that multiply the response of each mode, analogous
to the λ vector.

Thus, superposing static and fluctuation responses, the total theoretical bending mo-
ment response (M t ) could be written as:

Dαλ + Dβψ = M t , (19)

where Dα and λ are the matrix of the cubic polynomial and its coefficients, respectively.
Similarly, Dβ and ψ are the matrix of dynamic properties and its coefficients.

This equation alone, however, does not ensure that the obtained influence line respects
some conceptual characteristics expected for L, such as the continuity into the middle span
and the zero value at both ends. The continuity and boundary conditions of the influence line
is ensured based on a set of penalty equations:

Dγλ = 0, (20)

where Dγ is a matrix containing constraint conditions, such as the zero value at both ends and
the continuity of influence line values at the mid-span. This set of equations is easily added to
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the matrix equation already described for the response of the structure, aiming to create only
one big set of equations for the method as a whole.

The fitting parameters λ, related to the coefficients of the cubic polynomial that
describes the bridge influence line, are the main variables of interest. They are extracted
applying least squares technique, with a penalization parameter large enough to provide a
feasible influence line (Dγ). It is worth to point out that the method is able to deal with
influence lines for both strains and displacements, since they are closely related. Including all
the terms of the formulation, it results:

Dθ = Y t , (21)

where D is the matrix including Dα, Dβ and Dγ, Y t is the theoretical structure response
vector and θ is the vector comprised of the parameters of interest λ and ψ.

Let Y r the measured structure response vector, defined by the measured strains con-
verted to bending moment as in Equation (1), and some zeros related to the number of
constraints applied. In order to estimate θ, one could employ a least squares procedure aiming
to minimize the error between Y t and Y r . The resulting expression for θ reads as:

θ =
(
DT D

)–1 (
DT Y r

)
(22)

Thus, for a given event, one could extract the static influence line by finding the λ parameters
using such an equation, since λ corresponds to the first 8 terms of the vector θ.

3.4 MODIFIED APPROACH

The approach proposed by Wang et al. (2017) intended to provide a way to better extract
the bridge influence line through dynamic assumptions and field measurements. Although
promising results were reached, some points still have to be improved to adapt it to work as a
B-WIM algorithm. Thus, the present study aims to propose some adaptations to this approach
in order to generate a practical B-WIM algorithm. The main points addressed are summarized
in what follows and better described in next sections:

• inclusion of assembly strategy: in the original paper, the extraction of influence line
was conducted only to one vehicle at time. Thus, in the case of multiple runs, as
in B-WIM system calibration, no assembly strategy was proposed. In the current
work, a maximum likelihood strategy is adopted, similar to the one proposed by Ieng
(2015) for the static case. By this, any number of events could be considered and
all calculated parameters, including the dynamic ones, can be properly extracted;

• derivation of weigh procedure: As the work of Wang et al. (2017) was focused on
influence line extraction, no weigh procedure was proposed. In the present work,
the equations are rearranged in such a way that the weigh procedure is enabled.
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Moreover, it results in simple matrix operations, which are easily computationally
addressed;

• in the original study, a piece-wise cubic polynomial is applied to represent the quasi-
static response, which is an approximation. Although it seems an useful approach
when seeking for the static bridge influence line, this may not be the ideal approach
to weigh vehicles. Thus, it is proposed to account for the analytic expression of both
fluctuation and quasi-static response. The fitted coefficients can, then, be applied
to generate the bridge influence line accounting for distinct vehicle speeds.

3.4.1 Assembly strategy

The assembly strategy is based on the approach of Ieng (2015), which applied the
maximum likelihood estimate (MLE) to the influence line based on a set of distinct calibration
runs. By this perspective, it is assumed that there is an error (η) between measurements and
theoretical model:

Y r
i = Y t

i + ηi , (23)

where Y t and Y r are the theoretical and measured response, respectively. The theoretical
model is given by Equation (21), also including the terms related to the penalization, and the
measured response is written as discussed in previous section. Furthermore, η is assumed to
follow a zero mean multivariate Gaussian random distribution and i ranges from one to c, the
total number of calibration events available. For further practical details of this step, the reader
is referred to Carraro et al. (2019). By these assumptions, the maximum likelihood estimate
for the coefficients of the method are obtained solving the following equation for θ:

c∑

i=1
DT

i Diθ =
c∑

i=1
DT

i Y r
i , (24)

where D and θ are the same quantities defined in Equation (21). However, it is interesting
to remark that Di is a matrix associated with the run i , which changes with each distinct
calibration run since it depends on parameters such as vehicle speed, axle weights and spacing.
The solution is similar to the formulation for extracting one influence line per calibration run,
that is:

θ =




c∑

i=1
DT

i Di




–1


c∑

i=1
DT

i Y r
i


 (25)

It is worth to mention that in the case of only one calibration run available, the results
of this approach and the one adopted by Wang et al. (2017) are the same. However, this is a
very unlikely case for B-WIM applications, since the procedure recommended is to employ, at
least, 10 runs per vehicle (JACOB; O’BRIEN; JEHAES, 2002). A remarked difference among
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the method presented by Ieng (2015) and the adaptation performed in the present study is
the fact that in the former an influence line is derived point by point, without ensuring that
a continuous curve is reached. On the other hand, the latter directly obtains the maximum
likelihood estimates for the coefficients of a continuous curve.

3.4.2 Weigh procedure

As the original work intended to extract a static influence line, the fluctuation part was
calculated and removed from each signal. However, the axles weights were supposed to be
known in this process. Thus, the derivation of a weigh procedure is not straightforward and
involves mathematical manipulations.

The main idea to overcome this issue is to develop a dynamic influence line calculation.
By this approach, the parameters fitted in the calibration process are used to define an equation
for influence line, which is a function of the vehicle speed. Then, it is allowed the generation
of one equation for each vehicle speed. In order to make it possible, the equations for the
theoretical bridge dynamic response showed in Equation (19) are rewritten as:

M t =
n∑

i=1
wiL(di ) –

∑

m
ψm


sin

(mπx
ℓ

) 2smℓ

m2π2
(
1 – s2

m
)√

1 – ζ2
m

n∑

i=1
wi




H
(
t – tpi

)
sin

(ωm
(
t – tpi

))

exp
(ζmωm

(
t – tpi

)) +
H
(
t – tqi

)
sin

(ωm
(
t – tqi

))

exp
(ζmωm

(
t – tqi

))






(26)

where both the fluctuation and static polynomial component are summed together. In addition,
the influence line L(di ) refers only to the static component, remarking the fact that it is
necessary to match the influence line ordinate with position of axle i . In this case, the distance
among the first and i axle (di) is employed to properly correspond bridge influence line ordinates
with the time that each individual axle enters the bridge (tpi). In Equation (26), the unknowns
are the axle weights wi . The summation of the second term could be reordered, resulting in:

M t =
n∑

i=1
wiL(di ) –

n∑

i=1
wi
∑

m
ψm


sin

(mπx
ℓ

) 2smℓ

m2π2
(
1 – s2

m
)√

1 – ζ2
m




H
(
t – tpi

)
sin

(ωm
(
t – tpi

))

exp
(ζmωm

(
t – tpi

)) +
H
(
t – tqi

)
sin

(ωm
(
t – tqi

))

exp
(ζmωm

(
t – tqi

))






(27)

where the dependence of Δm,i to wi , given by Equation (12), is written explicitly. This expression
could be rewritten including both terms in the same summation:
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M t =
n∑

i=1
wi


L(di ) –

∑

m
ψm


sin

(mπx
ℓ

) 2smℓ

m2π2
(
1 – s2

m
)√

1 – ζ2
m




H
(
t – tpi

)
sin

(ωm
(
t – tpi

))

exp
(ζmωm

(
t – tpi

)) +
H
(
t – tqi

)
sin

(ωm
(
t – tqi

))

exp
(ζmωm

(
t – tqi

))








(28)

Thus, the expression can be simplified in matrix notation:

M t = CW (29)

where W is the vector of axle weights and C is the matrix including the superposition of static
and fluctuation responses, which can be written as:
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
L(di ) –

∑

m
ψm


sin

(mπx
ℓ

) 2smℓ

m2π2
(
1 – s2

m
)√

1 – ζ2
m




H
(
t – tpi

)
sin

(ωm
(
t – tpi

))

exp
(ζmωm

(
t – tpi

)) +
H
(
t – tqi

)
sin

(ωm
(
t – tqi

))

exp
(ζmωm

(
t – tqi

))








(30)

Therefore, instead of performing the sum of the contribution of each axle at the same
vibration mode, such as in calibration, here it is performed the sum of the contribution of each
mode shape for the response to a single axle. Each column of the matrix C can be interpreted
as the dynamic bridge influence line, shifted to coincide with the time that axle i enters and
leaves the bridge. Then, one could note that the vehicle speed is a parameter for the derived
influence line. Figure 2 presents an example of this influence line, as a function of vehicle
speed. It may be observed that the shape differs from each other due to this dependence on
vehicle velocity as an inherent parameter and, in especial, from the static one, which does
not change within this parameter. Furthermore, the dynamic influence line remains affecting
the response of the bridge even when the axle leaves the bridge, whereas the static one ends
its effect in this case. This dependence on vehicle speed is in accordance with some works in
B-WIM algorithms, which already noticed the possible improvement due to perform distinct fits
for each vehicle speed (O’BRIEN; GONZÁLEZ; DOWLING, 2010). In addition, the approach
derived here provides parametric equations that remark the importance of such a parameter.
Thus, it is possible to provide one influence line for each vehicle speed without the need of
conducting a highly expensive calibration procedure, comprised of several runs at each specific
speed.

Recalling Equation (29), given the measured bending moment Mr , one could calculate
the axle weights by employing the least squares method, resulting in:

W =
(
CT C

)–1 (
CT Mr

)
. (31)
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Figure 2 – Example of influence line as a function of speed
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It is worth to mention that the only unknowns in this case are the axle weights, since
the calibration procedure is enough to provide all the coefficients necessary to calculate the
matrix C.

Moreover, the equations described in the present paper are slightly different from the
approach proposed by Wang et al. (2017). In the present study, all parameters are included
into matrix C, instead of disregarding the constant terms. As already discussed, this procedure
does not change the estimated influence lines or weights, since those terms are just constants.
The only difference is when one parameter is zero, since it removes the influence of such
term from the response. This fact occurs for the even mode shapes of the simply supported
Euler-Bernoulli beam model, since the sensors are located in the mid-span of the bridge in this
study. Thus, instead of fitting a coefficient related to a mode shape that theoretically should
not be significant to the bridge response, in the proposed adaptation, the even mode shapes are
disregarded. As it is more in accordance with the behavior of the model used as approximation
for the bridge response, it is expected that the generalization capacity for weighing vehicles
distinct of those ones used for calibration to be improved. In addition, this interpretation also
ensures that coefficients ψ derived make physical sense: the more similar to 1 they are, the
more suitable the analytical response seems. In the numerical results section, the application
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of even modes is tested in order to check the suitability of the affirmations stated here.

3.4.3 Full analytical response

The approach just derived is related to the fitting procedure proposed by Wang et al.
(2017), which replaces the quasi-static analytical response by a polynomial term. However, as
what is searched here is for a more efficient B-WIM algorithm, it is expected that including
the full analytical response should be more suitable for the overall results. Therefore, the
expressions for influence line extraction and weight estimate are extended to account for both
the quasi-static and fluctuation parts of the analytical approach.

These modifications consist of algebraic manipulations. For the influence line extraction,
the Dα matrix should be replaced by:

Dα(t ,m) =
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(32)

which was derived based on the quasi-static response presented in Equation (15), similarly
to what was previously done to calculate Dβ. It is worth to remark that no constraints are
necessary for the full analytical procedure, since derived curves already respect the theoretical
expected behavior. For instance, they are ensured to be continuous curves at all points. Then,
one could proceed as in Equation (24), considering that the matrix D is comprised just of Dα
and Dβ components and Y r = Mr .

In addition, the matrix C employed for weight estimation is modified to account for
the inclusion of the quasi-static component instead of the simplified static one:
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(33)

where ρm is the fitted coefficient for the quasi-static response of each vibration mode. As, in this
case, no polynomial term is available, the vector of parameters θ comprises coefficients ρ and
ψ. Figure 3 shows the effect of the vehicle speed in the influence line obtained considering the
full analytical treatment for the simplified vehicle-bridge interaction problem. The conclusions
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Figure 3 – Example of dynamic influence line as a function of speed for the full analytical
method
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are similar to those drew from Figure 2. The main difference is that for the analytical approach
no static component is available. Consequently, the influence line generated using the full
analytical method at different vehicle speeds should be more distinct from each other, which
is really observed in Figure 3. It is also interesting to observe that the behavior of the curve
agrees with the expected one, even without necessity of utilizing the constraint term Dγ, as
previously discussed.

Although the approach using the full analytical solution for the simplified dynamic
problem seems more suitable, comparisons of performance with other configurations are useful
to ensure that this suitability is really confirmed. Then, for the numerical analyses performed
in the next section, three distinct formulations will be compared, named as:

1. Standard: the method using the polynomial approximation for the quasi-static
response, as suggested in the original work of Wang et al. (2017);

2. Analytical: the algorithm that applies the full analytical modeling for the simplified
vehicle-bridge interaction model;

3. Static: the method that uses only the polynomial equation as fitting model.
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Figure 4 – Example of extracted influence line for data related to two distinct vehicles
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At this point, it is interesting to recall the issues related with influence line extraction
previously discussed in Figure 1. In that case, distinct behavior among influence lines extracted
considering data from distinct vehicles, at the same speed, was noticed. Figure 4 presents the
same analysis, however considering Standard and Analytical approaches just defined. It could
be seen that derived curves are more closely related for both methods. In addition, unlikely
patterns such as the oscillations presented by Matrix method are not observed for Standard
and Analytical cases. Indeed, fitting coefficients of continuous curves instead of each specific
influence line ordinate is less susceptible to incorporate particular aspects that are not related
with the real bridge behavior. For instance, the particular noise for a specific event. This is
a promising first analysis for both proposed methods. More detailed numerical analyses are
conducted in following section.

3.5 NUMERICAL RESULTS

In order to assess the suitability of the approaches proposed in the present study as
B-WIM algorithms, a set of numerically simulated signals for the bridge response due to passing
vehicles is employed. This dataset is available in Gonçalves, Carraro, and Lopez (2019). For a
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more detailed description of the procedure employed for generating such signals, as well as the
parameters utilized, the reader is referred to Carraro et al. (2019). In what follows, the main
practical aspects of this dataset are discussed.

The dataset is comprised of simulations of the mid-span strains at the bottom of
the girder generated by a set of vehicles on bridges with distinct characteristics. The bridge
superstructure for all cases is comprised of a single girder, whose deck influence on bridge
stiffness is disregarded. The previously cited characteristics are combinations of 3 distinct bridge
span lengths and 3 road roughness profiles, considering a simply supported Euler-Bernoulli
beam model. The road roughness classes are defined based on a widely used classification (ISO
8606:1995, 1995), where roughness amplitudes 0, 4 and 16 correspond to no roughness, class
A and class B, respectively. Thus, a total of 9 cases are evaluated in the present study, all of
them assuming values in accordance with the recommendations of Jacob, O’Brien, and Jehaes
(2002), reflecting situations with practical interest:

1. bridge span length of 10m and no road roughness;

2. bridge span length of 10m and road roughness class A;

3. bridge span length of 10m and road roughness class B;

4. bridge span length of 20m and no road roughness;

5. bridge span length of 20m and road roughness class A;

6. bridge span length of 20m and road roughness class B;

7. bridge span length of 30m and no road roughness;

8. bridge span length of 30m and road roughness class A;

9. bridge span length of 30m and road roughness class B.
As the objective of this study is to evaluate the potential of the proposed methods as

B-WIM algorithms, the simulated signals related to calibration vehicles are distinct from the
ones applied to effectively test the algorithm. It aims to reproduce the real in-service operation
of a B-WIM system, since the calibration process usually is restricted to few vehicles. For
calibration, 40 runs of two distinct vehicles, with two and four axles, are applied, 20 for each
of them. For testing, 200 runs are performed considering randomly generated vehicles with
number of axles ranging from 2 to 9. The weight of each axle and its axle spacing are defined
according to a classification often applied for Brazilian vehicles (DNIT, 2012). Table 1 presents
the vehicle classes employed and their respective number of axles. The vehicle speed at each
testing run is an uniform random variable ranging from 10 to 25 m/s. It is worth to mention
that the damping and stiffness of the suspension of each axle is included into the model.
Moreover, a Gaussian random noise with signal to noise ratio of 20 is added to every simulated
signal in order to replicate some undesired effects on the measurement system. Hence, given
the above described numerical model (which accounts for the vehicle damping and stiffness,
rough surface, distinct bridge span lengths and noise applied to every signal), it is expected
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for this numerical experiment to be representative enough to simulate the real challenges of
current B-WIM systems.

Table 1 – Classes of vehicles employed

Vehicle Class Number of axles
2C 2
3C 3

4CD, 2S2 4
3I2, 2S3, 3S2 5

2R4, 3S3, 3D3, 3N3 6
3D4 , 3N4 7

3D5 8
3M6 , 3Q6 9

For all analyses conducted in this section, the mean absolute error in weight prediction
for all testing runs is the performance criterion. Three main aspects are analyzed. Firstly, the
trend in weight estimate accuracy and the number of dynamic modes employed in the model
is verified. Secondly, the robustness of the methods regarding its own parameters is evaluated.
Lastly, the results are compared with a set of 4 state-of-the-art static algorithms. Such aspects
are useful to provide a big picture of the main characteristics of the analyzed approaches and
their real potential for the practical application in B-WIM systems.

3.5.1 Effect of increasing number of modes

For both, the Standard and Analytical approaches, the number of vibration modes
considered in the analysis is defined by the user. Increasing the number of mode shapes should,
theoretically, improve the weight estimates. However, the dynamic models of the analyzed
approaches differ from the simulated one, as well as from the real field signals. Moreover, even
in the case that increasing the number of modes really results in an accuracy improvement, it
also increases the number of parameters that must be provided to the algorithm. In this regard,
there are two parameters, the bridge natural frequency (ωm) and the damping ratio (ζm) for
each vibration mode included in the model. Thus, for the first analysis, it is intended to search
for the minimum number of modes necessary for each method, given that the exact model
parameters are known. This verification is useful to indicate a practical initial configuration for
each method.

The results of the standard method are illustrated in Figure 5a, for modes ranging
from 1 to 5. Analogously, Figure 5b presents the same analysis for the Analytical method. In
order to allow the evaluation of even vibration modes, the term sin

(
mπx

ℓ

)
is disregarded in

all equations, since it would result in zero for all even modes. The overall behavior of both
methods is similar. The accuracy of the estimated weights decreases with the increase of the
bridge span length, which is an already expected result. Regarding the road roughness profile, it

Chapter 3. A B-WIM algorithm considering the modeling of the bridge dynamic response 59



Figure 5 – Results for distinct number of modes
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seems to be more significant for the short span bridges. Indeed, for the 30 m bridge, the results
of both approach were almost independent of the road roughness class. Both behaviors are in
accordance with Carraro et al. (2019), which have employed the same dataset. Furthermore,
it was observed a trend in the Analytical method to perform better than the standard one,
mainly when increasing the bridge span length. This last aspect is better analyzed in following
sections.

Regarding the influence of number of vibration modes, the mean absolute error for
the standard method presented just slight variations when changing this parameter. Hence,
increasing the number of vibration modes does not significantly affect the accuracy of this
method. On the other hand, for the Analytical approach, increasing the number of modes is
able to improve the results for longer bridges, independently of their road roughness. A more
detailed analysis indicates that the inclusion of the vibration mode 3 is the main responsible for
this improvement, since the mean absolute error of the method applying only modes 1 and 3 is
able to reach the best performance for all analyzed cases. The inclusion of modes 2 and 4 did
not introduce valuable information to the model, only increasing the computational cost. In
some cases, as the road roughness class B and the 20 m bridge, it resulted in worse estimates.
As already discussed, the effect of even modes for modeling strains at the middle span of a
simply supported beam should be negligible. In addition, the inclusion of the mode 5 may not
affect the overall results due to the difference between the assumptions of the method and the
model employed to simulate the dynamic behavior of the vehicle-bridge system.

The behavior of the Analytical and Standard methods in all analyzed cases as a func-
tion of the number of modes indicate that even modes do not contribute to performance
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improvement. This last statement is in accordance with theoretical aspects already discussed
in previous sections. Then, in the following analyses, only odd vibration modes are considered.
Since a total of 9 cases were evaluated, and the same trend was observed, it could be suggested
the use of 1 and 3 vibration modes for the Standard and Analytical methods, respectively. It
is worth to point out that, by the dynamic modeling perspective, the Standard method has
only one sinusoidal term per mode, whose frequency is ωm. It occurs because the quasi-static
response is replaced by a piece-wise cubic polynomial in this approach. Thus, it is not surprising
that the best number of modes between both methods differs.

3.5.2 Effect of error in model parameters

The previous verification was performed in an ideal scenario, where all model parameters
were exactly known. However, since model parameters usually are not known with high accuracy,
it is interesting to verify how the results are influenced by errors in the estimation of such
parameters. In other words, what is intended is checking the robustness of the analyzed
approaches regarding its own model parameters. With this goal in mind, in this section, errors
are introduced to both parameters, ζm and ωm, and the effects on weight estimates are
reported. It is desired that the performance does not be excessively corrupted by these not
exact values.

The first point verified is related to the influence of the damping ratio on the weight
estimates. As this parameter usually has low values, such as the 0.05 employed in this dataset,
only two cases shall be evaluated: using the exact value or assuming zero for its value. It is
expected that the influence does not be so expressive due to the short time that the vehicle
passes through the bridge together with the low value of damping applied in this study. It is
worth to mention that the value adopted for damping ratio in this study remains at a realistic
level for vehicular bridges (CASTELLANOS-TORO et al., 2018).

Figure 6a and Figure 6b present the results of the Standard and Analytical methods,
respectively, as a function of the damping ratio (ζ). For the analytical approach, the case with
only 1 mode is included aiming to improve comparisons. For all evaluated cases of the Standard
approach and the Analytical method with 3 modes, the results did not change significantly,
indicating that precision in this parameter is not a central feature for these methods. The
exception is the Analytical approach with only 1 mode. However, the performance reported is
similar to the case adopting the exact damping ratio. Furthermore, the 3 mode case surpassed
the results for all cases with 1 mode, even when disregarding damping ratio. By these results,
it could be inferred that both methods are robust to the ζ parameter. Therefore, in following
analysis the Analytical method is evaluated only with 3 modes and the damping ratio will be
assumed zero for both Standard and Analytical approaches.

The next analysis is related to the error in the estimate of the bridge natural frequency
for all vibration modes. This error was introduced in the model as an error in estimating the
bridge inertia moment, by a factor ranging from 50% to 150%, where 100 % indicates that
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Figure 6 – Results for two distinct values of damping ratio
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Figure 7 – Comparison among results as a function of the error in estimating the bridge moment
of inertia
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the parameter was precisely estimated. Such a parameter is then introduced to calculate ωm

for a simply supported Euler-Bernoulli beam. Figure 7a and Figure 7b illustrate the influence
of such an error in the weight estimates performed by the Standard and Analytical approaches,
respectively.
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The Standard approach has low variability due to errors in these model parameters. A
reason that helps to explain this fact is that the major part of response for this method is
due to the piece-wise cubic polynomial applied to represent the quasi-static term, which is
independent of such parameters. It could be noticed that error in model parameters are able to
provide better results than the model with no errors. It could be understood by the perspective
of the dynamic modeling, since some information related to the quasi-static part are missing
in this approach. Then, some fluctuation through the exact parameter may improve the overall
result. In order to summarize the achievements of this section, the main conclusion for the
Standard approach is that this algorithm is robust to variation on both model parameters: the
bridge natural frequency and damping ratio.

As the Analytical approach aims to more precisely model the dynamic response of
the bridge, it is expected that results be more corrupted by errors in estimating the model
parameters. Consequently, the best results are obtained using the exact parameter values. An
interesting aspect for the Analytical approach is that estimating ωm lower than its exact value
is considerable worse than estimating it with a higher value. This behavior was observed in
cases 4 to 9, for bridges span length of 20 m and 30 m. Despite this decreasing in accuracy,
most values analyzed presented reasonable results.

Thus, by the robustness perspective, the Standard method shows itself more suitable
than the Analytical one. Although the Analytical method showed more variability regarding
model parameters, even for the cases with higher error, which corresponds to approximately
30% of error in ωm, the results reached an acceptable precision.

3.5.3 Comparison with state-of-the-art static algorithms

The comparison performed in this section is related to a set of state-of-the-art static
B-WIM algorithms, all of them previously analyzed in the work of Carraro et al. (2019). The
reason behind the consideration of solely static algorithms is to keep only computationally
viable algorithms for real time monitoring. The 4 methods employed here are: matrix method
(O’BRIEN; QUILLIGAN, M. J.; KAROUMI, 2006), pBWIM (O’BRIEN et al., 2018) with the
modification proposed in Gonçalves, Carraro, and Lopez (2021), maximum likelihood (MLE)
(IENG, 2015) and regularized approach (O’BRIEN et al., 2009).

In order to avoid biasing conclusions in this section, due to the scenario of the perfect
knowledge of model parameters, the model disregarding the damping ratio and with an error of
20% on the moment of inertia was used to represent both Standard and Analytical approaches.
In addition, the algorithm related with the application only of piece-wise cubic polynomial is
included in the analyses. This last method is called Static, as discussed in previous section.

The results for this comparison are shown in Figure 8. As it can be seen, all presented
methods have similar performance for the 10 m bridge, independently of the road roughness
class. The scenario changes considerably when analyzing the longer bridges, where the methods
employed in the present study show improvement. For the 30 m bridge the Analytical approach
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Figure 8 – Comparison among results for Standard, Analytical and Static approaches with
state-of-the-art static methods
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achieved a mean absolute error of almost half of the MLE result, which is the best method
among the state-of-the art static methods included in this section. An additional relevant
aspect is that the Static method obtained the second best results. As both Analytical and
Static algorithms reached better results than the Standard one, it indicates that the inclusion
of the fluctuation part is not a key feature of this model. The Static approach has an additional
advantage, since it does not require any dynamic parameters, allowing an even more robust
performance.

A possible reason for the performance of the Analytical and Static approaches, when
compared with the 4 state-of-the-art static methods analyzed, is presented in Figure 9. It shows
the mean absolute error for the calibration vehicles of the three approaches proposed in the
present study compared with the MLE, the best state-of-the-art static algorithm included in
this section. It could be observed that for the 30 m bridge, the results for the calibration vehicles
are quite similar for Static and MLE methods. However, for the testing vehicles the Static
method shows better performance. As the equations that describe the algorithms proposed
in the present study represent continuous functions, the generalization capacity for these
methods should be higher, since least parameters are adjusted in the fitting process, reducing
the possibility of occurrence of overfitting in calibration. Table 2 presents the percentage
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Figure 9 – Comparison among results for MLE, Standard, Analytical and Static approaches for
calibration vehicles
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difference between mean absolute error for testing and calibration vehicles for such algorithms.
It could be noticed that for Static and Analytical methods this difference is lower than for MLE,
which helps to support the statement regarding overfitting. The Standard method, however,
showed the same behavior of MLE. This is another fact that indicates that the fluctuation
part modeling is not able to accurately predict the real measured fluctuation behavior. It is
worth to recall that the algorithms proposed in this study are not able to perfectly estimate
the bridge response, enabling a fair comparison with other methods.

Table 2 – Difference (%) between testing and calibration results for the 30 m bridge

Method No road roughness Class A Class B
MLE 0.74 0.78 0.76
Static 0.51 0.55 0.50

Standard 0.76 0.80 0.75
Analytical 0.36 0.35 0.33

In order to better understand the difference in performance between MLE, Standard and
Analytical approaches, the results of these methods are compared as a function of vehicle speed.
In order to make clear comparisons, for the 9 evaluated cases, only the two extreme cases are
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Figure 10 – Comparison among results for MLE, Standard and Analytical approaches as a
function of the vehicle speed
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displayed: the 10 m bridge with smooth road surface (case 1) and the 30 m bridge with high
road roughness (case 9). The results for these two situations are presented in Figure 10a and
Figure 10b. Whereas for the case 1 results show similar characteristics, the behavior changes
when bridge span is increased. It is clear that for case 9 both MLE and Standard methods have
a trend in the error as a function of the vehicle speed, which is not observed for the Analytical
algorithm. Recalling the dynamic assumptions of the Standard method, the quasi-static term
has frequency that is a function of the vehicle speed. Hence, replacing this term by a cubic
piece-wise polynomial disregarded some influence of the vehicle speed on the model. Moreover,
the MLE method does not make any direct consideration regarding such parameter. On the
other hand, the Analytical approach better accounts for the speed as a model parameter,
which helps to remove the bias presented by the Standard and MLE algorithms. These results
suggest that replacing the quasi-static response by the piecewise cubic polynomial is not the
best approach for B-WIM application.

Another relevant aspect addressed here is related to analyzing the mean absolute error
of MLE, Standard and Analytical algorithms as a function of the number of axles, presented
in Figure 11a and Figure 11b, for the cases 1 and 9. Analogously with the speed influence
evaluation, for the number of axles, the results are similar for case 1. However, it could be
observed that the results for the Analytical method have a lower variance when compared with
the other methods for the case 9. As the calibration process is performed only with two- and
four-axle vehicles, the Analytical approach is able to better describe the process as a function
of both vehicle speed and number of axles, allowing the generalization for unseen vehicles to
be improved, as already discussed.
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Figure 11 – Comparison among results for MLE, Standard and Analytical approaches as a
function of the vehicle number of axles
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3.6 FURTHER REMARKS

All methods evaluated, independently of the static or dynamic response formulation,
perform similarly for the 10 m bridge. However, for the 30 m bridge, the Analytical method
outperforms all the others. An interesting aspect is that the increase on bridge span length
attenuates the effect of road profile roughness, which makes the Analytical method yield almost
the same mean absolute error for the three road profile cases, when evaluating longer bridges.
Thus, if estimates of natural frequency of the bridge are available, the Analytical method
should present better results, mainly for longer bridges.

In the case of no reliable estimates for the bridge natural frequencies, the Analytical
method may suffer from performance degradation. In order to avoid it, one could apply the
Standard method, which is more robust. However, the results presented by the Standard method
are surpassed by the Static approach in the present study, mainly for the 30 m span bridge.
Therefore, the Static algorithm shows itself more suitable for the cases where the Analytical
method may not properly work. It is worth to mention that results disregarding the damping
ratio parameter for both analytical and standard method were able to achieve a better level
of accuracy, in comparison with the other algorithms. Thus, estimating this parameter should
not be of major importance for employing proposed methods.

The comparisons among Standard, Analytical and Static algorithms indicate that the
fluctuation part modeling should be the source of loss of accuracy. Some possible reasons that
help to explain this statement are discussed in the following. As the long span bridge cases
showed the higher potential for the application of those methods, the focus are turned to the
30 m bridge. Firstly, when comparing Static and Standard method, where the only difference
relies on the inclusion or not of the fluctuation part, the capacity of generalization of the former
seems higher. It indicates that some overfitting may be occurring for the Standard method. In
other words, the model is fitting some information of the calibration process in such a way
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that it does not represent the real behavior for unseen vehicles.
Secondly, when analyzing the robustness of the Standard method, some cases where

the parameters of the model were not exactly the real bridge parameters led to better results
than when applying the exact parameter value. Hence, an error in modeling the fluctuation
part was able to result in better weight estimates. This suggests that the fluctuation part
lacks some important information. It could be caused by the unsuitability of the simplification
adopted to derive the fluctuation part, as well as the absence of the inclusion of the analytical
quasi-static part.

Lastly, when comparing the Analytical and Standard approaches, results are highly
improved when the exact parameters are known. Thus, the full analytical approach seems to be
able to suitably model the problem, even considering noise and road roughness. This appears
to indicate that the fluctuation part works better joined with the quasi-static part. Therefore,
the replacement of the quasi-static part by a polynomial expression introduces modeling errors.
If the quasi-static part could not be accurately predicted, the static component should be used
alone.

Despite of the promising results obtained with the proposed methods, some important
aspects should be addressed in order to allow their proper practical application, especially
regarding the effects of distinct modeling assumptions, such as:

• vehicle velocity: numerical analyses were performed considering the maximum al-
lowed velocity for Brazilian heavy vehicles as an upper bound for the range of vehicle
speeds (BRASIL, 2016). Then, precision of such methods for vehicle speeds out
of such a range was not addressed. However, by Figures 10a and 10b, there is an
indicative that the analytical method removed the bias for vehicle speed, suggesting
that it may still valid for higher values. In addition, the vehicle speed was supposed
to be constant along each simulated run. It is considered a reasonable assumption
for short-span highway bridges (LANSDELL; SONG; DIXON, 2017), usually em-
ployed in B-WIM systems. However, the presence of a non-constant speed might
affect the performance of B-WIM algorithms, and is matter of future work;

• structural model: the conclusions regarding performance of analyzed methods are
not necessarily extended to structures with other boundary conditions than simply
supported one. Then, extending the proposed methods for other boundary conditions
is a promising task for future works. In addition, in the numerical experiments, the
boundary conditions of the bridge are assumed to be constant. In practice, however,
it may be important to take into account the effect of seasonal changes. Moreover,
the effects of the transverse load distribution on multiple girders and the influence
of the deck stiffness should be investigated;

• dynamic model: although the original approach applies a polynomial able to represent
situations other than simply supported bridges, the dynamic modeling is based on
this assumption. This is the reason that explains why only sinusoidal terms are
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present in this method. Thus, one could extend those expressions to allow modeling
the dynamic behavior of bridges with other boundary conditions as well as continuous
beam bridges. Such modifications will allow the proper evaluation of a broader range
of bridge structures.

Finally, in the present work only simulated signals were applied. However, the real-world
field measurements may present characteristics other than those analyzed here. Although a
large dataset has been employed in this study, measurements for real bridges are always useful
on the development of even more efficient B-WIM methods. This could also help to understand
what is the most important research focus on those methods: better modeling the fluctuation
part or even focusing on trying to accurately represent the quasi-static part.

3.7 CONCLUSION

The present paper proposed the adaptation of the method developed by Wang et al.
(2017), originally used for extracting bridge influence lines, to work as a Bridge Weigh-in-motion
(B-WIM) method. Three major modifications were performed in order to enable the application
of such a method as a B-WIM algorithm:

• the implementation of an assembly strategy of multiple vehicle runs for the calibra-
tion procedure, accomplished by the use of a maximum likelihood approach;

• the derivation of a weigh procedure which requires only simple matrix operations,
keeping the computational cost close to the one required by the state-of-the-art
static methods;

• the inclusion of the full analytical dynamic response, aiming at increasing the method
accuracy and turning the influence line into a function of vehicle speed.

As a result, the adapted method provides a way to join together the inclusion of dynamic
considerations into weigh estimates and the computational cost closer to static methods, where
only simple matrix operations are necessary. Furthermore, all equations are continuous and
the final expression for the influence line is a direct function of the vehicle speed, which is in
accordance with many studies in the same subject.

A set of numerical simulations were employed in order to evaluate the potential of
application of the proposed algorithms. A total of nine cases, combining three distinct bridge
span lengths and three road roughness profiles, were generated. Also, testing vehicles were
distinct of those ones applied for calibration. Furthermore, three algorithms were derived: a
purely static method, the Standard dynamic approach and the full Analytical approach. Results
indicated that the full Analytical approach was able to surpass the performance of the other
two methods and a set of 4 state-of-the-art static algorithms, especially for longer bridges.
However, sensitivity analysis indicated that the Analytical method could suffer when errors
are present in the dynamic model parameters, such as the bridge natural frequency. In the
scenario of high error, the static method remains useful and could overcome the other methods
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for the long span bridges. The Standard method led to the less precise results among the
proposed approaches, which indicated that the fluctuation part might not be enough to model
the dynamic behavior of the bridge. Thus, it is recommended that the Analytical method
be applied when the model parameters are available. Otherwise, the Static method should
be preferred. Furthermore, some improvements to the methods were suggested, such as the
derivation of more general equations for distinct bridges than the simply supported ones.
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4 A BAYESIAN ALGORITHM WITH SECOND ORDER AUTOREGRESSIVE
ERRORS FOR B-WIM WEIGHT ESTIMATION

ABSTRACT

Bridge weigh-in-motion (B-WIM) systems are employed for estimating axle weights of vehicles
traveling over the bridge structure, providing useful information for many applications regarding
structural health monitoring. In this regard, the improvement of single axle weight estimates is
a major concern, since B-WIM systems in general have more difficulties with such quantities
when compared to the prediction of the total weight, mainly for closely spaced axles. The main
goal of the present work is to develop a weigh strategy for B-WIM systems that prevents the
occurrence of spurious values, improving the overall accuracy of estimates for single axle weights.
For reaching this goal, prior beliefs regarding axle weights, such as their order of magnitude
and similarity for closely spaced axles, are employed. Bayesian modeling is well suited for the
present problem, since it allows the suitable combination of prior beliefs and experimental data
for providing proper weight estimates. In addition, a covariance matrix based on a second order
autoregressive process is employed for modeling the error between theoretical and measured
responses aiming to overcome the negative effects due to the presence of serial correlation
in such errors. Both simulated signals and an example of B-WIM system calibration data are
employed for assessing the suitability of the proposed approach. Moreover, sensitivity analyses
are conducted aiming to check the robustness of the strategy to its own model parameters.
For all analyses, the overall accuracy of the proposed approach, when considering both single
axle as well as gross vehicle weight (GVW) estimates, outperforms the baseline algorithms.
Furthermore, the sensitivity analyses indicate that the conclusions are the same for distinct
prior distributions based on the same prior information.
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LIST OF SYMBOLS (CHAPTER 4)

G total number of girders
E elastic modulus of bridge girders
Z section modulus of bridge girders
ug measured strain vector of the g-th girder
y measured bending moment response vector
ŷ theoretical bending moment response vector
J vehicle number of axles
dj distance between first and j-th axle
Cj number of scans between first and j-th axle
v vehicle speed
f sampling frequency
l influence line ordinates vector
L matrix of influence line ordinates
W vector of axle weights
ε error term
Σε covariance matrix of the error term
μW mean of the prior distribution of W
ΣW covariance matrix of the prior distribution of W
λ regularization parameter
σ2ε variance of the error term
σ2

W variance for the axle weight
x vector of positions over the bridge
a coefficients of the cubic polynomial related to the first half of the influence line
b coefficients of the cubic polynomial related to the second half of the influence

line
xm position off the strain sensors
n length of influence line vector
X matrix of positions over the bridge
θ vector including both a and b coefficients
ρ1 first coefficient of the second order autoregressive process
ρ2 second coefficient of the second order autoregressive process
N total number of scans
A matrix of axle weights
r residual vector
q–i shift operator
B matrix that represents the product between A and X matrices
B∗ extended version of the B matrix
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θ∗ extended version of the θ vector
α white noise vector
NC number of calibration runs
g gravity acceleration
ρij

W correlation between the weight of axles i and j
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4.1 INTRODUCTION

Bridge Weigh-in-motion (B-WIM) is a technology that uses the own bridge structure
to work as a scale in order to estimate the weight of vehicles traveling over it. To accomplish
this goal, the response induced by passing vehicles is measured by sensors attached under
the structure. By the nothing-on-road B-WIM approach, the process is simplified since the
traffic flow is not affected (YU, Y.; CAI, C.; DENG, 2018). It also results in lower costs for
installation and maintenance than other systems for traffic monitoring (FRØSETH et al., 2017).
In addition, as all sensors are placed under the bridge structure, overloaded vehicles are not able
to identify the system and, hence, avoid it (JACOB; FEYPELL-DE LA BEAUMELLE, 2010),
allowing that unbiased data be gathered (LYDON et al., 2016). For more information regarding
the overall aspects of B-WIM systems, the reader is referred to Lydon et al. (2016) and
Yang Yu, C. S. Cai, and Deng (2016). The information provided by B-WIM systems has many
application related to structural health monitoring (SHM). For instance, it allows the calculation
of important bridge performance indicators (ŽNIDARIČ; KALIN, 2020; ŽNIDARIČ; KALIN;
KRESLIN, 2018; MANDIĆ IVANKOVIĆ et al., 2019). Moreover, the vehicle weight monitoring
is essential for maintain bridge condition (CHEN, S.-Z. et al., 2018). When analyzing single
axle weight estimates, accurate predictions can be useful for improving dynamic amplification
factor (DAF) calculation (ŽNIDARIČ, 2017; O’BRIEN; GONZÁLEZ; DOWLING, 2010) and
for better overweight enforcement, since axle overloading can occur as a result of redistribution
of loads due to inadequate loading (ŽNIDARIČ, 2017).

Due to the wide range of applications, many efforts have been made toward the
development of new strategies for improving B-WIM systems in recent years. He et al. (2019)
developed a B-WIM system able to identify weight and spacing of vehicles based only on
flexural strain signals from weighing sensors, which reduces the installation costs. Shi-Zhi
Chen et al. (2018) presented a B-WIM system that employs a single set of long-gauge fiber
Bragg grating (FBG) sensors, avoiding the need of additional devices. This idea was further
applied for considering the presence of multiple vehicles (CHEN, S.-Z.; WU, G.; FENG, 2019).
Žnidarič (2017) presented a procedure which varies simultaneously axles weights and spacings
as well as the influence line parameters during the calibration process. Kawakatsu et al. (2019)
proposed the application of a deep convolutional neural network for vehicle detection based
on raw strain-signal data, employing a surveillance camera for helping in the optimization of
the model parameters. Heitner et al. (2020) presented an iterative algorithm for obtaining
the shape of influence lines which avoids the use of pre-weighed trucks for calibrating the
system, needing only a preliminary influence line estimate. O’Brien et al. (2018) developed
a probabilistic B-WIM algorithm, in which the weights of axles were calculated as the most
probable ones given the probabilistic information referred to the bridge influence line. In this
regard, Gonçalves, Carraro, and Lopez (2021b) proposed an alternative procedure for finding
the most probable axle weights based on the gradient of the probabilistic B-WIM equations
that was argued to be less time-consuming.
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Most current systems, however, rely on the ideas of Moses (1979). They employ an
influence line as a way of predicting the strains induced by passing vehicles, being the axle
weights calculation an inverse problem. In this context, the axle weights are usually estimated
by the application of least squares methods. One could cite Kawakatsu et al. (2019), Heitner
et al. (2020), Gonçalves, Carraro, and Lopez (2021a) and Zhao et al. (2015, 2014) as examples
of recent weigh strategies that apply least squares algorithms for axle weight estimation. For
more details regarding comparison of some weigh strategies, the reader is referred to Carraro
et al. (2019).

Although the recent developments on B-WIM systems, improvements regarding their
performance still are needed for some applications. Richardson et al. (2014) analyzed the results
reported by several B-WIM sites and concluded that the accuracy levels are not yet suitable
for direct enforcement of weight limits. Even when analyzing just gross vehicle weight (GVW)
estimates, such accuracy classes are still rare (ŽNIDARIČ; KALIN; KRESLIN, 2018). Issues
referred to the performance of such systems are more evident when analyzing the estimates
provided individually for each axle, since it is well acknowledged that B-WIM systems in general
have lower accuracy for individual axles weights than for GVW estimates (HE et al., 2019;
O’BRIEN et al., 2018; RICHARDSON et al., 2014; O’BRIEN et al., 2009). Indeed, authors
have found that the resulting equations are ill-conditioned, mainly for closely spaced axles
crossing long span bridges (ŽNIDARIČ; KALIN; KRESLIN, 2018; O’BRIEN et al., 2018, 2009;
ROWLEY et al., 2008).

The limitations of least squares-based algorithms, mainly for individual axle weight
estimates, motivated the investigation of other techniques. For instance, aiming to address
the ill-conditioning issue for the estimation of axle weights, O’Brien et al. (2009) applied the
Tikhonov regularization to the original Moses equations. To achieve this goal, the L-curve
criterion for calculating the optimal regularization parameter was employed. The regularization
procedure showed better results when compared to the Moses algorithm, especially for individual
axles of a group (O’BRIEN et al., 2009; ROWLEY et al., 2008). However, some drawbacks
prevail mainly regarding the definition of the regularization parameter of the Tikhonov method.
The procedure to obtain the optimum parameter is complex and subjective (O’BRIEN et
al., 2018), which has proven too difficult that prevents the practical recommendation of
such a method (ŽNIDARIČ; KALIN; KRESLIN, 2018). Furthermore, it increases the required
computational time of the weight estimation process (ROWLEY et al., 2008).

From the discussion presented in the previous paragraphs, it is noticed that the improve-
ment in weight estimation, mainly for closely spaced axles, and algorithm robustness are issues
in the B-WIM literature. As it was remarked in a previous work of the authors (CARRARO
et al., 2019), one promising approach to overcome these issues is to include prior knowledge
regarding the expected values of axle weights into the problem formulation. For example, the
values of weights of axles are strictly positive, and it is expected that closely spaced axles have
similar values. To include such information into the B-WIM problem formulation, the weigh
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procedure may be interpreted in a Bayesian perspective. Bayesian modeling provides a formal
manner of combining prior beliefs regarding some phenomenon with experimental data in order
to update the current state of knowledge related to this phenomenon (PRESS, 2002).

In this context, Yoshida, Sekiya, and Mustafa (2021) recently proposed the Bayesian
Bridge Weigh-in-Motion (BBWIM) method, combining Bayesian updating and B-WIM. Despite
of the promising results provided by BBWIM (especially regarding the accuracy of axle weights),
some important aspects of the problem still prevail, such as:

• the serial correlation of B-WIM deformation signals: although correlated noise was
noticed by Yoshida, Sekiya, and Mustafa (2021), the independence assumption was
employed without any corrective action. In this case, the results can be corrupted
since noise correlation typically induces a false precision to Bayesian analyses due to
the fact that correlated measurements carry less information than the same amount
of independent data (GELMAN et al., 2013);

• prior knowledge employed: it is important to remark that the prior knowledge
employed by Yoshida, Sekiya, and Mustafa (2021) was limited to the similarity
among axle weights for closely spaced axles. However, it is noticed that values
of axle weights are not completely unknown quantities, since they have practical
limitations regarding, for instance, legal limits. Thus, more informative priors may
be a better option for B-WIM purposes;

• the definition of the Bayesian approach input parameters: BBWIM requires the
definition of model parameters, mainly related to the prior distribution employed.
Although such parameters must be priorly chosen, no procedure for helping in their
definition was suggested. Therefore, setting the configuration of this algorithm
is also quite subjective. The subjectivity, by itself, may not be a problem if the
robustness of the results to the model input parameters was present. However, such
an aspect was not addressed either;

• limited number of examples: the conclusions are based on just a few vehicle runs,
without sensitivity analyses regarding the model parameters. Then, not enough data
for properly assessing the accuracy or robustness of this approach was available.

The aspects just discussed indicate that the Bayesian modeling is a promising direction
for improving the accuracy of weight prediction in B-WIM systems, but that needs to be
further developed. The presence of correlation among error terms has a major importance and
could corrupt overall results. Furthermore, it is important for the users that results are not
excessively dependent of a clever selection of model input parameters. Hence, the present work
proposes a Bayesian B-WIM approach that addresses both accuracy on axle weight prediction
and robustness to model parameters issues. The proposed Bayesian approach employs a second
order autoregressive (AR(2)) process for modeling the error between theoretical and measured
responses. This model allows to represent dependence of such errors with respect to past
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values up to 2 lags, avoiding the negative effects of the independence assumption for this
application. A procedure for defining both influence line and AR(2) coefficients based on the
calibration data is also presented. Moreover, the present method is based on a full multivariate
Gaussian distribution as prior. This allows that both mean and covariance matrix be employed for
representing a more informative prior belief regarding axle weights. A procedure for defining this
distribution is also presented, aiming to simplify the whole process. Although more parameters
are necessary for defining this distribution, one can make a direct correspondence between
this distribution and the expected values for the axle weights, reducing the subjectivity in the
selection of model parameters. The results of the proposed method are compared with the
Moses least squares (MOSES, 1979) and the regularization approach (O’BRIEN et al., 2009)
in both numerically generated problems and an example of real-world B-WIM application. The
results are also evaluated through the COST 323 accuracy classification (JACOB; O’BRIEN;
JEHAES, 2002), since such classes can be assigned to possible practical applications of the
system.

The remaining of this paper is organized as follows. Section 5.2 introduces the usually
employed least squares solution. Section 5.3 presents the employed Bayesian approach as well as
a theoretical comparison with the Tikhonov regularization. In section 5.4, the practical aspects
related to the selection of the model parameters for the Bayesian algorithm are discussed,
mainly those ones related to the definition of the covariance matrix of the error between
theoretical and measured responses. Section 5.5 presents the main results of the paper for both
numerically simulated signals and an example of real-world B-WIM data. Section 5.6 discusses
some relevant aspects regarding the proposed work and suggestion for further studies. Section
5.7 presents the concluding remarks.

4.2 CONVENTIONAL B-WIM WEIGH STRATEGY

Most of B-WIM systems rely on the study of Moses (1979), which intends to provide
axle weights from measured strains. By this approach, the estimated axle weights are those
that minimize the sum of squared residuals between the measured and theoretical response.
Most studies and installations applying B-WIM systems employ flexural strains as monitored
quantity (HELMI; TAYLOR; ANSARI, 2015). In these systems, strain sensors are usually placed
under the bridge girders, at the mid-span of the structure. The collected strains are converted
into bending moment, summing up the contribution of each girder:

y =
G∑

g=1
EgZgug , (1)

where G represent the total number of girders, and Eg , Z g , and ug are the elastic modulus,
section modulus and measured strains of the g girder, respectively. Then, y is the vector of
measured structural response, comprised of the contribution of all girders.
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The idea behind B-WIM systems is to match this measured response with some theoret-
ical one. For enabling the derivation of the theoretical response (ŷ), the concept of influence
line is employed. For B-WIM purposes, the influence line describes the bending moment re-
sponse due to a unitary moving load, taking as reference the position where the sensor is
placed (QUILLIGAN, M., 2003). In this case:

ŷk =
J∑

j=1
Wj l (k–Cj ), (2)

where:

Cj =
dj f
v

, (3)

J is the total number of axles of the passing vehicle, Wj represents the weight of the j axle,
l (k–Cj ) is the ordinate of the bridge influence line for the location of the j axle at the scan k ,
dj refers to the position of the j axle taking the first axle as reference, Cj is the respective
number of scans that corresponds to dj , v represents the velocity of the vehicle and f stands
for the sampling frequency in which the acquisition system operates. In addition, the index k
defines the time step related to the passage of the vehicle through the bridge. It is important
to remark that if k – Cj indicates an index that does not correspond to an influence line
ordinate, the value of zero is set for l (k–Cj ). This last situation occurs when some vehicle
axle is not over the bridge structure. One could notice that, in order to enable the proper
theoretical response calculation, vehicle speed is required. The vehicle speed is usually assumed
to be constant during the vehicle passage over the bridge, which is a reasonable supposition
for short-span highway bridges (LANSDELL; SONG; DIXON, 2017). In order to calculate the
vehicle velocity, some additional sensors are commonly employed. The nothing-on-road B-WIM
approach, applied in the present study, provides this desired parameter without the need of
traffic interruption for sensor installation.

In order to simplify the further mathematical manipulations, the dependence of the
theoretical structural response ŷ regarding the axle weights presented in Equation (2) is
rewritten in matrix notation:

ŷ = LW , (4)

where L is the matrix of influence line ordinates and W is the vector of axle weights.
The idea behind most current B-WIM systems is to find the axle weights that result

in the best match between the theoretical response of Equation (4) and the measured data in
Equation (1), which is normally defined in a least squares sense. As the theoretical response is
linear within the axle weights, the solution can be defined in a closed form:

W = (LT L)–1(LT y), (5)

where y is calculated as in Equation (1).
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4.3 THE EMPLOYED BAYESIAN WEIGH STRATEGY

The least squares solution, usually employed in B-WIM systems, does not make use of
any prior knowledge regarding the axle weights. Indeed, the solution takes into account just
the vector of measured bending moment and the matrix of influence line ordinates. In this
case, even the clear physical limitation related to the non-negativity of such a quantity is not
taken into account. Thus, by the least squares approach, even negative axle weights may be
reported, mainly for closely spaced axles in a group. The non-negativity is just an example
of how the prior knowledge can be applied in the B-WIM context. In the present work, it is
realized that axle weights are quantities that are not allowed to assume a wide range of values,
since they are usually restricted to a few tons due to legal purposes. In addition, the weight
of axles from the same vehicle have the tendency of presenting correlation, mainly for closely
spaced ones. All those aspects represent prior knowledge that can be exploited for improving
the weight estimates for B-WIM systems.

In order to allow the proper consideration of prior knowledge regarding axle weights,
it is employed a Bayesian formulation. By the Bayesian perspective, the degree of knowledge
regarding some parameters is represented by probability distributions and this prior knowledge
is updated based on the measured data (BEHMANESH; MOAVENI, 2016). The idea is that
previous beliefs regarding some phenomenon are modified due to new observations in order to
obtain a posterior belief (PRESS, 2002). Thus, the probabilities for the updated parameters
are assumed to reflect the degree of belief on their values, given the information collected by
the experimental procedure (SIMOEN; DE ROECK; LOMBAERT, 2015).

The main idea of Bayesian methods is based on the Bayes theorem, which, for the
present work, is defined as:

p(W |y) ∝ p(y |W )p(W ), (6)

where p(W ) is the prior probability distribution for the axle weights, p(y |W ) is the likelihood
function and p(W |y) is the posterior probability distribution.

The prior distribution p(W ) is related to the knowledge prior to the experimental results.
This can reflect some known bounds for the variable, such as the just discussed non-negativity
of the axle weights. In addition, the prior distribution can be seen as a regularizer, which may
improve the well-posedness of the problem (YUEN, 2010). The likelihood function p(y |W )
reflects the probability of observing the measurements given some fixed set of parameters. In
this context, it is directly related with the distribution assumed for the error between theoretical
and measured data. Finally, the posterior distribution p(W |y) is the description of uncertainties
for the updated parameter, reflecting the current state of knowledge due to the contribution of
both the measured data and the prior knowledge. Thus, it is the effective output of the Bayesian
methodology, which allows a better understanding with respect to the analyzed parameters.

For defining the likelihood function, it is assumed that the difference between theoretical
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(ŷ) and experimental (y) responses is defined as:

y = ŷ + ε, (7)

where ε is the error term, which is assumed to follow a zero-mean multivariate normal distri-
bution, whose covariance matrix is Σε.

Then, by including the known expression for the probability density function (pdf) of
a multivariate normal distribution and replacing the expression for the theoretical response of
the bending moment ŷ (Equation (4)), the likelihood function p(y |W ) can be defined as:

p(y |W ) ∝ |Σε|–
1
2 exp

(
–

1
2

(y – LW )T Σ–1ε (y – LW )
)

, (8)

where |.| stands for matrix determinant.
In order to simplify the following mathematical derivations, it is employed a multivariate

normal distribution for the prior distribution of the axle weights, which reads as:

p(W ) ∝ |ΣW |–
1
2 exp

(
–

1
2

(
W – μW

)T Σ–1
W
(
W – μW

))
, (9)

where μW and ΣW are the mean and covariance matrix for the prior distribution of W .
Including both Eqs. (8) and (9) into (6):

p(W |y) ∝ (|ΣW ||Σε|)–
1
2

exp
(

–
1
2

((
W – μW

)T Σ–1
W
(
W – μW

)
+ (y – LW )T Σ–1ε (y – LW )

))
. (10)

This expression includes the whole probabilistic content regarding the posterior dis-
tribution of the axle weights given the measured data and the prior belief on their values.
Therefore, it is possible to assess the uncertainties regarding the prediction of the axle weights.
For B-WIM systems purpose, however, it is necessary that a point estimate for the quantities
of interest be available. In order to obtain a single estimate for the axle weights from the
posterior distribution, it could be used the maximum a posteriori (MAP) estimate. The MAP
is the set of axles weights whose posterior probability distribution achieves a maximum value,
being the most probable values.

Hence, the procedure for calculating this value is based on finding W which maximizes
Equation (10). For this purpose, the logarithm of such an expression is maximized. As the
logarithm is a monotonically increasing function, employing such an artifice does not change
the MAP estimate. Therefore, the expression of Equation (10) is modified to:

log (p(W |y)) ∝ –
1
2

log (|ΣW ||Σε|)

–
1
2

((
W – μW

)T Σ–1
W
(
W – μW

)
+ (y – LW )T Σ–1ε (y – LW )

)
. (11)
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It is noticed that some logarithm properties were employed. For maximizing such an expression,
it is necessary to take its first derivative with respect to W . It is worth to remark that the
first part of the expression is zero, since, for the employed approach, no dependence among
the covariance matrices Σε and ΣW with respect to W is assumed. Hence:

∂ log (p(W |y))
∂W

= –
1
2

∂

∂W

((
W – μW

)T Σ–1
W
(
W – μW

)
+ (y – LW )T Σ–1ε (y – LW )

)
.

(12)
Performing the derivatives of the right hand side of Equation (12) one obtains:

∂ log (p(W |y))
∂W

= –Σ–1
W
(
W – μW

)
+ LT Σ–1ε (y – LW ) , (13)

making the above expression equal to zero and after some algebraic manipulations, the MAP
solution for the Bayesian weigh is:

W =
(Σ–1

W + LT Σ–1ε L
)–1 (Σ–1

W μW + LT Σ–1ε y
)

. (14)

Therefore, it is worth pointing out that the Bayesian solution for the axle weights can
be calculated by performing just some matrix operations, analogously to the least squares
solution. Consequently, it requires a similar computational time. It is worth to remark that,
when compared with the method of Yoshida, Sekiya, and Mustafa (2021), it is noticed that
both approaches rely on a similar Bayesian formulation. Indeed, both methods assume Gaussian
prior and likelihood together with a linear theoretical model. As stated in the introductory
section, the most remarkable improvements proposed in the present study are the procedure
for defining the prior distribution and the model for accounting to the serial correlation among
error terms. Such aspects are addressed in following sections.

4.3.1 The Tikhonov regularization by the Bayesian perspective

The just described Bayesian approach represents a quite general framework for the
weigh procedure performed by B-WIM systems. Indeed, the parameters Σε, ΣW and μW can
cover a wide range of approaches. In this regard, it is interesting to analyze the Tikhonov
regularization proposed by O’Brien et al. (2009). The main goal of this method also was to
better represent the weights of closely spaced axles. The solution of this method is defined as:

W =
(
LT L + λI

)–1
LT y , (15)

where λ is the regularization parameter. The goal of the present analysis is to show that the
Tikhonov regularization solution is not an alternative approach to the Bayesian one. Conversely,
it is a special case of the Bayesian approach, resulting of a specific set of parameters. Let
μW = 0 and:
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Σε = σ2ε I , (16)
ΣW = σ2

W I , (17)

where I is the identity matrix, σ2ε is the value of variance for the error vector ε, and σ2
W

is the variance for the weight of each axle. Including Equation (16) and Equation (17) into
Equation (14) and manipulating the parameter σ2ε , one has:

W =


LT L +

σ2ε
σ2

W
I




–1 (
LT y

)
. (18)

It could be noticed that the expression of Equation (18) is rigorously the same as stated
in the work of O’Brien et al. (2009) and represented in Equation (15). By the Bayesian point of
view, however, the parameter λ appears as the ratio between the variance of the error and the
prior distribution. Thus, the Bayesian approach is also able to model the situation related to
the Tikhonov regularization. Furthermore, it gives a practical interpretation for the parameter
λ, which may avoid the necessity of employing additional and somewhat subjective procedures
for finding a suitable value of λ.

4.4 PROPOSED PROCEDURE FOR DEFINING THE MODEL PARAMETERS

For employing the described Bayesian method, it is necessary to provide 4 parameters,
namely: L, Σε, ΣW and μW . The proper implementation of the method relies on a suitable
definition of these model parameters. Hence, in the present section, a procedure is presented
for helping the user to define them.

4.4.1 Influence line definition

A main issue for creating a functional B-WIM system is the definition of the bridge influ-
ence line and, consequently, the L matrix. In the first work in this subject, performed by Moses
(1979), the bridge influence line was approached only with theoretical analysis. The theoretical
influence line, however, is currently recognized as unsuitable for B-WIM applications (QUIL-
LIGAN, M., 2003), since some simplifications are required in its derivation procedure. Hence,
recent works have addressed the influence line extraction for bridge structures, considering many
distinct approaches. For instance, influence lines were modeled as cubic splines (ŽNIDARIČ;
KALIN, 2020), based on B-splines after the elimination of dynamic fluctuation (ZHENG et al.,
2020) and B-splines basis employing sparse regularization (CHEN, Z. et al., 2019). In addition,
calculation strategies also involved least squares (O’BRIEN; QUILLIGAN, M. J.; KAROUMI,
2006), regularized least-squares QR decomposition method (ZHENG et al., 2019b), maximum
likelihood (IENG, 2015), considering simplified models for the dynamic response of the bridge
due to a passing vehicle (GONÇALVES; CARRARO; LOPEZ, 2021a; WANG et al., 2017), to
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name just a few examples. Some methods for influence line identification were also analyzed
by Carraro et al. (2019) and Zheng et al. (2019a).

For the present study, a piecewise cubic polynomial is used for representing the bridge
influence line. This model relies on a small number of parameters and is theoretically able to
describe the influence line for both single and multi-span continuous beams (WANG et al.,
2017). In what follows the procedure is derived for a single-span bridge, employing two distinct
cubic polynomials for representing each half of the influence line. However, the procedure can
be straightforwardly extended for multi-span continuous bridges. Let x= x1, . . . ,xn be a set of
longitudinally spaced points representing the positions over the bridge where the influence line
is calculated. In this formulation, x1 and xn are the points that characterize the starting and
ending points of the structure, respectively. Hence:

l =





a1x3
i + a2x2

i + a3xi + a4, if xi ≤ xm

b1x3
i + b2x2

i + b3xi + b4, otherwise
, (19)

in which a= [a1,a2,a3,a4] and b= [b1,b2,b3,b4] are the coefficients that define each cubic
polynomial, xm is the point referred to the position where the strain sensors are placed and
1 ≤ i ≤n. Lets define xm = 0 without loss of generality. In order to enforce the continuity of
the curve, let a4 = b4. We may then define the X matrix as:

X =




x3
1 x2

1 x1 0 0 0 1
... ... ... ... ... ... ...

x3
m–1 x2

m–1 xm–1 0 0 0 1
0 0 0 0 0 0 1
0 0 0 x3

m+1 x2
m+1 xm+1 1

... ... ... ... ... ... ...
0 0 0 x3

n x2
n xn 1




(n×7)

. (20)

Then, the bridge influence line can be written as:

l = Xθ, (21)

in which θ is:

θ =
[

a1 a2 a3 b1 b2 b3 b4
]T

. (22)

4.4.2 Covariance matrix for the error term

The covariance matrix Σε is a parameter required in the process. The most common
approach is to assume independence among measurements from distinct scans and homoscedas-
ticity. It highly simplifies the whole process, since the resulting covariance matrix is diagonal
and can be defined by a single parameter. For the present context, however, such a hypothesis
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may not be enough. The reason is that dynamic fluctuations are present in the collected
signals and they hardly are precisely captured by the theoretical model. Then, the difference
between theoretical and experimental responses may show some patterns and, hence, present
autocorrelation. It was noticed, for instance, in the work of Yoshida, Sekiya, and Mustafa
(2021).

In order to relax the independence hypothesis and allow the presence of autocorrelation
in the model, it is assumed that the error term is described by a second order autoregressive
process (AR(2)) (BOX et al., 2015):

εk = ρ1εk–1 + ρ2εk–2 + αk , (23)

in which ρ1 and ρ2 are the coefficients of the AR(2) process, k is the measurement scan and
αk is a zero-mean random variable such that αk ∼ N

(
0,σ2ε

)
. Then, the error observed at

scan i is a function of the errors at the two previous scans.
The AR(2) error assumption results in a specific covariance matrix structure. This

matrix has a closed-form solution for its inverse, which is necessary for further steps. According
to Congdon (2007), Σ–1ε can be written as:

Σ–1ε =
1
σ2ε




1 –ρ1 –ρ2 0
–ρ1 1 + ρ2

1 –ρ1 (1 – ρ2) –ρ2
–ρ2 –ρ1 (1 – ρ2) 1 + ρ2

1 + ρ2
2 –ρ1 (1 – ρ2)

0 –ρ2 –ρ1 (1 – ρ2) 1 + ρ2
1 + ρ2

2
. . .

–ρ1 (1 – ρ2) 1 + ρ2
1 –ρ1

–ρ2 –ρ1 1




(N×N)

,

(24)
being N the number of scans for the measured signal. Notice that just three parameters are
required for representing Σε and its inverse: σ2ε , ρ1 and ρ2. It is, hence, a computationally
interesting approach that addresses the important aspect of correlation among error terms. In
addition, it was opted to limit the order of the model to 2 since models of such an order are
frequently adequate for representing stationary time series (BOX et al., 2015).

4.4.3 Parameter estimation from calibration data

Both influence line and coefficients of the AR(2) model are calculated from the cali-
bration data. The procedure adopted for estimating such coefficients is an adaptation of the
extended least squares method (ISERMANN; MÜNCHHOF, 2011). To allow this procedure, it
is necessary to write the theoretical response in a different manner:

ŷ = AXθ, (25)
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where A is a Toeplitz matrix created from the vector of axle weights of a given vehicle:

[
Aij
]
N×n

=





Wk , if i = j + dk f
v

0, otherwise
, (26)

in which N is the total number of measurement scans, n is the number of influence line
ordinates and the remaining parameters are the same as in Equation (2) and Equation (3).
Moreover, it is important to define the residuals vector:

r i = y i – ŷ i , (27)

being r i the residuals vector for the calibration run i . By combining Equation (23) and
Equation (7), one could write:

yk = ŷk + ρ1εk–1 + ρ2εk–2 + αk , (28)

being k the referred measurement scan. Then, if one applies the residuals r as estimates of ε,
the effect of correlation may be included into the model. It could be accomplished by defining
an extended system of equations based on replacing Equation (25) into Equation (28):

y = Bθ + rq–1ρ1 + rq–2ρ2 + α, (29)

in which the operator q–i is such that, for every element rk in r , rkq–i = rk–i . Hence, q–i

is a shift operator employed for matching the autoregressive components of the model with
the residuals elements related to their respective lags. For the shifted values whose residuals
index are lower than 1, the value of zero is assigned since it represents the expected value of
the random variable αk . Furthermore, B is utilized to represent the product between A and X
matrices. Notice that each calibration run has its own B and r parameters and their indices
were omitted for sake of clarity.

The system of equations in Equation (29) can be written in a more compact manner:

y = B∗θ∗ + α, (30)

in which:

B∗ =




B11 . . . B17 0 0
B21 . . . B27 r1 0
B31 . . . B37 r2 r1

... . . . ... ... ...
BN1 . . . BN7 rN–1 rN–2




,θ∗ =




θ1
...
θ7
ρ1
ρ2




. (31)

Hence, the number of extra columns added is equal to the order of the AR model.
In this regard, by employing the extended matrix B∗ and vector θ∗, the difference between
theoretical and measured responses is converted to just the white noise component α.
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As the error term of the extended system is now the conventional white noise, the usual
methods for parameter estimation can be employed for calculating θ∗. In this regard, the MLE
strategy, proposed by Ieng (2015), is employed. It reads as:

θ∗ =




NC∑

i=1

((
B∗

i
)T

B∗
i

)


–1 NC∑

i=1

((
B∗

i
)T

y i

)
, (32)

being NC the number of calibration runs.
It is noticed that the extended matrix and, thus, the estimated parameters are dependent

of the residuals values and vice-versa. Therefore, an iterative approach is adopted. An initial
random guess for the residuals of each calibration run is utilized for calculating the first estimate
of θ∗. With such an estimate, the residuals are calculated and, hence, employed for generating
a new B∗ matrix. The procedure continues until the differences between estimates in successive
runs are smaller than a defined threshold. It is suggested that the values of ρ1 and ρ2 be
monitored for convergence since it is expected that the magnitude of such parameters stays at
a same level regardless the structure being analyzed. In the present work, a threshold of 0.0001
in the variation of both ρ1 and ρ2 was utilized as convergence criteria. Such an approach can
be summarized as:

Result: θ,ρ1,ρ2,σ2ε ;
Set a random initial value for the residuals vector for every run (r i);
Define the convergence criteria (eMax );

while e ≥ eMax do
Set as zero two variables to account for each summation in Equation (32);

for i = 1 to NC do
Calculate B∗

i as in Equation (31);
Update the summations variables as in Equation (32);

end
Calculate θ∗ employing Equation (32);
Calculate every r i vector employing the new θ∗ estimate;
Calculate e;

end
Pick θ, ρ1 and ρ2 from the θ∗ vector;
Calculate α for each calibration run and applies such values for estimating σ2ε

return θ,ρ1,ρ2,σ2ε .
Algorithm 1: Procedure to estimate θ,ρ1,ρ2,σ2ε .

The convergence of the method is fast, where usually up to 10 iterations are enough
for the difference between successive values of ρ1 and ρ2 be at the third decimal digit.

It is important to remark that measurements from B-WIM systems are usually collected
at a high sampling frequency. This frequency may affect the estimation results related to the
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AR(2) process. For instance, in the work of SMAIL, THOMAS, and LAKIS (1999) the results
of the model were significantly affected for sampling frequencies higher than 10 times the
highest frequency of interest. Then, in the present study, the signals are first decimated to stay
at an effective sampling frequency bellow 10 times the maximum frequency where significant
response is observed in the frequency domain representation of signals from the calibration
runs. Moreover, it is important to check if calculated coefficients are related to a stationary AR
process since unreliable results may arise otherwise. Such conditions are (BOX et al., 2015):

ρ2 + ρ1 < 1 (33)
ρ2 – ρ1 < 1 (34)

–1 < ρ2 < 1. (35)

The non-stationarity may also occur due to the presence of an unit root, which results
in the sum of coefficients close to 1. In the case of coefficients indicating a non-stationary
process, higher decimation factors may be evaluated. If non-stationarity still is present, it is
suggested that the usual diagonal covariance matrix be employed.

4.4.4 Prior distribution

The definition of prior distribution parameters is based on the information available
for the bridge under analysis. In the presence of recent data collected by static scales near
the B-WIM system, the parameters can be directly estimated from this database. If no data
is available, some legal regulations can work as a reference, since it is expected that most
vehicles respect such limits. In the worst scenario, one could just enforce the lower bound due
to the non-negativity of axle weights by assigning a low probability of occurrence of negative
values. It is worth to remark that the main goal of the prior distribution is to cover what
is really expected regarding the problem at hand, avoiding to include wrong beliefs into the
model. In this context, it is important to ensure that non-zero probability be assigned to all
possible values for the quantity of interest (PRESS, 2002). Consequently, a common approach
is to employ weakly informative priors, which are distributions that intentionally reflect weaker
information than what is currently known (GELMAN et al., 2013). It also indicates that there
is no reason for concern regarding fine-tuning prior parameters.

In the present work, the prior parameters are defined based on the Brazilian heavy
vehicles classification (DNIT, 2012). In this classification, single axle weights for common
vehicle types are usually limited to 10 ton for all axles except the first, which is limited to 6
ton. Such values are, then, defined as an upper reference. As a lower reference, it is adopted
the value of 2 ton for all axles to account for empty vehicles. Both values together imply that:

μj
W =





4g, if j = 1
6g, otherwise,

(36)
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where the index j refers to the axle number and g is the gravity acceleration.
For defining the covariance matrix ΣW , it is employed the relation among such a matrix

and the correlation matrix:

Σij
W = ρij

Wσi
Wσj

W , (37)

where ρij
W is the correlation between the weight of axles i and j . In addition, σi

W and σj
W are

the standard deviation of the axle weights i and j , respectively.
The value of σj

W is calculated aiming to have 1 standard deviation from the mean to
the lower and upper references previously defined, in order not to overly constraint the Bayesian
procedure:

σj
W =





2g, if j = 1
4g, otherwise.

(38)

As no database of axle weights is available for this study, a set of vehicles employed
in other works related to B-WIM (YU, Y.; CAI, C.; DENG, 2018; ZHAO et al., 2015, 2014;
CARRARO et al., 2019; YOSHIDA; SEKIYA; MUSTAFA, 2021; ZHENG et al., 2019a; HAO;
XIE; YU, M., 2019; WU, H. et al., 2020; MAKI et al., 2019; LECHNER et al., 2010) are
analyzed in order to help in the definition of ρij

W . It is excluded just those vehicles where axles
of the same group have exactly the same value, since it is an indicator that the group was
weighed together and the results averaged for the contribution of each axle. Figure 1 presents
the relation among axle weights from a same vehicle, where the distinction among those ones
belonging to a same group is remarked. The criterion for belonging to a same group employed
here is the axle stay at 2.4 meters or less from any other axle of the group, since it is the value
employed in the Brazilian classification. Based on the Pearson correlation coefficient calculated
from such a set of vehicles, two distinct values of correlation are employed:

ρij
W =





0.9, if i and j belong to a same group
0.5, otherwise.

(39)

It is worth to remark that the prior distribution employed does not mathematically
ensure non-negative axle predictions. However, in the practical scenario, negative estimates are
effectively avoided. In order to understand the reason, it is important to recall that for B-WIM
systems the total weight is usually predicted with suitable precision whereas the contribution of
each axle is difficult to distinguish. Then, a negative value occurs together with a considerable
overestimation of the weight of other axles, providing high discrepancies. Hence, not only
the marginal axle weight distribution is relevant to prevent negative estimates, but also the
correlation among them since it includes a tendency for the estimates to stay at a similar level.
Thus, the combination of both correlation among axle weights and marginal distributions for
the weight of each axle in the proposed approach are enough to ensure proper predictions
in the practical scenario. Moreover, the proposed prior distribution also avoids an excessive

Chapter 4. A Bayesian algorithm with second order autoregressive errors for B-WIM weight estimation 92



Figure 1 – Correlation of axles weight from a same vehicle
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bias toward median weights, which would jeopardize the predictions for overweight axles. It
is important to notice that the AR(2) model for the error between theoretical and measured
responses is important to ensure that the prior distribution be properly accounted for. Such
statements are assessed in the Section 4.5.

It could be noticed that the selection of prior distribution parameters may be somewhat
subjective. Indeed, it is a common criticism to Bayesian methods (SIMOEN; DE ROECK;
LOMBAERT, 2015). In the present work, however, it is argued that subjectivity is not a
problem itself. Indeed, inference from observational data involves some subjective judgement,
in such a way that several scientists analyzing the same dataset will often develop distinct
interpretations (PRESS, 2002). Conversely, the main drawback with subjective procedures is
related to their robustness. Or, in other words, the sensitivity of the results regarding the
model inputs (INSUA; RUGGERI, 2000). When lack of robustness is observed, some feasible
model parameters for the prior distribution can lead to highly distinct results and potentially
poor weight predictions. In this regard, the clear correspondence of the prior distribution with
the axle weights expected by the user helps to mitigate the possible negative effects of the
subjectivity. For practical purposes, such a range of suitable values should span just a few
tons and, hence, the values adopted by distinct users could not deviate excessively from each
other. Therefore, it is expected that the consequences of the subjectivity in choosing the prior
parameters be reduced in this context. Such aspect is further analyzed in Section 4.5.

4.5 RESULTS

This section presents some numerical experiments to evaluate the proposed Bayesian
approach. The first analysis to be conducted is an illustrative example, aiming to better present
the main aspects related to the Bayesian approach and how its features can contribute to more
reliable axle estimates. Then, numerical models are created for simulating the vehicle-bridge

Chapter 4. A Bayesian algorithm with second order autoregressive errors for B-WIM weight estimation 93



system, allowing that the capacity of the method to provide reliable weight estimates for
vehicles highly distinct of those ones employed for calibrating the system be assessed. Next, a
real-world B-WIM system example is analyzed, employing the calibration information collected
at a bridge in Brazil. For both numerical simulations and the real-world B-WIM system example,
a set of distinct algorithm configurations is analyzed to assess the improvements provided by
each feature added to the proposed approach as well as the robustness to its own model
parameters.

4.5.1 Illustrative examples

In this section, a simple illustrative example is presented in order to better remark some
theoretical aspects previously discussed. In this context, it is employed a two-axle vehicle, since
it allows a graphical representation of the probabilities related to each set of axle weights. It is
worth to mention that this example does not intend to simulate a real-world B-WIM application.
Otherwise, the main goal is to create an example that clearly shows the theoretical aspects
regarding the Bayesian approach that are more relevant to the purpose of the present study.
With this goal in mind, the remaining parameters of this example were defined. In Table 1, it
is presented some of the main parameters employed. Notice that the spacing between both
axles is set to a quite small value. This short spacing was chosen to assess the capability
of the algorithms for estimating the axle weights in this challenging situation. Indeed, they
have more difficulties to distinguish the contribution of each individual axle in such a situation.
Consequently, the advantages of the Bayesian strategy may be easily observed. In practical
applications, larger vehicles with more axles are more susceptible to such kind of instability, as
will be presented in the next subsections.

Table 1 – Parameters for the illustrative example

Vehicle speed (m/s) 20
bridge length (m) 5
Axle spacing (m) 0.5

First axle weight (ton) 3
Second axle weight (ton) 9

Other relevant aspect to be discussed is the fact that theoretical models are not able
to perfectly predict the behavior of the system. In this example, the bending moment induced
by the vehicle is simulated based on a noisy influence line. The influence line is calculated by
perturbing the theoretical influence line of a simply supported bridge with a zero mean Additive
White Gaussian Noise (AWGN) with standard deviation of 0.05, i.e., N (0,0.052). Furthermore,
a zero mean AWGN, with standard deviation of 10000, i.e., N (0,100002), is also applied to
the resulting bending moment. Figure 2 illustrates this process. The influence lines are shown
at the left hand side, including both the theoretically calculated and the perturbed one, which
remarks that the added noise does not excessively corrupt its shape. On the other hand, the
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calculated bending moment is presented for three cases. The theoretical one is calculated by
employing the theoretical influence line and the exact axle weights for the analyzed vehicle. The
perturbed bending moment results from employing the known axle weights and the perturbed
influence line just described. Finally, the effectively utilized signal is the one resulted from the
application of an extra AWGN to the perturbed curve. By comparing these figures, it is clear
that the shape of the signal is considerably changed by each process, however keeping the main
behavior of the curve. Regarding the proposed procedure, the theoretical curves are employed
for predicting the bridge response and the resulting curve after adding noise to the data is
employed to simulate the experimental one. As no set of axle weights is able to precisely match
the measured response, the solution process should not provide the exact solution.

Figure 2 – Influence lines and resulting bending moment

In this example, a Gaussian prior distribution is employed, also including the correlation
among weights of both axles, whose parameters are:

μW =


 2

8


 , (40)

ΣW =


 1 0.5

0.5 1


 . (41)
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In order to estimate the axle weights from the simulated data, one could employ
procedures such as the least squares approach. A closed-form least squares solution can be
obtained maximizing a particular likelihood function for this example. Suppose that the deviation
among each entry of the theoretical and experimental response vector, i.e., the error ε, follows
a Gaussian distribution such that ε ∼ N

(
0,σ2ε

)
:

yi = ŷi (W ) + ε, (42)

where y and ŷ are experimental and theoretical responses, respectively, i is the related index
of the response vector and W is the vector of axle weights. The dependence of ŷi regarding
W was discussed in Equation (4). In addition, the realization of each random variable ε is
independent of all the others. Or, in other words, ε is an iid variable (independent and identically
distributed). In this case, the likelihood function can be expressed as:

L =
N∏

i=1
p
(
yi |ŷi (W ),σ2ε

)
, (43)

where N is the total number of scans of the response vector. It is worth to remark that the
probabilities assigned to Equation (43) can be easily calculated by the known expression of the
pdf of a Gaussian distribution since the error follows such a distribution.

This likelihood function can then be used to graphically show the probability associated
to each set of axle weights. Indeed, it provides additional information when compared just with
the least squares solution: instead of presenting only a punctual estimate for the parameters of
interest, the whole likelihood function enables the visualization of equally probable solutions.
It is useful to indicate some trends, mainly referred to the range of weight combinations that
have similar probability.

For obtaining the well known least squares solution, it is necessary some further steps.
Recall that the least squares solution is the set of axle weights that maximize the likelihood
function. The usual approach is, however, maximizing the logarithm of the likelihood. It allows
to simplify the mathematical operations without changing the maximum point, since the
logarithm is a monotonically increasing function. It reads as, also including the expression for
the Gaussian pdf:

log (L) = log




N∏

i=1

1
σε

√
2π exp


–

1
2

(
yi – ŷi (W )

σε
)2



 . (44)

Applying some logarithm properties:

log (L) =
N∑

i=1


log

(
1

σε
√

2π
)

–
1
2

(
yi – ŷi (W )

σε
)2

 . (45)

In order to maximize such an expression, it is necessary make the first derivative of this
expression with respect to the axle weights equal to zero:
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∂ log (L)
∂W

= –
N∑

i=1

1
2

∂

∂W

(
yi – ŷi (W )

σε
)2

= 0. (46)

The derivative of such an expression results in:

N∑

i=1

∂ŷi (W )
∂W

(
yi – ŷi (W )

σ2ε

)
= 0. (47)

Thus, employing matrix notation and recalling that the relation between theoretical
moment (ŷ) and the vector of axle weights (W ) is defined by Equation (4):

(
1
σ2ε

)
LT (y – LW ) = 0. (48)

It is clear that the parameter σε does not have influence in this process. Rearranging
the expression:

LT LW = LT y . (49)

Finally, the least squares solution for the vector of axle weights can be written as:

W =
(
LT L

)–1
LT y . (50)

As discussed along the derivation of the least squares solution, the parameter σε is
not important for the punctual weight estimate. However, this parameter is relevant when
combining both prior and likelihood for generating Bayesian estimates. In this section, σε is
set to 10000, which is equal to the standard deviation of the additive noise directly applied to
the bending moment. In the sequel, two examples are analyzed to highlight the effects of the
likelihood function and serial correlation.

4.5.1.1 Example 1: likelihood function

The previously discussed likelihood function is useful for showing not just the most
probable axle weights but also the assigned probabilities for other sets of axle weights. In the
left hand side of Figure 3, it is presented the likelihood function of the analyzed example
for a sampling rate of 40 Hz. In addition, the least squares solution and the real values of
the axle weights are also shown. As already discussed, the least squares solution is the most
probable point of the likelihood function. This example is interesting since it graphically shows
some problematic aspects in the least squares process. Notice that the probabilities associated
with the likelihood function are highly negatively correlated. As both axles are considerably
close, it is difficult for the likelihood function to distinguish among the real contribution of
each axle. Thus, similar probabilities are assigned to pairs of axle weights whose sum are at
a same level, even that, individually, the value of each axle weight is unrealistic. It explains
the observed negative correlation: an increasing in the weight of one axle must be balanced
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with the decreasing of the weight of the remaining one in order to keep the likelihood function
at the same level. However, regarding the practical point of view, even this simple example
shows that the current likelihood function assigns high probability to some combinations of axle
weights including negative values, higher than the probability of the real values. The tendency
is that for larger vehicles, with more axles, a higher number of spurious combinations may have
high probability and, in some cases, resulting as the most probable ones. It helps to explain
why negative values may be reported for individual axles in a group of closely spaced axles in
B-WIM systems.

The aspects just analyzed do not indicate that the likelihood function has some problem
itself. Otherwise, it makes clear that some prior knowledge is missing from the formulation:
for instance, as it is known that axle weights are non-negative quantities, it is an interesting
approach to include this consideration into the formulation. It can be useful for helping in the
process of choosing among a set of highly probable axle weights those ones that best match
the expected behavior. In this context, the proposed Bayesian approach arises as an effective
alternative to include prior knowledge into the formulation. The right hand side of Figure 3
presents the results when including the prior distribution defined for this example. It shows that
the prior correlation among axle weights is important for the process, since it opposes the trend
presented by the likelihood function in such a way that it concentrates the resulting posterior
in a much more tight range of axle weights. Hence, the application of the prior distribution
decreases the probability of occurrence of spurious results for individual axles. Furthermore, for
this example, the most probable posterior axle weights have a more befitting behavior when
compared with the practical expected values. It results, for this simple example, in better axle
estimates than just employing the least squares approach. Summarizing, by employing a prior
knowledge regarding the most probable combination of axle weights, it is possible to guide the
process to more suitable results.

4.5.1.2 Example 2: serial correlation

The second aspect to be addressed here is the correlation that might occur in time
series data. In the Example 2, this effect is simulated by interpolating the data until the number
of measures is equal to the expected value for a sampling rate of 200 Hz. It is clear that this
process does not generate additional data. Otherwise, it is just an artificial way of increasing
the amount of data. The remaining parameters of the problem are all kept the same, including
the parameters related to the prior and likelihood.

In the left hand side of Figure 4, it is presented the comparison among the likelihood
obtained in the Example 1 and the likelihood of the current example. As this likelihood
function is based on the independence assumption, the model interprets the extra data as
reliable information, assigning to the interpolation points the same importance of the other
points. Then, with more data, the confidence of the model referred to the reported estimates
increases. This is the reason behind the narrowing of the level curves of the likelihood of

Chapter 4. A Bayesian algorithm with second order autoregressive errors for B-WIM weight estimation 98



Figure 3 – Resulting probability distributions and main estimates for the axle weights regarding
the first example
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Example 2 when compared to Example 1. However, it is perceived that the artificial data added
in this example clearly violates the independence assumption and, hence, the level curves of
example 2 mislead the analysis. It is worth to mention that the least squares solution remains
the same as in Example 1, which intuitively is the expected behavior, since no real additional
information is provided to the model.

The right hand side of Figure 4 depicts the posterior distributions for both examples.
Whereas the least squares estimate does not change in the presence of the artificially generated
data, the Bayesian solution is considerably shifted. The extra amount of data increases the
influence of the likelihood function into the final output of the Bayesian approach, shifting the
posterior distribution towards the likelihood. However, this shift is not desirable, since no extra
information is really added to the model. Therefore, Example 2 indicates that the correlation
that may arise from experimental time series data should be properly addressed to avoid the
corruption of the Bayesian process as a whole.

4.5.2 Numerical simulations

Two examples of bridge structures are evaluated. The only distinction between them is
the bridge span length, which is 10 m for the first example and 20 m for the second one. Both
bridges are modeled as simply supported single girder bridges, employing the Euler-Bernoulli
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Figure 4 – Resulting probability distributions and main estimates for the axle weights regarding
the second example.
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beam model. For both bridges, all structural parameters are assumed to be constant in the
structure. Table 2 presents the parameters employed for the simulations for both structures.
The vehicles are modeled as a system of sprung masses where the damping and stiffness of the
suspension of each axle are included into the model. The procedure employed for performing the
numerical simulations is the same as detailed in Carraro et al. (2019). The dataset comprising
all the simulations utilized in this paper is available in Gonçalves (2021).

Table 2 – Bridge parameters

Property Value (Units)
Bridge modulus of elasticity 1010 (Pa)
Bridge damping coefficient 0.05 (–)
Bridge moment of inertia 0.5 (m4)

Bridge mass per unit length 104(kg/m)

In order to provide more robust information for assessing the suitability of the Bayesian
strategy, an in service accuracy check is simulated as defined in the COST 323 specification
(JACOB; O’BRIEN; JEHAES, 2002). Hence, the simulated signals related to calibrating and
testing the system are distinct from each other. It is an attempt to model a situation as close
as possible to a B-WIM system practical operation, since calibration is performed usually with
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a few vehicles. Thus, for calibrating the system, two vehicles, with two and four axles, are
considered and each of them performs 20 runs over the bridge: 4 runs at 13.33 m/s, 12 runs
at 16.67 m/s and 4 runs at 20 m/s.

For testing the system, vehicles with 2 to 9 axles are simulated. A set with 200 randomly
selected vehicle configurations is employed, where both axle weights and spacing are determined
based on a Brazilian vehicles classification (DNIT, 2012). The vehicles are assumed to have
axle weights corresponding to a distinct percentage of the maximum value legally allowed in
such a classification. The value for each axle is independent from each other and is randomly
chosen based on a uniform distribution ranging from 40% to 120%. This scenario represents a
situation where no pattern among axles is present. Thus, it is possible to check the robustness
of the Bayesian strategy regarding the prior belief related to the similarity among axle weights.
Furthermore, some vehicles with axle weights above the maximum limit are intentionally
simulated. Such vehicles are utilized for evaluating the capacity of the methods related to
overweight identification.

The vehicle speed at each testing run is a uniformly distributed random variable bounded
by 10 and 20 m/s, i.e., U(10,20). The vehicles are assumed to travel the bridge at a con-
stant speed on every run, an assumption generally applied in B-WIM systems (GONÇALVES;
CARRARO; LOPEZ, 2021a; LANSDELL; SONG; DIXON, 2017). In addition, aiming to better
represent the real behavior of experimental procedures, each simulated signal is contaminated
by adding a Gaussian random noise with Signal to Noise Ratio (SNR) of 20. Finally, a roughness
profile related to class B (ISO 8606:1995, 1995) is assumed for the whole structure, where
for each run a distinct profile is generated. The sampling rate is 1000 Hz for all simulations.
Figure 5 presents one example of strain signal for each modeled bridge.

Figure 5 – Example of simulated strains for both modeled bridges due to a two-axle vehicle.
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In order to assess the effect of both the prior distribution of axle weights and the second
order autoregressive covariance matrix for the error between model and system response, four
distinct Bayesian strategies are evaluated:
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1. B1: Including prior knowledge, but zero correlation among axle weights and without
any strategy for modeling serial correlation;

2. B2: Including complete prior knowledge and without any strategy for modeling serial
correlation;

3. B3: Including the same prior knowledge as in B1 and the proposed AR(2) model
for the error term;

4. B4: Including the same prior knowledge as in B2 and the proposed AR(2) model for
the error term. It is the strategy that addresses all the modeling aspects discussed
in the present study.

Aiming to provide a more practical comparison criterion, it is also evaluated the perfor-
mance of two algorithms from the current literature. The first one is the least squares solution
(LS) for the axle weights, as previously discussed. It is the simplest way to proceed and works
as a baseline performance. The second one is based on an algorithm already discussed in the
present work, the Regularized approach (O’BRIEN et al., 2009). It is a method developed
focusing specifically on improving the predictions of individual axles, as in the present work.
Thus, it is a natural candidate to be added to the pool of algorithms. However, the application
of the regularization approach relies on the definition of the regularization coefficient, which is
not an easy task (O’BRIEN et al., 2018; ŽNIDARIČ; KALIN; KRESLIN, 2018). Indeed, as in
a previous work (CARRARO et al., 2019), a preliminary implementation of the regularization
approach reported weight predictions quite similar to the LS algorithm, since low regularization
parameters were being estimated. In order to provide a useful threshold performance and miti-
gating the effects of subjectivity on parameter definition, an alternative strategy was adopted.
Instead of simulating a practical scenario, where the parameter is obtained without knowledge
related to the real weights of the vehicle, in the present implementation it is simulated a nearly
optimal performance for the regularization approach. A pre-defined set of candidate parameters,
comprised of 1000 points logarithmically spaced ranging from 10–90 to 105 (the same order
of the bounds employed in the work of O’Brien et al. (2009)), is tested and it is chosen the one
that results in the minimum sum of squared residuals between predicted and real axle weights.
Notice that this strategy does not have any practical relevance, since, obviously, the exact
weights of passing vehicles are not previously known for real B-WIM applications. Then, the
relevance of this strategy is just to represent what could be seen as an excellent performance,
mainly for closely spaced axles. This modified regularization strategy is named here as Reg.

Two criteria are employed for assessing the suitability of the algorithms. The first one
is the COST 323 accuracy classification for weigh-in-motion systems (JACOB; O’BRIEN;
JEHAES, 2002). It is a measure of quality employed by many works in the B-WIM subject
(ŽNIDARIČ; KALIN; KRESLIN, 2018; ŽNIDARIČ, 2017; O’BRIEN; GONZÁLEZ; DOWLING,
2010; RICHARDSON et al., 2014), where B-WIM systems can be assigned to classes ranging
from A(5) to D(25), but that could be extended to E(50). The simulations performed in this
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Figure 6 – Frequency domain representation of all calibration signals before decimation for the
10 m bridge.

Frequency (Hz)
0 20 40 60 80 100

B
en

di
ng

 m
om

en
t (

N
m

)
#10 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Nyquist frequency

study are considered under environmental repeatability (I) and full reproducibility test condition
(R2). The second tool employed is the boxplot of the errors obtained for each vehicle run. In
the boxplots, the red line indicates the median of the data and the central box represents the
25th and 75th percentiles. The whiskers are extended to include all the elements that are not
considered outliers. Such outliers are individually marked by red points. It enables a better
visualization of the behavior of the error obtained by each method, making the comparison
easier. Both accuracy classes and boxplot of errors are reported for gross vehicle weight (GVW),
group of axle, single axle, and axle of a group, based on the definitions stated by the COST
323 specification (JACOB; O’BRIEN; JEHAES, 2002).

4.5.2.1 10 m span bridge

Figure 6 depicts the frequency domain representation of all calibration signals grouped
together. It can be noticed that the most important frequencies are concentrated around 15
Hz. Then, a decimation factor of 10 is utilized, resulting in an effective sampling frequency of
100 Hz. The 50 Hz threshold also presented in the figure represents the Nyquist frequency for
the decimated signals.

Table 3 and Figure 7 present, respectively, the accuracy classes and boxplot of errors
for the analyzed algorithms. It is opted to include the number of events with negative axle
predictions in the table since eliminating such spurious estimates is one of the main goals of
the present work. In addition, it is called class F the algorithm that could not reach the class
E(50). For all methods, it is observed that the errors are small for GVW and axle group, and
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they consistently increase for single axle and axle of a group. Regarding the Bayesian methods,
a tendency of increasing the accuracy when moving from B1 to B4 is observed in this example,
mainly for single axle and axle of a group. It also happens with the number of negative axles
reported, which moves from 3 to 0. This trend indicates that both the inclusion of a prior
distribution of axle weights and the utilization of the AR(2) covariance matrix for modeling
the serial correlation are important for a proper weigh procedure. When compared to LS, it is
noticed that B4, the Bayesian algorithm with best performance, improves results for group of
axles, single axle and axle of a group quantities without affecting the GVW estimates. When
compared to the Reg version with nearly optimal regularization parameters, it is noticed that
B4 strategy reaches similar performance. For almost all quantities the accuracy classes are
the same. The only exception is axle of a group, where Reg presents a better classification.
Then, even for an unlike scenario where all regularization parameters are chosen as the best
possible, the Bayesian strategy B4 performance is equivalent to the one of the Reg algorithm,
and clearly outperforms LS.

Table 3 – Accuracy classes and number of negative axle events for the algorithms analyzed for
simulated vehicles in the 10 m bridge.

LS Reg B1 B2 B3 B4
GVW A(5) A(5) A(5) A(5) A(5) A(5)

Axle group B+(7) A(5) B+(7) B+(7) B+(7) A(5)
Single axle C(15) B(10) C(15) C(15) B(10) B(10)

Axle of a group E(40) C(15) E(40) E(35) E(30) D(25)
Negative axle events 3 0 3 3 0 0

It is interesting to recall that this dataset was created including some vehicles with axle
weights above the legal limits. Therefore, these limits are utilized for overweight definition and
the performance of the algorithms for correctly classifying every axle with regard to respecting
or not the limits is evaluated. Table 4 depicts the results for LS, Reg and B4 algorithms. It is
noticed that all methods, in general, show similar performance, where mostly of predictions
are correct. Just a minor difference is perceived for false positive percentage referred to LS,
which is slightly higher.

As the definition of the prior distribution is somewhat subjective, it is also employed an
informal sensitivity analysis, where the magnitude of changes in the output due to variations in

Table 4 – Results for the classification of every vehicle axle as overweight or not for LS, Reg
and B4 algorithms. A total of 220 overweight axles and 633 not overweight are
present in this dataset.

LS Reg B4
True overweight 184 177 169

True not overweight 591 620 609
False overweight 42 13 24

False not overweight 36 43 51
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Figure 7 – Boxplots for the errors of each analyzed quantity of interest for simulated vehicles
and the 10 m bridge.
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the input parameters is evaluated. It is a simplified procedure, with some limitations. However,
it is an important tool for robustness assessment, far better than ignoring it (INSUA; RUGGERI,
2000). The main goal of such analyses is to show that the change in reported results due to
deviations in the prior parameters is not significant. It is useful to indicate that the results of
the Bayesian method are not attributed just to the application of a clever set of parameters,
which is an indicator of the robustness of the proposed strategy.

For assessing such a robustness, the accuracy reported by a set of variants of the best
method in the previous analyses, the B4 algorithm, is evaluated. The variants are defined
by changing some parameters of the prior distribution, following the same prior information
discussed in subsection 4.4.4. As the definition of such parameters is subjective, many distinct
priors can be developed from the same prior information. The values are chosen in order to
represent distinct practical scenarios, always respecting what seems reasonable from the initial
information. In Table 5, it is presented the parameters employed in this analysis. Aiming to
better illustrate the employed distributions, Figure 8 depicts the marginal prior distributions
for the weights of each axle. The algorithms are named according to Table 5. Three options of
variance are defined, based on keeping 0.5, 1 or 2 standard deviations from the mean to both
reference values (2 and 10 tons). On the other hand, two distinct mean values are defined,
calculated by modifying the lower reference from 2 to 0 tons. It is worth to remark that the
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prior marginal distributions from B5 and B6 are the same of B1 to B4 since what is modified
among them is just the correlation among axle weights, which is not represented in the picture.
The main goal is to show that even considering highly distinct prior distributions, the results
are kept at a similar level.

Table 5 – Parameters employed on the sensitivity analysis regarding the B4 approach

B5 B6 B7 B8 B9 B10
μ(1)

W (kN) 4g 4g 4g 4g 3g 5g
μ(2 to J)

W (kN) 6g 6g 6g 6g 5g 7g
ρ(Not same group)

W 0.70 0.00 0.50 0.50 0.50 0.50
ρ(Same group)

W 0.95 0.75 0.90 0.90 0.90 0.90
σ(1)

W (kN) 2g 2g 4g 1g 2g 2g
σ(2 to J)

W (kN) 4g 4g 8g 2g 4g 4g

Figure 8 – Comparison of the marginal prior distributions for the weight of each axle related
to each algorithm evaluated. LR and UR stands for the lower and upper references
defined in subsection 4.4.4, respectively, whereas ZR indicates the axis corresponding
to zero ton.
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Table 6 and Figure 9 depict both accuracy classes, with the number of negative axle
events, and boxplot of errors for all variants of the B4 approach as well as the LS algorithm.
In general, the difference among all variants of the Bayesian approach are quite small. Indeed,
the accuracy classes for almost all methods and quantities reproduced the same results as for
B4 algorithm. In addition, the accuracy classes of the Bayesian methods were always better
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or equal to the ones reported by LS. The most significant improvements occur for the axle of
a group quantity. Moreover, it is clear that the proposed strategy was able to avoid negative
axle predictions since it did not occur for any event or algorithm. Thus, it could be concluded
that the results of the Bayesian strategy are robust to the prior parameters for this example.

Table 6 – Accuracy classes and number of negative axle events for the sensitivity analysis for
simulated vehicles and the 10 m bridge.

LS B4 B5 B6 B7 B8 B9 B10
GVW A(5) A(5) A(5) A(5) A(5) A(5) A(5) A(5)

Axle group B+(7) A(5) A(5) B+(7) B+(7) A(5) A(5) A(5)
Single axle C(15) B(10) C(15) B(10) B(10) C(15) B(10) C(15)

Axle of a group E(40) D(25) D(25) D(25) D(25) E(30) D(25) D(25)
Negative axle events 3 0 0 0 0 0 0 0

Figure 9 – Boxplots for the errors of each analyzed quantity of interest for simulated vehicles
and the 10 meter bridge.
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4.5.2.2 20 m span bridge

For this second example a distinct decimation factor is applied. The reason is that the
most important range of frequencies is significantly lower for this example when compared to
the previous one. The frequency domain representation of all calibration signals is presented in
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Figure 10 – Frequency domain representation of all calibration signals before decimation for
the 20 m bridge.
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Figure 10, in which it is perceived that the frequency content is limited to about 5 Hz. Thus,
the decimation factor of 25 is adopted, resulting in an effective sampling frequency of 40 Hz.

Table 7 and Figure 11 depict the accuracy classes, including the number of negative
axle events, and the boxplot of errors for the analyzed algorithms, respectively. The first
issue that is clearly noticed for this example is that results for all methods and quantities are
significantly deteriorated when compared to the first example. The reduction in accuracy for
B-WIM algorithms for longer bridges is already well known in literature as reported, for instance,
in Gonçalves, Carraro, and Lopez (2021a). Moreover, longer bridges increase the difficult to
distinguish among the individual contribution of closely spaced axles. Therefore, worse results
in this example were already expected. For all methods, it is observed a high contrast among
results for GVW and the other quantities of interest. Whereas the errors are kept small for
GVW, they increase by a high amount for the remaining quantities. When comparing the
results of each method, the conclusions are the same as for the first example. Some of then
are even more evident. Regarding the Bayesian methods, an even more pronounced tendency
of increasing the accuracy when moving from B1 to B4 is observed in this example, mainly
for single axle, axle of a group and the number of negative axles reported. In this example,
however, a high performance jump from B2 to B3 is noticed. It indicates that for this longer
bridge example the impact of modeling the error correlation is even more significant. This
result is in accordance with the last example and shows that both the prior distribution and
the error term assumptions are suitable for this application. More importantly, it also indicates
that the AR(2) model for the error term is of paramount importance to enable that the prior
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knowledge be effectively utilized in the Bayesian context.
It can be seen that B4 outperforms LS by a even larger margin than for the shorter

bridge of the previous example. Such a margin includes many accuracy classes of distance from
B4 to LS for Axle group, Single axle and Axle of a group together with the elimination of
negative axle events. When comparing B4 to the Reg version with nearly optimal regularization
parameters, it is noticed that B4 outperforms the latter for GVW and axle group, although it has
a slightly worse performance for Single axle. It is an interesting aspect, since it shows that even
in the case where the best regularization parameter is calculated from previously knowing the
vehicle weight, B4 shows a better overall performance than Reg. As the regularization approach
can be seen as a simplified version of the Bayesian strategy, as discussed in Section 4.3.1, even
the optimal regularization parameters may not be enough to outperform the more complete
B4 strategy. Then, for this more challenging dataset, the B4 method clearly outperforms LS.
Regarding Reg algorithm, even for an unlikely scenario where all regularization parameters are
chosen based on the real vehicle weights, the B4 strategy presents a better performance in the
whole picture.

Table 7 – Accuracy classes and number of negative axle events for the algorithms analyzed for
simulated vehicles and the 20 m bridge.

LS Reg B1 B2 B3 B4
GVW A(5) B(10) A(5) A(5) A(5) A(5)

Axle group F C(15) F F C(15) B(10)
Single axle F D+(20) F F E(40) D(25)

Axle of a group F E(35) F F F E(35)
Negative axle events 73 0 73 70 4 0

Similarly to the previous example, it is also evaluated the performance of the algorithms
for overweight classification, and the results are in Table 8. In this case, it is clearly noticed
that the overweight classification of the LS method is not reliable since it reported almost
200 false positives. The results for Reg and B4 are also worse when compared to the shorter
bridge example, mainly for properly identifying overweight axles. The false positives, however,
still are kept at a low level for both. It is interesting to notice that the maximum overweight
allowed for all axles is 20%, and both B4 and Reg are able to properly identify overweight
axles for roughly 50% of the cases. Such results are particularly interesting to show that the
prior distribution employed for B4, with mean values significantly below the overweight limit,
does not prevent the prediction of weights above such limits.

Table 9 and Figure 12 shows accuracy classes, with the number of negative axle events,
and boxplot of errors for all variants of the B4 approach, as well as the LS algorithm. In this
example, the difference among all variants of the Bayesian approach are quite small when
compared to the results of the LS approach. For Group of axle, single axle and axle of a
group all Bayesian variants largely outperforms LS. Furthermore, negative axles are avoided
for all events and for all Bayesian methods, which is in contrast with the 73 events where such
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Figure 11 – Boxplots for the errors of each analyzed quantity of interest for simulated vehicles
and the 20 m bridge.
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Table 8 – Results for the classification of every vehicle axle as overweight or not for LS, Reg
and B4 algorithms. A total of 220 overweight axles and 633 not overweight are
present in this dataset.

LS Reg B4
True overweight 127 108 103

True not overweight 434 623 606
False overweight 199 10 27

False not overweight 93 112 117

a spurious prediction occurred for the LS method. Thus, the results are robust to the prior
parameters for this more complex example.

Table 9 – Accuracy classes and number of negative axle events for the sensitivity analysis for
simulated vehicles and the 20 m bridge.

LS B4 B5 B6 B7 B8 B9 B10
GVW A(5) A(5) A(5) A(5) A(5) A(5) A(5) A(5)

Axle group F B(10) B(10) B(10) C(15) C(15) B(10) B(10)
Single axle F D(25) D(25) E(30) E(35) E(30) D(25) E(30)

Axle of a group F E(35) E(35) E(40) E(45) E(35) E(40) E(35)
Negative axle events 73 0 0 0 0 0 0 0
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Figure 12 – Boxplots for the errors of each analyzed quantity of interest for simulated vehicles
and the 20 m bridge.
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4.5.3 Real-world B-WIM system calibration data

The data collected during the calibration procedure for the Itinguijada bridge is employed
as an example of real-world B-WIM application. The Itinguijada bridge is located at the km
147 of the BR 153, state of Goiás, Brazil. This structure has a total of 29 meters, with two
girders and five cross beams. Each girder of the structure was monitored by two strain sensors
attached at its bottom, longitudinally positioned at the mid-span. Figure 13 depicts the bridge
structure and the placement of strain sensors. One pair of free-of-axle detectors (FAD) sensors
was installed at the bridge slab underneath each traffic lane, from a total of 2 lanes. One
sensor was attached at the mid-span of the bridge and the other was positioned 4 meters
longitudinally from it. The sampling rate of the system is 512 Hz.

Two trucks were employed in the calibration procedure, where axle spacing and weight
distribution are presented in Table 10. The dataset is comprised of 49 strains and FAD signals,
29 for the three-axle vehicle and 20 for the five-axle one. In this regard, at least 10 runs are
referred to each possible combination of vehicle and lane. For each run, a distinct velocity
was employed. The value of each vehicle speed was obtained by the FAD sensors located
underneath the bridge slab. The dataset is divided according to the lane where the vehicle
traveled and one influence line is calculated for each lane. The results for runs related to both
lanes are combined in order to provide an overall picture regarding the system accuracy.
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Table 10 – Axle weights and spacing for the calibration vehicles

Axle weight (ton)
Axle 1 Axle 2 Axle 3 Axle 4 Axle 5

Three-axle vehicle 6.900 14.900 12.900 - -
Five-axle vehicle 7.500 14.100 13.300 11.100 9.200

Axle position (m)
Axle 1 Axle 2 Axle 3 Axle 4 Axle 5

Three-axle vehicle 0 4.78 6.07 - -
Five-axle vehicle 0 3.57 9.16 10.43 11.66

As only the calibration runs data are available, the accuracy classes are calculated
considering an initial verification case as defined in the COST 323 specification (JACOB;
O’BRIEN; JEHAES, 2002). In addition, the number of vehicles is limited, hence, an extended
repeatability condition (r2) is adopted. The same general procedure utilized in Section 4.5.2 is
employed for this example. Thus, it is important to remark that, according to Table 10, both
vehicles are considerably heavier than what was assumed by the adopted prior distributions. It
is, again, an interesting analysis to check the suitability of the results of the proposed Bayesian
approach when the prior belief is not so accurate.

Figure 14 presents the frequency domain representation of all signals prior to decimation,
where it could be perceived that the maximum significant frequency content is around 8 Hz.
Although a decimation factor equal to 8 could be enough to ensure that the effective sampling
frequency stays below 10 times the maximum frequency, it is adopted here a decimation factor
of 16. It is done to avoid that the sum of model coefficients for the autoregressive process be
close to 1, as previously discussed in Section 4.4.3. It results in an effective sampling rate of
32 Hz and a Nyquist frequency of 16 Hz.

The accuracy classes obtained by each method, as well as the number of negative axle
events are presented in Table 11, while the boxplots of the errors are depicted in Figure 15. A

Figure 13 – Example of strain sensors placement and bridge lateral view.

(a) Lateral view of the bridge (b) Strain sensors
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Figure 14 – Frequency domain representation of all real data signals before decimation.
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first point to remark is that the errors for quantities other than GVW are lower when compared
to the analysis of Section 4.5.2.2, even considering that it is a real engineering application,
subject to many complexities beyond those modeled in the numerical simulation. Two main
issues explain this fact. First, the same dataset is employed for both calibrating the influence
lines and testing the algorithms’ performance. By this way, the influence lines are able to better
predict the response generated by the vehicles in the present case. Second, the number of
vehicles is limited in this case, which implies a more homogeneous dataset and, hence, less
susceptible to produce outliers.

When analyzing the performance of each method, conclusions similar to the ones of the
previous section may be drawn. When compared to LS, B1 and B2 provide some improvements,
however the absence of the AR(2) model for the error term seems to excessively limit them.
The number of negative axle events is also reduced from 4 in the LS algorithm to 0 for B3 and
B4. At the end, B4 appears again as the algorithm with the best performance when observing
the overall picture, performing better or equal to LS for all quantities of interest. It indicates
that all issues addressed in the present study are important to obtain better weight predictions,
mainly the utilization of the AR(2) model for the error term. When compared to the version of
the Reg algorithm with nearly optimal regularization parameters, B4 presents better or equal
accuracy classes for almost all quantities of interest. The only exception is for axle of a group
quantity, where the analyzed configuration of Reg algorithm shows a better performance. Thus,
the inclusion of some prior knowledge together with the AR(2) model for the error term is able
to outperform the solutions of Reg method for axle group and GVW. Such results are even
more significant when it is noticed that the vehicles employed in this example are considerably
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heavier than the mean values informed to the prior distribution and, even in this case, results
of the B4 approach are very promising.

Table 11 – Accuracy classes and number of negative axle events for the algorithms analyzed
for the real B-WIM system example.

LS Reg B1 B2 B3 B4
GVW C(15) C(15) C(15) C(15) C(15) B(10)

Axle group C(15) C(15) C(15) C(15) C(15) C(15)
Single axle E(45) D(25) E(45) E(40) D(25) C(15)

Axle of a group F D(25) F F F E(35)
Negative axle events 3 0 3 1 0 0

Figure 15 – Boxplots for the errors related to each analyzed quantity of interest for the real
B-WIM system example.

Method
LS Reg B1 B2 B3 B4

E
rr

or
 (

%
)

-5

0

5

GVW

Method
LS Reg B1 B2 B3 B4

E
rr

or
 (

%
)

-10

-5

0

5

10
Group of axles

Method
LS Reg B1 B2 B3 B4

E
rr

or
 (

%
)

-20

0

20

40

60
Single axle

Method
LS Reg B1 B2 B3 B4

E
rr

or
 (

%
)

-200

-100

0

100

Axle of a group

In order to make the conclusions more robust, sensitivity analyses are also conducted
for this example, considering the same variants of the B4 algorithm applied in subsection 4.5.2.
Table 12 and Figure 16 present both the table with the accuracy classes, including also the
number of negative axle events, and the boxplot of the errors for all variants of the B4 strategy,
respectively. The results for GVW and Group of axles show low variations among the seven
evaluated configurations. For Single axle and Axle of a group, the difference is slightly higher,
however all Bayesian algorithms still provide a performance far better than the LS for such
quantities. When evaluating the number of negative axle events, it is noticed its occurrence
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in 3 of 49 events in the LS algorithm. Again, all Bayesian variants avoided such a spurious
estimate. In general, all variants of the B4 method outperform the LS method in all quantities
of interest, mainly when the weight of the axles are individually evaluated. Such results indicate
that the Bayesian algorithm defined by strategy B4 is robust to its model parameters even for
a real-world B-WIM system example, whose vehicle properties do not fit precisely to the prior
beliefs.

Table 12 – Accuracy classes and number of negative axle events for the sensitivity analysis for
the real B-WIM system example.

LS B4 B5 B6 B7 B8 B9 B10
GVW C(15) B(10) B(10) B(10) B(10) C(15) B(10) B(10)

Axle group C(15) C(15) B(10) C(15) C(15) B(10) C(15) C(15)
Single axle E(45) C(15) C(15) D(25) E(30) C(15) D+(20) D+(20)

Axle of a group F E(35) E(30) E(40) E(50) E(30) E(35) E(35)
Negative axle events 3 0 0 0 0 0 0 0

Figure 16 – Boxplots for the errors related to each analyzed quantity of interest for the real
B-WIM system example.
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The previous analyses in this example were based on the same dataset for both calibrat-
ing the system and testing the performance of the methods. It happened due to the limited
amount of information that was collected during the calibration procedure of the B-WIM sys-
tem. However, as two vehicles were employed in this procedure, some out-of-sample analyses
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are possible to be conducted. Therefore, it is performed two cross-validation analyses, where
one type of vehicle is employed to calculate the model parameters, while the remaining one is
utilized to assess the model accuracy. For sake of space just the results of the accuracy classes
and the boxplot of GVW for LS, Reg and B4 are presented, considering both situations. For
both scenarios, a full repeatability condition (r1) is assumed, since just one vehicle and load is
being employed. In addition, as calibration and test vehicles are distinct, an in service accuracy
check is assumed. For the next analysis, cases 1 and 2 refer to testing the system with the
three- and the five-axle vehicles, respectively.

The boxplots in Figure 17 show that all methods are biased for both scenarios, where
the first case estimates heavier weights than the true values, while the opposite occurs for the
second case. In order to allow an out-of-sample analysis, the dataset utilized for calibration
purposes did not reach the quantities of vehicles recommended by the COST 323 specification
(JACOB; O’BRIEN; JEHAES, 2002). Then, it is expected that results be negatively affected.
When comparing the accuracy classes of LS, Reg and B4 methods, in Table 13, the overall
results for this cross validation analysis are also favorable to B4. The performance of B4 is
better or equal to LS for all quantities and scenarios. When compared to Reg, the solution of
B4 algorithm is better or equal for almost all quantities of interest and scenarios. The only
exception is for axle of a group. Moreover, both algorithms completely prevent the occurrence
of negative axle weight predictions. Thus, even in this complex situation, with few calibration
runs and for out-of-sample predictions, the B4 algorithm is able to provide better overall results
when compared to Reg and LS.

Table 13 – Accuracy classes and number of negative axle events for the algorithms analyzed
for the real B-WIM system example considering out-of-sample predictions.

Case 1 Case 2
LS Reg B4 LS Reg B4

GVW C(15) C(15) B+(7) C(15) C(15) C(15)
Axle group C(15) B(10) B+(7) D+(20) D+(20) D+(20)
Single axle E(45) E(30) D(25) E(40) E(30) C(15)

Axle of a group F C(15) D(25) F D(25) E(40)
Negative axle events 0 0 0 3 0 0

4.6 FURTHER REMARKS

Considering the numerically simulated signals and the real B-WIM system calibration,
the Bayesian approach proposed in the present study clearly outperformed LS. When compared
to the version of Reg algorithm with nearly optimal regularization parameters, the overall
results are also favorable to the proposed Bayesian strategy. Sensitivity analyses showed that
the obtained results were robust to variations in model parameter values. The aspects discussed
confirm that the proposed approach is robust to its model parameters and able to reach its

Chapter 4. A Bayesian algorithm with second order autoregressive errors for B-WIM weight estimation 116



Figure 17 – Boxplots for the GVW errors related to each cross validation case for the real
B-WIM system example.
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goal of improving the weight estimate for individual axles without corrupting the predictions
for GVW.

A relevant aspect to further comment is related to the prior distribution. As already
discussed, a common criticism to Bayesian models is related to the subjectivity of the selection
of prior distributions. This subjectivity is not disregarded in the present study. Conversely, it is
clearly recognized in the process of selection for the prior parameters. However, the axle weights
of heavy vehicles are quantities for which good initial guesses are available. In this context,
the negative effects of the subjectivity of prior definition are mitigated: as a not so wide range
of values is suitable for practical purposes, the differences for distinct selections are not so
high. The sensitivity analyses are performed for effectively checking this statement. As the
results are robust to variations of such parameters, the present work shows that the inclusion
of prior knowledge in the proposed Bayesian approach is a suitable action even recognizing the
subjectivity related to the selection of the prior distribution.

The examples also indicated that the proposed strategy is robust regarding violations
in its own prior assumptions. Even considering numerical simulations where axle weights
were independent and allowing weights significantly above the mean of the prior distribution,
the errors were kept at a level clearly below what was obtained by LS and, in the overall
picture, better than the Reg algorithm with nearly optimal parameters. The real B-WIM system
calibration data also employed vehicles whose weight of axles were considerably above the prior
belief. In this case, the results of the Bayesian approach were even better, since accuracy classes
of this strategy were equal or outperformed LS and Reg for almost all quantities of interest.
The only exception was the axle of a group quantity for the Reg algorithm. It is important
to remark that no negative axle event was reported for any example and variant of the B4
algorithm, even that negative weights constraints were not rigorously enforced. Indeed, the
combination of correlation among axle weights and the employed marginal prior distributions
were sufficient to avoid negative values. One possible reason is that negative axles arise usually
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for closely spaced axles, where it is difficult to quantify the contribution of each of them for
the bridge response. In this context, many combinations of axle weights present similar fitting
to the data and even a weak bias toward positive ones may suffice to avoid spurious values.
Then, the present strategy provides information enough to avoid negative weight predictions
without corrupting estimates for heavy vehicles. Such results are quite encouraging, since they
increase the confidence of the users into the suitability of the weight predictions for real traffic
applications, where vehicle properties may differ from what is previously expected. In addition,
the overall system accuracy class obtained, related to the worse class among all evaluated
quantities of interest, significantly improved. It changed from a system with a class worse than
E(50) for LS to a E(35) system. If the axle in a group quantity is disregarded, which is usual for
B-WIM systems, the new overall system accuracy class is C(15). It means that, by employing
the proposed Bayesian approach, even the single axle estimates can achieve an accuracy level
similar to the GVW. This achievement is far to be reached by LS. It is an important practical
consequence of the improvements allowed by the Bayesian strategy, which extends the range
of proper applications by just modifying some computational implementation.

The comparison with the Reg method demands a special discussion. The first attempt
was to provide a comparison with a practical version of the Reg algorithm, whose performance
would be reproduced in real applications. However, the results initially obtained were quite
similar to the LS method due to low values for the regularization parameters reported by
the implemented strategy for automatically selecting it. It is important to remark that the
difficult in selecting proper regularization parameters is recognized in literature (ŽNIDARIČ;
KALIN; KRESLIN, 2018; O’BRIEN et al., 2018; CARRARO et al., 2019) and the performance
of the regularization approach relies on such a parameter. As such an additional result would
not improve the comparisons, an alternative point of view was utilized. Instead of trying a
practical implementation of the method, whose results would be subjective, it was implemented
a version of the method that avoids the subjectivity in the selection of such a parameter. It
was reached by selecting the best parameter possible for each event. In this regard, the sum
of squared residuals between predicted and true axle weights was utilized as the optimality
criterion. It was possible in this study since all true vehicle weights are known, which is not
the practical case evidently. Moreover, the nearly optimal term was employed since a finite
set of regularization parameters was applied, even that a thinner grid had been evaluated and
no improvement in the results was noticed. Hence, the cost for removing the subjectivity on
the definition of the regularization parameter was to eliminate the practical relevance of the
reported results since they are not reproducible in real field tests. At the end, as it is known
that the Reg method is able to improve results mainly for closely spaced axles, the results
from the adopted approach work as a threshold for a excellent performance level. And, even
in this unbalanced comparison, the B4 strategy presented a better overall performance. Thus,
when taking into account also the practical issues, conclusions are clearly favorable to B4,
the algorithm including both proposed prior distribution and second order autoregressive error
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model.
The serial correlation issue is another aspect that deserves a particular discussion. The

serial correlation could be reduced by including more modeling issues, such as the dynamic
behavior of the structure. However, due to the high sampling frequency, some correlation among
sequential measurements hardly would be completely avoided. Thus, in the present work, it
was adopted a model to represent such a correlation based on a second order autoregressive
process. In order to improve its performance, the signals were first decimated. This step is
important since it reduces the order of the autoregressive model necessary to represent the
correlation. Hence, as previously discussed, it may avoid some undesired model parameters,
such as non-stationary AR models. The results, mainly when increasing the bridge span length,
indicated that modeling such a correlation has a fundamental importance to allow that the prior
information be effectively utilized in the problem. The reason is that the likelihood function is
excessively weighed by the false independence assumption, which, in turn, results in ignoring
the prior distribution for the Bayesian prediction. It is noticed by the minor differences between
B1 and LS algorithms, in contrast with the large improvements presented by B4. Despite the
proposed error model, the overall procedure still keeps what is one of the most important aspect
of the present strategy: the correspondence with the practical experience. The parameters in
this proposed Bayesian model are not just numbers, but are linked to physical quantities whose
estimates are available. Thus, one could provide good guesses for such parameters without
the necessity of performing further steps. It is in contrast, for instance, with the definition
of the regularization parameter for the Reg algorithm. In this case, the parameter value can
assume virtually any positive number and additional procedures are necessary for finding a
good parameter value. Summarizing, the proposed Bayesian strategy is not developed just
aiming to improve weight estimates, it also attempts to be well suited for practical applications.
For this, the model parameters are defined to keep a clear correspondence with quantities that
are usual for who operates a B-WIM system.

Despite the promising results presented in this work, some issues still could be improved:
• the prior distribution was defined using information of just a few vehicles, since no

database of axle weights was available. Therefore, one could compile information
from an existing database and apply the obtained estimates of the mean (μW ) and
covariance matrix (ΣW ) for the axle weights into the proposed Bayesian approach;

• the influence line employed works as a proof of concept for the Bayesian strategy,
since the focus of the study was not on the method to obtain this curve. As
bridge influence line extraction is an active research subject, utilizing influence lines
calculated by other methods may present even better results;

• in the present work, just point estimates for axle weights were considered. However,
the full posterior probability density function can be useful for further applications.
For instance, one could calculate the probability of overloading of a given truck;
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• the proposed model accounts for correlation among error terms, however other
aspects still could be included in order to obtain even better results. For instance,
one could check if relaxing the hypothesis of homoscedasticity could improve the
predictions.

4.7 CONCLUSION

The present study proposed a Bayesian approach for performing the weight estimation
for B-WIM systems aiming to improve the prediction for individual axle weights. It employed
previous knowledge regarding the expected values of axle weights, such as the correlation among
them, for avoiding spurious solutions that may arise when applying the least squares method.
In addition, a second order autoregressive process for modeling the error term correlation was
proposed.

The results for both numerically simulated signals and an example of real-world B-WIM
system calibration indicated that the proposed approach was able to considerably improve
the prediction of individual axle weights without loosing precision in the GVW estimates. In
addition, sensitivity analyses showed that results were robust regarding variation of the model
parameters. The presented results indicated that the proposed Bayesian approach is a feasible
option for practical applications regarding B-WIM systems, mainly for improving individual
axle weight estimates.
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5 MODEL UPDATING USING HIERARCHICAL BAYESIAN STRATEGY EM-
PLOYING B-WIM CALIBRATION DATA

ABSTRACT

Bridge weigh-in-motion (B-WIM) systems are employed for monitoring traffic weights, providing
useful information for management decisions. Many applications were proposed based on the
information collected, such as calculation of influence lines and damage detection. In this work,
an additional application is addressed, to perform model updating of structural parameters from
information collected during the calibration of B-WIM systems. The goal of model updating
techniques is to adjust the model parameters in order to achieve better agreement between
predicted and experimental responses. Therefore, the resulting updated model is able to provide
valuable information for decision makers. For many civil engineering applications, the updated
parameters may have an inherent variability during the execution of the experimental procedure,
since some external effects, such as environmental conditions, may change considerably along
the process. To account for this inherent variability properly, a hierarchical Bayesian strategy
is adopted. Results for both numerically simulated signals and a real engineering calibration
procedure indicate that the proposed hierarchical Bayesian model updating approach is able
to perform suitable estimates.
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LIST OF SYMBOLS (CHAPTER 5)

mg measured bending moment response vector of the g-th girder
Z section modulus of bridge girders
E elastic modulus of bridge girders
ug measured strain vector of the g-th girder
M measured bending moment response vector
G total number of girders
M̂ theoretical bending moment response vector
J vehicle number of axles
Wj weight of the j-th axle
l influence line ordinate
dj distance between first and j-th axle
Cj number of scans between first and j-th axle
f sampling frequency
v vehicle speed
y monitored quantity vector
ŷ theoretical response vector
ε error between theoretical model and experimental results
θ vector of quantities of interest for all calibration runs
N number of runs
μθ mean of logarithmic values of the distribution of θ
σθ standard deviation of logarithmic values of the distribution of θ
Y set comprising all measurements
σ2ε variance of the Gaussian additive error
K total number of scans
θ̂ mode of the full conditional distribution of θ
αθ shape parameter of the inverse gamma distribution employed as prior for σ2θ
αε shape parameter of the inverse gamma distribution employed as prior for σ2ε
βθ scale parameter of the inverse gamma distribution employed as prior for σ2θ
βε scale parameter of the inverse gamma distribution employed as prior for σ2ε
μ∗θ mean of the posterior distribution of θ
σ∗θ standard deviation of the posterior distribution of θ
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5.1 INTRODUCTION

Bridges are essential elements for allowing the proper operation of transportation
systems around the world. A high number of these structures were built decades ago, for traffic
conditions remarkably different from those presented nowadays. Over all their life time, bridges
remain under the direct effects of environmental conditions. Therefore, the increasing traffic
loads, aging infrastructure, and adverse environmental conditions have led many bridges to
present a considerable deterioration (LYDON et al., 2016). Moreover, old structures might also
present an additional challenge regarding lack of information, such as design drawings (KHAN
et al., 2022). Even the bridge’s exact age might not be precisely known in some cases, as is
commonly noticed for Brazilian bridges (LIMA E OLIVEIRA; GRECO; BITTENCOURT, 2019).
Such aspects, together with the presence of high uncertainties related to the deterioration
of materials, such as reinforced concrete, indicate the need of monitoring of some structures
(HEITNER et al., 2020). In this context, structural health monitoring (SHM) procedures have
been employed (ŽNIDARIČ; KALIN, 2020). SHM involves collecting information related to the
response of a structure from specific sensors with the goal of providing objective information
for decision-making regarding its safety and serviceability (CATBAS et al., 2012).

Bridge weigh-in-motion (B-WIM) systems are able to provide useful information for
SHM purposes (YU; CAI, C. S.; DENG, 2016). B-WIM systems are based on the ideas of Moses
(1979); they utilize strains measured at the bottom of the structure and the concept of influence
lines to estimate the weight of vehicles traveling over the bridge. Among the advantages of
B-WIM systems, one could cite the low costs for installation and maintenance, the acquisition
of unbiased data and the possibility of not affecting the usual traffic flow (LYDON et al.,
2016; FRØSETH et al., 2017; YU; CAI, C.; DENG, 2018). Data provided by B-WIM systems
can be employed, for instance, for the selection of overloaded vehicles, development of traffic
load models, traffic analyses, and bridge design or assessment (MANDIĆ IVANKOVIĆ et al.,
2019). Furthermore, the measured strains could be utilized to evaluate some important bridge
performance indicators, such as influence lines and loading distribution factors (ŽNIDARIČ;
KALIN, 2020). Recently, some works also addressed the utilization of B-WIM systems for
damage detection (CANTERO; GONZÁLEZ, 2015; CANTERO; KAROUMI; GONZÁLEZ,
2015; O’BRIEN et al., 2021). Currently applied B-WIM systems perform a calibration step,
where strains resulting from the passage of trucks with known properties are monitored. Then,
experimental influence lines are calculated to better predict the bridge behavior due to moving
loads. It is noticed that, as a number of vehicles are recommended for this procedure (JACOB;
O’BRIEN; JEHAES, 2002), a considerable amount of data is usually generated during the
calibration process.

This work intends to address an additional application for B-WIM systems. It is pro-
posed to perform model updating of bridge structural parameters based on the information
collected during the calibration procedure. Model updating is a technique that aims to adjust
the parameters of a given model in order to match the predicted response with the experimental
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system behavior. The updated structural model is able to provide valuable information for help-
ing in management decisions (SCHLUNE; PLOS; GYLLTOFT, 2009). For instance, one could
employ the updated model to estimate a better lifetime reliability for the structure (OKASHA;
FRANGOPOL; ORCESI, 2012), improve the remaining bridge strength prediction (MA et al.,
2014), check whether corrective interventions are working as expected (BROWNJOHN et al.,
2003), and perform nondestructive damage assessment (SIMOEN; DE ROECK; LOMBAERT,
2015).

Many different strategies are available for performing model updating. Authors working
in structural engineering have given special attention to Bayesian model updating approaches
(MA et al., 2014). The main idea of Bayesian methods is that new measurements can modify
prior beliefs related to some phenomenon, resulting in a posterior belief (PRESS, 2002). In this
context, a parameter is assumed to be an unknown fixed value and the uncertainty related to
its value is reduced when increasing the quantity of data. Therefore, as no inherent variability is
assumed, the classical Bayesian modeling might underestimate the total uncertainties (SEDEHI;
PAPADIMITRIOU; KATAFYGIOTIS, 2019), assuming that the uncertainty vanishes for the
hypothetical scenario of an infinity dataset. This issue might not be suitable for civil engineering
structures, where some structural parameters have an inherent variability regarding different
sources of uncertainty (BEHMANESH et al., 2015). In this case, many external factors, such as
wind speed and ambient temperature, can modify the value of the updated parameter during
different realizations of the experiment. Furthermore, many simplifications and idealizations
are often needed to model such structures, introducing more uncertainties to the model.

Owing to the drawbacks discussed for the classical Bayesian strategy, a hierarchical
Bayesian approach is adopted in this work. The hierarchical framework differs from the classical
Bayesian strategies mainly by the inclusion of an extra layer of variables between the prior
information and measured data. Therefore, the parameters that define probability distributions
of both the error term and the quantity of interest can be updated based on the collected
experimental data (BEHMANESH; MOAVENI, 2016), allowing better estimation of the total
uncertainty of updating parameters. Although this is a relatively new approach in the structural
engineering field (KWAG; JU, 2020), it was successfully applied in recent works, mainly
regarding dynamic models and modal parameters (BEHMANESH et al., 2015; SONG, M.
et al., 2019; BEHMANESH; MOAVENI, 2016; SEDEHI; PAPADIMITRIOU; KATAFYGIOTIS,
2019, 2020).

In this work, therefore, a hierarchical Bayesian approach is proposed to perform model
updating of structural parameters from a set of strain measurements related to the response
of a bridge structure to the passage of heavy vehicles with known properties. Such data are
available as the result of the calibration process of B-WIM systems. In particular, the proposed
approach is formulated to be well suited for bridges where no reliable previous information on
the structural parameters is available, as, for instance, when considering old bridges for which
design plans (i.e., blueprints or structural specifications) are no longer available. In addition, it
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is noticed that the assumption of independence between error terms from a same vehicle run
might be violated in this context. Hence, a downsampling procedure is employed, aiming to
mitigate this effect. Two different steps for validation are performed. In the first, numerically
simulated signals, which allow for complete knowledge about the target values of updated
parameters, are employed to assess the suitability of results. For the second analysis, a dataset
related to a real B-WIM system calibration procedure is utilized and the provided estimates are
evaluated. By these analyses, it is expected to properly assess the suitability of the proposed
approach.

The remainder of the work is organized as follows. The next section presents an intro-
ductory discussion regarding B-WIM systems, as well as the modeling strategy employed to
relate the quantities of interest (QoI) with the monitored response. After this, the hierarchical
Bayesian model is described, as well as the sampling procedure employed for effectively per-
forming the updating procedure. Then the results of the proposed approach are presented for
both numerically generated signals and an example of real-world B-WIM calibration procedure.
After this, some additional remarks and suggestions for future works are made, and some
conclusions are presented.

5.2 B-WIM SYSTEMS AND THE APPLICATION OF CALIBRATION DATA FOR MODEL
UPDATING

Most B-WIM systems in operation nowadays are based on the ideas first established by
Moses (1979), who proposed a procedure for estimating axle weights from the strains induced
by passing vehicles. By this approach, the axle weights are estimated as those weights that
minimize the error between measured and theoretical responses, applying the concept of an
influence line to calculate the latter. The bridge flexural response is employed by most B-WIM
systems (HELMI; TAYLOR; ANSARI, 2015), where sensors are usually located at the bridge
mid-span to record the strains at the bottom of the girders.

The collected strains are, therefore, converted to bending moment:

mg = EgZgug , (1)

where mg = measured bending moment; Z g = section modulus; Eg = elastic modulus; and
ug = measured strain of the g girder.

The effective structural response is, then, the sum of the bending moment calculated
for every girder:

M =
G∑

g=1
EgZgug , (2)

where M is the structural response vector, including the contribution of the measured bending
moment of every girder, from a total of G girders.

Chapter 5. Model Updating Using Hierarchical Bayesian Strategy Employing B-WIM Calibration Data 131



B-WIM systems calculate axle weights by minimizing some error function between
theoretical (M̂) and experimental (M) responses. The theoretical response vector is calculated
by employing the concept of an influence line. In this regard, the influence line is defined as the
total bending moment of all the girders at the sensor location that is induced by a unitary load
as it moves throughout the bridge (QUILLIGAN, M., 2003). Hence, the theoretical response
referred to the scan k is:

M̂k =
J∑

j=1
Wj l(k–Cj ), (3)

where:

Cj =
dj f
v

(4)

and J = vehicle’s number of axles; Wj = weight of the jth axle; l (k–Cj ) = bridge influence line
ordinate at the position of the jth axle, related to the scan k , dj = distance between the first
and jth axles; Cj = number of scans corresponding to dj ; f = sampling rate; and v = vehicle
speed. It is worth pointing out that, for the situation where a specific vehicle axle is outside
the bridge structure, the value of l(k–Cj ) is set to zero. Moreover, the vehicle speed is assumed
to be constant along the passage of the vehicle. This constant speed assumption is considered
reasonable for short-span highway bridges (LANSDELL; SONG, W.; DIXON, 2017). In this
study, this desired parameter is obtained by means of free-of-axle detectors (FADs), avoiding
the need for traffic interruption to install the FADs.

A main issue for creating a functional B-WIM system is the definition of the bridge
influence line. In the first work in this subject, performed by Moses (1979), the bridge influence
line was approached just with theoretical analysis. The theoretical influence line, however, is
currently recognized as unsuitable for B-WIM applications (QUILLIGAN, M., 2003), since
some simplifications are made in its derivation procedure. Thus, most recent methods apply a
calibration procedure to estimate an experimental influence line. In the calibration, several runs
are conducted for vehicles with known configuration and at controlled speed and the resulting
strains are recorded. Therefore, the influence line that generates the best agreement between
measured strains and axle weights is calculated. The works of O’Brien, Michael J. Quilligan,
and Karoumi (2006), Ieng (2015) and Gonçalves, Carraro, and Lopez (2021) present examples
of methods for performing such a task for B-WIM systems. Both the amount and diversity
of information gathered during the calibration procedure are important factors for the proper
operation of B-WIM systems. In this regard, it is intended to perform several calibration runs
with a number of vehicles and travel velocities (JACOB; O’BRIEN; JEHAES, 2002). For a
practical scenario, it is expected that dozens of runs would be performed, with, at least, two
different vehicles.

For this work, instead of employing the collected dataset just to calculate the bridge
influence line as usual, a model updating approach is proposed, regarding a key structural
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parameter for the bridge under analysis. Thus, proceeding in this way, one could perform
a single calibration procedure for both obtaining an influence line for B-WIM purposes and
updating the knowledge regarding bridge structural parameters. The updated model could be
useful, for instance, to predict the response that would be induced by any vehicle, including
confidence bounds. The QoI for this study, denoted θ, is defined as the product of the elastic
and section modulus, presented in Equation (1), considering that all girders have the same
properties:

θ = EZ . (5)

In selecting a single parameter to be updated, the aim is to provide simple and practical
information regarding the structure. Then, the derivation of the strategy is simplified, while at
the same time providing a parameter that can be compared with the expected value given, for
example, by the design information.

To properly complete the definition of the proposed model updating strategy, it is
necessary to define the forward model employed to relate the QoI and the monitored output. As
already discussed, in B-WIM applications, usually the strains at the bottom of the bridge girders
are monitored. Thus, for the proposed model updating strategy, the effective system response
and forward model are defined by rearranging Equation (2) and Equation (3), considering that
all girders have the same properties. This results in the following expression for the monitored
quantity vector (y):

y =
G∑

g=1
ug . (6)

The QoI (θ), which is disregarded in Equation (6), is included in the proposed forward
model, which is analogous to Equation (3):

ŷk =
1
θ

J∑

j=1
Wj l(k–Cj ), (7)

where ŷk represents the theoretical response for the scan k , and ŷ is the theoretical response
vector.

In this work, a theoretical influence line is employed in the forward model, with the
scale constant, defined by θ, being updated by the model updating process. Although it was
previously discussed that theoretical influence lines are unsuitable for B-WIM applications, this
does not necessarily imply that the shape of this theoretical response cannot be useful for model
updating of the bridge structural parameters, since both strategies have clearly distinct goals.
For the former, the precision on the predicted weights is analyzed. This usually results in an
ill-conditioned problem, mainly for closely spaced axles (O’BRIEN et al., 2018, 2009; ROWLEY
et al., 2008), where many different combinations of axle weights can generate a quite similar
strain pattern. Conversely, in the latter approach, the focus is turned to the bridge structural
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response itself. As the QoI adopted in this study is a single scale parameter, the presence
of major ill-conditioning issues is avoided. The utilization of a theoretical influence line can
simplify the practical application of the whole model updating process, being a natural choice
for a first evaluation of the proposed procedure. A set of examples, including a real calibration
procedure, is further analyzed in order to assess the suitability of the adopted strategy.

As mathematical models are just approximations of the real behavior of the monitored
system, it is expected that deviations between theoretical and measured responses will occur.
This relation is defined by:

yk ,i = ŷk ,i + εk ,i , (8)

where yk ,i = monitored quantity; ŷk ,i = theoretical response; and εk ,i = error between the-
oretical model and experimental results for scan k and calibration run i . In this work, an
independent and identically distributed zero-mean Gaussian error is assumed.

5.3 THE PROPOSED HIERARCHICAL BAYESIAN FRAMEWORK

A relevant aspect to be noticed before further modeling steps is that the bridge response
is affected by many external effects, which are not controlled by the person conducting the
calibration procedure. The influence of such external effects in model updating can be observed
from both the direct modification in the QoI value for each vehicle run and the induction of a
secondary effect that changes the perception of the model to the QoI. The former is clearly
noticed when observing, for instance, how variations in temperature across different calibration
runs have an impact on the value of the elastic modulus and, hence, on the QoI of this study.
The latter is exemplified by any factor that also has an influence on the measured strains,
but that is not included into the model. For instance, in this study, the transverse position
of the vehicle is not employed to estimate the bridge response. However, according to the
transverse position where the vehicle travels, different responses can be induced even when all
other conditions are kept exactly the same. In this case, different QoI values may generate the
best fit with the experimental data for each vehicle run.

For the previously discussed reasons, it is expected that the QoI presents an inherent
variability among different runs. Then, assuming that the QoI is represented by a fixed value, as
in the classical Bayesian method, does not seem the best approach. Indeed, classical approaches
might underestimate uncertainties, resulting in unrealistically narrow uncertainty bounds for
system output predictions (SEDEHI; PAPADIMITRIOU; KATAFYGIOTIS, 2019). To perform
model updating properly in this context, it is proposed to employ a hierarchical Bayesian
strategy. The hierarchical framework allows a more flexible consideration regarding the QoI,
including, for instance, an unknown mean and covariance matrix. This modeling strategy
assumes that a different parameter value can be associated to each experiment. Thus, it
enables estimation of the inherent variability of the QoI (BEHMANESH; MOAVENI, 2016).
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In addition, it is possible to propagate the uncertainties to predictions of some other QoI
(BALLESTEROS et al., 2014). As a result, reliable uncertainty bounds for the system output
can be predicted (SEDEHI; PAPADIMITRIOU; KATAFYGIOTIS, 2019). In this framework, the
theoretical structural responses are functions of variables that follow probabilistic distributions
defined by hyperparameters (GELMAN et al., 2013). These hyperparameters are considered
unknowns and are computed utilizing the experimental data (BALLESTEROS et al., 2014). This
approach can be seen as an inclusion of an extra layer of variables between prior information
and measured data, respecting a hierarchical framework. Although this is a relatively new
approach in the structural engineering field (KWAG; JU, 2020), it was successfully applied in
recent works to different structural systems, such as a two-story reinforced concrete building
(SONG, M. et al., 2019), a footbridge (BEHMANESH; MOAVENI, 2016), and a soil-slope
structure under earthquakes (KWAG; JU, 2020).

The proposed hierarchical Bayesian framework can be illustrated as follows. Let θ
be the set of θi values for every calibration run i , from a total of N runs. All θi values
are assumed to follow a log-normal distribution, with parameters μθ and σθ2. The choice
of a log-normal distribution is based on the fact that the QoI defined for this study is a
nonnegative quantity. Thus, including this information in the model should help to avoid
improper convergence of sampling strategies. In addition, let Y = {y i ,i = 1, . . . ,N} be the set
comprising all measurements, where each time history y i can be calculated by Equation (6).
The theoretical model, defined by Equation (7), is assumed to deviate from the measurements
by a zero-mean independent Gaussian additive error with variance σ2ε . Each time history y i
is sampled at a constant frequency f . Hence, the kth value of Equation (7) is defined as an
integer value, ranging from 1 to K i , where Ki is the number of collected measurements for
the calibration run i .

Applying the Bayes theorem, the posterior distribution of the parameters μθ, σ2ε , σ2θ,
and the set of parameters θ, given all the measured data Y , can be written as:

p
(μθ,σ2θ,θ,σ2ε |Y

)

︸ ︷︷ ︸
Posterior

∝ p
(
Y |θ,σ2ε

)

︸ ︷︷ ︸
Likelihood

p
(θ|μθ,σ2θ

)

︸ ︷︷ ︸
Prior

p
(μθ,σ2θ,σ2ε

)

︸ ︷︷ ︸
Hyperprior

. (9)

The parameters for the hyperprior are assumed to be independent of each other:

p
(μθ,σ2θ,σ2ε

)
= p (μθ) p

(σ2θ
)

p
(σ2ε

)
. (10)

In this study, such hyperprior distributions are defined as:
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p(μθ) ∝ 1, (11)

p
(σ2θ

)
∼ Inverse Gamma (αθ,βθ) ∝


 1
σ2θ



αθ+1

exp


–βθ

σ2θ


 , (12)

p
(σ2ε

)
∼ Inverse Gamma (αε,βε) ∝

(
1
σ2ε

)αε+1
exp

(
–βε
σ2ε

)
. (13)

Equation (11) indicates that no previous knowledge is assumed for μθ. Conversely,
Equation (12) and Equation (13) are chosen since they are strictly positive and correspond to
conjugate distributions when the likelihood is Gaussian. The latter makes sampling strategies
such as the Gibbs sampler procedure easier, since it results in standard distributions for the
full conditional distribution of both variances (GELMAN et al., 2013).

The expression for p
(θ|μθ,σ2θ

)
in Equation (9) can be calculated straightforwardly

since each θi is assumed to be drawn from the same log-normal distribution. Considering that
each θi is independent of the others, it reads as

p
(θ|μθ,σ2θ

)
∝ 1

(σ2θ
)N

2 ∏N
i=1 θi

exp


–

1
2

N∑

i=1

(
log (θi ) – μθ

σθ
)2

 . (14)

Finally, the probability of p
(
Y |θ,σ2ε

)
in Equation (9) can be computed, recalling that

the error term for this work is assumed to follow a zero-mean Gaussian distribution and its
value for every measurement is independent from the others:

p
(
Y |θ,σ2ε

)
∝ 1

(σ2ε
)∑N

i=1
Ki
2

exp


–

1
2

N∑

i=1

Ki∑

k=1

(
yi ,k – ŷi ,k (θi )

σε
)2

 , (15)

where the dependence of ŷi ,k with respect to θi is remarked.
Therefore, the posterior distribution of Equation (9) can be defined as:

p
(θ,μθ,σ2θ,σ2ε |Y

)
∝

p(Y |θ,σ2ε)︷ ︸︸ ︷
1

(σ2ε
)∑N

i=1
Ki
2

exp


–

1
2

N∑

i=1

Ki∑

k=1

(
yi ,k – ŷi ,k (θi )

σε
)2



p(θ|μθ,σ2θ)︷ ︸︸ ︷
1

(σ2θ
)N

2 ∏N
i=1 θi

exp


–

1
2

N∑

i=1

(
log (θi ) – μθ

σθ
)2



 1
σ2θ



αθ+1

exp


–βθ

σ2θ




︸ ︷︷ ︸
p(σ2θ)

(
1
σ2ε

)αε+1
exp

(
–βε
σ2ε

)

︸ ︷︷ ︸
p(σ2ε)

.(16)

Rearranging the expression:
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p(θ,μθ,σ2θ,σ2ε |Y ) ∝ 1
(∏N

i=1 θi
) (σ2ε

)∑N
i=1

Ki
2 +αε+1

1
(σ2θ

)N
2 +αθ+1

exp


–

1
2



∑N

i=1
∑Ki

k=1

(
yi ,k – ŷi ,k (θi )

)2
+ 2βε

σ2ε
+
∑N

i=1 (log (θi ) – μθ)2 + 2βθ
σ2θ





 . (17)

Equation (17) provides the posterior distribution of the hyperparameters, given the
whole dataset of calibration runs defined by Y . In what follows, a sampling strategy is derived
in order to effectively provide the updated parameters from the hierarchical Bayesian model.

5.3.1 Sampling strategy

In this work, a Gibbs sampler is adopted for sampling from the posterior distribution
defined by the hierarchical Bayesian model in Equation (17). The Gibbs sampler is a special case
of the more general Markov chain Monte Carlo (MCMC) algorithm, named Metropolis-Hastings.
It is an iterative process, which works by generating a sample for every parameter from its full
conditional distribution, keeping the remaining parameters at their previous sampled values.
The full conditional distributions for this study can be inferred from Equation (17):

p(μθ|.) ∼ N



N∑

i=1

log (θi )
N

,
σ2θ
N


 , (18)

p
(σ2θ|.

)
∼ Inverse Gamma


N

2
+ αθ,

∑N
i=1 (log (θi ) – μθ)2 + 2βθ

2


 , (19)

p
(σ2ε |.

)
∼ Inverse Gamma




N∑

i=1

Ki
2

+ αε,
∑N

i=1
∑Ki

k=1

(
yi ,k – ŷi ,k (θi )

)2
+ 2βε

2


 , (20)

p(θi |.) ∝ 1
θi

exp


–

1
2



∑Ki

k=1

(
yi ,k – ŷi ,k (θi )

)2

σ2ε
+

(log (θi ) – μθ)2

σ2θ





 . (21)

As the distributions employed in this work are conjugate distributions with respect to
the likelihood function, the full conditional distributions of most parameters result in standard
distributions and are easy to sample. The only exception is p(θi |.). In order for the Gibbs
sampler to work properly, a strategy needs to be adopted to enable easier sampling of this
distribution. Here, the normal approximation of this distribution is adopted, based on Gelman
et al. (2013). This is a convenient approach for unimodal and roughly symmetric distributions,
where the logarithm of the density is approximated by a quadratic function of the parameter
θi , centered at its mode. This approximation can be defined as

p(θi |.) ≈ N
(
θ̂i ,
(
I(θ̂i )

)–1
)

, (22)
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where θ̂i is the mode of the full conditional distribution of θi and I(θi ) is defined as

I(θi ) = –
d2

dθ2
i

log (p (θi |.)) . (23)

The mode of the full conditional distribution presented in Equation (21) can be obtained
by solving the following expression for θi , derived making the gradient of the logarithm of this
distribution equal to zero:

1
σ2ε

Ki∑

k=1

(
yi ,k – ŷi ,k (θi )

) ∂ŷi ,k (θi )
∂θi

–
1

θiσ2θ
(log (θi ) – μθ) –

1
θi

= 0 (24)

Finally, the function I(θi ) is derived as

I(θi ) = –
1
θ2

i
+

1
σ2θ


1 + μθ – log(θi )

θ2
i


 +

1
σ2ε

Ki∑

k=1



(

∂ŷi ,k (θi )
∂θi

)2
–

∂2ŷi ,k (θi )
∂θ2

i

(
yi ,k – ŷi ,k (θi )

)

 (25)

This approximation allows easy and direct sampling for the full conditional distribution
p(θi |.). It is worth mentioning that, as the mathematical model employed for relating QoI and
monitored quantity is an expression previously known (Equation (7)), its derivatives may be
easily calculated.

5.4 RESULTS

To evaluate the suitability of employing a hierarchical Bayesian model updating approach
based on the information collected during the calibration procedure of a B-WIM system, a set
of examples is addressed in this section. The first two examples are generated by simplified
models, where numerical simulations are in perfect accordance with all assumptions stated in
this study. In addition, all parameters utilized for generating the dataset are previously known.
Such examples are useful for validation purposes, as well as for clearly presenting the drawbacks
related to the underestimation of the total uncertainty for the classical Bayesian approach. In
a second step, more elaborate numerical simulations are performed, aiming to better represent
the response of a bridge structure to a heavy vehicle traveling over it. In this case, the dynamic
response of a simply supported Euler-Bernoulli beam under moving sprung mass systems is
employed. Some additional issues are modeled to reproduce practical aspects, while keeping
the computational time tractable to allow a large number of analyses. Among the modeled
issues could be cited the effect of the road roughness profile, the inclusion of noise for all
measurements and the presence of uncertainty on both estimated vehicle speed and the exact
instants that the vehicle enters and leaves the bridge. The numerical simulation allows the
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analysis of as many vehicles as intended, but without all the aspects that may affect the real
behavior of the measured signal. The last problem is referred to a real case of B-WIM system
calibration, which includes many other levels of complexities, inherent from real-world civil
engineering systems. However, as it is a real calibration procedure, the number of vehicles
employed is limited and the real values of the QoI are not previously known. For all performed
analyses, the Gibbs sampler is executed for 10,000 iterations, considering a burn-in phase
of 20%. Furthermore, prior distribution parameters are the same, regardless of the example
analyzed. For the classical model, αε = 0.5 and βε = 0, whereas μθ and σ2θ are calculated to
ensure that the mean and standard deviation of the log-normal prior distribution are 4 × 109

and 4×1010 Nm, respectively. This gives μθ = 19.802 and σθ = 2.148 as the prior parameters
for the classical approach. It is worth pointing out that the magnitude of the parameters is
considerably different from the expected values of θ, owing to the parameterization of the
log-normal distribution employed as a prior. For the hierarchical models, αθ = αε = 0.5, βθ
= 10–3 and βε = 0.

5.4.1 Numerical simulations: initial validation

The main idea for this first analysis is to employ a model simple enough to exactly
match all assumptions performed in the model updating strategy. In other words, the signals
are generated from the product of precisely known axle weights and a static influence line for
a simply supported single girder bridge, with a total length of 10 m. All structural parameters
are assumed to be constant throughout the structure and a sample rate of 100 Hz is adopted.
A single vehicle configuration is employed in this first step, as described in Figure 1.

Figure 1 – Vehicle configuration for validation examples.

5.00 m

5000 kg

2.00 m

7500 kg 7500 kg

The vehicle is assumed to cross the bridge at a constant speed on every run. A total
of 100 runs are simulated, considering three different vehicle speeds: 60 runs at 20 m/s, 20
runs at 24 m/s, and 20 runs at 16 m/s. Furthermore, the simulations also include the effect
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Table 1 – Exact values for the parameters that define θi and ε probability distributions

Example μθ σθ Distribution of θ με σε Distribution of ε
Example 1 22 0.005 Log-normal 0 2×10–6 Gaussian
Example 2 22 0.05 Log-normal 0 2×10–6 Gaussian

of an independent zero-mean additive Gaussian random noise for every signal and scan, such
that εi ,k ∼ N

(
0,(2 × 10–6)2

)
.

For each simulation, a different value of θi is sampled from a log-normal distribution,
such that θi ∼ LN

(μθ,σ2θ
)
. A total of two examples are addressed in this validation section,

considering different values for σ2θ. The first example assigns a quite low variance, in such a way
that the classical Bayesian approach may provide suitable results. For the second example, the
variance is increased to a level where the practical distinction between classical and hierarchical
approaches can be clearly observed. The exact values for characterizing θi and εi ,k in both
examples are given in Table 1. Notice that, owing to the parameterization of the log-normal
distribution, the values of μθ and σθ are not directly comparable to the magnitude of the
variable θ. To allow such a comparison, the mean and standard deviation of θ are analyzed
in the following sections. Both the mean value (μ∗θ) and standard deviation (σ∗θ) of θ are
straightforwardly calculated from the provided parameters as μ∗θ = exp(μθ + σ2θ

2 ) and σ∗θ
=
√

(exp(σ2θ) – 1) exp(2μθ + σ2θ). Figure 2 depicts the simulated strains for both examples. It
could be noticed that a higher variability is present for Example 2, where a higher variance is
defined for θ. All information related to both examples can be found in Gonçalves (2021).

Figure 2 – Simulated strains for both examples in initial validation.
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5.4.1.1 Example 1

Both classical and hierarchical methods are employed for the first example, which also
evaluates the influence of the dataset size on the estimated uncertainties. It is worth remarking
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that the proportion of runs at each vehicle speed is kept the same for all datasets. The results
for the classical approach are summarized in Figure 3, which presents histograms for both θ
and σε. The parameter N indicates the dataset size related to each result, which is a notation
that is also adopted for following analyses. Recall that, for the classical approach, the QoI
is assumed to be constant for all calibration runs. Thus, it is noticed that the uncertainties
continuously decrease as the amount of information provided to the model increases. As the
classical approach assumes that the QoI is a fixed value, the model is not able to represent the
inherent variability of the QoI and the underestimation of total uncertainty is clearly noticed.
Therefore, in a hypothetical scenario, the classical approach admits that the uncertainties
regarding the parameter of interest vanish when employing a infinitely large dataset. Conversely,
the histograms for σε clearly show that the classical approach, even disregarding the inherent
variability of the QoI, is able to estimate σε precisely for this example. As the variability of the
QoI is defined by a coefficient of variation of just 0.5% and estimates for σε are in accordance
with the real values, the classical approach may be able to provide suitable results in this simple
case.

Figure 3 – Estimates of analyzed parameters for the classical approach applied to Example 1.
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The results obtained using the hierarchical strategy are shown in Figure 4, which
presents the mean (μ∗θ) and standard deviation (σ∗θ) of the QoI instead of the parameter values
for the log-normal distribution of θ (since the former parameters are more straightforwardly
interpreted from a practical perspective). This presentation issue is adopted for all the following
hierarchical model results. The histograms for μ∗θ and σε are centered with respect to the true
values employed in the simulations, even for the smallest dataset available. The same could
not be said for σ∗θ; however, a clear convergence toward the expected value is noticed when
the amount of information is increased. Indeed, this convergence is perceived for all evaluated
parameters. Therefore, the hierarchical strategy is able to provide proper estimates for the QoI
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in this case, including the variability of θ. For this simple example, it was already expected
that both classical and hierarchical methods were able to properly estimate both θ and ε, since
inherent variance in θ was intentionally kept at a low level.

Figure 4 – Estimates of analyzed parameters for the hierarchical approach applied to Example
1.
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5.4.1.2 Example 2

The second example introduces a troublesome issue for the classical strategy: a signifi-
cant inherent variability of the QoI for different experiments. The unsuitability of the classical
Bayesian approach in this scenario is clearly noticed in Figure 5, which shows the histograms
for both θ and σε as a function of the number of vehicle runs employed in the model updating
process. The provided estimates for θ are almost point estimates of the mean value of the
real distribution, disregarding almost entirely the uncertainty associated with such a parameter.
Furthermore, it is possible to observe that, by ignoring the inherent uncertainty in the QoI, the
classical model is forced to assign all the uncertainty to the error parameter σε. Hence, the
updated values of σε are overestimated.

The histograms for all updated parameters regarding the hierarchical approach are
presented in Figure 6. Similarly to what was observed in Example 1, the results for the
hierarchical approach also properly converge to the exact values for all parameters. Indeed,
both examples are defined in such a manner that the assumptions made in the hierarchical
strategy are exact. Therefore, it is already expected that such a convergence easily occurs.
However, even this simple example is enough to show the possible drawbacks in employing the
classical strategy.

The unsuitability of the classical approach for this example is even more remarkable
when analyzing Figure 7, which presents the estimated distribution for the QoI reported by
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Figure 5 – Estimates of analyzed parameters for the classical approach applied to Example 2.
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Figure 6 – Estimates of analyzed parameters for the hierarchical approach applied to Example
2.
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both classical and hierarchical models, in comparison with the known real distribution. The
samples for the classical strategy are straightforwardly obtained from the MCMC samples. For
the hierarchical approach, however, the maximum a posteriori (MAP) values for μθ and σ2θ are
employed in calculating the values of the probability density function (pdf) of the log-normal
distribution for θ. It could be noticed that the uncertainty estimated by the classical approach
is highly underestimated, resulting in almost a point estimate for θ. This is a concerning issue,
mainly when employing such estimates for further safety analyses, where uncertainty in the QoI
may play an important role. In this example, a coefficient of variation of 5% is disregarded when
employing the classical strategy. Conversely, the hierarchical approach is able to provide more
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reliable estimates of the total uncertainty regarding the QoI. Indeed, for this example, where
all modeling assumptions are in perfect agreement with the simulated signals, the estimates
clearly agree with the true distribution for the QoI.

Figure 7 – Estimates of the pdf of θ for Example 2: (a) classical approach; and (b) hierarchical
approach.
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Both analyzed examples are relatively simple but quite informative. They indicate that
the hierarchical strategy is more robust and reliable, since it is able to properly account for
the inherent variability of the QoI. Hence, if no significant variability is present, it will perform
as well as a classical Bayesian strategy. However, in the presence of such a variability, the
hierarchical approach clearly outperforms the classical one. Then, for further analyses, just the
hierarchical approach is evaluated.

The analyses just performed are useful for illustrating some issues related to the classical
approach when inherent variability is present in the QoI and demonstrating that the hierarchi-
cal approach should be preferred in this case. However, such examples are unrealistically in
accordance with the modeling assumptions. Therefore, it is important that more representative
examples be addressed to show that the hierarchical strategy is effectively well suited for the
proposed application. In the following examples, more elaborate models are employed, aiming
to represent a real B-WIM system calibration procedure.

5.4.2 Numerical simulations: simplified dynamic model

Numerical simulations are conducted, employing the Euler-Bernoulli beam model for
a simply supported single girder bridge. The bridge total length is set to 15 m, assuming
also that all structural properties are constant along the structure. Eight different vehicles are
employed, aiming to represent a wide range of practical vehicle configurations, based on a
vehicle classification from Brazil (DNIT, 2012). Each vehicle is modeled as a system of sprung
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Table 2 – Main characteristics of vehicles for numerical simulations

Vehicle ID Total mass (kg) Total length (m) Number of axles
1 16,000 4.25 2
2 23,000 5.50 3
3 33,000 9.20 4
4 43,000 12.90 5
5 53,000 16.60 6
6 57,000 16.50 7
7 67,000 20.20 8
8 74,000 20.10 9

Table 3 – Number of runs performed with defined speed by each analyzed vehicle

Vehicle ID Speed (m/s) Number of runs
1, 2, 3, 4, 5, 6, 7, 8 16 10
1, 2, 3, 4, 5, 6, 7, 8 20 30
1, 2, 3, 4, 5, 6, 7, 8 24 10

masses, as detailed in Carraro et al. (2019). The main characteristics of the vehicles are defined
in Table 2, while a detailed description of all parameters employed in the numerical simulations
is given in the Appendix .1.

A total of 400 signals are simulated, 50 for each vehicle. For every vehicle run, a constant
speed is assumed, which is the usual approach in B-WIM systems (GONÇALVES; CARRARO;
LOPEZ, 2021), where three different speeds are considered: 16, 20 and 24 m/s. The division
of total runs between different vehicles and velocities is given in Table 3. These values of speed
are chosen to reproduce a typical scenario of B-WIM system calibration (JACOB; O’BRIEN;
JEHAES, 2002). Although the speed is defined to be constant throughout the passage of
the vehicle, it is considered that this parameter is not exactly known. Indeed, a multiplicative
Gaussian error, with unitary mean and 5% as coefficient of variation, is applied to every
speed before the model updating procedure. This error is employed to simulate the inherent
uncertainty related to estimating the vehicle speed from collected signals in a real-world
application. The fact that the vehicle speed is not precisely known also implies an uncertainty
regarding the prediction of the time interval related to the passage of the vehicle over the
bridge. This occurs because the exact time instants that the vehicle enters or leaves the bridge
are not directly measured in this study. Thus, the vehicle speed and the time instant that the
vehicle crosses some FAD, whose position is known, are employed to estimate the total length
of signal related to the passage of the vehicle over the bridge.

Three additional features are modeled, aiming to better simulate the real behavior
expected for bridge structures, as well as some practical difficulties that should arise in this
context. First of all, a roughness road profile referred to class B (ISO 8606:1995, 1995)
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is assumed, considering a different profile for each run. Second, a white Gaussian noise,
such that the signal to noise ratio is set to 20, is added to every signal. Finally, for each
simulation, a different value of θi is sampled based on a Gaussian distribution, such that
θi ∼ N

(
5 × 109,

(
5 × 108

)2
)

. Notice that this distribution for the QoI is different from the
log-normal distribution adopted in the definition of the hierarchical model. It aims to reproduce
the practical scenario where the distribution of the QoI does not follow the model assumptions.
Figure 8 shows a sample signal from each vehicle employed in this section. Just one signal
is presented for the sake of clarity, since 50 signals are available for each vehicle. The whole
dataset, including all the signals, is available in Gonçalves (2021).

Figure 8 – Example of simulated strains according to the simplified dynamic model for each
analyzed vehicle.
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Another relevant aspect that should be discussed is related to the independence hy-
pothesis stated in the derivation of the hierarchical approach, mainly considering the errors of
successive measurements from the same vehicle. The information retrieved by B-WIM systems
comprises a set of time series, sampled at a high sample rate. In this context, it is important
to remark that, in many cases, observations related to adjacent instants of time present posi-
tively correlated errors (JAMES et al., 2013). Indeed, such kinds of serial correlation were also
observed in other works regarding B-WIM systems (YOSHIDA; SEKIYA; MUSTAFA, 2021).
The application of the independence assumption for a situation where the errors are actually
correlated, without further action, could corrupt the overall results. This may occur because
the presence of correlation typically leads Bayesian analyses to infer a false precision, since a
sequence of correlated observations presents less information, compared with the same quan-
tity of independent data (GELMAN et al., 2013). The following procedure is adopted in this
study to mitigate the effect of serial correlation in hierarchical approach results. The idea is to
perform a downsampling procedure to every signal. In this process, the effective sample rate
is reduced by discarding some data points following a regular pattern. The idea in employing
such a procedure is that the reduction in the effective dataset size decreases the false precision
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induced by the serial correlation. In addition, as correlated observations can be understood to
be redundant, this process can be conducted without major concerns. The factor of reduction is
chosen based on a Durbin-Watson test (DURBIN; WATSON, 1950). Distinct effective sample
rates are evaluated, keeping the same value for all vehicle runs. The value in which serial
correlation could not be argued for the highest number of runs is chosen, based on the value
of p of the Durbin-Watson test, whose threshold is set here as 0.05. In this work, a minimum
effective sample rate of 10 Hz is adopted in order to avoid excessive modification of the signal
by the downsampling procedure. It is worth mentioning that this is just a simplified procedure
for assessing when the reduction in effective sample rate seems suitable. Studies for addressing
the presence of serial correlation in a more efficient way are indicated as a promising future
research subject, with more detailed suggestions discussed in further sections. To evaluate the
impact of this procedure, the hierarchical approach is evaluated for two cases: without (Case
1) and with (Case 2) downsampling.

The first analysis performed is related to the suitability of the obtained results as a
function of the number of signals employed. This is an important aspect when dealing with
B-WIM systems, since calibration procedures are usually limited to dozens of runs. Figure 9
and Figure 10 present the influence of the number of runs on the suitability of the MCMC
samples for Cases 1 and 2, respectively. It is worth pointing out that the same number of
runs from each vehicle type is utilized and the speeds of these selected events follow the same
proportion as in Table 3. The real values employed for μ∗θ and σ∗θ in the simulation of the
signals are precisely known and, hence, are used as a comparison criterion. Conversely, as the
error comprises all the issues not handled by the forward model, the exact value of σε is not
previously known.

When observing the reported results, it is noticed that the major distinction between
both methods relies on the uncertainty regarding the estimates of σε. The predictions provided
by the hierarchical approach without downsampling (Case 1) are almost point estimates. In this
case, the inclusion of more vehicle runs leads to new estimates of σε that fall outside the range
of the previous prediction, illustrating the false precision that serial correlation may induce.
Conversely, the hierarchical approach with downsampling (Case 2) presents distributions where
there is a clear overlap of posterior distributions of σε from different dataset sizes, indicating
that such results are more consistent. Although the differences are presented for σε, it is
clear that both approaches are able to predict both μ∗θ and σ∗θ properly. This indicates that
the downsampling procedure is able to reduce the false precision due to the violation of
the independence assumption without corrupting the main aspects of the signal. As already
expected, the uncertainty decreases within the increasing of the number of datasets considered,
where a good convergence to the real values is noticed.

Although better results are expected when employing more runs, the model updating
results with fewer runs are already able to properly predict the uncertainties regarding the
parameter of interest. To illustrate this last statement, Figure 11 depicts the uncertainties
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Figure 9 – Estimates of analyzed parameters for the hierarchical model without downsampling
applied to the simulated data.
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for the parameter θ considering both approaches, where each pdf is calculated based on
the respective MAP estimate for μθ and σ2θ. It is noticed that, in both cases, the shape of
the sampled distribution is quite similar to the real employed values for all numbers of runs
considered. This is important since, from the B-WIM perspective, a number of the level of
dozens of runs is of the same order of magnitude of current practical values for calibration
procedures. This aspect indicates that the amount of data currently obtained for calibration
procedures is able to provide reasonable information to assess the uncertainties in this QoI.

As already discussed, the calibration procedure is limited to just a few vehicles. As the
forward model employed is not able to perfectly describe the real behavior of the vehicle-bridge
system, it is already expected that model updating results will depend on the characteristics of
the vehicles utilized for calibration. Although such a dependence is recognized, a proper model
updating procedure should not be excessively affected by these characteristics. To assess the
dependence of the model updating results within the configuration of the calibration vehicles, a
comparative analysis is performed. This analysis relies on the comparison of resulting updated
parameters for datasets considering just runs referred to each vehicle independently. In this case,
just the hierarchical model with downsampling is analyzed, since such an approach presented
more consistent results in the previous analysis. Figure 12 presents the updated values of
μ∗θ, σ∗θ, and σε for datasets referred to 50 signals from each vehicle ID. Only data regarding
Vehicles 1, 3, 6, and 8 are shown, for the sake of clarity.

The general behavior for parameters μ∗θ and σ∗θ, independently of the vehicle employed, is
quite similar, approaching well the known real values employed in the simulations. Such aspects
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Figure 10 – Estimates of analyzed parameters for the hierarchical model with downsampling
applied to the simulated data.
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indicate that the updated results for both parameters are robust to the specific characteristics of
the vehicles and, hence, the proposed approach is able to extract proper information for model
updating of both parameters. For the parameter σε, however, it is noticed that different vehicles
generate estimates that are considerably different. In particular, the predictions for Vehicle 1
are significantly lower than for the remaining vehicles. This difference could be problematic,
for instance, when the model is employed for propagating uncertainties and predicting the
response of the vehicle-bridge system for an unseen vehicle. As previously discussed, the error
is being utilized to represent all unmodeled aspects of the dynamic problem, in an additive
way. Therefore, as the generated strains and, consequently, the differences between model and
measurements are a direct function of the axle weights of a given vehicle, heavier vehicles will
tend to present a high value for σε. Recalling Table 2, it is noticed that the weight of Vehicle
1 is, at least, two times lower than any other vehicle employed in this comparison, which is
in accordance with such a statement. Thus, proposing strategies for improving the estimates
for σε, allowing the error to better represent the behavior of the model for different vehicles,
seems an interesting issue to be addressed in future studies.

5.4.3 Real-world B-WIM system calibration data

To exemplify the application of the proposed hierarchical Bayesian approach for a real
B-WIM system calibration procedure, data collected for the Itinguijada bridge are employed.
The Itinguijada bridge is located 147 km south from the border of the states of Goiás and
Tocantins in the road BR-153, Brazil. The structure has a total length of 29.70 m and comprises
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Figure 11 – The pdf of θ for the hierarchical approaches for the numerical simulations: (a)
without downsampling; (b) with downsampling.
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five cross beams and two girders. Figure 13, Figure 14 and Figure 15 show the analyzed bridge,
the main dimensions of its cross section, and its lateral view, respectively. The theoretical
response for a simply supported bridge model is adopted to define the shape of the influence
line employed in the model updating procedure. Two sets of FADs are attached underneath the
bridge slab, one per lane, with a longitudinal spacing of 4 meters between sensors in the same
lane. In addition, for both lanes, one of these sensors is installed at the mid-span of the bridge.
Each girder is equipped with two strain sensors at its mid-span, attached to the bottom of the
girder. Therefore, the structural response for each girder is the average signal from these two
sensors.

Two trucks, whose main characteristics are given in Table 4, were employed to calibrate
the B-WIM system. The resulting dataset refers to strains and FAD signals collected for 49
runs, 29 for the three-axle vehicle and 20 for the five-axle one. This results in, at least, 10
runs per truck over each lane. The speed of the vehicle on each run is calculated from the
information provided by the FADs. Furthermore, all runs are joined together, regardless of
the lane along which the vehicle traveled. This could be done since the proposed forward
model does not make any distinction between runs related to different lanes. Figure 16 shows
four strain signals, accounting for the contribution of both girders, as utilized in the proposed
method, from each vehicle employed in the calibration of the B-WIM system.

It is worth pointing out that the analyzed bridge is relatively old, around 50 years
(JUNGES, 2017), and there is no reliable information regarding its structural properties for
properly estimating a true QoI value. Even the bridge’s exact age is not precisely known, which
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Figure 12 – Estimates of analyzed parameters for the hierarchical model with downsampling,
as a function of the vehicle whose signals were employed for performing the model
updating.
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Figure 13 – Itinguijada bridge

Figure 14 – Mid-span cross section dimensions (values in cm)
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Figure 15 – Lateral view dimensions (values in cm)

Table 4 – Axle weights and spacing for calibration vehicles

Axle mass (kg)
Vehicle Axle 1 Axle 2 Axle 3 Axle 4 Axle 5

Three-axle vehicle 6,900 14,900 12,900 - -
Five-axle vehicle 7,500 14,100 13,300 11,100 9,200

Axle position (m)
Axle 1 Axle 2 Axle 3 Axle 4 Axle 5

Three-axle vehicle 0 4.78 6.07 - -
Five-axle vehicle 0 3.57 9.16 10.43 11.66

Figure 16 – Example of measured strains from the B-WIM system calibration data. Vehicle 1
is the three-axle vehicle and Vehicle 2 is the five-axle vehicle.
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is a common scenario for Brazilian bridges (LIMA E OLIVEIRA; GRECO; BITTENCOURT,
2019). Thus, by contrast with the numerical simulations in which all bridge properties are
exactly known, the real bridge calibration example does not present a target value for the
QoI. The aim is to avoid inaccurate estimation of corrupt conclusions with respect to the QoI.
Despite the absence of a real comparison criterion, this example illustrates, indeed, a situation
in which the proposed approach is particularly useful. Even in this scenario, some analyses can
still be conducted to evaluate the overall suitability of the proposed procedure. The agreement
regarding model updating considering two disjoint datasets is the first one, as already performed
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Figure 17 – Estimates of analyzed parameters for the hierarchical model with downsampling
for the real calibration example.
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for the simulated signals case. Figure 17 shows the histograms for each variable, comparing
the results for datasets referred to each vehicle individually, for the hierarchical model with
downsampling. For all parameters, similar updated values are reported, since a considerable
overlap between histograms obtained from different datasets is noticed. This indicates that
the obtained sampled distribution for such parameters should be representative of the real
behavior of the structure, with the modeling strategy adopted performing similarly for different
vehicles. In this real data study, a slightly higher deviation between predictions using different
vehicles is observed for μ∗θ. This might be because there are more unmodeled issues present in
the real data scenario than in simulated signals. For instance, vehicles are much more complex
dynamic systems than the simple sprung mass systems employed for simulating signals; the
exact transverse position of the vehicle at each run is variable and not precisely known and
the bridge structure comprises many other components besides its girders. Although a larger
deviation is present, it is remarked that such a difference does not reach 5% among the means
of μ∗θ calculated from both samples. Hence, it is considered that the model updating results
are robust to different vehicles for μ∗θ and σ∗θ. This difference is somewhat noticeable for σε
when the dataset for each vehicle is employed independently. However, the distinction is not so
remarkable as that observed for the simulated data, since the range of vehicle weights analyzed
for this real data experiment is smaller. Again, the estimate of σε is higher for the heavier
vehicle, which is consistent with the previous discussion.

Another procedure that might help in the process of assessment of the suitability of
the model updating process is the uncertainty propagation of the system. The uncertainties
calculated from the hierarchical procedure with downsampling and considering the dataset
employing both vehicles for parameters μθ, σ2θ, and σ2ε are employed for predicting the strains
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generated by each vehicle. Figure 18 shows the 95% confidence bounds for the predicted strains
induced, accounting for the contribution of both girders, together with one signal collected from
each vehicle. Just one signal is employed for sake of clarity; however, results are similar for the
remaining signals. It is noticed that the majority of the signals fall within the confidence bounds,
indicating that the uncertainties quantified by the hierarchical approach are able to properly
represent the signal of each vehicle independently, even though both vehicles are considerably
different. This is another relevant result for indicating the robustness and suitability of the
proposed hierarchical model.

Figure 18 – Uncertainty propagation for predicted strains for the real calibration example.

Time (s)
0 1 2

S
tr

ai
n 

(
7
0)

-50

0

50

100
Vehicle 1

Measurements Confidence Interval

Time (s)
0 1 2 3

-60

-40

-20

0

20

40

60

80

100

120
Vehicle 2

One of the main advantages of employing a hierarchical strategy is its capability of
accurately predicting the total uncertainties regarding the QoI. This advantage is remarkable
for systems where an inherent variability is present. The bridge structural response due to a
moving vehicle is argued in this study to belong to this class. To evaluate the level of inherent
uncertainty present in this problem, Figure 19 presents the estimated pdf of the QoI, as a
function of the vehicles employed in the process. It is noticed that the hierarchical estimates
present a reasonable dispersion, resulting in a coefficient of variation higher than 2%. Although
this might not seem a noticeable value, it is preferable to consider this uncertainty for further
analyses instead of employing an approach that completely disregards it. In addition, other
bridge structures might present a different behavior. To ensure that a considerable uncertainty
is not being disregarded, it is prudent to estimate it. The proposed hierarchical Bayesian model
updating approach is able to take this uncertainty into account, regardless of its magnitude,
ensuring a higher robustness to the provided estimates. Therefore, such an approach should
be preferred, allowing a better estimate of total uncertainties.
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Figure 19 – The pdf of θ for the hierarchical approach with downsampling for the real calibra-
tion example.
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5.5 FURTHER REMARKS

Both numerically simulated signals and an example of B-WIM system calibration data
were employed to assess the suitability of the proposed approach. The results indicate that
the proposed hierarchical approach is promising for practical applications, mainly employing
the downsampling procedure to mitigate the effects of serial correlation. This works has an
even higher relevance when considering the situation where no previous knowledge is available,
as, for instance, in the case of old bridges for which design plans (i.e., blueprints or structural
specifications) are no longer available. Indeed, this is the scenario in which the updating process
of the real B-WIM calibration data example was performed and corresponds to a common
situation for Brazilian bridges. Although this might not be a problem for proper B-WIM system
operation, further analyses, such as safety assessment, require additional information. Thus,
the proposed model updating approach arises as an alternative to provide estimates regarding
important parameters, including confidence bounds.

It is important to cite two relevant practical aspects on which such results are based.
First, the road surface condition has an important role in the dynamic response of a bridge
under a moving vehicle. When performing the numerical simulations, it was intended to use
a road class that reflects what is expected in practical applications. According to the study
of Múčka (2017), who performed a review of published works, Classes A and B are roughly
recommended as representative of a typical road profile for many functional road categories.
Indeed, many recent works adopted such road classes for numerical simulations. For instance,
Cantero (2021) and He et al. (2019) employed Class A, Gonçalves et al. (2022) applied Class
B, and He et al. (2021) and Gonçalves, Carraro, and Lopez (2021) utilized Classes A and B.
Therefore, it is expected that, by applying the road Class B in this study, the results of the
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method will be representative enough for practical purposes. The second relevant aspect to be
addressed is related to the support conditions of the analyzed bridges. The shape of influence
line employed in the model updating process is related to a simply supported bridge and works
properly for such applications. However, if the support conditions of the bridge under analysis
correspond to a different behavior, it might be necessary to employ an influence line shape
corresponding to the support condition that better represents this behavior.

This study is a first attempt to link model updating through hierarchical models and
B-WIM systems. With this point in mind, it was chosen to keep the model as simple as
possible, but without losing its practical relevance. This context indicates that some points
of the proposed methodology could be improved in future work. Furthermore, many different
applications could be developed based on the ideas proposed in this study. Hence, as suggestions
for future works, one could cite the following:

• more elaborate forward models: for this work, a simple forward model, based only on
a theoretically calculated influence line for a simply supported bridge, was employed.
However, different applications may require more complex forward models. For
instance, one could employ a modeling strategy that takes into account the dynamic
behavior of the vehicle-bridge system, such as in Gonçalves, Carraro, and Lopez
(2021);

• allowing a number of QoI: for this study, a single QoI was utilized to represent
the system. However, for more complex forward models, more variables might be
necessary;

• a number of girders and a transverse load distribution: for real structures, mainly
when the deterioration process is significant and many girders are available, modeling
each girder independently should be a more suitable approach. Such a model should
also take into account the inclusion of the vehicle transverse position into the
forward model. This procedure could result in even more reliable safety assessment
for bridge structures for known extreme events, such as overloaded vehicles;

• other applications related to structural safety: it is also possible to extend the
proposed formulation in such a way that the updated parameters describe more
complex processes, such as the stiffness degradation due to reinforcement corrosion,
as in the work of Ma et al. (2014). In this case, the parameters that describe
the process may be estimated by the hierarchical approach and the updated model
could be employed to perform future resistance predictions in a more reliable manner.
Another possibility is to apply the hierarchical model together with a simplified finite
element model of the structure for damage identification, such as in Behmanesh
and Moaveni (2016);

• influence line calculation: in this study, a theoretically calculated influence line was
employed to predict the response of the structure to moving loads. An alternative is
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to model the coefficients that define the influence line as the QoI in order to assess
the related uncertainties. This influence line could have many further applications,
including B-WIM purposes. For instance, such an approach is well suited for working
with Bayesian B-WIM algorithms, such as those of Yoshida, Sekiya, and Mustafa
(2021) and Gonçalves et al. (2022);

• a more complex covariance matrix structure for the error between measurements
and theoretical model: in this work, the covariance matrix was assumed to represent
independent measurements, although the presence of serial correlation in error
terms was recognized and a downsampling procedure was proposed to mitigate
the effect of such a correlation. However, this is a simplified approach that does
not explicitly account for the serial correlation. For instance, a covariance matrix
related to autoregressive models could be updated in the process. Furthermore,
the error variance can be modeled as a function of the axle weights, similar to the
approach taken by Mingming Song et al. (2019) in relating the effective stiffness and
vibration level. This could be useful for improving the agreement among prediction
for different sets of vehicles.

5.6 CONCLUSION

In this study, a hierarchical Bayesian approach is proposed to perform model updating of
parameters related to the bending response of bridge structures. It employs a dataset generated
during the calibration procedure for a B-WIM system, comprising a number of controlled runs
of known vehicles. In addition, a downsampling procedure was performed to mitigate the effect
of serial correlation among residuals. To assess the suitability of the proposed approach, both
numerically simulated and real-world signals were applied. For the numerical simulations, where
the true values employed for generating the signals were previously known, the updating process
was able to properly estimate the uncertainties regarding the parameters of interest. For the
real B-WIM calibration example, such a comparison was not possible. However, the estimates
are consistent, even when comparing results obtained for datasets from different vehicles. Thus,
the presented results indicate that the proposed approach is able to provide useful and robust
information for helping in decision-making related to the safety of bridge structures.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior, Brasil (CAPES) (finance code 001) and the Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico (CNPQ) (Grant No. 307133/2020-6).

Chapter 5. Model Updating Using Hierarchical Bayesian Strategy Employing B-WIM Calibration Data 157



31

REFERENCES

BALLESTEROS, G. C.; ANGELIKOPOULOS, P.; PAPADIMITRIOU, C.;
KOUMOUTSAKOS, P. Bayesian Hierarchical Models for Uncertainty Quantification in
Structural Dynamics. In: VULNERABILITY, Uncertainty, and Risk: Quantification, Mitigation,
and Management. [S.l.: s.n.], 2014. P. 1615–1624.

BEHMANESH, Iman; MOAVENI, Babak. Accounting for environmental variability, modeling
errors, and parameter estimation uncertainties in structural identification. Journal of Sound
and Vibration, v. 374, p. 92–110, 2016. ISSN 0022-460X.

BEHMANESH, Iman; MOAVENI, Babak; LOMBAERT, Geert; PAPADIMITRIOU, Costas.
Hierarchical Bayesian model updating for structural identification. Mechanical Systems and
Signal Processing, v. 64-65, p. 360–376, 2015. ISSN 0888-3270.

BROWNJOHN, James Mark William; MOYO, Pilate; OMENZETTER, Piotr; LU, Yong.
Assessment of Highway Bridge Upgrading by Dynamic Testing and Finite-Element Model
Updating. Journal of Bridge Engineering, v. 8, n. 3, p. 162–172, 2003.

CANTERO, Daniel. Moving point load approximation from bridge response signals and its
application to bridge Weigh-in-Motion. Engineering Structures, v. 233, p. 111931, 2021.
ISSN 0141-0296.

CANTERO, Daniel; GONZÁLEZ, Arturo. Bridge Damage Detection Using Weigh-in-Motion
Technology. Journal of Bridge Engineering, v. 20, n. 5, p. 04014078, 2015.

CANTERO, Daniel; KAROUMI, Raid; GONZÁLEZ, Arturo. The Virtual Axle concept for
detection of localised damage using Bridge Weigh-in-Motion data. Engineering Structures,
v. 89, p. 26–36, 2015. ISSN 0141-0296.

CARRARO, Felipe; GONÇALVES, Matheus Silva; LOPEZ, Rafael Holdorf;
MIGUEL, Leandro Fleck Fadel; VALENTE, Amir Mattar. Weight estimation on static B-WIM
algorithms: A comparative study. Engineering Structures, v. 198, p. 109463, 2019. ISSN
0141-0296.

CATBAS, F. Necati; ZAURIN, Ricardo; GUL, Mustafa; GOKCE, Hasan Burak. Sensor
Networks, Computer Imaging, and Unit Influence Lines for Structural Health Monitoring: Case
Study for Bridge Load Rating. Journal of Bridge Engineering, v. 17, n. 4, p. 662–670,
2012.

Chapter 5. Model Updating Using Hierarchical Bayesian Strategy Employing B-WIM Calibration Data 158



DNIT, Departamento Nacional de Infraestrutura de Transportes. Quadro de fabricantes de
veículos. Rio de Janeiro, Brazil, 2012. Available from: https://www.gov.br/dnit/pt-
br/rodovias/operacoes-rodoviarias/pesagem/QFV2012ABRIL.pdf.

DURBIN, J.; WATSON, G. S. Testing for Serial Correlation in Least Squares Regression: I.
Biometrika, v. 37, n. 3/4, p. 409–428, 1950. ISSN 00063444.

FRØSETH, Gunnstein T.; RØNNQUIST, Anders; CANTERO, Daniel; ØISETH, Ole.
Influence line extraction by deconvolution in the frequency domain. Computers &
Structures, v. 189, p. 21–30, 2017. ISSN 0045-7949.

GELMAN, Andrew; CARLIN, John B.; STERN, Hal S.; DUNSON, David B.; VEHTARI, Aki;
RUBIN, Donald B. Bayesian Data Analysis. Third. [S.l.]: Chapman and Hall/CRC, 2013.
ISBN 9781439840955.

GONÇALVES, Matheus Silva. Vehicle-bridge dynamics simulation considering inherent
variability in structural properties. [S.l.: s.n.], 2021. Mendeley Data. v1. Available from:
http://dx.doi.org/10.17632/9j2wngpdg3.1.

GONÇALVES, Matheus Silva; CARRARO, Felipe; LOPEZ, Rafael Holdorf. A B-WIM
algorithm considering the modeling of the bridge dynamic response. Engineering
Structures, v. 228, p. 111533, 2021. ISSN 0141-0296.

GONÇALVES, Matheus Silva; LOPEZ, Rafael Holdorf; OROSKI, Elder;
VALENTE, Amir Mattar. A Bayesian algorithm with second order autoregressive errors for
B-WIM weight estimation. Engineering Structures, v. 250, p. 113353, 2022. ISSN
0141-0296.

HE, Wei; LIANG, Xiaodong; DENG, Lu; KONG, Xuan; XIE, Hong. Axle Configuration and
Weight Sensing for Moving Vehicles on Bridges Based on the Clustering and Gradient
Method. Remote Sensing, v. 13, n. 17, p. 3477, 2021. ISSN 2072-4292.

HE, Wei; LING, Tianyang; O’BRIEN, Eugene J.; DENG, Lu. Virtual Axle Method for Bridge
Weigh-in-Motion Systems Requiring No Axle Detector. Journal of Bridge Engineering,
v. 24, n. 9, p. 04019086, 2019.

HEITNER, Barbara; SCHOEFS, Franck; O’BRIEN, Eugene J.; ŽNIDARIČ, Aleš;
YALAMAS, Thierry. Using the unit influence line of a bridge to track changes in its condition.
Journal of Civil Structural Health Monitoring, v. 10, n. 4, p. 667–678, 2020.

Chapter 5. Model Updating Using Hierarchical Bayesian Strategy Employing B-WIM Calibration Data 159



HELMI, Karim; TAYLOR, Todd; ANSARI, Farhad. Shear force–based method and application
for real-time monitoring of moving vehicle weights on bridges. Journal of Intelligent
Material Systems and Structures, v. 26, n. 5, p. 505–516, 2015.

IENG, Sio-Song. Bridge Influence Line Estimation for Bridge Weigh-in-Motion System.
Journal of Computing in Civil Engineering, v. 29, n. 1, p. 06014006, 2015.

ISO 8606:1995. Mechanical Vibration-Road Surface Profiles-Reporting of Measured
Data. [S.l.], 1995.

JACOB, Bernard; O’BRIEN, Eugene J.; JEHAES, Sophie. Weigh-in-motion of road
vehicles: final report of the COST 323 action. Paris, 2002.

JAMES, Gareth; WITTEN, Daniela; HASTIE, Trevor; TIBSHIRANI, Robert. An
introduction to statistical learning. [S.l.]: Springer, New York, NY, 2013.

JUNGES, Paulo. Análise de fadiga em pontes curtas de concreto armado a partir de
dados de sistemas B-WIM. 2017. Ph.D. Thesis – Universidade Federal de Santa Catarina,
Florianópolis, Brazil (in Portuguese).

KHAN, Mohammad Shihabuddin; CAPRANI, Colin; GHOSH, Siddhartha; GHOSH, Jayadipta.
Value of strain-based structural health monitoring as decision support for heavy load access to
bridges. Structure and Infrastructure Engineering, Taylor & Francis, v. 18, n. 4,
p. 521–536, 2022.

KWAG, Shinyoung; JU, Bu Seog. Application of a Bayesian hierarchical model to system
identification of structural parameters. Engineering with Computers, v. 36, n. 2,
p. 455–474, 2020.

LANSDELL, Andrew; SONG, Wei; DIXON, Brandon. Development and testing of a bridge
weigh-in-motion method considering nonconstant vehicle speed. Engineering Structures,
Elsevier, v. 152, p. 709–726, 2017. ISSN 0141-0296.

LIMA E OLIVEIRA, Caroline Buratto de; GRECO, Marcelo; BITTENCOURT, Túlio N.
Analysis of the Brazilian Federal Bridge Inventory. Revista IBRACON de Estruturas e
Materiais [online], v. 12, n. 1, p. 1–13, 2019.

Chapter 5. Model Updating Using Hierarchical Bayesian Strategy Employing B-WIM Calibration Data 160



LYDON, Myra; TAYLOR, Su E.; ROBINSON, D.; MUFTI, Aftab; O’BRIEN, Eugene J.
Recent developments in bridge weigh in motion (B-WIM). Journal of Civil Structural
Health Monitoring, Springer, v. 6, n. 1, p. 69–81, 2016.

MA, Yafei; WANG, Lei; ZHANG, Jianren; XIANG, Yibing; LIU, Yongming. Bridge Remaining
Strength Prediction Integrated with Bayesian Network and In Situ Load Testing. Journal of
Bridge Engineering, v. 19, n. 10, p. 04014037, 2014.

MANDIĆ IVANKOVIĆ, Ana; SKOKANDIĆ, Dominik; ŽNIDARIČ, Aleš; KRESLIN, Maja.
Bridge performance indicators based on traffic load monitoring. Structure and
Infrastructure Engineering, Taylor & Francis, v. 15, n. 7, p. 899–911, 2019.

MOSES, Fred. Weigh-in-Motion System Using Instrumented Bridges. Transportation
Engineering Journal of ASCE, v. 105, n. 3, p. 233–249, 1979.

MÚČKA, Peter. Simulated Road Profiles According to ISO 8608 in Vibration Analysis.
Journal of Testing and Evaluation, ASTM International, v. 46, n. 1, p. 405–418, 2017.

O’BRIEN, Eugene J.; BROWNJOHN, J. M. W.; HESTER, D.; HUSEYNOV, F.; CASERO, M.
Identifying damage on a bridge using rotation-based Bridge Weigh-In-Motion. Journal of
Civil Structural Health Monitoring, v. 11, n. 1, p. 175–188, 2021.

O’BRIEN, Eugene J.; QUILLIGAN, Michael J.; KAROUMI, Raid. Calculating an influence line
from direct measurements. Proceedings of the Institution of Civil Engineers - Bridge
Engineering, v. 159, n. 1, p. 31–34, 2006.

O’BRIEN, Eugene J.; ROWLEY, Cillian W.; GONZÁLEZ, Arturo; GREEN, Mark F. A
regularised solution to the bridge weigh-in-motion equations. International Journal of
Heavy Vehicle Systems, v. 16, n. 3, p. 310–327, 2009.

O’BRIEN, Eugene J.; ZHANG, Longwei; ZHAO, Hua; HAJIALIZADEH, Donya. Probabilistic
bridge weigh-in-motion. Canadian Journal of Civil Engineering, v. 45, n. 8, p. 667–675,
2018.

OKASHA, Nader M.; FRANGOPOL, Dan M.; ORCESI, André D. Automated finite element
updating using strain data for the lifetime reliability assessment of bridges. Reliability
Engineering & System Safety, v. 99, p. 139–150, 2012. ISSN 0951-8320.

Chapter 5. Model Updating Using Hierarchical Bayesian Strategy Employing B-WIM Calibration Data 161



PRESS, S. James. Subjective and Objective Bayesian Statistics: Principles, Models,
and Applications. Second. [S.l.]: John Wiley & Sons, 2002. ISBN 978-0-471-34843-6.

QUILLIGAN, Michael. Bridge Weigh-in-Motion Development of a 2-D Multi-Vehicle
Algorithm. 2003. Licentiate Thesis – KTH Royal Institute of Technology, Stockholm,
Sweden.

ROWLEY, Cillian; GONZÁLEZ, Arturo; O’BRIEN, Eugene J.; ŽNIDARIČ, Aleš. Comparison
of conventional and regularized bridge weigh-in-motion algorithms. In: PROCEEDINGS of the
international conference on heavy vehicles. [S.l.: s.n.], 2008. P. 221–230.

SCHLUNE, Hendrik; PLOS, Mario; GYLLTOFT, Kent. Improved bridge evaluation through
finite element model updating using static and dynamic measurements. Engineering
Structures, v. 31, n. 7, p. 1477–1485, 2009. ISSN 0141-0296.

SEDEHI, Omid; PAPADIMITRIOU, Costas; KATAFYGIOTIS, Lambros S. Data-driven
uncertainty quantification and propagation in structural dynamics through a hierarchical
Bayesian framework. Probabilistic Engineering Mechanics, v. 60, p. 103047, 2020. ISSN
0266-8920.

SEDEHI, Omid; PAPADIMITRIOU, Costas; KATAFYGIOTIS, Lambros S. Probabilistic
hierarchical Bayesian framework for time-domain model updating and robust predictions.
Mechanical Systems and Signal Processing, v. 123, p. 648–673, 2019. ISSN 0888-3270.

SIMOEN, Ellen; DE ROECK, Guido; LOMBAERT, Geert. Dealing with uncertainty in model
updating for damage assessment: A review. Mechanical Systems and Signal Processing,
v. 56-57, p. 123–149, 2015. ISSN 0888-3270.

SONG, Mingming; MOAVENI, Babak; PAPADIMITRIOU, Costas; STAVRIDIS, Andreas.
Accounting for amplitude of excitation in model updating through a hierarchical Bayesian
approach: Application to a two-story reinforced concrete building. Mechanical Systems and
Signal Processing, v. 123, p. 68–83, 2019. ISSN 0888-3270.

YOSHIDA, Ikumasa; SEKIYA, Hidehiko; MUSTAFA, Samim. Bayesian Bridge
Weigh-in-Motion and Uncertainty Estimation. ASCE-ASME Journal of Risk and
Uncertainty in Engineering Systems, Part A: Civil Engineering, v. 7, n. 1, p. 04021001,
2021.

Chapter 5. Model Updating Using Hierarchical Bayesian Strategy Employing B-WIM Calibration Data 162



YU, Yang; CAI, C. S.; DENG, Lu. State-of-the-art review on bridge weigh-in-motion
technology. Advances in Structural Engineering, SAGE Publications, v. 19, n. 9,
p. 1514–1530, 2016.

YU, Yang; CAI, C.S.; DENG, Lu. Nothing-on-road bridge weigh-in-motion considering the
transverse position of the vehicle. Structure and Infrastructure Engineering, Taylor &
Francis, v. 14, n. 8, p. 1108–1122, 2018.

ŽNIDARIČ, Aleš; KALIN, Jan. Using bridge weigh-in-motion systems to monitor single-span
bridge influence lines. Journal of Civil Structural Health Monitoring, v. 10, n. 5,
p. 743–756, 2020.

Chapter 5. Model Updating Using Hierarchical Bayesian Strategy Employing B-WIM Calibration Data 163



Table 5 – Stiffness of each axle

Vehicle ID Axle stiffness (kN/m2)
Axle 1 Axle 2 Axle 3 Axle 4 Axle 5 Axle 6 Axle 7 Axle 8 Axle 9

1 400 1,000 - - - - - - -
2 400 1,000 1,000 - - - - - -
3 400 1,000 750 750 - - - - -
4 400 1,000 1,000 750 750 - - - -
5 400 1,000 1,000 750 750 750 - - -
6 400 1,000 1,000 750 750 750 750 - -
7 400 1,000 1,000 750 750 750 750 750 -
8 400 1,000 1,000 750 750 750 750 750 750

Table 6 – Mass of each axle

Vehicle ID Axle mass (kg)
Axle 1 Axle 2 Axle 3 Axle 4 Axle 5 Axle 6 Axle 7 Axle 8 Axle 9

1 6,000 10,000 - - - - - - -
2 6,000 8,500 8,500 - - - - - -
3 6,000 10,000 8,500 8,500 - - - - -
4 6,000 8,500 8,500 10,000 10,000 - - - -
5 6,000 8,500 8,500 10,000 10,000 10,000 - - -
6 6,000 8,500 8,500 8,500 8,500 8,500 8,500 - -
7 6,000 8,500 8,500 8,500 8,500 8,500 8,500 10,000 -
8 6,000 8,500 8,500 8,500 8,500 8,500 8,500 8,500 8,500

.1 VEHICLE INFORMATION

All simulated signals are referred to the strains at the bottom of the bridge girder, at
its mid-span. The damping coefficient for all vibration modes is defined as 0.05 and the mass
per unity length of the beam is set to 10,000 kg/m. The simulations were carried out following
a procedure analogous to that described by Carraro et al. (2019), considering a total of 15
vibration modes. To simplify the simulations, and without loss of generality, the cross section
employed is such that the values of moment of inertia and section modulus are equal.

The vehicles are simulated as a sequence of moving sprung masses. The properties
regarding the stiffness, mass, and position of each axle, respectively, of the simulated vehicles
are given in Table 5, Table 6 and Table 7. For all simulations and axles, the damping is fixed
at 10,000 Ns/m.
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Table 7 – Longitudinal position of each axle

Vehicle ID Axle position (m)
Axle 1 Axle 2 Axle 3 Axle 4 Axle 5 Axle 6 Axle 7 Axle 8 Axle 9

1 0 4.25 - - - - - - -
2 0 3.7 5.5 - - - - - -
3 0 3.7 7.4 9.2 - - - - -
4 0 3.7 5.5 9.2 12.9 - - - -
5 0 3.7 5.5 9.2 12.9 16.6 - - -
6 0 3.7 5.5 9.2 11 14.7 16.5 - -
7 0 3.7 5.5 9.2 11 14.7 16.5 20.2 -
8 0 3.7 5.5 9.2 11 12.8 16.5 18.3 20.1
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6 CONCLUDING REMARKS

The objective of the present thesis was to contribute to the development of more efficient
B-WIM systems. For reaching this goal, both the improvement in accuracy of B-WIM weight
estimates and the assessment of structural bridge properties by means of calibration data were
addressed. The approaches adopted for providing better weight predictions were formulated
after analyzing Carraro et al. (2019), who presented a big picture of the most promising
issues in this regard. The present work addressed directly two of them: the consideration of
dynamic response into B-WIM predictions (chapter 3) and the application of prior information
for guiding the weight estimation (chapter 4). Regarding the assessment of bridge structural
properties, this work presented a method that employs the data collected during the calibration
of B-WIM systems to reach this goal (chapter 5). As each method was independently developed,
it was opted to show conclusions individually for each of them. Moreover, despite the relevant
contributions presented to the improvement of B-WIM system applications in general, there
are some issues that should be addressed to expand the proposed approaches and proceed
with the continuous evolution of B-WIM systems technology. Hence, some suggestions that
are seen as the most promising ones are remarked when drawing conclusions for each method
(for more comments, detailed suggestions related to each approach were drawn at the end of
each chapter).

6.1 A B-WIM ALGORITHM CONSIDERING THE MODELING OF THE BRIDGE DYNAMIC
RESPONSE

A B-WIM algorithm that includes a simplified dynamic model for the vehicle-bridge
system was presented in Gonçalves, Carraro, and Lopez (2021a) (chapter 3). It is based on
the work of Ning-Bo Wang et al. (2017), whose goal was to extract the static component
of the bridge influence line from a single calibration run. In the present work, this method
was extended for accounting to multiple calibration runs by the utilization of the maximum
likelihood approach (IENG, 2015). In addition, the dynamic response of the structure was
utilized to generate a parametric influence line that is a function of the vehicle speed and
the equations needed to perform the weight prediction were derived. As a result, continuous
functions are utilized as influence lines, which better reflects its expected behavior (ŽNIDARIČ;
KALIN; KRESLIN, 2018). Moreover, as already discussed in the present study and also noticed
in other works (O’BRIEN; GONZÁLEZ; DOWLING, 2010), the bridge response relies on the
vehicle speed and introducing it as a parameter for creating the influence line seems a suitable
option. In addition, just a small set of parameters is fitted by the calibration of the model. It
avoids adjusting all the ordinates of the influence line, which likely introduces patterns that
are due to the specific characteristics of calibration vehicles instead of reflecting the bridge
behavior. Due to all discussed points, it was expected that the proposed approach provides
better estimates for vehicles of the usual traffic flow (i.e., a higher generalization capacity).
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Three distinct implementations were evaluated, according to the assumptions stated
for the calculation of the model parameters: Standard (static approximation + fluctuation part,
analogous to Ning-Bo Wang et al. (2017)), Analytical (quasi-static + fluctuation) and Static
(static approximation alone). The numerical simulations included bridge lengths ranging from
10 to 30 m, different road profiles and test vehicles distinct from the calibration ones. The
predictions of both Analytical and Static methods were able to overcome the mean absolute
error reported by all the other evaluated methods (matrix method (O’BRIEN; QUILLIGAN,
M. J.; KAROUMI, 2006), pBWIM (O’BRIEN et al., 2018) with the implementation proposed
by Gonçalves, Carraro, and Lopez (2021b), maximum likelihood (IENG, 2015) and regularized
approach (O’BRIEN et al., 2009)). The main difference occurs for the 30 m bridges, in which
the Analytical method shows a remarkable performance. It is worth to notice that such results
occurred even considering that bridge dynamic properties were not precisely known previously,
indicating that the proposed approach is also robust. Another interesting aspect to observe is
that the Analytical method removed a large amount of bias present in the mean absolute error
due to the vehicle speed (i.e, estimates presented for distinct vehicles are scattered around a
mean absolute error close to zero for the Analytical method, which is not achieved for other
methods). This is a direct result of the inclusion of the vehicle speed as a model parameter,
which allows that a same vehicle induces different structural responses according to its speed.
The results for both Static and Analytical methods indicated that they reached their objectives,
mainly for longer bridges. Although the results of the Analytical method presented robustness,
such a method will not perform properly if no estimates for bridge properties are available at
all. In this case, one could employ just the Static method which should still present better
results for unseen vehicles.

In what follows some suggestions for future works in this matter are drawn. The first issue
that seems interesting to be addressed is the validation of the method with experimental data.
It was not performed yet since the dataset available was related to a bridge with characteristics
that does not follow model assumptions. This point remarks other major contribution that
should be performed: to extend the formulation to account for bridges with other boundary
conditions than single-span simply supported ones, also allowing the possibility of analyzing
continuous bridges.

6.2 A BAYESIAN ALGORITHM WITH SECOND ORDER AUTOREGRESSIVE ERRORS
FOR B-WIM WEIGHT ESTIMATION

A common problem for B-WIM estimates is related to the lower accuracy for individual
axle estimates when compared with GVW predictions (HE et al., 2019; O’BRIEN et al., 2018;
RICHARDSON et al., 2014; O’BRIEN et al., 2009). In order to address this issue, a Bayesian
strategy was proposed in Gonçalves et al. (2022) (chapter 4) to account to prior information
regarding the expected values of axle weights in practice. As a consequence, it also intends
to overcome spurious estimates that often arise in classical B-WIM methods (e.g., negative
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estimates for closely spaced axle weights). The most common approach when utilizing Bayesian
strategies is to assume that errors between theoretical and measured responses are independent,
such as in the work of Yoshida, Sekiya, and Mustafa (2021). An important problematic issue
detected during the derivation of the proposed procedure, however, was related to the presence
of high serial correlation among residuals. It has an undesired impact into Bayesian predictions,
since the importance of the likelihood is artificially increased, reducing the effect of the prior
distribution. Then, in contrast to the usual strategy, in the present method the independence
assumption was avoided by the utilization of a second order autoregressive (AR(2)) process
for modeling the aforementioned error.

The suitability of the proposed approach was assessed by evaluating both simulated
signals and an example of real B-WIM calibration data, analyzing also out-of-sample predictions
(i.e., distinct vehicles for calibrating and testing the system). The results were compared to
the least square solution and the regularized approach with near optimal parameters. The
latter approach can be seen as an example of excellent performance, however the strategy to
select the regularization parameter is not reproducible in practice. Then, its results are just
for comparison purposes. In addition, four variants of the proposed strategy are tested, aiming
to check the influence of both prior distribution and model for the error term into results.
Finally, as the prior definition is somewhat subjective, sensitivity analyses are also performed
by evaluating results for distinct combinations of prior parameters. The results indicated that
the proposed approach was able to avoid spurious estimates such as negative axle weights, as
intended. Furthermore, the accuracy reached outperformed those ones obtained by the other
analyzed algorithms, even considering scenarios that do not fit the prior beliefs (e.g., axle
weights clearly above the prior mean). The results are even better when considering the single
axle predictions, which achieved an accuracy level similar to GVW predictions. Furthermore,
the statements regarding the importance of modeling correlated errors were confirmed. The
Bayesian estimates without the utilization of the AR(2) model were highly similar to the least
squares solution, almost disregarding the prior distribution information. Then, the proposed
prior distribution, based on the practical values for axle weights, needs to be utilized together
with the AR(2) model to effectively improve results. The sensitivity analyses confirmed the
robustness of the proposed approach to the definition of the prior distribution. It is an already
expected result since the range of prior parameters that cover axle weights for usual vehicles
is not so wide. It is, indeed, the higher practical advantage of the proposed method. The
prior distribution has a clear correspondence with quantities that are usual for who operates a
B-WIM system, which allows reliable guesses for the definition of such a distribution.

The strategy presented in chapter 4 was able to provide excellent point estimates for the
axle weights. However, one could make use of the full posterior probability distribution of such
quantities. It would allow many further analyses, such as the probability of overweight for a
given vehicle axle, which would be useful for practical purposes. In addition, the same Bayesian
ideas utilized for weight estimation would be utilized for calculating the bridge influence line.
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It may allow a better understanding of the confidence in the calculated curve by means of
confidence bounds. Furthermore, such uncertainties may be propagated for further probabilistic
analyses.

6.3 MODEL UPDATING USING HIERARCHICAL BAYESIAN STRATEGY EMPLOYING
B-WIM CALIBRATION DATA

The motivation for the third topic of the present work was the lack of information
noticed for Brazilian bridges (LIMA E OLIVEIRA; GRECO; BITTENCOURT, 2019). Even some
basic data, such as their exact age, may not be precisely known. Without reliable information,
it is difficult to assess the real bridge safety, which ultimately may be converted into risk
for bridge users. Then, instead of utilizing the dataset generated during the calibration of a
B-WIM system for calculating the bridge influence line as usual, the approach proposed in
Gonçalves, Lopez, and Valente (2022) (chapter 5) aims to utilize this information to improve
the knowledge regarding bridge structural parameters. In this regard, it is important to notice
that the dataset likely presents an inherent variability, i.e., the value of the QoI may change
from one calibration event to another. This is due to the own nature of calibration events,
which are not completely isolated experiments and, hence, no one has total control over all
parameters that may affect the results (e.g., environmental conditions). In order to address this
inherent variability, the proposed approach utilized a hierarchical Bayesian framework. Such
strategies were previously applied for several structural systems (BEHMANESH; MOAVENI,
2016; KWAG; JU, 2020; SONG, M. et al., 2019), indicating that it is a promising technique
for the present application.

The proposed method was also evaluated utilizing simulated signals, including simple
examples to illustrate the advantages of the hierarchical strategy, and an example of real B-
WIM calibration data. The estimates for simulated signals were close to the known true values
for all the analyzed parameters. In particular, the method was able to properly estimate the
uncertainties related to the QoI (i.e., the product between elastic modulus and section modulus
of the bridge girders), which was the main goal of employing a hierarchical strategy. It is worth
to remark that such results were confirmed utilizing a number of vehicle runs compatible with
practical B-WIM calibrations and considering individually the data generated by each vehicle.
The latter statement is important since just few vehicles are usually employed in calibration
and it is important that results are not excessively dependent of specific properties of such
vehicles. When evaluating the real calibration data example, results are also interesting. In this
case, the differences between estimates from distinct vehicles are higher than for simulated
signals, however results still are consistent. As real datasets are more complex, it was an
already expected behavior. Furthermore, the uncertainty propagation analyses were able to
properly predict the response for both vehicles. All analyses indicated that such an approach
is promising and able to provide useful information, mainly in the context of lack of basic
information. Despite the simplified model utilized, this work provides an initial framework to
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help in the development of models that allow a better assessment of the safety of the structure.
The approach proposed in chapter 5 is a proof of concept. It showed that the data

generated in calibration of B-WIM systems may be employed to estimate bridge structural
properties, including uncertainty quantification. However, it is noticed that the model utilized
is somewhat simplified. Although the limited information scenario for Brazilian bridges suggests
that such added information is already useful, more complex models can be developed and
provide more complete analyses. For instance, one could account for the transverse distribution
of loads together with the consideration of distinct properties for each girder. Other example is
the application of the same ideas to perform further analyses for structural safety assessment
(e.g., prediction of stiffness degradation due to reinforcement corrosion as in the work of Ma
et al. (2014) or the own calculation of influence line coefficients). In addition, a covariance
matrix that relaxes the hypothesis of independence among error terms could be employed
as in Gonçalves et al. (2022). Some corrective constant may also be applied to model the
heteroscedasticity among datasets from distinct vehicles, following an approach analogous to
Mingming Song et al. (2019).

6.4 FINAL REMARKS

The present work remarks the practical importance of B-WIM systems, indicating also a
possible path to deal with the lack of information for Brazilian bridges. After a final discussion
related to the proposed approaches, it is possible to affirm that the objective of this thesis
was achieved. It has provided relevant contributions for the improvement of B-WIM system
applications in general, being a piece in the continuous evolution of B-WIM systems technology.
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