

Universidade Federal de Santa Catarina Campus Araranguá - ARA Centro de Ciências, Tecnologias e Saúde Departamento de Computação Plano de Ensino

SEMESTRE 2022.2

I. IDENTIFICAÇÃO DA DISCIPLINA								
CÓDIGO	NOME DA DISCIPLINA		N° DE HORAS-AULA SEMANAIS - TEÓRICAS	N° DE HORAS-AULA SEMANAIS - PRÁTICAS				
DEC7510	Linguagens Formais e Autômatos	9	4	0				
TOTAL DE HORAS- AULA SEMESTRAIS	HORÁRIO TURMAS TEÓRICAS	HOR	ÁRIO TURMAS PRÁTICAS	MODALIDADE				
72	07655 4.1620-2 07655 6.1620-2			Presencial				

II. PROFESSOR(ES) MINISTRANTE(ES)

Eugênio Simão eugenio.simao@ufsc.br

Atendimento a alunos: Segunda e Quinta Feira das 14h20 às 16h00 na sala virtual https://meet.google.com/vwb-kjbx-pie e/ou local a agendar com o professor

III. PRÉ-REQUISITO(S)

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

ENGENHARIA DE COMPUTAÇÃO [Campus Araranguá]

V. JUSTIFICATIVA

Esta disciplina explora conceitos e mecanismos da teoria da computação. Aprofunda o conhecimento em máquinas de estado finito e linguagens regulares, autômatos de pilha e linguagens livres de contexto, máquinas de Turing e linguagens enumeráveis recursivas.

VI. EMENTA

Conceitos Centrais: Símbolos, Alfabeto, Strings e Linguagem. Linguagens Regulares. Expressões Regulares. Automatos Finitos e Expressões Regulares. Propriedades das Linguagens Regulares. Linguagens Livres de Contexto. Automato de Pilha. Introdução a Máquinas de Turing.

VII. OBJETIVOS

Apresentar os principais métodos de tratamento sintático de linguagens lineares abstratas, com a respectiva associação às linguagens típicas da ciência da computação. Estudar formalismos operacionais, axiomáticos e denotacionais e sua aplicação em compiladores, interpretadores e em ciência da computação em geral.

VIII. CONTEÚDO PROGRAMÁTICO

Unidade I: Autômatos Finitos Determinísticos. Definição de um Autômato Finito Determinístico. Como um DFA processa Strings. Notação formal para DFAs, Tabela de Transição. Estendendo a Função de Transição para Strings. A linguagem definida por um DFA. Exercícios.

Unidade II: Autômatos Finitos Não-Determinísticos. Uma visão informal. Definição. Função de Transição Estendida. A linguagem definida por uma NFA. Equivalência entre Autômato Finito Determinístico e Não-Determinístico. Exercícios.

Unidade III: Autômatos Finitos de Transição Vazia. Uso da Transição Epsilon (Vazia). Notação Formal. Fechamento. Epsilons. Função de Transição Estendida. Eliminação de Transições Epsilons.

Unidade IV: Expressões Regulares. Operadores. Construção de Expressões Regulares. Precedência entre operadores. Autômatos Finitos e Expressões Regulares. Conversão de DFA para Expressões Regulares. Conversão de Expressões Regulares em Autômatos. Exercícios.

Unidade V: Linguagens Livres de Contexto. Definição. Gramáticas. Derivações à esquerda e à direita. Linguagem descrita por uma gramática. Formas sentenciais. Árvores de derivação. Inferência, derivação e árvores gramaticais. Ambiguidades. Aplicações. Exercícios.

Unidade VI: Simplificações de Gramáticas. Eliminação de Produções Unitárias. Eliminação de Produções Épsilons. Forma Normal de Chomsky. Forma Normal de Greibach. Exercícios.

Unidade VII: Autômato com Pilha, PDA (Push Down Automata). Definição Formal. Como que um PDA

processa Strings. Construção de um PDA para uma dada Gramática. Exercícios.

Unidade VIII: A Máquina de Turing. Notação Formal. Descrição instantânea para máquina de Turing. Diagramas de transição para máquinas de Turing. A linguagem da máquina de Turing. Tese Church- Turing.

Unidade IX: Programação de Máquinas de Turing. Versões de Máquinas de Turing. Indecidibilidade. Problema da Parada. Exercícios.

Unidade X: Apresentação de Trabalho. Softwares de geração automática de código orientados por definições formais de projeto. Trabalho da Calculadora. Softwares Flex e Bison, equivalentes ao LEX e YAAC.

IX. COMPETÊNCIAS/HABILIDADES

O aluno terá a capacidade de reconhecer padrões numéricos e avaliar a construção de argumentos e lógicas computacionais.

X. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

- Aula expositiva utilizando recursos instrucionais de projeção de imagens, de filmes e documentários científicos, materiais impressos de apoio a prática de dinâmica de grupo, bem como recursos para o acesso a sítios especializados da internet em fundamentos matemáticos.
- Os encontros serão realizados através de uma plataforma de videoconferência. Nessa situação será apresentado o conteúdo programático em conjunto com esclarecimento de possíveis duvidas e resolução de exercícios. Atividades assíncronas serão propostas durante o semestre, as quais poderão ser discutidas em encontros síncronos.

Requisitos de infraestrutura necessários para ministrar as aulas:

- Acesso à Internet;
- Ambiente Virtual de Aprendizagem Moodle.;
- Disponibilidade de um sistema de vídeo conferência.

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente - FS), ficando nela reprovado o aluno que não comparecer a mais de 25% das atividades (Frequência Insuficiente - FI).

A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).

O aluno com Frequência Suficiente (FS) e média das notas de avaliações do semestre MF entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2°. A Nota Final (NF) será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. n° 17/CUn/1997).

Ao aluno que não efetuar as avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações:

- A primeira avaliação compreenderá as unidades de I a IV, na forma de resolução de problemas, e que deverá ser entregue por postagem individual em ambiente colaborativo no prazo estabelecido.
- A segunda avaliação compreenderá as unidades de V a VII, na forma de resolução de problemas, e que deverá ser entregue por postagem individual em ambiente colaborativo no prazo estabelecido.
- A terceira avaliação compreenderá a unidade VIII e IX na forma de resolução de problemas, e que deverá ser entregue por postagem individual em ambiente colaborativo no prazo estabelecido.
- A quarta avaliação compreenderá a execução e entrega de trabalho, e que deverá ser entregue por postagem individual em ambiente colaborativo no prazo estabelecido.

As provas poderão conter questões objetivas, objetivas mistas e dissertativas, também a qualquer momento poderá ser exigido exposição oral sobre conteúdo avaliado.

- A Média Final (MF) será calculada na forma da média aritmética simples das guatro avaliações.
- A avaliação no final do semestre (REC) seguirá a mesma regra das avaliações anteriores.

Observações:

Avaliação de recuperação:

Não há avaliação de recuperação nas disciplinas de caráter prático que envolve atividades de laboratório (Res.17/CUn/97).

Nova avaliação:

O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá formalizar pedido à Chefia do Departamento de Ensino ao qual a disciplina pertence, dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de nova avaliação deverá ser formalizado na Secretaria Integrada de Departamentos.

Complementação de carga horária:

A complementação da carga horária da disciplina acorrerá da seguinte forma: (i) a Semana de Integração Acadêmica será contabilizada como dias letivos, conforme calendário acadêmico de 2022; e (ii) serão solicitados trabalhos de carácter prático-teórico para complementação de carga horária da disciplina.

XII. CRONOGRAMA					
SEMANA	DATAS	ASSUNTO			
1	25/08/2022 a 27/08/2022	Semana de recepção.			
2	29/08/2022 a 03/09/2022	Autômatos Finitos Determinísticos. Definição Formal. Como um DFA processa Strings. Função de Transição estendida. A linguagem definida por um DFA. Exercícios.			
3	05/09/2022 a 10/09/2022	Autômatos Finitos Não-Determinísticos, NFA. Definição Formal. Função de Transição Estendida. A linguagem definida por uma NFA. Equivalência entre Autômato Finito Determinístico e Não-Determinístico. Exercícios.			
4	12/09/2022 a 17/09/2022	Formal. Função de Transição Estendida. A linguagem definida por uma NFA. Equivalência entre Autômato Finito Determinístico e Não-Determinístico. Exercícios.			
5	19/09/2022 a 24/09/2022	SAEC			
6	26/09/2022 a 01/10/2022	Autômatos Finitos de Transição Espontânea (épsilon). Notação Formal. Como que uma eNFA processa Strings. Operações de Fechamento Épsilons. Exercícios.			
7	03/10/2022 a 08/10/2022	Autômatos Finitos de Transição Espontânea (épsilon). Notação Formal. Como que uma eNFA processa Strings. Operações de Fechamento Épsilons. Técnicas de construção de DFA equivalente Exercícios.			
8	10/10/2022 a 15/10/2022	Expressões Regulares, RE. Definição Formal. Operadores. Construção de expressões Regulares. Precedência entre operadores. Propriedades dos Operadores. Simplificação de Expressões Regulares. Exercícios.			
9	17/10/2022 a 22/10/2022	Técnicas de construção de Expressão Regular Equivalente a um dado Autômato Finito Determinístico, DFA. Construção de um Autômato Finito não Determinístico equivalente dada uma expressão regular. Primeira avaliação.			
10	24/10/2022 a 29/10/2022	Linguagens Livres de Contexto. Definição Formal. Produções Gramaticais. Derivações à esquerda e à direita. Linguagem descrita por uma gramática. Formas sentenciais. Árvores de derivação. Inferência recursiva, derivação e árvores gramaticais. Ambiguidades. Exercícios.			
11	31/10/2022 a 05/11/2022	Simplificações de Gramáticas. Eliminação de Produções Unitárias. Eliminação de Produções Épsilons. Forma Normal de Chomsky. Forma Normal de Greibach. Exercícios.			
12	07/11/2022 a 12/11/2022	Simplificações de Gramáticas. Eliminação de Produções Unitárias. Eliminação de Produções Épsilons. Forma Normal de Greibach. Exercícios.			

13	14/11/2022 a 19/11/2022	Autômato com Pilha, PDA (Push Down Automata). Definição Formal. Como que um PDA processa Strings. Construção de um PDA para uma dada Gramática. Exercícios.		
14	21/11/2022 a 26/11/2022	Autômato com Pilha, PDA (Push Down Automata). Definição Formal. Como que um PDA processa Strings. Construção de um PDA para uma dada Gramática. Exercícios. Segunda avaliação.		
15	28/11/2022 a 03/12/2022	A Máquina de Turing. Notação Formal. Descrição instantânea para máquina de Turing. Diagramas de transição para máquinas de Turing. A linguagem da máquina de Turing. Tese Church-Turing.		
16	05/12/2022 a 10/12/2022	Programação de Máquinas de Turing. Versões de Máquinas de Turing. Indecidibilidade. Problema da Parada. Exercícios. Terceira avaliação.		
17	12/12/2022 a 17/12/2022	Programação de Máquinas de Turing. Versões de Máquinas de Turing. Indecidibilidade. Problema da Parada. Exercícios. Quarta avaliação.		
18	19/12/2022 a 23/12/2022	Prova de recuperação e divulgação das notas		
Obs: O caléndario está sujeito a pequenos ajustes de acordo com as necessidades das atividades				

XIII. FERIADOS PREVISTOS PARA O SEMESTRE				
07/09/2022	Independência do Brasil			
12/10/2022	Nossa Senhora Aparecida			
28/10/2022	Dia do Servidor Público (Lei nº 8.112 - art. 236)			
02/11/2022	Finados			
15/11/2022	Proclamação da República			
09-11/12/2022	Dias reservados ao vestibular 2023			

XIV. BIBLIOGRAFIA BÁSICA

PELLEGRINI, Jerônimo. Linguagens Formais e Autômatos. 2019. 129p. Disponível em: https://aleph0.info/cursos/lf/notas/lfa.pdf

CRITCHLOW, Carol; ECK, David. Foundations of Computation. 2011. 245p. Disponível em: https://www.freetechbooks.com/foundations-of-computation-second-editiont1160.html

HOPCROFT, John E.; ULLMAN, Jeffrey D.; MOTWANI, Rajeev. Introdução à teoria de autômatos, linguagens e computação. Rio de Janeiro: Elsevier, 2003. x, 560p. ISBN 0-201-02988-X.

XV. BIBLIOGRAFIA COMPLEMENTAR

HOPCROFT, John E.; MOTWANI, Rajeev; ULLMAN, Jeffrey D. Introduction to automata theory, languages, and computation. 3nd ed. Boston: Addison Wesley, 2007. xvii, 535p. ISBN 0-321455363

AHO, Alfred V. et al. Compiladores: princípios, técnicas e ferramentas. 2. ed. São Paulo: Pearson Addison Wesley, c2008. x,634 p. ISBN 9788588639249.

PRICE, Ana Maria de Alencar; TOSCANI, Simão Sirineo. Implementação de linguagens de programação: compiladores. 3. ed. Porto Alegre: Bookman, 2008. 195, [1] p. (Série livros didáticos); ISBN 9788577803484

SEBESTA, Robert W. Conceitos de linguagens de programação. 9. ed. Porto Alegre: Bookman, 2011.

MENEZES, Paulo Blauth. Linguagens formais e autômatos. 4. ed. Porto Alegre: Sagra Luzzatto, c2002.

,,				
Professor(a):				
Aprovado pelo Colegiado do Curso em	/	/	Presidente do Colegiado:	