

UNIVERSIDADE FEDERAL DE SANTA CATARINA (UFSC) CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE (CTS) COORDENADORIA ESPECIAL DE FÍSICA, QUÍMICA E MATEMÁTICA (FQM) PLANO DE ENSINO

SEMESTRE 2022.1

I. IDENTIFICAÇÃO DA DISCIPLINA				
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-AULA SEMANAIS		TOTAL DE HORAS-AULA SEMESTRAL
		TEÓRICAS	PRÁTICAS	JEIVIEST KAL
FQM7336	Estática e Dinâmica	4	-	72

HORÁRIO	MODALIDADE	
TURMAS TEÓRICAS	TURMAS PRÁTICAS	
04653 / 05655 :308202 / 508202		Presencial
SL104-A / SL104-A	_	

II. PROFESSOR(ES) MINISTRANTE(S) Bernardo Walmott Borges bernardo.borges@ufsc.br

III. PRÉ-REQUISITO(S)		
CÓDIGO	NOME DA DISCIPLINA	
FQM7102	Cálculo II	
FQM7110	Física A	

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Engenharia de Energia e Engenharia de Computação [Campus Araranguá]

V. JUSTIFICATIVA

Esta disciplina se justifica pela contribuição teórica e investigativa na formação básica de egressos da área de Ciências Exatas e Engenharias. Ela é necessária para a complementação da formação do profissional em Engenharia, possibilitando ao aluno desenvolver a compreensão e aplicação da Estática e Dinâmica de corpos rígidos. Ela pretende aprofundar os aspectos básicos sobre o tema, já estudado em disciplinas anteriores, e apresentar aplicações em problemas de Engenharia (estruturas, máquinas, mecanismos, etc.).

VI. EMENTA

Forças e vetores. Sistemas de forças aplicadas a corpos rígidos. Equilíbrio de corpos rígidos. Sistemas estruturais. Cinemática dos sólidos. Tipos de movimento. Atrito. Dinâmica do ponto e dinâmica dos sistemas. Momento e produto de inércia. Momento angular e movimento de um sólido em torno de um eixo fixo.

VII. OBJETIVOS

1. Objetivos Gerais

Ao final do curso o aluno deverá ser capaz de identificar os conceitos e princípios envolvidos em Estática e Dinâmica de corpos rígidos, aplicar as Leis de Newton, os princípios da conservação da energia e do momento linear.

2. Objetivos específicos

• Compreender e aplicar os conceitos envolvendo o equilíbrio de uma partícula e do corpo rígido.

- Determinar e analisar as forças que atuam em um sistema estrutural.
- Compreender e aplicar os princípios do atrito seco.
- Compreender e aplicar os conceitos envolvendo Cinemática e Dinâmica do corpo rígido.
- Utilizar de álgebra vetorial, cálculo diferencial e integral na resolução dos problemas.
- Saber utilizar estratégias e procedimentos na resolução dos problemas.
- Mostrar a relação da Física com outras áreas da tecnologia.

VIII. CONTEÚDO PROGRAMÁTICO

PARTE I. ESTÁTICA

- 1. Introdução à Mecânica
 - Conceitos fundamentais
- 2. Vetores de força
 - Vetores de força
 - Operações vetoriais
 - Vetores cartesianos
- 3. Equilíbrio de partícula
 - Diagrama de corpo livre
 - Equações de equilíbrio
- **4.** Resultante de sistemas de forças
 - Momento de uma força (formulação escalar e formulação vetorial)
 - Princípio dos momentos
 - Momento de um binário
 - Redução de um sistema de forças
 - Distribuição de um carregamento distribuído simples
- 5. Equilíbrio de corpo rígido
 - Diagrama de corpo livre
 - Equações de equilíbrio
 - Restrições e determinação estática
- 6. Atrito (seco)
 - Características do atrito seco
 - Força atrito em parafusos, correias e mancais
- 7. Análise estrutural
 - Suportes e máquinas
 - Treliças simples
 - Métodos dos nós
 - Membros de força zero
 - Método das seções
 - Treliças espaciais
- 8. Momento de inércia (de área e de massa)
 - Definição de momento de inércia para áreas
 - Teorema dos eixos paralelos
 - Momento de inércia para áreas compostas
 - Momento de inércia da massa

PARTE II. DINÂMICA

- 9. Cinemática plana de corpo rígido
 - Translação, rotação em torno de um eixo fixo
 - Análise do movimento absoluto

- Análise do movimento relativo
- Centro instantâneo de velocidade nula

10. Dinâmica plana de corpo rígido

- Translação
- Rotação em torno de um eixo fixo
- Movimento plano geral
- Energia cinética
- Trabalho de uma força
- Trabalho de um momento binário
- Princípio do trabalho e energia
- Conservação de energia
- Momento linear e angular
- Princípio do impulso e momento
- Conservação do momento

IX. COMPETÊNCIAS/HABILIDADE

Ao final do curso o aluno deverá ser capaz de identificar os conceitos e princípios envolvidos na Estática, Cinemática e Dinâmica de corpos rígidos, com aprofundamento de aspectos básicos sobre os temas e aplicações em problemas de Engenharia.

X. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

O programa será apresentado em aulas expositivas, aulas de discussão e de resolução de problemas e leitura de material confeccionado pelo docente de conteúdos específicos.

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. É regulamentada pela Resolução nº 17/CUn/97 de 30 de setembro de 1997 (disponível em goo.gl/dhqv6k).

1. Frequência

Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo, a 75% (setenta e cinco por cento) das mesmas (Art. 69, §2º da Res. nº 17/CUn/97).

2. Aproveitamento nos estudos

Serão realizadas 3 (três) avaliações (*Av1*, *Av2 e Av3*). Cada avaliação ser composta por uma prova individual (*P1* em *Av1*, *P2* em *Av2* e *P3* em *Av3*), valendo no mínimo 80% da avaliação, e outros recursos avaliativos feitos através do Ambiente Virtual de Aprendizagem (AVA) Moodle. As datas das provas (e dos outros recursos avaliativos) poderão ser alteradas de acordo com as necessidades do curso e do andamento do cronograma. Ao aluno que não comparecer às avaliações será atribuída nota 0 (zero) (Art. 70, §4º da Res. nº 17/CUn/97). A média final (*MF*) será calculada como a média aritmética das notas obtidas nas provas escritas:

$$MF = \frac{(Av1 + Av2 + Av3)}{3}$$

A nota mínima de aprovação em cada disciplina é 6,0 (seis vírgula zero) ($MF \ge 6,0$) (Art. 72 da Res. nº 17/CUn/97). O aluno com frequência suficiente (ou seja, maior ou igual a 75%) e média das notas de avaliações (MF) do semestre entre 3,0 (três) e 5,5 (cinco vírgula cinco) terá direito a uma nova avaliação no final do semestre (recuperação REC) (Art. 70, §2º da Res. nº 17/CUn/97). O aluno enquadrado nesse caso terá sua nota final (NF) calculada através da média aritmética entre a média das notas das avaliações semestrais (MF) e a nota obtida na recuperação (REC) (Art. 71, §3º da Res. nº 17/CUn/97):

$$NF = \frac{(MF + REC)}{2}$$

O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, deverá formalizar pedido de avaliação à Chefia da Coordenadoria Especial de Física, Química e Matemática (FQM) na Secretaria Integrada de Departamentos (SID), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória (Art. 74 da Res. nº 17/CUn/97).

Abaixo estão listados os conteúdos das avaliações, que poderão ser alterados de acordo com as necessidades e andamento da disciplina. Os conteúdos seguem a numeração da seção VIII (Conteúdo Programático).

Avaliação Av1: capítulos 1 a 5 (Prova P1 prevista para 09/06/2022) Avaliação Av2: capítulos 6 e 7 (Prova P2 prevista para 05/07/2022) Avaliação Av3: capítulos 8 a 10 (Prova P3 prevista para 28/07/2022) Recuperação REC: todos os capítulos (REC prevista para 02/08/2022)

XII. CRONOGRAMA			
SEMANA	DATAS	ASSUNTO(S)	
1 <u>a</u>	11/04 a 16/04/2022	Integração acadêmica da graduação	
2 <u>ª</u>	18/04 a 23/04/2022	Introdução; Vetores de força	
3 <u>ª</u>	25/04 a 30/04/2022	Vetores de força	
4 ª	02/05 a 07/05/2022	Equilíbrio de uma partícula	
5 <u>ª</u>	09/05 a 14/05/2022	Resultante de sistemas de forças	
6 <u>ª</u>	16/05 a 21/05/2022	Resultante de sistemas de forças	
7 <u>ª</u>	23/05 a 28/05/2022	Resultante de sistemas de forças	
8 <u>a</u>	30/05 a 04/06/2022	Equilíbrio de um corpo rígido	
9ª	06/06 a 11/06/2022	Equilíbrio de um corpo rígido; Prova P1	
10ª	13/06 a 18/06/2022	Atrito (seco)	
11ª	20/06 a 25/06/2022	Atrito (seco)	
12ª	27/06 a 02/07/2022	Análise estrutural	
13ª	04/07 a 09/07/2022	Prova <i>P2</i> ; Cinemática plana de corpo rígido	
14ª	11/07 a 16/07/2022	Cinemática plana de corpo rígido	
15ª	18/07 a 23/07/2022	Dinâmica plana de corpo rígido; Momento de inércia (de área e de massa)	
16ª	25/07 a 30/07/2022	Dinâmica plana de corpo rígido; Prova P3	
17ª	01/08 a 03/08/2022	REC	

XIII. DIAS NÃO LETIVOS NO SEMESTRE		
15/04/2022	Sexta-feira Santa	
21/04/2022	Tiradentes	
04/05/2022	Dia da Padroeira da Cidade (Campus Araranguá)	
16/06/2022	Corpus Christi	

XIV. BIBLIOGRAFIA BÁSICA

- 1. HIBBELER, R. C. Estática: mecânica para engenharia. 10. ed. São Paulo: Prentice Hall, 2005. 560p.
- 2. HIBBELER, R. C. **Dinâmica: mecânica para engenharia**. 10. ed. São Paulo: Pearson Prentice Hall, 2005. 592p.
- 3. BEER, Ferdinand Pierre; JOHNSTON JR., Elwood Russell. **Mecânica Vetorial para Engenheiros**. 7. ed. Rio de Janeiro: MCGraw-Hill, 2006. 804p. Volume 1.
- 4. BEER, Ferdinand Pierre; JOHNSTON JR., Elwood Russell. Mecânica vetorial para engenheiros. 5. ed. São Paulo:

XV. BIBLIOGRAFIA COMPLEMENTAR

- 1. TONGUE, Benson H.; SHEPPARD, Sheri D. **Estática: Análise e Projeto de Sistemas em Equilíbrio**. 1. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2007. 476p.
- 2. TONGUE, Benson H.; SHEPPARD, Sheri D. **Dinâmica: Análise e Projeto de Sistemas em Movimento**. 1. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2007. 372p.
- 3. FRANÇA, Luis Novaes Ferreira; MATSUMURA, Amadeu Zenjiro. **Mecânica Geral**. 2. ed. São Paulo: Edgard Blücher, 2004. 235p.
- 4. MERIAM , James L.; KRAIGE, L. Glenn. **Mecânica para Engenharia**. 6. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2009. 384p. Volume 1.
- 5. MERIAM , James L.; KRAIGE, L. Glenn. **Mecânica para Engenharia**. 6. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2009. 648p. Volume 2.

Professor:			Presidente do Colegiado de Curso:
Aprovado pelo Colegiado do Curso em	/	/	