

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE TECNOLÓGICO

Departamento de Engenharia de Produção e Sistemas

Campus Universitário Reitor João David Ferreira Lima - Trindade CEP 88040.900 -Florianópolis SC Fone: (48) 3721-7001/7011

PLANO DE ENSINO SEMESTRE - 2022-1

1. IDENTIFICAÇÃO DA DISCIPLINA:					
CURSO		TIPO	PERÍODO/FASE		
316 – Admir	nistração (noturno)	Obrigatória	04		
CÓDIGO	NOME DA DISCIPLINA	TURMA (S)	TOTAL DE HORAS-AULA SEMESTRAIS		
EPS7042	Introdução a Pesquisa Operacional	04316	72 ha		

2. PROFESSOR(ES) MINISTRANTE(S)

Oscar Ciro Lopez (oscar.lopez@ufsc.br)

3. PRÉ-REQUISITO(S)		
CÓDIGO	NOME DA DISCIPLINA	
MTM3100	Pré-Cálculo (ou MTM3700 ou MTM5204 ou MTM7003 ou MTM9104 ou MTM9108)	

4. EMENTA

Programação Linear: formulação de modelos; solução gráfica; solução algébrica; método simplex; Problema de transportes; Problema de atribuição. Dualidades. Programação de Projetos: PERT/CPM, conceitos fundamentais; montagem de redes; análise do caminho crítico; durações probabilísticas. Utilização do Computador. Introdução à Simulação.

5. OBJETIVOS

Apresentar uma visão geral de técnicas tradicionais de Pesquisa Operacional aplicados à gestão, capacitando o aluno a formular e resolver problemas de decisão, cuja complexidade e porte justifiquem o uso de modelos matemáticos e sistemas computacionais.

6. CONTEÚDO PROGRAMÁTICO

- 1. Introdução (2h)
- 2. Programação Linear (36h)
- 2.1. Formulação de modelos
- 2.2. Resolução gráfica
- 2.3. Método Simplex formulação algébrica
- 2.4. Método Simplex forma tableau
- 2.5. Obtenção de uma solução básica viável
- 2.6. Problema de transportes
- 2.7. Problema de atribuição
- 2.8. Dualidade: problema dual

3. Programação de Projetos (18h)

- 3.1. Análise estruturada de projetos
- 3.2. Diagrama PERT/CPM
- 3.3. Cálculo de datas, folgas e caminho crítico
- 3.4. Elaboração de cronogramas
- 3.5. Programação com recursos limitados
- 3.6. Programação custo/tempo (Critical Path Method)
- 3.7. Programação com incerteza (Program Evaluation and Review Tecnique)
- 4. Simulação (16h)
- 4.1. Introdução
- 4.2. Geração de variáveis pseudoaleatórias
- 4.3. Teste chi-quadrado e Kolmogorov-Smirnov
- 4.4. Execução da simulação
- 4.5. Análise dos resultados

7. METODOLOGIA DE ENSINO

As aulas serão expositivas com uso de projetor e quadro; privilegiará a realização de trabalhos individuais e de grupos. A aula será desenvolvida em dois momentos: no primeiro, o professor debaterá os conceitos; no segundo, os alunos, através de resolução de exercícios, reunidos em grupos oferecerão sua contribuição ao tema abordado. Exercícios e atividades serão disponibilizadas para serem resolvidos extra-classe em complementação a parte expositiva. Alguns exemplos serão resolvidos em sala de aula, com o memorial de cálculo desenvolvido no quadro. Alguns exercícios requerem o uso de planilha eletrônica. Em caso de dificuldade de acesso ao software o aluno deve informar ao professor. O material da disciplina será disponibilizado via Moodle.

8. AVALIAÇÃO E CONTROLE DE FREQUÊNCIA

A avaliação será composta de três notas: M = 0.30 x Prova 1 + 0.30 x Prova 2 + 0.4 x (Trabalho 1 + Atividades de sala de aula e/ou no Moodle). É considerado aprovado o aluno que obtiver média M igual ou superior a 6. Os alunos que não preencherem este requisito, mas com média superior a 3, serão submetidos a uma prova de recuperação. Após a recuperação, a nota final é calculada como <math>NF = (M + Rec.) / 2, a qual deverá ser igual ou superior a 6 para a aprovação. Para ser aprovado o aluno deverá ter pelo menos 75% de frequência.

9. ATENDIMENTO

O aluno deve procurar o professor em caso de dificuldade através do e-mail (oscar.lopez@ufsc.br) ou pelo sistema de mensagem do Moodle. Os horários de atendimento do professor estarão disponíveis na página inicial do Moodle, assim como o contato e horários do monitor da disciplina.

10.	CR	ON	OGR	AMA

Data	Descrição do conteúdo	Data	Descrição do conteúdo
13/abr	Integração acadêmica da graduação	10/jun	Programação de Projetos: Introdução, conceitos básicos de redes PERT/CPM
15/abr	Feriado	15/jun	Cálculos da rede: Primeiras Datas, Últimas Datas
20/abr	Apresentação do plano de ensino e Introdução a Pesquisa Operacional	17/jun	Cálculos da rede: Caminho crítico
22/abr	Dia não letivo	22/jun	Cálculos da rede: folgas
27/abr	Formulação de modelos	24/jun	Elaboração de cronogramas
29/abr	Formulação de modelos	29/jun	Programação com recursos
04/mai	Método gráfico de solução	01/jul	Programação com incerteza
06/mai	Método gráfico de solução	06/jul	PROVA 2
11/mai	Simplex, formulação algébrica e tableau	08/jul	Simulação - Introdução, geração de números pseudoaleatórios
13/mai	Simplex, formulação algébrica e tableau	13/jul	Simulação de Monte Carlo
18/mai	Soluções básicas viáveis do Simplex	15/jul	Simulação à Eventos Discretos
20/mai	Soluções básicas viáveis do Simplex	20/jul	Análise de resultados
25/mai	Solução em planilha eletrônica de problemas de PL	22/jul	Execução da simulação
27/mai	Problema de transportes e atribuição	27/jul	Problema de simulação - Entrega do TRABALHO 1 via Moodle até 27/07
01/jun	Problema de transportes e atribuição	29/jul	Atendimento dos alunos em recuperação ao longo da semana
03/jun	Solução em planilha eletrônica de problemas de transporte e atribuição	03/ago	Recuperação
08/jun	PROVA 1		

OBS.: Havendo alteração no cronograma, os alunos serão avisados via Moodle junto com a publicação do novo cronograma.

11. BIBLIOGRAFIA BÁSICA

BELFIORE, P.; FÁVERO, L. P; Pesquisa Operacional; Rio de Janeiro : Elsevier Editora Ltda, 2012.

HILLIER, F. S.; LIEBERMAN, G. J.; Introdução à Pesquisa Operacional; 9ª edição; Porto Alegre: AMGH Editora Ltda, 2013. HIRSCHFELD, H. Planejamento com PERT-CPM e Análise do Desempenho. São Paulo: Atlas, 1989.

SILVA, E.M.; SILVA, E.M.; GOLÇALVES, V.; MUROLO, A.C. Pesquisa operacional para os cursos de administração e engenharia, 4. ed. São Paulo: Atlas, 2010.

12. BIBLIOGRAFIA COMPLEMENTAR

ARENALES, M; ARMENTANO, V; MORABITO, R; YANASSE, H. Pesquisa Operacional; Rio de Janeiro: Elsevier, 2007. BRONSON, R.; Pesquisa Operacional; São Paulo: McGraw Hill do Brasil, 1985.

GOLDBARG, M. C.; LUNA, H. P. L.; Otimização Combinatória e Programação Linear – Modelos e Algoritmos; Rio de Janeiro : Editora Campus, 2000.

MOREIRA, D. A.; Pesquisa Operacional – Curso Introdutório; São Paulo: Thomson Learning, 2007.

SHAMBLIN, J. E.; STEVENS, G. T.; Pesquisa Operacional: uma Abordagem Básica; Editora Atlas, 1979.

TAHA, H. A.; Pesquisa Operacional; 8^a edição; São Paulo: Pearson / Prentice-Hall; 2007.

WAGNER, H. M.; Pesquisa Operacional; 2ª edição; Prentice-Hall, 1986.