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“If a machine is expected to be infallible, it cannot also be intelligent.”
(Alan Turing)



ABSTRACT

The increasing popularity of blockchains in addressing an expanding set of use cases,
from enterprise to governmental applications, led to a growing interest in permissioned
blockchains. In contrast to their permissionless counterparts, permissioned blockchains
can ensure deterministic transaction finality which is a key requirement in many set-
tings and can offer high throughput in small-sized systems. Some emerging use cases
for permissioned blockchains require the system to scale to hundreds of participants.
However, most permissioned blockchains are based on variants of classical byzantine
fault-tolerant (BFT) consensus protocols that scale poorly with the number of partici-
pants. Such scalability limitations stem from bottlenecks both at the network and pro-
cessing levels that result from the large number of messages that need to be sent,
received and processed to reach consensus. Most attempts to solve this problem on
a large scale end up reducing the overall resilience of the system and endanger both
safety and liveness in the presence of byzantine failures. An approach that distributes
the load equally among a set of processes are tree-based algorithms. However, due
to the additional communication steps, tree-based approaches still display insufficient
throughput on a geographic scale. Tree structures are also inherently more sensitive to
byzantine faults, and constructing robust trees in the presence of failures is not a trivial
matter. This thesis proposes new techniques that address these problems. We leverage
extensive pipelining to achieve high throughput on a geographic scale independently of
the depth of the tree and present a reconfiguration algorithm that is able to construct a
robust tree in optimal steps in the presence of failures. Experimental results show that
Kauri, a prototype that incorporates the proposed techniques, can efficiently execute
consensus in settings with more than 500 participants and can achieve up to over 58
times the throughput of competing approaches.

Keywords: Byzantine Fault Tolerance, Distributed Ledger Technology, Blockchain, Con-
sensus.



RESUMO

A utilização cada vez mais frequente de blockchains para desenvolver aplicações
distribuídas de cariz comercial e governamental, tem aumentado o interesse nas block-
chains fechadas, em que os nós necessitam de uma autorização prévia para participar
no sistema, o que permite controlar o número e características dos participantes. Isto
permite executar protocolos de consenso que garantem finalidade, isto é, em que o
acordo não pode ser revertido. Estes protocolos conseguem também oferecer bom
desempenho quando o número de participantes é reduzido (na ordem das dezenas).
No entanto, é hoje possível encontrar aplicações baseadas em blockchain que pre-
cisam de suportar centenas de participantes. Infelizmente, a maioria das blockchain
fechadas usam variantes do protocolo de consenso byzantino PBFT, que tem pouca
capacidade de escala, devido à utilização de padrões de comunicação que obrigam
um ou vários nós a enviar, receber e processar um elevado número de mensagens que
cresce linear ou quadraticamente com o tamanho do sistema. As soluções anteriores
para mitigar estes problems sofrem de várias limitações, comprometendo a segurança
e/ou a disponibilidade do sistema na presença de faltas. Esta dissertação apresenta
novas técnicas para abordar estes problemas, baseadas na construção de árvores
que podem ser reconfiguradas num número óptimo de passos e que suportam a exe-
cução concorrente, em “pipeline”, de múltiplas instâncias de consenso. Resultados
experimentais mostram que um sistema que concretiza estas técnicas, denominado
Kauri, consegue suportar de forma eficiente o consenso em grupos com mais de 500
participantes, oferecendo um débito 58 vezes superior ao de trabalhos anteriores.

Palavras-chave: Tolerância a Faltas Bizantinas, Livro-Razão Distribuído, Blockchain,
Consenso



RESUMO EXPANDIDO

A utilização cada vez mais frequente de blockchains para desenvolver aplicações distri-
buídas de cariz comercial e governamental tem aumentado o interesse nas blockchains
fechadas, em que os nós necessitam de uma permissão prévia para participar no sis-
tema, o que permite controlar o número e características dos participantes. Isto permite
executar protocolos de consenso que garantem finalidade, isto é, em que o acordo não
pode ser revertido. Estes protocolos conseguem também oferecer bom desempenho
quando o número de participants é reduzido (na ordem das dezenas). No entanto, hoje
é possível encontrar aplicações baseadas em blockchain que precisam suportar cente-
nas de participantes como Diem ou Corda (AMSDEN et al., 2020; STATHAKOPOULOU
et al., 2019).

Infelizmente, a maioria das blockchains fechadas usam variantes do protocolo de con-
senso byzantino PBFT (CASTRO; LISKOV, 1999). Todas estas variantes têm pouca
capacidade de escala devido à utilização de padrões de comunicação que obrigam um
ou vários nós a enviar, receber e processar um elevado número de mensagens, número
que cresce linearmente ou quadraticamente com o tamanho do sistema (VUKOLIĆ,
2016).

Este problema é bastante evidente nas soluções que utilizam padrões de comunicação
“todos-para-todos” como PBFT (CASTRO; LISKOV, 1999) e seus sucessores (GOLAN
GUETA et al., 2019), já que estas soluções exibem uma complexidade de mensagens
que cresce de forma quadrática com o tamanho do sistema. Além disso, todos os
processos no sistema têm que verificar as assinaturas geradas por todos os outros
processos. Mesmo soluções como HotStuff (ABRAHAM et al., 2018), que diminuem
significativamente o número de mensagens trocadas (de quadrático para linear), re-
correm a um processo líder que tem de disseminar mensagens para todos os outros
processos, assim como receber e verificar as assinaturas que estes geram. Assim,
estas soluções também não resolvem o problema de escalabilidade.

Outras soluções, como soluções baseadas em comités, selecionam a cada ronda de
consenso um grupo de processos (escolhidos de forma aleatória) que executam o
consenso no nome de todos. Isto reduz significativamente tanto o consumo de largura
de banda como o custo computacional. Todavia, na presença de faltas, soluções base-
adas em comités são mais vulneráveis a ataques e, como resultado, têm que sacrificar
a resiliência ou a finalidade determinística. Além disso, os membros do comité têm que
disseminar o resultado do consenso para todos os outros processos no sistema, o que
incorre numa sobrecarga da largura de banda usada por estes nós (GILAD et al., 2017;
BALIGA, 2017).

Protocolos hierárquicos resolvem este problema. Estes protocolos dividem todos os
processos em grupos que se coordenam de forma hierárquica. Geralmente, é eleito
um coordenador da cada grupo e estes trocam informação entre si, para propagar
informação entre os grupos a que pertencem. Porém, tanto quanto sabemos, todos
os protocolos que recorrem a este padrão de comunicação perdem resiliência uma
vez que o número de faltas passa a ser uma fracção do número de membros de



cada grupo e não do número total de participantes no sistema. Além disso, a maioria
destes protocolos são inflexíveis e não permitem reconfigurar a estrutura hierárquica
na presença de faltas (RAHNAMA et al., 2020; AMIR et al., 2010; NEIHEISER, Ray
et al., 2018).

Algoritmos baseados em árvores permitem distribuir a carga por vários processos.
Nestas abordagens, a árvore é usada para disseminar os blocos e para agregar os
votos. Deste modo, a largura de banda e complexidade computacional são reduzidas
de O(N) (onde N é o tamanho do sistema total) para O(m) (onde m é o grau da
árvore). Infelizmente, a latência adicional inerente à propagação na árvore limita de
forma significativa o débito do sistema. Além disso, a utilização de árvores torna estas
soluções inerentemente menos robustas na presença de faltas bizantinas. De facto,
construir árvores robustas neste ambiente não é uma tarefa trivial. Por esta razão,
sistemas como Byzcoin (KOKORIS-KOGIAS, E. et al., 2016) ou Motor (KOKORIS-
KOGIAS, 2019) na presença de faltas reconfiguram a topologia, acabando rapidamente
por usar uma estrela.

Esta dissertação apresenta novas técnicas para abordar estes problemas. Para dis-
tribuir o consumo de largura de banda e a carga computacional entre os processos,
também recorremos à utilização de árvores. No entanto introduzimos novos mecanis-
mos que permitem ultrapassar as limitações no débito e na resiliência características
das soluções anteriores. Propomos um mecanismo de propagação “em conduta” (pi-
pelining) para assegurar um débito elevado, mesmo em cenários de grande escala
geográfica, independentemente do tamanho da árvore e latência de rede entre os nós.
Este mecanismo estende as técnicas de pipelining utilizadas em protocolos como o
HotStuff, indroduzindo um factor multiplicativo, em que o processo líder propõe, de
forma optimista, vários blocos. Estes blocos são processados no sistema em paralelo.
Apresentamos também algoritmos de reconfiguração que conseguem construir árvores
robustas na presença de falhas bizantinas. Discutimos e provamos quais os tipos de
árvores que podem ser reconfiguradas num numero de passos óptimo, em função do
grau de tolerância a faltas desejado. Apresentamos também algoritmos de reconfigura-
ção alternativos, que oferecem uma reconfiguração não óptima mas que suportam um
maior número de faltas. Independentemente do número de faltas, os nossos algorit-
mos asseguram as propriedades de segurança e actividade do consenso, garantindo
sempre o progresso do sistema.

Apresentamos também um modelo teórico que ajuda a raciocinar sobre as técnicas
apresentadas. Este modelo permite estimar o débito esperado para o sistema, em
função da configuração da rede e do número de nós. O modelo pode também ser
usado para configurar os parâmetros que regulam o funcionamento do sistema, tal
como o factor multiplicativo do efeito de propagação em conduta.

Desenvolvemos um protótipo, denominado Kauri, como extensão do HotS-
tuff (ABRAHAM et al., 2018). Este protótipo incorpora as técnicas propostas.
Os nossos resultados experimentais mostram que o Kauri oferece débito elevado,
tanto em redes heterogêneas como homogêneas, independentemente da latência da
rede. Para além disso, mostramos que para vários tamanhos de sistemas e diferentes
cenários de rede, o Kauri é capaz de oferecer um débito até 58 vezes mais alto do



que sistemas comparáveis. Mostramos também que, dependendo do cenário, o Kauri
consegue também oferecer melhor latência do que sistemas anteriores, graças à
forma como realiza a distribuicao de carga na árvore. Avaliámos como o Kauri se
comporta na presença de faltas. Mostramos que nos cenários mais comuns, o Kauri
não exibe nenhuma penalização e recupera das falhas com a mesma rapidez que
sistemas comparáveis. Apenas na presença de f = N−1

3
falhas, o Kauri é obrigado a

reconfigurar para a topologia em estrela, nunca executando mais do que fa + f + 1
passos de reconfiguração (isto é, o número máximo de reconfigurações do nosso
algoritmo + f estrelas com líderes faltosos). Tanto quanto é do nosso conhecimento, o
Kauri é o único sistema tolerante a falhas bizantinas com capacidade de escala em
cenários geograficamente distribuídos, e que combina elevado débito com elevada
resiliência.

Finalmente a dissertação discute um conjunto de melhorias e extenções possíveis para
o Kauri, tal como a adaptação automática e dinâmica dos parâmetros de configuração,
a criação de árvores optimizadas para diferentes distribuições de latência e para ce-
nários em que os nós possuem capacidade heterogénea, e a utilização de múltiplas
árvores para facilitar a troca periódica de líder, entre outras.
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1 INTRODUCTION

The term blockchain describes the immutable storage solution of Bit-
coin (NAKAMOTO, 2008) proposed by Satoshi Nakamoto in this context in 2008. As
such, it is one of the essential building blocks allowing Bitcoin to solve the double-
spending problem of digital assets without requiring trusted intermediaries. Due to its
decentralized and open-source nature, this new technology gave rise to a wide variety
of derivatives, and the term blockchain has since then been used as an umbrella term
for its countless successors (WOOD, 2014; PILKINGTON, 2016; BUCHMAN, 2016)
with the joint goal of building better decentralized distributed systems.

In the scientific literature, these systems are commonly called “Distributed
Ledgers”, where an immutable storage solution (e.g., the blockchain) is usually
combined with a byzantine fault-tolerant consensus algorithm which guarantees that
all honest processes agree on the order of blocks of transactions to be persisted. This
guarantees, as a result, that all honest participating processes may eventually agree
on the same state.

While the initial proposal of Bitcoin relies on Proof of Work (PoW) as the con-
sensus algorithm, a vast number of different solutions emerged since its inception,
including, but not restricted to, Proof of Stake (PoS), Proof of Space, Proof of Burn,
etc. These approaches can be described as “permissionless” consensus algorithms,
as anyone may freely participate as long as they possess sufficient resources (CPU,
Stake, Memory).

In the scientific literature, however, numerous approaches had been elaborated
already since the early 1980s surrounding the byzantine generals problem (LAMPORT
et al., 1982). In the context of distributed ledgers, these solutions are usually described
as “permissioned” consensus algorithms, as processes have to go through some sorts
of an approval process to participate in consensus. This is done to prevent Sybil attacks,
where an attacker launches sufficient processes to overpower the system.

Nonetheless, independent of the type of system, most existing protocols face a
serious bottleneck as they usually rely on all-to-all communication to establish consen-
sus, requiring an increasing use of bandwidth for message propagation and computa-
tion power for signature verification with growing numbers of processes.

Thus, it is no surprise that, in practice, the projects with the highest potential
throughput in the blockchain space restrict the number of processes participating in
consensus to avoid this bottleneck (BLOCK’TIVITY TEAM, 2022). However, due to this,
either resilience or deterministic finality is sacrificed.

However, the use-cases for permissionless as well as permissioned consensus
protocols that allow scaling to several hundreds of participants are vast. On the per-
missioned side, e.g., the initial Diem whitepaper states that: “Our goal was to choose
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a protocol that would initially support at least 100 validators and would be able to
evolve over time to support 500–1,000 validators” (AMSDEN et al., 2020). Similarly,
a recent paper from IBM (STATHAKOPOULOU et al., 2019) further emphasizes the
need for deployments that support large numbers of processes for platforms such as
Corda (BROWN et al., 2016). In fact, over the past years, numerous works in the
academic literature attempted to address this problem through a vast selection of dif-
ferent approaches (GOLAN GUETA et al., 2019; KOKORIS-KOGIAS, E. et al., 2016;
KOKORIS-KOGIAS, Eleftherios et al., 2018; GILAD et al., 2017; ABRAHAM et al.,
2018).

In a similar manner, permissionless blockchains that currently rely on smaller
committees could improve their security guarantees significantly. A good example of
this are Delegated Proof of Stake (DPoS) blockchains where a small committee (20-
30 processes) is elected by the stakeholders to execute the consensus in their name.
This results in excellent throughput (BLOCK’TIVITY TEAM, 2022), but comes with an
inherent risk, as if there is no majority of honest processes in the current committee,
safety may not be guaranteed (LARIMER et al., 2016; GRIGG, 2017). Other committee-
based solutions such as Stellar have similar problems. In fact, in a recent incident, the
Stellar blockchain came to a halt for several hours as a significant percentage of the
consensus processes went offline (STEINBECK, 2019).

To solve this, several approaches attempt to build hierarchical systems to avoid
this bottleneck. A famous example is HotStuff (ABRAHAM et al., 2018) which was
initially developed to be used in the Libra (now Diem) blockchain project. HotStuff
leverages a star-topology, where a single process receives and processes a quorum
of signatures and then distributes the result to the remaining participants, significantly
reducing the message complexity of the approach. However, a single process still has
to compute and disseminate messages from all participants resulting in an inherent
bottleneck.

Due to this, other proposals in the literature like Steward (AMIR et al., 2010),
Fireplug (NEIHEISER, Ray et al., 2018), or ResilientDB (RAHNAMA et al., 2020) create
static hierarchical groups where intermediaries are selected to relay and pre-process
information to avoid this bottleneck. However, due to their static nature, the number of
faults they tolerate is limited, where, instead of global limits on the number of faults,
there are local limits for faults depending on the place in the hierarchy (i.e., there can
be no faulty majority in any of the groups).

Other recent protocols like Byzcoin (KOKORIS-KOGIAS, E. et al., 2016) use a
tree-topology to aggregate and process the signatures avoiding the before-mentioned
bottleneck. However, this results in a significant trade-off as the additional number
of communication steps increases the latency significantly, which may also affect the
throughput negatively. Besides that, as faulty internal nodes in the tree might prevent
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consensus, the protocol has to fall back quickly to a star or clique in the presence of
failures.

Therefore, there is a lack of proposals in the scientific literature and in practice
that avoid the bottleneck of star and clique-based approaches while maintaining high
throughput and high resilience in geographically-distributed environments.

1.1 OBJECTIVES AND CONTRIBUTIONS

The general objective of this work was developing techniques to solve the above
mentioned shortcomings of existing approaches.

In detail, we created flexible tree structures that distribute the communication
and computation load fairly among the participating processes but are also able to
withstand a large number of byzantine failures without requiring to fallback to a star or
clique and without sacrificing safety in the presence of f ≤ N−1

3
failures for a total of N

processes.
More specifically, our requirements may be divided into:

• Reconfiguration of tree structures in optimal steps in the presence of failures;

• Compensation of high latency resulting from the tree structure in a geo-distributed
tree environments;

We created a prototype called Kauri, including the proposed techniques, outper-
forming state-of-the-art approaches by a factor of up to 58 times the original perfor-
mance. In the following, we describe each of the goals individually in detail.

1.1.1 Optimal Reconfiguration

The first and most vital step of making trees viable communication structures
in the context of byzantine fault-tolerant consensus is the development of an efficient
reconfiguration approach. Past solutions like Byzcoin (KOKORIS-KOGIAS, E. et al.,
2016) construct random trees and fall back to a clique if consensus does not terminate
within some time limit. While Omniledger (KOKORIS-KOGIAS, Eleftherios et al., 2018)
and Motor (KOKORIS-KOGIAS, 2019) enhanced this process by instead slowly falling
back to a star, multiple subsequent faulty leaders require substantial timeouts to be
detected. Meanwhile, PBFT (CASTRO; LISKOV, 1999) or HotStuff (ABRAHAM et al.,
2018) are always able to reconfigure to a valid structure in at most f + 1 steps in the
worst case (f consecutive faulty leaders) which is optimal. However, while this is fairly
trivial for cliques or Star topologies, this is significantly more complex in the case of
trees. As this requires an exponential number of steps (KOKORIS-KOGIAS, 2019).

Based on this, we established a set of criteria for the reconfiguration algorithm.
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• Optimal Reconfiguration until a certain threshold of failures fa in the worst case.

• High probability of reaching a viable configuration in optimal steps in the presence
of f ≤ N−1

3
failures.

• Avoiding to fall back to a star topology.

The contributions of this thesis do not only entitle a reconfiguration algorithm
fulfilling the above criteria but also a set of equations that allows assessing the exact
number of failures fa a given topology can tolerate before being unable to fulfill optimal
reconfiguration. Besides that, we also describe a tree topology that is able to tolerate
f = N−1

3
failures and prove that it is optimal.

1.1.2 Compensating Latency

In comparison to PBFT, HotStuff already requires twice the message round trip
time to achieve consensus. Not only that, but HotStuff even requires one additional
consensus phase before being able to agree on a given set of transactions (CASTRO;
LISKOV, 1999; ABRAHAM et al., 2018). In the context of trees, this is even more se-
vere, as increasingly deep trees extend the consensus latency significantly. While this
would not be a problem in a local data center environment where round trip latencies
are below one millisecond, in this thesis, we are considering a distributed ledger envi-
ronment where processes are geographically distributed over the globe and network
latencies may average somewhere between 100 and 200 milliseconds. Thus, the net-
work latency has a significant impact on the throughput of the system. For this reason,
HotStuff proposes a pipelining mechanism that allows, in each communication round,
all consensus phases to be executed in parallel. As a result, after each communica-
tion round, one block is produced. This results in a significant increase in throughput,
allowing HotStuff to display a similar throughput as PBFT even for small system sizes.
However, as trees require additional communication steps, the pipelining in HotStuff is
not sufficient to compensate for the additional communication overhead that is inherent
to tree structures.

We, therefore, developed a pipelining technique similar to what is used in
(VERONESE et al., 2010) which we adapted to the distributed ledger environment,
allowing us to not only compensate the inherent tree latency but even outperform
HotStuff by up to a factor of 58 by fully leveraging the communication and computation
load distribution of the tree.

The contributions of this thesis, therefore, also entitle a novel pipelining technique
in the context of distributed ledger consensus as well as a theoretical model that not
only allows to reason about the potential speedup of the system but may also be used
to configure the system in practice to achieve optimal throughput/latency levels.
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1.1.3 Research History

This thesis was developed in the context of a Cotutelle agreement between the
Department of Automation Engineering of the Federal University of Santa Catarina and
the Informatic Engineering Department of the University of Lisbon.

Specifically, it was developed in the LAPESD (Distributed Computing Labora-
tory) at the Federal University of Santa Catarina and INESC-ID (Computer System
Engineering Research and Development Institute) in Lisbon.

It can be treated as an extension of the work that was elaborated in the context
of my master thesis, where a static hierarchical byzantine fault-tolerant architecture for
distributed graph databases was developed. However, we noticed that these hierarchi-
cal structures are very inflexible and are subject to certain attack vector that endanger
the liveness of the system.

Thus, in this thesis, we will treat more general, flexible hierarchical models in the
presence of byzantine failures in the distributed ledger environment.

1.1.4 List of Publications

In the context of this Ph.D., a number of papers were published in both scientific
journals as well as published and presented at scientific conferences. We divide the list
of publications into two categories. First, the list of publications directly associated with
the topic of this Ph.D., and second the papers that were published during this Ph.D.,
but are either related to secondary projects, student advisory, or are a continuation of
my masters project.

Papers published related to the main topic:

• NEIHEISER, Ray et al. Kauri: Scalable BFT Consensus with PipelinedTree-Based
Dissemination and Aggregation. In: PROCEEDINGS of the 28th ACM Symposium
on Operating Systems Principles. Online: Association for Computing Machinery,
2021. (SOSP ’21)
This paper contains the main contributions we developed in the course of this
thesis. As such, it presents our pipelining technique and the simplified version
of the reconfiguration algorithm, as well as our theoretical model and a large
percentage of the experimental results.

• NEIHEISER, Ray et al. Constantino: Uma Arquitetura BFT Escalável e Eficiente
para Blockchains. In: SBC. ANAIS do XXXVII Simpósio Brasileiro de Redes de
Computadores e Sistemas Distribuidos. [S.l.: s.n.], 2019. P. 127–140
This paper presents preliminary work. It focuses on the development of a hierar-
chical consensus algorithm. Nonetheless, in the further course of the thesis, we’ve
further abstracted our techniques and, instead of developing our own consensus
algorithm, applied our techniques to existing systems.
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Secondary papers:

• NEIHEISER, Ray et al. Fireplug: Efficient and Robust Geo-Replication of Graph
Databases. IEEE Transactions on Parallel and Distributed Systems, v. 31,
n. 8, p. 1942–1953, 2020
Extensive evaluation of my Master’s prototype including additional functionalities.

• NEIHEISER, Ray et al. HRM Smart Contracts on the Blockchain: Emulated vs
Native. Cluster Computing, Springer, 2020
Extension of the Paper treating decentralized human resource management. Com-
pares the differences of deploying similar projects with the help of smart contracts
or as layer-2 solutions.

• BRAVO, Manuel et al. Policy-Based Adaptation of a Byzantine Fault Tolerant Dis-
tributed Graph Database. In: 2018 IEEE 37th Symposium on Reliable Distributed
Systems (SRDS). [S.l.: s.n.], 2018. P. 61–71
Adaptive extension of the prototype developed during my Master’s.

• NEIHEISER, R. et al. HRM Smart Contracts on the Blockchain. In: 2019 IEEE
Symposium on Computers and Communications (ISCC). [S.l.: s.n.], 2019
Creation of a decentralized process for human resource management.

1.2 THESIS STRUCTURE

The remainder of the text is organized as follows. Chapter 2 presents concepts of
Fault Tolerance, Distributed Systems, Security, and Distributed Ledgers. Then, Chapter
3 discusses the related work in consensus present in the literature of byzantine fault
tolerance. Next, in the main part of this document, Chapter 4 presents the proposal
of the work that was developed during this doctoral degree. The following Chapter
presents the obtained experimental results, and finally, Chapter 6 concludes the thesis.
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2 BACKGROUND

This chapter elaborates on the basic principles of building robust fault-tolerant
distributed systems. First, we discuss basic cryptographic primitives, an essential build-
ing block to construct dependable systems. We continue with the basic principles of
dependability and the possible threats a system might face, and how systems can be
built to cope with this. Finally, distributed ledgers and their underlying technology are
discussed in-depth.

2.1 CRYPTOGRAPHIC PRINCIPLES

In a system where two or more parties exchange messages and we expect
interference of malicious actors, there are three essential properties the underlying
communication principle ought to fulfill: Integrity, Authenticity, and, optionally, Confiden-
tiality. Integrity encompasses guaranteeing that the message that was sent by some
process pi also arrives at another process pj without alterations (i.e., was not tampered
with in the process) or else the alteration of the message is detected. Authenticity, on
the other hand, is about allowing process pi to identify process pj as the author of a
given message (i.e., a process is not able to impersonate others). Finally, confidentiality
attempts to guarantee that no other party is able to intercept and read the messages
passed by pi to any pj (TANENBAUM; STEEN, 2006).

This is where cryptography comes into play. In this section, we present a num-
ber of cryptographic principles that are widely used to fulfill the above properties and
present the cryptographic algorithms that are discussed or leveraged in the context of
this thesis. Note, as this thesis was developed in the context of distributed consensus
in blockchain environments, we have a special focus on integrity and authenticity.

2.1.1 Symmetric and Asymmetric Cryptography

The roots of cryptography go back far in history, long before the invention of
modern computers (e.g., encrypted messages during the roman empire). Cryptography
is usually divided into symmetric cryptography, where a single common key is used
for encryption and decryption (both communication partners hold the same key), and
asymmetric cryptography, where there is one key for encryption, and another key for
decryption (the communication partners hold different keys) (TANENBAUM; STEEN,
2006).

Symmetric Cryptography

In symmetric cryptography, two parties exchange a single key in a secure way
and may then use this key in order to establish a confidential channel. While this is
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very efficient, on a large scale, it eventually becomes unfeasible as all processes have
to exchange unique keys. In addition to that, not only does the secure exchange of
a key between two parties require a complex protocol (usually involving asymmetric
cryptography), but either party might also leak the secure key breaking the security
guarantees of the system. As such, symmetric cryptography requires some form of
trust between the two parties.

Asymmetric Cryptography

Asymmetric cryptography requires two keys, typically a public key (publicly
known) and a private key (only known by its owner). A process pj that wants to send
an encrypted message to a process pi may simply encrypt a message with the pub-
lic key pubi of pi such that only process pi may decrypt the message again (with the
help of their private key privi). For a similar level of security, asymmetric cryptography
is asymptotically more computationally intensive than symmetric cryptography. How-
ever, as opposed to symmetric cryptography, there is no shared secret among a set of
processes.

Elliptic Curve

In the context of asymmetric signatures we also have to talk about Elliptic Curve
algorithms that surged in importance in recent years due to the growth of the distributed
ledger technology. Elliptic Curves are a class of efficient algorithms that construct
asymmetric signatures that are not only verified significantly faster in many instances
than classic asymmetric signatures but are often also able to generate relatively short
signatures in comparison, which is very important as this significantly reduces the
storage overhead.

2.1.2 Cryptographic Hash Functions

One of the fundamental building blocks of many distributed systems are crypto-
graphic hash functions. A hash function H is a function which maps an input of arbitrary
length to a fixed sized output. A robust hash function has to fulfill the following three
basic properties (ROGAWAY; SHRIMPTON, 2004):

• Efficiency: Ease of computing H(v) for any input v.

• Collision Resistance: Difficulty of finding two inputs v and v′ with the same Hash
H(v) = H(v′)

• Unidirectional: Difficulty of finding the input v given the Hash H(v).
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In a nutshell, hash functions map an input from an infinite domain (arbitrary
length) to a finite domain (fixed length) in a deterministic way. As such, given any input
v and its hash H(v), we are able to detect any alterations of v by re-executing the hash
function and comparing it to the previously computed hash.

However, this alone does not guarantee integrity, as, when a given value v is sent
alongside its hash H(v) to a recipient, both v and H(v) could be altered by a malicious
party.

2.1.3 Digital Signatures

Digital signatures ensure that a process pj can identify the creator pi of a given
message msi. It again includes a key pair consisting of a public and a private key (pubi
and privi). The private key is only known by the creator of the signature, and the public
key is publicly available. Its functionality is defined using two primitives:

• SIGN(privi, v): Applies the private key privi on a given value v. This produces the
signature sigv

• VERIFY(pubi, v, sigv). Is used to verify the signature sigv resulting in a boolean
value (true or false) depending on the correctness of the signature. It returns true
if and only if, when computing the public key pubi over the signature sigv, value v

is returned.

In this scheme, it is important that it is computationally unfeasible to obtain either a valid
signature sigv without knowing the private key privi or to obtain the private key from the
signature sigv and the public key pubi. In the context of this work, we denote a signed
message ms by process pi as msi (TANENBAUM; STEEN, 2006).

As such, with the help of digital signatures, authenticity is fulfilled, as only pi is
able to construct a given signature using privi. In addition to that, integrity is guaranteed,
as even if a malicious process was able to change the value v the signature sigv would
not match anymore, and the alteration is easily detected.

2.1.4 Message Authentication Codes

Message Authentication Codes (MACs) are used to authenticate messages that
are exchanged between parties that share a common secret key (symmetric cryptog-
raphy) (GOLDREICH, 2009). MACs provide integrity and authenticity and are widely
studied in the literature due to their speed advantages compared to signatures using
asymmetric cryptography. However, in certain protocols, when messages are broadcast
or relayed, the number of MACs that have to be appended to each message grows
linearly with the system size (CASTRO; LISKOV, 2002; ABRAHAM et al., 2018).
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2.1.5 Signature Schemes

A wide selection of different signature schemes exist. Especially notable in the
context of this work are Threshold Signatures and Multi-Signatures.

Threshold Cryptography

Threshold Cryptography is also known as k out of n cryptography as only a sub-
set of signatures k of all participants n is required to sign or verify (or encrypt/decrypt)
a message. Following this scheme, each process of a given group g owns a partial
key psigm that may be used to sign a given message m. After signing, any server can
combine the partial keys (as long as in possession of at least k partial keys) to obtain
the final threshold signature. This signature may then be verified in O(1) complexity by
any process.

However, Threshold Cryptography, while being highly efficient as only one final
signature has to be sent and verified, requires a lengthy and complex protocol to
distribute the partial keys every time the set of participants changes. In addition to
that, while threshold signatures may be partially aggregated and partial aggregates
combined in a multi-step protocol, partial aggregates may not be verified as at least k
signatures are necessary for verification (DESMEDT; FRANKEL, 1990).

Multi-Signatures

Multi-Signatures are similar to Threshold Signatures, as they allow aggregating
multiple signatures into a single signature which can then be verified in O(1) steps.
However, compared to threshold signatures, multi-signature schemes are more flexible
as they allow verifying which and how many processes contributed their signature to a
given multi-signature.

There are two main types of multi-signatures. The first one is based on Schnorr
Signatures (SCHNORR, 1990). These signatures require O(1) storage and can be
verified in O(1) steps. However, they require an interactive protocol to construct one
specific multi-signature which requires multiple rounds of communication.

BLS signatures (BONEH et al., 2004) do not necessarily require an interactive
protocol and may be aggregated at any process. However, they are significantly more
complex computationally and require a vector of participant identifiers to be transferred
alongside the signature.

In the context of this work we will use the non-interactive bls12-381 multi-
signatures proposed in (BONEH et al., 2020).
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Comparison

As in this work we’ll be comparing different algorithms that rely on different
cryptographic schemes, we evaluated the computational complexity of the ones that
are important in the context of this paper.

• secp256k1 (Elliptic Curve Algorithm, e.g. Used in Bitcoin (NAKAMOTO, 2008)
and HotStuff (ABRAHAM et al., 2018));

• bls12-381 (BLS multi-signature - e.g. used in Chia (COHEN; PIETRZAK, 2020));

• gpg (e.g. used in most Linux distributions)

Figure 1 shows the cost of a single sign and verify operation averaged over 100
runs for each scheme. This was run on a machine with an Intel i7-8750H CPU andt
32Gb RAM. Quite visibly, gpg is substantially slower than secp256k1, where the latter
also clearly outperforms BLS. However, while the cost of gpg and secp256k1 grows
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linearly with the number of signatures, bls amortizes this cost through aggregation. The
results for BLS aggregation are shown in Figure 2 and can be decomposed into the
aggregation of multiple signatures to create one single aggregated signature and the
aggregation of public keys to create an aggregated public key that is required to verify
aggregated signatures. Interestingly the cost of aggregation decreases quickly with the
number of elements (number of signatures or public keys) while the verification cost
remains constant (as cryptographic pairings can be cached). In contrast, the verification
cost of the other schemes grows linear with the number of signatures. This means that
after ≈ 55 signatures (i.e. input of processes), the overall cost of secp256k1 surpasses
that of BLS.

2.2 DEPENDABILITY

Dependability can be understood as the branch in computer science that is
related to upholding certain guarantees or attributes that are associated with a given
service or system. As such, in the field of dependability, threats to the desired state of a
system are identified, and techniques have to be developed to cope with different levels
of threats (AVIZIENIS et al., 2004). Fundamentally, a dependable system is a system
that can be trusted to be able to deliver a given quality of service.

A dependable system has to fulfill the following properties (AVIZIENIS et al.,
2004):

• Availability: The ability of the system to answer a request.

• Reliability: The continuous delivery of correct service without interruption;

• Safety: The avoidance of negative consequences in the presence of failures;

• Integrity: The protection of the system against unauthorized alterations;

• Maintainability: The ease of restoring the system to a correct state.

These properties can be condensed into two basic properties Safety and Live-
ness. Safety determines that a program follows its specification (producing the correct
output), and liveness is usually associated with the termination of a program or algo-
rithm (continuously producing output) (LAMPORT, 1977).

2.2.1 Threats

In the context of dependable systems, threats are usually discussed in the con-
text of faults, where a fault might be the reason for a system to deviate from its specifica-
tion. Such a fault might originate from a diverse set of factors, ranging from weaknesses
or flaws of the code of the service, the underlying system, its configuration or operation
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(internal causes) or might have been introduced by an external actor, like given envi-
ronmental conditions (temperature, weather) or even caused by an intruder (external
causes).

The manifestation of such a fault is usually described as an error, which itself
might result in the failure of the system leading to a deviation of the specification of the
given service (AVIZIENIS et al., 2004).

As a simple example, the fault might be a missing condition in the code forgotten
by the developer, the error is the reaction of the system when encountering the missing
condition, and the failure is the shutdown of the service due to the fault. As the service
is unable to react to queries in this state, it is deviating from its specification. Thus, the
failures resulting from a fault may impair the safety and liveness properties of the whole
system.

In the context of this work, we are specifically targeting distributed systems. Thus,
we do not only have to deal with failures related to the execution of the algorithm or
program but also with potential failures of the underlying communication channels. In
addition to that, while there are numerous ways to classify failures in the literature
(based on the origin of the fault, persistence, etc.), in the context of this work, we have a
special interest in the impact of the failure. This is usually described as failure semantics
and identifies different types of faults that might surface during the runtime of a system
and the potential impacts of the failures they may cause.

Classically, failures are divided into two domains, the time domain (e.g., service
is interrupted) and value domain (e.g., incorrect values are returned) where the failures
are further divided into four different categories attending different domains (CRISTIAN,
1991).

• Crash failures: The complete interruption of the system or service, e.g., due to a
crash. In this state, the system or service will not attend to any requests until a
valid state is restored (time).

• Omission failures: The failure of the system to attend to certain requests while
potentially attending others, e.g., responding to some users but not others (time).

• Timing failures: The failure of the system to respond to a given request within a
certain time interval (time).

• Arbitrary failures: The system produces arbitrary values or arbitrarily only re-
sponds to certain requests. Often also described as byzantine failures, which
include malicious faults (time and value).

Figure 3 visualizes the classification of the cited faults, showing the relation
between the different types of faults, ranging from the most restrictive type of failure
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Figure 3 – Fault classification based on failure semantics (CRISTIAN, 1991)

(crash) to the most general failure (byzantine). Failures in the time domain can be de-
tected relatively easily through timeouts. Byzantine failures, however, are much more
difficult to deal with as they might impact both the time and value domains. This mali-
cious behavior is difficult to detect as it requires knowledge of the application and its
semantics.

As we are dealing with distributed systems, there are multiple system compo-
nents that might fail. We describe the encapsulation of one such component as a
process. We define a correct process as a process that responds to a correct request
with the expected reply (following its specification).

As we are dealing with distributed ledgers, we assume the byzantine failure
model. Thus, the fault tolerance techniques that are discussed in the following sections
are especially focused on this type of failure.

2.2.2 Methods

In order for a dependable system to follow its specification, it is necessary that,
throughout the planning phase up to production, certain methods, techniques and tools
are used.

In (AVIZIENIS et al., 2004) a set of methods and techniques are identified which
aid at achieving a dependable system. These are: Fault Prevention, Fault Removal,
Fault Forecasting and Fault Tolerance. Fault Prevention and Fault Removal are focused
on the usage of methodologies, tools, and tests during the development of the project,
minimizing the occurrence of faults. Fault Forecasting, relies on analytic methods (often
based on stochastic processes) and trys to foresee the system’s behavior during its
life-cycle, trying to estimate the reliability and availability of the system itself.

Since the techniques to prevent and remove faults are not exhaustive and also
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cannot cover the entire life cycle of a project, it is necessary to use mechanisms such
as Fault Tolerance to guarantee the continuous availability of a system or service.
These mechanisms are often based on redundancy (time/software/physical) which
allow the system to evolve following its specifications even in the presence of failures
and intruders in the system.

Another important factor besides redundancy is diversity, which is strongly re-
lated to N-version Programming (code made by independent teams, using different pro-
gramming languages, methodologies, etc.) to shield the system against similar faults
on different processes of a service. In other words, diversity decreases the occurrence
of correlated faults. This makes it less likely to have several processes suffer from the
same failure (AVIZIENIS, 1985).

2.2.3 Fault Tolerance Techniques

There is a wide selection of techniques that can be used to tolerate faults. These
techniques can be divided primarily into two groups: Error Detection and Recovery, and
Masking of Faults. Error detection could, e.g. be done with the help of timeouts, recovery
could be the attempt to restore the system to the last valid system state (i.e. snapshots)
and masking errors could be done with the help of redundancies (e.g. replication). In
practice, usually a combination of both approaches is used. Replication is applied to
maintain operation in the presence of failures, and failure detection and recovery are
then applied to recover the system to the previous state (AVIZIENIS et al., 2004).

Replication may also be active or passive, where active replication increases
the set of active participants and passive replication adds a set of processes that do
not engage with the system until failures are detected. In the context of this thesis, we
focus on active replication, also known as State Machine Replication (AVIZIENIS et al.,
2004).

State Machine Replication

In State Machine Replication (SMR), the system state is represented by State
Variables which may be transformed through a set of Commands where Commands are
mandatorily deterministic. This is necessary to guarantee that a set of processes, given
a set of State Variables and an ordered list of Commands generates the same result
on each process (AVIZIENIS et al., 2004). This requirement is also called determinism
of replicas (SCHNEIDER, 1990)1.

According to Schneider, the progress of a State machine depends on the fulfill-
ment of the following two properties:
1 Replicas which start from the same initial state going through the same sequence of requests in the

same order have to come to the same result
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• Agreement: All correct replicas receive the same requests.

• Order: All correct replicas process the received requests in the same order.

The requirements of agreement and order are typically fulfilled by consensus
protocols (HADZILACOS; TOUEG, 1994), where consensus is used to have the set
of processes agree on a given value or order of values, persist the new state and
notify the client. A client accepts the result of the operation after receiving f + 1 equal
confirmations, where f is the maximum number of faulty processes.

Consensus

Consensus is one of the fundamental problems of distributed systems. This is
the case since as soon as data and or processing is distributed over a set of physical
machines, some sort of mechanism is necessary to have the different processes agree
on a given state.

More formally, it consists of two primitives (HADZILACOS; TOUEG, 1994):

• propose(G, v): Proposing the value v to a set of processes G.

• decide(v): Notifying the processes about the decided value v.

In order to satisfy Safety and Liveness these primitives have to fulfill the following
properties (CACHIN et al., 2011) (p. 245):

• “Agreement: No two correct processes decide differently.”

• “Termination: Every correct process eventually decides some value.”

• “Integrity: No correct process decides twice.”

In addition to the three properties above, Validity also has to be guaranteed. In
(CACHIN et al., 2011) (p. 246) the two following definitions of validity are discussed:

• “Weak Validity: If all processes are correct and propose the same value v, then
no correct process decides a value different from v; furthermore, if all processes
are correct and some process decides v, then v was proposed by some process”.

• “Strong Validity: If all correct processes propose the same value v, then no correct
process decides a value different from v; otherwise, a correct process may only
decide a value that was proposed by some correct process or the special value
⊥”.

In the context of this Thesis we consider Weak Validity. While malicious pro-
cesses may propose blocks with spurious data, in the context of blockchain based
systems, transactions require the matching client signatures to affect the system state.
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While Safety depends on the fulfillment of Agreement, Integrity and Validity,
Termination guarantees Liveness.

Thus, an algorithm that solves consensus must fulfill these four properties.

2.3 DISTRIBUTED LEDGERS

Bitcoin (NAKAMOTO, 2008) in 2008, solved the double-spending problem of
digital currencies with the help of a combination of the blockchain for immutable storage
and a novel consensus protocol to synchronize state. The double-spending problem
describes the difficulty of tracking digital assets without relying on central trusted com-
ponents. In digital payment systems like PayPal, where a central agency manages a
ledger with incoming and outgoing transactions of every user, it is pretty simple to track
and control the flux of transactions to avoid double-spending. As such, if a user issues
a digital currency transaction to another user, a central component can easily adjust
their state such that if the user attempts to issue the same transaction to another user
shortly after, the system can detect and prevent this easily. However, central entities,
on the other hand, may censor or delay transactions or even steal money and therefore
require trust to operate.

Meanwhile, while censorship in a decentralized system is significantly less likely,
preventing double-spending is challenging. i.e., users may send transactions with di-
verging states to different processes simultaneously, the processes approve different
transactions, and both receivers believe they received the assets accordingly.

This section focuses on the basic concepts of distributed ledgers, how they
guarantee immutability and how they achieve consensus and prevent double-spending.

2.3.1 Blockchain

While the blockchain has long been used as an umbrella term for systems that
are similar to Bitcoin, due to the creation of adjacent data structures with similar but
distinct properties, the scientific community shifted to using distributed ledger as a more
all englobing term.

The term blockchain explicitly describes the type of data storage used in Bitcoin
and similar systems. In this work, we will solely focus on distributed ledgers that lever-
age the blockchain as their storage technology which is arguably the most common
implementation.

The blockchain (depicted in Figure 4), roughly simplified, is a linked list of blocks
where each subsequent block holds a hash of the previous block as a reference. This
approach makes the entire chain immutable, as changing a block in any position would
require updating every subsequent block. Thus, the blockchain relies on cryptographic
hash functions allowing anyone to easily cross-check the integrity of a given block on
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Figure 4 – Blockchain Data Structure

the chain by calculating the hash of a given block and comparing it to the hash stored
in the subsequent block in the chain. Thus, if anyone tampered with the data, the newly
calculated hash and the hash stored in the subsequent block would differ, exposing the
alteration ( Section 2.1.2). This way, with the continuous growth of the blockchain, it
becomes gradually more challenging to alter past data.

In order to calculate an up to date state of the system, the entire list of blocks
has to be traversed, and the transactions in each block executed sequentially. In order
to compare the state of a set of different servers efficiently, Bitcoin (NAKAMOTO, 2008)
uses Merkle Trees. Merkle Trees are another hash-based data structure where each
leaf represents a given block, and the internal nodes connecting a given pair of leaves
are their aggregate. The intriguing part of Merkle trees is that given the Merkle tree
root hash and a block hash, it is possible to verify if the block is part of this tree highly
efficiently. Due to this, a new participant may download the blockchain of any other
participant and then efficiently assert the correctness of the data by computing the
Merkle tree of the local data, querying the Merkle tree root hashes of a sufficiently large
set of other processes, and comparing it to the locally computed Merkle tree root.

In most distributed ledgers, each client is identified using a pair of asymmetric
keys where the public key serves as their public identifier, and the private key allows
the user to authenticate and issue transactions with the help of digital signatures in the
system.

Building blockchains in decentralized peer-to-peer networks without trusted ele-
ments that are aware of all transactions is a complex task as it requires regular synchro-
nization between the different peers (NAKAMOTO, 2008). Therefore, the primary tool for
building such a distributed ledger is consensus, discussed in detail in the next chapter.
Roughly simplified, with the help of consensus, all peers in the system may eventually
agree on the system’s state (the order in which transactions shall be persisted). Due
to this, decentralized systems come with a significant performance drawback, as all
participants have to agree on every single value. As such, to guarantee high scalability
in terms of consensus participants and to deal with regular fluctuations of validators,
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several novel algorithms have been designed, which are explained in the following.

2.3.2 Blockchain Consensus

Distributed Ledgers can be divided into permissionless and permissioned
ledgers. In permissionless ledgers, any server may join and leave at will. As such, it
functions as an open system. Permissioned ledgers, on the other hand, can be divided
into consortium ledgers, where a consortium of companies controls the existing nodes
of the ledger, and private ledgers where the entire system is controlled by a single
entity (VUKOLIĆ, 2016). Permissioned ledgers can easily run traditional consensus
algorithms due to their more restrictive nature, where horizontal scalability is still
important as many use-cases of this technology include a potentially large group of
participants. Meanwhile, permissionless ledgers require other approaches due to the
openness of the system. While traditional consensus operates with the principle “one
process one vote”, which implies that every process has an equal say in the system,
in permissionless systems, an adversary could easily create sufficient instances to
overthrow the existing consensus (usually described as Sybil attack).

For this reason, novel algorithms were developed that allow horizontal scalability
while being resilient against Sybil attacks. Due to the large number of participants,
consensus using an algorithm that requires message exchange between all participants
is very costly, especially considering wide area networks. Most blockchains, therefore,
run an algorithm that, strongly simplified, elects a single process each round to decide
on a block of transactions. Then, the elected process broadcasts their proposal, and the
remaining processes verify and append it to their blockchain if valid (VUKOLIĆ, 2016).

The first algorithm that was developed in this context, initially proposed by
Nakamoto (NAKAMOTO, 2008), was Proof of Work (PoW), where the participants
(called miners) have to solve a computationally complex puzzle to participate in con-
sensus. This way, the “one process one vote” policy is effectively transformed into
“one CPU one vote”, effectively increasing the resource requirement to overthrow the
network significantly.

This puzzle usually involves finding a hash that matches a specific pattern (e.g.,
a hash that ends with the symbols 123). To solve this, a unique field in the block called
nonce is altered until the hash matches the criteria. This approach also allows adjust-
ing the difficulty dynamically by adapting the hash requirement (instead of requiring a
hash ending with the pattern 123, the difficulty could be reduced by only requiring it to
end in 23). The first process to solve the puzzle receives a reward, as an incentive, to
participate honestly in the system. Therefore a part of the correctness of the system
depends on game theory where participants are rewarded such that honest participa-
tion in the system is supposed to be more rewarding than dishonest participation. In
addition to that, due to the high computational cost, the immutability of the blockchain is
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strengthened, as recalculating a chain of blocks would entitle solving the cryptographic
puzzle for each of the blocks all over again.

Nevertheless, this results in an optimistic execution of consensus, as the fastest
process to solve the puzzle will distribute its block to others. As such, it is relatively
common for two processes to solve the puzzle at a similar moment and, due to the
geo-distribution, deliver their block to different participants in a different order. This
event creates a fork as the local blockchain of different participants differs for a certain
period. This inconsistency is solved by the following process that solves the puzzle. As
the next process has a specific local view of the state (accepted one of the two blocks),
when it distributes its new block to all processes in the system, the other processes will
override their current state due to the “longest chain rules” directive.

All participating servers have to execute this CPU-intensive algorithm resulting
in a very high computational cost overall that is very wasteful (VUKOLIĆ, 2016). For
this reason, more efficient algorithms based on game theory have been created. One
of them is Proof of Stake (PoS), where each server has to lock a certain quantity of
cryptocurrency (stake) to participate (could also be described as a security deposit).
This way, the miner is highly interested in the success and thus in the stability of
the chain, as their stake could else lose value significantly (KING; NADAL, 2012). A
deterministic schedule then selects the following process to produce a block based
on their stake. Nonetheless, as the participants with the most significant stake acquire
even more stake, this eventually leads to a centralization of power. Not only that, but as
existing stakeholders hold large quantities of the stake, it gets increasingly difficult for
outsiders to enter the system.

Besides Proof of Stake and Proof of Work, other models exist like Delegated
Proof of Stake (DPoS) where the stakeholders can elect a limited group of consensus
nodes (witnesses) that participate in the consensus on their behalf. This approach
reduces the number of validators participating in the consensus and improves the
performance significantly (BUCHMAN, 2016). Among the most efficient blockchains in
terms of number of transactions we find many DPoS chains as Hive (LARIMER et al.,
2016), EOS (GRIGG, 2017) or Bitshares (SCHUH; LARIMER, 2017).

Outside of the named systems, other less popular models exist, as Proof of
Elapsed Time (CHEN et al., 2017) where Intel-based CPUs can prove having been
idle for a particular period, Proof of Capacity (ZHENG et al., 2018) which is based on
disk space, Proof of Burn (MILUTINOVIC et al., 2016) which is based on destroying
cryptocurrencies in the consensus process, etc.

While there is a vast selection of different approaches, they have plenty in com-
mon as most of these systems, in practice, either rely on all-to-all communication and
end up with crippled throughput or reduce the number of participants but endanger the
safety of the system.
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Consensus algorithms for permissioned blockchains, which are the main focus
of this thesis, are discussed in detail in the next chapter.

2.4 SUMMARY

This chapter introduced the fundamentals of cryptography and dependability
necessary to understand the subject. As our work is centered around distributed ledger
technology, this also included an explanation of the basic principles surrounding this
technology.

In the next chapter, we discuss approaches from the scientific literature regard-
ing byzantine fault-tolerant consensus. While most of these approaches assume per-
missioned models, it is possible to combine those with one of the above-mentioned
permissionless solutions to create hybrid approaches that are both able to deliver spe-
cific system properties while also working in a permissionless environment (VUKOLIĆ,
2016).
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3 RELATED WORK

The problem of byzantine agreement was discussed initially in the context of
synchronous systems (LAMPORT et al., 1982), resulting in a recursive algorithm with
a factorial message complexity. The first solution with a practical message complex-
ity was PBFT (CASTRO; LISKOV, 1999) that, until today, serves as an inspiration
for most byzantine fault-tolerant consensus protocols. PBFT, similarly to most mod-
ern approaches, provides safety in a completely asynchronous setting but requires
synchronous phases to guarantee progress.

This is a necessary assumption since, as proven in (FISCHER et al., 1985), it is
impossible for a consensus protocol to fulfill both liveness and safety in the presence
of asynchronous network conditions. This is known as the famous FLP impossibility
theorem. As a result, the concept of partially synchronous protocols emerged (DWORK
et al., 1988). While, in this model, periods of instability may occur where messages
might be delayed arbitrarily (asynchronous network conditions), there is an unknown
Global Stabilization Time (GST) and a known worst-case network latency ∆ where,
after GST, messages arrive within ∆. Thus, in this model, safety is always guaranteed,
while liveness is only established after GST.

While there are protocols like Honeybadger (MILLER et al., 2016) that offer
guaranteed liveness even under asynchronous network conditions, they do not provide
deterministic safety (i.e., these protocols only provide safety at a “very high” probability).
In addition to that, this group of protocols requires a substantial network complexity
(O(N4)). Thus, due to our concerns for scalability and high throughput, we did not
include this group of protocols in our analysis.

3.1 CLASSIFICATION OF APPROACHES

We generally assume leader-based approaches, where a single process pro-
poses a value for each round of consensus, which all other processes will then agree
on. In this context, we classify the existing approaches into subgroups based on the
communication pattern that is used by the leader to disseminate the proposal and by
the remaining process to exchange their agreement.

• All-to-All: Leader process broadcasts block, all processes broadcast their vote
and verify and collect votes of all other processes.

• Star: Leader process broadcasts block. All processes send their vote to the leader
that collects and verifies the votes and relays them in a batch once reaching a
majority.
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• Gossip: Leader process propagates block through gossip. All processes receive,
verify, aggregate, and relay aggregates through multiple rounds of gossip.

• Committee: A small subset of processes is randomly selected. The leader sends
the proposal to all processes in this committee, committee members exchange
their vote internally and verify and collect votes of all other processes within the
committee. After the end of consensus, each committee member distributes the
result to the remaining processes before a new committee is elected.

• Hierarchical: First, the leader process disseminates a message to a set of cluster
primaries. Next, cluster primaries verify and relay the message to their cluster
members. Then, all processes send their vote to their respective primary, the
primaries aggregate, verify and then exchange their respective aggregates with
the other primaries. Finally, after constructing an aggregate consisting of sufficient
votes, each primary relays this to their cluster members and persist the result.

• Tree: Leader process sends a value to their child processes in the tree, child
processes relay to their respective child processes until reaching the leaf nodes.
Next, all processes verify, aggregate, and relay the votes up the tree back to
the leader. Finally, the leader collects the last aggregate and then restarts the
distribution process.

3.2 BYZANTINE FAULT TOLERANT CONSENSUS

In the following, we present the most dominant proposals based on the classifi-
cation above.

3.2.1 All-to-All Protocols

The first and most prevalent group of protocols is based on all-to-all commu-
nication. Thus, the communication cost of these protocols grows quadratic with the
number of participants. Most of these protocols are direct derivatives of PBFT (CAS-
TRO; LISKOV, 1999) and use the communication pattern depicted in Figure 5. In this
protocol, there are multiple steps, server processes P (P0...P3) and one client process
C.

PBFT is a leader-based protocol where one of the participants fulfills the unique
role of the leader (in this case P0). The protocol starts with the client sending trans-
actions to the leader. If the leader is correct and is not suspected to be faulty, it will
propose a value as input to consensus in the pre-prepare phase. This may either be a
single transaction or a batch of transactions (i.e. a block).
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Figure 5 – Three Phase Protocol - PBFT

Next, each process verifies the proposal of the leader and, if the proposal follows
the previously agreed-upon rules, each process broadcasts their vote with the proposed
value in the prepare phase.

At the end of this phase, each process verifies the received prepare messages,
and if a full byzantine quorum was collected (2f + 1 prepare messages), it locks the
value and broadcasts a commit message to notify the other processes.

After receiving 2f + 1 commit messages, each process can be certain that the
majority of processes (at least f + 1 honest processes) did receive a full quorum in
the prepare phase. They persist the agreed-upon value and notify the client about the
result.

If any of these phases fails (i.e., a timeout is reached), a new leader is selected
through a view-change protocol. The view change protocol works very similarly to the
consensus protocol. After the timeout is reached, each process determines the next
leader deterministically (i.e., rotating the leader in round-robin fashion) and broadcasts
the selection in a view-change message. After receiving f + 1 view-change messages,
any process that did not run into the timeout yet also determines a new leader and
broadcasts its decision. This way, correct processes that were lagging behind may
catch up to the remaining processes. Finally, after receiving a byzantine quorum of
view-change messages (2f + 1), the elected process assumes the role of the leader
and restarts the protocol. This algorithm results in a cost of O(n2) for each view-change,
and, as there is a possibility of f subsequent leaders, it might have to be repeated f

times. As such, in the worst case, this results in a cost of O(n3).
SBFT (GOLAN GUETA et al., 2019) is an optimization of PBFT where each

process creates a single aggregated signature. Therefore, the processes only have
to broadcast and verify a single signature each round instead of the whole set of
signatures. This strategy significantly reduces the bandwidth load of the subsequent
rounds and results in a lower computational burden on all processes.

However, based on the above algorithm, in both SBFT and PBFT, the leader
clearly has more work than the remaining participants, as it needs to collect the requests



Chapter 3. Related Work 44

from clients, broadcast the batch of transactions, and also run the same protocol as the
remaining participants. One way to alleviate the load on the leader is by rotating the
role of the leader among all participants in every consensus instance. Another reason
to rotate the leader regularly is to reduce the potential influence of a faulty leader
process. Spinning (VERONESE et al., 2009) is a protocol that uses this strategy. As an
extension of Spinning, EBAWA (VERONESE et al., 2010) allows multiple instances of
consensus to run in parallel (with different leaders) optimistically, further improving the
performance of the system. Another strategy consists in carefully selecting the node
depending on the network conditions to play the role of the leader. This strategy is used
in Archer (EISCHER; DISTLER, 2018), where the system can perform a view change,
not only when the current leader is faulty but also when another node could exhibit
better performance than the current leader. Being careful in selecting the leader, or
rotating the leader, can help the protocol but does not combat the inherent scalability
issues. As at some point in the protocol, one or more processes have to broadcast a
given value to all processes (bandwidth bottleneck) and receive and verify n signatures
(CPU bottleneck).

3.2.1.1 Optimistic Protocols

To achieve consensus PBFT has to collect two subsequent quorums to ensure
that if any correct node decides, all other correct nodes also decide until the end of the
second round. Optimistic protocols are based on the observation that in fault-free runs,
it may be possible to update the client about the result earlier. To achieve this, they
run a combination of two sub-protocols: an optimistic sub-protocol that only provides
termination in fault-free runs and a recovery sub-protocol that needs to run when faults
occur (e.g., somehow inconsistencies are detected, or consensus is not achieved). The
recovery protocol typically follows the structure of the original PBFT protocol, while the
optimistic protocol typically uses fewer messages and/or fewer communication rounds.
Thus, in failure-free runs, optimistic protocols can be more efficient but in faulty runs
are more expensive (because both sub-protocols are executed sequentially).

WHEAT (SOUSA; BESSANI, 2015) is an example of a protocol that uses this
approach. In WHEAT, the optimistic sub-protocol follows the same structure of PBFT
but is executed only among a subset of f + 1 participants. Although the message
complexity is still quadratic, namely O(n2), in practical terms, it is more efficient than
a protocol where at least 3f + 1 nodes need to participate. If the optimistic protocol
succeeds, the result is propagated to the remaining processes in the background; other-
wise, a recovery protocol involving all nodes is executed. Another, even more optimistic
approach has been implemented in Zyzzyva (KOTLA et al., 2010). In Zyzzyva, nodes
accept the value proposed by the leader without immediate validation: if the leader is
faulty, participants may transiently store an inconsistent state. When inconsistencies
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arise, they need to be corrected by an expensive recovery protocol that uses a com-
munication pattern similar to that of PBFT. In the fault-free runs, Zyzzyva allows clients
to observe results after three communication steps that use only a linear number of
messages. However, because participants may transiently store an inconsistent state,
clients always have to contact a quorum of participants before accepting a value. If, in
this process, a client detects that servers are inconsistent, it will trigger the recovery
protocol.

Ouroboros (KIAYIAS et al., 2017) is an extension of Zyzzyva where, instead of re-
lying on the clients to detect inconsistencies, the results are published on the blockchain
and are, if necessary, solved through forks. Thus, similarly to PoW blockchains, there is
a possibility that blocks are revoked later on. Therefore, Ouroboros also does not offer
deterministic finality.

While these optimistic protocols provide much lower latency and a significantly
better message complexity in the failure-free case than the previously discussed proto-
cols, in highly contentious settings, as we expect it in distributed ledgers, adversaries
may regularly force the fallback protocol to be executed, resulting in a significant over-
head and also a quadratic message complexity. On top of that, while these protocols
offer a linear message complexity, a single process (leader) still has to broadcast the
proposed value (batch of transactions) to all participants, which still creates a bottle-
neck.

3.2.2 Star Protocols

One of the main advantages of the all-to-all communication pattern adopted by
PBFT and similar algorithms is that it does not require public-key cryptography. Instead,
each point-to-point channel connecting a given pair of participants can be authenticated
using MACs, which is computationally much more efficient. At the time PBFT had been
designed, the use of public-key cryptography appeared to be more penalizing to the
performance than the quadratic message cost of the algorithm. However, subsequent
experience has shown that, with current technology, it may be better to use more so-
phisticated cryptographic techniques. This is the case, even though they might require
more computational resources, as long as they allow to reduce the message and band-
width complexity of the algorithm, given that processing a large number of messages
also consumes a significant amount of resources (CASTRO; LISKOV, 1999; CLEMENT
et al., 2009).

One way to reduce the communication cost of the algorithm is to establish relay
points that aggregate a set of messages and relay it to a subset of participants. For
instance, if one round of the protocol requires voting, instead of having participants
send their votes directly to all other nodes, participants may send their votes to a
selected participant (typically the leader), which returns the votes in aggregated form.
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Figure 6 – HotStuff: communication pattern in normal case operation.

This strategy allows to reduce the message complexity from O(n2) to O(n). However,
note that this scheme comes with a latency tradeoff: by using the leader as a relay
point, voting now takes two communication steps instead of one.

In addition to that, this approach only works because public key cryptography
prevents the leader from modifying the message contents. While the relay node can
opt to drop some messages, it cannot change the content of the messages it chooses
to relay. Due to this, several algorithms have been proposed that use a star topology to
communicate.

The network communication pattern reduces the number of messages ex-
changed significantly but still results in a significant network resource consumption, as
the relay node still has to relay the content of all messages sent by all participants (or,
at least, a quorum of participants). Signature aggregation may be used to construct
one single signature that can be verified in O(1) steps. Using this technique, votes from
the participants can be sent in the form of partial signatures that are then combined
by the leader such that a single signature is sent back to all participants as proof that
enough votes were collected.

HotStuff is a recent algorithm that uses a communication pattern based on a
star-network (ABRAHAM et al., 2018). HotStuff consists of three rounds where all com-
munication runs through the leader that collects and distributes aggregated signatures.
The protocol has a linear communication cost but takes eight communication steps to
terminate (4 phases of two steps each). This process is shown in Figure 6.

The protocol is very similar to PBFT. In the first step, a client sends transactions
to the current leader. The leader, similarly to PBFT, disseminates a proposal in a prepare
message. Finally, if the proposal is valid (i.e., consists of valid transactions), processes
send their vote to the leader as a response.
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Figure 7 – HotStuff: Pipelining

After aggregating 2f +1 votes the leader broadcasts the result in the pre-commit
step. Processes verify the set of votes (i.e., the set of signatures or the signature
aggregate) and, if valid again, signal the leader their agreement.

The leader again aggregates 2f + 1 votes (this time over the pre-commit) and
notifies the remaining processes in a commit message. In turn, after receiving a correct
commit message, processes lock the result and again notify the leader.

In the final step, the leader aggregates 2f + 1 commit response messages and
broadcasts the decision. The remaining processes, after receiving a valid decision
message (consisting of 2f + 1 valid commits) then persist the result.

To compensate for the additional number of communication steps, HotStuff al-
lows up to four steps of different instances of consensus to run in parallel. This is
displayed in Figure 7. More precisely, the first step of the n + 1th instance of consen-
sus is executed in parallel with the second step of the nth instance of consensus, and
so forth. It is important that the pipelining is done precisely in this manner, since in a
blockchain scenario, the n+ 1th instance depends on the nth instance.

Despite its apparent benefits in terms of message complexity, algorithms that
use a communication pattern based on a star network have a significant drawback: the
protocol becomes limited by the physical capacity of the leader node both in terms of
bandwidth and CPU.

3.2.3 Gossip Protocols

Another possibility is using gossip message propagation. This approach is fol-
lowed in Gosig (LI, P. et al., 2020), where the leader election is done by executing
verifiable random functions. This approach decreases the risks of potential attacks on



Chapter 3. Related Work 48

the elected leader as the leader is only known at the moment of the consensus and
not ahead of time. While there is a chance of no or multiple leaders being elected in
the same round, requiring a new election, this approach is still advantageous in highly
adversarial environments. Protocols as PBFT or Spinning where the leader is always
known beforehand can suffer denial of service attacks on their leaders, which can
affect the liveness of the system. Additionally, the communication is optimized by rely-
ing on epidemic message propagation (gossiping) between the replicas and applying
multi-signatures to improve the bandwidth usage. However, at the moment of writing,
byzantine fault-tolerant gossip still requires at least multiple rounds of O(N ∗ log(n))
messages, which is more than O(N ) of the star-based approach.

3.2.4 Committee

As the communication and computation complexity is a function of the number
of processes, instead of requiring all processes to participant in consensus, some
approaches select a random subgroup of processes each round which then executes
consensus. These approaches are usually called committee-based approaches, where
SCP (BALIGA, 2017) and Algorand (GILAD et al., 2017) are two of the most famous
representatives.

However, this approach does not come without drawbacks. Due to the reduced
quorum size, malicious processes may have a more significant influence on the system
as there is a chance to encounter a committee with a majority of faulty nodes. As such,
either the resilience has to be sacrificed (reducing the resilience to be in function of the
committee size and not the system size) or deterministic finality where a block can only
be finalized by sufficient subsequent blocks that guarantee that sufficient independent
quorums validated a given block (implicitly vouching for previous blocks).

On top of that, at the end of each round, each committee member still has to
broadcast the result to the remaining processes resulting in a high bandwidth cost for
each of those processes.

3.2.5 Hierarchical Protocols

A possible solution to divide the load among nodes are hierarchical architectures
where nodes are split into groups (usually based on geographical proximity), execute
consensus first on the group level, and finally, have a representative of each group
participate in consensus on the global level.

Steward

One of the first to follow this approach is Steward (AMIR et al., 2010). An ex-
ample hierarchy of the approach is shown in Figure 8 where servers are grouped in



Chapter 3. Related Work 49

Figure 8 – Hierarchy: Steward Figure 9 – Hierarchy: Fireplug

hierarchic groups (or clusters), and each cluster acts as a logical unit and individually
creates a signature aggregate representing the decision of the group. As such, one pro-
cess of each group may then use this signature aggregate when attempting to achieve
consensus with the remaining group leaders on the “global level”. This approach re-
quires O(n2) (where n represents the group size) messages within each group and
O(k) messages on the global level (where k represents the number of groups). As a
result, this very successfully reduces the communication complexity and distributes the
load significantly. However, in comparison to PBFT, Steward offers significantly lower
resilience guarantees, where, instead of having a global failure limit, failures are limited
on a local level.

Fireplug

Fireplug (NEIHEISER, Ray et al., 2018), as depicted in Figure 9, reduces the cost
of the architecture by requiring the leaders to attach a proof containing the signature of
enough other leaders when sending decisions to their local cluster members. It runs a
byzantine fault-tolerant protocol in the global group where a majority of leaders have to
sign each decision before updating the client with the result. By deploying several local
group representatives at the global level, it is possible to run the system with less than
3f + 1 data centers overall. Nevertheless, while it may tolerate faults on any level of the
hierarchy and local group members may detect a wide range of byzantine leadership
behavior, a majority of byzantine leaders may slow down the system significantly. As
such, the actual maximum number of simultaneous faults at the global level is restricted
to k = 3f + 1 where k presents the number of replicas in the global group, which
is unsuitable for highly adversarial environments since additional replicas in the local
groups do not increase the worst-case resilience of the system.
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ResilientDB

ResilientDB (RAHNAMA et al., 2020) is a more recent approach which combines
hierarchical algorithms similar to Steward or Fireplug within a blockchain. In addition
to the hierarchical approach, which distributes the load among the groups, ResilientDB
leverages sharding to utilize the left-over resources to boost the system throughput
significantly. Nonetheless, similar to the other hierarchical approaches, it comes with
restrictive failure assumptions, as a majority of honest nodes is required within each
sub-group.

3.2.6 Tree Based Protocols

As previous hierarchical protocols reduce the resilience to achieve higher
throughput, approaches based on dissemination and aggregation trees attempt to
distribute the load equally among the internal nodes while still maintaining high
resilience.

Byzcoin

One of the first approaches was Byzcoin (KOKORIS-KOGIAS, E. et al., 2016).
Byzcoin leverages a binary tree and uses collective co-signing (a cryptographic scheme)
to collect two quorums through a tree requiring three round-trips up and down the tree
for each quorum. This approach, therefore, results in a significant latency overhead
which affects the potential maximum throughput. In addition, Byzcoin uses verifiable
random functions to construct a random tree each round, and if within a given time-
frame no consensus is achieved, it falls back to an all-to-all scheme.

Motor

Motor (KOKORIS-KOGIAS, 2019) is a continuation of Byzcoin, which restricts
the tree to a depth of two to decrease the actual latency cost, and uses BLS signatures
that do not require several round-trips to construct a single quorum. It constructs trees
in a similar manner as Byzcoin, but, instead of falling back to an all-to-all scheme, in the
presence of failures, it slowly falls back to a star topology within N

m
steps (for a fanout of

m). As such, in the worst case, it requires f + 1 ∗ N
m

steps to find a robust configuration.

Omniledger

Omniledger (KOKORIS-KOGIAS, Eleftherios et al., 2018) is the final evolution
of Byzcoin and Motor and attempts to improve the throughput significantly through
sharding by making each sub-tree a shard of the system that decides on a given subset
of transactions and deploys a directed acyclic graph to deal with conflicting transactions.
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Table 1 – Comparison of existing algorithms
Load Deterministic N = 3f + 1 Latency Quick

balancing finality resilience compensation recovery
PBFT (CASTRO; LISKOV, 1999) ✗ ✓ ✓ ✗ ✓
HotStuff (ABRAHAM et al., 2018) ✗ ✓ ✓ ✗ ✓
Ebawa (VERONESE et al., 2010) ✗ ✓ ✓ ✓ ✓
Steward (AMIR et al., 2010) ✓ ✓ ✗ ✗ ✗
Fireplug (NEIHEISER, Ray et al., 2018) ✓ ✓ ✗ ✗ ✗
ResilientDB (RAHNAMA et al., 2020) ✓ ✓ ✗ ✗ ✗
Multi-Layer (LI, W. et al., 2021) ✓ ✓ ✗ ✗ ✓
Algorand (GILAD et al., 2017) ✓ ✗ ✓ ✗ ✗
SCP (BALIGA, 2017) ✓ ✗ ✓ ✗ ✓
Byzcoin (KOKORIS-KOGIAS, E. et al., 2016) ✓ ✓ ✓ ✗ ✗
Omniledger (KOKORIS-KOGIAS, Eleftherios et al., 2018) ✓ ✓ ✗ ✗ ✗

Kauri (This work) ✓ ✓ ✓ ✓ ✓

However, as each shard is smaller than the overall system size N , Omniledger trades
resilience against additional throughput and, as it leverages acyclic graphs to achieve
cross-shard consensus, it requires significantly longer to finalize a given block.

3.3 DISCUSSION

Table 1 summarizes up the discussion about the different consensus protocols.
The first column specifies if an approach distributes the computational and band-

width load among a set of processes. The second column defines if a system fulfills
deterministic finality (i.e., a block is irreversible after a specific number of steps). Then,
in the third column, we specify if a given approach displays optimal resilience (i.e.,
N = 3f + 1). Following that, a system fulfills the condition of the next column if it can
provide high throughput independent of the network latency. Finally, we specify if an
approach can recover deterministically in a linear number of configuration steps in the
last column.

While traditional protocols like PBFT, EBAWA, and HotStuff provide determin-
istic finality, N = 3f + 1 resilience, and quick recovery, in either protocol, one or more
processes have to broadcast the block and process and verify N signatures, which is
a major bandwidth and CPU bottleneck, as such they do not offer any load-balancing
properties. In addition, in a geo-replicated scenario, only Ebawa can compensate for
the inherent latency overhead by running multiple consensus rounds and steps asyn-
chronously in parallel. Nonetheless, Ebawa assumes non-conflicting values, which is
not the case in the blockchain environment where each block extends the previous one.

Early hierarchical protocols offer the load balancing and deterministic finality
the previous protocols lack, but at a tradeoff as they have to reduce their resilience
significantly. In addition to that, none of these approaches achieves high throughput
in a high latency setting, and only Multi-Layer offers a reconfiguration algorithm that
allows quick recovery.

Modern committee based approaches like SCP and Algorand may reduce the
cost significantly by having only a committee run the consensus. However, this is done
at the cost of deterministic finality. In addition to that, neither approach deals with the
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inherent latency cost of a geographical deployment resulting in vast idle times.
Finally, existing tree-based approaches offer load balancing and deterministic fi-

nality but again lack compensation for geographical deployments. Omniledger attempts
to compensate this partially through sharding but gives up a large part of their resilience
in trade.

The system we have developed through the course of this thesis incorporates
a series of novel techniques offering load balancing and latency compensation while
maintaining deterministic finality, high resilience, and quick recovery in the majority of
cases. How we achieve this is explained in detail in the next chapter.

3.4 SUMMARY

This chapter introduced and discussed a series of consensus protocols that we
classified by the communication structure. Furthermore, we highlight the disadvantages
of the different communication structures and the approaches that use them. Based on
this, we introduce the system we have developed throughout this thesis and compare
it to the existing approaches. The details of our system are outlined thoroughly in the
following chapter.
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4 KAURI

This chapter describes the proposed techniques and scientific contributions we
have developed in the context of this P.h.D. After an initial discussion of the system
model, we shed light on the tree communication scheme, how we achieve reconfigura-
tion in optimal steps and how we leverage pipelining to achieve high throughput. Next,
we discuss extended reconfiguration possibilities and close with Kauri, our prototype
implementation.

The majority of the content of this chapter was peer-reviewed and published in
our paper in (NEIHEISER, Ray et al., 2021a). Alongside the previously published con-
tent, we included more thorough explanations of the algorithms, an extended algorithm
that allows tolerating more faults, and several alternative non-optimal tree construction
approaches.

In the previous chapter, we identified a major bottleneck inherent to most BFT
protocols. This bottleneck is twofold:

• Bandwidth: At least one process has to broadcast a value to all processes each
round.

• CPU: At least one process has to verify all N signatures of each participant each
round.

Due to this, with increasing numbers of processes, eventually, the system
reaches its limit. While it is theoretically possible to scale the computational power
of each process if sufficient resources are available, it is highly inefficient. The same
does not apply for bandwidth, as in a geographically distributed environment, only
a small share of the end-to-end bandwidth is under the influence of the server
owner (RAHNAMA et al., 2020).

As such, we identified tree-based approaches as the best solution to distribute
the load equally among a set of internal nodes. However, existing tree-based ap-
proaches still come with a set of drawbacks:

• Crippled throughput due to a large number of communication steps.

• Vulnerability of tree structures in the presence of byzantine faults.

First, due to the added number of communication steps, in a geographically
distributed environment, processes will spend a large percentage of the time idling
while waiting for the communication to complete.

Second, while in an all-to-all scheme, a faulty process may at most withhold their
own vote, in a tree-based communication scheme, a faulty internal node may easily
prevent consensus from being reached.
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To solve the above problems, we came up with two solutions, namely optimistic
pipelining to fully leverage the idle time and a reconfiguration algorithm that allows
constructing trees without faulty internal nodes in optimal time.

How exactly this is achieved is discussed in the following sections.

4.1 SYSTEM MODEL

We assume the existence of N server processes p0, p1, p2, ..., pN−1 and a set of
S client processes c0, c1, c2, ..., cS−1. Client and server processes are connected through
perfect point-to-point communication channels constructed by adding mechanisms for
message retransmission as well as detecting and suppressing duplicates (CACHIN
et al., 2011). With the help of these mechanisms, the channels fulfill the following
properties:

• Validity: If a process pj receives a message ms over a channel eij, ms was sent
by pi.

• Termination: Given correct processes pi and pj , if pi sends ms over the channel
eij connecting both processes pj eventually receives ms.

We assume the Byzantine fault model, where Byzantine processes may produce
and return arbitrary values, delay and omit messages, and collude with each other. How-
ever, they do not possess sufficient computational power to compromise cryptographic
primitives (e.g., forging signatures or finding colliding hashes). Based on this premise,
a correct process is a process that follows its specification; else, it is considered faulty.
Of the total set of N processes, at most f ≤ N−1

3
can be faulty. Furthermore, to respect

the FLP condition (FISCHER et al., 1985) we assume a partially synchronous system
where safety is always guaranteed, but progress is only made during synchronous
periods (DWORK et al., 1988) (see Section 3).

As we assume a distributed ledger environment, processes use their public
keys as unique identifiers. Each message ms of a given process pi is signed using
their private key privi. Thus, any other process pj may identify the origin of a signed
message msi and verify the message integrity (the message was not tampered with)
with the help of the public key pubi.

4.2 TREE COMMUNICATION

In this section, we discuss tree communication and show how it fulfills safety and
liveness in the context of byzantine fault-tolerant consensus. Interestingly enough, the
star used in HotStuff (ABRAHAM et al., 2018) is actually a particular case of a tree of
depth 2 with a single internal node (We explained HotStuff in detail in Section 3). Due to
this observation, instead of creating a new consensus protocol from scratch, we solely
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have to adapt certain primitives used in HotStuff to support tree-based communication
and prove that they do not alter the safety and liveness guarantees inherent to HotStuff.

4.2.1 Communication in HotStuff

HotStuffs communication can be summarized as two phases. First, the broadcast
of the leader process, where the leader process disseminates data to all processes, and,
second, the aggregation step, where the leader awaits N − f votes from all processes.
Each phase is executed once each round for a total of three rounds to finish a given
consensus instance and collect three consecutive quorums.

On the basis of this we define the following two primitives:

• broadcast(data). data is broadcast by the leader to all processes.

• await (N - f) votes. Leader awaits N − f votes as responses to the previous
broadcast.

However, in certain situations, these primitives might fail. First of all, during
asynchronous system conditions, it is possible that the broadcast of the leader does
not reach a subset of processes. Thus, the leader could be awaiting votes indefinitely.
Second, a faulty leader could only disseminate messages to a subset of processes.

Based on this observation, we define the following property:

Definition 1 Strongly Robust Star: A star is said to be strongly robust if the leader is
correct and non-robust if the leader is faulty.

Given the robustness criteria, in HotStuff, the primitives have to fulfill two addi-
tional properties:

Definition 2 Reliable Dissemination: After GST, in a strongly robust configuration, a
quorum of correct processes receives the data sent by the leader.

Definition 3 Byzantine Quorum: After GST, in a strongly robust configuration, the
leader is able to collect at least N − f votes.

Assuming a strongly robust star and perfect point-to-point channels, Reliable
Dissemination and Byzantine Quorum can be fulfilled fairly trivially.

Briefly, due to the perfect point-to-point channels and the assumption that the
leader is correct, it is guaranteed that all processes eventually receive the data dis-
seminated by the leader. As such, Reliable Dissemination is fulfilled. Furthermore, due
to the perfect point-to-point channels and the fact that no more than f processes are
faulty, the leader is guaranteed to receive at least N − f votes eventually. As such, the
Byzantine Quorum is also fulfilled.
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Figure 11 – Tree communication pattern for 7 processes.

Given the fulfillment of the above properties, the protocol proposed in HotStuff
can achieve both safety and liveness. For the complete proofs, we refer to the HotStuff
paper (ABRAHAM et al., 2018).

4.2.2 Communication in a Tree

Next, we discuss the adaption of the BROADCAST and AWAIT primitives to tree-
based communication while making sure that we are still able to observe the same
properties.

We organize processes in a tree structure, with the leader process at the root.
Instead of having the leader BROADCAST the data to all processes, the leader dissemi-
nates data to their child nodes. The child nodes, in turn, forward it to their own children
until reaching the leaf nodes. Adjacently, the primitive await has leaf nodes disseminate
their vote to their respective parent nodes, which in turn aggregate the data of their
leaves and further hand it to their parents until reaching the root. We illustrate this
process in Figure 11 for the example tree of Figure 10.

As in this algorithm, not only a faulty leader may influence the outcome, but also
faulty intermediary nodes (internal nodes) may hinder progress; not only do we have to
adjust the notion of a robust configuration in the context of tree-based dissemination,
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but there are actually two possible robustness definitions.

Definition 4 Strongly Robust Tree: A tree is strongly robust iff the leader process is
correct, and there is a path of correct processes connecting any given correct process
to the root. .

While strong robustness guarantees consensus for f = N−1
3

and any distribution
of failures, in many cases, this definition of robustness is unnecessarily strong. In fact,
as long as there is a path between the leader and a quorum of correct processes,
Reliable Dissemination is fulfilled, and consensus may be reached.

Definition 5 Robust Tree: A tree is robust iff the leader process is correct and there
is a path of correct processes connecting a quorum of correct processes to the root. .

However, even a strongly robust tree does not necessarily guarantee Reliable
Dissemination and Byzantine Quorum compared to a star. For example, a faulty internal
process might prevent a correct child process from sending its vote. Another example
might be a faulty leaf node that prevents a correct internal node from progressing by
never sending their vote.

4.2.2.1 Impatient Channels

We solve this with the help of impatient channels. Perfect point-to-point channels
only guarantee the delivery of a message if both processes that are communicating
are correct. Hence, a faulty sender could simply omit to send a message and block
the receiver indefinitely. However, we have to guarantee that any process eventually
makes progress. We guarantee this through the usage of impatient channels. Impatient
channels always return a value, either the value disseminated by the sender or ⊥ after
a timeout.

However, after GST, if both participating processes are correct, the receiver is
guaranteed to receive the sent value. Impatient channels a SEND and RECEIVE primitive
with the following properties:

• Validity: If a process pj receives a message ms over a channel eij, ms was sent
by pi or ms = ⊥

• Termination: RECEIVE always eventually returns some value or ⊥.

• Conditional Accuracy: Assuming both channel participants pi and pj are correct,
after GST, pj always returns ms sent by pi.

We show an example implementation of the RECEIVE method of impatient chan-
nels in Algorithm 1 assuming the known bound ∆ as the worst-case network latency.
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Algorithm 1 Impatient Channels: RECEIVE

1: function IC.RECEIVE(p) ▷ where IC is an impatient channel built on top of perfect channel PC
2: on PC.RECEIVE (p,ms) return ms
3: on TIMEOUT(∆) return ⊥
4: end function

Thus, with the help of impatient channels, we can mitigate the impact faulty
leaves might have on their parent node.

4.2.2.2 Cryptographic Collections

Similar to a star topology, in a tree topology, we require cryptographic signatures
to guarantee the integrity of messages when being passed through the tree. However,
if the internal nodes only relay a set of signatures, the process at the tree’s root has to
verify all N signatures, leading to a bottleneck and impairs the protocol’s scalability.

As such, we leverage a cryptographic aggregation scheme to mitigate these
costs. This way, votes are aggregated on the way to the root, and both the internal
nodes and the root have to verify at most m messages, where m is the maximum fanout
of the tree.

To simplify the presentation we model the vote aggregation scheme with the
help of an abstraction we call a cryptographic collection. This collection corresponds
to a set of (pi,msi), where pi identifies a given process and msi their signature. A new
collection c is created by a given process pi with a signed message msi by calling
c=NEW((pi,msi)).

Furthermore, the primitive c12 = c1 ⊕ c2 describes a combination of two given
collections. One of the most important properties of this collection is that it allows any
given process to verify if the given collection c reached a certain threshold t of signatures
regarding the same message ms. This is done through the HAS(c, v, t) primitive. In order
to verify the total size of said collection c, we check its cardinality |c|.

As a result, our cryptographic collections fulfills the following properties:

• Commutativity: c1 ⊕ c2 = c2 ⊕ c1

• Associativity: c1 ⊕ (c2 ⊕ c3) = (c1 ⊕ c2)⊕ c3

• Idempotency: c1 ⊕ c1 = c1

• Integrity: Let c = c1 ⊕ . . . ci . . . cn. If HAS (c, v, t) then at least t distinct processes
pi have executed ci=NEW((pi, v))

In the context of this work we leverage non-interactive BLS signatures. BLS sig-
natures are a multi-signature scheme that allows to aggregate a set of signatures to a
single signature with a constant size that can be verified in O(1) steps. As such, each
internal node in the tree may aggregate all their votes into a single aggregated signature
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Algorithm 2 broadcast on a tree G (process pi)
1: procedure BROADCAST(G, data)
2: children← G.CHILDREN(pi) ▷ Get edges to children of pi
3: parent← G.PARENT(pi) ▷ Get parent of pi (returns ⊥ for root)
4: if parent ̸= ⊥ then
5: data← IC.RECEIVE(parent) ▷ Receive from parent
6: end if
7: if data ̸= ⊥ then
8: for all e ∈ children do ▷ Send to children
9: IC.SEND(e, data)
10: end for
11: end if
12: return data
13: end procedure

that is then sent to their parent, where it may be verified in O(1) steps. The resulting
overall cost is O(m) at each internal node, including the root, where m is the fanout of
the tree. Note that classical asymmetric signatures require O(N) verifications at each
process (BONEH et al., 2004).

4.2.2.3 Implementing broadcast and await

Now that we established the primitives that are required for message passing in
a tree structure, we look at how we leverage these primitives to implement broadcast
and await.

Algorithm 2 presents the pseudocode for broadcast that is executed on all pro-
cesses in the system. When distributing the data in one of the phases, a process
expects to RECEIVE data from their parent which is then relayed to their child processes.
Due to the impatient channel, this process always terminates even in the presence of
faulty internal nodes (after reaching timeout ∆).

Theorem 1 After GST, Algorithm 2 fulfills Reliable Dissemination in a strongly robust
tree.

Proof 1 We prove this by contradiction. Assume Reliable Dissemination is not fulfilled.
As such, one or more processes must not have received the data that the leader
sent. While Reliable Dissemination only requires a quorum of correct processes, in the
worst case, in the presence of f = N−1

3
failures, all correct processes are required to

participate. This implies that one of the following must be true: i) At least one correct
process is either not directly connected to the leader or not connected to the leader
through a path of correct processes. ii) The data got lost in the channel. iii) A correct
process did not follow its specification.

First, trivially, the definition of a correct process requires it to follow its speci-
fication. Similarly, as our communication is based on perfect point-to-point channels
(further extended by impatient channels), following the termination property, messages
always reach the recipient.
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Algorithm 3 await on a tree G (process pi)
1: procedure await(G, input)
2: children← G.CHILDREN(pi) ▷ Get edges to children of pi
3: parent← G.PARENT(pi) ▷ Get parent of pi (returns ⊥ for root)
4: collection← NEW((pi, input))
5: for all e ∈ children do ▷ Empty for leaf nodes
6: partial ← IC.RECEIVE(e) it
7: collection← collection⊕ partial
8: end for
9: if parent ̸= ⊥ then
10: IC.SEND(parent, collection)
11: end if
12: return collection
13: end procedure

As such, only the first option is left over. However, we assume a robust configura-
tion, which, by definition, ensures a correct leader and a path of correct processes from
sufficient correct process to the leader. This leads to a contradiction. Thus, Algorithm 2
guarantees Reliable Dissemination.

Now that we have proven the fulfillment of Reliable Dissemination, we show that
we can also fulfill the Byzantine Quorum requirement. The implementation of await that
achieves this is displayed in Algorithm 3.

The implementation of await leverages cryptographic primitives to efficiently
aggregate signatures on the way to the root process. Note that this is not a requirement
to collect a Byzantine Quorum. Similarly to broadcast, due to the use of impatient
channels, await is also guaranteed to terminate. This is particularly important for await,
as otherwise faulty leaf nodes might stall their parent indefinitely and prevent their
parent process from relaying the signatures they received from the remaining correct
processes.

The implementation of await does the inverse of the broadcast. As such, each
process awaits votes of their child processes, aggregates them, and relays them to their
parent process.

Theorem 2 After GST, Algorithm 3 guarantees a Byzantine Quorum in a strongly robust
tree.

Proof 2 We again prove this by contradiction. As such, we have to assume that the
leader could not collect a quorum of signatures. Thus, based on Algorithm 3 this implies
that either: i) An internal node did not receive the signatures from all its correct children
(line 6). ii) An internal node did not aggregate and relay all signatures it received from
its correct children (line 10). iii) An internal node got stuck waiting for all signatures.

First, due to the perfect point-to-point channels under the premise that correct
processes follow their specification; it is not possible that a vote of a correct child pro-
cess does not reach its parent. Similarly to the first case, a correct internal node always
follows its specification and relays the aggregated votes. Finally, a correct node might
get temporarily stuck waiting for additional votes. However, due to the implementation
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of impatient channels, eventually, the channel returns ⊥, unblocking the internal node
and allowing the internal node to relay the remaining votes they have received until ∆.

Thus, any of the options leads to a contradiction and, therefore, Algorithm 3
guarantees a Byzantine Quorum.

As such, with the help of the implementation of the two primitives (broadcast and
await), it is possible to replace the star topology with a tree topology while still offering
the same guarantees (Reliable Dissemination and Byzantine Quorum).

Thus, a tree structure fulfills the same safety guarantees as HotStuff (ABRAHAM
et al., 2018), as replacing the underlying communication structure does not alter the
protocol (three subsequent quorums, block validity, and conflict resolution). While this
is less obvious in the case of liveness, due to the implementation of impatient channels,
faulty nodes in a tree do not have more power than in HotStuff (i.e., a faulty internal
node is at most as powerful as a faulty leader, and faulty leaf nodes may delay the
system at most by some ∆).

However, to achieve liveness, we require a robust communication structure which
is significantly more complex to achieve for a tree compared to a star. In addition to that,
due to the increased number of communication steps, the throughput of a tree topology
is more sensitive to the underlying system latency.

Therefore, in the following two sections, we discuss how we deal with reconfig-
urations and how we compensate latency to achieve high throughput in high latency
environments.

4.3 RECONFIGURATION

In the previous section, we have discussed the necessary requirements of ro-
bust graphs for consensus to terminate. We now discuss how to build reconfiguration
strategies for different topologies.

First, we present some preliminary definitions required to construct robust trees.
Next, to illustrate our approach, we first define an evolving star in Section 4.3.2 which
is similar to the widely used rotating leader approach. Next, in Section 4.3.3 we present
an algorithm for building evolving trees.

4.3.1 Preliminaries

As we consider a partially synchronous system, reconfigurations might not only
be triggered by faulty processes but also by asynchronous system conditions. As such,
a reconfiguration algorithm ought to present certain characteristics to operate accord-
ingly under these conditions.

We model a sequence of configurations (static graphs) with the help of an evolv-
ing graph that fulfills the following property:
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Definition 6 Recurringly Robust Evolving Graph: A given evolving graph G observes
recurringly robustness iff in an infinite sequence of reconfigurations robust configura-
tions also appear infinitely often.

While this is sufficient to guarantee that we eventually reach a robust graph that
allows consensus to terminate, in practice, a large number of reconfiguration steps is
undesirable. Not only does the system have to reconfigure successfully within a given
period of synchrony, but the system is also essentially halted during the reconfiguration
process and, as such, is unable to deliver its service.

Ideally, we want to find a robust configuration after a relatively small number of
reconfigurations t. We call this property of evolving graphs t-Bounded conformity.

Definition 7 t-Bounded Conformity: A recurringly robust evolving graph G observes
t-Bounded Conformity if a robust configuration is reached every t reconfiguration steps.

In practice, modern protocols like PBFT or HotStuff are able to reconfigure in
f + 1 steps which is optimal for leader driven protocols. This property arises from the
fact that given a protocol that depends on the correctness of a specific process (e.g.,
the leader), in the presence of f faulty processes, in the worst case, we might elect f
subsequent faulty processes for this specific role. As such, only after f + 1 attempts,
we reach a correct process, and consensus can be achieved. We call this property:
Optimal Conformity.

Definition 8 Optimal Conformity: A recurringly robust evolving graph G observes
Optimal Conformity if a robust configuration is reached every f + 1 reconfiguration
steps.

For many topologies achieving this is challenging. Hence previous works fall
back to an all-to-all or star communication pattern when consensus cannot be reached
using an alternative topology (KOKORIS-KOGIAS, E. et al., 2016; KOKORIS-KOGIAS,
Eleftherios et al., 2018)1. We are interested in defining evolving graphs that avoid falling
back to a different topology. Namely, we consider evolving graphs built exclusively of
the same star or tree topologies. This way, we aim to preserve the topologies’ appealing
scalability and load-balancing properties, rather than falling back to a degraded state
upon failures.
1 Note that these approaches thus require at least x+ f + 1 reconfigurations in the worst case since x

reconfiguration changes the topology to a star or clique and then f + 1 additional leader changes are
necessary in the worst case.
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4.3.2 Strongly Robust Stars

An evolving graph based on a star topology can be constructed using the BUILD

primitive shown in Algorithm 4. The evolving graph is constructed by letting each static
graph Gk be a star whose center is given by process p(k mod N). This is equivalent to
the rotating leader strategy that is used in a large number of leader-based consensus
protocols. The primitive returns a tuple consisting of the root, outbound graph G, and
inbound graph GT .

Algorithm 4 Construction of an Evolving Star
1: procedure BUILD(k)
2: Gk ← ∅
3: Vk ← N ▷ set of vertices
4: rootk ← p(k mod |N|)
5: leaves← Vk \ {root} ▷ Remaining processes are leaf nodes
6: for all v ∈ leaves do ▷ There is an edge connecting the center with each leaf
7: Gk ← Gk ∪ {(root, v)}
8: end for
9: return(root, Gk, GT

k )
10: end procedure

Theorem 3 An evolving graph G = {G1, . . . , Gk, . . .} where Gk is defined by the function
BUILD(k) depicted in Listing 4 satisfies Optimal Conformity.

Proof 3 Algorithm 4 builds a total of N distinct star graphs where the center of the
star is chosen deterministically as a function of k (line 4) and the remaining processes
are leaf nodes. Assuming at most f faulty processes where N = 3f + 1, there are at
most f sequential graphs with a faulty process at the center. Hence there are at most
f sequential non-robust graphs. Therefore, for any f + 1th consecutive graph, there is
at least one graph Gi that has a correct process at the center. Hence in Gi, there is a
path composed exclusively of safe edges between every correct process, thus fulfilling
the Strong Robustness property. Therefore, the BUILD function of Algorithm 4 defines
an evolving graph that satisfies Optimal Conformity.

It is important to note that this only holds under synchronous system conditions.
It is not possible to build a robust graph in any topology during asynchronous phases.
However, as already mentioned, if there is a finite set of reconfiguration steps until a
correct configuration is found, eventually, after GST, a robust configuration will be found
in at most f + 1 steps. For the sake of simplification, we omit this discussion in the
proofs regarding the remaining reconfiguration algorithms as all proposed algorithms
terminate in finite steps. In this case, as there are N processes that might be eligible
as a leader, there is also a finite number of different configurations.
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4.3.3 Strongly Robust Trees

We now discuss how to reconfigure strongly robust trees. Note that this is sig-
nificantly harder than in the case of stars due to the much larger number of possible
configurations. In fact, while in a star topology, given N processes, there are at most N
distinct graphs. In the case of binary trees, for example, the number of possible graphs
is given by the Catalan number Cn = (2N)!

((N+1)!N !
. Additionally, there are N ! possible as-

signments from processes to nodes in the graph for each tree. To make the problem
tractable, we restrict the algorithm to evolving graphs with a single topology where only
the assignment of processes to nodes in the graph is altered. Nonetheless, the number
of possible configurations is still factorial to the number of processes.

For simplification reasons, for now, we assume the Strong Robustness criteria.
As such, we attempt to build a tree without any faulty internal nodes.

Following combinatorics, for a graph with N processes and I internal nodes
including the root, there are

(︁
N
I

)︁
(also denoted as N !

I!(N−I)!
) different assignment possibil-

ities.
However, due to the presence of f = ⌊N−1

3
⌋ faulty processes, not all these com-

binations are robust. Assuming f faulty processes, there are (N−f)!
I!(N−f−I)!

robust graphs. If
we divide this by the total number of graphs N !

I!(N−I)!
we get the probability pI to build a

robust static graph Gk (Displayed in Equation 1)2.

pI =

(N−f)!
I!(N−f−I)!

N !
I!(N−I)!

(1)

For a star topology where I = 1, solving this is trivial since N !
1!(N−1)!

= N and
based on that, (N−f)!

1!(N−f−1)!
results in the probability pI =

N−f
N

. Thus, for N = 3f + 1, the
probability of constructing a robust static graph Gk by sequential shuffling stays constant
for any size of N . Therefore, a robust configuration is guaranteed within optimal steps
even when using a naive reconfiguration strategy.

However, for tree topologies, where the number of internal nodes I usually in-
creases with the total number of processes N , the probability pI to construct a robust
graph is much lower. Since f directly depends on N , we may replace f in Equation 1
with ⌊N−1

3
⌋ resulting in Equation 2.

[h]pI =

(N−⌊N−1
3

⌋)!
I!(N−⌊ (N−1)

3
⌋−I)!

N !
I!(N−I)!

(2)

Based on this, the main factor determining the probability pI is the number of
internal nodes I. For example, considering lim

N→∞
pI for I = 4 the probability to build

2 This equation could also be displayed in the form of a hypergeometric distribution. We omit this as we
aim to continue processing this equation in the next step.
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Algorithm 5 Construction of a Strongly Robust Tree
1: function INIT(N , m) ▷ Initialize the evolving tree with the set of nodes N and fanout m
2: B ← ∅ ▷ Initialize the set of bins
3: for all i ∈ N do ▷ For each Node
4: Bi mod m ← Bi mod m ∪ i ▷ Assign the node i to one of the m bins
5: end for
6: end function
7: function BUILD(k)
8: i← k mod m
9: Gi ← all possible trees whose internal nodes are drawn exclusively from Bi.
10: T k ← pick any tree at random from Gi
11: return T k

12: end function

a robust graph, in the average case, results in around 20% and for I = 10 already
only at around 1.7%. As the total number of internal nodes I in the tree increases,
the probability of finding a robust tree using a naive or randomized strategy becomes
vanishingly small. In fact, in the worst case, the required number of configurations is
factorial to the number of internal nodes I.

4.3.3.1 Perfect m-ary Trees

We now show that it is possible to construct an evolving graph G consisting
exclusively of perfectly balanced m-ary trees that satisfy Optimal Conformity, as long
as f < m. Let us assume a perfect m-ary tree, i.e., all internal nodes have m children,
and all leaves have the same depth or level. In this case, for any m-ary tree, the number
of internal nodes is always smaller than N

m
(MOON, 1983). Our construction is based

on the observation that a tree for which no internal node is faulty is trivially robust.
Therefore, we reduce the problem of finding a robust tree to finding a set of correct
internal nodes. To achieve this, we start by splitting the set of N processes in m disjoint
bins Bi, each containing at least N

m
processes, i.e.,N = B0∪B1∪ . . .∪Bm−1. As long as

the actual number of failures fa conforms to fa < m, at least one of these bins contains
no faulty processes. Let Gb include all possible m-ary trees whose internal nodes are
drawn exclusively from bin Bb. Note that, under the assumption of a perfect m-ary tree,
it is always possible to build such a tree where the internal nodes are drawn from bin Bb

and the leaf nodes are drawn from the remaining bins. As at least one bin Bi contains
solely correct processes, any tree whose internal nodes are drawn exclusively from
bin Bi is guaranteed to be robust. To ensure Optimal Conformity it is therefore enough
that the evolving graph G selects, for iteration k, one of the m-ary trees Gk mod m. This
algorithm is illustrated in Algorithm 5.

Theorem 4 An evolving graph G = {G1, . . . , Gk, . . .} where Gk is defined by the function
BUILD(k) depicted in Listing 5 satisfies Optimal Conformity.

Proof 4 Processes are split among m disjoint bins. Since, by assumption fa < m,
it is guaranteed that at least one of the m bins solely consists of correct processes
allowing to construct a static graph Gk with solely correct processes as internal nodes.
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Moreover, because we deterministically and sequentially iterate over the bins from
which the internal nodes are drawn (line 8), it is guaranteed that at most after fa + 1

iterations, we will select a bin with only correct processes. A tree containing correct
internal nodes is trivially robust. Thus, the above construction builds a robust tree after
at most fa + 1 iterations. Hence ensures that the resulting evolving graph satisfies
Optimal Conformity.

4.3.3.2 Generic Trees

While we have shown that it is possible to achieve Optimal Conformity with
perfect m-ary trees, the construction so far only works for perfectly balanced m− ary

trees.
Generally speaking, the only way to achieve Optimal Conformity is to split all

processes into f+1 bins (similarly to the m-ary trees). Such that, there is at least one bin
without any faulty processes from which internal nodes are drawn. Thus, considering
N total processes and I internal nodes, N

I
≥ f + 1 has to hold (i.e. there are sufficient

processes to divide all processes into f + 1 bins of size I). We prove this next.

Theorem 5 An evolving graph G of generic trees satisfies Optimal Conformity iff N
I
≥

f + 1, where I is the number of internal nodes for f = N−1
3

.

Proof 5 We prove this in two steps. First, we prove that if N
I
≥ f+1 Optimal Conformity

can be achieved, then, in the second step, we prove that Optimal Conformity in a
generic tree can only be achieved if and only if N

I
≥ f + 1.

Similar to Theorem 4, we divide all processes into bins, and in each iteration k,
the processes of a distinct bin are selected as internal nodes.

Trivially, to divide all processes into bins of size I, we divide the total number of
processes N by the number of internal nodes I resulting in N

I
bins. Thus, as long as

N
I
≥ f + 1 there are f + 1 or more bins and, following Theorem 4, Optimal Conformity

is observed.
In the second step, we prove that, in the worst case, it is not possible to achieve

Optimal Conformity deterministically unless this condition is met. We prove this by
contradiction. Thus, we assume there has to be a tree topology that can achieve Optimal
Conformity where N

I
≤ f .

As discussed, in the presence of f = N−1
3

failures, a set of solely correct internal
nodes is required to guarantee the construction of a robust tree. However, in the worst
case, it is impossible to detect faulty internal nodes. As such, we require disjoint sets of
internal nodes. Thus, in order to achieve Optimal Conformity, we require a sequence of
f +1 disjoint sets of internal nodes such that, in the worst case, the f +1th set consists
solely of correct processes.
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Considering N
I
< f , it is not possible to divide all processes in f + 1 bins of the

size of I with distinct processes in each bin. Thus, to create f + 1 bins, at least one
node must appear in multiple bins. However, this could be a faulty node, resulting in a
faulty node in each of the f + 1 bins. Similarly, if the processes are divided into less or
equal to f bins, each bin may also contain at least one faulty node.

As such, either the tree structure has to tolerate faulty internal nodes, or it has to
be possible to detect a faulty internal node to exchange it. Otherwise, more than f + 1

steps are necessary to find a robust configuration. The first is not possible as there are
no redundant communication paths in a tree and, in the worst case, in the presence of
f = N−1

3
failures, a faulty internal node can block a correct node from participating. The

latter is also not possible as it is impossible to differentiate between a faulty leaf that
did not send a message in time, and a faulty internal node that disregarded a message
of a correct leaf node. Therefore, in the presence of f = N−1

3
more than f + 1 steps are

necessary to find a robust configuration for N
I
≤ f leading to a contradiction as at most

f + 1 steps are allowed to observe Optimal Conformity.

As proven, N
I
≥ f + 1 presents the upper limit to achieve Optimal Conformity

for any generic tree for f = N−1
3

. Considering f = N−1
3

faults, N
I

= f + 1 results in
3f+1
I

= f + 1 which can be simplified to 3f+1
f+1

= I which for lim
f→∞

diverges at 3. As such,

while for f = N−1
3

we can achieve Optimal Conformity for generic trees, in practise the
approach limits the type of tree significantly and allows to distribute the load between
at most two processes equally.

4.3.3.3 Linear Conformity

While it is not possible to construct a tree in optimal steps if N
I
< f+1 for f = N−1

3

(as proven in the previous section) there are still ways to construct robust trees in O(N)

steps.
In the following, we describe an algorithm that achieves very close to Optimal

Conformity using clever combinatorics.
When dividing the total number of processes N by the number of internal nodes

I, there is a possibility that the result is a fraction between f and f + 1. Thus, while
it might not be possible to divide all processes into f + 1 distinct bins, it is possible
to divide all processes into f distinct bins and have L leftover processes that are not
assigned to any bin. If in the worst case, none of the f bins results in a robust tree, we
can safely assume that there is one faulty process in each bin and that none of the
remaining processes in L may be faulty. Thus, in the next step, we may replace the I

processes in one of the f bins, step by step, with the leftover processes of L until a
robust tree is found. This way, we can construct a robust tree in f + I

L
steps in the worst
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case (since none of the L leftover processes is faulty, with multiple leftover processes,
we can replace multiple processes in the bin at a time).

1

2 3

4 5 6 7

Figure 12 – Simple Binary Tree

1 2 3 4 5 6 7

7 2 3 4 5 6 1

1 7 3 4 5 6 2

1 2 7 4 5 6 3

Figure 13 – Bin rotation

In Figure 12 we show an example of the outlined algorithm. Assuming a balanced
binary tree of depth 2 resulting in a total of N = 7 processes and I = 3 internal nodes
and, following N = 3f + 1 there are f = 2 faulty nodes (highlighted red in the figure).
Following N

I
< f + 1 we can not easily build f + 1 distinct bins. However, there are

N
I
> f processes, resulting in f distinct bins and L = 1 leftover processes.

Following this, as displayed in Figure 13, after constructing trees using the 2 bins
of size 3, in the next step, we replace the members of one of the bins with the leftover
process until a robust tree is found. Since there are I = 3 processes in the bin, in at
most 3 additional steps ( I

L
steps), we have found a robust tree.

Theorem 6 An evolving graph G of generic trees satisfies linear Conformity if N
I
> f .

Proof 6 We prove this by contradiction. Assume it is not possible to construct a robust
graph if N

I
> f . Given N

I
> f , we know we can divide all processes into f distinct bins

where at least one process is left over. Thus, this approach may only fail if there is
either more than one faulty process in any of the bins or if there are faulty processes
among the leftover nodes. However, since we divide all processes into f distinct bins,
either one of these bins has to result in a robust graph (in f or less steps), or there is at
most 1 faulty process in each bin (worst case). Thus, trivially, if none of the bins results
in a robust tree, none of the leftover processes may be faulty. Following that, since I

L
is

significantly smaller than N , trivially, this scheme fulfills Linear Conformity.

The above approach can be even further relaxed to N
I
+ L ≥ f + 1 as long

as N
I
≥ L. This process is quite similar to the previous approach. However, it allows

leveraging multiple leftover replicas L in a neat fashion.
The condition implies that for once, there are not more leftover processes than

bins and, that the sum of leftover processes and bins is larger than the number of
failures. Simplified, this means that, even in the worst case, there is at least one bin with
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1

2 3

5 6 7 8

4

9 10

Figure 14 – Generic Tree

1 2 3 4 5 6 7 8 9 10

9 2 3 4 5 6 7 8 1 10

1 9 3 4 5 6 7 8 2 10

1 2 9 4 5 6 7 8 3 10

1 2 3 9 5 6 7 8 4 10

1 2 3 4 10 6 7 8 9 5

Figure 15 – Bin rotation

at most one faulty process, at least one leftover process that is not faulty, and sufficient
leftover processes L to apply each process in L to at least enough bins to reach the bin
with at most one faulty process.

An example of this is displayed in Figure 15 for the tree in Figure 14. There is
a total of N = 10 processes where according to N = 3f + 1, there are at most f = 3

faulty processes and a total of I = 4 internal nodes. Following N
I

there are N
I
= 2 bins

of size I = 4 and L = 2 leftover processes. Since there is at least one faulty process
per bin, after reconfiguring the tree twice (once for each bin), it is impossible to build
a robust tree. Thus, we combine the leftover processes in L with each bin. First, we
replace each node in the first bin with the first leftover process. If this was unsuccessful,
we know that either there must be two faulty processes in this bin or that the leftover
node is faulty. However, this implies that according to the maximum number of faults,
there is at most one faulty process in the remaining group, and the remaining leftover
process must also be correct. Therefore, in the final step, after rotating the remaining
leftover process over the remaining bin, a robust tree is guaranteed.

This algorithm always runs in linear steps as each leftover process in L is at
most rotated over one bin each. As such, the complexity is the same as rotating one
process over all processes in N . Resulting in N

I
+N steps which is still O(N).

Theorem 7 An evolving graph G of generic trees satisfies Linear Conformity if N
I
+L ≥

f + 1 as long as N
I
≥ L.

Proof 7 We prove this by contradiction. Assume it is not possible to construct a robust
graph under this condition. Based on the algorithm, if there is a bin with at most one
faulty node and there is one correct leftover node, we can combine the two to construct
a robust tree. As such, essentially, we require two faulty processes for each and every
pair of bin and leftover nodes. Either each bin has two faulty nodes, or the bin has one
faulty node, and the leftover process is faulty.

However, based on the restriction N
I
+ L ≥ f + 1, there is indeed at least one

bin with at most one faulty process and at least one correct leftover node. Thus, the
only leftover possibility is that there are more leftover nodes than bins, and we ran out
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of replacement opportunities. However, this leads to a contradiction due to our second
restriction N

I
≥ L. As such, we have proven that this algorithm will achieve robustness.

Proving the linearity of the algorithm is trivial. We replace each node in each
bin with exactly one leftover node. As such, the number of attempts never exceeds
N
I
+N − L combinations.

The above leads to an interesting insight. N
I
+ L ≥ f + 1 with the condition of

N
I
≥ L can be simplified to N

I
+ N

I
≥ f + 1. If we insert N = 3f + 1 again this results in

3f+1
I

+ 3f+1
I
≥ f + 1 which is equal to 6f+2

I
≥ f + 1 where I = 6f+2

f+1
which for lim

f→∞
stays

strictly below 6. Therefore, for N = 3f + 1 by using this approach it is not possible to
build a robust tree in linear steps with more than 5 internal nodes (including the root).

Further, we observe that in all of our linear approaches, f stays strictly below N
I
∗2.

We prove next that this is indeed the minimum condition for any linear reconfiguration
strategy.

Theorem 8 It is not possible to design Linear Reconfiguration strategies for f > N
I
∗ 2

given the Strong Robustness criteria.

Proof 8 We prove this by contradiction. f > N
I
∗ 2 implies that by dividing all processes

into N
I

bins, we cannot tolerate more than two faulty processes per bin and still recon-
figure the topology to a robust tree in linear steps. Let us assume that it is possible
to tolerate two faulty processes per bin. Without leftover processes, the only possible
strategy is to combine the processes of two distinct bins. However, even if there were
precisely two faulty processes per bin, this requires a quadratic number of combinations
and would lead to a contradiction.

Thus, we do require leftover processes. As shown earlier, with one leftover
process per bin (L = N

I
), either the bin has two faulty processes or the respective

leftover process is faulty. Following this, if we have one additional leftover process, we
may iterate over all bins (N steps) to detect that each bin indeed must have two faulty
processes, and, as a result, all the leftover processes must be correct.

Thus, we may attempt to build an additional bin using the leftover processes and
processes from a distinct bin (given the knowledge that there is at least one correct
process in each bin). However, this only works under two conditions. First, there may be
at most one process missing to build an additional bin (else this would take quadratic
steps), and second, none of the leftover processes may be faulty (else this results in
a quadratic number of combinations again). While we may fulfill the first condition, the
second leads to a contradiction. Following f > N

I
∗ 2, there is actually one additional

faulty process which means that we cannot guarantee any of the leftover processes to
be correct and thus, require at least a quadratic number of steps.
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4.3.3.4 Polynomial Conformity

As proven above, there are no linear reconfiguration strategies for f > N
I
∗ 2.

Therefore, we require approaches with higher complexity to find robust configurations
for larger numbers of internal nodes.

Analogous to previous solutions, we divide all processes into a set of N
I

bins and
then attempt to find a set of correct processes (one or more) to combine this set with
each bin until a robust configuration is found. Trivially, if at least one bin has at most one
failure, by combining one correct process with each of the bins, this eventually results
in a robust configuration after at most N steps. More generically, if at least one bin has
at most x faulty processes, we have to find x correct processes to combine them with
each bin to find a robust configuration.

Since we know from the previous section that we may find a group of up to x = 5

correct processes in O(N) steps, we re-use this approach and combine the resulting
group with all N

I
bins up to Ix times(N ∗ N

I
∗ Ix).

This results in a complexity of Ix−1 ∗ N2 which, since I is constant, can be
simplified to O(N2), thus, resulting in an upper limit of f = (N

I
∗ x)− 1 faulty processes.

Considering N = 3f + 1, that is I = 3xf+1
f+1

. Following this, considering up to x = 5

processes, we may find a robust configuration for up to I = 14 internal nodes in O(N2)

steps.
However, as mentioned, this exact approach only works for x ≤ 5. Nonetheless,

we now know that we may build a robust tree for up to I = 14 internal processes in N2

steps. Thus, we may also find a robust configuration for x = 14 in N2 ∗ Ix ∗ N
I

steps
(O(N3)).

Generalizing this, assuming a total of f = N−1
3

faulty processes, there is at least
one bin with at most ⌊ I

3
⌋ faulty processes. Based on this, for any I we must find a

solution for ⌊ I
3
⌋ and use it to combine the ⌊ I

3
⌋ correct processes with each of the N

I

bins. This way, for O(Nx) we may have up to I = 1 +
∑︁x

n=0(3
n) internal nodes. For this

x = log3(−1+2i)−1 which results in the total number of steps of N ⌈log3(−1+2I)−1⌉∗I⌊ I
3
⌋∗N

I

which has a complexity of O(N log(I)).
However, this only works if there are at least enough total processes N to build

two distinct bins (N
I
≥ 2).

Theorem 9 For any I it is possible to find a robust configuration in at least O(N log(I))

steps as long as N
I
≥ 2.

Proof 9 We prove this by contradiction. Assuming there is an I for which the above
algorithm can not be used. This is only possible if there is no solution for ⌊ I

3
⌋ which

in itself is only possible if there is no solution for ⌊ I
9
⌋. However, in Theorem 7 we

already have proven that there are linear solutions for up to I = 5, and by dividing I

consecutively by three, we eventually will reach I ≤ 5 leading to a contradiction. Thus,
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I Steps
2 f + 1
3 N

I
+ f + 1

5 N
14 N2

41 N3

122 N4

N
I
≥ 2 N ⌈log3(−1+2I)−1⌉

N
I
< 2 N !

Table 2 – Trade-offs of the different approaches

the only remaining possibility is that there is a I for which the complexity is above
O(N log(I)). However, since there is a linear solution for I = 5 and each fraction of I

3
of

I results in an additional combination of the previous result with each bin (N
I

bins), the
complexity indeed grows in a log3(I) fashion, thus resulting in O(N log(I)). Thus, also
leading to a contradiction. Therefore, the only remaining possibility is that there is only
one bin, and there are not sufficient processes to combine with this bin to exclude the
faulty processes. However, by requirement, N

I
≥ 2 leads to a final contradiction, proving

this theorem.

4.3.3.5 Practical Strongly Robust Trees

In this section, we outline the different upper limits given specific approaches
considering the Strong Robustness criteria considering f = N−1

3
failures. Based on the

described approaches, we can calculate the trade-off between the maximum number
of internal nodes compared to their inherent reconfiguration complexity.

Due to this, in order to achieve Optimal Conformity while respecting f = N−1
3

,
there might be at most two internal nodes, including the root. An example tree that
would roughly distribute the load equally among the two internal nodes is shown in
Figure 16.

Slightly relaxing the conformity, subjecting the system to another N
I

reconfigu-
ration steps allows to increase the number of internal nodes to 3. Further sacrificing
Optimal Conformity while maintaining linear reconfiguration steps allows increasing
the maximum number of internal nodes to 5, the upper limit for linear approaches (as
proven in the previous section). As shown in the table, finding a robust tree within a
viable number of steps becomes increasingly computationally complex for larger I. This
leaves us with an interesting trade-off. For certain tree sizes we can either achieve
Optimal Conformity or balance the load over a large number of internal nodes.

Considering the Strong Robustness criteria and f = N−1
3

failures, a tree might at
most have two internal nodes. While this allows us to cut the cost of the star topology
in half, it is not enough to achieve high scalability.

The following section discusses other possibilities for constructing robust trees
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Figure 16 – Minimum Tree Example

in optimal steps while also fully leveraging the tree structures’ inherent load balancing
properties.

4.3.4 Robust Trees

In the algorithm and description above, we assumed a worst-case scenario
where given a tree of N nodes and I internal nodes at most fa < N

I
nodes may be

faulty to achieve optimal reconfiguration. This resulted from our Strong Robustness
assumption that requires a path of correct processes between any correct processes
in the system. This requirement comes from the worst-case assumption where, in
the presence of f = N−1

3
faults, one faulty internal node that is a parent of at least

one correct internal node already prevents consensus. As such, we concluded that
no internal node must be faulty. Thus, as proven in the previous section, for I internal
nodes, N

I
− 1 presents the upper limits of failures if we want to reach a configuration

without faulty internal nodes in optimal steps.
However, as soon as fa <

N−1
3

, this is not necessarily true anymore. Considering
fa =

N−1
3
− 1 faults, one faulty internal node may hide one correct node and a quorum

may still be collected. This observation leads us to a series of questions:

• How many correct processes have to be connected through a path of correct
processes to collect a byzantine quorum;

• How many correct processes may a faulty internal node prevent from participating
in the consensus;

• How many faulty internal nodes may exist for different sizes of f without preventing
the collection of a correct quorum.
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The first question is trivial to answer, considering the upper limit of failures f =
N−1
3

, we need a quorum of |Qmin| = N − f correct processes.
The second question is more complex. Similar to the previous algorithm, assume

a balanced m-ary tree. Given a tree of arbitrary depth, we can calculate the number of
nodes one faulty internal node (excluding the root) in the worst case may hide by taking
the upper limit of the division of the number of leaf nodes and the fanout resulting in
⌈N−m−1

m
⌉.

Finally, before answering question three, let us re-capture the previous recon-
figuration algorithm. All nodes N are divided into N

I
disjoint bins. Considering fa < N

I

faults, at least one of these bins has no faulty nodes. Therefore, if we attempt to build
a tree where each of the bins represents the set of internal nodes, we will eventually
pick the bin with no faulty nodes and build a tree without faulty internal nodes and, as
previously established, a tree without faulty internal nodes is trivially robust.

In the next step, we relax the assumption of the algorithm. Instead of fa < N
I

we assume, fa < 2N
I

. In this setting, if we divide the faulty nodes equally among the
bins as in the previous algorithm, while each bin in the worst case has one or more
faulty nodes, there is guaranteed at least one bin with at most one faulty node. Under
the assumption that a tree with one faulty internal node might be robust, this is only
possible if the faulty node is not at the root of the tree. Thus, we have to adjust the
algorithm slightly. Instead of constructing one tree per bin, we construct two trees per
bin but alter the selected root process. Therefore, by constructing two trees per bin,
considering that at least one bin has at most one faulty process and we can tolerate
one faulty internal node as long as it is not the root. After 2N

I
attempts, we will construct

a robust tree. As we have doubled both the number of reconfiguration steps and the
number of tolerated faults, this algorithm still terminates in optimal steps.

However, we have not yet calculated exactly how many internal nodes might
be faulty. To answer this question, we start with an example. Assuming a system of
N = 421 Nodes with a fanout of m = 20, depth d = 2 and a minimum quorum size
|Qmin| = 281. Assuming fa = 1 faulty internal node, at most m = 20 correct nodes might
be hidden by this 1 faulty internal node. Given the adjusted algorithm, if we tolerate 1

faulty internal node fa < 2m and as such, in the worst case, f = 39. Thus, by adding
the 39 arbitrarily distributed faults in the tree structure to the 20 correct nodes that might
be blocked by the 1 faulty internal node, 59 nodes are unable/unwilling to contribute to
the quorum. If we subtract this from the N = 421 nodes that results in |Q| = 362 nodes
which is larger than the minimum quorum size |Qmin| = 281. As such, in this example,
our system can tolerate one faulty internal node, and as a result, duplicate the number
of tolerated faults compared to our previous algorithm.

This process does not change for deeper trees, as, in the worst case, we have to
assume that the faulty nodes are in the highest positions in the tree and, as such, one
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faulty internal node may prevent at most ⌈N−m−1
m
⌉ correct processes from participating.

We generalize the above process by assuming a balanced tree of N nodes with
a fanout of m. From above, we know that the number of nodes that are prevented from
participating in consensus is bound by the number of faulty internal nodes. Given fa

failures and N
I

bins, we know there is a bin with at most ⌊ faN
I

⌋ faulty internal nodes.

Consider ⌈N−m−1
m
⌉ to be the number of nodes a faulty internal node can prevent

from participating (i.e., all its children and children to children down to the leaves). As
such, at most fa

N
I

∗ ⌈N−m−1
m
⌉ nodes can be excluded from consensus this way.

In addition to that, in the worst case, fa faulty nodes are children of correct nodes
(either faulty internal nodes or leaf nodes of correct internal nodes) which also will not
participate in consensus. Thus, as long as the sum of these two factors fa

N
I

∗⌈N−m−1
m
⌉+fa

is lower than the maximum number of failures f , a quorum can be obtained. Therefore,
as long as fa

N
I

∗ ⌈N−m−1
m
⌉+ fa ≤ N−1

3
consensus can be achieved.

Theorem 10 We can achieve consensus as long as fa
N
I

∗ ⌈N−m−1
m
⌉+ fa ≤ N−1

3
and the

root is a correct process

Proof 10 We prove this by contradiction. Assume that no byzantine quorum could be
collected. Because of fa

N
I

∗ ⌈N−m−1
m
⌉ + fa ≤ N−1

3
, we know that either fa < N

I
and

according to Theorem 5 we can achieve consensus in optimal steps or fa ≥ N
I

and
hence, in the worst case, there might be one or more faulty nodes in each bin. As
we draw the internal nodes of a given tree exclusively from a single bin, this means
that we might have faulty internal nodes. Due to this, consensus may be prevented
as faulty internal nodes might block correct nodes (their children) from participating in
consensus.

Consider the case where the root is correct and one or more internal nodes
are faulty. Note that each faulty internal node may prevent at most ⌈N−m−1

m
⌉ (all its

children) from participating in consensus. As nodes are equally distributed over all
N
I

bins, there is at least one bin with at most ⌊ faN
I

⌋ faulty processes. Thus, in a tree

constructed from this bin, at most ⌈N−m−1
m
⌉ ∗ ⌊ faN

I

⌋ processes may be prevented from
participating in consensus, in addition to the fa faulty nodes themselves. As such, as
long as ⌈N−m−1

m
⌉∗⌊ faN

I

⌋+fa ≤ N−1
3

we can collect a quorum and solve consensus. Thus,
as long as the root is a correct process a quorum may be collected process is correct,
which leads to a contradiction.

While Theorem 10 proves the upper limit of failures our tree structure can tolerate,
it still assumes a correct node at the root. Thus, to achieve this, we adjust Algorithm to
account for that.
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Algorithm 6 Construction of a Robust Tree
1: function INIT(N , m) ▷ Initialize the evolving tree with the set of nodes N and

fanout m
2: B ← ∅ ▷ Initialize the set of bins
3: for all i ∈ N do ▷ For each Node
4: Bi mod m ← Bi mod m ∪ i ▷ Assign the node i to one of the m bins
5: end for
6: end function
7: function BUILD(k)
8: i← k mod m
9: Gi ← all possible trees whose internal nodes are drawn exclusively from Bi.

10: r ← Bi[⌊ k
m
⌋] ▷ Pick Root Process from Bi

11: T k
r ← pick any tree at random from Gi with root r

12: return T k

13: end function

Algorithm 6 shows the adjusted algorithm in this regard. As such, in addition to
picking each bin round-robin, for each bin, we construct trees with different root nodes
until reaching a robust tree.

Theorem 11 We can achieve optimal reconfiguration for fa
N
I

∗ ⌈N−m−1
m
⌉+ fa ≤ N−1

3
.

Proof 11 We prove this by contradiction. As Algorithm 6 constructs several trees per
bin, where each tree has a different root node, it eventually reaches a correct root node.
And, as proven in Theorem 10 as long as fa

N
I

∗ ⌈N−m−1
m
⌉+ fa ≤ N−1

3
and the root node is

correct, consensus can be achieved. Assume that Algorithm 6 requires at least fa + 2

reconfiguration steps.
As nodes are equally distributed over all N

I
bins, there is at least one bin with at

most ⌊ faN
I

⌋ faulty processes. In the worst case, this is the last bin, i.e. bin N
I

. Algorithm 6

iterates over all N
I

bins in sequence and rotates the root until a correct configuration
is reached which requires at most ⌊ faN

I

⌋ ∗ N
I
+ 1 steps. This leads to a contradiction as

⌊ faN
I

⌋ ∗ N
I
+ 1 is never bigger than fa + 1.

4.3.4.1 Realistic Scenarios

Based on the previous equation we can calculate the upper limit of failures fa a
given tree structure can tolerate based on the number of nodes N and the fanout m.

Figure 17 shows the number of failures we may tolerate based on the equation
and compares it to the simplified algorithm and the optimal number of failures f . We
vary the fanout and system size on the x-axis and show the number of failures the
algorithm may tolerate on the y-axis. We see that the robustness of the extended
algorithm grows with increasing system size contrary to the simplified algorithm. In this
regard, our proposed algorithm allows to maintain our tree structures for roughly more
than half of the worst case number of failures.
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Figure 17 – Comparison of different scenarios.

4.3.5 Gracefully Degraded Reconfiguration

Algorithm 6 only guarantees the construction of a robust tree as long as fa
N
I

∗
⌈N−m−1

m
⌉ + fa ≤ N−1

3
. We describe this upper bound of failures as fmax

a . Thus, Al-
gorithm 6 is not able to guarantee the construction of a quorum robust tree for any
fa > fmax

a .
However, this is only true in the worst case when faulty nodes are distributed

equally over all bins. In practise, unless the adversary can control the distribution of
faulty nodes over the bins, this is unlikely. As such, it might still be possible to construct
a robust tree for fa > fmax

a as long as there is a bin with at most ⌊f
max
a
N
I

⌋ nodes. Under
this assumption, we’re always guaranteed to find a robust tree in fmax

a + 1 steps (see
Theorem 10).

We model this probability as an Urn problem (ARTUR et al., 1983). In detail,
there are N nodes, out of which f are faulty and N − f are correct. For N

I
rounds

(the number of bins) we draw I nodes (the number of nodes in each bin) without
replacement and calculate the probability of picking at most ⌊f

max
a
N
I

⌋ faulty nodes (the
number of faulty internal nodes we can tolerate and still achieve consensus following
Theorem 10). In this context, each reconfiguration attempt follows a hypergeometric
distribution (NICHOLSON, 1956).

If we sum up the probability of all successful branches in a probability tree based
on the above scenario, this translates to the estimated probability of finding a robust
tree for any fa. Each pick from the set of nodes represents 2 points in the probability
tree, one representing the probability of picking a correct node and one the probability
of picking a faulty node. An example of such a probability tree is presented in Figure 18.

Figure 19 depicts the probability of finding a quorum robust tree for different
system sizes N (100, 200, 300, 400, 500) and their respective fanout m (10, 14, 17, 20,
22) with an increasing number of faults. Where we got the probability to find a robust
tree on the y-axis for a given percentage of failures f on the x-axis. Interestingly, our
proposed algorithm has a very high chance to find a robust tree, independently of the
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Figure 18 – Example Probability Tree
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Figure 19 – Probability of finding a quorum robust tree for an increasing number of faults.
The vertical bars for each system size delimit fmax

a up to which Algorithm 6
ensures the construction of such a tree.

system size up to 1
4
N . However, even at fa = N−1

3
failures, most configurations have a

higher than 50% chance to construct a robust tree in fmax
a + 1 steps.

As such, we conclude that not only does the extended approach guarantee better
resilience in the worst case, as shown in Figure 17 but also, in the average case, has a
substantial chance to find a robust tree at any system size and number of failures. In
the case we were not able to achieve consensus after fmax

a reconfigurations we can still
fall back to a minimum tree (as discussed in Section 4.3.3.5) and still preserve some of
the advantages of using a tree structure. As such, in the worst case we might have to
reconfigure fmax

a + f + 1 times until reaching a robust structure.

4.4 PIPELINING

As mentioned before, due to the additional communication steps in the tree,
larger latencies significantly impact the overall system throughput. i.e., in a tree of
depth three, instead of one communication step per consensus phase, compared to



Chapter 4. Kauri 79

Time Needed to Finish a Round
Idle TimeSending 

Time
Proc. 
Time

Figure 20 – Idle Time in Kauri

PBFT, there are six communication steps. Applied to a geo-distributed system with a
roundtrip latency of 200ms, most processes will remain idle for over a second between
each block proposal. As such, this essentially results in an upper limit of how much
throughput a system can provide.

HotStuff deploys a simple pipelining scheme, where multiple consensus phases
are piggybacked on one another. As a result, it compensates for the additional consen-
sus phase compared to PBFT and achieves high throughput in many settings. A more
detailed explanation of HotStuff’s Pipelining can be found in Section 3.

While piggybacking allows to reduce the performance impact of multiple phases,
it does not compensate for additional communication steps. As such, it is possible to
apply HotStuff’s Pipelining scheme to PBFT, which would give PBFT a considerable
performance advantage in a high latency setting.

4.4.1 Pipelining Stretch

Due to this reason, we introduce the Piplining Stretch. We call it a pipelining
stretch as it represents an additional pipelining layer on top of the inherent pipelining
HotStuff already offers.

While, in theory, this may also be applied to HotStuff, in practice, as we will
show in the following sections, the potential speedup is very limited due to the inherent
scalability issues of HotStuff.

In a nutshell, in HotStuff, in each given round, the leader has to disseminate N

Messages and then receive and process N Votes. Thus, the leader is busy for a long
time, which is further aggravated at larger system sizes (larger N ). Meanwhile, in a
tree, each process (including the leader) has to disseminate at most m messages and
process at most m votes. Thus, not only will each process be significantly busy for a
shorter time period, but, due to the additional communication steps, between a given
“busy period”, there are significantly longer idle times.

We show this in Figure 20. Given the total time it takes to finish a round, there
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are two periods during which a process is busy. For once, there is the sending time.

Sending time

The sending time describes the time a node is busy disseminating the block
to its children in the tree (i.e., the root at the beginning of a round and the remaining
processes when relaying the block). Three main factors influence the sending time. First,
and most importantly, the bandwidth, trivially, the smaller the bandwidth, the longer it
takes to disseminate data. Then, the fanout and block size, the larger the fanout or block
size, the more data has to be disseminated, occupying more bandwidth and preventing
the system from moving to the next round. In the course of this thesis, we present this
as mB

b
where m is the fanout, B is the block size, and b is the link bandwidth.
Besides the sending time, there is also the processing time.

Processing time

The processing time is the time during which a process verifies and aggregates
the signatures it received from its child processes. The processing time depends on the
fanout m and the average processing time per signature Φ. As such, we present this as
m ∗ Φ.

As such, if we take the total time and subtract both sending and processing time,
we get the idle time.

Idle time

The idle time represents the time after a block was successfully disseminated
and before receiving signatures to verify and aggregate. It strongly depends on the
round trip time, depth of the tree, and processing delay at each of the intermediary
hops. We describe it through:

Idle time = h · (RTT + processing time)

for a tree of height h and the round-trip latency RTT.
The pipelining stretch leverages the above observation. Given there is an ample

enough idle time, the leader can use the knowledge of the previous block bi they pro-
posed, and, tentatively, propose block bi+1, bi+2, ..., bi+n before receiving the consensus
result for block bi. This process is depicted in Figure 21 where each distinct arrow color
represents a different block proposal. As we leverage the same pipelining as HotStuff,
considering a pipelining stretch of n and a given tentative block bi, the quorum signature
of bi is propagated with the next tentative block in round bi+n+1. As such, instead of hav-
ing each consecutive round carry the information of previous rounds, the information is
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Figure 21 – Pipelining in Kauri

always n blocks apart due to the stretch. As a result, in the presence of failures, similarly
to HotStuff, all tentative blocks that have not received three consecutive quorums have
to be aborted, and the pipeline must be rebuilt from scratch.

We can estimate the potential speedup based on the above premises. As, in
practice, sending and processing may fully overlap without deterring each other, we
assume that they are done concurrently.

Therefore, the number of concurrent instances that we may execute during the
idle time, is approximately given by idle time

MAX(processing time,sending time) . Thus, if the system is
bound by the bandwidth, the sending time will limit the potential speedup, and if the
system is bound by the processing capabilities, it will be limited by the processing time.

Therefore, compared to a star, where the leader has to send and process N − 1

messages, we can reduce the system load to m messages by using a tree. Based on
that, as such, the maximum speedup in comparison to a star is bound by N−1

m
(e.g., for

a system with N = 401, a tree with a fanout of m = 20, we can theoretically achieve a
speedup of 20.

4.4.2 Practical Speedup Potential

While the maximum speedup of the system is N−1
m

compared to the star topology,
the practical speedup varies in different scenarios. We measured the block size of the
different approaches for a fixed batch size and the linear computation time required for
each block.

Table 3 shows the experimentally measured Block Size and Computation time for
both the Secp256k1 cryptographic algorithm and BLS. The base block size of the system
is 256kb (i.e., 1000 operations per block). As such, everything above that represents the
inherent overhead of each of the approaches. As BLS aggregates a set of signatures
to a single signature, there is a negligible data overhead for larger system sizes as
processes have to send identifying information of the signing processes alongside the
block. In our implementation, this is done with the help of a bit array where each bit
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N Block Size Computation Time
BLS

100 257 560b 17,13ms | 3,65ms
200 257 688b 22,88ms | 5,3ms
400 257 880b 27,37ms | 6,9ms

Secp256k1
100 291 088b 3,96ms
200 325 520b 7,25ms
400 393 296b 15,02ms

Table 3 – Measured values for Block Size and Computation time for different system
sizes.

represents a single process. If the bit is "1", the process contributed their signature,
else it is "0".

Secp256k1 signatures, on the other hand, do not support aggregation and, as
such, they have a significant data overhead, almost doubling the block size at large
system sizes as the full array of signatures has to be sent alongside the block to all
processes.

We separated the computational load of BLS into two sub-categories. The first is
"Verify and Aggregate", where we verify all incoming signatures, aggregate the signa-
tures and then verify the aggregate, and the second is "Aggregate and Verify", where
we aggregate all incoming signatures and then verify the aggregate subsequently. While
the second is significantly faster (as shown in the table), if a process receives an invalid
signature, the verification of the aggregate will fail, and the process has to verify each
signature before constructing another aggregate resulting in a small overhead (i.e., the
sum of both approaches) in the worst case. Nonetheless, this is an unlikely attack that
can easily be mitigated, as due to the point-to-point channels, processes can quickly
identify an adversary and exclude the faulty process from the aggregate in the next
round.

While BLS signatures are significantly more expensive than Secp256k1, in a
tree, we have to process at most m signatures on each level. As such, the measured
value represents the cost for m = 10,m = 14,m = 20 for the different system sizes.
Furthermore, as Secp256k1 does not support aggregation, its cost increases linear with
the number of processes and does not allow the "Aggregate and Verify" optimization.

Table 4 summarizes this discussion. For this sake, we have created three differ-
ent scenarios, namely "National", "Regional", and "Global", with increasing geographic
distribution. "National" is a low latency (5ms) high bandwidth (1Gb/s) setting for a
blockchain deployment within a single smaller country (Germany, France, Japan) or
several interconnected data centers. "Regional" is a scenario spanning over a series of
countries or states of a larger country (US, EU, China) with 100ms round trip latency
and 100Mb/s bandwidth. Finally, "Global" is a geographically distributed blockchain de-
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HotStuff-secp
National 100 1 99 4 29 14 4 1 4 -
National 200 1 199 7 65 17 4 1 4 -
National 400 1 399 15 156 25 4 1 4 -
Regional 100 1 99 4 288 104 4 1 4 -
Regional 200 1 199 7 648 107 4 1 4 -
Regional 400 1 399 15 1569 115 4 1 4 -
Global 100 1 99 4 1153 204 4 1 4 -
Global 200 1 199 7 2591 207 4 1 4 -
Global 400 1 399 15 6277 215 4 1 4 -

Kauri
National 100 2 10 3,6 2,5 24 4 8 32 ≈ 8x
National 200 2 14 5,3 3,6 25 4 6 24 ≈ 12x
National 400 2 20 6,9 5,1 27 4 5 20 ≈ 22x
Regional 100 2 10 3,6 25,7 203 4 9 36 ≈ 11x
Regional 200 2 20 5,3 36,1 205 4 7 28 ≈ 18x
Regional 400 2 14 6,9 51,6 206 4 5 20 ≈ 30x
Global 100 2 10 3,6 103,0 403 4 5 20 ≈ 11x
Global 200 2 14 5,3 144,3 405 4 4 16 ≈ 18x
Global 400 2 20 6,9 206,3 406 4 3 12 ≈ 30x

Table 4 – Pipelining stretch and estimated speedup vs HotStuff-secp for a block size of
250Kb and different N .

ployment used in several works in the literature (GILAD et al., 2017; KOKORIS-KOGIAS,
2019) with 200ms round trip latency and 25Mb/s bandwidth.

For each configuration, we provide the scenario, the number of processes, the
depth of the hierarchy (i.e., 1 for stars, 2 for trees), and the fanout at the root (N − 1

for stars and m for trees). Based on this, we filled in the measured values for the
processing time, sending time, and remaining time. With the help of these variables, we
can then calculate the pipelining stretch (the extension of the already existing pipelining
of HotStuff), resulting in a total depth of 4 ∗ stretch.

The first thing to note is that independent of the scenario; it is impossible to
deploy any additional pipelining in HotStuff due to the bottleneck at the root and the
smaller latency. Meanwhile, by distributing the load in the tree, Kauri can leverage the
remaining time in the system with a pipelining stretch up to 9.

This difference results in an expected speedup ranging, depending on the sce-
nario, from 8 to over 30. Note that this speedup exceeds the theoretical maximum
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speedup of N−1
m

we calculated earlier. This is the case, as not only is there a bottleneck
at the leader, but, in addition to that, the Secp256k1 signatures used in HotStuff are not
aggregated and require significantly more bandwidth than the BLS signatures.

We stress that the values in the Table 4 are not exhaustive and neither attempt
to be, but rather represent a baseline of scenarios that were used in the context of this
thesis (e.g., we also experimented with varying bandwidth, block-sizes, latency and
deployed up to 800 processes). The general purpose of this table is twofold. For once,
we want to clearly show that, while the pipelining stretch could theoretically also be
applied to HotStuff and star topologies, in practice, this is not feasible as the inherent
leader bottleneck and the lower latency leave insufficient remaining time for additional
pipelining. On the other hand, it offers a sound theoretical basis for the results shown
in the evaluation section.

4.5 IMPLEMENTATION

In this section, we discuss the implementation details of Kauri, our prototype,
that was developed throughout this thesis. Kauri was implemented as an extension of
the original HotStuff prototype 3.

The alterations of the original HotStuff implementations can be separated into
four categories:

• BLS signature support

• Tree Construction Algorithm

• Tree dissemination and aggregation

• Pipelining

The source code of the prototype is available on Github4. The adaptations and
additions contribute around ≈ 1400 lines of code to the original HotStuff codebase.

In the following sections, we describe in detail how each of the concepts was
implemented.

4.5.1 BLS Signatures

The HotStuff prototype provides an abstraction that allows adding support for
diverse cryptographic primitives. As such, we extended these abstractions to add sup-
port for the BLS cryptographic scheme. For this purpose we used the publicly available
implementation used in the Chia Blockchain (BONEH et al., 2004; COHEN; PIETRZAK,
2020)5. We implemented the following abstractions:
3 Available at https://github.com/hot-stuff/libhotstuff
4 Available at at https://github.com/Raycoms/Kauri-Public
5 Available at https://github.com/Chia-Network/bls-signatures

https://github.com/hot-stuff/libhotstuff
https://github.com/Raycoms/Kauri-Public
https://github.com/Chia-Network/bls-signatures
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• Public Key

• Private Key

• Signature

• Certificate

• Quorum-Certificate

We used the Pop-BLS scheme provided by the library. While this is the most
efficient aggregation scheme the library offers, it is vulnerable to rogue key attacks,
making it unfeasible in permissionless blockchains. However, in our use case, in per-
missioned blockchains, we can prevent participants from arbitrarily changing their keys
during operation.

Thus, with the help of BLS signatures its possible to aggregate signatures while
they are being disseminated up the tree at O(m) cost at each internal node. Each
signature aggregate can then be verified in O(1) steps. We can use the same scheme
also with the star, requiring O(N) cost at the leader, but allowing verification in O(1)
steps at all the other nodes. On top of that, it has a constant signature size independent
of the number of processes N , which reduces the bandwidth cost significantly in com-
parison to the cryptographic scheme secp256k1 that is used in HotStuff by default. The
original “vanilla” implementation of HotStuff is therefore denoted as HotStuff-secp and
the BLS variant as HotStuff-bls. We do this to show that the performance improvements
are independent of the usage of the cryptographic scheme but are actually the unique
combination of trees, signature aggregation, and optimistic pipelining.

In this context, we would also like to mention our contribution to the BLS codebase
resulting in a significant speedup for public key aggregation 6.

4.5.2 Tree Construction & Reconfiguration

HotStuff already offers a mechanism to trigger reconfigurations after reaching
a specific timeout. Then, the next leader is chosen deterministically and, after a short
timeout, proposes a new block (extending the last locked block) to kickstart a new round
of consensus. In Kauri, alongside the change of leader, each process calls the build
primitive outlined in Algorithm 6.

The construction of the tree follows Algorithm 5. As we will not always necessarily
have sufficient processes to construct a perfect m-ary tree, we equally distribute nodes
among the internal nodes to achieve a balanced tree to maximize load distribution.
As such, depending on the number of processes, the highest load will always be on
the root. Given a fanout m, we construct a tree where each node has at most m child
6 Available at https://github.com/Chia-Network/bls-signatures/pull/136

https://github.com/Chia-Network/bls-signatures/pull/136
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processes. Each process runs the same deterministic algorithm and obtains their child
and parent processes as a result.

In order to achieve disjoint sets of internal nodes after each failure, we rotate the
entire set of nodes by the number of internal nodes. We do this for a total of fa+1 times.
If after fa + 1 attempts consensus was not achieved, we fall back to a star topology.

We define several timeouts in the system. The limit on message transmissions
between two nodes δ after which a process moves on (as described in Section 4.1)
and the absolute upper limit ∆. Based on the value of δ we calculate the round ter-
mination timeout as δ ∗ depth ∗ 2 after which a reconfiguration is enacted. Every time
a reconfiguration is enacted, δ is doubled until reaching or exceeding ∆ at which it is
capped.

4.5.3 Broadcast and Await

The core of this part is related to the implementation of both the broadcast and
the await primitive, which is putting Algorithm 2 and Algorithm 3 in practice. Extending
the HotStuff dissemination is trivial. Instead of broadcasting a block, the root process
propagates the block only to their child processes (i.e., in a star N − 1 processes, in a
tree only m processes). Following that, on receiving a proposal, a process forwards it
directly to their own child processes.

The implementation of await is a bit more complex. Internal nodes will now
receive votes, process and aggregate them and then relay the vote to their parent. For
this sake, we created a new message type: "vote-relay", and a handler for that.

4.5.4 Pipelining

The HotStuff paper describes the HotStuff pipelining as piggybacking additional
information in each consensus message to process several phases in parallel. In prac-
tice, in the implementation, HotStuff produces a new block for each consensus round
and considers a quorum on block i as an implicit second quorum for block i − 1, etc.
Thus, HotStuff finalizes a given block bi after reception of a quorum for block bi+4

We extend on top of this system and propose additional blocks optimistically
following the approach discussed in detail in the previous section. In Kauri, the current
pipelining assumes a static pipelining stretch throughout the experiment. To estimate
this, we use the theoretical model outlined in Section 4.4 and the obtained measure-
ments to calculate the pipelining stretch for a given scenario. The root process in the
tree keeps track of all concurrent blocks at a given moment. The leader initially dissem-
inates additional blocks until reaching the pipelining limit. After receiving a quorum for
the next pipelined block, a new block is directly proposed to keep up the number of
concurrent blocks at all times. Based on this, instead of finalizing a block after receiving
a quorum for block bi+3, for a given stretch s it takes bi+s∗4



Chapter 4. Kauri 87

In practice, the number of pipelined blocks should be adapted at runtime depend-
ing on the system’s current state. i.e., when there is more bandwidth and computation
power available, pipelining should be increased, while during periods of lower load or
increasing latency, pipelining could be reduced to preserve resources and adapt to the
load. However, this is more complex than initially meets the eye and is left open for
future work.

4.6 SUMMARY

This chapter introduced our proposed strategies to overcome the bottlenecks
and hindrances of building a highly performant and scalable byzantine fault tolerant
consensus protocol. We first outlined how tree structures compare to star topologies
and how we can leverage the similarities to offer the same guarantees. Next, we dis-
cussed the shortcomings of tree structures and our novel approaches to pipelining and
reconfiguration to solve them. Then, we introduced a performance model to reason
about the performance we can achieve with the help of our strategies. Finally, we out-
lined the implementation details related to our developed prototype that combines our
proposed strategies. The experimental evaluation of this prototype is presented in the
next chapter.
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5 EVALUATION

In this chapter, we discuss the experimental evaluation of the developed proto-
type. We analyze the throughput and latency of our approach in comparison to state-of-
the-art approaches like HotStuff.

In detail, we start by evaluating the performance improvement from the
Aggregate-Verify scheme. We then evaluate how the performance develops for different
pipelining stretches considering different block sizes. Next, we show how Kauri behaves
under changing round trip times. This brings us to the central part of the evaluation,
evaluating the throughput of Kauri in different scenarios with 100 to 800 processes
and how Kauri scales independent of the number of processes by leveraging deeper
trees. Following that, we analyze how the latency of Kauri develops for different block
sizes and bandwidths. Finally, we evaluate how Kauri behaves in a heterogeneous
deployment, and last but not least, we show the behavior of Kauri in the presence of
different failure scenarios.

5.1 EXPERIMENTAL SETUP

We executed all experiments on the Grid’5000 testbed (BALOUEK et al., 2013)
using up to 80 physical machines where each physical machine has two Intel Xeon E5-
2630 v3 8-core CPUs and 128 GB RAM (Paravance and Parasilo Clusters in Rennes)
where the physical machines are connected through a 10 Gb Network. In each of the
experiments, we deploy at most 10 virtual processes (Docker containers) per physical
machine, thus, reaching up to 80 physical machines for the experiments with 800
processes.

As already pointed out before, we created three main scenarios that we use
to evaluate Kauri. These scenarios are based on actual use-cases and practical ap-
plication scenarios. Those scenarios are, global, regional, and national described in
Section 4.4.2.

In addition to these homogeneous scenarios, we also considered one hetero-
geneous deployment scenario with variable bandwidth and round trip time, which we
obtained from recent work (RAHNAMA et al., 2020) that measured latency and band-
width for a set of globally distributed clusters.

In order to implement the network characteristics, we have deployed
NetEm (HEMMINGER, 2005) network latency and bandwidth restrictions on
each individual docker container in the case of the homogeneous deployments and, for
the heterogeneous setup, we have used the network emulation tool Kollaps (GOUVEIA
et al., 2020).

In all experiments, we deployed a round number of processes (N =

100, 200, 300, ..), which typically does not result in perfect m-ary trees. This strat-
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N 100 200 300 400 500 600 700 800
m 10 14 17 20 22 24 26 28

Table 5 – Fanout m for a selection of system sizes N .

egy also matches a real-world deployment more closely. Thus, to construct the tree,
we simply start with a fanout of m at the root and then equally distribute the remaining
nodes over the internal nodes in the tree to construct an approximately balanced tree.
In most experiments, unless otherwise stated, we have used a tree of depth two and
constructed the tree with the smallest possible root fanout for the given scenario. The
resulting fanout m for given system sizes N is outlined in Table 5.

Besides the two variants HotStuff-bls and HotStuff-secp, we have also executed
a subset of the experiments with Kauri without pipelining, which approximates the imple-
mentation of Motor (KOKORIS-KOGIAS, 2019). Hereafter, we refer to this deployment
as Motor*. As we pointed out in Section 3, Motor uses a tree of depth two without
pipelining and a similar cryptographic scheme as used in Kauri. In the absence of
failures, Kauri without pipelining performs very similar to Motor. We used this, as the
original prototype of Motor is not publicly available. Furthermore, while Motor only has
2 phases of consensus, our implementation of Motor uses the HotStuff pipelining to
balance that out.

5.2 PRELIMINARY EXPERIMENTS

We first take a look at a row of preliminary experiments, particularly at how the
improved Aggregate & Verify scheme performs and how pipelining in practice compares
to our theoretical model.

5.2.1 Aggregate & Verify

First, we take a look at the quantitative improvements resulting from the improved
signature verification strategy. As discussed in Section 4.4.2, it has no negative draw-
backs as the only potential attack vector may be mitigated as correct processes may
detect incorrect processes easily and ignore their input in the following round.

We have executed an experiment in all three of our scenarios (global, regional,
and national), considering 100 processes with both strategies and comparing their
throughput and CPU load on the respective machines.

The results of this experiment are displayed in Figure 22 comparing the through-
put for different approaches and in Figures 23, 24, 25 comparing the respective load
at each scenario. As expected, we see no notable difference in terms of throughput
in the global scenario where the system is bottlenecking on the bandwidth and CPU.
While there is a slight difference in terms of CPU load, as the system is far from be-
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Figure 22 – Throughput of the two different signature verification strategies.
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Figure 23 – CPU Usage: national (10ms RTT - 1Gb/s links)
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Figure 24 – CPU Usage: regional (100ms RTT - 100Mb/s links)
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Figure 25 – CPU Usage: global (200ms RTT - 25Mb/s links)

ing saturated, this has no notable influence on the throughput. This behavior changes
substantially in the other scenarios. In both the regional and especially national sce-
nario, the new strategy (aggregate and verify) improves considerably compared to the
traditional approach. While the CPU load does not exceed 40%, this is the case as the
system assumes more available resources due to hyper-threading, even though, based
on our observations, when the system starts hyper-threading, there is even a perfor-
mance toll involved from the additional scheduling in the context of this application.

5.2.2 Pipelining

Second, we will take a look at the effects of different pipelining levels on the
throughput of Kauri. The results of this experiment are depicted in Figure 26 showing
different throughput levels on the y-axis corresponding to different pipelining stretches
on the x-axis. This experiment was executed in the geo-distributed setting (200ms RTT
and 25Mb/s bandwidth) for N = 100. In order to fully reason about the impact of
pipelining, we executed the experiment for different block sizes ranging from 50Kb (125
transactions per block) to 500kb (2000 operations per block).

We can compare the results from Figure 26 with the values we may obtain from
our theoretical model in Table 4. Thus, we see that the optimal pipelining level, in
this case, is very close to the value we have obtained in the theoretical model. Thus,
showing that our theoretical performance model can serve as a guideline to configure
our system to achieve high throughput. As a result, the experiments presented in this
section orient their respective pipelining configuration to the value obtained from the
theoretical performance model.

Further, we note that for all block sizes besides the smallest, eventually each
configuration of Kauri, independent of the block size, will reach a similar throughput
level by compensating the smaller throughput, resulting from the smaller block-sizes,
by sending blocks more regularly. The only configuration with a significantly smaller
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Figure 26 – Effect of pipelining stretch on Kauri’s throughput for N = 100, m = 10 and
different block sizes.

throughput is at the smallest block size. This indicates that the systems’ computational
resources were maxed out at this block frequency.

Finally, we can observe an almost linear performance increase for each pipelining
level, which on the one hand shows the minimal overhead inherent to this approach but
on the other hand, given there are enough networking and computational resources,
shows we could scale the throughput further up.

As a result of this experiment, in the context of this evaluation, we picked the
default block size to be 250Kb (1000 transactions per block), as this resulted in lower
resource usage but still allows flexible adjustment of the pipelining level. In the original
HotStuff Paper (ABRAHAM et al., 2018) the chosen size was between 100 and 400
operations per block. However, due to the lack of pipelining, HotStuff strongly benefits
from the increased block size as not only will HotStuff spend less time idling, but the
signature overhead makes up a significantly smaller share of each block.

5.3 THROUGHPUT

In this section, we take a look at the throughput Kauri provides, compared to
other solutions in different scenarios.

5.3.1 Latency Compensation

Next, we want to show how pipelining in Kauri can, orthogonal to compensat-
ing smaller block-sizes, also allow to compensate inherent networking delays. Thus,
to evaluate this, we executed an experiment with vanilla HotStuff (using secp256k1
signatures) and Kauri where we have altered the inherent system latency and observed
the effect on the overall system throughput.
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Figure 27 – Impact of RTT in system throughput. (N=100 with 100Mb/s bandwidth)

The results of this experiment are depicted in Figure 27 for a system with N = 100

Nodes and 100Mb/s bandwidth. We fixed the bandwidth, block size, and the number
of processes in the system and varied the round trip latency from 100ms to 400ms. We
have varied the pipelining stretch based on our performance model, varying from 10,
for 100ms to 33 for 400ms round trip time. While we can observe the rapidly declining
throughput of HotStuff for higher round trip times, Kauri, displays a stable throughput
independent of the inherent system latency.

Therefore, we can conclude that, as a result, Kauri can fully leverage the available
computational and networking resources independent of the system latency. In contrast,
existing systems like HotStuff will not be able to offer high throughput in these kinds of
scenarios.

5.3.2 Increasing Number of Processes

This takes us to the most important part of this evaluation. This section evaluates
the throughput of Kauri under different scenarios and system sizes. In detail, we vary
the system from 100 to 800 nodes in our three given scenarios, namely National (10ms

RTT and 1Gb/s Bandwidth), Regional (100ms RTT and 100Mb/s bandwidth) and Global
(200ms RTT and 25Mb/s Bandwidth).

We compare the performance of Kauri with the vanilla implementation of HotStuff
(HotStuff-secp), our BLS version of HotStuff (HotStuff-bls) and our implementation of
Motor (Motor*1). The results of this experiment are depicted in Figures 28, 29 and 30
for the three different scenarios.

First, very apparent, we note that Kauri outperforms any competing implemen-
tation by a large margin independent of the scenario and number of processes. This
1 We denote Motor as Motor*, as based on its implementation, it behaves exactly like Kauri without

additional pipelining
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Figure 28 – Throughput: national (10ms RTT - 1Gb/s links)

 0.125
 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 100  200  300  400  500  600  700  800

T
h

ro
u

g
h

p
u

t 
(K

 t
x
/s

) 

Processes

Kauri Motor* HotStuff-bls HotStuff-secp

Figure 29 – Throughput: regional (100ms RTT - 100Mb/s links)
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Figure 30 – Throughput: global (200ms RTT - 25Mb/s links)
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is especially apparent in scenarios with limited bandwidth and at larger system sizes.
This follows the claims of our theoretical model very tightly as we have discussed in
the previous section. In HotStuff, the leader process has to disseminate its block to an
increasing number of nodes, consuming an increasing amount of bandwidth. Thus, as
a result, the larger the set of nodes, the longer it takes for the leader to disseminate
the block, and the longer it takes for the leader to start processing and disseminating
the next block. On top of that, vanilla HotStuff uses secp256k1 signatures without any
aggregation mechanism. As such, larger sets of signatures have to be disseminated
alongside the block at larger numbers of participants, which further aggravates the prob-
lem. Thus, as a result, in all scenarios where the system is bound by the bandwidth,
HotStuff-bls outperforms the vanilla implementation of HotStuff.

Second, we notice that while basic tree-based approaches like Motor, for smaller
sets of processes, are behind HotStuff, with growing numbers of processes, tree-based
approaches eventually become more efficient independent of the used scenario as
trees not only allow for offloading the inherent bandwidth cost but also the inherent
computational cost of verifying N signatures each round (In the global scenario for all
N , in the regional scenario for N > 200 and in the global scenario for N > 300). However,
tree-based approaches are heavily limited by the system latency and offer significantly
less throughput than Kauri. As such, simply switching to a tree-based approach is not
a silver bullet to the scalability problem. Only in combination with pipelining, Kauri can
offer a considerable throughput advantage in any scenario.

Very interestingly, even though our performance model is simplistic (i.e., we
assumed that computation and dissemination fully overlap), the predicated speedup
values in Table 4 are very close to reality, reaching a speedup of over 30 for 400 nodes
in the regional and global scenario. In total, the system reaches a speedup of slightly
under 60 for 800 nodes in the global scenario compared to vanilla HotStuff and around
28 for our HotStuff implementation using BLS signatures which even tightly fits the
strongly simplified maximum speedup of N−1

m
.

We note that, throughout this experiment, we assumed a fixed depth for Kauri
of h = 2 and adjusted the fanout m accordingly. Thus, as the system always fully
operated at its limit, we fully expected a declining throughput level at larger system
sizes. However, in the following section, we will show how maintaining a stable fanout
allows the system to maintain a stable throughput even with an increasing number of
processes.

Finally, we show how the system can maintain high throughput independent of
the number of processes by maintaining a stable fanout m and adjusting the tree sizes
accordingly. The results of these experiments are shown in Figure 31 for the global
scenario and, similarly to before, from 100 up to 800 processes. In this context, there
is a tree of depth two in the case of 100 processes and a tree of depth three, for the



Chapter 5. Evaluation 96

 2

 4

 8

 16

 100  200  300  400  500  600  700  800

T
h

ro
u

g
h

p
u

t 
(K

 t
x
/s

) 

Processes

Kauri-2 Kauri-3

Figure 31 – System Throughput with stable fanout

executions from 200 to 800 processes (considering the fanout m = 10, a tree of depth
two might have at most 111 processes and a tree of depth three up to 1110 processes).

As we can clearly see in this deployment, while Kauri with a depth of two offers
continuously lower throughput for larger system sizes if we increase the tree depth, we
can offer a stable throughput independent of the system size.

Note, in most of the remaining experiments we consider practical system sizes
of 100 processes to simplify the deployment and reduce the requirement of physical
resources. We emphasize that this highly favors HotStuff as the star topology suffers
strongly in scenarios with large numbers of processes due to the bandwidth and com-
puting bottleneck.

5.4 LATENCY

The previous experiments showed how Kauri achieves better throughput than
HotStuff independent of the system latency and bandwidth due to the load distribution
in the tree and the pipelining stretch. We now conduct a study concerning the latency
of our approach in comparison to HotStuff.

5.4.1 Bandwidth vs Latency

As Kauri uses a tree structure to disseminate and aggregate messages, Kauri
has a higher inherent round trip latency (depending on the tree height) than HotStuff
where, considering infinite computational and network resources, HotStuff will also
show much lower latency than Kauri.

Nonetheless, in practice, neither bandwidth nor processing resources is infinite,
and system latency is inherently bound by the sending and processing times. As such,
as Kauri can reduce the sending time substantially due to the parallelism opportuni-
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Figure 33 – Throughput/Latency tradeoffs for different network bandwidth using trees
of different heights

ties offered by the tree, in certain scenarios Kauri may even offer better latency than
HotStuff.

In order to evaluate latency, we measure the time it takes for a single quorum
to be obtained for a given set of transactions (block) and, as such, do not consider
potential client waiting times until the next block is produced.

In order to evaluate how this compares in practice, we executed a scenario
considering a fixed RTT of 100ms and varied the bandwidth from 25Mb/s to 1000Mb/s.
The results of this experiment are shown in Figure 32 for a system size of N = 100. First,
we note that when sufficient bandwidth is available (i.e., 1000Mb/s), HotStuff will have
approximately half the latency. However, with decreasing available bandwidth, Kauri
already shows an advantage at 100Mb/s bandwidth and less than half the latency at
25Mb/s due to the significantly reduced sending time.
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Figure 33 shows how the throughput/latency throughput compares in this sce-
nario. Showing that the latency of both variants of HotStuff vary substantially with the
available bandwidth while Kauri is much less affected. Not only do we see that HotStuff-
bls may outperform HotStuff-secp in some scenarios, but that independent of the used
signature scheme, both approaches have a similar characteristic in terms of the sending
time. As such, it is crucial to significantly reduce the sending time if higher throughput
and lower latency are required.

5.4.2 Throughput vs Latency

Next, we evaluate how the system behaves under varying load. In order to do
this, we fixed the system size again at 100 processes in the global scenario (25Mb/s

bandwidth and 200ms RTT). We vary the load in the system by varying the number of
transactions per block (from 125 to 4000), resulting in the following block sizes: 32Kb

64Kb, 125Kb, 250Kb, 500Kb, and 1Mb.
The results of this experiment are depicted in Figure 34. As in all deployments

of Kauri, we adjust the pipelining stretch for each scenario following our performance
model. Analogous to the previous experiments, the throughput of Kauri is significantly
higher than of either HotStuff variant independent of the system load.

Similarly, at lower bandwidth and increased system load, the sending time in-
creases more substantially for HotStuff than for Kauri. As a result, Kauri offers better
throughput and latency for all load scenarios above 125 transactions per block.

This further highlights the importance of using a tree to distribute both processing,
but especially also the bandwidth load among a set of processes. Similar to previous
experiments, HotStuff-bls shows in most scenarios a slight advantage as it does not
have the additional inherent bandwidth overhead of sending a set of N signatures.
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Figure 35 – Throughput in the network of (RAHNAMA et al., 2020) with N = 60.

However, we have to point out a few oddities in this graph. First, we see a
decrease of throughput at the highest latency level for Kauri. This stems from the
fact that when the pipelining stretch is minimal, in some cases, to achieve optimal
throughput, we would want to pipeline at most a quarter of a block or less. However, we
can only increase the stretch by whole numbers, resulting in a drop in throughput.

Next, we notice a slight drop in latency at higher throughput when going from the
left-most point of Kauri to the one next to it. This stems from the fact that we reached a
computational bottleneck at the smallest block size, resulting in a significantly increased
processing time, which, subsequently, also negatively influences the latency.

5.5 HETEROGENEOUS DEPLOYMENT

Up to this point, all experiments considered a homogeneous network where
the latency and bandwidth between any two given processes are exactly the same
and have analyzed how the system behaves under a range of different homogeneous
scenarios.

This experiment shows how Kauri compares in a heterogeneous setup. As we
lack the resources to execute the experiment in an actual globally distributed network,
we have used the real-world scenario that was measured experimentally and used in
the evaluation of ResilientDB (RAHNAMA et al., 2020).

5.5.1 Standard Distribution

In detail, the authors measured the latency and bandwidth between a set of
google data centers in different geographic locations—namely, one each in Oregon,
Iowa, Montreal, Belgium, Taiwan, and Sydney. The latency within a datacenter is roughly
0.25ms, and the latency between datacenters ranges between 38ms (Iowa to Oregon)
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and 270ms (Belgium to Sydney). Similarly, the bandwidth within a datacenter is roughly
10Gb/s and varies from 670Mb/s (Iowa to Oregon) and 66Mb/s (Belgium to Sydney).

We deployed 10 processes in each datacenter, resulting in a total of 60 pro-
cesses matching one of the deployment scenarios in (RAHNAMA et al., 2020).

As ResilientDB is deployed statically (i.e., most of the communication happens
within a cluster), we have attempted to optimize the deployment of HotStuff and Kauri.
As such, the leader (root) process is always located in Oregon (best bandwidth la-
tency to the remaining clusters), and we have distributed processes so that they are
approximately close to their parent.

The results of this experiment are depicted in Figure 35. Similar to previous
experiments, Kauri outperforms any other system in terms of throughput and, also
analogous to the other deployments, this primarily stems from the use of pipelining,
which allows Kauri to compensate the large round trip latencies. However, as expected,
Kauri is penalized in terms of latency, as HotStuff’s throughput is impaired mainly on
high latency scenarios, it neither bottlenecks on bandwidth nor on the processing load.
Nonetheless, Kauri displays an almost ten times higher throughput compared to only
twice the latency cost.

The most interesting takeaway is that Motor* (i.e., Kauri without pipelining) ex-
hibits the worst throughput of all approaches. This not only shows the strong effects
geographic distribution has on existing tree-based approaches but especially exhibits
the importance of pipelining in order to display a large throughput.

We also want to note that the values obtained for HotStuff differ substantially
from those reported in ResilientDB. This stems from the fact that in the evaluation
in ResilientDB (RAHNAMA et al., 2020) N parallel instances of HotStuff were run,
and the reported throughput is a sum of all the N parallel instances. Contrary, we
opted to consider the best possible throughput of a single instance in our deployment.
Nonetheless, the throughput we have obtained for Kauri is very similar to the throughput
obtained by ResilientDB, without requiring to sacrifice the resilience of the system as
ResilientDB tolerates at most f ≤

⌊︁
C−1
3

⌋︁
failures, where C is the size of the smallest

cluster (§1), while Kauri tolerates f ≤
⌊︁
N−1
3

⌋︁
faults as classical BFT.

While we manually assigned the leader to the Oregon datacenter and distributed
the remaining internal nodes equally over the other data centers, this is still far from a
perfect distribution as there was still regular cross-data center traffic involved.

5.5.2 Optimal Distribution

In order to achieve perfect distribution, we either have to use an irregular tree
or alter the number of processes in each data center. In order to assess this, we have
executed an additional experiment in the same heterogeneous deployment. Instead of
having statically 10 processes in each datacenter, the first data center (Oregon) has 8
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Figure 36 – Throughput in the network of (RAHNAMA et al., 2020) with N = 43.

processes (1 root node, 1 internal node, 6 leaf nodes) and the remaining datacenters
7 (1 internal node, 6 leaf nods) where each internal node is solely connected to leaf
nodes within its own datacenter. This resulted in a total of 43 processes.

The result of this experiment is depicted in Figure 36. We see a slight increase
in throughput in Kauri (primarily due to the reduced fanout), reaching around 55k tx/s.
However, the main difference is the latency. Compared to almost twice the latency in the
previous deployment, there is only a minimal latency overhead compared to HotStuff
due to the improved deployment. This not only shows how Kauri can, when appropri-
ately configured, show similar latency as HotStuff even outside of saturated scenarios
but also strongly motivates the creation of deployment algorithms that consider geo-
graphic proximity.

5.6 RECONFIGURATION

Lastly, we evaluate how Kauri behaves in the presence of faulty nodes. We
constructed four scenarios: 1 faulty process, 3 faulty processes, 10 faulty processes,
and f faulty processes.

We have executed this experiment in the regional scenario (100ms RTT latency
and 100Mb/s bandwidth) with 100 processes. As such, there are f = 33 faulty pro-
cesses in the fourth scenario.

Our reconfiguration algorithm can always recover within optimal steps in the first
three experiments by constructing disjoint sets of processes. As such, the worst-case
scenario for any approach (Kauri or HotStuff) is subsequent faulty leaders. In the third
experiment (10 failures), the newly designed reconfiguration algorithm comes into play
and executes one additional rotation (i.e., the original algorithm tolerates up to 9 faulty
processes and the refined algorithm up to 19).

However, neither algorithm can construct a robust tree in the fourth experiment,
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Figure 37 – One faulty leader.
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Figure 38 – Three consecutive faulty leaders.

and we have to fall back to a star. This could either be after selecting f subsequent
faulty leaders or, in the worst case, first 19 instances of sufficient faulty internal nodes,
followed by 33 faulty leaders.

As in HotStuff, reconfiguration is triggered with a timeout. We consider an initially
step timeout of 1s (δ = 0.25s) after which a process assumes the topology to be non-
robust and triggers a reconfiguration. With subsequent failures this value doubles until
reaching or exceeding 10s (∆ = 2.5s) at which it is capped.

In each experiment, we first have a warm-up period of 30s (omitted from the
graphs), after which we start the experiment. Following that, we inject the failure after
another 30s (hence 60s after the start of the experiment) and measure the impact on
the system throughput.
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Figure 39 – Ten consecutive faulty leaders.

5.6.1 Faulty Leaders

First, we notice that for a single leader failure, both Kauri and both HotStuff
variants recover very quickly to similar throughput levels as before within roughly 3s
for one failure (Figure 37), and just under 10 seconds for three consecutive failures
(Figure 38).

While Kauri recovers simultaneously, it takes a few additional seconds to reach
the pre-failure throughput as before as Kauri has to build up the pipelining stretch again.
Nonetheless, we can see that this recovery time is static, independent of the number
of failures. These results are also analogous to the experiment with ten subsequent
leader failures, where the extended reconfiguration algorithm we have presented was
used.

5.6.2 Multiple Failure Locations

Finally, we set up a worst-case experiment with a large number of failures (f =
N−1
3

). As already explained, this results in two scenarios for Kauri. i) Worst case with first
19 faulty leaders in Kauri and then 14 stars with faulty leaders (labeled Kauri leaders) ii)
Worst case where we got first 19 instances of faulty trees due to faulty internal nodes
(labeled Kauri internal+leaders) and then 33 faulty stars with faulty leaders.

The results of this experiment are depicted in Figure 40. In the case of 33 con-
secutive faulty leaders, Kauri and HotStuff perform similarly, analogous to the previous
experiments. However, due to many simultaneous failures, Kauri has to fall back to a
star topology. Nonetheless, in this case, the system reacts just as quickly as HotStuff
and recovers to the same performance.

Only in the absolute worst case, of 19 instances of faulty internal nodes (without
overlapping the set of future leader nodes), there is an overhead of fa rounds where
we apply our algorithm. Following that, we also fall back to a star and achieve a similar
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3

performance again.

5.7 SUMMARY

This chapter outlined the experimental results we obtained throughout the course
of this thesis. It showed how Kauri compares to similar systems and validates our
previously introduced performance model. The following chapter discusses the potential
shortcomings of Kauri, future work and concludes this thesis.
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6 DISCUSSION & CONCLUSION

This chapter concludes the thesis. We start out by discussing some general
considerations putting our contribution into context. Next, we discuss the lessons we
have learned when designing Kauri and the requirements an approach must fulfill
to scale consensus to large system sizes. After that, we discuss the limitations of our
approach and in which context other protocols might be more suitable. We follow up with
future directions in which Kauri can be extended in future work. Next, we discuss some
orthogonal work we have executed in the context of this thesis. Finally, we conclude
this thesis with a short summary and some final considerations.

6.1 GENERAL CONSIDERATIONS

Scaling byzantine fault tolerance consensus is a well-known problem in the liter-
ature. In Chapter 3 we outlined the most important byzantine fault-tolerant consensus
algorithms as well as recent attempts to scale byzantine fault-tolerant consensus to
larger system sizes while maintaining high throughput.

However, besides changes to the consensus algorithm itself, orthogonal solu-
tions in the literature aim to improve the overall throughput at large scales. One of the
most common ways is sharding, where processes are divided into groups, and each
group is individually responsible for a subset of the operations. This way, through shard-
ing, it is possible to run several rounds of consensus concurrently within each shard
(KOKORIS-KOGIAS, Eleftherios et al., 2018). A global consensus involving multiple
shards is only necessary if a transaction touches several shards. A relatively similar
and recent approach are so-called “side-chains”. We can understand side-chains like
individual shards that process and batch transactions externally and regularly synchro-
nize the results (SGUANCI et al., 2021).

These solutions are fully compatible with our tree-based approach and pipelining
scheme. Individual shards may still be geographically distributed and, as such, have
a potentially low throughput due to the large idle time. In addition, the load at each
individual process increases with increasing throughput, and tree structures can be
used to distribute the load more equally within the shard.

Nonetheless, sharding has one thing in common with most other solutions that
attempt to scale byzantine fault-tolerant consensus. Similar to approaches like DPoS or
Committee-based solutions, they sacrifice resilience to increase the system’s scalability
where the failure assumption is usually based on the size of each shard and not on the
total system size.

Outside of sharding, a recent popular approach assumes a multi-leader architec-
ture where multiple rounds of consensus are executed in parallel (STATHAKOPOULOU
et al., 2019). This is usually done by dividing the transaction space, similar to shard-
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ing, however, without reducing the system’s overall resilience. Nonetheless, these ap-
proaches are very fragile in the presence of byzantine failures, while, our tree approach
tolerates faulty internal nodes at a small cost. A single faulty leader may slow down
the system to 10% of its capacity in a multi-leader system (STATHAKOPOULOU et al.,
2019).

Due to this, they have to guarantee somehow that none of the leaders are faulty
(which is orthogonal to our strong robustness criteria). As such, they could leverage our
simple reconfiguration algorithm to construct disjoint leader sets. Nonetheless, this only
works at a significantly reduced normal-case failure assumption. In addition to that, it is
still unclear how multi-leader approaches deal with conflicting transactions.

In comparison, Kauri offers a solution that can easily be applied to existing sys-
tems to increase their scalability with minimal trade-offs compared to most orthogonal
approaches.

6.2 LESSONS LEARNED

Next, we outline the lessons we have learned from designing Kauri and the
requirements we have identified to build a scalable byzantine fault-tolerant consensus
algorithm. Following that, we also discuss precautions that must be taken into account
when working with tree structures.

6.2.1 Scalable Consensus

The three main inhibitors of scaling consensus are pretty straightforward. First,
the protocol can run into a bandwidth bottleneck depending on the number of messages
and data transmitted. Second, with an increasing set of processes, more computational
power is required to verify the messages of all processes. In addition to that, as we’ve
shown in the evaluation, high network latency reduces the potential throughput signifi-
cantly unless an optimistic pipelining scheme is used. However, balancing bandwidth
and computational load among a set of processes by using deeper communication
structures leads to more communication steps, and as such, the higher round trip
latency in a growing system impacts the throughput even more significantly.

6.2.1.1 Bandwidth

Most modern consensus algorithms are leader-driven. In practice, a single pro-
cess proposes a set of values (transactions) by propagating it to all other participants.
Assuming 100 consensus participants and a batch size (block size) of 1Mb, this con-
sumes 100Mb/s of bandwidth per round of consensus. As such, quite clearly, the band-
width consumption scales linearly with the number of participants and eventually leads
to a bottleneck. Even if the leader process rotates after each round of consensus, the
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time each round takes is still essentially bound by the available bandwidth at the leader.
This is even further aggravated by the requirement to propagate the set of signatures
alongside.

The signature cost can be reduced through a signature aggregation scheme
as in SBFT (GOLAN GUETA et al., 2019). Meanwhile, the best way to reduce the
bandwidth cost of propagating the initial proposal is by adapting the communication
structure. Thus, instead of broadcasting the set of transactions to all processes, the
set can be propagated through a tree. As a result, instead of requiring N messages
at the leader, each process only has to propagate at most fanout = m messages. As
such, it is either possible to maintain a stable fanout (at the cost of increasingly deep
trees) or adjust the fanout to maintain a tree of fixed size (at the cost of throughput).
Nonetheless, even for a fixed size tree to preserve latency, as we have shown in the
evaluation, m always grows significantly slower than N .

While it is also possible to attempt this through gossip, byzantine fault-tolerant
gossip requires significantly more messages and is not as flexible as a tree structure
which can be adapted depending on the available bandwidth at each node (LI, P. et al.,
2020).

6.2.1.2 Computational Complexity

In terms of computation, in most algorithms, at least one process has to verify the
signatures of all participants. This again is a very obvious bottleneck as growing system
sizes eventually require an increasing computational cost at this process. Independent
of the used cryptographic scheme, the inherent cost at the leader is always O(N).

Again, the best way to alleviate this, is through a tree structure, where inverse
to propagation, signatures are aggregated on the way back to the leader at O(m)

complexity at each internal node. Therefore, adjusting the fanout m accordingly to the
latency and throughput requirements is again possible.

Similar to before, aggregation through gossip as in (LI, P. et al., 2020) is also
possible, but by far, it is not as efficient as a tree structure.

6.2.1.3 Latency

While both computation power and bandwidth can be distributed among multi-
ple nodes by using hierarchical communication structures, this introduces additional
communication steps in the system. This is especially complicated in a geo-distributed
system where additional communication steps can significantly increase the consensus
latency, resulting in a severe drop in throughput.

As such, it is essential to decouple throughput from the system latency. HotStuff
leveraged pipelining to compensate for the additional consensus phases. However, this
neither accounts for latency introduced by geographic distribution nor does it account
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for deeper communication structures. As such, there is a need to process several
consensus rounds in parallel in the system. A straightforward solution for this is the
proposed additional pipelining stretch, where the leader process proposes several
blocks optimistically in a row.

6.2.1.4 Summary

The proposed approach in this thesis works due to the unique combination of
several elements. Signature aggregation to reduce computation and bandwidth cost,
usage of a tree structure for load distribution, and extra pipelining to compensate for the
additional inherent tree latency. This becomes clear when looking at approaches in the
literature that leveraged only a subset of these strategies and were unable to achieve a
comparable throughput (more details in Section 3 and Section 5).

6.2.2 Disadvantages of Trees

Even though tree structures are an excellent solution to distribute the load among
a set of processes, in the context of byzantine fault tolerance, they are significantly more
fragile as a faulty (non-leader) node in a tree structure has significantly more power
than a faulty “leaf” node in a clique or star. Increasingly deep tree structures require
more internal nodes, which results in a more significant chance to encounter faulty
processes among the internal nodes in the tree.

As such, digital signatures are essential to reduce the potential attack vectors
significantly. If each message is authenticated through a unique key-pair, the worst
attack a faulty internal node can execute is failing to relay signatures from/to their
child nodes. However, sufficient faulty internal nodes may still block consensus from
terminating indefinitely.

Thus, contrary to star and clique schemes, we have to reconfigure the system,
not only in the presence of a faulty leader but also if there are too many faulty internal
nodes. Thus, intelligent reconfiguration algorithms are necessary to avoid a factorial
number of steps until a robust tree is found and consensus can be achieved.

These algorithms are not only interesting for tree construction but, as discussed,
in the context of multi-leader schemes, can be used to construct a robust leadership as
well.

6.3 LIMITATIONS

While Kauri offers high performance at a large scale, our approach still has
certain limitations. We identify three main cases where other approaches might be
more suitable than Kauri.
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6.3.1 Datacenter Environments

Kauri was designed for high throughput environments where either computa-
tional power or the available bandwidth is limited. Thus, if all system processes are
situated in the same data center, it is unlikely that the system will bottleneck on band-
width. Meanwhile, the computational cost mainly stems from the usage of asymmetric
signatures. Thus, as bandwidth is not a limiting factor, an all-to-all scheme could be
used that relies on message authentication codes (MACs) to reduce the computational
cost.

On top of that, in a data center environment, timing assumptions are different
compared to geographically distributed environments, and, as such, consensus proto-
cols that rely on synchronous communication become a suitable option (PORTO et al.,
2015). Finally, one could argue that datacenter environments allow relaxing the failure
assumptions, and committee-based solutions also become an appealing alternative.

6.3.2 Small Consensus Groups

While Kauri outperforms HotStuff already in a system with 100 processes, Kauri
was designed for large scale consensus. As such, small systems that do not require
100s of processes but numbers in the single or double digits can easily rely on all-
to-all consensus schemes like PBFT (CASTRO; LISKOV, 1999). Not only are these
approaches slightly more straightforward than Kauri, but they have shown numerous
times to offer high throughput in these environments.

6.3.3 Small Application Latency

While Kauri offers excellent throughput, the client-side latency is significantly
higher than in other approaches due to the use of a tree. It requires more communication
steps per round. In situations where the system is saturated, the tree approach can,
as we have shown, display better latency than other approaches. However, during
normal case operation, the latency might be significantly higher. As such, Kauri is not
suitable for applications that require short response times for clients (e.g., real-time
applications, games, etc.). In these cases, it might be advantageous to use approaches
that create regional shards like ResilientDB (RAHNAMA et al., 2020) that can approve
most client transactions within the regional shard resulting in very low client-side latency.
Nonetheless, we stress that if local shards are sufficiently large, combining Kauri with
a sharding-based approach is possible to increase the shard’s throughput.
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6.4 FUTURE WORK

While we pointed out certain limitations in the previous section, we have left out
the cases we envision as future work. As such, while Kauri still lacks certain features
that might be important in some use-cases, we believe that natural extensions of Kauri
could fulfill these requirements.

6.4.1 Current Work in Progress

Outside of the already published papers, we are currently finishing a paper
to submit to ACM talks, including the latest experimental results and the extended
reconfiguration algorithm.

6.4.2 Dynamic Pipelining

While in the context of this thesis, we assumed pipelining to be statically pre-
configured, in practice, we expect system parameters to change during runtime, and, as
such, the pipelining stretch has to adapt to that as well. Thus, an important extension of
Kauri would involve developing algorithms that allow the system to detect the potential
to pipeline additional blocks or, inversely, detect that the current pipelining stretch is
over-saturating the system.

While this seems like a straightforward extension, it still requires careful consid-
eration, as we assume geographic distribution, a partial synchronous environment, and,
on top of that, byzantine failures (e.g., faulty processes could slow down the system
just enough to trick the system into increasing or decreasing the pipelining level).

6.4.3 Locational Awareness

In our evaluation, in most cases, we configured a homogenous network where all
processes have the same bandwidth/CPU, and the latency between any two processes
is constant.

However, in practice, in a geo-distributed blockchain environment, the reality is a
very heterogeneous network with broadly different latency and bandwidth distributions.
Thus, a reconfiguration algorithm that takes locational data and available bandwidth
into account can not only significantly impact the system throughput but especially also
the clientside latency.

As we have shown in the evaluation, if trees are configured in a way such that
geographically close processes also communicate with each other in the tree, it is
possible to reduce the latency significantly. For example, if the latency from the root
to the internal nodes is 100ms, but from internal to leaf nodes, it only takes 5ms, the
latency trade-off compared to a star becomes unsubstantial. Thus, in the best case, the
latency of a tree could be very similar to a star.
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Nonetheless, designing these algorithms is not trivial. Not only do we have to
assume that byzantine processes will try to influence the system in their favor, but also
if certain processes are more likely to be internal or root nodes, this could also influence
the robustness of the tree structure.

6.4.4 Regular Tree Rotation

In Kauri, we assume a static leader that only changes upon failure or timeout.
However, a faulty leader could, e.g., censor certain client transactions without being
detected by the remaining processes. This is especially a problem in the blockchain
setting, where specific nodes might be unable to accept subgroups of requests due
to government regulations or sanctions. In addition to that, in the presence of faulty
internal nodes, correct leaf processes might not receive the consensus results for long
periods of time.

Thus, regularly reconfiguring the tree yields certain benefits. However, this also
comes with certain disadvantages. First, it is more likely to find non-robust trees, and
as such, there are more reconfiguration periods where throughput is strongly affected.
Second, it is harder to pipeline effectively, as the leader is only in this position for a
limited amount of time, negatively affecting throughput.

Due to these factors, specific changes are necessary. The reconfiguration al-
gorithm has to be adjusted to make sure that adversaries do not know ahead of time
details about the upcoming tree structures. At the same time, we want also want to
make sure that the next leader is one of the current internal nodes to improve the pipelin-
ing efficiency (e.g., if the next leader is a leaf node, it takes longer for it to receive the
outstanding pipelined leader proposals before being able to propose their own block).

When rotating trees regularly, it might also make sense to adapt the reconfigu-
ration algorithm further to construct disjoint trees (in a sequence of trees, nodes are
never connected to the same parent process twice). This not only reduces the chances
of a correct process being connected to faulty processes for a long time period but also
reduces the load on the link between two given nodes.

6.4.5 BLS Improvements

The current implementations of BLS signatures are yet very immature and are
not used in many major projects in production. As such, a series of improvements could
be made to these implementations to reduce the computational load. As a result, this
could result in a significant throughput improvement for Kauri.

In the process of this thesis, as mentioned, we already incorporated one change
in the used BLS library which resulted in an aggregation speedup by a factor of 20.
However, there are still several possibilities open to improving the performance. For
once, BLS signatures rely on cryptographic pairings. Due to this, the vast majority of the
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computational load is related to constructing a large set of pairings. Thus, a possible
improvement could be attempting to cache pairings for longer time periods to reduce
the load at verification/aggregation time.

Another possibility is improved multi-threading. At the moment, signatures are
processed on the same thread. Thus, a possible improvement could consist of multi-
threading the verification—aggregation and even signing to reduce the system load of
the algorithm.

6.5 ADDITIONAL RESEARCH

Besides the before mentioned aspects about Kauri, a set of orthogonal research
projects were executed during the course of this thesis, which resulted in several scien-
tific publications. All of these contributions are related to decentralized applications that
can be built on the blockchain with the help of smart contracts.

In general, we highlight three main projects.

6.5.1 HRM Smart Contracts

Our first project focused on the decentralization of human resource manage-
ment. There are numerous corruption and nepotism scandals in the context of hiring
procedures in public agencies due to favorable working conditions in Brazil. As such,
designing this process more transparent and accountable as well as reducing the in-
fluence of local officials could re-instantiate trust into this process. We have created
two smart contracts that serve as the basis of the application process. First, there is
an institution-list contract where public institutions register the institution and sign-up
potential reviewers. Before publishing a vacancy, institutions should apply to join the
institution list contract. To do so, institutions have to prove their authenticity to the other
institutions on the list. Following that, a majority vote of acceptance of the existing
institutions is required. After an institution has signed up, they can register potential
reviewers at their own discretion.

The other type of smart contract is the vacancy contract. If an institution wants to
publish a vacancy, they create a smart contract with matching parameters and publish
it on the blockchain. Following that, applicants can send their application data to the
corresponding institution and register with the smart contract, including a hash of the ap-
plication data and a small security deposit. After the initial application phase is over, the
smart contract stops accepting new applicants and invokes the institution list contract
to assign the application process to a random set of reviewers from different institutions.
Reviewers query the application data from the institution (to avoid publishing personal
data publicly on the blockchain) and post the decision in the smart contract (to remain
anonymous, reviewers can prove their selection as a reviewer by signing a message
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with their private key). In each phase, the reviewers rank the applicant based on the
criteria of the given phase. The smart contract sorts out the reviews that differ too much
from the average and rewards reviewers that came to a similar conclusion with a share
of the application fee. If applicants send fraudulent data, reviewers can also report that,
and the applicant loses their security deposit (to avoid incentivizing misreporting this,
the security deposit gets “burned”).

We have implemented the smart contract on two different blockchains; On
Ethereum using solidity as a native smart contract on Ethereum and evaluated the
price the execution would cost. The other implementation was in a layer-2 application
that just uses the blockchain to store the state. As such, third parties can verify the
smart-contract execution to detect misbehavior. This is possible in this specific use-
case as we are dealing with public institutions. As such, we can assume a level of
accountability, as public institutions can easily be processed if they do not follow the
established protocol. Our results show that it is viable to implement many applications
as layer-2 solutions resulting in a significantly reduced execution cost and decreasing
the main-chain load.

6.5.2 Dagora Market

I participated in this project as the Advisor of the Bachelor Thesis of a Student. In
the context of this work, we have developed a framework to create a decentralized mar-
ketplace for physical goods on the Polygon blockchain. The smart contracts were again
developed in solidity, and the deployment cost on both Ethereum and Polygon was
analyzed. We have evaluated the difficulties of deploying smart contracts on Ethereum
side-chains and elaborated an in-depth cost comparison. Our results show a signifi-
cantly cost difference between the two possible deployments at only a slightly increase
in complexity for the user which could be hidden with the help of good user interfaces.

6.5.3 Side-Chain Evaluation

In this final project, we have evaluated the state of layer-2 solutions on the
Ethereum blockchain. We have collected information about a range of different layer-2
projects and compared them regarding their scalability, security, and features. Further-
more, we analyzed their detailed impact on the main chain (Ethereum) and evaluated
the potential maximum throughput the layer-2 project can contribute to the Ethereum
ecosystem before reaching the scalability limit of the main chain.

6.6 FINAL CONSIDERATIONS

In the context of this thesis, we have intensively studied the obstacles that have
to be taken into account when designing scalable byzantine fault-tolerant consensus
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algorithms in geo-distributed settings. We identified three main factors: the bandwidth
and computational complexity and long idle times in geo-distributed settings.

In order to solve this, we have developed Kauri, a unique combination of tree-
based communication, optimistic pipelining, and signature aggregation. In combination
with aggregated signatures, tree-based communication distributes bandwidth equally
among a set of processes. Combining this with optimistic block proposals compensated
for the inherent latency from constructing a communication tree in a geo-distributed
environment.

We have extensively evaluated Kauri, achieving high throughput at any scale and
latency, outperforming state-of-the-art protocols in any scenario, offering up to almost
60 times the throughput of competing approaches.

While Kauri already shows excellent performance in many scenarios, we not
only bring a new solution to the table to be considered in this context but also open up
a range of future research that can be executed to extend Kauri further.
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