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ABSTRACT

Security-constrained optimal power flow (SCOPF) is a powerful tool for power
system planning and operation. However, due to the problem non-convexivity and
number of variables and constraints, this optimization problem is computationally de-
manding. This work proposes a new methodology to identify the constraints that bound
the feasible set of the nonlinear SCOPF problem, thus considerably reducing the pro-
cessing time for its solution. The methodology convexify the nonlinear problem using
semidefinite programming (SDP) and employs a recovery method to reveal the required
and sufficient constraints to solve the SCOPF problem. An illustrative example details
the approximations resulting from SDP relaxation, and the New England test system and
a 34-bus equivalent of the Hydro-Québec system are used to verify the performance of
the proposed approach.

Keywords: security constrained optimal power flow; umbrella constraints; semidefinite
programming.





RESUMO

O fluxo de potência ótimo com restrições de segurança (FPORS) é uma poderosa
ferramenta para o planejamento e operação de sistemas de potência. Porém, devido ao
grande número de variáveis e restrições, além de sua não-convexidade, esse problema
de otimização apresenta alto custo computacional. O presente trabalho propõe uma
nova metodologia para a identificação de restrições que limitem o conjunto viável do
problema FPORS não-linear, reduzindo consideravelmente o tempo de processamento
para a sua solução. A metodologia transforma o problema não-convexo em convexo
usando programação semidefinida (PSD) e emprega um método de recuperação para
revelar as restrições requeridas e suficientes para resolver o problema FPORS. Um
exemplo ilustrativo detalha as aproximações resultantes da relaxação PSD. Além disso,
o sistema New England de 39 barras e um equivalente de 34 barras do sistema Hidro-
Québec são usados para verificar a performance da estratégia proposta.

Palavras-chave: fluxo de potência ótimo com restrição de segurança; restrições guarda-
chuva; programação semidefinida.





RESUMO EXPANDIDO

A habilidade de um sistema de energia elétrica de operar respeitando limites pré-
especificados, tanto em regime permanente e após um distúrbio (por exemplo, curto-
circuito ou falha de equipamento), é chamada de segurança operacional. O objetivo
do operador do sistema é garantir que o sistema esteja no estado seguro. De forma a
poder analisar a segurança do sistema elétrico, foram classificadas cinco condições de
operação do sistema: estado normal de operação, estado de alerta, estado de emergência
corretivo, estado de emergência não-corretivo, e estado restaurativo de operação [1].

A operação segura do sistema de potência exige uma margem de segurança para
poder permanencer em estado normal de operação mesmo após um distúrbio. Há
diversos critérios de segurança que podem ser adotados. Um deles é o critério N � 1,
introduzido após o apagão de 1961 nos EUA. O critério de segurança N � 1 impõe
que a operação do sistema elétrico não seja comprometida após um distúrbio que causa
a perda de um de seus componentes. Os limites que devem ser respeitados podem
ser classificados genericamente como físicos e operacionais. Os primeiros são limites
construtivos dos componentes do sistema. Os limites operacionais são obtidos através de
simulações e dependem das condições operativas (carregamento, despacho de geração,
topologia da rede, etc.). Entre os limites operacionais podem ser citados: limites nas
magnitudes das tensões, limites de carregamento de linhas e transformadores e limites
de geração impostos para garantir reserva girante no sistema. O carregamento de linhas
pode ser restringido tanto pela queda de tensão ao longo das mesmas, pelo limite térmico
ou de estabilidade dinâmica. Neste trabalho, um distúrbio é uma pertubação no sistema
de potência que ocasiona a queda de uma linha de transmissão.

O fluxo de potência ótimo com restrições de segurança (FPORS) é uma poderosa
ferramenta para o planejamento e operação de sistemas de potência. O objetivo do
FPORS é obter uma condição operacional do sistema que respeita a condição N � 1,
enquanto ao mesmo tempo otimiza um critério de desempenho. Entretanto, resulta
num problema de otimização não linear, não convexo e com número considerável de
variáveis e restrições, pois é necessário considerar no problema todas as restrições de
operação do sistema intacto e após cada contingência. Desta forma, a resolução do
problema FPORS apresenta um custo computacional elevado.

Entretanto, muitas das restrições do problema FPORS são redundantes, ou seja,
não necessárias para formar o conjunto viável do problema de otimização. Desta forma,
as restrições que formam a fronteira do conjunto viável são denominadas restrições
umbrella. Em outras palavras,o problema FPORS pode ser reduzido quando conside-
radas somente suas restrições umbrella, uma vez que não há modificação no conjunto
viável. Vale salientar que essas restrições são independentes da função objetivo. Como
consequência, restrições umbrella não são necessariamente restrições ativas numa dada
solução, mas todas as restrições ativas são umbrella. Portanto, pode-se afirmar que há
somente um único conjunto de restrições umbrella para cada problema.

No últimos anos foram publicados diferentes estratégias para se obter as restrições
umbrella de um sistema [2–6], porém, encontram-se métodos de determinação de
restrições umbrella válidos somente para problemas convexos. Consequentemente, são
válidos apenas quando se adota o modelo linearizado para as equações da rede elétrica.
O presente trabalho propõe uma nova metodologia para a identificação de restrições um-

brella, ou seja, que limitam o conjunto viável do problema FPORS não-convexo. Desta
forma, reduz-se consideravelmente o tempo de processamento do problema FPORS.

Para se identificar as restrições umbrella de um problema de otimização não-



convexo, o mesmo relaxado por um problema convexo usando programação semidefi-
nida (PSD) [7]. A PSD permite elevar o problema a um espaço convexo de maior dimen-
são, permitindo assim obter sua solução ótima global. Este trabalho usa uma relaxação
de segunda ordem para montar o problema PSD. No problema PSD as restrições do
problema não convexo são linearizadas e insere-se uma restrição matricial que impõe
que a matriz formada pelos monômios presentes nas restrições originais, denominada
matriz de momentos, seja semidefinida positiva. Todavia, tal metodologia aumenta con-
sideravelmente a dimensão do problema original ao aumentar, em especial, o número
de variáveis. Além disso, dependendo do tipo de problema, a PSD somente consegue
obter apenas uma solução aproximada. Em outras palavras, o conjunto viável da PSD
engloba o do problema não-convexo. Como consequência, obtêm-se uma solução con-
servadora para a função objetivo (um valor menor que o global), além da solução não
necessariamente respeitar todas as restrições do problema.

Devido a essa aproximação, é necessário recuperar uma solução factível a partir
daquela obtida via PSD, de forma que todas as restrições do problema não convexo
original sejam respeitadas. A recuperação proposta minimiza o desvio padrão entre o
ponto ótimo PSD e o do problema não-linear, enquanto resolve o problema não-convexo
de identificação de restrições umbrella. Como o ponto inicial do problema é a solução
da PSD, tal ponto está próximo da solução global do problema não-convexo.

Como mencionado anteriormente, a relaxação via PSD aumenta consideravelmente
o problema a ser resolvido. Por outro lado, o problema de identificação de restrições
umbrella é muito custoso computacionalmente, pois seu tamanho aumenta quadratica-
mente em relação ao número de restrições a serem verificadas. Isto torna a identificação
de restrições umbrella não-convexas usando PSD uma tarefa árdua, do ponto de vista
computacional. Como um exemplo, para identificar todas as restrições umbrella do
equivalente de 34 barras do sistema Hydro-Québec, é necessário resolver um problema
com mais de 1 bilhão de restrições e 8 milhões de variáveis. Ao aumentar o número de
barras do sistema teste, o número de restrições e variáveis cresce significamente.

A fim de diminuir o custo computacional, o presente trabalho propõe as seguintes
técnicas de partição do problema de identificação das restrições umbrella: partição por
contingência, partição por segurança e partição por linha. A partição por contingência
separa o problema por contigência, ou seja, supondo que o problema FPORS considera
nc contigências, então divide-se o problema FPORS em nc + 1 subproblemas, cada um
formulado, ou ainda com variáveis e restrições, associadas a uma das contingências. A
partição por segurança divide o problema FPORS em nc subproblemas com as restrições
associadas ao sistema intacto e a cada uma contigência. A separação é feita da seguinte
maneira: todas as contigências têm como referência o sistema intacto (sem distúrbio),
desta forma, ao resolver cada subproblema, identificam-se as restrições umbrella para
um FPORS que considera somente o sistema intacto e uma dada contigência. A última
partição separa o problema FPORS em dois subproblemas, sendo o primeiro subpro-
blema formulado apenas considerando as restrições de fluxo de linha. Isto é feito devido
à expectativa que a maioria das restrições não umbrella são restrições de fluxo de linha.
Portanto, remove-se o maior número de restrições primeiramente, para então resolver o
segundo subproblema considerando somente as restrições de fluxo de linha que foram
consideradas umbrella.

A estratégia proposta anteriormente fornece um conjunto umbrella aproximado,
isto é, que contém restrições que não são umbrella. Para obter o conjunto final de
restrições umbrella, é necessário resolver o problema de identificação das restrições um-

brella considerando somente o conjunto de restrições obtidos pelas partições. Se preciso,



é recomendada a combinação de partições para minimizar o número de restrições em
cada problema de identificação de restrições umbrella.

A estratégia de partição reduz somente o número de restrições a serem testadas,
mas não necessariamente o número de variáveis do problema PSD. Para tal, é empregado
uma problema PSD obtido pela análise da estrutura esparsa do problema não convexo
original. A metodologia transforma a matriz de momentos numa matriz bloco diagonal,
diminuindo assim o número de variáveis a serem consideradas.

A metodologia proposta é constituída, portanto, de duas etapas: na primeira
obtêm-se uma solução relaxada para o problema de identificação das restrições umbrella

e, na segunda etapa, recupera-se a solução e as restrições umbrella do problema FPORS
original. Um exemplo ilustrativo detalha como obtêm-se as restrições umbrella e as
aproximações resultantes da relaxação PSD. Além disso, o sistema New England de
39 barras e um equivalente do sistema Hidro Quebec de 34 barras foram usados para
verificar a performance da estratégia proposta.
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1 INTRODUCTION

Electric power transmission has gone through considerable development since its
first conception. In the first systems, power was supplied via direct currents. For this
reason, transmission losses were so high that the extension of the lines could not exceed
2 km. It was not until the development of the alternate current that the power grid
would start assuming its current shape. The power plants began to expand in order to
accommodate the ever-increasing demand [8].

As a result of a continuously increasing demand, modern societies have become
even more energy-dependent. For instance, the blackout of 2003 in North America
caused an economic cost in the range of $7 and $10 billion for the national economy and
estimation of further lost earnings for U.S. workers, consumers, and taxpayers around
$6.4 billion [9]. Another example took place in Amapá, Brazil at the end of 2020. This
blackout lasted 22 days, during the height of the COVID-19 pandemic, affecting almost
800 thousand residents. Hospitals, businesses, government bodies, traffic and utilities
were impaired by it. Consequently, COVID-19 numbers ceased to be reported due to this
event [10,11]. In other words, a secure and reliable power grid is of utmost importance
for the country’s economy.

1.1 POWER SYSTEM SECURITY

Considering the power system steady-state operation, its ability to operate within
the specified limits of safety and supply quality after a disturbance is called system
security. That is, if the grid is operating in a safe state (i.e. within its operational limits
and load requirements), in case of a disturbance (e.g. short-circuits, equipment failure,
etc.), it should not go to an unsafe state [12].

With the improvement of computers and the implementation of new algorithms to
help the system operators in control centers analyze and operate the system network,
security functions were introduced to help keeping the power system in a “normal” state.
In addition, in 1978 Dy Liacco proposed the classification of power system operating
conditions into states [13].

For the purpose of analysis of the power system security, the system operating con-
ditions are classified into five states: normal, alert, correctable emergency, noncorrectable

emergency and restorative [1]. The objective of this classification is to show how the
power system is satisfying its load and operational constraints. The operating condition
of each state is as follows:

• Normal state: All the system variables are within normal range. There is no equip-
ment overload. This also represents a secure state, as in the case of a disturbances,
there will be no violations;

• Alert state: This is an insecure state. All variables are within the normal range,
however a disturbances can cause equipment overload. This state can become
active if a disturbance happened while on normal operation state, or there is a
considerable increase in the system load. Therefore, system operators should take
action to revert the system to a normal state;

28
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• Correctable Emergency state: This state may be active when a severe disturbance
occurs or the preventive controls fail. In this state, the power balance constraints
are still satisfied, but some inequality constraints are being violated (i.e. equipment
are overloaded). Emergency control actions must be taken to bring back to an alert
or normal state. This can be done without load loss;

• Noncorrectable Emergency state: Similar to the Correctable Emergency state, but
the emergency control action will cause load loss;

• Restorative state: No operating limits violated, but loss of load has occurred. If the
control actions to restore the load is successful, the system transitions to normal
or alert states.

The secure operation of power systems demands appropriate security margins
so it can remain secure after different disturbances. There are many security criteria
to determine a sufficient security margins. One such criterion is the N � 1 criterion,
introduced after the 1965 Northeast USA blackout. The criterion dictate that the system
should withstand a loss of any component without compromising the system operation
[14]. For a system to operate in N � 1 condition, the power system operators have to
take into consideration many different types of system limitations, such as: physical
limits, sag limits, safety limits, disturbances, and operational limits. Furthermore, power
flows can be restricted, especially over long distances, by voltage limits, voltage collapse,
thermal limit or transient instability (e.g. electromechanical) [15].

Finally, the complexity of modern power systems causes their operation and expan-
sion planning to be more difficult, especially when we consider that these tasks should
reduce costs without affecting quality, security, and reliability [16].

Therefore, system operators usually do not consider all the possible disturbances,
as it might prove computationally prohibitive for time-sensitive operations. Thus, an
approach to identify and rank the severity of each disturbances is required. First, by
performing a series of simulations, all disturbances are screened, and the system per-
formance indices under every disturbances are obtained. Afterwards, disturbances are
ranked according to the performance indices obtained in the simulations. This mainly
helps classify the disturbances by severity and identify which one does not change the
system’s state to insecure [17].

In this study, a contingency is a disturbance in the power system that leads to
the outage of a transmission line. In order to decrease the changes in operating states,
security constraints are introduced. One method to achieve the N � 1 operational
condition is by using the Security-Constraint Optimal Power Flow algorithm (SCOPF)
[18].

1.2 SECURITY-CONSTRAINED OPTIMAL POWER FLOW

The Optimal Power Flow (OPF) is a planning problem that, given a static loading
condition, considers the system network (mathematical models for buses, transmission
lines, transformers, etc.) to obtain an optimal active and reactive power dispatch. The
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power dispatch is just a part of the power system operational and planning process, but
essential [12].

The OPF was initially formulated by Carpentier in 1962 [19] and originally in-
tended to discover the operational conditions in which the power system would respect
all its limits and have the lowest operational cost associated with it. A great advantage
of the OPF problem is its flexibility to represent a wide range of equipment that may be
of interest to system operators. Usually the OPF problem has the following form:

min
x

fc(x)

subject to g(x)  c,

where fc is the objective function of the problem (e.g. economic dispatch), g is a set of
constraints of interest, and x is a vector of control variables.

However, it has been observed that operating conditions obtained by solving the
OPF problem may not be secure. This has led to the development of the security-
constrained dispatch, which may be considered when solving an OPF problem. By doing
so, preventive actions may be taken so the system can operate in a secure manner. How-
ever, such dispatch is seen as conservative, as it does not account for the system corrective
capabilities (e.g. generation rescheduling, switching, overload rotation, etc.) [20].

The OPF problem with secured-constrained dispatch is called Security-Constrained
Optimal Power Flow (SCOPF). The SCOPF’s objective is to obtain an operational condi-
tion for the system so it may operate in a N � 1 state, while minimizing the objective
function [12].

Nevertheless, taking system security into consideration brings many challenges,
especially regarding its significant increase in the number of constraints of the optimiza-
tion problem. This is due to the need of adding all operation constraints pre-contingency
and for each contingency to the problem [16].

One solution to overcome the hurdles associated with system expansion is to use
the SC-LOPF model. This model was first proposed by Stott in 1978 [21, 22], and is
based on the DC linearized load flow equations. After linearization, there are many
linear programming algorithms readily available that are very efficient in solving large-
scale problems. Moreover, the number of constraints decreases significantly, as the
reactive power balance constraints are not taken into consideration and the bus voltage
magnitudes are supposed to be equal to the nominal values [23]. However, this approach
neither takes into account any reactive and apparent power control variables, thus there
is a considerable reduction in the system complexity [18].

1.3 THESIS RATIONALE

Computational programs that solve the OPF and SCOPF problems are among the
tools used to reliably operate the grid [18]. Nonetheless, these optimization problems
may become difficult to solve due to their complexity, non-linearity and size. Usually,
power system constraints for SCOPF are in the million [12,24].

However, some studies observed that just a fraction of those constraints is not
redundant [2, 3]. For this reason, [2] introduced the concepts of umbrella constraints
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and umbrella set. Umbrella constraints are the ones that set the border of the feasible
set of the problem. In other words, they are the constraints necessary and sufficient
to solve the original problem without affecting the original solution. Another essential
characteristic of the umbrella constraints is that they are independent of the objective
function of the problem. That means that a set of umbrella constraints is unique and does
not change when the objective function does. Therefore, the umbrella constraints are
not necessarily binding constraints but a set of potentially binding ones, where the cost
function will determine the ones to be active. In other words, there is just one possible
set of umbrella constraints for each power system operation point. Nevertheless, the
linear OPF model has some limitations. These include no guarantee in feasibility for the
nonlinear problem, only local optima, and no reactive power representation, which are
not necessarily relevant for some applications [25].

[2] also uses the fact that the feasible set of the linear SCOPF problem, also known
as Security-Constrained Linear Optimal Power Flow (SC-LOPF) is a convex polytope to
derive a methodology to identify the umbrella constraints of the problem. As will be
discussed in this thesis, the extension of such methodology to the nonlinear OPF or
SCOPF is not trivial.

Considering the research developed so far, we may say that the problem of reducing
the set of constraints of the SC-LOPF is fairly solved. Nevertheless, the SC-LOPF model
has some limitations: it does not take into consideration the reactive power requirements
of the system and reactive power controls, which, in spite of not being relevant for some
applications, may result in unfeasible steady-state operating points [25]. Moreover, this
linear model may affect the system operator�s decisions and corrective actions, specially
regarding system stability and reactive power control. Due to these limitations, in many
situations it is advantageous to represent steady state operation through the active
and reactive power balance equations, which raises the questions: how to identify the
umbrella constrains of the nonlinear SCOPF?

One way to extend the umbrella identification method described in [2] is via convex
relaxation of the SCOPF. One such relaxation would be the semidefinite programming
(SDP) [25].

1.4 THESIS GOALS

The present study describes an algorithm to identify the umbrella set of the nonlin-
ear SCOPF problem. The SCOPF is represented in rectangular coordinates and semidefi-
nite programming relaxation and is used to describe the feasible set of the problem, in
the lifted space, by a set of linear constraints. The algorithm described in [2] is then
extended to obtain the umbrella set of the relaxed SCOPF.

1.5 THESIS CONTRIBUTION

This thesis addressed the proposed large-scale non-convex umbrella identification
problem. To tackle it, three partitioning methods were developed. Furthermore, the
sparsity exploitation method introduced by [45] was extended for the proposed problem.
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Finally, as the SDP relax the original problem to convexify it, a new recovery
method was proposed to identify the umbrella constraints of the non-convex SCOPF
problem.

1.6 THESIS OUTLINE

This thesis is divided in 7 chapters, as follows:
Chapter 2 introduces the SCOPF problem, its uses and formulation. It also shows

the approximations used in the SC-LOPF.
Chapter 3 briefly demonstrates the concept of the semidefinite programming and

how the convexification of a set of equations may affect the original nonlinear solution.
Chapter 4 introduces the umbrella identification problem and analyzes the chal-

lenges imposed by such problem. Three umbrella detection examples applied to SC-LOPF
are also presented.

Chapter 5 proposes and formulates a new method for identifying the umbrella
constraints of the SCOPF problem. An illustrative example is used to show how it works
and its limitations.

Chapter 6 analyzes the results of simulations with the following test systems: 2-bus
network, 34-bus Hydro-Québec equivalent and the IEEE 39-bus network.

Chapter 7 draws some conclusions about the study and proposes future work.



2 SECURITY-CONSTRAINED OPTIMAL POWER FLOW

2.1 INTRODUCTION

The power system is usually represented by its single line diagram. Each branch can
represent a wide array of equipment, such as transmission lines, transformers, Flexible
Transmission System (FACTS) devices, among others. Each node (or bus) is a substation
that can be connected to power generators, FACTS devices, synchronous condensers or
loads. The power balance equations are essentially a mathematical representation of
the conservation of energy in every node of the system. In other words, the sum of all
the power coming in is equal to the one coming out of every node [26].

Load flow and optimal power flow (OPF) programs can be used to calculate the
voltage magnitudes and angles that satisfy the energy balance in the system. The main
difference between these tools is that OPF programs determine the voltage magnitudes
and angles that optimize a performance criterion. This chapter introduces the nonlinear
Optimal Power Flow and the Security Constrained Optimal Power Flow problems, and
their respective linearized mathematical modelling.

2.2 THE POWER SYSTEM

There are mainly two ways to calculate the bus voltage magnitudes and angles that
satisfy the energy balance in the system. One of them is a direct approach, in which the
active and reactive power balance equations are solved. The other one is by calculating
the network’s current flows. No matter the approach adopted, the set of equations being
solved can be expressed in polar or rectangular coordinates. Each formulation has its
particularities, which need to be taken into consideration when using computational
solvers [26].

As previously stated, power flow equations can have different representations.
However, the set of equations are nonlinear. In order to reduce computational costs,
a linearized load flow model was derived based on properties of high voltage power
networks [27]. Although the linearized model is very useful to provide information
regarding the active power balance in the system and line loading, it disregards the
reactive power balance in the system. Therefore, the linearized model is useful in
some particular operational studies only, such as time-sensitive operations or long-term
planning simmulations. This section, first of all, presents the nonlinear load flow model
represented in rectangular coordinates and, subsequently the linearized load flow [26].

2.2.1 Nonlinear Load Flow Model

This model is also known as alternate current (AC) model. In this case, the ac-
tive and reactive power balance in every bus must be respected. In addition, a set of
physical and operational constraints must be satisfied, among them: minimum and max-
imum limits on voltage magnitudes, active and reactive power generation and variable
transformer taps; maximum line loading limits.

33
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Figure 2.1: Nominal π model of Transmission Line.

2.2.1.1 Power Balance Constraints

Consider that the grid consists of a set of N = 1, 2, . . . , nb buses, the set of ng
generator buses G ✓ N , and the set of lines L = 1, 2, . . . , nl.

The complex bus voltages are expressed in rectangular coordinates as V̄ 1 = e1 +

jf1, . . . , V̄ nb
= enb

+ jfnb
, where j =

p
�1. These can be stored in vector V̄ = e + jf ,
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(2.1)

In this study, the ⇡ model is used to represent the transmission line, as shown
in Fig. 2.1. The model is composed of the series resistance rik and reactance xik, and
the shunt susceptance bshik

for the line that connects bus i to k. Therefore, the series
impedance is z̄ik = rik + jxik, and the series admittance is ȳik = z̄�1

ik
= gik + jbik. The

series conductance gik and the series susceptance bik are calculated by equations (2.2)
and (2.3), respectively.

gik =
rik

r2
ik

+ x2
ik

(2.2)

bik =
�xik

r2
ik

+ x2
ik

(2.3)

The power balance equation can be deduced by the use of Kirchhoff’s current law,
as shown by Fig. 2.2 [27]. Thus, we have:

Īi =
X

k2Ωi

Īik (2.4)

where i = 1, . . . , nb, Ωi is the set of buses connected to bus i. The line currents from bus
i to bus k and from bus k to bus i are expressed as:

Īik = [ȳik + jbshik
]V̄ i � [ȳik]V̄ k (2.5)

Īki = [�ȳik + bshik
]V̄ i � [ȳik + jbshik

]V̄ k (2.6)

Substituting (2.5) in (2.4) yields:
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i

Iik
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Figure 2.2: Current injection at bus i.

Īi = [
X

k2Ωi

(ȳik + jbshik
)]V̄ i +

X

k2Ωi

ȳikV̄ k (2.7)

Thus, the current injection at each bus for the whole network can be expressed in
the matrix form:

Ī = ȲV̄ (2.8)

where Ȳ is the bus admittance matrix of size nb ⇥ nb expressed by equations (2.9)
and (2.10):

Ȳ ii = ȳi +
X

k2Ωi

ȳik, (2.9)

Ȳ ij = Ȳ ji = �ȳij (2.10)

Thus, the matrix can be represented as:

Ȳ = G+ jB (2.11)

where G and B are the bus conductance and susceptance matrices, respectively.
Let diag be an operator that translates a vector into a diagonal matrix or the

diagonal elements of a matrix into a vector, and ⇤ an operator that indicates the complex
conjugate. The vector of complex power injections at the system buses is defined as

S̄ = diag(V̄).(ȲV̄)⇤ (2.12)

By combining (2.11) and (2.12), we obtain the vector of apparent bus power:
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S̄ = fP (e, f) + jfQ(e, f) (2.13)

where fP and fQ are the vectors of active and reactive power injections, which are
expressed as:

fP (e, f) = diag(e) [Ge�Bf ] + diag(f) [Be+Gf ] (2.14)

fQ(e, f) = �diag(e) [Be+Gf ] + diag(f) [Ge�Bf ] (2.15)

Therefore, the active and reactive power balance at bus i are expressed by equa-
tions (2.16) and (2.17), respectively.

PGi
� PDi

� fPi
(e, f) = 0 (2.16)

QGi
�QDi

� fQi
(e, f) = 0 (2.17)

where PGi
and QGi

are the active power and reactive power generation, and PDi
and

QDi
are the active and reactive load at bus i, respectively.
Load flow computational programs use numerical methods to calculate the solu-

tions to (2.16) and (2.17). As the number of variables is larger than the number of
equations, some of the variables are specified: voltage magnitudes at generation buses,
active power generation at all but one generation bus and the angle of the reference
bus, which is set to zero [26]. In rectangular coordinates, the angle at the reference bus
(ref) is fixed by imposing fref = 0

2.2.1.2 Active Power Flows over the Lines

The active power flow over line l that connects bus i to bus k is given by:

fFl
= <{V̄ iȳ

⇤
l (V̄ i � V̄ k)

⇤} (2.18)

The vector containing all the nl active power flows over the lines can be represented
by a matrix expression as follows:

fF = <{diag(AfV)Y⇤
fV

⇤}, (2.19)

where the nl⇥nb bus incident matrix Af elements are defined in (2.20), and the nl⇥nb
line admittance matrix Yf elements are obtained as shown in (2.21).

aflj =

(

1, if the lth line starts at bus j

0, otherwise
, (2.20)

ȳflj =

8

>

>

<

>

>

:

yl, if the lth line starts at bus j

�yl, if the lth line ends at bus j

0, otherwise

, (2.21)
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By expressing V̄ i and V̄ k in rectangular coordinates the active power flow over
line is written:

fF = diag([<{Yf}(ee
> + ff>) + ={Yf}(ef

> � e>f)]A>
f ) (2.22)

For the active power flow in the inverse direction (from bus k to i):

fT = diag([<{Yt}(ee
> + ff>) + ={Yt}(ef

> � e>f)]A>
t ) (2.23)

where At and line admittance matrix Yt are analogous to Af and Yf and are given by
(2.24) and (2.25), respectively.

atlj =

(

1, if the lth line ends at bus j

0, otherwise
, (2.24)

ȳtlj =

8

>

>

<

>

>

:

�yl, if the lth line starts at bus j

yl, if the lth line ends at bus j

0, otherwise

(2.25)

2.2.1.3 System Constraints

System constraints either represent physical limits of the components of the system
or be defined by operational performance indices, which require, for example, that
voltages do not fall above or below given values. Operational constraint can be imposed,
in steady state operation, when the system is intact, or if one or more of its components
are out of service; taking into consideration the behavior of the system under small or
large disturbances.

The optimal secure power dispatch must respect the physical and operational limits
of the system. Consider that the subscripts min and max indicate the lower and upper
limits, respectively. The main constraints imposed in the dispatch are:

• Active and reactive power balance equations for every bus;

• Active and reactive power generation limits, which can be expressed in vector form
as

PGmin
 PG  PGmax

QGmin
 QG  QGmax

where PG and QG are (nb ⇥ 1) vectors of active and reactive generation;

• Upper and lower limits on the voltage magnitude of all buses. For rectangular
coordinates, these limits can be expressed by the square of the voltage magnitudes:

diag(Vmin)Vmin  diag(e)e+ diag(f)f  diag(Vmax)Vmax

• Maximum loading limit of every line, which can be expressed in terms of the
current, complex or active power flow over the line. If we limit the active power
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flow for all the lines, we have:

�Fmax  fF (e, f)  Fmax

�Fmax  fT (e, f)  Fmax

where fF is given by (2.19) and fT is given by (2.23).

Other constraints may also be imposed, depending on the characteristics of the
system.

Using (2.16) and (2.17), we can express the active and reactive power balance of
the system in vector form:

PG = PD + fP (e, f) (2.26)

QG = QD + fQ(e, f) (2.27)

Thus, it is possible to rewrite the active and reactive power generation limits as:

PGmin
 PD + fP (e, f)  PGmax

(2.28)

QGmin
 QD + fQ(e, f)  QGmax

(2.29)

It should be noticed that, for every load bus i, inequalities (2.28) and (2.29)
become equalities since, in this case, the active and reactive power generation upper and
lower limits are all set to zero. A similar situation occurs when a synchronous condenser
(SC) is connected to a bus, as the upper and lower limit of its active power generation
are zero.

2.3 OPTIMAL POWER FLOW

The power flow equations are nonlinear, as shown by equations (2.16) and (2.17).
Therefore, there are many possibles solutions in a computationally demanding problem.
Furthermore, there are also many constraints to take into account, as stated before. One
possible way to solve this problem is through the Optimal Power Flow (OPF) algorithms.
The algorithms find a solution (i.e. if one exists) that optimizes a given performance
criterion and does not violate any constraint. The criterion to be optimized can be
chosen according to operational requirements, such as generation cost, active power
loss, voltage profile, among others [26]. There are many methods to solve the OPF
problem, however traditional methods usually only solve for local solutions [28].

Considering the set of constraints that must be respected in steady state operation,
in rectangular coordinates, the OPF problem can be expressed as:
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min
e,f

fc(e, f)

subject to PGimin
 fPi

(e, f)  PGimax
, 8i 2 N

QGimin
 fQi

(e, f)  QGimax
, 8i 2 N

V 2
imin

 fVi
(ei, fi)  V 2

imax
, 8i 2 N

|fFl
(e, f)|  Flmax

, 8l 2 L

|fTl
(e, f)|  Flmax

, 8l 2 L

fref = 0

(2.30)

where fc(e, f) is the objective function, and

fVi
(ei, fi) = e2i + f2i (2.31)

For x = [e>, f>]>, the OPF problem can be expressed, in compact form, as:

min
x

fc(x)

subject to g(x)  c
(2.32)

where,

g = [f>P ,�f>P , f
>
Q,�f>Q, f

>
V ,�f>V , f

>
F ,�f>F , f

>
T ,�f>T , f

>
ref ,

�f>ref ]
>,

(2.33)

c = [P>
Gmax

,�P>
Gmin

,Q>
Gmax

,�Q>
Gmin

,V2>
max,�V2>

min,F
>
max,

�F>
max,F

>
max,�F>

max,0,0]
>.

(2.34)

2.3.1 Linearized Load Flow Equations

A linear expression can be derived for the active power flow fFl
by making the

following suppositions [26]:

• the angular difference between bus i and k is small, thus sin(�i � �k) ⇡ �i � �k in
radians;

• reactive power balance equations are satisfied in all the buses;

• bus voltage magnitudes are equal to the nominal values;

• the series resistances of the lines are considerably smaller than the series reactance.
Thus, they can be neglected.

Using the previous simplifications the active power flow over line l = (i, k) is
expressed as:

fFl
=

1

xik
(�i � �k) (2.35)
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where �i and �k are the voltage angles at bus i and k, respectively.
The active power injected at bus i is, therefore:

Pi =

nb
X

k=1

1

xik
(�i � �k) (2.36)

Using (2.36), we can express the active power injections in all the buses in vector
form as:

P = B�� (2.37)

where � is the vector of voltage angle, and the components of the DC load flow admit-
tance matrix, B�, are defined as

B�ik = � 1
xik

,

B�ii =
Pnb

k=1
1
xik

(2.38)

Using (2.37), the active power balance in the system can be expressed, in vector
form, as:

PG �PD = B�� (2.39)

In vector form, the active power flows over all the lines in the system can be
expressed as:

fF = ΓA>
inc� (2.40)

where Ainc is the nb ⇥ nl bus-line incidence matrix and Γ is a nl ⇥ nl diagonal matrix
whose elements are the series susceptances of the lines.

Choose a reference bus in the system and set �ref = 0. As, in the DC model,
transmission losses are not taken into consideration, the power provided by PGref

can
be written in terms of the PGi

, for i 6= ref . Thus, we can eliminate one equation in
(2.37). As one component of � is fixed, the resulting linear system has nb � 1 equations
and unknowns. Let P̂G and P̂D be the vectors of power generation load, B̂� the DC
load flow admittance matrix after eliminating the row and column of the reference bus
and, Âinc be the nb � 1⇥ nl matrix obtained by eliminating the row in Ainc associated
with the reference bus. B̂� is invertible. Therefore, we can rewrite equation (2.40) as:

fF = ΓÂ
>
incB�̂

�1
(P̂G � P̂D) (2.41)

As the generation units have upper and lower output limits and transmission lines
have maximum loading limits, power dispatch in the system should respect the following
inequalities:

P̂Gmin
 P̂G  P̂Gmax

(2.42)

|fF |  fmax (2.43)

Combining equations (2.41) and (2.43), we obtain the following inequalities:
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�fmax  ΓÂ
>
incB�̂

�1
(P̂G � P̂D)  fmax (2.44)

As all the limits that must be respected in the power dispatch are expressed in
terms of the vector of active power generation, PG, the DC optimal power flow can be
written, in compact form, as:

min
PG

fc

subject to A�P̂G  c�

(2.45)

where

A� =

2

6

6

6

6

6

6

6

6

4

�u>

u>

I

�I

ΓÂ
>
incB�̂

�1

�ΓÂ
>
incB�̂

�1

3

7

7

7

7

7

7

7

7

5

, (2.46)

c� =

2

6

6

6

6

6

6

6

6

6

4

PGmaxref
� u>P̂D

�PGminref
+ u>P̂D

P̂Gmax

�P̂Gmin

fmax + ΓÂ
>
incB�̂

�1
P̂D

fmax � ΓÂ
>
incB�̂

�1
P̂D

3

7

7

7

7

7

7

7

7

7

5

(2.47)

I is a (nb� 1)⇥ (nb� 1) identity matrix, and u is a (nb� 1)⇥ 1 unit vector. The first two
constraints of (2.45) are the generation limits for the slack bus.

In a secure operating strategy, the previous limits should be respected for the
intact system (i.e., in the original configuration) and in a set configurations described
by credible contingencies. Each contingency leads to a particular system topology, for
which we have different vectors PG, PD and � and a different matrix B�. However the
previous equations remain valid.

2.4 SCOPF FORMULATION

As an extension of the OPF problem, the Security Constrained Optimal Power
Flow (SCOPF) problem takes into account the pre-contingency and post-contingency
constraints. It is a nonlinear, noncovex, and a large-scale optimization problem. The
SCOPF main objective is to optimize a cost function (Fc) by using available control
means, while respecting equality and inequality constraints [29].

In this study, the SCOPF problem takes into consideration all the limits described
in the previous section for a set of contingent states, K. Let k = 0, 1, ...nc, be the states
in K, where k = 0 is the no-contingency state. If a state k makes the problem unfeasible,
it is disregarded. To each state k is associated a set of operational constraints, that is, a
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set of power balance equations and a set of limits. This is due to the fact that the vectors
PG and QG and, the admittance matrix Y change for each state k. A superscript (k) is
used to indicates which state an optimization variable is associated to.

Two different control strategies can be adopted when formulating the SCOPF [18]:

Preventive control: the optimal dispatch should respect all the system limits in all
contingent states without resorting to corrective actions.

Corrective Control: the optimal dispatch takes into consideration that corrective ac-
tions can be carried out after contingencies. The amplitude of these corrections is
pre-specified.

The SCOPF formulation adopted in the present study is built using the correc-
tive control strategy. It is supposed that active and reactive power generation may be
corrected after contingencies.

Let the vectors of variables of the problem be e and f with e = [(e0)>, . . . , (e(nc))>]>

and f = [(f (0))>, . . . , (f (nc))>]>. Thus, the vector of variables is x =
h

e>, f>
i>

. The cost

function Fc is the sum of the same optimization criterion (fc) for each state k considered.
Also, consider that generation outputs at selected buses S ✓ G can be adjusted after
each contingency in order to maintain a secure operation. The problem can be written
as

min
e,f

Fc =
Pnc

k=0 fc(x)
(k)

subject to P
(k)
Gimin

 f
(k)
Pi

 P
(k)
Gimax

, 8k 2 K, 8i 2 N

Q
(k)
Gimin

 f
(k)
Qi

 Q
(k)
Gimax

, 8k 2 K, 8i 2 N

V
(k)2

imin

 f
(k)
Vi

 V
(k)2

imax

, 8k 2 K, 8i 2 N

|f
(k)
Fl

|  F
(k)
lmax

, 8k 2 K, 8l 2 L

|f
(k)
Tl

|  F
(k)
lmax

, 8k 2 K, 8l 2 L

|f
(k)
SPi

|  ∆P
(k)
imax

, 8k 2 K, 8i 2 S

|f
(k)
SQi

|  ∆Q
(k)
imax

, 8k 2 K, 8i 2 S

f
(k)
ref

= 0 8k 2 K (reference)

(2.48)

where,
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f
(k)
Pi

= e
(k)
i

2

4

nb
X

j=1

⇣

G
(k)
ij e

(k)
j � B

(k)
ij f

(k)
j

⌘

3

5+ f
(k)
i

2

4

nb
X

j=1

⇣

G
(k)
ij f

(k)
j +B

(k)
ij e

(k)
j

⌘

3

5 ,

f
(k)
Qi

= f
(k)
i

2

4

nb
X

j=1

⇣

G
(k)
ij e

(k)
j � B

(k)
ij f

(k)
j

⌘

3

5+ e
(k)
i

2

4

nb
X

j=1

⇣

G
(k)
ij f

(k)
j +B

(k)
ij e

(k)
j

⌘

3

5 ,

f
(k)
Vi

= e
(k)2

i + f
(k)2

i ,

f
(k)
Fl

= g
(k)
l

⇣

e
(k)2

i + f
(k)2

i � e
(k)
i e

(k)
j � f

(k)
i f

(k)
j

⌘

+ b
(k)
l

⇣

e
(k)
i f

(k)
j � e

(k)
j f

(k)
i

⌘

,

f
(k)
Tl

= g
(k)
l

⇣

e
(k)2

j + f
(k)2

j � e
(k)
j e

(k)
i � f

(k)
j f

(k)
i

⌘

+ b
(k)
l

⇣

e
(k)
j f

(k)
i � e

(k)
i f

(k)
j

⌘

,

f
(k)
ref

= f
(k)
1 ,

the coupling constraints,

f
(k)
SPi

= f
(0)
Pi

� f
(k)
Pi

,

f
(k)
SQi

= f
(0)
Qi

� f
(k)
Qi

,

f
(k)
Pi

and f
(k)
Qi

are the active and reactive power injection at bus i and state k,
respectively. These injections are expressed in terms of the components of the bus

admittance matrix of the system in the contingency state k, Y(k) = G(k) + jB(k); f (k)Flm

is the active power flow at line l and state k; f (k)Vi
is the bus i squared voltage magnitude

at state k; and f
(k)
SPi

and f
(k)
SQi

are, respectively, the variations in active and reactive power

generation at the buses in S between the no-contingency state and state k.

The upper and lower limits imposed to f
(k)
Pi

and f
(k)
Qi

can vary according to the
system state and depend on the characteristics of the bus (i.e., whether this is a load, a

SC or generation bus). The upper and lower limits for f (k)Fl
and f

(k)
Tl

are usually the same

magnitude and varies accordingly to operational requirements. ∆P
(k)
imax

and ∆Q
(k)
imax

are, respectively, the maximum corrections allowed in the active and reactive power
generation between the no-contingency state and state k.

Similarly to problem (2.32), the compact notation is also used. Define vectors f>P =
h

f
(0)
P1

, ..., f
(nc)
Pnb

i

, f>Q =
h

f
(0)
Q1

, ..., f
(nc)
Qnb

i

, f>V =
h

f
(0)
V1

, ..., f
(nc)
Vnb

i

, f>SPS

=
h

f
(1)
SP1

, ..., S
(nc)
Pnb

i

and

f>SQ
=

h

f
(1)
SQ1

, ..., f
(nc)
SQnb

i

, vectors of upper and lower generation limits, PGmax
, PGmin

,

QGmax
, QGmin

, upper and lower voltage limits, Vmax, Vmin, line loading limits PFmax
,

maximum and minimum active and reactive power adjustments ∆Pmax, ∆Pmin, ∆Qmax,
∆Qmin and vector of the imaginary components of the voltage at the reference bus,

fref =
h

f
(0)
ref

, . . . , f
(nc)
ref

i

. Thus, problem (2.48) can be rewritten as:

min
x

fc(x)

subject to g(x)  c
(2.49)
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where the vectors function g and c are declared by equations (2.50) and (2.51), respec-
tively.

g = [f>P ,�f>P , f
>
Q,�f>Q, f

>
V ,�f>V , f

>
F ,�f>F , f

>
T ,�f>T , f

>
SP

,�f>SP
, f>SQ

,

� f>SQ
, f>ref ,�f>ref ]

>, (2.50)

c = [P>
Gmax

,�P>
Gmin

,Q>
Gmax

,�Q>
Gmin

,V2>
max,�V2>

min,F
>
max,�F>

max,

F>
max,�F>

max,∆P>
max,�∆P>

max,∆Q>
max,�∆Q>

max,0,0]
> (2.51)

Therefore, the number of constraints (JAC) of (2.49) is:

JAC = 2(nc + 1)(2ng + nb + 2nl) + 4nc(ng � 1) (2.52)

2.4.1 SCOPF Linearization

The security constrained linear optimal power flow problem (SC-LOPF) can be
expressed as

min c(P̂g)

subject to Â� P̂g  ĉ�
(2.53)

where c(·) is the total generation cost, Â� is the expanded A� to accommodate all
contingency states variables and the security constraints considered, ĉ� is he expanded

vector of limits, and P̂g = [P̂
(0)>

g , P̂
(1)>

g , . . . , P̂
(nc)

>

g ]>. The superscript (·) denotes the
contingency state associated to the variable. The security constraints used in this study
are:

S
(k)
Pi

= P
(0)
Gi

� P
(k)
Gi

(2.54)

Taking into consideration every constraint of (2.53) associated to a load bus re-

duces to an equality (as P
(k)
Gimax

= P
(k)
Gimin

), the number of constraints in this problem
is

JDC = 2(ng + 1)(ng + nl) + 2nc(ng � 1) (2.55)

2.5 CONCLUSION

This chapter introduced the SCOPF and the linearized secure optimal power flow
problems used in this work. The latter has linear constraints. Thus, it is possible through
the umbrella discovery algorithm proposed in [4] to identify the constraints that define
its feasible set. This algorithm it will be introduced in Chapter 3.

However, as the SCOPF is a non-covex problem, it is not possible to use known
algorithms to identify its umbrella constraints. Thus, the following Chapter introduces
a possible approach to have a an approximate representation of the power system in
steady-state operation with linear constraints by the use of semidefinite programming.



3 SEMIDEFINITE PROGRAMMING

3.1 INTRODUCTION

When solving a nonconvex optimization problem, classical algorithms may not
obtain the global optimal solution since they converge to generic stationary points.
Semidefinite programming (SDP) defines, in a higher dimension space, a convex prob-
lem whose optimal solution is close to the global optimum of the original problem. For
this reason, SDP can be used to obtain near global optimal solutions.

Nevertheless, there are setbacks regarding this approach. Mainly the increase in
the number of variables and the relaxation of the problem’s feasible set. Some strategies
to mitigate these problems are discussed in Chapter 4.

3.2 PRELIMINARY NOTIONS

3.2.1 Linear Programming

A linear programming optimization problem (LP) can be represented in the primal
standard form [30]:

min
x

c>x

subject to Ax = b,

x � 0,

(3.1)

where x and c are n⇥ 1 vectors, A is a m⇥ n matrix, and b is a m⇥ 1 scalar vector.
Let a>i be the ith line of matrix A, and bi the ith element of vector b. Consider a

inequality constraint a>i x  bi. The inequality can become an equality constraint, and
thus be incorporated into the standard problem (3.1), by introducing a new variable,
also know as slack variable:

a>i x+ s = bi

s � 0

Thus, we can conclude that any linear problem can be manipulated to fit the
standard form (3.1).

Let � be the Lagrangian multiplier vector. As such, we can conclude the dual
problem of (3.1) is:

max �
>b

subject to A>�  c>.
(3.2)

The dual problem provides a lower bound for the optimal cost. Therefore, if x?

is a feasible solution to the primal problem, and �
? is a feasible solution for the dual

problem, then �
?>b  c>x?. This is also know as weak duality. As an extension of this,

if �>b = c>x?, then x? and �
? are optimal solutions to the primal and dual problems,

respectively. The strong duality implies that if a linear problem has an optimal solution,
its dual is also feasible. Furthermore, their respective optimal costs are equal [30].

45
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3.2.2 Polynomial problems and SDP

Polynomial problems are present in many technical fields. As such, there are well
established tools to solve them. Usually an optimization algorithm searches for a locally
or globally solution; it solves for complex or real number; and it can use a numerical
or symbolic method [31]. The use of semidefinite programming to obtain a relaxed
solution to a nonconvex quadratic problem was firstly proposed by Shor [7]. By doing
so, a convex problem is solved. Due to the relaxation, the optimal solution is equal or
lower to the original’s.

To better demonstrate this relaxation, consider the following 2d-degree real-valued
polynomial [32]:

p(x) =
X

↵

p↵x
↵ (3.3)

where ↵ := {↵1↵2 · · ·↵n |↵ 2 N
n}, x↵ := x

↵1

1 x
↵2

2 · · · x↵n
n ,

P

i ↵i  2d, and p is the
coefficient vector of p(x) in the basis

1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, x2x3, . . . , x

2
n, . . . , x

m
1 , . . . , xmn (3.4)

Let the quadratic polynomial p(x) = (x1 � 1)2 + x22, or its equivalent is p(x) =

1 � 2x1 + x21 + x22. This can also be written as p(x) = 1x01x
0
2 � 2x11x

0
2 + x21x

0
2 + x01x

2
2.

The basis is 1, x1, x2, x21, x1x2, x
2
2. There are two exponents, ↵1 and ↵2 that can be equal

to 0, 1 or 2, provided that ↵1 + ↵2  2. The coefficients of the polynomial are: for
↵1 = ↵2 = 0 =) ↵ = {00}, p↵ = p00; for ↵1 = 1 and ↵2 = 0 =) ↵ = {10}, p↵ = p10;
for ↵1 = 0 and ↵2 = 1 =) ↵ = {01}, p↵ = p01; for ↵1 = 2 and ↵2 = 0 =) ↵ =

{20}, p↵ = p20; for ↵1 = 1 and ↵2 = 1 =) ↵ = {11}, p↵ = p11; for ↵1 = 0 and
↵2 = 2 =) ↵ = {02}, p↵ = p02. Thus, p = [p00, p10, p01, p20, p11, p02] = [1,�2, 0, 1, 0, 1].
Finally the polynomial becomes:

p(x) = p00x
00 + p10x

10 + p20x
20 + p02x

02 (3.5)

The basic idea of the moment method is to substitute the monomials x↵ with the
scalar variable y↵ (also called lifting variable). Thus, in the ’lifted space’ polynomial (3.5)
becomes linear:

p(y) = p00y00 + p20y20 + p10y10 + p02y02 (3.6)

Let x = [1, x1, x2, . . . , xn]
> and y be the vector of lifting variables. The vector

y is composed by variables that substituted the monomials in x, and the number of
components in y is

�n+2d
2d

�

for a polynomial of degree 2d. For polynomial (3.5), its
degree is 2d = 2 with 2 variables (i.e. quadratic). Thus,

�2+2
2

�

= 6. This shows an
increase in the number of variables of the linearized equation.

Consider then the optimization problem:

max
x

p(x)

subject to x � 0.
(3.7)
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A relaxed solution to (3.7) can be obtained by solving the primal SDP problem [33]:

max
X

C •X

subject to X ⌫ 0.
(3.8)

where • is the inner product; ⌫ indicates positive semidefiniteness, that is z>Xz �
0, 8z 2 R

n; C is a constant symmetric matrix, and the symmetric matrix X is defined as:

X = xx> =

2

6

6

6

4

1 x1 · · · xn

x1 x21 · · · x1xn
... . . .
xn x1xn · · · x2n

3

7

7

7

5

. (3.9)

The SDP relaxation (3.8) leads to a lower bound on the optimal cost of the original
problem (3.7).

Notice that the only constraint in (3.7) limits the feasible solutions only to the
nonnegative orthant. While, for the SDP equivalent (3.8), the constraint limits the
feasible solutions to a convex closed cone K. The constraint in (3.8) can be enforced
using the Sylvester’s criterion for positive-semidefinite Hermitian matrices, i.e. the
principal minor test.

If problem (3.7) has equality constraints, its relaxed SDP problem is written:

max
X

C •X

subject to
Aj •X = bj , j = 1, . . . , J

X ⌫ 0.

(3.10)

where J is the number of constraints, bj is the jth element of the fixed scalar column vec-
tor b, and the sparse symmetric matrices Aj is the constant matrices for the constraints.

The optimal value of X can be more easily obtained by solving the dual SDP prob-
lem, which is expressed as follows [34]:

min
X

PJ
j=1 yjbj

subject to
C�PJ

j=1 yjAj ⌫ 0

(3.11)

Let the duality gap be C •X�
PJ

j=1 yjbj . When solving for OPF SDP problem, if
the duality gap is zero, then the SDP relaxation is exact. Moreover, if the duality gap is
zero, then X is rank-one and the the optimal value of the objective function of the SDP
problem is equal to the optimal values of p(x) in (3.7) [35].

From (3.1) and (3.11), it is clear that the linear problem is a particular case of SDP.
The linear problem can, therefore, be written as:
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LP
min

Pn
i cixi

s.t.
Pn

i ajixi = bj
x � 0

for all j

=)

SDP
min C •X

s.t. Aj •X = 0

X ⌫ 0

for all j

(3.12)

where,

C =

2

6

6

6

4

c0
1
2c1 · · · 1

2cn
1
2c1 0 · · · 0
...

... . . . ...
1
2cn 0 · · · 0

3

7

7

7

5

, Aj =

2

6

6

6

4

�bj
1
2aj1 · · · 1

2ajn
1
2aj1 0 · · · 0

...
... . . . ...

1
2ajn 0 0

3

7

7

7

5

, (3.13)

and

X =

2

6

6

6

4

1 x1 · · · xn

x1 0 · · · 0
... . . . ...
xn 0 · · · 0

3

7

7

7

5

. (3.14)

However, it is not desirable to convert a linear programming problem into an SDP,
as it can be more efficiently solved in the original form.

3.3 POLYNOMIAL OPTIMIZATION PROBLEMS THROUGH SEMIDEFINITE PROGRAM-
MING

3.3.1 Sum of Squares

In this section, we demonstrate the relationship between nonnegative polynomials,
sum of squares (SOS) and SDP. The main takeaway is that an SOS decomposition of a
polynomial can be obtained by the use of SDP. Therefore, an SOS program is equivalent
to SDP. An SOS program can be defined as a conic optimization problem and it can be
written as:

max
y

Pn
j=1 yjbj

subject to pi(x; y) are SOS in R[x], i = 1, . . . , k,
(3.15)

where pi(x; y) := ci(x) + ai1(x)y1 + . . .+ ain(x)yn, and ci and aij are given multivariate
polynomials in R[x]. One example of a SOS program is:

max
y

y1 + y2

subject to x4 + y1x+ (2 + y2) is SOS,
(y1 � y2 + 1)x2 + y2x+ 1 is SOS.

(3.16)

Consider an SOS constraint in (3.15). It implies that the polynomial pi(x; y) is
nonnegative. This is true for all nonnegative polynomials. However, not all nonnegative
polynomials are SOS [36].
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A SOS polynomial p(x) can be written as:

p(x) =
X

k

q2k(x) � 0, x 2 R
2, (3.17)

Another sufficient condition for nonnegativity is by using SDP. Let p(x1, . . . , xn) be
a polynomial of degree 2d, and the vector of monomials [x]d of size

�n+d
d

�

. Therefore,
p(x) is SOS if and only if:

p(x) = [x]>d Q [x]d , Q ⌫ 0. (3.18)

where the rank of Q is equal to the number of squares (qk).
The condition in (3.18) can be seen as an SDP, where in its primal form we have

[x]>d Q [x]d = Q •X. As an example, consider the univariate polynomial [36]:

p(x) = x4 + 4x3 + 6x2 + 4x+ 5 (3.19)

The polynomial (3.19) has degree 2d = 4 and one variable (n = 1). As such, the
vector of monomials has

�1+2
2

�

= 3 components. Let [x]d = [1, x, x2]>. If we solve the
condition (3.18) for the polynomial (3.19), we have:

p(x) = [x]>d Q [x]d =

2

6

4

1

x

x2

3

7

5

T 2

6

4

q00 q01 q02
q01 q11 q12
q02 q12 q22

3

7

5

2

6

4

1

x

x2

3

7

5
(3.20)

= q22x
4 + 2q12x

3 + (q11 + 2q02) x
2 + 2q01x+ q00

By matching coefficients between (3.19) and (3.20), we obtain the constraints:

q22 = 1,

2q12 = 4,

q11 + 2q02 = 6,

2q01 = 4,

q00 = 5.

Thus, in the SDP primal form, the matrices are:
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A1 =

2

6

4

0 0 0

0 0 0

0 0 1

3

7

5
,

A2 =

2

6

4

0 0 0

0 0 1

0 1 0

3

7

5
,

A3 =

2

6

4

0 0 1

0 1 0

1 0 0

3

7

5
,

A4 =

2

6

4

0 1 0

1 0 0

0 0 0

3

7

5
,

A5 =

2

6

4

1 0 0

0 0 0

0 0 0

3

7

5
,

b = [1, 4, 6, 4, 5]> .

Thus, by solving:

Aj •Q = bj , for j = 1, . . . , 5

Q ⌫ 0,
(3.21)

we have,

Q =

2

6

4

5 2 0

2 6 2

0 2 1

3

7

5
. (3.22)

The rank of Q is 3, so we can expect three squares. One way to extract qj from the
solution is to factorize Q = L>L. Thus,

p(x) = y>L>Ly = kLyk2 =
X

k

(Ly)2k =
X

k

q2k

By factorizing (3.22), we have:

L =

2

6

4

0 2 1p
2

p
2 0p

3 0 0

3

7

5
. (3.23)

which translates to q1 = y2 + 2y, q2 =
p
2 +

p
2y, and q3 =

p
3. As such, the polynomial

in the SOS decomposition is:

p(x) = (y2 + 2y)2 + 2(1 + y)2 + 3.
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3.3.2 Unconstrained Polynomial Optimization

One application of SOS is in a global optimization algorithm. Therefore, consider
an unconstrained optimization problem:

min
x

p(x)

subject to x 2 R
n,

(3.24)

where p(x) is a generic polynomial, thus it can be nonconvex.
The idea is to approximate the lower bound (�) to the optimal value for p(x) [36].

As such, problem (3.24) can be described as:

max �

s.t. p(x) � �

x 2 R
n

()
max �

s.t. p(x)� � � 0

x 2 R
n

(3.25)

To obtain the best possible approximation, we can solve this convex optimization
problem:

max �

subject to p(x)� � � 0.
(3.26)

However, as seen previously, it is possible to approximate the nonnegative con-
straint in (3.26) for the condition that p(x)� � must be SOS. The approximation comes
from the fact that not all nonnegative polynomials are SOS. There are only three cases
where (3.27) is equal to (3.26): univariate polynomials, and quadratic polynomials,
bivariate quartics [36]. As such, (3.26) is can be approximated to:

max �

subject to p(x)� � is SOS.
(3.27)

This approach main advantage is that p(x) may be nonconvex, but the convex
problem (3.27) computes its global lower limit. When p(x)� � is SOS, then the global
minimum is obtained. Let x? be the global minimum for p(x), and xsos the optimal
value of (3.27). Then, p(xsos)  p(x?).

Furthermore, the constraint “p(x)� � is SOS“ in (3.27) is equivalent to the con-
dition in (3.18). By using this relationship, and considering the univariate polynomial
p(x) =

P2d
k=0 pkx

k, we can solve (3.27) through the following optimization problem:

max
�,Q

�

subject to H0 •Q = p0 � �,

H1 •Q = p1,
...

H2d •Q = p2d,

Q ⌫ 0,

(3.28)

where,



Chapter 3. Semidefinite Programming 52

Hk(i, j) =

(

1 if i+ j � 2 = k

0 otherwise .
(3.29)

The dual problem of (3.28) is:

minµk

P2d
k=1 pkµk

subject to µ0 = 1,
P2d

k=1 µkHk ⌫ 0

(3.30)

The semidefinite constraint of (3.30) can be formulated as a moment matrix M:

M =

2

6

6

6

4

µ0 µ1 · · · µd
µ1 µ2 · · · µd+1
... . . .
µd µd+1 · · · µ2d

3

7

7

7

5

⌫ 0. (3.31)

where µ0 = 1 and M ⌫ 0.
Consider now a multivariate polynomial p(x). Then the relaxed optimal solution

to the problem (3.24) is given by solving the following SDP problem [37]:

min
y

P

↵ p↵y↵

subject to M(y) ⌫ 0.
(3.32)

where M(y) has similarities to X defined in (3.9), but instead of monomials it is lifting
variables y. The monomials considered can also be the ones used in the vector [x]d,
defined in (3.18). Thus, an alternative way to define X is [x]d[x]

>
d . As [x]d has monomials

up to degree d, M(y) will have the required lifting variables to represent a 2d-degree
polynomial. Hence, M(y) is defined as:

M(y) =

2

6

6

6

4

1 y10...0 · · · y00...1
y10...0 y20...0 · · · y10...1

... . . .
y00...1 y10...1 · · · y00...2

3

7

7

7

5

. (3.33)

3.3.3 Constrained Polynomial Optimization

Consider a constrained optimization problem:

min p(x)

s.t. fi(x) = 0, i = 1, . . . ,m,

x 2 R
n

(3.34)

Using the Lagrangean relaxation, problem (3.34) can be rewritten as (3.27):

max p(x)�Pm
i �ifi

s.t. x 2 R
n (3.35)

As seen in (3.24) can be rewritten as:
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max �

s.t. p(x)�Pm
i �ifi � �

(3.36)

By the same logic, we can approximate (3.36) with an SOS constraint [36]:

max
�

�

subject to p(x)� � +
Pm

i=1 �i(x)fi(x) is SOS.
(3.37)

Where problem (3.27) implies that the polynomial is nonnegative, problem (3.37)
implies that p(x) is nonnegative on the set of equality constraints. In other words, it
only evaluates its nonnegativity inside the feasible set. Moreover, (3.37) is convex, just
like its unconstrained counterpart.

In case the problem has inequality constraints, it is possible to convert them into
equalities.

3.3.4 Non-SOS Example

As mentioned before, the SDP problem is an approximation of a polynomial prob-
lem. When the objective function or the constraints of the original problem are not SOS,
then the SDP solution can be infeasible to the original problem. This is the case of the
SCOPF problem. There are some algorithms that can reduce the degree of unfeasibility
of SDP solutions, but they are not in the scope of this study [36–38].

Consider the example 4.6 from [39]:

min
x

�x1 � x2,

subject to
x2  2x41 � 8x31 + 8x21 + 2,

x2  4x41 � 32x31 + 88x21 � 96x1 + 36,

0  x1  3, 0  x2  4.

(3.38)

Problem (3.38) is depicted in Fig. 3.1, where the first constraints is represented
by a straight line, the second constraint by a dashed line, and the shaded area is the
feasible set. The problem has 6 stationary points: two local optima (0.6116, 3.4421) and
(1.5996, 2.8204), are shown by triangles in Fig. 3.2; two local minima, (1, 0) and (3, 0),
by squares; and the global minimum, (2.3295, 3.1783), is shown by a star. The fourth
stationary point (7.4593, 3.3187⇥ 103) is not shown in the figure. Also, the feasible space
is almost disconnected at (1, 0).

The solution to the SDP problem associated to (3.38) is x⇤ = (3, 4), which is
represented in Fig. 3.2 by a circle, while the shaded area shows the SDP feasible set.
This solution violates the second constraint. The dotted line shows the distance between
the global optimum and the SDP solution.

It should be noticed that the SDP solution is optimistic. In other words, it is
unfeasible and its cost (�7) is lower than the cost of the global optimum, which is
�5.5079. This follows the theory that p(xsos)  p(x?) [36].
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Figure 3.1: Feasible space of problem (3.38).
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Figure 3.2: Feasible space of the SDP equivalent problem.
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3.4 SDP RELAXATION OF THE SCOPF

As mentioned in the previous Chapter, the OPF problem is non-convex and NP-
hard. Many studies approached the OPF problem through SDP relaxation, thus solving
a convex problem [25,38,40]. The main disadvantage of this method is the increase in
the number of variables. As the maximum polynomial degree of the OPF is 2d = 2, this
means that the number of monomials in the SDP problem is

�2nb+2
2

�

. By extension, the
SDP equivalent of the SCOPF (SDP-SCOPF) problem has

�2nbnc+2
2

�

variables. Therefore,
even a small SCOPF problem may lead to a very large SDP-SCOPF one. As an example,
consider the SCOPF problem cast for the IEEE 14-bus system (nb = 14 and nc = 10). The
SCOPF has n = 2nbnc = 280 variables. On the other hand, the SDP-SCOPF has 39, 621

lifting variables.
Consider the polynomial defined by (3.3). Let Ly{p} be a linear functional that

replaces the monomials x↵ with scalar variables y↵ [40]:

Ly{p} :=
X

↵2Nn

p↵y↵ (3.39)

As an example, Ly{p} of the quadratic polynomial (3.5) is the linear polyno-
mial (3.6). If p(x) is a matrix, then Ly{p} is applied componentwise. An example
of this operation in a matrix is Ly{xx

>}, which yields the moment matrix (3.33).
Consider problem (2.48), its equivalent lifted problem is as follows:

min
y

Ly{Fc} (3.40a)

s.t. P
(k)
Gimin

 Ly{f
(k)
Pi

}  P
(k)
Gimax

, 8k 2 K, 8i 2 N (3.40b)

Q
(k)
Gimin

 Ly{f
(k)
Qi

}  Q
(k)
Gimax

, 8k 2 K, 8i 2 N (3.40c)

V
(k)2

imin

 Ly{f
(k)
Vi

}  V
(k)2

imax

, 8k 2 K, 8i 2 N (3.40d)

|Ly{f
(k)
Fl

}|  F
(k)
lmax

, 8k 2 K, 8l 2 L (3.40e)

Ly{|f
(k)
Tl

|}  F
(k)
lmax

, 8k 2 K, 8l 2 L (3.40f)

Ly{|f
(k)
SPi

|}  ∆P
(k)
imax

, 8k 2 K, 8i 2 S (3.40g)

Ly{|f
(k)
SQi

|}  ∆Q
(k)
imax

, 8k 2 K, 8i 2 S (3.40h)

Ly{f
(k)
ref

} = 0, 8k 2 K (reference) (3.40i)

Consider the compact SCOPF problem (2.49). Therefore, the compact SDP-SCOPF
optimization problem becomes:

min
y

Ly{fc}

subject to Ly{g}  c,

M(y) ⌫ 0,

(3.41)
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Figure 3.3: Two bus diagram.

After solving (3.41), if at the solution M(y) has rank-one, then the relaxation
is labled as “exact” [38]. However, the SDP solution for general meshed networks is
seldom exact [41]. This can be easily seen in the following two-bus example.

3.4.1 Two-bus Example

Consider the 2-bus system of Fig. 3.3, whose data can be found in Appendix A.
For simplicity, the problem is cast only for k = 0 (non-contingency state, i.e. an OPF
problem) and has no line constraint.

The bus admittance matrix of the system is

Y = G+ jB =

"

0.8911 �0.8911

�0.8911 0.8911

#

+ j

"

�8.4359 8.9109

8.9109 �8.4359

#

We use a generic optimization criterion (fc) in the OPF problem. In matrix form,
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the OPF is written

min fc

s.t.
�diag(e) [Ge�Bf ]� diag(f) [Be+Gf ]  PD �PGmin

,

diag(e) [Ge�Bf ] + diag(f) [Be+Gf ]  PGmax
�PD,

diag(e) [Be+Gf ] + diag(f) [Ge�Bf ]  QD �QGmin
,

�diag(e) [Be+Gf ]� diag(f) [Ge�Bf ]  QGmax
�QD,

�diag(e)e� diag(f)f  �V2
min,

diag(e)e+ diag(f)f  V2
max,

f1 = 0 (ref),

(3.42)

where e = [e1, e2]
> and f = [f1, f2]

>.
Bus 1 is chosen as slack bus, therefore in (3.42) f1 = 0. Also consider that the

voltage magnitude at bus 1 is equal to 1 pu, which means that e1 = 1. Substituting the
elements of the admittance matrix and the loads of the system, the final representation
of the OPF is:

min fc

s.t.
0.8911e2 + 8.9109f2 � 0.8911  0,

�0.8911e2 � 8.9109f2 � 1.1089  0,

0.8911e2 � 8.9109f2 � 0.8911(e22 + f22 )� 2  0,

�0.8911e2 + 8.9109f2 + 0.8911(e22 + f22 ) + 0.5  0,

8.9109e2 � 0.8911f2 � 9.2359  0,

�8.9109e2 + 0.8911f2 + 7.6359  0,

8.9109e2 + 0.8911f2 � 8.4359(e22 + f22 )� 1.7  0,

�8.9109e2 � 0.8911f2 + 8.4359(e22 + f22 ) + 0.3  0,

�e22 � f22 + 0.9025  0,

e22 + f22 � 1.1025  0.

(3.43)

The feasible set of (3.43) is the shaded area in Fig. 3.4. The solid lines are active
power generation limits, the dashed lines are for reactive power generation limits, and
the dotted lines represent the quadratic voltage limits. Notice that the feasible set is
defined by four constraints: upper active power generation limit at bus 1 and 2, upper
reactive power generation limit at bus 2, and lower quadratic voltage limit at bus 2.

The monomials of the SCOPF problem (3.43) and their associated lifted variables
are:



Chapter 3. Semidefinite Programming 58

Figure 3.4: Feasible space of (3.43).

e2 f2 e22 e2f2 f22
# # # # #
y1 y2 y3 y4 y5

Thus, the moment matrix is:

M(y) =

2

6

4

1 y1 y2
y1 y3 y4
y2 y4 y5

3

7

5

The SDP-SCOPF is written as:
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min Ly{fc}

subject to
0, 8911y1 + 8, 9109y2 � 0, 8911  0,

�0, 8911y1 � 8, 9109y2 � 1, 1089  0,

0, 8911y1 � 8, 9109y2 � 0, 8911(y3 + y5)� 2  0,

�0, 8911y1 + 8, 9109y2 + 0, 8911(y3 + y5) + 0, 5  0,

8, 9109y1 � 0, 8911y2 � 9, 2359  0,

�8, 9109y1 + 0, 8911y2 + 7, 6359  0,

8, 9109y1 + 0, 8911y2 � 8, 4359(y3 + y5)� 1, 7  0,

�8, 9109y1 � 0, 8911y2 + 8, 4359(y3 + y5) + 0, 3  0,

�y3 � y5 + 0, 9025  0,

y3 + y5 � 1, 1025  0,

M(y) ⌫ 0.

(3.44)

Notice that (3.44), has only linear and convex constraints. However, it is important
to highlight the constraint M(y) ⌫ 0. The constraint defines the feasible set through the
closed cone K. An alternative to this constraint is to use the principal minor test:

2

6

4

1 y1 y2
y1 y3 y4
y2 y4 y5

3

7

5
⌫ 0 ()

1 � 0,

y3 � 0,

y5 � 0,

y3 � y21 � 0,

y5 � y22 � 0,

y3y5 � y24 � 0,

y3y5 + y21y5 � y24 � y22y3 � 0.

In this small example it is possible to see how fast the number of variables increases
when the problem is expressed in the lifted space. In (3.43) the number of variables is
n = 2, but in its equivalent lifted problem (3.44), we have 5 lifting variables.

Fig. 3.5 shows the feasible set of the relaxed problem (shaded area). To have a
better view of the SDP relaxation, all the constraints of the original problem are also
shown in this figure. The SDP-OPF’s feasible set is clearly larger than the original SCOPF
one.

Fig. 3.5 is useful to highlight an important property of SDP solutions: they can be
feasible or unfeasible to the original problem depending on the adopted optimization
criterion. For example, if e2 is maximized, the SDP solution will be feasible to the
original problem, whereas if e2 is minimized, the SDP solution will be unfeasible. Thus,
the objective function can have a significant impact in the quality of the relaxed solution
and may help achieve a rank-one or low-rank solution for (3.44) [38].
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Figure 3.5: Feasible space of (3.44).

3.5 CONCLUSION

This chapter presented a brief introduction to semidefinite programming and anal-
ysed some properties of this methodology via illustrative examples. The first example
is a problem which has rank-one solution, while the second demonstrates that the SOS
approximation my yield unacceptable results. The last example shows how to apply SDP
to the SCOPF problem. The next chapter introduces the umbrella discovery algorithm.



4 UMBRELLA CONSTRAINT DISCOVERY

4.1 INTRODUCTION

The SCOPF problem introduced by equation (2.49) is a nonlinear and NP-hard
problem [25]. Furthermore, it can have a very high number of constraints. This can
be shown by making the following consideration:when the N � 1 criterion is defined
by branch contingencies, nc = nl + 1. Hence, the number of constraints in (2.49) is
JAC = (nc + 1)(4ng + 2nb + 4nl) � 4nc. As such, for the relatively small IEEE 118-bus
network, the SCOPF problem has 222, 908 constraints. Therefore, there is a high compu-
tational cost for solving the problem. Furthermore, the complete problem can become
computationally prohibitive for certain time-constrained operational conditions [29].

A possible solution is to remove the constraints that are not required to form the
feasible set of the problem [2–4]. For that, an algorithm is adopted in [2–4] to iden-
tify those required inequalities, which are called umbrella constraints. However, the
method is only valid for convex problems. As shown previously, the power balance from
equation (2.32) can be manipulated to become linear, as in (2.45). When the DC repre-
sentation of the network is adopted, the number of constraints in the SCOPF decreases,
the problem becomes convex and the computational cost to find a solution is reduced,
while the trade-off is the loss of reactive power representation in the model [4]. Never-
theless, the algorithm described in [2–4] can be use to obtain the umbrella constraints
of the SC-LOPF.

This chapter analyzes the umbrella constraints concept and the Umbrella Con-
straint Discovery algorithm proposed in [4].

4.2 UMBRELLA CONSTRAINT AND DISCOVERY

Not all the inequality constraints of an optimization problem define its feasible set.
Some of them are redundant and/or unnecessary [2]. These non-essential constraints
are never binding at any solution. Therefore by identifying and removing them from
the formulation of the SCOPF, we can reduce computational cost, while maintaining
the same solution. To identify the minimum number of constraints necessary to form
the feasible set, in other words, the umbrella constraints, the following properties are
considered [4]:

• An umbrella constraint is not always biding at the optimal point. Nevertheless, it
can potentially be biding;

• there is always at least one point lying on an umbrella constraint that is feasible
with respect to all the other constraints of the problem. When a point lies on an
inequality constraint, it means that the inequality is being satisfied with equality;

• in the case of a non-umbrella constraint, there is no single point lying on the
constraint that can be feasible with respect to all the other constraints of the
problem.

61
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It is important to highlight that the term umbrella constraint is not interchangeable
with active constraint. The former has the potential to become active at the solution, de-
pending on the objective function. Another observation is the independence between the
identified umbrella constraints and the objective function of the SCOPF. Consequently,
the umbrella discovery algorithm searches in the constraint set of the optimization prob-
lem for potential biding constraints, disregarding the objective function.

Before introducing the Umbrella Constraint Discovery (UCD) optimization problem,
consider the following trivial linear optimization example:

min
x

x

subject to � x  �2

x  3,

x  4,

(4.1)

whose optimal solution is x = 2.
Problem (4.1) is equivalent to:

min
x

x

subject to 2  x  3
(4.2)

Therefore, problem (4.1) has three constraints, but only two of them define its
feasible set. In other words, there are two umbrella constraints, and they are shown
in (4.2).

Another way is to verify if a constraint is umbrella is to check if problem (4.1) is
feasible when the solution lies on that constraint. Consider constraint x  4. To check
if this constraint is umbrella, we build problem (4.3). As the constraint is not umbrella,
(4.3) is clearly unfeasible.

min
x

x

subject to � x  �2

x  3,

x = 4

(4.3)

The same steps can be taken to check if the remaining constraints are umbrella.
In this case, we would need to check the feasibility of two other problems. Another
approach would be to split the equality constraint into two constraints ( and �), add
a slack variable, s � 0, in one of them, and obtain its minimum value. By doing so, we
calculate the distance between the constraint and the feasible set. If the slack variable
is 0, the equality holds and thus the problem is feasible with a point on the constraint.

Thus, to verify if x  4 is an umbrella constraint of (4.1), we need to solve the
following problem:
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min
x,s

s

subject to � x  �2

x  3,

x  4,

x+ s � 4,

s � 0

(4.4)

Again, the solution for (4.4) is straightforward. At the solution the value of s is 1,
the same as the distance between constraints x  4 and x  3. Finally, to check all the
constraints, we can concatenate all the optimization problems, analogous to (4.4), which
are built to check if the remaining constraints are umbrella. Therefore, the complete
problem is:

min
x,y,z,s

3
X

j=1

sj

subject to � x  �2

� x+ s1 � �2,

x  3,

x  4,

� y  �2,

y  3,

y + s2 � 3,

y  4,

� z  �2,

z  3,

z  4,

z + s3 � 4,

s1, s2, s3 � 0

(4.5)

The first four constraints of the "umbrella detection problem" (4.5) are needed to
check if x  2 is umbrella; the next four constraints are introduced to check if constraint
x  3 is umbrella and the last constraints check constraint x  4. Notice that every set
of constraints is expressed by independent variables because it is not necessary that a
single variable, x, respects all the constraints of (4.5), nor it is desirable.

As, in (4.5), there is no coupling between the sets of variables (x, s1), (y, s2) and
(z, s3), this optimization problem can be decomposed in three independent problems. To
express (4.5) in a compact form, consider wj to be the variable associated with constraint
j (i.e. w1 = x, w2 = y, and w3 = z) and define
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As = [�1, 1, 1]>, (4.6)

bs = [�2, 3, 4]> (4.7)

Let vector asj the jth line of the constant matrix As, bsj is jth line of the constant vector
bs, and the set of constraints J = 1, 2, . . . , J . Thus, the compact representation of (4.5)
is:

min
w,s

J
X

j=1

sj

subject to Aswj  bs, 8j 2 J

a>sjwj + sj � bsj , 8j 2 J

sj � 0. 8j 2 J

(4.8)

Problem (4.8) is feasible if the orignal is feasible. In addition (4.8) has a unique
solution because the objective function is not colinear with any constraint of the prob-
lem. Therefore, problem (4.8) can be solved in polynomial time [16]. The number of
constraints in (4.5) is equal to J2 + 2J , where J is the number of constraints of (4.1).

In summary, problem (4.8) is very large. However, this problem can be decomposed
into a set of J independent subproblems. It is possible and desirable to separate the
constraints into smaller groups (up to J groups), each one expressed in terms of variables
associated with a particular inequality constraint. The jth problem in this set is expressed
only in terms of wj and sj . Let us now consider the SC-LOPF problem.

4.3 APPLICATION IN POWER SYSTEMS

To identify the umbrella constraints of SC-LOPF (2.53), the following optimization
problem can be derived from (4.8):

min
w,s

JDC
X

j=1

sj

subject to â>�j0wj  ĉ�j0 , 8j0 2 J , 8j 2 J

â>�jwj + sj � ĉ�j , 8j 2 J

sj � 0, 8j 2 J

(4.9)

where every vector wj has nb � 1 components, vector s has JDC components, and
J = {1, . . . , JDC}. Thus, the number of variables of the umbrella detection problem is
JDC (nb � 1) + JDC .

If we consider nc contingency states, the number of constraints in (4.9) is J2DC +

JDC . Although this is usually a large number, the set of secure operating points (i.e.,
the feasible set of the problem) is defined by only a small portion of these constraints
(i.e. umbrella constraints). As the system load changes over time, the set of umbrella
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constraints may also change. However, if we know the umbrella constraints at each load
level beforehand, the set of necessary constraints when calculating the secure power
dispatch will be considerably smaller.

There are also two remarks regarding the applicability of (4.9):

• Any change in vector ĉ�, which contains the physical and operational limits of the
system, may change the umbrella constraints set. Hence, requiring that (4.8) be
solved again;

• the number of constraints (J2 + 2J) and variables (J(nb � 1) + J) from (4.9) in-
creases significantly in relation to the original problem (J and nb�1, respectively).
This may result in unsolvable problem due to computational limitations.

4.3.1 LOPF Two-Bus Example

In order to better demonstrate the umbrella discovery algorithm, the SC-LOPF
umbrella constraints are identified for the two-bus system depicted in Fig. 3.3, whose
data can be found in Appendix A. For simplicity, only the intact system will be considered
(no contingency). The SC-LOPF is described using the following matrices:

B� =

"

9 �9

�9 9

#

, (4.10)

A>
inc =

"

1 �1

1 �1

#

, (4.11)

Γ =

"

5 0

0 4

#

. (4.12)

Choosing bus 1 as reference (�1 = 0), the reduced matrices are:

B�̂ = [9], (4.13)

Â
>
inc =

"

�1

�1

#

, (4.14)

P̂G = [PG2
], (4.15)

P̂D = [2] (4.16)

From (2.41) we have

f =

2

6

4

�5

9
PG2

�4

9
PG2

3

7

5
+

2

6

4

10

9
8

9

3

7

5
(4.17)

Therefore, the optimization problem is:
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min c(PG2
)

subject to 0  2� PG2
 2

0  PG2
 1.5

�1  �5

9
PG2

+
10

9
 1

�1  �4

9
PG2

+
8

9
 1

(4.18)

The first constraint of (4.18) represents the upper and lower limits of PG1
; the

second constraint the limits on PG2
; the third and fourth constraints represent the limits

on the power flows over lines 1 and 2, respectively.
Problem (4.18) in compact form is:

min PG2

subject to A�P̂G  c�
(4.19)

where,

A� = [�1, 1, 1,�1,�5, 5,�4, 4]>, (4.20)

c� = [0, 2, 1.5, 0,�1, 19, 1, 17]>, (4.21)

P̂G = [PG2
]. (4.22)

As there is a single variable, the solution to this problem is trivial. Thus, the
umbrella constraints can be identified analytically. Given A� and c�, the equivalent
problem is:

min PG2

subject to PG2
� 0,

PG2
 2,

PG2
 1.5,

PG2
� 0,

PG2
� 0.2,

PG2
 3.8,

PG2
� �0.25,

PG2
 4.25.

(4.23)

Therefore, the umbrella constraints of (4.23) are:

0.2  PG2
 1.5 (4.24)

Thus, (4.23) is equivalent to:

min PG2

subject to 0.2  PG2
 1.5

(4.25)



Chapter 4. Umbrella Constraint Discovery 67

As constraints 3 and 5 of (4.23) are umbrella, it is expected s3 = s5 = 0. For the
sake of brevity, this chapter will only show on how to obtain s2 and s3, but the same
steps shall be taken for the remaining constraints. The complete umbrella detection
problem is:

min
P8

j=1 sj

s.t.
2

6

6

6

6

6

6

6

6

6

6

6

6

4

�1

1

1

�1

�5

5

�4

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

wj 

2

6

6

6

6

6

6

6

6

6

6

6

6

4

0

2

1.5

0

�1

19

1

17

3

7

7

7

7

7

7

7

7

7

7

7

7

5

,

�w1 + s1 � 0,

w2 + s2 � 2,

w3 + s3 � 1.5,

�w4 + s4 � 0,

�5w5 + s5 � �1,

5w6 + s6 � 19,

�4w7 + s7 � 1,

4w8 + s8 � 17,

sj � 0,

for j = 1, . . . , 8.

(4.26)

To check if the second constraint is umbrella we need to solve problem (4.27),
which is obtained from (4.26) using decomposition.

min s2
s.t.

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�1

1

1

�1

�5

5

�4

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

w2 

2

6

6

6

6

6

6

6

6

6

6

6

6

4

0

2

1.5

0

�1

19

1

17

3

7

7

7

7

7

7

7

7

7

7

7

7

5

,

w2 + s2 � 2,

s2 � 0.

(4.27)

Expressing the constraints in terms of PG2
, we have:
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�PG2
 0,

PG2
 2,

PG2
 1.5,

�PG2
 0,

�PG2
 �0.2,

PG2
 3.8,

�PG2
 0.25,

PG2
 4.25,

PG2
+ s2 � 2,

which can be simplified to:

PG2
 2,

0.2  PG2
 1.5,

PG2
+ s2 � 2

It is trivial to see that the lowest value of s2 that does not violate constraint PG2
+

s2 � 2 is 0.5.
The same steps can be taken to check for another umbrella constraint, such as

constraint 3:

min s3
subject to
2

6

6

6

6

6

6

6

6

6

6

6

6

4

�1

1

1

�1

�5

5

�4

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

w3 

2

6

6

6

6

6

6

6

6

6

6

6

6

4

0

2

1.5

0

�1

19

1

17

3

7

7

7

7

7

7

7

7

7

7

7

7

5

,

w3 + s3 � 1.5,

s3 � 0.

(4.28)

The constraints of (4.28) can be reduced to:

PG2
 1.5,

PG2
� 0.2,

PG2
+ s3 � 1.5

Again, the solution is straightforward. As the maximum PG2
value is 1.5, then

constraint PG2
+ s3 � 1.5 implies that s3 = 0.
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Following the same constraint order of (4.18), Table 4.1 shows all the s values in
this example. It is interesting to notice that only 2 out of 8 constraints define the feasible
set (i.e. 75% reduction in the number of constraints).

Table 4.1: The s value for each associated LOPF constraint.

# Constraint s
1 PG1max

0.20
2 PG1min

0.50

3 PG2max
0.00

4 PG2min

0.20

5 F1max
0.00

6 F1min
0.20

7 F2max
1.28

8 F2min
1.22

4.3.2 SC-LOPF Two-Bus Example

As the problem presented here is not an SC-LOPF (but a linear optimal power flow,
or LOPF), it is necessary to expand it to an SC-LOPF problem (2.53). The SC-LOPF
problem follows the same structure as the problem (2.45), but with some extra security
constraints and more variables. In this study, the SC-LOPF takes into consideration 2

contingencies (k = 0, 1, 2) and takes into account the active power security constraint

�∆Pimax
 PĜ

(0) �PĜ
(k)  ∆Pimax

(2.54). The upper limit in the active power gener-
ated variation between contingencies, ∆Pimax

, is set at 10% of the maximum generation
limits.

The procedure used to identify the umbrella constraints is the same. Table 4.2
shows the values obtained for the slack variables when the complete problem is solved
in just one shot. Some important remarks are: reduction of 54% in the number of
constraints, all the security constraints are umbrella, the upper limit of the generator
at bus 2 is umbrella under all the contingencies, and the non-umbrella constraints of
the LOPF problem (4.18) do not become umbrella with the tightening of the feasible
set (i.e., with the inclusion of the security constraints). In summary, the set of umbrella
constraints in this example is: PG2max

, SP1max
, SP1min

, SP2max
, and SP2min

.

4.4 PROBLEM PARTITIONING

Many decomposition schemes were proposed in [16] for the umbrella discovery
problem (4.9). In the present work, a combination of three types of decomposition is
used, besides the one previously explained: contingency-based, line-based and security-
based partitions.

It is in the best interest to obtain the most number of non-umbrella constraints in
the least possible amount of iterations. This way, the umbrella discovery problem (4.8)
is relatively small and not so costly.
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Table 4.2: Optimal slack variables without decomposing the problem.

Constraint
s

k = 0 k = 1 k = 2

PG1max
0.85 1.00 1.00

PG1min

0.50 0.50 0.50

PG2max
0.00 0.00 0.00

PG2min

0.85 1.00 1.00

F1max
0.36 - 0.00

F1min
1.28 - 1.50

F2max
0.49 0.00 -

F2min
1.22 1.50 -

SP1max
- 0.00 0.00

SP1min

- 0.00 0.00

SP2max
- 0.00 0.00

SP2min

- 0.00 0.00

Nevertheless, it is important to grasp some important concepts regarding feasible
set and the umbrella constraints.

Firstly, the umbrella discovery problem (4.8) can be solved independently for
each sj and wj . As such, if desirable, problem (4.9) can be decomposed into JDC

subproblems. Each subproblem identify a single constraint and the umbrella set is the
union of all the umbrella constraints identified separately. This is used to decompose
problem (4.26) into (4.27).

Secondly, consider two constraint sets J and J1, where J1 ✓ J . If there is a
constraint j 2 J1 that does not define the feasible set (i.e. it is not a umbrella con-
straint) when solving the Umbrella Constraint Discovery algorithm (4.8), then the same
constraint j is also considered not an umbrella constraint when solving the Umbrella
Constraint Discovery (4.8) for the constraints in J .

Finally, let U be the set of those constraints that are in J and are umbrella con-
straints when solving the Umbrella Constraint Discovery algorithm (4.8). Henceforth,
✓U is the operator that describes this type of subset composed of umbrella constraints,
e.g. U ✓U J . Furthermore, consider the constraint set J2, and two more umbrella sets
U1 ✓U J1, and U2 ✓U J2. If J = J1

S

J2 and J3 = J1
T

J2 6= ∅, then U3 = U1
T

U2,
where U3 ✓U J3.

4.4.1 Contingency-Based Partitioning

Consider the SC-LOPF problem (2.53). Its constraint set is composed by two
subsets J = J⇡

S

J�. Let J⇡(k) be the set of the power balance, generation and line
limits constraints for each state k, and J� be the security constraint set. Therefore,
J⇡ =

S

k2K
J⇡(k).

Consider that we solve the umbrella discovery problem (4.9) by taking into consid-
eration only J⇡. Then, the problem can be decomposed into independent subproblems,
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each one associated with a contingency state k, where k = 0, 1, . . . , nc. Each subproblem
is called Umbrella Constraint Optimal Power Flow (UCOPF), due to the fact that its
constraint set, J⇡(k), is equivalent to the LOPF. Let each umbrella set of each UCOPF be
denoted as Uk ✓U J⇡(k).

Let the constraint set J U
⇡ =

S

k2K
Uk. Solve the umbrella discovery problem (4.9)

for the constraints J U
⇡

S

J�. By doing so, the identified umbrella set is U , which it is
the same as U ✓U J . This brings an intuitive way to decompose the problem while
reducing the number of total constraints. At the same time, the final solution is identical
to the one obtained when (4.9) is solved considering the entire set of constraints J .

To better illustrate this method, let P (k)
Gimax

and P
(k)
Gimin

be the upper and lower active

generation limits at bus i and state k, respectively; F (k)
lmax

and F
(k)
lmin

the upper and lower

power flow limits of line l at state k, respectively; S(k)
Pimax

and S
(k)
Pimin

be, respectively, the

upper and lower limits on the variation in the active power generation at bus i between
states 0 and k. Then, for the two-bus example J⇡ is composed of {J⇡(0),J⇡(1),J⇡(2)},

where J⇡(k) = {P
(k)
G1max

, P
(k)
G1min

, P
(k)
G2max

, P
(k)
G2min

, F
(k)
1max

, F
(k)
1min

, F
(k)
2max

, F
(k)
2min

}, for k = 0, 1, 2;

and J� = {S
(1)
P1max

, S
(1)
P1min

, S
(2)
P1max

, S
(2)
P1min

, S
(1)
P2max

, S
(1)
P2min

, S
(2)
P2max

, S
(2)
P2min

}. As each J⇡(k)

has 8 constraints, then J⇡ has in total 24 constraints.
The next step is to solve the UCOPF for k = 0, 1, 2. The umbrella set for each state

is:

U0 = {P
(0)
G2max

, F
(0)
1max

},

U1 = {P
(1)
G2max

, F
(1)
2max

},

U2 = {P
(2)
G2max

, F
(2)
1max

},

thus, J U
⇡ = {P

(0)
G2max

, P
(1)
G2max

, P
(2)
G2max

, F
(0)
1max

, F
(2)
1max

, F
(1)
2max

}. The size of the set is 6, or in
other words, there are 6 umbrella constraints from the original set J⇡.

To obtain the final umbrella set U , we solve (4.9) taking into consideration all the
14 constraints in J U

⇡

S

J�. Table 4.3 shows the optimal slack variables values for this
problem. The umbrella constraints are those associated with s = 0. Although there
is a substantial reduction in the number of constraints taken into consideration, the
results are the same from Table 4.2. Notice that for the two-bus example, J has 32

constraints. In this small example, the number of constraints for the umbrella discovery
algorithm changes from 322 + 32 = 1, 056 to 142 + 14 = 210, or an 80% decrease. If we
consider the number of constraints taken into account for each UCOPF problem, then
this decomposition has in total 426 constraints. Among these, 210 are from the last
optimization problem considering only J U

⇡

S

J�.
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Table 4.3: Optimal slack variables using decomposition.

Constraint
s

k = 0 k = 1 k = 2

PG2max
0.00 0.00 0.00

F1max
0.36 - 0.00

F2max
- 0.00 -

SP1max
- 0.00 0.00

SP1min

- 0.00 0.00

SP2max
- 0.00 0.00

SP2min

- 0.00 0.00

4.4.2 Security-Based Partitioning

Let J� =
S

k2K, k 6=0
J�(k), where J�(k) is the set of security constraints coupling the

intact system state and the state k. Consider the SC-LOPF problem (2.53) with only the
constraints J (k) = {J⇡(0),J⇡(k),J�(k)}, or in other words, with state k = 0 plus only
one contingency state.

Consider that we solve the umbrella discovery problem (4.9) for the constraints in
J (k), thus obtaining the umbrella constraint set U(k) ✓U J (k). The umbrella set U(k)
has two subsets {U0(k),Uk(k)}, where U0(k) ✓ J⇡(0) and Uk(k) ✓ {J⇡(k),J�(k)}.

After solving nc subproblems (4.9) for each J (k), we have an approximation of
the umbrella set U . Let the approximated umbrella set be Ũ = {

T

U0(k),
S

Uk(k) | k 2
K, k 6= 0} ✓ U . Finally, to obtain U , we need to solve (4.9) considering all the constraints
in Ũ .

The main advantage of this method is that it considers the coupling between
the intact system and each contingency state through the security constraints, while
maintaining the problem (4.9) manageable. However, its main setback is that the
constraints of the intact system is tested nc times, resulting in unnecessary computational
cost.

As the two-bus system is too small to demonstrate the benefits of this approach,
this decomposition is applied to the 34-bus equivalent of the Hydro-Québec system,
whose data is in Appendix A.

4.4.2.1 Hydro-Québec Example

The Hydro-Québec system has 64 lines, however only 58 line outages are consid-
ered in SCOPF studies since 6 lines (# 1, 2 , 3 , 4 , 5, and 6) directly connect generator
buses to the system. The removal of such lines would simulate a generator outage, which
is not in the scope of this study. Consequently, for this system, we have JDC = 8, 840,
and thus the umbrella detection problem (4.9) has 78, 154, 440 constraints and 300, 560

variables. Knowing this, if the problem is decomposed trough the Security-Based Parti-
tioning method, i.e. if we solve considering only the constraints in J (k), the umbrella
discovery problem for the decomposed problem is reduced to 84, 390 constraints and
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9, 860 variables. However, to obtain Ũ , it is necessary to solve (4.9) nc times, bringing
the total number of constraints to 4, 894, 620 and of variables to 571, 880.

After decomposition, there are 260 constraints in J (k) and 26 constraints in U(k),
for k = 1, . . . , 59. In other words, for all the contingency states, these sets have the same
length. The results obtained from the decomposed problem are given in Table 4.4. In
the first column of this table are given the type of the constraint, the second column is
the number of constraints of each set {

S

{J⇡(k),J�(k)} | k 2 K, k 6= 0}, the third column
is the number of umbrella constraints in the set {

S

Uk(k) | k 2 K, k 6= 0}, and the last
column is the percentual reduction in the number of constraints between second and
third columns.

Table 4.4: 34-bus system result for constraints of all contingency states.

Type of Constraint # Constraints # Umbrella Reduction
PGmax

348 336 03.45%

PGmin
348 56 83.91%

Fmax 3, 654 0 100.00%

Fmin 3, 654 1 99.97%

SGmax
348 336 03.45%

SGmin
348 336 03.45%

Total 8, 700 1, 083 86.89%

As Ũ = {
T

U0(k),
S

Uk(k) | k 2 K, k 6= 0}, it is also necessary to obtain
T

U0(k),
for k 2 K, k 6= 0. Therefore, Table 4.5 shows the results for the intact system. The first
column shows the type of the constraint, the second column is the number of constraints
in J⇡(0), the third column is the number of umbrella constraints in {

S

U0(k) | k 2 K, k 6=
0}, and the last is the percentual reduction of constraints between column 2 and 3. As
such, Ũ has 1, 090 constraints, or a reduction of 87.67% in relation with JDC .

Table 4.5: Total number of constraints and umbrella constraints for the intact system.

Type of Constraint # Constraints # Umbrella Reduction
PGmax

6 6 00.00%

PGmin
6 1 83.33%

Fmax 64 0 100.00%

Fmin 64 0 100.00%

SGmax
0 0 -

SGmin
0 0 -

Total 140 7 95.00%

Next, when the umbrella constraint discovery problem is solved for the constraints
in Ũ , the final umbrella set U = Ũ . As such, this example has an exact approximation of
umbrella set.

Both Tables 4.4 and 4.5 shows an impressive decrease in the number of line con-
straints. This observation inspires a line-based decomposition scheme [16], as discussed
in the next section.



Chapter 4. Umbrella Constraint Discovery 74

4.4.3 Line-Based Partitioning

Let J = {J g
⇡ ,J

l
⇡,J�}, where J g

⇡ is the set of power generation constraints and J l
⇡

is the set of line constraints. These sets can be rewritten as J g
⇡ = {PGimax

, PGimin
| i 2 G},

and J l
⇡ = {Flmax

, Flmin
| l 2 L}.

Instead of solving problem (4.9) with all the constraints in J , it is possible to solve
it by first identifying the constraints in J l

⇡:

min
w,s

X

j2J l
π

sj

subject to Â�wj  ĉ�, 8j 2 J l
⇡

â>�jwj + sj � ĉ�j , 8j 2 J l
⇡

sj � 0. 8j 2 J l
⇡

(4.29)

Let U l be the set of umbrella constraints obtained by solving (4.29). As seen
before, there is a potentially significant number of non-umbrella constraints in J l

⇡. Let
J̃ = {J g

⇡ ,U
l,J�}, then J̃ is expected to be significantly smaller than J . Finally, we can

solve the reduced problem:

min
w,s

X

j2J̃
sj

subject to A✏wj  c✏, 8j 2 J̃

a>✏jwj + sj � c✏j , 8j 2 J̃

sj � 0, 8j 2 J̃

(4.30)

where A✏ and c✏ are Â� and ĉ� considering only the constraints in J̃ , respectively.
To demonstrate the effectiveness of this approach, consider the same 34-bus exam-

ple. The cardinality of J l
⇡ is 7, 436, but U l has only one constraint. The only umbrella

line constraint in U l is the lower power flow limit of line 20 at the contingency state 20,
when line 26 is disconnected. Hence, for this problem, there are 1, 405 constraints in J̃ .
This is already a significant reduction from the original JDC = 8, 840 constraints, and a
good approximation for U , which contains 1, 090 umbrella constraints.

4.5 CONCLUSION

The umbrella discovery algorithm was introduced with two SC-LOPF examples
to showcase the algorithm potential in reducing the number of constraints. Further-
more, some partitioning schemes were described to decrease computational cost of
the umbrella discovery problem, among them two were first introduced in this thesis
(Contingency-based and Security-based partitionings).

Next chapter derives a new umbrella discovery algorithm for non-linear problems
based on the use of semidefinite programming.



5 SEMIDEFINITE UMBRELLA DISCOVERY ALGORITHM

5.1 INTRODUCTION

The main advantage of solving the UCD problem is to identify the constraints that
form the feasible set, i.e. the minimal number of constraints needed to solve a problem.
This is specially beneficial for very large problems, such as the SC-LOPF. There is a
substantial reduction of constraints in the SC-LOPF when the UCD is solved, as shown
in [4]. Nonetheless, there are some shortcomings in using SC-LOPF, e.g. it does not
take into consideration reactive power and voltage constraints [23].

In this study, we propose an extended UCD problem to identify the umbrella
constraints of the SCOPF problem, although the UCD is only capable of solving convex
problems. As previously shown, the SDP is a powerful tool to convexify a problem and
to obtain an approximate global solution. The convexification is essential to extend the
UCD algorithm to the SCOPF.

This chapter extends the UCD algorithm to detect the umbrella constraints of the
SCOPF problem and proposes some strategies to reduce computational cost of the UCD
algorithm.

5.2 NON-CONVEX UMBRELLA CONSTRAINT IDENTIFICATION

Consider a set of non-convex inequalities constraints C = {x 2 R
n |hi(x)  ci , i =

1, . . . ,m}, and the following optimization problem:

min
x

p(x)

subject to hi(x)  ci, i = 1, . . . ,m
(5.1)

The identification of the umbrella constraints of (5.1) imposes a challenge, as the
use of slack variables to identify umbrella constraints is only valid for convex problems,
such as the SC-LOPF. This becomes clear when we analyze Fig. 5.1, which depicts
a non-convex set defined by two umbrella constraints (h1 and h2). Consider that the
umbrella detection algorithm is initialized at two different points, a and b, and due to the
nonlinearities, follows two different directions represented by the arrows in the figure.
When starting at point a, the algorithm will indicate only h1 as umbrella constraint. On
the other hand, if the initial point is b, only h2 will be identified as umbrella constraint.
The two identifications would be wrong since both h1 and h2 are umbrella constraints.

Therefore, problem (4.8) can only be used to detect the umbrella constraints of
convex problems, else there may not be an unique solution. However, some of the
observations made in Chapter 4 are still valid:

• There is at least a point w lying on an umbrella constraint that is feasible to all the
other constraints;

• There is not a point on a non-umbrella constraint that is feasible to all constraints
of the problem.

75
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h1
h2

a
b

Figure 5.1: Non-convex feasible space defined by two constraints.

These observations indicate that the approach taken in Chapter 4 is still viable,
but it can provide an incorrect umbrella constraint set. Consider the following problem,
which is built from (5.1) in order to identify the umbrella constraints of this problem:

min
w

F =
m
X

j=1

sj (5.2a)

subject to hj0(wj)  cj0 , j
0 = 1, . . . ,m (5.2b)

hj(wj) + sj � cj , (5.2c)

sj � 0 (5.2d)

for all j = 1, . . . ,m (5.2e)

Unfortunately, the solution to (5.2) may not be unique, whereas there is only one
set of umbrella constraints. This is true, as (5.2) convexity is not guaranteed. Thus, it is
necessary to ensure that the solution to this problem is unique and correctly indicates
the set of umbrella constraints. One way to achieve this is by using SDP, as it will
approximate the feasible set of problem (5.2) by a convex feasible set. In case (5.1)
is a quadratically constrained quadratic problem, as the SCOPF, so is problem (5.2).
Therefore, a second-order SDP relaxation can be applied to (5.2) [32]. If second-order
approximation is used, constraints hj(x), j = 1, . . . ,m are linear in the lifted space.
Due to these properties, the optimal solution to the lifted umbrella detection problem
is unique. Hence, the SDP Umbrella Constraint Discovery (SDP-UCD) problem is as
follows:
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min
y

Ly{F =
m
X

j=1

s2j} (5.3a)

subject to Ly{hj0(wj)}  cj0 , j
0 = 1, . . . ,m (5.3b)

Ly{hj(wj) + sj} � cj , (5.3c)

Ly{sj} � 0, (5.3d)

Ly{Z} ⌫ 0, (5.3e)

for all j = 1, . . . ,m, (5.3f)

Ly{Z} is the order-1 moment matrix, which is defined as follows: Define vector z =

[1,w>, s>] and matrix Z = zz>, where w> = [w>
1 ,w

>
2 , . . . ,w

>
m]. The components of Z

are all the monomials in wj and sj , 8j, with degree 0, 1 and 2. After building Z, replace
each monomial in this matrix by the associated lifted variable. The resulting matrix is
Ly{Z}, which is symmetric.

The solution of (5.3) is relaxed, i.e. there may be non-umbrella constraints in the
solution. In addition, by comparing problem (5.3) with problem (4.9), we notice that
the objective functions are different. This occurs because simulations have shown that
numerical conditioning of the lifted problem improves if the original objective function

is F =
m
X

j=1

s2j .

As mentioned in Chapter 3 , the optimal cost of the solution to the SDP relaxed
problem is a lower bound to the optimal cost of the solution to the original problem.
In the case of problem (5.3), the cost function is the sum of squared slack variables.
As a consequence of this optimistic approach, we obtain a conservative answer, i.e. an
increase in false-positive for the umbrella constraint identification (as s tends to 0). This
may be problematic to determine a limit value for a slack variable, below which the
associated constraint is considered umbrella. One way to tackle this issue is by creating
a recovery method to obtain a solution to the original problem.

However, the recovery method must differentiate an umbrella constraint (sj =

0) from a non-umbrella one (sj > 0). The difficulty arises when the lifted variable
associated to s, due to algorithm tolerance and SDP approximation, is very close to zero
(e.g, 10�5), but the related constraint is not umbrella. The opposite can also be true,
that is, the lifted variable is slightly higher that a given tolerance (e.g., 10�4), but is
associated to an umbrella constraint.

5.2.1 Example

In order to better illustrate the SDP-UCD algorithm, consider the following non-
convex optimization problem:
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min
x

fc = x1 + x2

subject to h1(x) = x2 � 10  0,

h2(x) = �x2 + x21  0,

h3(x) = �x1 + x2 � 6  0

h4(x) = �1
2x2 +

1
2x

2
1 + 2.5 � 0.

(5.4)

The optimal solution to (5.4) is x1 = �0.50 and x2 = 0.25, while its graphical
representation is shown by Fig. 5.2, where the solid line is the constraint h1, the dashed
line is for h2, the dash-dotted line is for h3, and the dotted line is for h4. The feasible set
is the area between both parabolas (shaded in light gray) and limited by the dash-dotted
line.

By analyzing Fig. 5.2, it can be easily concluded that constraints h2, h3 and h4
are umbrella, while h1 is not. To reach the same conclusion, it is possible to use the
SDP-UCD problem (5.3). Thus, (5.4) equivalent lifted problem is:

min
y

Ly{s
2
1 + s22 + s23 + s24}

subject to Ly{h1(w1)}  0,

Ly{h2(w1)}  0,

Ly{h3(w1)}  0,

Ly{�h4(w1)}  0,

Ly{h1(w1) + s1} � 0,

Ly{h1(w2)}  0,

Ly{h2(w2)}  0,

Ly{h3(w2)}  0,

Ly{�h4(w2)}  0,

Ly{h2(w2) + s2} � 0,

Ly{h1(w3)}  0,

Ly{h2(w3)}  0,

Ly{h3(w3)}  0,

Ly{�h4(w3)}  0,

Ly{h3(w3) + s3} � 0,

Ly{h1(w4)}  0,

Ly{h2(w4)}  0,

Ly{h3(w4)}  0,

Ly{�h4(w4)}  0,

Ly{�h4(w4) + s4} � 0,

Ly{s} � 0,

Ly{Z} ⌫ 0,

(5.5)

where vectors w1, w2, w3 e w4 have two components, which correspond to x1 and x2
in the original problem.

Table 5.1 presents the solution to problem (5.5). The feasible set of the equivalent
lifted problem of (5.4) is the shaded area (light and dark gray) in Fig. 5.2. Notice that
the feasible set is larger than the original one.
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Table 5.1: Optimal values of the lifted variables.

Constraint tested Ly{x1} Ly{x2} Ly{x
2
1} Ly{s}

Ly{h1} �3.00 9.00 9.00 1.00

Ly{h2} �0.05 1.49 1.49 1.94⇥ 10�4

Ly{h3} 1.17 4.83 3.28 1.97⇥ 10�4

Ly{h4} �0.18 5.36 0.36 2.11⇥ 10�4

The optimal point for Ly{h1} is (Ly{x1}, Ly{x2}) and is shown as a bullet, for

Ly{h2} is (
q

Ly{x21}, Ly{x2}) and is shown as a triangle, for Ly{h3} is (Ly{x1}, Ly{x2})

and is shown as a star, for Ly{h4} is (
q

Ly{x21}, Ly{x2}) and is shown as a hexagram.
The coordinates chosen are in accordance with each monomials used in each constraint.
Therefore, there are some important remarks to be made for this result:

1. If we follow the same procedure used by the linear UCD, from the optimal values
of Ly{s} it seems very straightforward to classify a constraint as umbrella or not.
However, Ly{s} is the lifted variable for the monomial s. Therefore, Ly{s} and s

may have significant divergence in value if the SDP approximation is not good;

2. When checking a linear constraint, the optimal points (Ly{x
⇤
1}, Ly{x

⇤
2}) are on the

constraint in the original problem. Nevertheless, the same cannot be said when the
constraint is non-convex. This happens because the solution of the lifted problem
is not the same for the original one. In other words, the optimal value of the SDP
problem is a point in the lifted space, not in the original problem;

3. As the solution given by Table 5.1 is to the lifted problem, one can say that if the
approximation made is not good enough, then optimal point (Ly{x

⇤
1}, Ly{x

⇤
2}) on

the lifted constraint may not lie on the original constraint. This may cause two
problems: a very conservative solution (i.e. more umbrella constraints detected
than there are in fact) and a harder solution recovery. This can be observed in
Table 5.1, where (Ly{x1})

2 is not always equal to Ly{x
2
1}, such as in constraints

h2, h3, and h4 (all non-linear);

4. One possible consequence of the SDP-UCD is that a solution for a given constraint
may have a very small Ly{s}, but such small Ly{s} is only valid for the lifted
space. If this approximation is not good enough, the equivalent original constraint
may not be umbrella, even with a small Ly{s}. This is expected, as the SDP is a
conservative algorithm (provides a lower bound for the optimal value of the objec-
tive function), but the approximation may cause some constraints to be wrongly
classified if only Ly{s} is checked;

By taking into consideration all these remarks, one can conclude that a method to
recover the set of umbrella constraints should be implemented. One possible approach
is to consider a Ly{s} threshold to eliminate evident non-umbrella constraints (e.g.
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Figure 5.2: Graphical representation of (5.4).

Ly{s} � 1). If it is over the threshold, it is classified as non-umbrella. Otherwise,
recover the solution.

Therefore, the SDP-UCD identified correctly all the constraints of problem (5.4).
However, the algorithm has some shortcomings regarding the umbrella constraint detec-
tion. The main one is that the the value of Ly{s} at the optimal solution to (5.5) do not
indicate with certainty that a given constraint is umbrella or not, as the optimal solution
is in the lifted space. In this study, we propose a method to classify each constraint after
solving problem (5.3), which will be discussed in section 5.3.2.

5.3 SCOPF-UCD

Previous applications of SDP to obtain global solutions to the SCOPF have shown
that SDP provides good approximations for the feasible set of this problem [38,40,42].
The SCOPF is a quadratically constrained quadratic problem, and so is the non-convex
UCD problem to identify SCOPF umbrella constraints.

Our goal is to determine the set of umbrella constraints that defines the feasible
set of (2.48). As such, to check for the umbrella constraints of the SCOPF problem,
vector wj has 2nb� 1 components and JAC slack variables will be needed. Furthermore,
the ratio of the number of constraints in the SCOPF and SC-LOPF is given in (5.6). As
the SCOPF is considerably larger that the SC-LOPF, to identify the umbrella constraints
of the SCOPF, we need to solve a very large umbrella detection problem. In addition
to being very large, the non-linear SCOPF problem is also non-convex. Some methods
proposed to address this issue are presented in section 5.3.1.

JAC

JDC
⇡ 4ng + nb + 2nl � 2

2ng + nl � 1
> 2 (5.6)
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Taking into consideration the properties discussed in section 5.2, we can solve
the SDP-UCD problem (5.3) by taking consideration the JAC SCOPF constraints of
problem (2.49).

5.3.1 Computational Complexity Reduction

Problem (5.3) is useful for obtaining the umbrella constraints of a non-convex
problem. However, the SCOPF can be a considerably large problem, and SDP relax-
ation has some shortcomings, especially the increase in the number of variables of the
optimization problem. This combination of negative points can make problem (5.3)
extremely large and computationally demanding.

In order to address this issue, the present study reduces the number of variables
in (5.3) by first introducing a series of procedures are used to decompose (5.3) into
smaller problems that can be independently solved. Subsequently, by replacing matrix
M(y) by a block diagonal matrix M̂(y). Afterwards, the constraint M(y) ⌫ 0 is substi-
tuted by a set of constraints which imposes that each submatrix of M̂(y) be semidefinite
positive.

5.3.1.1 Partitioning

The partitioning of problem (5.3) is accomplished by using the methodologies
described in section 4.4. All considerations established in that section are still valid.
Thus, consider the inequality constraint set J = {J g,v

⇡ ,J l
⇡,J�}, where J g,v

⇡ is the set of
power generation and bus voltage constraints. Hence, problem (5.3) can be partitioned
in the following way:

1. Determine the constraint set J = {J g,v
⇡ ,J l

⇡,J�};

2. By using contingency-based partitioning, it is possible to define the constrain set
J⇡(k) = {J g,v

⇡ (k),J l
⇡(k)}, where k is the contingency index;

a) By using line-based partitioning, solve (5.3) for J l
⇡(k), where k = 0, . . . , nc.

Define each umbrella set identified after solving it as U l
k;

b) Consider the constraint set J̃ ⇡(k) = {J g,v
⇡ (k),U l

k}. Solve problem (5.3) for
each J̃ ⇡(k), where k = 0, . . . , nc. The output of each iteration is the umbrella
set Ũk;

c) Set an initial umbrela set: Ũ
↵
=

S

Ũk;

3. Define J̃ ↵ = {Ũ
↵
,J�};

4. By using security-based partitioning, we can obtain the constraint set J̃ ↵(k) =

{Ũ
↵
(0), Ũ

↵
(k),J�(k)};

5. Solve problem (5.3) for each J̃ ↵(k), where k = 1, . . . , nc. The umbrella set deter-

mined by the solution of the problem is Ũ
�
(k);

6. The approximate umbrella constraint set is Ũ =
S

Ũ
�
(k);
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7. If an exact approximation is required, solve problem (5.3) by considering only the
constraints in Ũ . The solution is the original problem exact umbrella set U .

Notice that two approximate umbrella sets are obtained: Ũ
↵

and Ũ . It is expected
that the cardinality of Ũ

↵
be considerably lower than that of J . This is due to the fact

that the partitioning in step 2 splits the SCOPF problem into nc + 1 OPF problems, each
one with a different network characteristic due to the contingency or pre-contingency.
Thus, Ũ

↵
is the set of all umbrella constraints for all nc + 1 OPF problems. Therefore,

it is expected that step 2 to be the most impactful step in the partitioning method.
Simulations have shown that the benefits of steps 3 to 7 are marginal, in comparison to
steps those of 1 to 2.

5.3.1.2 Sparsity Exploitation

One difficulty faced in solving large scale SDP problems is that the moment matrix
M(y) is fully dense, even when all coefficients matrices Aj in the SDP problem (3.11)
are sparse [43]. One approach reduce the number of variables of the SDP problem is to
solve a matrix completion problem for M(y).

The objective of the matrix completion problem is to determine whether partially
specified matrices can be completed to fully specified matrices satisfying certain desired
properties.

Consider the induced subgraph of an undirected graph G = (V,E), where V is
a set of nodes and E a set of edges, being of the form H = (U, F ) where U ✓ V and
F := {ij 2 E : i, j 2 U}. As the moment matrix is a partial semidefinite matrix, there
is a matrix completion if and only if it has a sparsity pattern expressed by a chordal
graph, H [44]. In the case of the SDP problem, the goal is to determine a block diagonal
matrix M̂(y) that is semidefinite positive if and only if the moment matrix also is. If
we can find M̂(y), then the constraint M(y) ⌫ 0 can be replaced by a set of constraints
imposing that the submatrices in the diagonal of M̂(y) be semidefinite positive, which
can substantially reduce the number of variables in the problem.

To obtain M̂(y) it is necessary to know the sparsity structure of the original prob-
lem, that is, to derive a symmetric zero-one matrix, R, with number of rows/columns
equal to the number of variables of the original problem, and with Rij = 1 if and only
if variables xi and xj appear together in a given constraint or in the objective function
of this problem. For the UCD-SCOPF problem, R is obtained from the bus admittance
matrices of the system, Y(k), defined for every contingency state, k. The reason for
such choice is that a nonzero element in the ith line and jth column of Y(k), determines
which variables e

(k)
i , e(k)j , f (k)i and f

(k)
j appear together in a constraint of the SCOPF

problem.
For the UCD-SCOPF problem, it is also necessary to indicate whether a given slack

variable appear together with variables e
(k)
i , e(k)j , f (k)i or f

(k)
j in the same constraint.

However, as a particular slack variable is assigned to each constraint of (5.2), to obtain
matrix R for the UCD problem, first of all, R is derived using the bus admittance
matrices. Subsequently, new rows/columns are added to R, each one corresponding to
a slack variable of (5.2), and new nonzero elements are introduced in R at the positions
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corresponding the variables e(k)i , e(k)j , f (k)i or f (k)j that appear in the same constraint as
the slack variable. R is the adjacency matrix of G = (V,E).

For demonstration purposes, consider the example (3.43). We want to check if the
upper and lower voltage limit inequality are umbrella or not. The UCD-SCOPF problem
has twice the number of constraints of (3.43) plus 2 additional constraints:

w1
e2
2

+w1
f2
2

+ 1.1025 + s1 � 0, (5.7a)

�w2
e2
2

�w2
f2
2

+ 0.9025 + s2 � 0, (5.7b)

where the variable vector is [w1,w2, s1, s2] and has size 6. This is due to the fact that w1

and w2 each has size 2.
To show the sparsity of the problem, consider the Ȳ matrix. As the constraints

of (2.49) appear twice in the UCD-SCOPF, we can consider that we have two OPF
problems. Thus, we create a block diagonal matrix, where each submatrix is derived
from the admittance matrix of the system, Ȳ, by substituting nonzero elements of Ȳ by
1:

2

6

6

6

4

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

3

7

7

7

5

(5.8)

Then, we add to the block diagonal matrix in (5.8) two rows and columns corre-
sponding to s1 and s2. To each line i of the new columns (columns 5 and 6) corresponds
a variable in w1 or w2. The component at position (i, 6) is set to 1 if the corresponding
variable appears together with s1 in a constraint of the problem. Similar procedure is
adopted to complete column 6. Finally, as the matrix is symmetric, two new rows are
set equal to the two new columns. The final matrix is:

R =

2

6

6

6

6

6

6

6

4

1 1 0 0 1 0

1 1 0 0 1 0

0 0 1 1 0 1

0 0 1 1 0 1

1 1 0 0 1 0

0 0 1 1 0 1

3

7

7

7

7

7

7

7

5

(5.9)

Once R is obtained, the matrix completion problem can be solved. As M(y) is
a partial semidefinite matrix, there is a matrix completion if and only if it has sparsity
pattern expressed by a chordal1 graph [44]. However, if M(y) does not satisfy the
requirements of being expressed via chordal graph, there are many algorithms to deter-
mine and add the number of necessary edges to obtain a chordal graph [44]. In this

1A chordal graph is one in which all cycles of four or more vertices have a chord,
which is an edge that is not part of the cycle but connects two vertices of the cycle.
Equivalently, every induced cycle in the graph should have exactly three vertices.
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Figure 5.3: The graph G plot.

study, we use the decomposing algorithm introduced in [45]. To show case how it works,
let’s use it on example (3.43). Remember that example (3.43) has a sparse structure R

derived earlier, and it is the adjacency matrix of the graph G, shown by Fig. 5.3. The

variables e
(k)
i , e(k)j , f (k)i , f (k)j , s1, and s2 are represented by nodes 1, 2, 3, 4, 5, and 6,

respectively.
The algorithm first solves the minimum fill-in problem of graph G using the sparse

structure. That is, it finds a triangulation of a graph that minimizes the number of added
edges [46]. After identifying the node with the minimum fill-in, the triangulation is
stored (called bag, B) and the node is removed from the graph. Repeat this process until
the all nodes were accounted for. This means that at least the last bag (Bp) have only
one node. The identified bags are shown by Fig. 5.4.

For illustrative purposes, if we add an edge linking nodes 2 and 4, almost all the
bags will be the same, except that instead of a bag with only node 5, there will be one
with nodes 2 and 4.

Now let each bag (Bi) act as an index of M(y)’s elements to create a submatrix.
This means that the M̂(y) matrix is:

M̂(y) =

2

6

6

6

4

M(y){B1,B1} 0 · · · 0

0 M(y){B2,B2} · · · 0
... . . .
0 · · · M(y){Bp,Bp}

3

7

7

7

5

. (5.10)

Concluding the example shown, the original SDP problem had a 6 by 6 moment
matrix. This means we would have to consider 21 lifted variables. By decomposing the
problem into 6 small matrices, we now only have 12 variables. For completeness sake, the
submatrices are as follows: M(y){B1,B1} is a 3 by 3 matrix composed by rows/columns
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Figure 5.4: The bags of graph G.

1,2, and 5 of M(y); M(y){B2,B2} is a 2 by 2 matrix composed by rows/columns 2, and
5; M(y){B3,B3} is a 1 by 1 matrix composed by the fifth row and column; M(y){B4,B4}

is a 3 by 3 matrix composed by rows/columns 3,4, and 6 of M(y); M(y){B5,B5} is a 4

by 6 matrix composed by rows/columns 2, and 5; and M(y){B6,B6} is a 1 by 1 matrix
composed by the sixth row and column. Therefore, M̂(y) is a 6 ⇥ 6 block diagonal
matrix.

Finally, if M(y){Bm,Bm} ⌫ 0 for every m 2 {1, . . . , p}, then M(y) is also semidefi-
nite positive. Therefore, the optimal objective value of the SCOPF-UCD does not change
if the constraint M(y) ⌫ 0 is replaced by the equivalent constraints M(y){Bm,Bm} ⌫ 0

for every m 2 {1, . . . , p}.
After solving the SCOPF-UCD problem using this decomposition algorithm, the

moment matrix’s elements that wasn’t considered in the sparse structure matrix R may
have been disregarded by the numerical algorithm. Therefore, the solution matrix is a
partial semidefinite matrix. This means that we can use any well-known polynomial-
time algorithm to fill a partially-known real-valued matrix. The resulting matrix will
have the same rank as the highest rank among all bags [44].

5.3.2 Recovery Method

Consider that problem (5.3) was solved, and at the solution, yj = Ly{wj} and
ysj = Ly{sj}. By solving (5.3), the objective is to determine an umbrella constraint set,
and the same can be said about the recovery method. In other words, it is not in the
scope of the algorithm to recover wj and sj , but to indicate whether or not a constraint
is umbrella.

One way to recover the original’s problem solution is by searching for the local
optimal close to the optimal solution to (5.3). This can be achieved by minimizing the
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difference between the original’s and SDP-UCD’s optimal solutions, while solving for the
same constraints in SDP-UCD. The recovery problem is then:

min
wj

F = 1
2

�

�wj � yj
�

�

subject to hj0(wj)  cj0 , j
0 = 1, . . . ,m,

hj(wj) + sj � cj ,

sj � 0,

(5.11)

where j is the number of the constraint that needs to be tested for, and the starting point
is yj and ysj .

Problem (5.11) is solved by using IPOPT [47] and checks for a feasible solution for
the original problem close to the solution to the lifted one. Another way to look into the
recovery method is that (5.3) provides a starting point to (5.2). As we want a solution
close to SDP’s optimal point, then we solve an adapted (5.2), which is problem (5.11).
Nevertheless, we still have the same problem of identifying whether h(x)j is umbrella or
not by checking sj , as sj can yet be close to zero although the constraint is not umbrella.
Another drawback with of this procedure is the need to calculate sj and wj .

As mentioned before, the main purpose is to obtain the umbrella constraint set.
This can be achieved by modifying (5.11) in the following way:

min
wj

F = 1
2

�

�wj � yj
�

�

subject to hj0(wj)  cj0 , j
0 = 1, . . . ,m, j0 6= j

hj(wj) = cj

(5.12)

However, instead of solving (5.12), we can check its feasibility around the starting
point. If deemed unfeasible, then h(x)j is not an umbrella constraint. However, if judged
possibly feasible, then (5.12) needs to be solved. It is expected that the solution given
by (5.3) is near-feasible, therefore problem (5.12) should have a solution next to the
starting point. If (5.12) converges in a few steps, then the constraint is umbrella. In
case of non-convergence in a predetermined number of steps, then the constraint is not
umbrella.

Moreover, there is no need to solve (5.12) for every j, as we already have informa-
tion regarding sj in the lifted variable ysj . We can check (5.12) feasibility only if ysj is
lower than a user defined tolerance.

Simulations have shown that the recovery method can be improved if a good
starting point is adopted for the algorithm that solves (5.12). As shown in Table 5.1,
the SDP solution may not be of low-rank, i.e. M(y) is not necessarily low-rank at the
solution. As we only need a near-feasible starting point, and the SCOPF is a quadratically
constrained quadratic program, thus a good starting point is the square root of the main
diagonal of M(y) [38].

To better illustrate it, consider the following moment matrix for an SCOPF-UCD
that checks a single constraint:
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As the first element in (5.13) is a constant, the lifted variables of interest are
ye2 = {Ly{e

2
1}, . . . , Ly{e

2
nb
}} and yf2 = {Ly{f

2
1}, . . . , Ly{f

2
nb
}}. Consider the following

lifted variables ye = {Ly{e1}, . . . , Ly{enb
}} and yf = {Ly{f1}, . . . , Ly{fnb

}}.
Now, we can obtain a better starting point by setting:

ereci = (sign(yei)
p

ye2i)i2N (5.14)

freci = (sign(yfi)
p

yf2
i
)i2N (5.15)

where sign(·) is the sign of the variable.
Let xrec = [erec, frec] and xrecj is the vector of variables obtained by solving for

wj , then solve the problem:

min
xj

dev =
X

i

⇣

xji � xrecji

⌘2

subject to hj0(xj)  cj0 , j
0 = 1, . . . ,m, j0 6= j

hj(xj) = cj

(5.16)

After solving (5.16), if the problem is infeasible, then constraint j is not umbrella.
Otherwise, constraint j is umbrella.

5.4 CONCLUSION

This chapter described a new approach to obtain the umbrella constraint set of the
SCOPF problem by using semidefinite programming. It also described how to reduce the
computational cost of solving the SDP problem by the use of some partitioning strategies
and sparsity exploitation. Finally, a procedure was proposed to obtain the umbrella set
from the solution of the SCOPF-UCD problem.

Next chapter will present the results obtained with the SCOPF-UCD algorithm.



6 RESULTS AND DISCUSSIONS

6.1 INTRODUCTION

This chapter showcase the applicability of the SDP-UCD on one illustrative example,
a 34-bus equivalent of the Hydro-Québec system, and the New England test system. All
the power networks are described in Appendix A.

The SDP-UCD problem identifies the umbrella constraints of the nonlinear SCOPF
problem introduced by equation (2.49). The N � 1 security criterion considering line
contingencies was used to formulate the SCOPF problem. To ensure that line contingen-
cies would not result in disconnecting generators, thus defining a double contingency,
the outages of all the lines, with the exception of those connecting generators to the
system, were considered.

The sets of umbrella constraints for the test systems were obtained, after solving
the SDP problem (5.3), by applying the recovery method described in Section 5.3.2.
Therefore, no threshold was used for the value of Ly{s} to determine if a constraint is
umbrella or not, as all constraints were tested in during the recovery method.

The simulations were run in a Ryzen 1600 with 16 Gb of RAM computer via
MATLAB [48]. The SDP problems were modeled with the use of YALMIP [49] and
solved by the MOSEK solvers [50]. In the recovery step, the solution to the nonlinear
problem (5.16) was obtained by the IPOPT solver [47].

6.2 ILLUSTRATIVE EXAMPLE

6.2.1 The Network

The test system used here is the same as in the example in Section 3.4.1. The
SDP-OPF problem is described in details by equation (3.44). Only the intact system was
considered (k = 0). Therefore, the system has nb = 2 buses, nl = 2 transmission lines,
ng = 2 generators, and nc = 0 contingencies. Its diagram is represented by Fig. 3.3. It
should be remembered that, in this example, e1 = 1 and f1 = 0.

By considering the constraints in (3.44), it is possible to formulate the umbrella
identification problem, as shown by (5.3). If we count down the number of constraints
in (3.44), we conclude that there are only 10 constraints to be checked. As the umbrella
identification problem has only 110 constraints in total (102 + 10), it can be solved
without using partition mechanisms.

6.2.2 Results

The nonlinear feasible space of (3.43) is depicted in Fig. 3.4. Fig. 6.1 shows all the
constraints of the OPF problem (3.43) and, in the shaded area, the relaxed feasible set
obtained via SDP (3.44). Furthermore, the arrows indicate the direction of the feasible
space. Each constraint is labelled by a number shown in the figure and the optimal
solution to the nonlinear problem when minimizing e2 is represented by a circle. By
inspecting Fig. 6.1, it is possible to analytically determine that the umbrella set of the
nonlinear problem is composed by: constraints 1, 3, 7, and 10.

88
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Notice that the feasible set of the SDP-OPF contains the feasible set of the nonlinear
OPF problem, as constraint 10 goes through the SDP-OPF feasible space. The values of
the slack variables at the solution to the umbrella identification problem are given in
Table 6.1. In the last columns of this table are presented the umbrella constraints
obtained in the recovery step.
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Figure 6.1: Feasible space for (3.44).

Table 6.1: Results for the illustrative example.

Label Constraints Ly{s} Recovery
1 PG1max

0.0000 Umbrella
2 PG1min

0.5028 -

3 PG2max
0.0000 Umbrella

4 PG2min

0.0455 -

5 QG1max
0.3791 -

6 QG1min

0.1680 -

7 QG2max
0.0000 Umbrella

8 QG2min

0.9064 -

9 V 2
2max

0.0753 -
10 V 2

2min
0.0000 Umbrella

There are some important remarks regarding the solution given in Table 6.1. First,
the umbrella identification problem has correctly detected all the umbrella constraints.
Moreover, all Ly{s} were very close to zero, e.g. for the first constraint, Ly{s} =

4.34 ⇥ 10�5. As shown in Fig. 6.1, constraint 4 is very close to the feasible space, thus
its Ly{s} should be small, but not zero. However, constraint 9 is further away from
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the feasible set than constraint 6, but its Ly{s} is smaller. The reason for that is that
constraint 6 is linear, while 9 is not, thus, distorting the mathematical meaning of Ly{s},
as Ly{s} now is the distance of of the constraint to the feasible space in the lifted space.

Nevertheless, by solving (5.3), 60% of the problem constraints were identified
as not umbrella, thus they are redundant and can be removed from the optimization
problem. By only leaving the umbrella constraints in the nonlinear problem (3.43), we
have the following optimization problem:

min e2

s.t.
�0.8911e2 � 8.9109f2 � 1.1089  0,

�0.8911e2 + 8.9109f2 + 0.8911(e22 + f22 ) + 0.5  0,

�8.9109e2 � 0.8911f2 + 8.4359(e22 + f22 ) + 0.3  0,

�e22 � f22 + 0.9025  0,

(6.1)

The solutions to (6.1) and (3.43) are equal.

6.3 39-BUS EQUIVALENT OF THE NEW ENGLAND NETWORK

6.3.1 The Network

This system has nb = 39 buses, nl = 46 transmission lines, and ng = 10 generators.
Its diagram is shown in Fig. 6.2, where the square and triangle nodes indicate load and
generation buses, respectively.

When solving an SCOPF problem, there are nc = 36 contingency scenarios. The loss
of any of lines 5, 14, 20, 32, 33, 34, 37, 39, 41, and 46 disconnects power generators, thus
their contingencies are neglected. Therefore, we have 4ng(nc + 1) = 1480 generation
limits, 2nb(nc + 1) = 2886 voltage limits, 4(nl � 1)nc + 4nl = 6664 power flow, and
4ngnc = 1440 security constraints, as demonstrated by (2.52). Consequently, we need to
identify which of the JAC = 12470 constraints define the feasible set.

6.3.2 Results

For this system, there are over 150 million (J 2
AC+JAC) constraints to be identified

as umbrella or not. Therefore, the contingency-based and line-based partitioning are
required to solve this problem. Table 6.2 summarizes the results after finishing step 2.
All the upper active power generation limits are considered umbrella, as, when they are
enforced, the detection problem is infeasible or run into numerical problems.

According to the Appendix A, line 3 connects buses 2 and 3; line 4 connects buses
2 and 25; line 30 connects buses 17 and 18; line 40 connects buses 25 and 26; and line
42 connects buses 26 and 27. Among the constraints identified as umbrella in Table
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Figure 6.2: Network diagram for the New England system.

Table 6.2: Results after step 2 for the New England system.

Constraint tested # of Constraints # of Umbrella Reduction
Upper voltage 1443 566 60.78%

Lower voltage 1443 625 56.69%

Lower active power 370 177 52.16%

Upper reactive power 370 328 11.35%

Lower reactive power 370 317 14.32%

Upper direct power flow 1666 53 96.82%

Lower direct power flow 1666 0 100.00%

Upper reverse power flow 1666 88 94.72%

Lower reverse power flow 1666 0 100.00%

6.2, the upper direct power flow umbrella constraints are the following: the limit on
line 3; and the limit on lines 4, 40, and 42, which become umbrella when line 3 is
removed. The other power flow limits that are considered umbrella are associated with
the reduction of the capacity of transferring power between a generator an a load after
given contingencies.

From Table 6.2 we see that the cardinality of J⇡ is reduced by 59.14%, as
S

U l
k has

141 constraints (53 + 88). Therefore, J̃ ⇡ has cardinality of 4, 507 (1, 480 + 2, 886 + 141).
Finally, the Ũ

↵
has 2524 “umbrella” constraints (as an approximation), a reduction of

77.12% from the total number of constraints in J⇡. This second step in the partitioning
strategy required 77 hours to be completed. This can be broken down into almost 76
hours to model plus 37 minutes to solve the problem.

Table 6.3 contains the percentage of the constraints with the Ly{s} value higher
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than the highest Ly{s} associated with an umbrella constraint. Comparing the results
obtained for the upper voltage limits in Tables 6.3 and 6.2, the adoption of a threshold
is effective in reducing the number of non-umbrella constraints. The threshold is set at
0.0053, as it is the highest value of Ly{y} associated with an umbrella constraint in the
upper voltage limits constraint set. Nonetheless, as we can observe in Fig. 6.3, there is
a large concentration of non umbrella constraints near this value. This indicates that
the threshold is sensitive for small values, i.e. a small change to its value implies a large
change in the number of constraints filtered out by it. In this case, 47.75% of all the
lifted slack variables falls in the interval between 0.0053 and 0.05. For comparison, for
40.40% of the lifted slack variables are in the Ly{s}  0.0053 range. Finally, we notice,
in Table 6.3 that most power flow non-umbrella constraints can be properly identified
as such with the use of a threshold.

Table 6.3: Number of non umbrella constraints with Ly{s} higher than the threshold
value for the New England system.

Constraint Threshold % of Constraints over threshold

Upper voltage 5.50⇥ 10�3 59.32%

Lower voltage 2.08⇥ 10�4 0.01%

Lower active power 3.97 0.06%

Upper reactive power 5.32⇥ 10�4 0.00%

Lower reactive power 1.95⇥ 10�5 0.14%

Upper direct power flow 4.70⇥ 10�3 93.04%

Lower direct power flow 0.00 100.00%

Upper reverse power flow 3.69⇥ 10�3 93.28%

Lower reverse power flow 0.00 100.00%

In the case of the lower limits on voltages, active power and reactive power gen-
eration, and also, the upper limits on reactive power generation, as show in Tables 6.6
and 6.3, it is not effective to use thresholds to eliminate non-umbrella constraints. The
histograms of the lifted slack variables associated with the limits on the direct power
flow is shown in Fig. 6.4. A vertical dashed line is inserted in each figure to indicate the
highest value of Ly{s} that is associated with an umbrella constraint identified by the
recovery method. Notice the large number of constraints with large Ly{s}. For example,
the lifted slack variables, Ly{s}, of almost 90% of these limits are above 1. This is better
shown in Table 6.3, where 93.04% of all non-umbrella constraints has a lifted slack vari-
able value above the highest one for an umbrella constraint. By comparing these results
with Table 6.2, it is possible to conclude that constraints further away from the border
of the feasible set are effectively identified as non-umbrella based on the values of the
lifted slack values, Ly{s}. However, the same is not true for constraints associated to
small Ly{s}.

After the second step of the partitioning algorithm (section 5.3.1.1), we obtain
Ũ
↵

. Therefore, J̃ ↵ and J̃ ↵(k) are defined (steps 3 and 4, respectively). Following the
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Figure 6.3: Histogram of Ly{s} values for upper voltage limit constraint for the New
England system.

Figure 6.4: Histogram of Ly{s} values for upper direct power flow constraint.

algorithm, it is now required to identify the umbrella constraints in each J̃ ↵(k) set, for
k = 1, . . . , nc; thus, obtaining Ũ . Table 6.4 summarizes the results from the umbrella
identification problem for Ũ . As expected, the effectiveness in identifying umbrella
constraints has been reduced. This can be explained by the reduction of the feasible set
after introducing the security constraints. The cardinality of Ũ is 3438, a reduction of
72.43% in relation to J . Nevertheless, if comparing only the constraints considered in
Ũ
↵

, there is a reduction of only 13.67%. The time required to finish these steps (3� 6)
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is 28 hours to model plus 40 minutes to solve the umbrella identification problem.

Table 6.4: Results after steps 3− 6 for the New England system.

Constraint tested # of Constraints # of Umbrella Reduction
Upper voltage 566 527 6.89%

Lower voltage 625 506 19.04%

Lower active power 177 82 53.67%

Upper reactive power 328 313 4.57%

Lower reactive power 317 303 4.42%

Upper security active power 360 312 13.33%

Lower security active power 360 317 11.94%

Upper security reactive power 360 317 11.94%

Lower security reactive power 360 313 13.06%

Upper direct power flow 53 25 52.83%

Lower direct power flow 0 0 0.00%

Upper reverse power flow 88 53 39.77%

Lower reverse power flow 0 0 0.00%

To test if the umbrella identification problem eliminated an umbrella constraint by
mistake, problem (2.32) is solved considering only the umbrella constraints in Table 6.4.
After solving the nonlinear SCOPF problem, no constraint in J is violated.

6.4 34-BUS EQUIVALENT OF THE HYDRO-QUÉBEC NETWORK

6.4.1 The Network

This system has nb = 34 buses, nl = 64 transmission lines, and ng = 20 generators.
Its single-line diagram is shown in Fig. 6.5, where the square and triangle nodes indicate
a load and generation buses, respectively.

When solving an SCOPF problem, there are nc = 58 contingency scenarios. This
is due to the fact that the loss of one of the lines 1, 2, 3, 4, 5, and 6 disconnects power
generators, thus creating double contingencies. In addition, if line 28 is eliminated,
we have an infeasible problem, as bus 29 would be disconnected from the network.
Therefore, we have 4ng(nc + 1) = 4720 generation limits, 2nb(nc + 1) = 4012 voltage
limits, 4(nl � 1)nc + 4nl = 14872 power flow, and 4ngnc = 9280 security constraints, as
demonstrated by (2.52). Consequently, we need to identify which of the JAC = 32884

constraints define the feasible set.

6.4.2 Results

To obtain the umbrella constraints of this problem, it is necessary to consider
(328842 + 32884) constraints, as shown in section 4.2. This results in over 1 billion con-
straints. Due to its size, the umbrella detection problem is decomposed and partitioned.
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Figure 6.5: Network diagram for the Hydro-Québec system.

As shown in section 5.3.1.1, the first umbrella set to be obtained is U l
k (step 2.a).

For that, contingency-based and line-based partitioning are used. At the beginning of
step 2.a, the cardinality of J l

⇡(k) is 256 for k = 0, and 252 for k > 0. Therefore, for
each k, over 100 thousand (400 ⇥ 252 + 252) constraints are tested, where 400 is the
cardinality of J⇡(k) (i.e., the voltage, power generation, and power flow constraints
for the contingency state k). This results in the elimination of all but one power flow
constraint (99.99% reduction). The only umbrella constraint in J l

⇡ is the maximal limit
on the reverse power flow over the line 20 for k = 26. Its slack variable value is 0.027

and it is identified as umbrella by the recovery method.
The next step (2.b) is to obtain the umbrella set for J̃ ⇡(k). The algorithm indicates

that J̃ ⇡(k) has cardinality equal to 148 for 8k 6= 26 (400 � 252, where 400 and 252

are the cardinalities of J⇡(k) and J l
⇡(k), respectively), and 149 for k = 26 (as it is

the only contingency state with a power flow constraint), totalling 8733 constraints
(148nc + 149). In step 2.c, solving the SDP-UCD problem for all J̃ ⇡(k) constraint sets,
the number of identified umbrella constraints (Ũ

↵
) is 7259 (15.45% reduction from

S

J̃ ⇡(k)). The summary of the results is given in Table 6.5. The lower active power
limit are not included in this table as, when they are tested, the umbrella detection
problem is unfeasible.

At the end of step 2, the number of constraints is reduced from 32884 to 16539

(where 7259 is from Ũ
↵

and 9280 are the security constraints), or a 49.71% decrease in
the number of constraints.

To show the importance of a recovery method, Fig. 6.6, 6.7, 6.8, 6.9, and 6.10
represent the histograms of the values of Ly{s} for each constraint type: upper and
lower voltage limits, upper active power generation limits, and upper and lower reactive
power limits, respectively. A vertical dashed line is inserted in each figure to indicate
the highest value of Ly{s} that is associated with an umbrella constraint identified by
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Table 6.5: Results after step 2.c for the Hydro-Québec system.

Constraint tested # of Constraints # of Umbrella Reduction
Upper voltage 1972 1372 30.43%

Lower voltage 1972 1479 25.00%

Upper active power 1160 1160 0.00%

Upper reactive power 1160 1043 10.09%

Lower reactive power 1160 1044 10.00%

Upper direct power flow 3718 0 100.00%

Lower direct power flow 3718 0 100.00%

Upper reverse power flow 3718 1 99.99%

Lower reverse power flow 3718 0 100.00%

the recovery method.

Figure 6.6: Histogram of Ly{s} values for upper voltage limit constraint.

Consider that we set the threshold for Ly{s} equal to the highest value associated
to an umbrella constraint (i.e., the optimal threshold value). If Ly{s} value of a given
constraint is higher than the threshold, then the constraint is not umbrella. Table 6.6
contains the percentage of the constraints identified as non umbrella based on the Ly{s}

value. By comparing the results with Table 6.5, it is possible to conclude that to adopt
such threshold value is not an efficient way to determine the umbrella constraint set.
For example, there is a 30.43% reduction in the number of upper voltage constraints by
using the recovery method; but only 5.22% when using the threshold value for Ly{s}.

As the Hydro-Québec network has a very tight feasible region [51], it is expected
that almost all the constraints would be close to the feasible set, i.e., the slack vari-
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Figure 6.7: Histogram of Ly{s} values for lower voltage limit constraint.

Figure 6.8: Histogram of Ly{s} values for upper active power limit constraint.

ables (or, the associated lifting variables Ly{s}) are small even for the non umbrella
constraints. Nevertheless, the opposite can be true. That is, the value of Ly{s} can
filter-out non umbrella constraints, instead of identifying the umbrella ones. This is due
to the fact that all the Ly{s} values are very small for constraints close to or which form
the border of the feasible set. Thus, by setting a high enough threshold for Ly{s}, we
can filter-out some non-umbrella constraints. As all umbrella constraints have a small
value of Ly{s} associated to it. As an example, Fig. 6.11 is the histogram of the values
of Ly{s} associated to the upper reverse power flow limits. If the threshold is set as 1,
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Figure 6.9: Histogram of Ly{s} values for upper reactive power limit constraint.

Figure 6.10: Histogram of Ly{s} values for lower reactive power limit constraint.

then there is a reduction of 99.67% in the number of non umbrella constraints. This
means that it is possible to discard those before solving the recovery method, therefore
reducing the computational cost.

As mentioned earlier, it is possible to say that the Hydro-Québec equivalent system
has a very tight feasible region by comparing tables 6.2 and 6.5. Therefore, further
umbrella identification problems (steps 3 to 7) will not result in a considerable reduction
in the number of constraints to justify its computational cost. To better understand how
demanding the umbrella identification problem is, for this system, to complete step 2.a
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Table 6.6: Number of non umbrella constraints with Ly{s} higher than the threshold
value for the Hydro-Québec system.

Constraint Threshold % of Constraints over threshold

Upper voltage 6.90⇥ 10�3 5.22%

Lower voltage 5.53⇥ 10�4 0.00%

Upper active power 7.67⇥ 10�5 0.00%

Upper reactive power 3.42⇥ 10�5 0.00%

Lower reactive power 3.19⇥ 10�5 0.00%

Figure 6.11: Histogram of Ly{s} values for upper reverse power flow constraint.

of the umbrella detection algorithm, almost 58 hours is required to model the problem
plus 34 minutes to solve it. On the other hand, to model and solve the problem in step
2.b, 23 hours plus 11 minutes are required. Thus, step 2 requires around 82 hours of
processing time.

6.5 CONCLUSION

The UCD-SDP results for three test systems were discussed in this chapter: an
illustrative example, the New England 39-bus equivalent system, and the Hydro-Québec
34-bus equivalent system. In the illustrative example, the lifted slack variable values
were consistent with the figure of the feasible space, except for the one associated with
the nonlinear constraint. This behavior is also present in the other two test systems, as
a consequence of the SDP relaxation. The recovery method demonstrated capable of
solving this issue.

Next chapter discuss the thesis conclusions and proposes future work based on this
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work.



7 CONCLUSION

7.1 INTRODUCTION

The problem analyzed in this thesis is introduced in Chapter 2 by the formulations
of the OPF, SC-LOPF, and SCOPF problems. These are very large problems. Many of
the constraints of these problems are redundant; that is, they can be eliminated from
the formulations without affecting the optimal solutions. The constraints that define the
feasible set of these problems are denoted umbrella constraints. Although procedures
can be found in the literature that calculate the umbrella constraints of the SC-LOPF, the
detection of the umbrella constraints of the nonlinear SCOPF is still an open problem.
This thesis aims at contributing to the resolution of this problem. For that, it relaxes
the umbrella detection problem via SDP. The relaxed problem (SDP-UCD) is formulated
using YALMIP and solved by MOSEK.

The the solution to the SDP-UCD problem need to be recovered to obtain a proper
umbrella constraint set. The proposed recovery method is based on the resolution of
problem (5.12). Due to the increase in computational complexity, Section 5.3.1 intro-
duces partitioning and decomposition strategies to decrease the number of constraints
in the SDP-UCD problem.

7.2 DISCUSSION ON THE PROPOSED METHOD

The proposed SDP-UDC problem is capable of correctly identifying the umbrella
constraints of the OPF and SCOPF problems. To showcase how the optimization problem
identifies the umbrella constraints, an illustrative example is analyzed in Chapter 6.

The umbrella constraints of the SCOPF problem were also identified for the New
England and the Hydro-Québec systems. It can be noticed that the SDP-UCD results
by themselves are quite conservative, i.e. many non-umbrella constraints have a small
lifted slack variables. As mentioned by [4], in the linear umbrella discovery constraint
problem, the slack variable is the distance between the linear constraint and the border
of the feasible space. However, after lifting a nonlinear constraint to linearize it, this
is not necessarily true. The reason is that the lifted slack variable is now the distance
between the lifted space border and the lifted constraint. However, this may not have
a direct correlation with the nonlinear feasible space. Such property is better shown by
the illustrative example, where linear constraint 6, although closer to the feasible space
border, has an associated lifted slack variable larger than that of constraint 9.

As the lifted slack variable does not necessarily correlates to the nonlinear feasible
space. If we only check its value to determine whether the constraint is umbrella or
not, we would have a very conservative umbrella set. That is, there would be many
non-umbrella constraints incorrectly identified as umbrella. This is expected, as the
semidefinite problem computes the global lower limit; in other words, the objective
function at the SDP solution is either equal or lower than at the global optimum. As
the objective function is the sum of the lifted squared slack variables, their values tend
to be lower than expected. Another way to see how conservative the SDP-UCD is the
following: tables 6.3 and 6.6 indicates the number of nonlinear constraints that have
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Ly{s} higher than the highest lifted slack variable associated to an umbrella constraint. If
we remove all those constraints by considering them non-umbrella, the overall reduction
of constraints is significantly smaller than the one obtained after the recovering step,
shown in tables 6.2 and 6.5.

Due to the SDP conservative solution, it is necessary to recover the solution in
order to obtain a reduced umbrella set. This study proposes to solve a nonlinear recovery
problem using as starting point the solution of the SDP-UCD problem. By recovering
the solution, it is clear that there is a large number of non-umbrella constraints with
small lifted slack variables. For the test systems, the recovery method seems to be able
to identify all the umbrella constraints, as when solving the SCOPF problem with only
the identified umbrella set the solution is the same as that of the full SCOPF problem.
However, it is possible that non-umbrella constraints can still be found in the identified
umbrella set.

This study also shows that, for the test systems, most power flow limits are not
umbrella constraints. This is consistent with the results obtained when solving the linear
umbrella identification problem [4]. There is also a considerable reduction in the num-
ber of constraints after step 2 in the partitioning strategy. Nonetheless, a considerable
computational effort is required to solve the umbrella identification problem. As there is
a significant number of constraints and variables, identifying the umbrella set requires a
considerable amount of system memory. By partitioning the problem, the demand for
memory is reduced, making it possible to solve larger test systems.

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH

This study proposes a new method to obtain the constraints that form the feasible
space border, i.e. the umbrella constraints. Although the method was successfully
applied to small systems, some of its limitations need to be addressed. Therefore, the
proposed future research has the following objectives:

• Reduce the computational cost: as previously mentioned, the SDP-UCD can have
a massive number of constraints even for small problems. Although partitioning
methods were adopted in this thesis, it is still costly to obtain check for all umbrella
constraints;

• Introduce a pre-processing step: it may be possible to identify and remove some
non-umbrella constraints before solving the SDP-UCD problem. For example, one
can analyze the problem analytically to eliminate a constraint before solving the
SDP-UCD problem. Another possible approach is to use facial reduction in the
SDP-UCD problem as a pre-processing step;

• Improve the recovery method: in spite of being effective, the proposed recovery
method is computationally costly. This is due to the fact that it must be run for each
umbrella constraint tested. The number of constraints that needs to be tested can
be reduced through the use of a threshold for the lifted slack variables. However,
as mentioned in the previous chapter, many constraints are expected to have small
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Ly{s} values. Sometimes the same constraint is tested more than once when
partitioning is used, thus bringing the number of nonlinear optimization problem
to the thousands;

• Propose a method to obtain a low-ranking solution to the SDP-UCD problem: the
lower the rank of the relaxed solution, the closer this solution is to the feasible set
of the nonlinear UCD problem. This means that non-umbrella constraints will be
known with more certainty and, thus be eliminated before the recovery step;

• Use other relaxation methods to solve the umbrella detection problem: this study
proposes the use of SDP relaxation in order to identify its umbrella constraints.
Although effective, this procedure proved to be computationally costly. There are
many other convexification methods that may be used for this same purpose, e.g.
convex conic programming.
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TESTS SYSTEMS DATA

REMARKS

All systems used in this study and present here had the following characteristics:

• All data is in per-unit (p.u.) with the base power of 100 MVA,

• All SVCs were converted to SCs,

• The active power flow limits were chosen in a way to help converge and show the
effects of the algorithm proposed in this study.

2-BUS SYSTEM

Table A.1: Line data for the 2-bus system.

Line From To rlm xlm bsh Flmmax

1 1 2 0.020 0.200 0.500 1

2 1 2 0.025 0.250 0.450 1

Table A.2: Generator data for the 2-bus system.

Bus PGmax
PGmin

QGmax
QGmin

1 2.00 0.00 0.80 �0.80

2 1.50 0.00 0.70 �0.70

Table A.3: Bus data for the 2-bus system.

Bus Vmax Vmin PD QD

1 1.05 0.95 0.00 0.00

2 1.05 0.95 2.00 1.00
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34-BUS EQUIVALENT OF THE HYDRO-QUÉBEC NETWORK

Table A.4: Line data for the Hydro-Québec system.

Line From To rlm xlm bsh Flmmax

1 1 28 0.00005 0.00269 0.0000 1.20

2 2 23 0.00004 0.00643 0.1360 1.00

3 3 25 0.00010 0.00444 0.0000 1.00

4 4 30 0.00003 0.00226 �0.0340 1.50

5 5 11 0.00014 0.00898 �0.0610 0.77

6 6 12 0.00014 0.00581 0.0000 1.20

7 7 8 0.00008 0.00185 0.7380 0.55

8 7 13 0.00023 0.00681 2.5760 0.45

9 7 14 0.00006 0.00150 0.6260 1.02

10 7 26 0.00011 0.00314 1.3740 0.50

11 8 19 0.00009 0.00255 1.1230 0.37

12 8 20 0.00055 0.01307 5.5530 0.53

13 8 18 0.00053 0.01493 6.6410 0.46

14 9 10 0.00007 0.00172 0.6890 1.00

15 9 13 0.00023 0.00692 2.8010 1.01

16 9 13 0.00023 0.00692 2.8010 1.01

17 9 11 0.00078 0.02295 9.8210 0.30

18 9 11 0.00078 0.02295 9.2810 0.30

19 9 11 0.00094 0.02253 9.9290 0.31

20 10 12 0.00101 0.02434 10.878 0.28

21 10 20 0.00010 0.00228 0.9530 1.00

22 11 12 0.00013 0.00379 1.5460 1.00

23 11 15 0.00045 0.01042 4.4020 0.67

24 11 15 0.00045 0.01042 4.4020 0.67

25 12 15 0.00048 0.01126 4.7660 0.62

26 12 21 0.00068 0.01517 6.4880 0.46

27 13 14 0.00027 0.00851 3.6790 0.82

28 13 29 0.00015 0.00426 1.8390 1.00

29 14 22 0.00009 0.00279 1.2250 1.00

30 15 16 0.00058 0.01351 5.7550 0.51

31 15 16 0.00058 0.01351 5.7540 0.51

32 15 16 0.00058 0.01351 5.7540 0.51

33 16 30 0.00060 0.01411 6.0180 0.49

34 16 30 0.00060 0.01411 6.0180 0.49

35 16 30 0.00060 0.01411 6.0180 0.49

36 17 18 0.00054 0.01608 7.2820 0.43

37 17 18 0.00054 0.01610 7.2670 0.43
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Table A.5: Line data for the Hydro-Québec system (continuation).

Line From To rlm xlm bsh Flmmax

38 17 18 0.00054 0.01647 7.5980 0.42

39 17 32 0.00044 0.01311 5.8550 0.53

40 17 32 0.00044 0.01311 5.8550 0.53

41 17 32 0.00049 0.01422 6.5520 0.49

42 17 34 0.00012 0.00345 1.5130 1.00

43 18 19 0.00050 0.01513 6.8060 0.46

44 18 31 0.00037 0.01059 4.8650 0.66

45 19 22 0.00019 0.00551 2.4260 1.27

46 19 31 0.00016 0.00471 2.0640 1.48

47 20 21 0.00052 0.01149 4.8620 0.60

48 20 26 0.00045 0.01083 4.6110 0.64

49 20 27 0.00053 0.01561 6.7450 0.44

50 21 27 0.00024 0.00709 3.1110 0.80

51 23 24 0.00022 0.00622 2.8050 0.90

52 23 28 0.00032 0.00942 4.1280 0.74

53 24 25 0.00025 0.00706 3.1820 0.90

54 24 25 0.00025 0.00706 3.1820 0.90

55 24 33 0.00045 0.01318 5.8770 0.53

56 24 33 0.00045 0.01318 5.8770 0.53

57 27 34 0.00039 0.01155 5.1380 0.60

58 27 34 0.00039 0.01155 5.1380 0.60

59 28 32 0.00055 0.01649 7.4560 0.42

60 28 32 0.00055 0.01649 7.4580 0.42

61 28 32 0.00055 0.01649 7.5310 0.42

62 32 33 0.00007 0.01900 0.8560 0.36

63 33 34 0.00048 0.01387 6.3980 0.50

64 33 34 0.00048 0.01387 6.3980 0.50
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Table A.6: Generator data for the Hydro-Québec system.

Bus PGmax
PGmin

QGmax
QGmin

1 53.7000 0 10.0000 �3.0000

2 23.2000 0 10.0000 �3.0000

3 26.1000 0 10.0000 �3.0000

4 47.4000 0 10.0000 �3.0000

5 15.4000 0 10.0000 �3.0000

6 50.0000 0 10.0000 �3.0000

18 0 0 10.0000 �3.0000

27 0 0 13.4650 �6.5700

9 0 0 6.9300 �7.0350

10 0 0 3.4650 �3.5700

11 0 0 3.4650 �3.5700

12 0 0 3.4650 �3.5700

15 0 0 6.9300 �7.0350

16 0 0 8.6625 �8.7150

18 0 0 3.4650 �3.5700

23 0 0 3.4650 �3.5700

28 0 0 3.4650 �3.5700

32 0 0 3.4650 �3.5700

33 0 0 3.4650 �3.5700

34 0 0 3.4650 �3.5700
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Table A.7: Bus data for the Hydro-Québec system.

Bus Vmax Vmin PD QD

1 1.05 0.95 0.0000 0.0000

2 1.05 0.95 0.0000 0.0000

3 1.05 0.95 0.0000 0.0000

4 1.05 0.95 0.0000 0.0000

5 1.05 0.95 0.0000 0.0000

6 1.05 0.95 0.0000 0.0000

7 1.05 0.95 32.0326 4.0382

8 1.05 0.95 27.8528 0.7733

9 1.05 0.95 24.7537 �6.5129

10 1.05 0.95 9.1963 �0.0082

11 1.05 0.95 0.0000 0.0000

12 1.05 0.95 0.0000 0.0000

13 1.05 0.95 11.6150 0.4902

14 1.05 0.95 21.3966 0.1042

15 1.05 0.95 2.4618 0.4492

16 1.05 0.95 1.1464 0.2127

17 1.05 0.95 3.7194 �0.7294

18 1.05 0.95 0.0000 0.0000

19 1.05 0.95 17.4624 �1.0848

20 1.05 0.95 7.8867 �0.2046

21 1.05 0.95 4.7270 1.9766

22 1.05 0.95 8.0475 0.5300

23 1.05 0.95 0.0000 0.0000

24 1.05 0.95 0.0000 0.0000

25 1.05 0.95 0.0000 0.0000

26 1.05 0.95 11.1031 �0.4204

27 1.05 0.95 0.0000 0.0000

28 1.05 0.95 0.0000 0.0000

29 1.05 0.95 12.0500 1.1311

30 1.05 0.95 0.6000 0.1100

31 1.05 0.95 2.6449 0.3130

32 1.05 0.95 0.0000 0.0000

33 1.05 0.95 0.0000 0.0000

34 1.05 0.95 0.0000 0.0000
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39-BUS EQUIVALENT OF THE NEW ENGLAND NETWORK

Table A.8: Line data for the 39-bus system.

Line From To rlm xlm bsh Flmmax

1 1 2 0.0035 0.0411 0.6987 6

2 1 39 0.0010 0.0250 0.7500 10

3 2 3 0.0013 0.0151 0.2572 5

4 2 25 0.0070 0.0086 0.1460 5

5 2 30 0 0.0181 0 9

6 3 4 0.0013 0.0213 0.2214 5

7 3 18 0.0011 0.0133 0.2138 5

8 4 5 0.0008 0.0128 0.1342 6

9 4 14 0.0008 0.0129 0.1382 5

10 5 6 0.0002 0.0026 0.0434 12

11 5 8 0.0008 0.0112 0.1476 9

12 6 7 0.0006 0.0092 0.1130 9

13 6 11 0.0007 0.0082 0.1389 4

14 6 31 0 0.0250 0 18

15 7 8 0.0004 0.0046 0.0780 9

16 8 9 0.0023 0.0363 0.3804 9

17 9 39 0.0010 0.0250 1.2000 9

18 10 11 0.0004 0.0043 0.0729 6

19 10 13 0.0004 0.0043 0.0729 6

20 10 32 0 0.0200 0 9

21 12 11 0.0016 0.0435 0 5

22 12 13 0.0016 0.0435 0 5

23 13 14 0.0009 0.0101 0.1723 6

24 14 15 0.0018 0.0217 0.3660 6

25 15 16 0.0009 0.0094 0.1710 6

26 16 17 0.0007 0.0089 0.1342 6

27 16 19 0.0016 0.0195 0.3040 6

28 16 21 0.0008 0.0135 0.2548 6

29 16 24 0.0003 0.0059 0.0680 6

30 17 18 0.0007 0.0082 0.1319 6

31 17 27 0.0013 0.0173 0.3216 6

32 19 20 0.0007 0.0138 0 9

33 19 33 0.0007 0.0142 0 9

34 20 34 0.0009 0.0180 0 9

35 21 22 0.0008 0.0140 0.2565 9

36 22 23 0.0006 0.0096 0.1846 6

37 22 35 0 0.0143 0 9
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Table A.9: Line data for the 39-bus system (continuation).

Line From To rlm xlm bsh Flmmax

38 23 24 0.0022 0.0350 0.3610 6

39 23 36 0.0005 0.0272 0 9

40 25 26 0.0032 0.0323 0.5310 6

41 25 37 0.0006 0.0232 0 9

42 26 27 0.0014 0.0147 0.2396 6

43 26 28 0.0043 0.0474 0.7802 6

44 26 29 0.0057 0.0625 1.0290 6

45 28 29 0.0014 0.0151 0.2490 6

46 29 38 0.0008 0.0156 0 12

Table A.10: Generator data for the 39-bus system.

Bus PGmax
PGmin

QGmax
QGmin

30 10.40 0.00 4.00 1.40

31 6.46 0.00 3.00 �1.00

32 7.25 0.00 3.00 1.50

33 6.52 0.00 2.00 0

34 5.08 0.00 1.00 0

35 6.87 0.00 3.00 �1.00

36 5.80 0.00 2.00 0

37 5.64 0.00 2.00 0

38 8.65 0.00 3.00 �1.50

39 11.00 0.00 3.00 �1.00
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Table A.11: Bus data for the 39-bus system.

Bus Vmax Vmin PD QD

1.0000 1.0600 0.9400 0.9760 0.4420

2.0000 1.0600 0.9400 0 0

3.0000 1.0600 0.9400 3.2200 0.0240

4.0000 1.0600 0.9400 5.0000 1.8400

5.0000 1.0600 0.9400 0 0

6.0000 1.0600 0.9400 0 0

7.0000 1.0600 0.9400 2.3380 0.8400

8.0000 1.0600 0.9400 5.2200 1.7660

9.0000 1.0600 0.9400 0.0650 �0.6660

10.0000 1.0600 0.9400 0 0

11.0000 1.0600 0.9400 0 0

12.0000 1.0600 0.9400 0.0853 0.8800

13.0000 1.0600 0.9400 0 0

14.0000 1.0600 0.9400 0 0

15.0000 1.0600 0.9400 3.2000 1.5300

16.0000 1.0600 0.9400 3.2900 0.3230

17.0000 1.0600 0.9400 0 0

18.0000 1.0600 0.9400 1.5800 0.3000

19.0000 1.0600 0.9400 0 0

20.0000 1.0600 0.9400 6.8000 1.0300

21.0000 1.0600 0.9400 2.7400 1.1500

22.0000 1.0600 0.9400 0 0

23.0000 1.0600 0.9400 2.4750 0.8460

24.0000 1.0600 0.9400 3.0860 �0.9220

25.0000 1.0600 0.9400 2.2400 0.4720

26.0000 1.0600 0.9400 1.3900 0.1700

27.0000 1.0600 0.9400 2.8100 0.7550

28.0000 1.0600 0.9400 2.0600 0.2760

29.0000 1.0600 0.9400 2.8350 0.2690

30.0000 1.0600 0.9400 0 0

31.0000 1.0600 0.9400 0.0920 0.0460

32.0000 1.0600 0.9400 0 0

33.0000 1.0600 0.9400 0 0

34.0000 1.0600 0.9400 0 0

35.0000 1.0600 0.9400 0 0

36.0000 1.0600 0.9400 0 0

37.0000 1.0600 0.9400 0 0

38.0000 1.0600 0.9400 0 0

39.0000 1.0600 0.9400 11.0400 2.5000
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