
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Rômulo Augusto Oliveira Cruz Bittencourt de Almeida

Heuristic phishing detection based on web crawling and user behaviour
monitoring with a deterministic approach for cybersecurity

Florianópolis
2022

Rômulo Augusto Oliveira Cruz Bittencourt de Almeida

Heuristic phishing detection based on web crawling and user behaviour
monitoring with a deterministic approach for cybersecurity

Dissertação submetida ao Programa de Pós-Graduação
em Ciência da Computação da Universidade Fed-
eral de Santa Catarina para a obtenção do título de mestre
em Ciências da Computação.
Supervisor:: Prof.(a)Carla Merkle Westphall, Dra.

Florianópolis
2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Almeida, Rômulo Augusto Oliveira Cruz Bittencourt de
 Heuristic phishing detection based on web crawling and
user behaviour monitoring with a deterministic approach
for cybersecurity / Rômulo Augusto Oliveira Cruz
Bittencourt de Almeida ; orientadora, Carla Merkle
Westphall, 2022.
 93 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2022.

 Inclui referências.

 1. Ciência da Computação. 2. Phishing. 3. Vetores de
Ataque. 4. Engenharia Social. 5. Comportamento do Usuário.
I. Westphall, Carla Merkle. II. Universidade Federal de
Santa Catarina. Programa de Pós-Graduação em Ciência da
Computação. III. Título.

Rômulo Augusto Oliveira Cruz Bittencourt de Almeida

Heuristic phishing detection based on web crawling and user behaviour
monitoring with a deterministic approach for cybersecurity

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca
examinadora composta pelos seguintes membros:

Prof.Eduardo Luzeiro Feitosa, Dr.
Universidade Federal do Amazonas

Prof. Jean Everson Martina, Dr.
Universidade Federal de Santa Catarina

Prof. Maicon Rafael Zatelli, Dr.
Universidade Federal de Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi
julgado adequado para obtenção do título de mestre em Ciências da Computação.

Patricia Della Méa Plentz
Coordenação do Programa de

Pós-Graduação

Prof.(a)Carla Merkle Westphall, Dra.
Supervisor:

Florianópolis, 2022.

This work is dedicated to my mother, Laura Cruz, and
everyone who has positively and negatively impacted my

journey.

ACKNOWLEDGEMENTS

I thank my mother, Laura Cruz, and my family for their constant support and
encouragement in my life. I also thank my wife Ana Collares for her support during my
Master’s period. I thank Professor Carla Westphall for guiding me during the preparation
of this work. All LRG members and colleagues contributed in some way to this research.
Finally, I would like to thank professors Jean Martina, Eduardo Feitosa, and Maicon
Zatelli while integrating my dissertation committee.

“All we have to decide is what to do with the time that is given us.”
(J.R.R. Tolkien, The Fellowship of the Ring, 1937)

RESUMO

Com o aprimoramento das técnicas utilizadas pelos atacantes, a detecção e prevenção
de ameaças como phishing e malware podem representar um problema e desafio com-
putacional. Uma pesquisa recente descobriu que o phishing e a infecção por código
malicioso são as principais ameaças desencadeadas pela engenharia social. Neste
trabalho, são analisados os vetores de ataque que causam essas ameaças, propondo
um método de verificação de strings específicas em URLs e mensagens de e-mail,
que pode ser usado em conjunto com proxies e filtros anti-spam. O método foi imple-
mentado em um cenário experimental e é capaz de detectar a presença dos principais
elementos que têm contato direto com o usuário, tais como: campos de formulário,
redirecionamento de links e arquivos para download. O método proposto foi capaz de
detectar URLs de phishing em tempo real, com precisão de 97,66% e tempo médio
de 30 segundos. Além disso, um novo método de mapeamento do comportamento do
usuário é proposto neste trabalho. Por meio deste, é possível demonstrar que os veto-
res de ataque utilizados em cada etapa da exploração apresentam sempre o mesmo
comportamento, seguindo uma sequência de etapas já conhecida. A estrutura de ma-
peamento pode ser representada por meio de uma máquina de estados finitos (DFA),
onde cada estágio de interação do usuário com um possível vetor de ataque repre-
senta um ponto determinístico da máquina finita. Os resultados obtidos através desta
implementação podem ser utilizados na detecção de manobras maliciosas em tempo
real e na conscientização de usuários em segurança da informação.

Palavras-chave: Phishing. Vetores de Ataque. Engenharia Social. Comportamento do
Usuário.

RESUMO EXPANDIDO

Introdução
Na literatura, o phishing pode ser definido pela criação de páginas falsas na WEB,
onde os criminosos disparam e-mails em massa com os links para estas páginas.
Nestas mensagens os agentes maliciosos fingem ser outros indivíduos ou organiza-
ções aparentemente legítimas, com o intuito de induzir os usuários a fornecer dados
confidenciais. De acordo com (KOYUN; AL JANABI, 2017), os ataques de phishing
também podem ser classificados em: spear phishing, whaling phishing e phishing de
comprometimento de e-mail corporativo.

Ataques de spear phishing referem-se a manobras direcionadas a indivíduos ou grupos
específicos, usando seus nomes para fazer reivindicações ou comunicações falsas. Es-
tas manobras exigem a coleta de informações online sobre a vítima usando técnicas de
engenharia social e espionagem digital. Essas informações geralmente são coletadas
através de varreduras em redes sociais mas também podem ser realizadas através de
softwares como o SET (Social Engineering Toolkit) no Kali Linux (KOYUN; AL JANABI,
2017).

O whaling phishing é também um spear phishing mas além disso visa indivíduos
em altos cargos em empresas. Por fim, o phishing de comprometimento de e-mail
corporativo é similar ao whaling phishing com a diferença de que seu intuito final é obter
acesso a caixa de mensagens e outras informações privadas. Neste tipo de ataque
as técnicas de engenharia social são combinadas com a disseminação de malware
através do envio de anexos contendo trojans, keylogers e outros malwares. Para a
contextualização deste trabalho podemos destacar três vetores de ataque presentes
nas categorias de phishing descritas anteriormente, são eles: divulgação de páginas
falsas e fraudulentas, envio de mensagens de e-mail maliciosas e a disseminação de
malware através de conteúdo de download.

Ameaças como o phishing e a infecção por malware representam as principais ma-
nobras da engenharia social para atingir usuários (THAKUR; PATHAN, 2020) e na
grande maioria dos casos o indivíduo não está conscientizado para reagir a estas ame-
aças. Os ataques de phishing são caracterizados comumente pelo envio de e-mails e
páginas maliciosas por parte dos criminosos, contendo informações aparentemente le-
gítimas, induzindo as vítimas a fornecerem dados confidenciais como senhas e dados
de cartão de crédito (ABUZURAIQ et al., 2020), ou até mesmo últimas informações
sobre o COVID-19. Agentes maliciosos também estão usando nomes relacionados
ao coronavírus e a entidades governamentais nos títulos de arquivos maliciosos, na

tentativa de induzir os usuários a abri-los. Estes arquivos na verdade estão infectados
com aplicações maliciosas como ransomwares e keyloggers (AHMAD, 2020).

Atualmente diversas pesquisas investigam técnicas anti-phishing, podemos dividir as
técnicas utilizadas em duas categorias: técnicas baseadas em lista e técnicas heu-
rísticas (RAO; PAIS, 2019). A proposta de análise de URLs e mensagens de e-mail
apresentada neste trabalho se encontra entre as duas categorias, fazendo uso de
técnicas baseadas em lista e técnicas heurísticas. O método utilizado contribui para de-
tecção e extração de elementos característicos de phishing, podendo ser incorporada
em cenários de segurança comumente encontrados.

Objetivos
Este trabalho tem como objetivo desenvolver um método heurístico para detecção
de phishing baseado em web crawling. Os módulos propostos devem detectar os ele-
mentos que caracterizam a ameaça em tempo real, evitando assim a ocorrência de
fraudes. Além disso, este trabalho também contribui para o desenvolvimento de um
método de monitoramento do comportamento do usuário, capaz de mapear as inte-
rações do usuário com o phishing e infecção por malware, por meio de sensores de
monitoramento baseados em um automato finito determinístico (DFA). Os objetivos
específicos são:

• Desenvolver um método comparativo de bancos de dados de phishing cataloga-
dos, capaz de detectar se a URL de destino já foi relatada como phishing no
banco de dados utilizado.

• Desenvolver um algoritmo de detecção de phishing capaz de detectar os elemen-
tos característicos da ameaça nas páginas acessadas pelos usuários e em tempo
real.

• Desenvolver uma métrica de avaliação de páginas de phishing que possa ser utili-
zada para detectar páginas fraudulentas em conjunto com o algoritmo proposto.

• Validar o método de detecção de phishing em um cenário experimental controlado
passível de reprodução.

Metodologia
Este trabalho foi realizado através de uma metodologia quantitativa, de natureza apli-
cada, elaborada através de uma pesquisa exploratória contendo revisão da bibliografia
e experimentação em um cenário controlado. Para isso, foram levantadas soluções
da literatura envolvendo a detecção de phishing em tempo real e bases de cataloga-
ção de phishing. Além disso, foram levantados trabalhos envolvendo o mapeamento

do comportamento computacional dos usuários. Esses trabalhos foram avaliados nos
seguintes aspectos: tipo de amostras, bases de catalogação utilzadas, método de de-
tecção aplicado, independência de idioma, tipo de análise (tempo real ou post mortem)
e tipo de implementação computacional. Em seguida, um método de detecção de pá-
ginas de phishing em tempo real foi projetado, contendo uma métrica de avaliação
de páginas maliciosas baseada em indices de incidência e criticidade dos vetores de
ataque presentes nas URLs. Uma análise acerca da performance do método de web
crawling para detecção de elementos que compoem o phishing foi realizada, com o
prósito de investigar a viabilidade de sua utilização em um cenário real. Por fim, um
método de detecção as ações do usuário foi acrescentado ao modelo, com o intuito
de detectar em tempo real o momento em que o usuário interage com os vetores de
ataque mapeados através do algoritmo de detecção de phishing. O experimento foi
executado em ambiente virtualizado, baseado em ferramentas open source e similar
aos cenários corporativos comumente encontrados. Com base nos dados encontrados
nos experimentos, alguns resultados foram destacados.

Resultados e Discussão
Os principais resultados retirados dos experimentos e demais análises estão descritos
a seguir:

• Inicialmente, para a criação e preenchimento do banco de dados, foi utilizada
a importação do banco de dadosPhishTank no formato csv. A escolha da base
Phishtank entre outras plataformas se deu devido à disponibilidade de acesso
aos registros da plataforma e à possibilidade de conexão através de sua API para
realização de consultas à base.

• Aproximadamente 18.000 amostras de URL foram avaliadas, onde aproximada-
mente apenas 12.000 URLs puderam ser removidas do banco de dados Phish-
Tank e avaliadas durante o período, pois, um conjunto aproximado de 6.000 URLs
não estava mais ativo ou disponível para acesso HTTP/HTTPS. Ao final, o con-
junto de amostras avaliadas representou um total de 12.350 URLs válidas, cerca
de 12.000 URLs retiradas diretamente da base do Phishtank (contando atualiza-
ções a cada hora), e outras 350 novas URLs detectadas diretamente pelo método
proposto neste trabalho.

• O algoritmo proposto foi implementado por meio da API Collector (descrita no
capítulo quatro) e atingiu uma precisão de 97,66% na detecção de páginas de
phishing. Para as URLs coletadas diretamente da PhishTank Database a acurácia
foi de 84.81%.

• Ao final do monitoramento de mensagens maliciosas nos e-mails, aproximada-

mente 70% foram classificados como spear phishing e 30 % como outros tipos
de phishing. Em muitos e-mails, os invasores simularam e-mails válidos de outras
instituições ou funcionários da empresa solicitando informações financeiras ou
contratuais específicas.

• Através da funçao de cálculo de incidência implementada, foi possível detectar
mensagens repetidas de spear-phishing e outros tipos de phishing na caixa de
entrada dos usuários. De um modo geral, as mensagens maliciosas que atingiram
a taxa máxima de incidência (5+) foram mensagens relacionadas ao COVID-19 e
links falsos de ajuda de emergência do governo.

• As principais URLs maliciosas estavam vinculadas aos seguintes temas: COVID-
19, ajuda e serviços governamentais, instituições financeiras, serviços de compra
e venda (e-commerce) e serviços de passagens aéreas. Além disso, aproxima-
damente 81% das URLs não possuíam certificado digital e, em mais de 80%
dos casos, tinham o ataque homográfico como vetor de ataque para confundir os
usuários.

• Levando em conta as 80 URLs de phishing detectados, a combinação dos vetores
de ataqueHomographic Attack (HA), Certificate Missing (CM) e Form Fields (FF)
apareceram juntos em 57 URLs. Com isso, 71,25% das mensagens de phishing
de novas URLs detectadas apresentavam este recurso.

Considerações Finais
Este trabalho propôs e implementou um método de detecção de phishing em tempo
real, com a validação do mesmo em um cenário experimental controlado. Em com-
plemento ao método de detecção de phishing apresentado, foram implementadas
maneiras computacionalmente viáveis de monitorar as ações do usuário. Os resulta-
dos obtidos permitiram observar que o Banco de Dados PhishTank não teve um papel
relevante no monitoramento e notificação de páginas de phishing no cenário brasileiro.
Novas investigações podem ser realizadas sobre a eficiência da plataforma em rela-
ção à linguagem PT-BR e ao cenário brasileiro de URLs de phishing. Este trabalho é
independente de linguagem e de plataforma para avaliação de phishing comparado
aos trabalhos relacionados. Além disso, seu principal destaque em relação aos ou-
tros trabalhos avaliados está na detecção em tempo real das páginas maliciosas, no
exato momento em que são acessadas pelo usuário. O algoritmo de detcção é flexivel,
possibilitando assim adaptar novos vetores de ataque aos motores de busca.

A técnica de Web Crawling proposta neste trabalho apresenta algumas limitações na
extração de informações de páginas com estruturas mais complexas, que utilizam
outras estruturas de código embutidas no layout (JavaScript, JSON, entre outras).

Páginas maiores e mais pesadas levaram mais de 5 minutos para retornar os valores
extraídos, especialmente ao verificar hiperlinks de redirecionamento implementados
por meio de chamadas de código nas páginas. Pesquisas futuras devem aprimorar o
algorítmo e os métodos de busca utilizados.

Em adição ao método de detecção de phishing os módulos de captura do comporta-
mento do usuário apresentaram bons resultados, detectando ações como cliques e
interações em elementos da página, abertura, fechamento de abas, preenchimento de
campos de formulários e download de arquivos. A taxonomia proposta desempenhou
papel fundamental no desenvolvimento desse método de monitoramento. Através do
mapeamento exato das atividades, foi possível determinar o momento exato em que
um usuário entrou em contato com uma manobra maliciosa e se a manobra foi im-
plementada ou não. Esse método de extração apresentou problemas relacionados ao
tempo de processamento das atividades no navegador. Algumas ações demoraram
mais de cinco minutos para serem catalogadas, dependendo diretamente dos recursos
de memória disponíveis. Futuramente, serão investigadas formas mais viáveis com-
putacionalmente de capturar ações do usuário através do navegador para que não
realizem alto consumo de recursos computacionais.

Palavras-chave: Phishing. Vetores de Ataque. Engenharia Social. Comportamento do
Usuário.

ABSTRACT

With the improvement of the techniques used by attackers, the detection and prevention
of threats such as phishing and malware can represent a problem and computational
challenge. A recent survey found that phishing and infection by malicious code are the
top threats triggered by social engineering. In this work, the attack vectors that cause
these threats are analyzed, proposing a method of verifying specific strings in URLs
and e-mail messages, which can be used in conjunction with proxies and anti-spam
filters. The method was implemented in an experimental scenario and is capable of
detecting the presence of the main elements that have direct contact with the user,
such as form fields, redirection of links and files to download. The proposed method
was able to detect phishing URLs in real-time, with an accuracy of 97.66% and an
average time of 30 seconds. Furthermore, a new user behavior mapping method is
proposed in this work. Through this, it is possible to demonstrate that the attack vectors
used in each stage of the exploitation always present the same behavior, following a
sequence of steps already known. The mapping structure can be represented by a finite
state machine (DFA), where each user interaction stage with a possible attack vector
represents a deterministic point of the finite machine. The results obtained through this
implementation can be used in the detection of malicious maneuvers in real-time and
in the awareness of users in information security.

Keywords: Pshishing. Attack Vectors. Social Engineering. User Behaviour.

LIST OF FIGURES

Figure 1 – Classification of Social Engineering Attacks (SALAHDINE; KAABOUCH,
2019) . 23

Figure 2 – Example of creating phishing pages and fraudulent emails (JAMES,
Lance, 2005) . 24

Figure 3 – Illustration of phishing experiment (JAGATICet al., 2007) 25
Figure 4 – Types of ransomware (ANDRONIOet al., 2015) 27
Figure 5 – The typical steps used by ransomware to encrypt and decrypt a user’s

data. (BEAMANet al., 2021) . 29
Figure 6 – Server-side web threats (SADQI; MALEH, 2021) 30
Figure 7 – Taxonomy of social engineering attacks and threats (ALDAWOOD;SKINNER,

2020) . 31
Figure 8 – Exemple of Finite Automaton M4 -(SIPSER, 1996) 32
Figure 9 – Exemple of Crawler Architecture - (OLSTON; NAJORK,2010) 33
Figure 10 – Phishing Detection - Comparative Table of Works Related to this Work 37
Figure 11 – User Behavior - Comparative Table of Works Related to this Work . 41
Figure 12 – Experimental Scenario . 43
Figure 13 – Virtual Machines and Configurations 44
Figure 14 – Connections between python API and Phishtank Database 45
Figure 15 – Database Collections . 46
Figure 16 – Example of url-databse collection . 48
Figure 17 – e-mail collection example . 50
Figure 18 – Table of Metrics - Classification of Attack Vectors and Score 51
Figure 19 – Python API - Scraping Engines . 54
Figure 20 – Attack vector incidence percentage 55
Figure 21 – Attack vector incidence percentage 57
Figure 22 – API execution and collections interactions 59
Figure 23 – Taxonomy of Attack Vectors and User Actions 62
Figure 24 – New APIs and Additions . 66
Figure 25 – User Virtual Machine Simulation . 67
Figure 26 – DFA state diagram . 70
Figure 27 – Examples of User Maturity Tree . 74
Figure 28 – Phishing Detection Accuracy - Hit/Miss 75
Figure 29 – Phishing Detection Accuracy - New Samples Vs PhishTank Database 76
Figure 30 – Phishing messages received via mailbox 77
Figure 31 – Phishing messages received via mailbox - Pt2 78
Figure 32 – Phishing occurrences . 80

LIST OF ABBREVIATIONS AND ACRONYMS

AES Advanced Encryption Standard
AJAX asynchronous JavaScript and XML
API application programming interface
C2 command and control
CDATA character data
COVID-19 SARS-CoV-2 Virus Disease
CPS cyber-physical systems
CSS cascading style sheets
csv Character-separated values
DFA Deterministic Finite Automaton
DL deep learning
docx Microsoft Word document
EVSDT equal variance sign detection theory
HMAC-MD5 hash-based message authentication code with message digest al-

gorithm 5
HTML HyperText Markup Language
HTTP hypertext transfer protocol
HTTPS hypertext transfer protocol secure
ID identity
IoT internet of things
JSON JavaScript object notation
LDAP Lightweight Directory Access Protocol
NIST National Institute of Standards and Technology
NLP natural language processing
NoSQL Not Only SQL
PC personal computer’s
pdf portable document format
PSHCS phishing URLs hosted on compromised servers
RaaS ransomware as a service
RSA Rivest-Shamir-Adleman
SET social engineering toolkit
SMS Short Message Service
SOM self-organization map
TDF theoretical domain framework
UMBC university of Maryland
URL Uniform Resource Locator
UVSDT unequal variance SDT

WEB world wide web
XML extensible markup language
zero-day newly created or unknown

LIST OF SYMBOLS

Σ Input Alphabet
δ transition rules
ϵ Empty Entry

CONTENTS

1 INTRODUCTION . 19
1.1 RESEARCH PROBLEM AND MOTIVATION 20
1.2 OBJECTIVES . 21
1.2.1 General Objectives . 21
1.2.2 Specific Objectives . 21
1.3 WORK STRUCTURE . 21
2 BASIC CONCEPTS . 22
2.1 SOCIAL ENGINEERING AND HUMAN FACTOR 22
2.2 PHISHING . 23
2.3 MALWARE . 26
2.4 TAXONOMY IN CYBERSECURITY 28
2.5 AUTOMATA THEORY - DETERMINISTIC FINITE AUTOMATON (DFA) 30
2.6 WEB CRAWLING . 32
3 RELATED WORKS . 34
3.1 SELECTED WORKS AND SYSTEMATIC REVIEW 34
3.2 PHISHING DETECTION . 35
3.3 USER BEHAVIOR . 38
4 PHISHING DETECTION AND USER BEHAVIOUR MAPPING 42
4.1 HEURISTIC PHISHING DETECTION 42
4.1.1 Implementation and experimental scenario 43
4.1.2 Collections . 45
4.1.3 URL score and rating metrics . 55
4.1.4 API Execution and Collections Interactions 57
4.2 USER BEHAVIOR MAPPING . 60
4.2.1 Taxonomy of User Actions and Attack Vectors 60
4.2.2 Additional Implementations in Experimental Scenario and new

API modules . 65
4.2.3 Finite State Machine Implementation 69
4.2.4 Maturity trees and user profile . 72
5 EXPERIMENTAL RESULTS . 75
6 CONCLUSIONS . 83

REFERENCES . 87

19

1 INTRODUCTION

The digital medium has become vital for the exchange of information and data
traffic. It has enabled flexibility and ease in accessing information, and alongside this
evolution, there has been an increase in the number of users, resulting in the expo-
nential growth of digital crimes (BARRETT, 2018). It is worth highlighting the atypical
period that the world is going through due to the SARS-CoV-2 Virus Disease (COVID-
19) pandemic, where cybercriminals are taking maximum advantage to reach the most
significant number of users. Malicious activities have increased dramatically due to
the side effects of working online from home, coinciding with social distance measures
needed to face the pandemic, causing a higher number of information security incidents.
Cybersecurity’s importance goes beyond the individual concern of each user; it must
be part of each process in organizational settings and can be seen as a growing issue
of public concern.

The last few years have been marked by several incidents. These occurrences
are responsible for an approximate loss of forty-two billion dollars a year, reaching up
to a hundred billion dollars, when taking into account the unreported cases (LAVION
et al., 2020). The survey of (LAVION et al., 2020) describes that of the more than
five thousand correspondent companies, 47% experienced fraud or security incidents
within the last 24 months. In addition, it has been observed that attackers have focused
their efforts on organizations involved in combating the pandemic, such as hospitals,
manufacturers of medical products and supplies. Also, in the year 2020, the main form
of attack was through infection by ransomware through vulnerabilities in office tools,
phishing and redirection pages (GOSTEV, 2020).

Threats such as phishing and infection by malware represent the main maneu-
vers of social engineering to reach users (THAKUR; PATHAN, 2020). In the vast majority
of cases, the individual is not even aware of how to react to these threats. The human
factor is explored through social engineering, which can be seen as one of the most
efficient ways to carry out a malicious action (HADLINGTON, 2017). Accordingly, it is
possible to observe the user as the main source of vulnerabilities in a computational
scope, such as phishing. Another point to be observed in the study of the social en-
gineering action on the user is the user itself, as in Thakur and Pathan 2020. It is
necessary to develop efficient ways to map the user’s computational behavior when
interacting with these threats.

Phishing attacks are commonly characterized by the sending of e-mails and mali-
cious pages by criminals, containing legitimate information, thereupon inducing victims
to provide confidential data such as passwords and credit card data (ABUZURAIQ et al.,
2020), or even the latest information on COVID-19. Malicious agents are also using
names related to coronavirus and government entities in the titles of malicious files, in

Chapter 1. Introduction 20

an attempt to trick users into opening them. These files are infected with malicious ap-
plications, for instance, ransomware and keyloggers (AHMAD, 2020). Observing these
factors, it is inevitable to have a minimum security method in a computational environ-
ment. To promote such a level of protection, the most diverse security mechanisms are
developed and used. However, even with all these developments, they still do not have
significant results in terms of protection of the human factor (ALHARTHI et al., 2020).

From this analysis, the human gap can be seen as the primary breach of com-
putational security. Forging trustworthiness in phishing maneuvers represent the most
efficient way to perform a malicious action. This factor highlights the hypothesis that the
detection of fake pages is the best strategy to combat phishing; it is essential to find a
solution that can efficiently detect these pages (JAIN; GUPTA, 2018). Currently, several
types of research investigate anti-phishing techniques, and the techniques used can
be divided into two categories: list-based techniques and heuristic techniques (RAO;
PAIS, 2019). The proposal for analyzing Uniform Resource Locator (URL) and e-mail
messages presented in this work uses both list-based and heuristic techniques.

The method used contributes to detecting and extracting elements characteristic
of phishing and can be incorporated into commonly found security scenarios. These
detection methods were presented in (ALMEIDA; WESTPHALL, 2020) and will be dis-
cussed in detail in this paper. Furthermore, the same scenario used in the article will
also be used as a basis for developing a structure for monitoring the user’s computa-
tional behavior. The proposed methodology has as a principle the mapping of specific
attack vectors present in phishing and malicious code infection. For this, a finite state
machine (finite automaton) capable of detecting the user’s actions when interacting with
these threats will be created.

1.1 RESEARCH PROBLEM AND MOTIVATION

The exponential growth in the number of frauds involving phishing in recent
years can be highlighted as the main motivation for this work. In addition, the difficulty
in detecting fraudulent maneuvers in real-time becomes one of the main problems
detected on the subject. In current times, mitigating phishing with just blacklists and
trusted domains is no longer an effective way to combat the threat.

Efficient real-time Phishing detection is not such a simple task, since, in addition
to depending on the available computing resources, it also depends on the user’s infor-
mation security maturity level. Thus, it is a two-way street, a technological revolution in
the means of detection and user awareness. In addition, it is also necessary to under-
stand and map the user’s meeting point with threats coming from social engineering.
Little attention has been paid on the study of user computational actions related to
phishing. This topic can be considered as the second main motivation for carrying out
this work, the scarcity of research that implements computational methods capable of

Chapter 1. Introduction 21

detecting user actions when they interact with social engineering threats.

1.2 OBJECTIVES

1.2.1 General Objectives

This work aims to develop a heuristic method for phishing detection based on
web crawling. The proposed modules must detect the elements that characterize the
threat in real-time, thus preventing the occurrence of fraud. In addition, this work also
contributes to the development of a user behavior monitoring method capable of map-
ping user interactions with social engineering threats, such as phishing and malware
infection, through monitoring sensors based on a machine. of finite states. The frame-
work must map and collect user computational actions during interaction with threats
analyzed through browser elements.

1.2.2 Specific Objectives

1. Develop a comparative method of catalogued phishing databases capable
of detecting whether the target URL has already been reported as phishing in the
database used.

2. Develop a phishing detection algorithm capable of detecting the characteristic
elements of the threat on pages accessed by users and in real-time.

3. Develop a phishing page evaluation metric that can be used to detect fraudu-
lent pages in conjunction with the proposed algorithm.

4. Validate the phishing detection method in a controlled experimental scenario.

1.3 WORK STRUCTURE

The structure of this academic study is organized in such a way as to facilitate
the flow of reading and understanding the concepts presented. Chapter 2 contains the
basic Concepts. Chapter 3 contains the related works alongside the investigated state-
of-the-art themes. The chapter is divided into three sections, where the first section
contains a brief description of how the systematic review of the literature was carried out.
Second section contains the jobs related to phishing detection. Subsequently, the third
section comprises the jobs related to mapping user computational behavior. At the end
of each subsections a table of related works are exhibited containing the main topics
of divergence between the studies and this research, as well as other important points.
Chapter 4 presents the phishing detection method proposed in this work in conjunction
with the additional contribution of research on mapping user computational behavior.
Chapter 5 expounds the results obtained in this investigation, and finally, Chapter 6
submits the conclusions and final considerations about the work and future directions.

22

2 BASIC CONCEPTS

This chapter contains the bibliographical review regarding the state-of-the-art
themes in connection with this work. The sections present the basic concepts involving
the topics investigated in the following order: Social Engineering and Human Factor,
Phishing, Malware, Taxonomy in Cybersecurity, Automata Theory - Deterministic Finite
Automaton (DFA) and finally the web crawling theme.

2.1 SOCIAL ENGINEERING AND HUMAN FACTOR

The human factor constitutes one of the primary gaps in information security,
which can be exploited through social engineering. In 2002, Kevin Mitnick (MITNICK;
SIMON, 2003) described the first expressive concept of social engineering: psychologi-
cal manipulation of people to disseminate information or perform an action. Rather than
directing attacks on systems, social engineers aim to persuade users, manipulating
them during the performance of malicious activities such as fraud, access, and misuse
of information (YASIN et al., 2019).

Observing the current scenario of security solutions, it is apparent that protection
measures have become ineffective against this type of attack (CARLTON et al., 2019). In
(HADLINGTON, 2017) a relationship between risky behavior of users and cybersecurity
in business environments was traced, analyzing factors such as actions performed on
the Internet and impulsiveness. In this examination, 538 UK participants completed
an online questionnaire, with 515 responses being used in data analysis. The results
demonstrated that Internet addiction and impulsiveness were significant indicators of
cybersecurity risk behavior. A positive attitude towards cybersecurity in business was
negatively related to risky behavior in cybersecurity. Lastly, the impulsivity measure
revealed that attention and motor impulsivity were both previous predictors configured
according to cybersecurity risk.

Further noteworthy points were highlighted in (SALAHDINE; KAABOUCH, 2019),
where the study suggested some classifications regarding the most common types
and variations of social engineering methods. The authors emphasized that access
can be classified into several categories, contingent on various possibilities. They can
classify these into two categories according to the entity involved: human or software.
These categories can also be classified according to how the attack is conducted;
through manual means or technical means. Additionally, the two main classifications
can be highlighted as direct and indirect. Attacks in the first category use direct contacts
between the attacker and the victim in order to perform the attack.

These competencies are undertaken by actions performed through physical con-
tact, eye contact, or voice interactions. They may also require an attacker’s presence on
the victim’s desktop to conduct the attack. Examples include physical access, shoulder

Chapter 2. Basic Concepts 23

surfing, trashing, diving, phone social engineering, pretense, identity spoofing on tech
support calls, and theft of important documents. Finally, through indirect contact, the
attacker’s carry out an attack, which can be launched remotely through malware soft-
ware transported by email attachments or Short Message Service (SMS) messages.
Examples include phishing, fake software, PopUp windows, ransomware, SMSishing,
online social engineering, and reverse social engineering. The classifications presented
can be better visualized in figure 1, composed of images taken from (SALAHDINE;
KAABOUCH, 2019)

Figure 1 – Classification of Social Engineering Attacks (SALAHDINE; KAABOUCH,
2019)

2.2 PHISHING

The first approaches to phishing began to emerge in the early 2000s, highlight-
ing the works (JAMES, Lance, 2005), (DHAMIJA et al., 2006) and (JAGATIC et al.,
2007). These studies put forward complete approaches and definitions on the subject,
demonstrating the steps taken by attackers in carrying out attacks. In the book entitled
"Phishing Exposed", (JAMES, Lance, 2005) the concept of Phishing is set forth as a

Chapter 2. Basic Concepts 24

type of attack in which criminals use spoofed e-mails and fraudulent websites to trick
people into providing credentials and/or confidential information. In these messages or
false pages, malicious agents intend to be other legitimate individuals or organizations
to trick users into providing confidential data. Increasingly sophisticated attacks not
only spoof e-mails and websites but can also spoof parts of a user’s browser. In this
work, experiments were also conducted to demonstrate the creation of phishing pages,
servers and the sending of malicious e-mails commonly used in attacks (figure 2).

Figure 2 – Example of creating phishing pages and fraudulent emails (JAMES, Lance,
2005)

In a classic study entitled "Why Phishing Works" (DHAMIJA et al., 2006), the
authors provided the first empirical evidence about which malicious strategies are ef-
fective in deceiving users in general. Firstly, a substantial set of phishing attacks were
captured, and thereupon, a set of hypotheses were developed about why these strate-
gies might work. The researchers then evaluated these hypotheses with a usability
study, in which twenty sites were presented to twenty-two participants and asked to
determine which were fraudulent. As a result, 23% of respondents did not look at the
browser considering important phishing detection tips, such as the address bar URL,
the presence of a digital certificate, and hypertext transfer protocol secure (HTTPS).
Within this context, 40% of the time, the choices were incorrect. The primary discovery
factor was that visually deceiving the user is successful in phishing ploys.

In the work "Social Phishing" (JAGATIC et al., 2007) experiments were also con-
ducted to reproduce a phishing attack on individuals affiliated with Indiana University

Chapter 2. Basic Concepts 25

(figure 3). According to the steps taken, information was first collected on social net-
works and other public data. The data was then correlated and stored in a relational
database where heuristics were used to create e-mail messages spoofed by Eve "as
Alice" to Bob (a friend). The message is sent to Bob, and Bob follows the link contained
in the e-mail message where an unverified redirect is performed, taking Bob to the
attacker’s website whuffo.com. The page then asks Bob for his University Credentials,
and Bob’s credentials are verified with the University authenticator, thus successfully
completing the phishing attack. If Bob is not caught, new attempts will be made. The
experiment achieved a success rate of up to 72% in Phishing attacks.

Figure 3 – Illustration of phishing experiment (JAGATICet al., 2007)

Other important aspects can be observed in DaSilva et al.(SILVA et al., 2020)
where a phishing timeline was drawn, revealing the emergence of and concerns toward
the problem. Through a solid literature review conducted in ScienceDirect Digital Library,
it was observed that in the late 1990s, the term phishing was first used to describe a
fraudulent scheme. Studies realized between 1999 to 2003 highlighted that criminal or-
ganizations used phishing to target banking institutions. In 2004, some studies reported
that the practice had became common in the world scenario and scientific research
returned to explain the phenomenon. By 2005, it was possible to visualize research

Chapter 2. Basic Concepts 26

with anti-phishing practices, and shortly after in 2006, the combination of phishing and
malware was already observed within the same scope of the attack. In 2008, some
investigations indicated computational intelligence as an ally in real-time fraud detec-
tion. Finally, from the last topic of the 2008 timeline and onward, proposals based on
behavior patterns have consolidated and become a trend in the literature.

Over the years, new phishing concepts and classifications have emerged. Ac-
cording to (KOYUN; AL JANABI, 2017), phishing attacks can further be classified into
spear phishing, whaling phishing, and corporate email compromise phishing. Spear
phishing attacks refer to maneuvers targeting specific individuals or groups, using their
names to make false claims or communications. These maneuvers require the collection
of online information about the victim using social engineering techniques and digital
espionage. This information is usually collected utilizing scans on social networks, but
can also be performed using software such as social engineering toolkit (SET) on Kali
Linux (KOYUN; AL JANABI, 2017). Whaling phishing is a type of spear-phishing, but it
more specifically targets individuals in high positions in companies. Finally, corporate
email compromise phishing is similar to whaling phishing with the difference that its
ultimate purpose is to gain access to the mailbox and other private information. In this
type of attack, social engineering techniques are combined with the spread of malware
by sending attachments containing trojans, keyloggers, and other malware.

2.3 MALWARE

According to the glossary of terms found in National Institute of Standards and
Technology (NIST) (KISSEL, 2011), malware can be classified as a program which is in-
serted into a system, usually covertly, with the intent of compromising the confidentiality,
integrity, or availability of the victim’s data, applications, or operating system. In its most
recent version, the glossary of terms states that malware can be all hardware, firmware,
or software which is intentionally included or inserted in a system for a harmful purpose.
Furthermore, malware can be seen as a type of program just as any other, and it is
necessary to know the types of actions performed by it in order to detect an infection
process (PRADO et al., 2016). In addition, it is worth noting that most malware infec-
tions are triggered by social engineering, as described by Krombholz, Hobel, Huber,
Weippl (KROMBHOLZ et al., 2015).

In the wake of the evolution of malware, a topic which has been drawing signifi-
cantly more attention in cybersecurity is ransomware, which is directly linked to phishing
attacks and other social engineering attacks. Ransomware has been one of the most
notorious malware targeted at end-users, governments, and business organizations in
recent years. Ransomware can be classified as a type of malware designed to facilitate
different nefarious activities, such as withholding personal data unless a ransom is
paid. The aforementioned is commonly known as information hijacker (BEAMAN et al.,

Chapter 2. Basic Concepts 27

2021). It has become a very profitable business for cybercriminals capturing millions of
dollars in revenue while also creating a serious threat to organizations through financial
losses worth billions of dollars. The number of ransomware attacks has grown exponen-
tially due to easily available ransomware toolkits and ransomware as a service (RaaS)
which enables novices to launch (SHARMEEN et al., 2020) ransomware attacks. Since
ransomware is already prevalent on personal computer’s (PC) and laptops, while also
becoming more prevalent on mobile devices, it is already reaching internet of things
(IoT) / cyber-physical systems (CPS) scenarios (BEAMAN et al., 2021).

Ransomware can be classified into three main categories: Locker, Crypto, and
Scareware (ANDRONIO et al., 2015) (Figure 4). Scareware can generate pop-up ads to
manipulate users into assuming they are forced to download certain software, thereby
using coercion techniques to download malware. In scareware, cybercriminals exploit
fear instead of locking the device or encrypting any data and not damaging the computer
system. A ransomware locker has its main foundation blocking the computer’s primary
functions, thus being able to encrypt certain files which can block the computer screen
and/or keyboard. By and large, the maneuvers performed by the locker can be resolved
more easily by restarting the computer in safe mode or running a virus scanner. The
crypto-ransomware encrypts the user’s confidential files but does not interfere with basic
computer functions. Unlike cabinet ransomware, crypto-ransomware is often irreversible
as it uses current encryption techniques (Advanced Encryption Standard (AES) and
Rivest-Shamir-Adleman (RSA)) and is nearly impossible to reverse.

Figure 4 – Types of ransomware (ANDRONIOet al., 2015)

Chapter 2. Basic Concepts 28

Ransomware can utilize one of three encryption schemes: Symmetric, Asym-
metric, or Hybrid (CICALA; BERTINO, 2020). The symmetric approach is problematic
as a cryptographic key must be incorporated into ransomware, making this approach
vulnerable to reverse engineering. Asymmetric encryption is slow compared to symmet-
ric encryption. As such, encrypting larger files can become a major issue. The most
effective approach is hybrid cryptography, which uses both symmetric and asymmetric
cryptography. In hybrid cryptography, the first step is to create a random symmetric
key by calling a cryptographic application programming interface (API) on the user’s
operating system. The symmetric key encrypts the victim’s files as the ransomware
traverses the file system.

After all files are encrypted, a public-private key pair is generated by a command
and control (C2) server to which the ransomware connects. The public key is sent to
the ransomware and is used to encrypt the symmetric key, while the C2 server keeps
the private key. The plain text version of the symmetric key is then deleted to ensure
the victim cannot use it to recover their files. Instructions on how to pay the ransom are
left for the victim. If the ransom is paid, the decryption process will begin. Decryption
commences by requesting the private key from the C2 server. Once obtained, the
private key is used to decrypt the symmetric key. Finally, the symmetric key is used
to retrieve the victim’s files (BEAMAN et al., 2021). Figure 5 describes the step-by-
step sequence performed by a hybrid ransomware, from infection to encryption of
information.

2.4 TAXONOMY IN CYBERSECURITY

Bearing in mind the evolutionary process of threats, alongside the wide range of
possibilities for exploiting these threats, the approach of integrating measures with infor-
mation security to detect and map computer threats is essential. The use of a taxonomy
in the classification of threats and vulnerabilities can serve to choose the best counter-
measures. This approach took place in the early 1990s when the importance of using
taxonomy in cybersecurity was highlighted through the work of Lindqvist, Jonsson, and
Bishop (BISHOP et al., 1995), (LINDQVIST; JONSSON, 1997). It was ascertained that
categorizing and classifying threats could be a solution, expanding knowledge about
the phenomenon and making isolated studies possible (GUPTA et al., 2018), (NARWAL
et al., 2019). As presented in (HOWARD; LONGSTAFF, 1998), (KRSUL et al., 1998)
the process to develop a good taxonomic structure must satisfy some characteristics
such as objectivity, determinism, and acceptable and useful reproduction. The various
taxonomic schemes presented in the works analyzed can gather information about vul-
nerabilities and threats. Existing classifications are important to determine whether an
object analyzed represents something new or already known along with its exploration
methods.

Chapter 2. Basic Concepts 29

Figure 5 – The typical steps used by ransomware to encrypt and decrypt a user’s data.
(BEAMANet al., 2021)

As a means to deal with the various threats, there are several robust taxonomies
in the literature. Each taxonomy has a set of advantages, and consequently, its limi-
tations (SADQI; MALEH, 2021). In the work of Sadqi and Maleh 2021, an analysis of
several taxonomic structures found in the literature was performed, focusing primarily on
the scenario of web applications. Through each analysis, it is possible to determine the
advantages and disadvantages of each taxonomic structure. The taxonomy proposed
in the study has taken advantage of the benefits of existing taxonomies and provided an
integrated approach to classifying client-side and server-side attacks (figure 6). Accord-
ing to the authors, a web security threat or issue is defined as a potentially malicious
activity which uniquely targets one or more components of the web application’s archi-
tecture, such as the user’s browser or the web application hosting server. The security
community agrees that rating security issues and drafting threat taxonomy can help
educate software developers and security experts to better understand the root causes
of software failures and build more secure web applications.

The usage of classification structures in combating cyber threats represents a
useful albeit insufficient tool for practical detection and prevention measures. Detect-
ing patterns of maneuvers, such as phishing through intelligent systems, has become
prominent within computational security given the advance in the complexity of threats
which represent an arduous challenge to be faced (ABUZURAIQ et al., 2020). Tak-
ing into consideration the threats from social engineering (Figure 7), this challenge

Chapter 2. Basic Concepts 30

Figure 6 – Server-side web threats (SADQI; MALEH, 2021)

becomes even greater, as described in the work of Aldawood, Hussain, and Geoffrey
Skinner (ALDAWOOD; SKINNER, 2020). The investigations around phishing need to
be highlighted as they are considered one of the main criminal maneuvers practiced
on the Internet. However, the best ongoing form of protection is to suspect any email or
page with unknown links and files. Thus, phishing is an example of how threats, which
act directly through social engineering, are considerably more difficult to mitigate.

2.5 AUTOMATA THEORY - DETERMINISTIC FINITE AUTOMATON (DFA)

Automata theory can be viewed as one of the oldest and most researched areas
of Computer Science (KHOUSSAINOV; NERODE, 2012). The aforementioned study
points out that in the last 50 years countless automata applications have been devel-
oped in a wide spectrum of areas with a corresponding evolution from a variety of
theoretical models. The first applications of automata theory included pattern matching,
syntax analysis and software checking, where elegant theory was applied to real-world
problems, resulting in the generation of useful software tools mainly in the area of com-
pilers. Deep connections between automatons and the logic continue to be discovered,
and newer models of automata, such as timed automata, hybrid automata, distributed
automata and weighted automata were all proposed and driven by specific applications.

In accordance with Michael Sipser in (SIPSER, 1996), the theory of automata ad-
dresses the definitions and properties of mathematical models of computation, thereby

Chapter 2. Basic Concepts 31

Figure 7 – Taxonomy of social engineering attacks and threats (ALDAWOOD;SKINNER,
2020)

being able to use these in several areas of the field. Furthermore, the theory of au-
tomata allows important concepts to be grounded in other non-theoretical areas of
computational science. Finite automata (DFA), or finite state machines, are used in
computers with a very limited amount of memory and are highly useful tools for recog-
nizing patterns in data. Observing the theoretical construction on automata proposed
by Sipser, it is worth noting that finite automata can be represented in an abstract way
(not a precise representation) through state diagrams. However, they also have a formal
mathematical definition (representation resolves to a finite automaton).

The formal definition states that a finite automaton consists of a list of five objects
(5-tuple): set of states (Q), input alphabet Σ, rules for movement δ, initial state (q0),
and acceptance states (F). It is worth noting that automatons can be used to monitor
computational actions, such as monitoring the behavior of a specific object. Actions can
be represented through states reaching a state of acceptance, this one representing the
reading compatible with its purpose. DFA’s can have the initial state as the accept state.
Therefore they will accept the empty entry ϵ in their alphabet. Figure 8 demonstrates
a DFA with the alphabet Σ = (a,b) and two accept states, q1 and r1. This DFA begins

Chapter 2. Basic Concepts 32

in state s (q0), and after reading the first input symbol, it will either go left (q states) or
right (r states). The M4 automaton will accept all strings that start or end with ’a’ or start
with ’b’ and end with ’b’ (Strings that start and end with the same symbol).

Figure 8 – Exemple of Finite Automaton M4 -(SIPSER, 1996)

2.6 WEB CRAWLING

As set forth in (OVELGÖNNE et al., 2017), Web crawling is the process used
by search engines to collect web pages. This investigation looked at web crawling at
several different levels, from the long-term goal of crawling important pages first, to
the short-term goal of using network connectivity efficiently, including implementation
issues which are essential for tracking in practice. There is also an algorithm used by
search engines to find, read, and index pages on a website, which is known as a web
spider. It is like a robot which captures information from each link that it finds, registers,
and understands information according to specified criteria in search engines. This also
facilitates the analysis of the code of a website to look for information on a page.

According to (OLSTON; NAJORK, 2010), the main function of a crawler is to
examine links across the internet. Simply put, it does a complete scan of the links that
you find on the web, taking into account each line of code on the site and all the links
that are on it, whether internal or external. Thus, it can build a sort of internet map
with the right to all the sites which link to each other. Among the other functions of a
crawler, the following are notable: evaluation of sites, copying the structure of sites for

Chapter 2. Basic Concepts 33

indexing, identifying new sites, and carrying out automated maintenance tasks such as
link checking and HTML code validation. It all commences with a list of URLs (seeds)
to visit the online web crawler. On every visit to these sites, the robot identifies the links
on the pages and includes them in specific lists for a new scan. Then it returns to them
recursively, as per the established rules. And if it finds new content, it gets indexed.
Your search engine ranking may change if you find updated content on a preexisting
page. Figure 9 provides an example of a web crawler architecture.

Figure 9 – Exemple of Crawler Architecture - (OLSTON; NAJORK,2010)

34

3 RELATED WORKS

This chapter contains the bibliographical review pertaining to the state of the
art of the themes with respect to this work. Section 3.1 presents a systematic review.
Section 3.2 lays out the research works related to the development of phishing detection
techniques and methodologies. Lastly, Section 3.3 addresses the work on mapping user
computational behavior in cybersecurity.

3.1 SELECTED WORKS AND SYSTEMATIC REVIEW

For the purpose of surveying state of the art regarding the themes investigated
in this work, specific keyword searches were conducted, making it possible to observe
a wide range of works related to the themes presented here. These works were sought
directly on the Google Scholar database, with no restriction on publications in other
databases.

First of all, a search was conducted on the subject of Phishing Detection. The
base search string used was only in articles within the period of 2016-2020. This string
was configured to perform a search for words specifically in the title of the articles.
Approximately thirty-seven articles were returned from this search string. Of these, nine
were chosen which presented approaches relevant to the focus of this study. These
nine works were considered as the State of the Art.

The inclusion criteria for the articles were: a publication period between 2016 and
2021, full articles published without a language restriction, and articles which proposed
the computational implementation of some real-time phishing detection mechanism.
Thereafter, the selected works on phishing detection were commented on. At the end
of the session, a comparative table between the research works and this study is
presented.

Lastly, a search for works related to the second stage of this study was con-
ducted, whose main focus is investigating ways of mapping the user’s computational
behavior and its risks related to cybersecurity. As a means to do this, a search was first
performed using the string ("Phishing Detection") AND ("User Behavior") in the titles of
articles or any location of the text.

The string was created to unite the two themes, but it did not return satisfactory
results. Afterward, the string ("User Behavior") AND ("Security") was used in the period
between 2016-2021. The string obtained a return of approximately 49 results. Of these
articles, the most relevant ones were evaluated in terms of citations and with greater
compatibility with the theme, resulting in eight articles. Following the same logic used
previously, the articles were discussed and arranged in a comparative table.

Chapter 3. Related Works 35

3.2 PHISHING DETECTION

In this section, studies related to phishing detection methodologies will be dis-
cussed, which is the main topic of the first stage of this study, thereby addressing
the main aspects and differences regarding this investigation. A comparative table of
research works related to this study will be presented (Figure 10).

Threats, such as Phishing, have attacked vectors and specific features which
enable their detection. By mapping these vectors, the key points can be detected which
need to be checked in URLs and e-mail messages in order to recognize phishing
maneuvers. These vectors represent patterns already known in malicious URLs which
can be recognized by collecting world wide web (WEB) data. The scraping technique
allows data extraction from pages in search of specific characteristics and can assist
in validating URLs’ legitimacy and in detecting phishing vectors (PARK et al., 2017).
Similarly, searches for specific strings can be performed in e-mail messages to obtain
the same patterns checked in the URLs.

Anti-phishing solutions provide additional indicators that a website may be fraud-
ulent. There are a variety of clues to avoid falling into phishing maneuvers along with
malicious URL detection solutions (ALMEIDA; WESTPHALL, 2020). As demonstrated
in (SILVA et al., 2020), phishing detection techniques can be classified into two groups
based on the following: lists or heuristic techniques. List-based techniques can use
a resource base appertaining to permissive listings (whitelists) or restrictive listings
(blacklists). Heuristic techniques extract the characteristic properties of existing phish-
ing pages to detect new fraudulent pages. The main advantage of heuristic techniques
is that they can detect newly created or unknown (zero-day) phishing attacks, and
list-based techniques cannot (RAO; PAIS, 2019).

The work done by (SILVA et al., 2020) focused primarily on predicting phishing
attacks based on a set of static resources and observing the occurrence of these
resources in current phishing maneuvers. The analysis described static elements such
as keywords and patterns in phishing URLs. The methodology applied put forward a set
of twelve characteristics submitted to three distinct samples of legitimate and phishing
sites during the year 2018. The evaluated characteristics could be divided into three
groups: URL blacklist bypass, URL morphology, and user susceptibility.

It is worth noting that some of the characteristics described by the authors will
be used as a basis for the search engines proposed in this work, namely: concatenate
subdomains, homographic attack, and URL with redirection. The study revealed that
even though research on phishing detection and prediction has developed considerably,
certain characteristics are of low relevance, and others have not kept up with the
changes in the computational scenario. The authors pointed out that some features
are found more regularly in phishing and could be exploited more efficiently, indicating
that further investigations need to be conducted. In addition, the study also undertook

Chapter 3. Related Works 36

a qualitative analysis of behavior, managing to identify aspects such as relevance,
relationships, and similarities between resources.

In (RAO; PAIS, 2019), the study proposed Jail-Phish, which uses mechanisms
capable of detecting phishing URLs hosted on compromised servers (PSHCS) and
legitimate websites recently registered. The structure compares the suspect page and
the corresponding domain in the search results to calculate the similarity score between
them, highlighting the difference between PSHCS pages and legitimate pages as high.
The work utilized search engines in URLs in real-time, as in this study, but it did not
present effective mechanisms to mitigate attacks. Another point of divergence was
that this research did not focus on the detection of PSHCS; our work proposes ways
to detect phishing vectors regardless of where the pages are hosted. The work did,
however, show an accuracy of 98.61 % and made use of a hybrid methodology, mixing
lists and heuristic techniques.

According to (JAIN; GUPTA, 2018), the most common way to run phishing at-
tacks is to send thousands of fake emails to users, prioritizing a large number of short
URLs online. The study proposed a phishing search engine which performed two au-
thentications at different levels before declaring a page as fake. Queries performed
searches for the title along with the page’s domain. The authentication processes would
then observe values within the source code of the page as hyperlinks to assist in de-
tecting phishing characteristics, thereby increasing the accuracy of the method. The
work exhibited good accuracy in the detection, but it did not present a mechanism to
mitigate malicious actions.

The investigation done by (PARK et al., 2017) put forward Phishing-Detective;
a heuristic structure for detecting phishing based on a Web Crawler which extracts
information from pages using scraping techniques. The extracted data is analyzed by
a data mining tool (RapidMiner) to find patterns and report findings. The proposed
structure made use of the Scraping technique, similar to this study. However, it used
a base (PhishMonger) which is outdated for reproducing current methods, in addition
to not showing significant results in the detection of URLs or the approximate time to
perform the checks.

In (CHIEW et al., 2018), a description is given related to an extension from a
previous study in 2015, where logo images were used to determine the consistency
of the URLs’ identity; the actual and the portrayed. Meters were used to determine a
consistent identity as a legitimate page and an inconsistent one as a phishing page.
Part of the detection carried out was done through machine learning, based on the
extracted logo image. Finally, a comparison between the domain name returned by
Google and the name of the consulted URL enabled us to differentiate phishing from a
legitimate page.

In (SAHINGOZ et al., 2019), a real-time anti-phishing system was proposed,

Chapter 3. Related Works 37

which applied different classification algorithms and resources based on natural lan-
guage processing (NLP). The system had remarkable properties such as language
independence, real-time execution, and independence from third-party services. The
Random Forest algorithm was used in the elaboration of classifiers and resources,
reaching an accuracy of 97.98 % in detecting phishing URLs.

According to (SOUZA et al., 2019), the authors advocated PhishKiller, a tool for
detecting and mitigating phishing pages. The tool receives the addresses accessed
by users through a redirection made by the proxy and uses concepts of deep learning
(DL) to classify the URLs received. According to the results presented, the methods
achieved an accuracy of 98.3 % in the detection of malicious addresses.

In (DOBOLYI; ABBASI, 2016), the authors commended PhishMonger, a URL
verification API, in sync with the PhishTank platform. The API is responsible for synchro-
nizing with Phishtank and downloading files from the suspicious page to the last depth
level. This approach can present a high computational cost in more complex sites or
significant variation in the file format. Contrary to what is proposed by the authors in
this study, specific searches for Phishing elements would be carried out through Web
Crawling, thus avoiding the reading of trivial data in Phishing detection.

Figure 10 – Phishing Detection - Comparative Table of Works Related to this Work

Chapter 3. Related Works 38

Finally, in (SANTOS et al., 2019), malicious emails were collected through active
honeypots. For the detection of phishing messages and differentiation of spam mes-
sages, the Naive Bayes classifier was used, with a 92 % hit rate. To extract phishing
URLs, heuristic techniques for searching for specific characters in their bodies were
used. If any of the characters sought were found, the URL would be kept in the analysis
group.

3.3 USER BEHAVIOR

The examination of user computational behaviour and the human factor is not
only present in information security, based on the work of Cialdini (CIALDINI; JAMES,
Lloyd, 2009), but the topic is widely studied in the areas of social psychology and be-
havioral analysis, addressing topics concerning how susceptible the user is to phishing
techniques and other manipulation maneuvers (SHENG et al., 2010),(MOHEBZADA
et al., 2012). On the other hand, several studies show that characterizing the behavior
of individuals to obtain the level of susceptibility of these individuals to generate vulnera-
bilities is not feasible, as quantifying these factors and adapting them in a computational
way is not a simple task.

As described by NIST 2018, in its cybersecurity education framework (BAR-
RETT, 2018), user awareness remains the greatest way to combat social engineering.
Authors Zwilling, Moti, et al. and Ramlo, Susan E., John B., and Nicholas demonstrate
that increasing security maturity is the first step in preventing Internet-related risks
(ZWILLING et al., 2020), (RAMLO; NICHOLAS, 2020). The user needs to be aware of
these risks, adopting a preventive posture and attention to safety, thereby incorporating
habits into the routine of all users.

No matter how robust the security solutions are, they render useless if not ac-
companied by a minimum level of awareness. Increasing the user’s maturity level in
information security results in an exponential drop in vulnerabilities generated by the
user in a computational scenario. Nevertheless, within this category, other studies also
point to the intention factor as another variant, and it is directly linked to behavior (AD-
DAE et al., 2019), or even the violation of rules determined in an organization’s security
policy (THAKUR; PATHAN, 2020).

The topics investigated in (OVELGÖNNE et al., 2017) demonstrate that all eval-
uated (binary) datasets are related to the number of pieces of malware found on host
machines without a statistically significant level. Of these statistically significant results,
the ones which were considered more solid indicate that the number of malware infec-
tions on a machine is related to the number of binaries downloaded. Also, the number of
binaries on hosts is linked to the number of malware infections on hosts in the software
developer category, and software developers can generate binaries by compiling the
code they are developing. Software developers can generate binaries by compiling the

Chapter 3. Related Works 39

code they are developing. In addition, five-user groups were identified (players, software
developers, professionals, others who are not in any of the above categories, and all
users), and it became evident that software developers seem to be the most prone to
malware attacks.

The study (ISKHAKOV et al., 2018) set forth an approach where modern auto-
mated systems clarify the imperfection of existing approaches in developing technolo-
gies for identifying user behavior and malicious maneuvers. It was evident that the use
of thermal maps does not ensure accurate and authentic identification of a particular
user, but it does possibly raise the likelihood of detection in combination with other
identification methods which allow, with a certain probability, the comparison of users
applying various means of anonymization.

In (MARTIN et al., 2018) the main objective of the work was to examine the
usefulness of the equal equal variance sign detection theory (EVSDT) for assessment
along with understanding human detection of phishing and spear-phishing email scams.
Through an online inbox simulation, this work’s results suggested that differences in
susceptibility to phishing and spear-phishing emails could be carefully quantified for
detection accuracy and response bias through the use of an EVSDT framework. Fur-
thermore, the results indicated that based on EVSDT, point metrics are effective for
modeling and measuring susceptibility to phishing in the inbox task, without the need for
parameter estimation or model comparison involving unequal variance SDT (UVSDT).

The probe conducted in (LÓPEZ et al., 2019) put forth a diagnosis of the cyber-
security situation in Spanish digital homes. This was done by analyzing the adoption of
security measures and the level of incidence of situations of which may pose security
risks. In this study, the trust of home users is also evaluated through computer analysis,
which determines the degree of malware infection. The tool selected to perform the
analysis was the self-organization map (SOM), a data mining method which provides a
low-dimensional representation of high-dimensional data, thus improving visualization
and interpretability for complex pattern recognition. Furthermore, the study presented
two types of the applied methodology.

Firstly, a general analysis of a specific questionnaire on cybersecurity was car-
ried out. Secondly, automated scanning software was used. The purpose of using the
questionnaire and data independent of the scanning software was to reduce possible
bias in user responses regarding perceived security. This problem, common to all types
of surveys, is known as optimistic bias and is especially important for user-related issue
concerns. After the data was collected from both sources, it was then pre-processed
by grouping it into categories and extracting resources of interest. Finally, SOMs were
applied to extract knowledge about the interactions between these resources.

In (ADDAE et al., 2019), the academic analysis described an exploratory investi-
gation on the feasibility of predictive methods. User behavioral data was analyzed as a

Chapter 3. Related Works 40

possible aid in developing effective user models for adaptive cybersecurity. Partial least
squares structural equation modeling was applied to the cybersecurity domain, collect-
ing data on users’ attitudes towards digital security and analysis of how this influences
the adoption and use of technology security controls.

Bayesian network modeling was then applied to integrate the behavioral vari-
ables with simulated sensory data and/or records from a web browsing session and
other empirical data collected to support personalized adaptive cybersecurity decision
making. The results of the empirical study show that predictive analytics is feasible in
the context of behavioral cybersecurity and can help generate useful heuristics for the
design and development of adaptive cybersecurity mechanisms.

An observational study was conducted by (DIAZ et al., 2020) on the relationship
between demographic factors and phishing susceptibility in the university of Maryland
(UMBC). Four hundred and fifty randomly performed phishing attacks selected students
on three different days (1,350 students in total) to examine user click-through rates and
demographics across UMBC’s undergraduate students. No significant correlation was
found between gender and susceptibility. In addition, it was noted that there is a reverse
correlation between phishing perception and the student click resistance.

Students who identified themselves as understanding the definition of phishing
had a higher susceptibility rate than their peers who were only aware of phishing attacks,
with both groups having a higher susceptibility rate than those without any knowledge
at all. Approximately 70% of respondents who opened a phishing email clicked on it,
with 60% of students having clicked in general.

In (ALJEAID et al., 2020) the study focused on assessing the level of cyber-
security knowledge and cyber awareness in Saudi Arabia. It was aimed at assessing
end-user susceptibility through three phishing attack simulations. In addition, the study
elaborated on some of the concepts related to phishing attacks and reviewed the steps
required to initiate such attacks.

In (MASHIANE; KRITZINGER, 2020), theories from the domain of psychology
were incorporated to understand cybersecurity user behavior. Firstly, the study put forth
the question as to which of these theories is best suited to understand cybersecurity
behavior, and subsequently, to change cybersecurity behavior for the better. The re-
search established a definition for the different categories of cybersecurity behavior to
answer this question. In addition, it identified and applied a structure, the theoretical
domain framework (TDF), and united different behavioral theories in a behavior change
framework.

TDF was used as a tool to synthesize the constructions found in the literature.
For each category of behavior (identified in this study) the associated constructs were
identified and evaluated to determine whether they are facilitators or barriers to behavior.
Through this, the study aimed to show the link between the behavioral constructions

Chapter 3. Related Works 41

discussed in Theoretical Domain Structure for different categories of cybersecurity
behavior. As a final result, the contribution of the study served to implement initiatives
aimed at changing cybersecurity behavior.

Figure 11 – User Behavior - Comparative Table of Works Related to this Work

42

4 PHISHING DETECTION AND USER BEHAVIOUR MAPPING

This chapter will demonstrate the implementation in an experimental setting of
the method proposed in this research study. This study can be divided into two steps.
In the first step (Section 4.1), a phishing detection method (ALMEIDA; WESTPHALL,
2020) will be presented. The method primarily scans URLs and email messages for
standard attack vectors in phishing scams and malicious code infection attempts. There-
after, in the second stage (Section 4.2), monitoring user behavior will be proposed. This
method is based on constructing a DFA. It uses the method presented in the first sec-
tion of this chapter through the implementation of monitoring sensors which collect
information about user actions performed in the environment. These sensors will be
strategically placed in the same experimental scenario used in Section 4.1, where user
actions can be classified and mapped precisely when interacting with threats, such as
phishing and malware infection.

Section 4.1. is organized into 4 subsections. Subsection 1 provides a description
of the experimental scenario used. Subsection 2 demonstrates the functionality of the
implemented collections. Subsection 3 puts forward the proposed metric for evaluating
phishing URLs along with the elaborate algorithm. Finally, subsection 4 exemplifies
the behavior of APIs and their respective interactions. Section 4.2 is further broken
down into four subsections. The first subsection presents a taxonomy of user actions
and the classification of attack vectors. The second subsection introduces the new
additions to the experimental scenario proposed in section 4.1. The third subsection
proposes the finite state machine (DFA) implementation used to monitor user behavior.
Lastly, subsection four exemplifies the elaboration of the user maturity tree through the
proposed APIs.

4.1 HEURISTIC PHISHING DETECTION

The methodology presented in this section intends to demonstrate the detection
of phishing pages in real time. That being said, string search engines have applied that
aspect to characteristics such as the extraction API proposed in this work. The API is
developed based on concepts related to state of the art and incorporates the principle
of the scraping technique, which serves as a Web Crawler as it acts as an algorithm
which analyzes the code of websites. The algorithm behind the application is also able
to scan text files for strings which can indicate URLs, domains, or attached files. The
extracted elements will be stored in collections. These represent structures which will
contain important information about the results obtained by the search engines.

Another significant contribution of this methodology consists of the fact that it is
even using a Dataset imported from another database. The API is still able to perform
new tests on the URLs already obtained and also on the new ones, reducing false

Chapter 4. Phishing Detection and User Behaviour Mapping 43

positives to the maximum. This type of action allows the detection of zero-day phishing
URLs, as each URL captured at the moment is accessed by the user and a comparison
is made to find out if it has already gone through the Web Crawler check. Through this
methodology, it is possible to analyze which malicious URLs are going unnoticed by the
reporting platforms, which types of phishing are occurring the most for a given group,
and which themes are widely being used in the composition of the fake pages.

4.1.1 Implementation and experimental scenario

In order to conduct the experiments, free software tools (Anti Spam Zimbra and
Firewall PfSense) were used with a Not Only SQL (NoSQL) database (MongoDB).
The three tools were configured on separate virtual machines on a Ubuntu operating
system. The machines were implemented in a laboratory environment, with 200 users
authenticated via Lightweight Directory Access Protocol (LDAP). Users’ WEB traffic
was directed to the proxy, and their email boxes monitored by Anti-Spam, as shown in
Figure 12.

Figure 12 – Experimental Scenario

To carry out the experiments in this work, we used the creation of access profiles

Chapter 4. Phishing Detection and User Behaviour Mapping 44

in Proxy based on a Whitelist. Instead of maintaining a base of blocked URLs (blacklist),
a list of official URLs has been inserted to prevent occurrences of false positives. The
API collects and checks the phishing vectors on an official URL. Correspondingly, the
Firewall is programmed to generate an access log only when the user accesses a URL
outside the Whitelist.

It is worth mentioning that the choice of this scenario was aimed at maintaining
the maximum approximation with the structural reality commonly found in corporations
with essential security criteria. Figure 13 shows basic descriptions of the configuration
of the virtual machines to reproduce the scenario used.

Figure 13 – Virtual Machines and Configurations

Chapter 4. Phishing Detection and User Behaviour Mapping 45

Initially, for the creation and population of the NoSQL database, importing the
PhishTank Database in Character-separated values (csv) format was used (Figure
14). The choice of the Phishtank base among other platforms was made due to the
availability of access to the platform’s records and the possibility of connection through
its API to carry out queries to the base.

Figure 14 – Connections between python API and Phishtank Database

4.1.2 Collections

This study proposes the use of three collections, which represent abstractions
of the elements analyzed by the search engines: url-database, url-scrapy , mail-
database. To extract the elements and feed the collections, an API written in Python is
used, whose main functionality is the validation of the URL checking methods proposed
in this work.

Chapter 4. Phishing Detection and User Behaviour Mapping 46

The API offers the characteristics of a Web Crawler and uses the principles of
extracting information based on the Scraping technique, performing searches for the
attack vectors present in phishing. Moreover, it has the function of performing searches
for strings in the log files, inserting them in the database. API actions can be classified
into three types: collecting information about URLs opened by users and updating
the url-database collection, collecting information about e-mail messages received by
users and verifying the mail-database, and building the collection url-scrapy .

Also, search engines can be seen as Python API modules which perform tasks
specified in their fields. Figure 15 shows the organization of the collections used and
their fields, for a better visualization of the structure.

Figure 15 – Database Collections

The url-database collection is responsible for storing information concerning
URLs, taken directly from the PhishTank base. The collection fields maintain the basic
structure imported from the Phistank database, preserving the characteristics of the
import URLs such as:

• phish_id : the identity (ID) number by which Phishtank refers to a phish submission.
All data in PhishTank is linked to this ID. This will always be a positive integer.

Chapter 4. Phishing Detection and User Behaviour Mapping 47

• phish_detail_url : PhishTank detail URL for the phish, where it is possible to see
data about the phish, including a screenshot and the community votes.

• url : the phish URL. This is always a string, and in the extensible markup language
(XML) feeds may be a character data (CDATA) block.

• submission_time: The date and time at which this phish was reported to Phish-
tank.

• verified : whether or not this phish has been verified by community. In these data
files, this will always be of the string ’yes’ as only verified phishes are supplied in
these files.

• verification_time: the date and time at which the phish was verified as valid by the
community.

• online: whether or not the phish is online and operational. In these data files, this
will always be of the string ’yes’ as only online phishes are supplied in these files.

• target : the name of the company or brand the phish is impersonating, if it is known.

Other fields are added to the collection url-database, and accordingly are cre-
ated and fed from the collection in the log files of the Proxy, from the URLs accessed
by the user, and lastly, through the verification of the URL by the python API. Figure
16 shows an example of how the collection functions. The addition of these fields rep-
resents one of the contributions present in this study, whereby using Strings search
engines, the developed application is able to detect important characteristics of the
URLs:

• url_id : URL id inside url-database captured via python API.

• user : the user who accessed the URL. This field is a composite field and can
contain more than one user who accessed the same URL.

• access_date: date/time of the access attempt.

• protocol_type: brings the protocol present in the URL, hypertext transfer protocol
(HTTP) or HTTPS.

• certificate: this field can be used in future investigations to develop new reliability
metrics for digital certificates. In this current study, this field only presents the
certificate used by the page if the return of the protocol_type field is HTTPS.

Chapter 4. Phishing Detection and User Behaviour Mapping 48

Figure 16 – Example of url-databse collection

The mail-database collection stores information related to email messages
and is fed directly from the logs of the Anti Spam tool (Figure 17). This collection
corresponds to the e-mail checking method proposed in this work. Before initiating
the user mailbox analysis process, the API Python makes a copy of the mailbox to
the mail-database, consequently extracting the detected parsing objects and thus
transforming them into the fields used by the collection. Accordingly, an input base for
future comparisons is formed. This maneuver is performed message by message and
requires some execution time. Some fields in the collection should be highlighted:

• user_associated : indicates the user associated with the message.

• message_id_database: id of the parsed email on mail-database

• message_hash: email message hash calculated via message authentication code

Chapter 4. Phishing Detection and User Behaviour Mapping 49

HMAC-MD5 by the python function (hashlib) implemented in the API.

• message_id : id of the parsed email message.

• spam: the spam field is responsible for returning a YES or NO value as to whether
the email message was detected or not as Spam by the Anti Spam tool. Later,
this field will enable analysis of which phishing messages are being detected or
not by the Anti Spam filter. By collecting this information, it will be possible to draw
up studies on the detection rate of certain types of phishing messages.

• url_content : contains information on whether the checking API detected a redirect
link in the message body, and if so, which URL was found. For the detection of
URLs, a string search metric is used in the message body, in an attempt to find
words starting with http. An example might be: “ ^http+”.

• file_content : contains information related to files attached to the message body
which were detected by the API, returning a YES or NO; if YES, which file was
found. As a means to detect files, a string search metric is used in the Content-
Description field. This field may vary depending on the Anti Spam tool used. An
example might be: “Content-Description: [file.extension]”.

• file_type: returns the file extension found in the body of the analyzed message if
the result of the file_content field is YES.

• source_domain: informs the domain that sent the message.

• receipt date: message receipt date.

• incidence_rate: represents the message incidence rate, calculated through the
Python API. This rate indicates whether the same message has been received
before in the user’s mailbox. The incidence rate calculation is done through the
python API using hash-based message authentication code with message digest
algorithm 5 (HMAC-MD5) in the hashlib function (Figure 17). In this analysis,
the message body is evaluated as part of the source_domain field because the
same message can be sent from different domains. In this analysis, the message
body is evaluated as part of the source_domain field because the same message
can be sent from different domains. In this study, only the Message-ID, Subject,
Date, Content-Type, and Content-Descriptions fields will be used to generate the
message_hash as they may vary depending on the Anti Spam tool used.

The message is collected from the Anti spam tool log in text form and transformed
into a computational hash. This hash is stored in the message_hash field. When-
ever a new message is received, its hash is compared with that of other messages
(message_id + message_hash). If the hash exists, an incidence rate will be given.

Chapter 4. Phishing Detection and User Behaviour Mapping 50

This rate can have the following values: 0 (the message has no impact on mail-
database), 1-5 (the message appeared up to 5 times in mail-database), 5++ (the
message appeared more than 5 times in mail-database).

Figure 17 – e-mail collection example

The url-scrapy contains the values of the attack vector checks in detecting the
characteristics of phishing, contributing part of the main proposal of this work. These el-
ements analyzed are the main focus and proposal of this study because they represent
the greatest link of computational interaction between its actions and fraudulent ma-
neuvers. Consequently, these three characteristics are highlighted as the main attack

Chapter 4. Phishing Detection and User Behaviour Mapping 51

vectors present in phishing. In addition, other vectors will be analyzed: the concatena-
tion of subdomains, homographic attack, and the absence of a digital certificate. These
additional vectors are observed based on the work (SILVA et al., 2020). Analyzing
these vectors through the web crawling technique performed by the python API (url-
scrapy) will result in a phishing detection metric. In this step, a table (Figure 18) with
the evaluated vectors will be presented.

Figure 18 – Table of Metrics - Classification of Attack Vectors and Score

In order to compose the final evaluation grade, these vectors will be divided into
URL analysis (Group A) and page body analysis (Group B). In group A, the criteria
related to the analyzed URL will be evaluated. The attack vectors presented here can
be detected through the structure of the URL, and thus it is not necessary to analyze
the elements in the body of the page and the HTTP headers. Subsequently, in group
B, the objects contained in the body of the page will be evaluated. Consequently, a
connection must be established and the elements will be read using the web crawling
technique implemented by the API search engines.

Each Attack Vector can be classified into two severity levels (moderate and high)
and their respective weights (10, and 20 points). Vectors can appear individually and
can also be combined into the two groups. A formula involving the combination of the
vectors present and a margin of error will be used to calculate the phishing evaluation
metric, resulting in a final grade. Analyzed URLs which meet the proposed grade will
be considered suspected phishing.

Chapter 4. Phishing Detection and User Behaviour Mapping 52

Initially, a Full URL Trace is performed, analyzing the HyperText Markup Lan-
guage (HTML) responses. This type of search functions well for classic websites or
server-rendered pages where the HTML in the HTTP response includes all the content.
If the use of Javascript, or any other dynamic language module on the page is detected,
it will be executed step by step to detect all its resources (these criteria will be used to
assess the complexity of the page). This action is necessary because the initial HTML
content in some sites does not include the full content of the page itself, and thus,
these are arranged inside small .js modules, asynchronous JavaScript and XML (AJAX)
modules, JavaScript object notation (JSON), among others which are registered in the
search engine.

The python API will queue all pages to be rendered unless a robot header or
metatag directs not to index the page (Figure 19). It may be in this queue for a few
seconds or more. Each chunk of .js code detected on a page will be executed and
rendered sequentially, building the page’s structure and storing it in memory. After
reading all code blocks, the API will look for the structures found by links to other pages
and save these links in the database. Previously accessed pages will already be cached
through the previously performed rendering.Values are collected using the extraction
API described in the next subsection. Some fields in the collection can be highlight :

• scrapy_url : this field brings the URL evaluated by the web crawling module.

• scrapy_id : id of URL scraped. This field will be used to distinguish when a URL
arrived in url-database through import by Phishtank platform or when it entered
url-database through web crawling module (scrapy_id and scrapy_url).

• concatenate_subdomains: in this field, URL patterns which have multiple subdo-
main concatenations will be evaluated in order to make users believe, through
a careless note, that the URL displayed in the browser is a legitimate domain
(SILVA et al., 2020). An example of this occurrence can be seen in acessoapp.
login.bb2.com.br. As reported in the experiments of the aforementioned study, it
was possible to observe that using many subdomains are quite common invalid
phishing attacks. To perform the analysis, the API search engine will consider a
list of domains used in a whitelist and will count the dots (.) before or after the
keyword (whitelisted domain). URLs with more concatenations will be considered
suspicious.

• homographic_attack : this field will evaluate the cases in which the fraudster makes
use of substitutions, which may be misspelled words, paronyms, homographs, and
homonyms, among others, which are often associated with word games that can
pass by an inattentive end user (SILVA et al., 2020). Examples can be found
in URLs using words like “faceb00k”, “Netfliiix” or “Dr0pbox”. According to the

Chapter 4. Phishing Detection and User Behaviour Mapping 53

experiments carried out in the investigations above on Facebook, six substitutions
were detected, totaling 8.07% of the samples. In addition, Brazilian banks, in
particular "Banco do Brasil" also stands out with 4.17% of the total. This data led
the attack vector to be considered highly relevant in phishing maneuvers. The
feature was considered to be of high relevance.

• form_fields: this field represents a YES or NO value and informs if form fields were
detected on the analyzed page. The API search engine performs the search for
form fields on the page (textfield). Initially, they will be registered commonly used
string names and variables in addition to searching text fields like: ’username’,
’login’, ’user’, ’code’, ’number’, ’card_numer’, ’mail’, ’e-mail’, ’key’, ’security_code’,
password’ among others.

• form_fild_detected : returns form fields detected on the page by form_filds.

• redirection_link : this field represents a YES or NO value, stating whether the
analyzed URL is redirected to other pages. As noted in (SILVA et al., 2020), the
redirect evaluation will look for query string manipulation cases. The HTTP pro-
tocol allows the values of these parameters to be arbitrarily modified during the
GET allowing a malicious user to place a malicious URL inside the legitimate
URL which will redirect the user to a page that the fraudster entered in the pa-
rameters. The API search engine will also assess whether there are any other
links embedded in the body of the page via .js modules or other types of dynamic
languages.

• redirection_url : if positive values are returned from the redirection_link, a URL or
redirect module (.js and others) will be collected.

• downloadable_content : this field represents a YES or NO value regarding the
existence of download content on the page. The Python API will also parse redi-
rection to file-hosting links or self-running browser code used to call functions
which perform auto-download on sites such as GitHub, among others. In addition,
the tool will look for structures either in direct hosting links or front-end modules
(.js) which automatically download files as the user clicks on a specific element
of the page (an image or button on the screen which is not visible to the user but
they will be downloading).

• downloadable_file: if a positive value has been returned from downloadable_content,
the API would catalog the detected file and its extension.

• certificate: if the URL appears as HTTPS, it will contain its authentication cer-
tificate. Currently, even though it is known that many URLs of phishing have a

Chapter 4. Phishing Detection and User Behaviour Mapping 54

validated certificate, it is important to analyze which authority is signing the cer-
tificate. As reviewed in (SILVA et al., 2020) 88.85% of valid phishing sites do not
use the HTTPS protocol, considering the vector as highly relevant for analyzing
phishing pages. According to a 2017 survey for the current period, the number of
valid phishing pages with HTTPS is growing, thereby highlighting the use of free
encryption resources, such as Let’s Encrypt.

The study also notes that with the increase in phishing pages with the secure
protocol, it becomes questionable as to whether it should be considered a criterion
to increase or decrease the reliability of the pages. Subsequently, this information
can be useful to observe which certificates are mostly used by the fraudulent
URLs and the comparison between certificates and valid domains.

• url_metrics: this field represents the parameters used by the python API to calcu-
late the URL evaluation metric. This metric will be detailed in subsection 3.1.3.

• url_rank : this field represents the final score of the URL after being evaluated by
the phishing detection metric proposed in this work.

Figure 19 – Python API - Scraping Engines

Chapter 4. Phishing Detection and User Behaviour Mapping 55

4.1.3 URL score and rating metrics

For the elaboration of the metrics in order to evaluate the URLs, the Attack
Vectors arranged in the work (SILVA et al., 2020) will be used, namely: Concatenate
Subdomains, Homographic Attack, and Certificate Missing. In addition, the attack vec-
tors proposed in (ALMEIDA; WESTPHALL, 2020) : Form Fields, Redirection Links, and
Downloadable Content will also be added. A total of six attack vectors will be exam-
ined when evaluating the URLs; these vectors are extracted from the page through the
Collector API using the web crawling technique and stored in the url_scrapy collection.

Attack vectors will be scored by observing two criteria, incidence and criticality.
The criticality can be seen in Figure 18, which can vary between "moderate" and "high"
with values of 10 and 20. The incidence represents a relative value of the presence
of the vector analyzed in the URLs found. As a result, a survey was conducted on the
percentage of phishing URLs found which have each vector in (SILVA et al., 2020).
Afterwards, a survey of the incidence of each attack vector in the URLs found in this
work was taken. Figure 20 demonstrates the crossing of the incidence of vectors in
the two studies. The results found in this work will be discussed in detail in chapter 5
(Experiment Results).

Figure 20 – Attack vector incidence percentage

Chapter 4. Phishing Detection and User Behaviour Mapping 56

From the incidence rates discovered in the two studies, a metric of values was
created based on the incidence found (Figure 20). This Incidence Metric was calculated
using intervals of 15%. The attack vector "downloadable content" appeared in 16.83% of
the URLs, and consequently, it falls in the second interval of the Incidence Metric (16% -
31%). After fitting the attack vectors in the respective intervals, values were stipulated for
them. These values were arranged considering the total number of analyzed vectors(6)
and the maximum incidence percentage (100%), resulting in an approximate value of
16.66.

As the URL score will also be given as a Critical rate function (integer value), the
incidence metric will be measured in decimal numerical form with a minimum value of
0.16. Figure 21 shows the two metrics used and their ranges for the analyzed vectors.
To elaborate the final formula, the following should be considered: S as the final note
of the URL, IR the incidence rate of the detected attack vector, CR the critical rate
of the detected attack vector, and Q the total number of attack vectors found. Given
this information, the final URL score for the suspected phishing assessment can be
calculated using the formula below:

S =
(IRA1 ∗ CRA1) + (IRA2 ∗ CRA2) + ...(IRAn ∗ CRAn)

Q

With the pre-defined metric values (IR and CR) and the URL final score calcu-
lation formula, it is possible to infer a final average rating to determine whether or not
the URL is suspected of phishing. The final average value of the chosen analysis is 6.4.
Analyzed URLs which have a final score below 6.4 will not be considered phishing by
the evaluation algorithm, and URLs which obtain any score greater than or equal to 6.4
will be evaluated as phishing. The results discovered along with the observations on
the accuracy of the metric will be discussed in chapter 5 (Experiment Results). Below,
the proposed algorithm for analyzing URLs will be exemplified in pseudo-code form.

In summary, the algorithm input is the URL to be analyzed and tests the regis-
tered modules for each attack vector. These modules represent the search engines,
based on web crawling which scan the page in search of the attack vectors mapped
in this study. The results found are stored in the variable RESULTS and later in Q. If
the value of Q is equal to zero, the URL will not be considered phishing as none of the
attack vectors were found. If the value of Q is non-zero, M-function will be executed to
calculate the URL grade. Before the execution of the M-function, a structure in matrix
form M([i][j]) containing three columns is stated: column zero with the name of each
vector (RL, DC, CS...), column one with the IR of each vector (0.16, 0.32, 0.64...) and
lastly column two, with the CR of each attack vector (10, 20, 10...). The M-function
performs the search in the matrix arranged by the previously found modules in the
algorithm and exhibits their results.

Chapter 4. Phishing Detection and User Behaviour Mapping 57

Figure 21 – Attack vector incidence percentage

4.1.4 API Execution and Collections Interactions

During the verification step of url-database, the API will search for the keyword
in the log file, generated sequentially by a proxy, until it finds the string “URL: [url]” .
This search done by the proposed search engine, captures a URL accessed by the user
which was previously monitored by the content filter. After capturing this value, it will
make a comparison with the respective collection contained in the database to detect if
the URLs obtained are already inserted in the database. If it is found in the database,
no action will be taken, as the URL has already been inserted into the database by
importing the PhishTank Database.

Alternatively, the API performs a direct query to PhishTank in search of the URL
found in the file read and then inserts it into the database together with the fields pre-
determined in the request. If the URL acquired in the log file is not also present in the
PhishTank, the API will run the test metrics registered in the search engines through
the web crawling technique to detect if the URL has phishing characteristics. If the URL
has such characteristics, it will be added to the url_database with a scrapy_id. The
API will insert it into the database with a mark in the new_detected field, indicating that

Chapter 4. Phishing Detection and User Behaviour Mapping 58

Algorithm 1 URL evaluation algorithm
1: INPUT ⇐ URL
2: Initialize RESULTS with the empty list of Arrays[].
3: Initialize MODULES with the list of Modules registered to verify each Attack vector

(RL,DC,CS,FF,HA,CM)
4: for each module in MODULES . . . do
5: if
6: The module was detected in the URL then
7: RESULTS gets the list of Arrays with each module found in the URL
8: end if
9: end for

10: Q ← RESULTS
11: if Q == 0 then
12: The URL is not Phishing.
13: end if
14: if Q > 0 then
15: for each result found in RESULTS . . . do
16: Execute the M-function for the RESULTS found and store in M
17: R ← R + M[IR] ∗M[CR]
18: end for
19: SCORE ← R/Q
20: MEDIA← 6.4
21: if SCORE > MEDIA then
22: The URL is suspected of Phishing
23: end if
24: if SCORE < MEDIA then
25: The URL is not Phishing
26: end if
27: end if

Algorithm 2 M-function
1: INPUT ⇐ RESULTS
2: Initialize M as the Matrix[i][j] of Attack Vectors (RL, DC, CS, FF, HA, CN) and their

respective IR and CR.
3: for each modules in M . . . do
4: if
5: The module was detected in M then
6: return the module IRxCR
7: end if
8: end for

a URL with characteristics of phishing was detected by the API, but was not added as
suspicious on the platform.

After this, the API will report the URL to the Phishtank community as suspected
phishing through the communication socket between the application and the platform.
In this experiment, the tests performed are limited to the PhishTank database, not

Chapter 4. Phishing Detection and User Behaviour Mapping 59

preventing other databases from being coupled to the architecture in the future, thereby
expanding the range of information. The Phishtank Platform allows the proposed API to
perform queries in an integrated manner, thus facilitating the comparative framework in
detecting URLs. Figure 22 provides a demonstration of how the collection and insertion
of URLs are carried out.

Figure 22 – API execution and collections interactions

Similar to the verification step url_database, upon collecting information for the
mail_database, a new email message is received by the user and the API will read the
file log generated by the Anti Spam tool. It will then perform the functions registered in
the search engines related to mail_database. Before analyzing the message body, the

Chapter 4. Phishing Detection and User Behaviour Mapping 60

API will generate a hash of the message in HMAC-MD5 (hashpy Python function) to
calculate the message incidence rate (incidence_rate).

Thus, it is possible to know if the API previously analyzed the new message. The
incidence rate is very common in phishing tricks and their derivations (spear phishing
and whaling, among others). In addition to generating a message incidence rate, this
mechanism manages to save API execution time, where a previously verified message
will not be verified again. When the message body is the same, but the redirect link
used in phishing is different, the message_hash will be different, and the API will
perform a new analysis. The ability to analyze the attached file type detects possible
targeted malicious actions, in which malware is disguised as regular documents, such
as spreadsheets and text documents.

4.2 USER BEHAVIOR MAPPING

This section is organized into four subsections. The first subsection presents
the use of a taxonomy of the user’s actions and the classification of the attack vectors
used in social engineering and their respective threats and damages. This approach
aims to elaborate a reduced taxonomic structure, delimiting the scope of exploration
to the already known vectors (Figure 23). Subsection 4.2.2 presents the new additions
made in the experimental scenario proposed in section 4.1. (new API’s). Subsection
4.2.3 sets forth the implementation of the finite state machine (DFA) used to monitor
user behavior. Finally, subsection 4.2.4 provides the elaboration of the user maturity
cybersecurity profile tree through the proposed APIs.

4.2.1 Taxonomy of User Actions and Attack Vectors

Social engineering represents a fabricated trust founded between the entity
causing the malicious action and the user, designed to collect information, commit
fraud or gain access to confidential information. Through observation, a new taxonomic
structure will be elaborated on in this stage of the study, which relates the attack vectors
used in phishing maneuvers with the computational actions performed by the users
when interacting with these vectors. The classified attack vectors are based on the three
analysis objects proposed in (ALMEIDA; WESTPHALL, 2020), which were discussed
in the previous section.

Attack vectors (AV) will be divided into two groups: malicious URLs (AV1) and
malicious emails (AV2). Within each group, the attack vectors are divided into sub-
vectors (SB). The AV1 group sub-vectors involve the presence of redirect links in URLs
(AV1SB1), the presence of form fields in a URL (AV1SB2), and finally, the presence
of download content on the page (AV1SB3). Users’ computational actions (UA) will
be classified as representing characteristic interactions in phishing maneuvers through

Chapter 4. Phishing Detection and User Behaviour Mapping 61

fraudulent URLs or malicious email messages. Figure 23 shows the proposed taxo-
nomic structure.

The attack vectors were divided by observing the concepts presented in the
literature, discussed in chapters 2 and 3 of this study. Both groups (AV1 and AV2) have
characteristic steps present in executing the attacks. Phishing attacks emanate from
social engineering ploys and digital espionage. In more specific phishing cases (spear-
phishing and whaling), the collection of this information is usually carried out through
passive internet scans (public information). The digital espionage process represents
a large collection of information undetected by security devices, such as firewalls and
IDS / IPS (Intrusion Detection System / Intrusion Prevention System).

This information can be collected through social network scans, domain lists,
Google Dorks, social engineering applications such as Maltego and SET on Kali Linux,
as well as other scans which seek information already indexed on the web (KOYUN; AL
JANABI, 2017). Sending specific emails to a certain type of person with a mapped pro-
file is also within the scope of targeted attacks. Generally speaking, phishing attacks can
only involve hosting a malicious page (AV1) containing its attack sub-vectors (AV1SB1,
AV1SB2, and AV1SB3), as in the case of fake pages from financial institutions and
other services commonly used by the population in the digital medium.

To fully grasp the taxonomy used, some of the commonly observed situations
involving phishing maneuvers and their derivations will be mentioned below. In addition,
the types of damage caused by the incident will be listed as well.

1. Situation 1: The attacker publishes a phishing URL (AV1), pretending to be a
financial institution, social networking page, or other service found on the Internet.
This URL may or may not contain internal redirect links to other malicious pages
(AV1SB1). The focus of the maneuver is the Theft of users’ credentials through
false trust and filling in form fields (AV2SB2). It then spreads it through social
networks or other untrustworthy pages to reach users of these services in general,
without specific targets. In addition, the phishing page can also be spread through
a DNS poisoning attack.

– User Actions (UA): The user somehow ends up finding the URL and
clicking on it (UA1AV1). Users without the knowledge or with a low cyber-
security maturity level can interact with form fields and Inform their cre-
dentials (UA1AV1SB1 and UA1AV1SB2). These credentials can range
from simple data to credit card and bank account information.

– Threats Behind: Common Phishing

– Type of Demage: Total loss of information confidentiality. The creden-
tials informed were lost and can be used to carry out other frauds on the
internet.

Chapter 4. Phishing Detection and User Behaviour Mapping 62

Figure 23 – Taxonomy of Attack Vectors and User Actions

2. Situation 2: The attacker performs a digital espionage maneuver through social
engineering techniques and collects information about specific targets, such as
personal or corporate email, social networks used, financial institutions used,
among other services. The attacker then publishes a phishing URL (AV1) and
spreads it via email (AV2) to specific targets previously mapped. This attack
intends to steal credentials through the false credibility of pages through the filling
in of form fields (AV1SB1, AV1SB2 and AV2SB1).

– User Actions (UA): The user receives a malicious email in their inbox
(AV2), often undetected by the Anti Spam tools. The user opens the mes-
sage (UA1AV2) and clicks the redirect link contained in the body of the
email (UA1AV2SB1) whereby they are taken to the phishing URL. Con-
sequently, the user believes it to be a real website and thus passes their
credentials through the form fields of the malicious page (UA1AV1SB2
and UA2AV1SB2).

– Threats Behind: Common Phishing, Spear Phishing, Whaling, CEO
Fraud.

Chapter 4. Phishing Detection and User Behaviour Mapping 63

– Type of Demage: Total loss of information confidentiality. The creden-
tials informed were lost and can be used to carry out other frauds on the
internet.

3. Situation 3: The attacker publishes a phishing URL (AV1) pretending to be a
financial institution, social networking page, or other service found on the Internet.
Inside the body of the page, a file is embedded for downloads such as internet
banking files, vaccination calendars for COVID-19, and other file formats (.xls,
.txt, .pdf) (AV1SB3). These files are generally of general interest to internet users.
This URL may or may not contain internal redirect links to other malicious pages
(AV1SB1) or form fields (AV1SB2). The form fields for credential theft also accom-
pany most of the time, this type of maneuver.

The focus of the maneuver is infection through malicious code embedded in the
files displayed (Ransomware, Trojans, and Keyloggers). Afterwards, the attacker
spreads the URL through social networks or other untrustworthy pages to reach
users of these services in general, without specific targets. In addition, the phish-
ing page can also be spread through a DNS poisoning attack.

– User Actions (UA): The user somehow ends up finding the URL and
clicking on it (UA1AV1). Usually on other ads/advertising pages with lit-
tle credibility or through social media. Users with no knowledge or low
maturity level in cybersecurity may interact with the form fields and enter
their credentials (UA1AV1SB1 and UA1AV1SB2). In addition, users may
download malicious files contained on the page (UA1AV1SB3). This type
of activity is one of the main characteristics of malicious maneuvers in-
volving movie hosting sites (torrent) and music in general. The file down-
loaded to the user’s machine may look harmless, but when executed
(UA2AV1SB3), it may invoke the malicious functions of obfuscated code
within the structure of the file itself (Very common in office package files).

– Threats Behind: Common Phishing, Malware Infection, Command and
Control, Information Hijacking / Data Encryption, Botnets.

– Type of Demage: Partial or total loss of integrity/availability of informa-
tion.

4. Situation 4:The attacker performs a digital espionage maneuver through social
engineering techniques and collects information about specific targets, such as
personal or corporate email, used social networks, used financial institutions,
among other services. In this case, the attacker can focus on a specific employee
or employees of a company sector, for instance, an HR employee who receives
resumes or a financial analyst who works directly with Excel payrolls. From there,

Chapter 4. Phishing Detection and User Behaviour Mapping 64

the attacker then publishes a phishing URL (AV1) and spreads it by email (AV2)
to specific targets previously mapped.

This URL may contain a malicious file available for download on the Page (AV1SB3).
In addition to the options mentioned above, the attacker can send a malicious file
attached to the body of the email (AV2SB2); this file being something of interest
to the previously mapped target (a fake resume for a recruiter or a cost sheet for
someone in the financial sector). This attack is intended to infect specific targets
by malicious code to implement other future attacks or the infection by malicious
code embedded in the files displayed (Ransomware, Trojans, and Keyloggers).

– User Actions (UA): The user receives a malicious email in their inbox
(AV2), usually undetected by anti-spam tools. The user opens the mes-
sage (UA1AV2) and downloads the file attached to the email message
(AV2SB2). The attached file was formulated specifically for the user’s
profile as it is a targeted attack for purposes other than phishing. The
file downloaded to the user’s machine may appear harmless, but when
executed (UA2AV2SB2), it may invoke the malicious code obfuscation
functions within the file structure (very common in office suite files).

– Threats Behind: Malware Infection, Command and Control, Information
Hijacking / Data Encryption, Botnets.

– Type of Demage:Partial or total loss of integrity/availability of informa-
tion.

Observing these characteristics, it is clear that the attacks use common ex-
ploratory routes, despite varying purposes and techniques. This analysis supports the
hypothesis that attack vectors from social engineering used in phishing always have the
same exploitation vectors, and even those with different techniques represent a limited
number and are susceptible to detection/classification.

This line of analysis is fundamental for the second stage of this work, demon-
strating that the problem of detection of characteristic attack vectors and the actions of
users, or interaction with them, represents a finite problem. Thus, this problem can be
computationally mapped by observing all the elements involved (UA + AV). When the
attack vectors are mapped (AV), alongside the mapping of the behavior of each type of
user (UA), the link between the beginning of the fraudulent maneuver and the execution
of the attack can be detected in an organized way. Thus, when combined, the UA and
AV groups become the way to conduct an incident.

Chapter 4. Phishing Detection and User Behaviour Mapping 65

4.2.2 Additional Implementations in Experimental Scenario and new API mod-
ules

After the taxonomy substantiated above, the user behavior and the detected
attack vectors can begin to be mapped. Attack vectors (AV) and their sub-vectors
(SB) were already collected by the Collector API described in the previous section.
The vectors referring to the URLs (AV1) are extracted through the application’s search
engines (Web Crawling) represented by the url_database and url_scrapy collections.
Correspondingly, they go through the phishing detection metrics for the final URL score.
The vectors referring to email messages (AV2) are evaluated by the Collector API and
extracted by the implemented search engines represented by the mail_database and
url_database collections.

With the aim of monitoring user behavior (User Actions - UA), two new mod-
ules will be proposed (API Behavior and API Automata), along with two new collections
(user_behavior and system_responses). The new APIs and collections will be added to
the experimental scenario proposed in the previous section (Figure 24). While conduct-
ing the experiments, the two APIs proposed on the users’ machines were configured
(following the agent model) under the Windows 10 operating system. In addition, a
client/server communication was configured between the APIs on the machines and
the Server Ubuntu, where the Mongo Database is located in port TCP 27017.

The Behavior API is responsible for monitoring the user’s computational behav-
ior. The API is installed as an agent on the user’s machine and extracts information
from the browser and operating system. For the experiments performed in this work,
the API was built in two modules. The first was written in JavaScript language which
performs direct communication with the Browser (Google Chrome), and the second,
written in Python language which performs the core functions of the API and consumes
the data from the JavaScript module. The JavaScript module is similar to a Google
Chrome extension based on monitoring requests and meeting Chrome Developer Tool
specifications. Figure 25 shows the minimum requirements needed to simulate the user
environment.

In this first module, the API will monitor browser core events, such as: opening
a new tab, closing a tab, starting a download, or other requests such as opening web
sockets and clicking buttons in the body of the page. As such, it is possible to capture
requests and monitor the life cycle of these requests, and it is also possible to interrupt
them in case of improper actions during the process. This interaction allows you to
monitor the entire operation of f12 (developer tools). The module also permits the
monitoring of links which open with external links in other applications or programs,
for example, a torrent link which requests opening directly in the torrent management
application.

Furthermore, it is also possible to identify tabs which may be opened without the

Chapter 4. Phishing Detection and User Behaviour Mapping 66

Figure 24 – New APIs and Additions

user’s request by running applications in the background without the user’s knowledge.
Through this process, the API’s JavaScript module reads the events that happen in the
browser, managing to monitor the user actions (UA’s) shown in Figure 24. The API
Core, written in Python, consumes this information taken from the browser through the
JavaScript bound extension and inserts them into the Mongo database.

The Automata API is responsible for preparing the user’s maturity profile, basing
its structure on monitoring user actions (UA’s) and system responses (SR’s) generated
by API Behavior and API Collector. The creation of the user maturity profile will be
discussed in section 4.2.4. The system responses are signals emitted by applications
when confirming performed actions or parameter checks, and these signals need to
be generated to be read by the Automata API and thus be part of the DFA alphabet.
The SR’s are generated when the actions take place and are related to the time_check
field.

In addition, they are stored in the system_response collection. The time_check
field is attributed to the moment when the Collector API and API Behavior checks occur,
thus creating a relationship between the evaluated URL, performed user action, and the
detection of this action. Furthermore, to build the Automata API, the classDFA(FA) im-

Chapter 4. Phishing Detection and User Behaviour Mapping 67

Figure 25 – User Virtual Machine Simulation

plemented in Python language through the automata-lib is used. Figure 25 shows basic
descriptions of the configuration of the virtual machine (User’s Machine) to reproduce
the new implementation of APIs.

Below, some fields from the collection user_behavior and system_responses
used by API Behavior and API Automata will be described.

• UA1AV1: API detects user action when opening a URL in a tab via browser.

• UA2AV1: The API detects the user action when closing a URL (tab already
opened) through the browser.

• UA3AV1: API detects user action when reporting a URL as suspected phishing.
For the reporting of suspicious URLs, a JavaScript function is configured in the
API with a text field for entering the URL and a submit button. When reporting a
URL, it will be recorded in the url_reported field and related to the user acting.
This action is monitored to measure the maturity level of phishing URLs and
generate a final analysis of which users could visually detect dangerous URLs.
In this step, the url_reported field will be compared to the url_database and
url_scrapy collection fields.

• UA1AV1SB1: The API detects user action when clicking a redirect link within a
page.

• UA1AV1SB2: The API detects user action when typing information into form fields
on a page. The API monitors the keyboard outputs introduced in the fields and
sent by buttons (submit) by reading the requests in the extension coupled to the
browser.

Chapter 4. Phishing Detection and User Behaviour Mapping 68

• UA1AV1SB3: The API captures the user action when downloading a file via the
browser.

• UA1AV2: The API captures the user action when opening an email via the browser.

• UA2AV2: The API captures the user action when deleting an email via the browser.

• UA1AV2SB1: API detects user action when accessing URL within an email mes-
sage via browser.

• UA1AV2SB2:The API detects the user’s action when downloading a file attached
to an email message via the browser.

• SR0: System response issued by API Behavior upon detection of user action
when closing a URL or changing URLs (UA2AV1). The Automata API will under-
stand this input as a restart of the automaton, taking it to the Initial state.

• SR1: System response issued by API Collector after checking URL score (not
phishing/score < 6.4).

• SR2: System response issued by API Collector after checking the URL score
(phishing/score > 6.4).

• SR3: System response issued by API Behavior upon detection of user action of
clicking a redirect link within a malicious page (UA1AV1SB1).

• SR4: System response issued by API Behavior after detecting user action to fill a
form field and/or interact with a submit button (UA1AV1SB2).

• SR5: System response issued by API Behavior after detecting user action when
downloading a file via a URL in the browser (UA1AV1SB3).

• SR6: System response issued by API Collector after checking the email message
opened by the user, where it was opened from the spam box.

• SR7: System response issued by API Collector after checking the email message
opened by the user, where it was opened from the inbox.

• SR8: System response issued by API Behavior after detection of user action
to delete the email message (UA2AV2). This input will be understood by API
Automata as an automaton restart, taking to the Start state.

Chapter 4. Phishing Detection and User Behaviour Mapping 69

4.2.3 Finite State Machine Implementation

After describing the API Behavior and the new collections added, the Automata
API will be proposed. The Automata API implements a finite deterministic automaton
(DFA) responsible for monitoring user actions, the Behavior API collects browser actions,
and the Automata API monitors the Behavior API and Collector API results. Therefore,
the automaton has the user actions (UA) as input (alphabet) coupled with the system
responses (SR), thus being able to trace the user’s behavior profile.

The DFA alphabet is a finite alphabet, represented by the taxonomy proposed in
Figure 23. At the end of the execution, it is possible to observe which DFA states the
user went through as they performed their daily routines, thereby forming a maturity tree
in the user’s cybersecurity. Some states are more critical than others, demonstrating
the user’s degree of susceptibility to malicious maneuvers highlighted in this work.

The initial state of DFA represents the user starting normal tasks for the day,
so this state is also a final state (acceptance) as it will only advance in the structure
when the user performs any of the actions (UA) listed in the alphabet. Therefore, the
proposed DFA will accept the empty entry (ϵ). Figure 26 shows the DFA in the form of
a state diagram.

The B1 automata is constructed to read a group of strings composed of a string
from the UA group followed by one or two strings from the SR group and can be
represented in the 5-tuple form (Q, Σ, δ, q0, F) where:

• Q is the finite set of states (S, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12,
q13, q14, qr1, qr2)

• Σ is the alphabet [ϵ, UA1AV1, UA2AV1, UA3AV1, UA1AV1SB1, UA1AV1SB2,
UA1AV1SB3, UA1AV2, UA2AV2, UA1AV2SB1, UA1AV2SB2, SR0, SR1, SR2,
SR3, SR4, SR5, SR6, SR7, SR8].

• δ is the transition function represented in the form: Q x (Σ) → Q.

• S ∈ Q is the initial state.

• F ⊂ Q is the set of accept states (S ,qr1, q3, q7, q9, q12, q13).

DFA B1 starts in state S, where S is an automaton acceptance state. The transi-
tion to state q1 (δ(S, UA1AV1)→ q1) is performed through the string UA1AV1, which
represents the user action when opening a new URL in the browser, captured by the
Behavior API. The transition δ(S, UA1AV2) → q2 will take from state S to state q2
via the UA1AV2 entry and represents the user action when opening an email via the
browser.

In state q1, checking the URL through the Collector API will be performed. If
the URL passes in the analysis metrics, the Collector API will generate the system

Chapter 4. Phishing Detection and User Behaviour Mapping 70

Figure 26 – DFA state diagram

response SR1, moving it to state qr1 through the transition δ(q1, SR1)→ qr1. The qr1
state represents the user’s access to a URL that was not considered phishing, this URL
can still represent other malicious features like a hoax and fake news, but these threats
will not be evaluated in this work.

The qr1 state is an accept state as the user can still leave the URL open. The
only input accepted by the state is the UA2AV1 entry (close browser tab/change URL)
which will lead to qr2 state through transition δ(qr1, UA2AV1)→ qr2. As a consequence
of this user action (UA2AV1), the Behavior API will issue a system response SR0 which
will take the automaton to the initial state S through the transition δ(qr2, SR0)→ S.

Still in state q1, if the URL does not pass, does not reach the score required by
the evaluation metrics (6.4), and is evaluated as phishing, the Collector API will issue a
system response SR2, taking it to state q3 through the transition δ(q1, SR2)→ q3.

The q3 state represents the user action when opening a URL in the browser

Chapter 4. Phishing Detection and User Behaviour Mapping 71

evaluated as phishing (Score > 6.4) through the checks carried out in the Collector
API. This state represents the central point of the automaton and has the highest
concentration of outputs within the structure. The δ(q3, UA3AV1)→ q4 transition occurs
through the UA3AV1 entry, representing the user action in reporting the URL as phishing
through the Behavior API interface. Consequently, the API Behavior will issue the SR0,
which will take the DFA back to the initial state through the transition δ(q4, SR0)→ S.

The transition δ(q3, UA2AV1)→ qr2 will lead to the state qr2, representing the
user action to close the browser tab or change the URL in the same tab. Consequently,
the API Behavior will issue the SR0, which will take the DFA back to the initial state
through the transition δ(qr2, SR0) → S. The transition δ(q3, UA1AV1SB1) → q5 rep-
resents the user action to click on a redirect link (UA1AV1SB1) within the suspicious
URL. Therefore the URL Behavior will return to system response SR3 performing the
transition δ(q5, SR3)→ q1 where the URL opened via the link will be re-evaluated. The
δ(q3, UA1AV1SB2) → q6 transition through the UA1AV1SB2 input occurs when the
user fills in form fields present in the URL body and somehow submits them through a
submit button.

As a consequence of this action, the API Behavior will issue a system response
SR4 generating the transition δ(q6, SR4)→ q7 to state q7 (acceptance state). However,
in state q7, the user may close the URL (UA2AV1) going to state qr2 through the
transition δ(q7, UA2AV1)→ qr2 or the user may report the URL as phishing (UA3AV1)
after realizing the interaction with a fraudulent page δ(q7, UA3AV1)→ q4. Finally, the
transition δ(q3, UA1AV1SB3) → qr8 represents the user’s action to download the file
through interaction with the page (UA1AV1SB3). Consequently, the API Behavior will
issue the SR5 taking the state q9 through the transition δ(q8, SR5)→ qr9.

After performing the download, the user may notice that the URL is maliciously
reporting it (UA3AV1), taking it to state q4 through the transition δ(q9, UA3AV1)→ q4
or closing the URL in the browser (UA2AV1), leading to state qr2 through the transition
δ(q9, UA2AV1)→ qr2.

The state q2 represents the user’s action to open an email message through
the browser (UA1AV2). Upon performing this action, the API Collector will perform the
check and verify if the message was detected as spam or not. If the message is opened
from the Spam box, the API issues a response from the SR6 system taking it to the
final state q12 through the transition δ(q2, SR6) → q12. If the message is opened
from the inbox and has not been detected as Spam, the Collector API issues a system
response SR7 leading to the final state q13 through the transition δ(q2, SR7) → q13.
This verification action is performed to enable a comparison of which users interact with
messages already detected as Spam.

Furthermore, it is possible to measure the level of phishing detection, through
the Anti Spam platform, by understanding which phishing messages are detected and

Chapter 4. Phishing Detection and User Behaviour Mapping 72

which are not. The state q12 represents an open message from the Spam and through
the UA2AV2 entry can go to the final state q14 through the transition δ(q12, UA2AV2)→
q14 when the user deletes the message. This check is conducted to know which users
have a higher level of maturity, already realizing that a URL is malicious and thus
deleting other interactions.

If the user clicks on any URL within the body of the email, or any existing
redirect (UA1AV2SB1), a transition δ(q12, UA1AV2SB1) → q1 will take the automa-
ton from state q12 to state q1, executing as though the URL was opened in the
browser. If the user downloads any file attached to the email message (UA1AV2SB2),
the automaton will be moved from final state q12 to state q8 through the transition
δ(q12, UA2AV2SB1)→ q8.

Scans performed using AV2 attack vectors allow differentiating when the user
interacts with URLs on the WEB arriving from different sources of email messages and
when it interacts with URLs and files arriving from email messages. The entries seen in
q12 can be observed in state q13, only differentiating that they are performed through
the inbox (not detected as Spam).

4.2.4 Maturity trees and user profile

In addition to monitoring user behavior, the Automata API has the enhancement
of the user security maturity tree as its ultimate purpose. Accordingly, the Automata API
implements a structure based on a binary tree which represents the states reached in
the automaton and transcribes them in the nodes of the tree. As the user progresses
through the structure and reaches the automata acceptance states, new nodes are
created from the root (DFA Initial State S).

In this experiment, the automaton rejection states are not used to avoid the loop.
As such, the SRs are used by moving the automaton to specific states and, in some
cases, restarting the structure. Practically, for every URL (browser tab) opened, DFA B1
is executed. The more tabs you open, the more times DFA B1 will be running. As the
DFA waits for a UA or an SR to change state, it can be stopped to wait for the impulse,
although this impulse may not happen. For example, in the case where the user opens
a URL and does not perform any other action, and it remains open in the browser tab
without being closed. This type of situation results in several open and unanswered
time_checks, consequently interfering with creating the user’s maturity tree, thereby
generating incomplete trees.

A TIME function was implemented in the Behavior API code bypass this situation,
which automatically inserts the next String for the automaton to move, always returning
it to state S (the root of the tree). In this experiment, the time function is set to 10
minutes. We can highlight the user’s situation with a URL detected as malicious and the
reached state q3. State q3 is an accept state, however, the automaton could advance

Chapter 4. Phishing Detection and User Behaviour Mapping 73

to states q4, q5, q6, and q8, if no action is taken. Performed by it, DFA B1 will be in a
loop waiting for the next action (interact with the URL; close it or report it).

In order to avoid this situation, the TIME function of the API Behavior after 10
minutes without any action will automatically generate an SRA impulse (similar to SR0),
ending the DFA and returning to the initial state S. As the TIME function is linked with
time_check, if the user interacts in the same navigation tab again, the structure will
be reassembled from the last acceptance state reached (q3), continuing the maturity
tree. The time function is restarted for each impulse generated, whether it is a UA or an
SR. Each maturity tree created will be stored in user_profile through traversal in order
(left-root-right). The depth of the tree and the number of nodes are directly linked to the
user’s number of interactions (bad actions) and, consequently, to the states reached
within the DFA.

The states qr1, qr2, q4, and q14 represent user security ripening actions, such
as when a user notices a phishing URL and reports it or opens an email and notices
the fraudulent message, thus deleting it. The nodes to the right of each subtree will
represent the most mature user actions. Conversely, the nodes to the left of each
subtree are the user’s interactions with threats. Figure 27 demonstrates an example of
a user maturity tree.

The user’s maturity profile can be determined from the levels reached in the
tree structure. In the initial structure proposed in this work, the nodes (leaves) on the
left can reach up to three levels of depth (level 1, 2, and 3), the greater the depth
level, the lower the cybersecurity maturity of the user. The maturity tree reflects the
computational actions of the user when interacting with the threats mapped through
the proposed taxonomy and monitored by the DFA, how closer the user gets to these
threats, much more DFA states are reached and consequently more nodes on the left
will be added to the tree. Cataloging user maturity levels can assist in cybersecurity
awareness campaigns and threat intelligence engines.

Chapter 4. Phishing Detection and User Behaviour Mapping 74

Figure 27 – Examples of User Maturity Tree

75

5 EXPERIMENTAL RESULTS

The monitoring of accessed URLs was undertaken between March 12th, 2020
to July 5th, 2020 among two hundred users, with an hourly frequency of data collection
(collection of URLs in log files by the Scrapy API and synchronization with PhishTank).
In total, approximately 18,000 URL samples were evaluated, where approximately only
12,000 URLs were able to be removed from the PhishTank Database and evaluated
during the period. This was due to the fact that an approximate set of 6,000 URLs were
no longer active or available for HTTP/HTTPS access.

In the end, the set of evaluated samples represented a total of 12,350 valid URLs,
with approximately 12,000 URLs taken directly from the Phishtank base (counting up-
dates every hour), and another 350 new URLs detected directly through the proposed
methodology involving the URL collection url_scrapy through the Collector API. Of the
12,000 URLs exported from the Phishtank Database, approximately 84.81% of the
URLs were elected by the community as phishing (10,178 URLs), of which 84.81%
(8,796 URLs) were also recognized as phishing by the API. Figure 28 shows the com-
parative graphs of the API hit/error rate of the URLs taken from the Phishtank Database
and collected directly from the users’ access logs.

Figure 28 – Phishing Detection Accuracy - Hit/Miss

Only 13.58% of the URLs elected as phishing by the community (1,382 URLs)
were not detected by the API. Notably, less than 3% of the 350 new URLs captured
through the log files had also been reported as phishing in the Phishtank Database by

Chapter 5. Experimental Results 76

the community (10 URLs). All 10 URLs were also rated as phishing by the Collector API
(Score greater than 6.4). Of the 350 new URLs, approximately 80 of these represented
real phishing ploys. Of these, another 78 URLs were detected by the API and assessed
as phishing, while only 2 URLs represented false negative. Subsequently, the API
accuracy rate in detecting valid phishing URLs was 97.66%, with a margin of error of
only 2.34%.The results gathered by the API Collector enable the possibility of visualizing
how users kept in contact with phishing URLs.Figure 29 shows a comparative chart of
valid URLs found vs. the PhishTank repository.

Figure 29 – Phishing Detection Accuracy - New Samples Vs PhishTank Database

It is worth noting the targeted phishing maneuvers (spear-phishing), in which
users of e-mails such as contracts@testdomain, recruitment@testdomain and finan-
cial@testdomain received more phishing messages targeting their areas of activity
compared to conventional phishing messages.These emails represent known accounts
in the organization for open communication on the Web, such as receiving CVs for job
vacancies or sending official documents and service contracts.

Attackers targeting more sophisticated and targeted social engineering maneu-
vers, perform web searches (footprinting) looking for these known boxes for sending
targeted phishing messages/URLs (spear phishing). In addition, it was evident that

Chapter 5. Experimental Results 77

through scanning techniques the attackers detected which corporate tool was used
to trigger emails (Zimbra), sending fake login pages to the highlighted accounts. The
fake Zimbra platform login pages were accompanied by a notice that the corporate
email service link had changed to the fake link (home-zimb.firebaseapp.com). Malicious
files, possibly containing ransomware or other types of malware, were sent in Microsoft
Word document (docx) / portable document format (pdf) simulating resume files for job
applications. Figure 30 provides an example of the phishing messages and URLs sent
to these specific accounts.

Figure 30 – Phishing messages received via mailbox

At the end of monitoring malicious messages in the emails mentioned in the
above boxes, approximately 70% were classified as spear phishing and 30 % as other
types of phishing. In many e-mails, attackers simulated valid e-mails from other insti-
tutions or company employees requesting specific financial or contractual information.
In some cases, only a file was attached, demonstrating that whale phishing and spear-
phishing maneuvers do not always have classic phishing characteristics in fields and
redirects.

This situation demonstrates the broad role of social engineering behind phishing
maneuvers, leading to increasingly sophisticated attacks, and hence creating difficulty

Chapter 5. Experimental Results 78

to detect malicious actions through the proposed methodology. Through the incidence
field of the Collector API, it was possible to detect repeated messages of spear-phishing
and other types of phishing in the users’ e-mail inbox. Generally speaking, the malicious
messages which reached the maximum incidence rate (5+) were COVID-19 related
messages and fake government emergency aid links. The message incidence rate was
calculated by reading the Hash of the email message body through the API Collector.
On many occasions, the messages had not been detected as Spam. Figure 31 shows
examples of phishing messages with the highest incidence rate (5+).

Figure 31 – Phishing messages received via mailbox - Pt2

The Hash calculation function achieved satisfactory results in detecting repeated
phishing messages that contained the same images in the email body, regardless of the
originating domains. Phishing messages related to COVID-19 were sent massively to
test domain email accounts, along with pages related to government emergency relief.

Chapter 5. Experimental Results 79

In some boxes, these messages were received more than 10 times, with the same
content as the body of the message (Fake image + redirect link).

During this period, it was identified that the main malicious URLs were clearly
linked to the following themes: COVID-19, Help and government services, financial
institutions, purchase and sale services (e-commerce), and airline ticket services. It
is possible to characterize the malicious URLs into 6 groups with distinctly specific
characteristics. Coronavirus-related URLs mostly lacked form fields but contained a
suspicious file to download or redirect to other malicious pages, however most were not
accessed from the mailbox. The links to services provided by the government mostly
referred to false vaccination schedules and links to cash withdrawals. The financial
assistance links all had form fields requesting user credit card data and credentials.

Furthermore, approximately 81% of the URLs did not have a digital certificate,
and in more than 80% of the cases, they had the homographic attack as an attack
vector to confuse users. Phishing groups related to financial institutions, as well as
e-commerce buy and sell services, had characteristics similar to links connected to
government campaigns and, in the vast majority of cases, were accessed through
email messages in users’ electronic mailboxes. Approximately 19% of these pages
have a valid digital certificate, such as Let’s Encrypt on their home pages, but in general,
the pages which contained form fields to be filled in did not contain active encryption
(HTTPS).

Concatenating subdomains were mainly highlighted on pages that requested lo-
gin/password information from users on fake pages of banks and e-commerce services.
Considering the eighty detected phishing URLs, the combination of the Homographic
Attack (HA), Certificate Missing (CM), and Form Fields (FF) attack vectors appeared
together in 57 URLs. Correspondingly, 71,25% of the New URLs phishing messages
detected had this feature. Figure 32 shows the relationship of phishing pages found
along with the incidence rate of attack vectors present in the URLs.

In regards to the checking methodology proposed in this article, the search
engines showed varied results when reading the pages, depending on the layout and
elements used in the pages’ construction. On simplified pages (best case), as easily
identifiable elements (HTML and cascading style sheets (CSS) without code omission),
the application achieved an average of 97,66% accuracy in detecting form fields and
redirect links with an average turnaround time of 12 seconds. Regarding the search for
downloadable and executable files on the page, the average was 80% with a return of
20 seconds. Moreover, within the best scenario, the highest achieved values of accuracy
and time were 97.66% and 15 seconds.

On more complex pages (worst case), with dynamic rendering elements (called
JavaScript and code omissions), the algorithm used obtained a return greater than 5
minutes. The Scraping technique proved to be computationally costly in the interpre-

Chapter 5. Experimental Results 80

Figure 32 – Phishing occurrences

tation of URLs in search of phishing characteristics, requiring high processing power.
The version of the algorithm proposed in this work is a prototype written in Python. It
still needs improvements to deal with the fact that the vast majority of URLs do not
have their elements available in a format which can be interpreted directly by the appli-
cation.The evaluation metric proposed in this work proved to be efficient in detecting
phishing pages, having only a 2% margin of error.

The monitoring of user behavior was observed in forty users across different
sectors in a corporate setting. The users evaluated had different levels of knowledge
in technology, and 10 of them had already gone through awareness campaigns and
training in cybersecurity. It was observed that even when provided with a way to report
malicious URLs through the browser, only two users reported URLs and denounced
them as phishing. None of them had received training in cybersecurity.

A total of 6 URLs were reported as phishing. All of them had been detected by
the Collector API as malicious. Some difficulties were observed during the execution
of API Behavior, highlighting the execution time and generation of SRs for Automata
API input. Consequently, in some situations, the DFA did not execute as expected.
Therefore, the users’ maturity trees were not generated. Altogether, approximately 210

Chapter 5. Experimental Results 81

maturity trees were created for the group of 40 users, of which only a set of fewer than
100 trees (without interference) brought consistent information for the elaboration of
the profile. This group of 100 perfect trees made it possible to trace the continuous
maturity profile in approximately 12 users. Within this profile evaluation, it was possible
to observe which users accessed messages that had already been detected by the Anti
Spam tool as malicious, which users filled form fields in malicious URLs, and also the
users who downloaded malicious content from their workstations.

As expected, the phishing pages which saw the most interactions were spear-
phishing pages that focused on specific email accounts (mostly accounts in the recruit-
ing and contracting industry). During the analysis, a fake page of the federal government
was also observed, specifically about COVID-19 which was fired out to all of the do-
mains of the corporation. This page had form fields for registering and receiving the
vaccination schedule. Of the 40 users, 34 filled out the form and sent information such
as name, CPF, address, date of birth, among other information. Only six users closed
the page as soon as they noticed the phishing maneuver, and only one user reported it
as phishing through the browser JavaScript (API Behavior).

Some execution problems were detected, mainly related to the idle time of users
while performing tasks, such as: opening a page in the browser and not performing any
other functions. Even with the TIME function implemented, many trees were incomplete
or looped and not completed. The Automata API generally had a response time for
each alphabet entry and thus generated a tree node of approximately 10s. The longest
collection time found in API Behavior while monitoring the UAs and SRs was 5 minutes.
It was also possible to observe that among the group of 10 users with cybersecurity
training, 7 had a lower maturity profile than other users without training and with little
knowledge in technology. These trees which have reached the most critical states within
the DFA are characteristic of phishing maneuvers aimed at strategic people within the
corporation.

This result demonstrates that social engineering techniques, such as spear-
phishing, go unnoticed even by users with more mature profiles in cybersecurity, thus
being very difficult to be mitigated. Of the 12 complete maturity profiles generated, it
was possible to map out all user actions (UAs) performed, demonstrating that the API
Behavior, even with some functioning problems, presented itself as a viable way to
capture computational actions of users. It was possible to classify the twelve generated
profiles into three maturity levels (low, intermediate, and advanced) during the analysis
of the twelve generated profiles. This classification made it possible to determine the
maturity levels of the twelve evaluated users. Within this scope, seven users were
classified as low level, reaching more critical states in the DFA and even taking actions
which reached the final stages of executing phishing maneuvers or malicious code
infection. Four users were classified as an intermediate level, and only one user was

Chapter 5. Experimental Results 82

classified with an advanced maturity profile.

83

6 CONCLUSIONS

This study has put forward a proposal for real-time phishing detection capable of
detecting and analyzing malicious URLs based on heuristic techniques and web page
scraping. An API was developed in Python language which runs its search engines
to extract the main phishing characteristics from the pages: redirect links, form fields,
content download, and other characteristics present in phishing maneuvers.

In order to evaluate the URLs, an algorithm was proposed which was written
in Python and would performs the search for attack vectors in URLs using the web
crawling technique. In addition, at this stage of the study, a metric to calculate the score
of the analyzed URLs was also proposed, whereby if the URL had a value above 6.4,
it would be evaluated as phishing. The proposed algorithm was implemented through
the Collector API (described in chapter four) and reached an accuracy of 97.66% in
detecting phishing pages. Furthermore, Collector API can check text files (firewall logs
and Anti Spam filters) to search keywords such as URLs, domains, and attached files
in email messages. This enables the application to be capable of detecting phishing
tricks in email messages.

Finally, the API can also assess the incidence level of phishing messages in
mailboxes by comparing the hash of the messages by the HMAC-MD5 (hashlib) func-
tion. Therefore, as made evident in the results found, it was possible to find phishing
messages related to COVID-19 with an incidence rate greater than five points through
the hash comparison. The message hash calculation method was implemented in its
basic form and can be improved in future works for better accuracy in calculating the
incidence of repeated phishing and spear-phishing messages in mailboxes.

Through the Collector API, it was also possible to analyze which malicious URLs
have been going unnoticed by phishing reporting platforms, demonstrating cases in
which fake pages were detected by the methodology proposed in this research and had
not yet been evaluated as phishing on the PhishTank Platform, even though they were
online for more than five days. The results obtained made it possible to observe that
PhishTank Database did not play a relevant role in monitoring and reporting phishing
pages in the Brazilian scenario.

Less than 3% of the application’s valid phishing pages detected in real-time were
on the platform. It is possible to infer that the PhishTank platform played a trivial role
in monitoring phishing pages in PT-BR (Brazilian Portuguese) language for this work.
Further investigations can be conducted on the efficiency of the platform regarding the
PT-BR language and the Brazilian scenario of phishing URLs. Of the 18,000 URLs
imported from the PhishTank Database, only 12,000 samples could be tested. The
remaining samples were offline, rendering it impossible to check Collector API. Of
the 12,000 URLs evaluated during the testing period, only a total of approximately

Chapter 6. Conclusions 84

120 URLs were in the PT-BR language and corresponded to phishing pages linked
to fraud in a Brazilian scenario. For URLs taken directly from the PhishTank platform,
the proposed algorithm obtained an accuracy of 86.42% in detecting phishing pages,
taking into account only those online URLs which had been reported as malicious by
the community.

This study is language-independent and platform-independent for phishing eval-
uation compared to the works listed in chapter 3. In this work, the PhishTank platform
was used, however other bases can be chosen or designed in derivatives such as an
API collector, or even no initial base input could have been leveraged by performing a
real-time capture of URLs and as obtained on phishing reporting platforms. In addition,
the study’s main highlight is the comparison to the complete evaluation of the content
of the URLs found, consequently making it possible to adapt new attack vectors to the
constructed algorithm.

The attack vectors suggested in this research may be changed, and new vectors
may be coupled to search engines, providing versatility to the proposed detection
method. The scraping technique proposed in this work has some limitations in extracting
information from pages with more complex structures, which use other code structures
embedded in the layout (JavaScript, JSON, among others). Larger, heavier pages took
more than 60 seconds to return the extracted values, especially when checking redirect
hyperlinks implemented through code calls within the pages.

Furthermore, the structure depends on a whitelist previously configured in the
Firewall, containing a list of official URLs, thus avoiding many false positives and check-
ing real pages. Through the URL comparison, which dispelled the homographic attack
(HA), a whitelist of URLs and real domains was also used, where an API only performed
a comparison. This method has several limitations, especially when there is a change
in the body of access URLs for certain pages. In the future, new methods of detecting
homographic attacks will be investigated which are computationally feasible to be cou-
pled to the proposed algorithm’s search engines . As future work will be extracted, new
methods of improvement in search engines by scanning pages for phishing elements
increase the detection of malicious URLs.

Another point to be investigated is making the API less dependent on security
tools. While a proposed API behaves like a log reader and is compatible with other
information security tools, third-party tools depend on it having specific log files. Lastly,
there is also a possibility to investigate the feasibility of implementing only on the client-
side, following state-of-the-art guidelines.

In addition to the phishing detection algorithm implemented through the Collector
API, monitoring user behavior was also proposed in this work. This method was imple-
mented through the Behavior and Automata APIs. The monitoring method is based on
a taxonomy of computational user actions (UA) and attack vectors (AV) present in mali-

Chapter 6. Conclusions 85

cious maneuvers, such as phishing and malicious code infection. This mapping enabled
the elaboration of a structure capable of monitoring the user’s computational behavior.
As such, two application modules were installed on the users’ machines. One of the
Behavior API modules was created in JavaScript language and coupled to the browser
(Google Chrome) based on the browser’s Developer Tools. This module exhibited good
results in capturing user interactions with pages accessed by the browser, detecting
actions such as clicks and on-page interactive elements, opening tabs, closing tabs,
filling out form fields and downloading files. These actions were mapped within the
group of UAs.

The taxonomy of these actions played a fundamental role in developing this
method of monitoring. Through the precise mapping of activities, it was possible to de-
termine the exact moment in which a user came into contact with a malicious maneuver
and whether the maneuver was implemented or not. This extraction method presented
issues related to the processing time of activities in the browser. Some actions took
more than five minutes to be cataloged, directly depending on available memory re-
sources. The other module of the API Behavior was written in Python and installed on
the client’s machine and was only responsible for issuing the system responses (SR)
to the Automata API.

In the future, more computationally viable ways to capture user actions through
the browser will be investigated, thereby not creating high concurrency of computa-
tional resources. Another drawback observed was the users’ idle time when performing
actions in the browser, such as opening pages and leaving them on stand-by without
performing other actions. A 10-minute TIME Function was implemented, which issues
an SR to the Automata API, restarting the structure. The API Behavior was imple-
mented in its prototype version to conduct the experiments present in this work, and, in
the future, new methods to improve the algorithms used will be evaluated.

Ultimately, a structure based on a finite deterministic automaton (DFA), imple-
mented through the Automata API in python, was used to monitor the environment. An
alphabet based on the user actions (UA) performed and the system responses (SR) is-
sued by the Behavior API served as the DFA input. The main difference of this method
proposed, in comparison to the works listed in chapter 3, is the capture of actions
performed by the user in real-time. Other studies have proposed behavior evaluation
methodologies based on actions which have already taken place or evaluated residual
samples in systems.

The proposed method in this study made it possible to develop profiles of users’
cybersecurity maturity at the exact moment in which they were interacting with threats.
During these experiments, it was possible to observe the advantage of using a DFA in
regards to processing and memory resources. A significant challenge encountered in
the proposed method involves the communication delay of capturing the actions from

Chapter 6. Conclusions 86

the API Behavior from the browser to the Automata API. Using the proposed taxonomic
structure and the DFA, it was possible to observe that the problem of mapping user
actions and the characteristic attack vectors of phishing represent a finite problem,
represented through a regular language. This proposition will lead this investigation into
eventual future works on the feasibility of applying computational non-determinism in
monitoring actions, which is applied through machine learning. Future investigations
may be conducted into the advantages of using Machine Learning in both detecting
phishing and monitoring user behavior.

87

REFERENCES

ABUZURAIQ, Almaha; ALKASASSBEH, Mouhammd; ALMSEIDIN, Mohammad.
Intelligent Methods for Accurately Detecting Phishing Websites. In: IEEE. 2020 11th
International Conference on Information and Communication Systems (ICICS).
[S.l.: s.n.], 2020. P. 085–090. https://doi.org/10.1109/ICICS49469.2020.239509.
DOI: 10.1109/ICICS49469.2020.239509.

ADDAE, Joyce H; SUN, Xu; TOWEY, Dave; RADENKOVIC, Milena. Exploring user
behavioral data for adaptive cybersecurity. User Modeling and User-Adapted
Interaction, Springer, v. 29, n. 3, p. 701–750, 2019.

AHMAD, Tabrez. Corona Virus (COVID-19) Pandemic and Work from Home:
Challenges of Cybercrimes and Cybersecurity. Available at SSRN 3568830, 2020.
http://dx.doi.org/10.2139/ssrn.3568830. DOI: 10.2139/ssrn.3568830.

ALDAWOOD, Hussain; SKINNER, Geoffrey. An Advanced Taxonomy for Social
Engineering Attacks. International Journal of Computer Applications, v. 177, n. 30,
p. 1–11, 2020.

ALHARTHI, Dalal N; HAMMAD, Mahmoud M; REGAN, Amelia C. A Taxonomy of
Social Engineering Defense Mechanisms. In: SPRINGER. FUTURE of Information and
Communication Conference. [S.l.: s.n.], 2020. P. 27–41.
https://doi.org/10.1007/978-3-030-39442-4_3. DOI:
10.1007/978-3-030-39442-4_3.

ALJEAID, Dania; ALZHRANI, Amal; ALROUGI, Mona; ALMALKI, Oroob. Assessment
of End-User Susceptibility to Cybersecurity Threats in Saudi Arabia by Simulating
Phishing Attacks. Information, Multidisciplinary Digital Publishing Institute, v. 11, n. 12,
p. 547, 2020.

ALMEIDA, Rômulo; WESTPHALL, Carla. Heuristic Phishing Detection and URL
Checking Methodology Based on Scraping and Web Crawling. In: IEEE. 2020 IEEE
International Conference on Intelligence and Security Informatics (ISI). [S.l.: s.n.], 2020.
P. 1–6.

ANDRONIO, Nicoló; ZANERO, Stefano; MAGGI, Federico. Heldroid: Dissecting and
detecting mobile ransomware. In: SPRINGER. INTERNATIONAL symposium on
recent advances in intrusion detection. [S.l.: s.n.], 2015. P. 382–404.

https://doi.org/10.1109/ICICS49469.2020.239509
https://doi.org/10.1109/ICICS49469.2020.239509
http://dx.doi.org/10.2139/ssrn.3568830
https://doi.org/10.2139/ssrn.3568830
https://doi.org/10.1007/978-3-030-39442-4_3
https://doi.org/10.1007/978-3-030-39442-4_3

REFERENCES 88

BARRETT, MP. Framework for improving critical infrastructure cybersecurity. National
Institute of Standards and Technology, Gaithersburg, MD, USA, Tech. Rep, 2018.

BEAMAN, Craig; BARKWORTH, Ashley; AKANDE, Toluwalope David; HAKAK, Saqib;
KHAN, Muhammad Khurram. Ransomware: Recent Advances, Analysis, Challenges
and Future Research Directions. Computers & Security, Elsevier, p. 102490, 2021.

BISHOP, Matt et al. A taxonomy of unix system and network vulnerabilities. [S.l.],
1995.

CARLTON, Melissa; LEVY, Yair; RAMIM, Michelle. Mitigating cyber attacks through the
measurement of non-IT professionals’ cybersecurity skills. Information & Computer
Security, Emerald Publishing Limited, 2019.

CHIEW, Kang Leng; CHOO, Jeffrey Soon-Fatt; SZE, San Nah; YONG, Kelvin SC.
Leverage website favicon to detect phishing websites. Security and Communication
Networks, Hindawi, v. 2018, 2018. https://doi.org/10.1155/2018/7251750. DOI:
10.1155/2018/7251750.

CIALDINI, Robert B; JAMES, Lloyd. Influence: Science and practice. [S.l.]: Pearson
education Boston, MA, 2009. v. 4.

CICALA, Fabrizio; BERTINO, Elisa. Analysis of Encryption Key Generation in Modern
Crypto Ransomware. IEEE Transactions on Dependable and Secure Computing,
IEEE, 2020.

DHAMIJA, Rachna; TYGAR, J Doug; HEARST, Marti. Why phishing works. In:
PROCEEDINGS of the SIGCHI conference on Human Factors in computing systems.
[S.l.: s.n.], 2006. P. 581–590.

DIAZ, Alejandra; SHERMAN, Alan T; JOSHI, Anupam. Phishing in an academic
community: A study of user susceptibility and behavior. Cryptologia, Taylor & Francis,
v. 44, n. 1, p. 53–67, 2020.

DOBOLYI, David G; ABBASI, Ahmed. Phishmonger: A free and open source public
archive of real-world phishing websites. In: IEEE. 2016 IEEE Conference on
Intelligence and Security Informatics (ISI). [S.l.: s.n.], 2016. P. 31–36.
https://doi.org/10.1109/ISI.2016.7745439. DOI: 10.1109/ISI.2016.7745439.

https://doi.org/10.1155/2018/7251750
https://doi.org/10.1155/2018/7251750
https://doi.org/10.1109/ISI.2016.7745439
https://doi.org/10.1109/ISI.2016.7745439

REFERENCES 89

GOSTEV, Alexander. Kaspersky security bulletin. Statistics, p. 1–26, 2020.

GUPTA, Brij B; ARACHCHILAGE, Nalin AG; PSANNIS, Kostas E. Defending against
phishing attacks: taxonomy of methods, current issues and future directions.
Telecommunication Systems, Springer, v. 67, n. 2, p. 247–267, 2018.

HADLINGTON, Lee. Human factors in cybersecurity; examining the link between
Internet addiction, impulsivity, attitudes towards cybersecurity, and risky cybersecurity
behaviours. Heliyon, Elsevier, v. 3, n. 7, e00346, 2017.

HOWARD, John D; LONGSTAFF, Thomas A. A common language for computer
security incidents. [S.l.], 1998.

ISKHAKOV, Andrey Yunusovich; ISKHAKOVA, Anastasia Olegovna;
MESCHERIAKOV, Roman Valerievich; BENDRAOU, Reda; MELEKHOVA, Ol’ga N.
Application of user behavior thermal maps for identification of information security
incident., - . . ., v. 61, n. 0, p. 147–171, 2018.

JAGATIC, Tom N; JOHNSON, Nathaniel A; JAKOBSSON, Markus; MENCZER, Filippo.
Social phishing. Communications of the ACM, ACM New York, NY, USA, v. 50, n. 10,
p. 94–100, 2007.

JAIN, Ankit Kumar; GUPTA, Brij B. Two-level authentication approach to protect from
phishing attacks in real time. Journal of Ambient Intelligence and Humanized
Computing, Springer, v. 9, n. 6, p. 1783–1796, 2018.
https://doi.org/10.1007/s12652-017-0616-z. DOI: 10.1007/s12652-017-0616-z.

JAMES, Lance. Phishing exposed. [S.l.]: Elsevier, 2005.

KHOUSSAINOV, Bakhadyr; NERODE, Anil. Automata theory and its applications.
[S.l.]: Springer Science & Business Media, 2012. v. 21.

KISSEL, Richard. Glossary of key information security terms. [S.l.]: Diane
Publishing, 2011.

KOYUN, Arif; AL JANABI, Ehssan. Social engineering attacks. Journal of
Multidisciplinary Engineering Science and Technology (JMEST), v. 4, n. 6,
p. 7533–7538, 2017.

https://doi.org/10.1007/s12652-017-0616-z
https://doi.org/10.1007/s12652-017-0616-z

REFERENCES 90

KROMBHOLZ, Katharina; HOBEL, Heidelinde; HUBER, Markus; WEIPPL, Edgar.
Advanced social engineering attacks. Journal of Information Security and
applications, Elsevier, v. 22, p. 113–122, 2015.

KRSUL, Ivan; SPAFFORD, Eugene; TRIPUNITARA, Mahesh, et al. Computer
vulnerability analysis. COAST Laboratory, Purdue University, West Lafayette, IN,
Technical Report, 1998.

LAVION, Didier et al. PwC’s Global Economic Crime and Fraud Survey, 2020. URL:
https://www. pwc.
com/gx/en/forensics/global-economiccrime-and-fraud-survey-2020. pdf
(retrieved 28 February 2020), 2020.

LINDQVIST, Ulf; JONSSON, Erland. How to systematically classify computer security
intrusions. In: IEEE. PROCEEDINGS. 1997 IEEE Symposium on Security and Privacy
(Cat. No. 97CB36097). [S.l.: s.n.], 1997. P. 154–163.

LÓPEZ, Alberto Urueña; MATEO, Fernando; NAVIO-MARCO, Julio;
MARTINEZ-MARTINEZ, José Marıa; GÓMEZ-SANCHIS, Juan;
VILA-FRANCÉS, Joan; SERRANO-LÓPEZ, Antonio José. Analysis of computer user
behavior, security incidents and fraud using Self-Organizing Maps. Computers &
Security, Elsevier, v. 83, p. 38–51, 2019.

MARTIN, Jaclyn; DUBÉ, Chad; COOVERT, Michael D. Signal detection theory (SDT)
is effective for modeling user behavior toward phishing and spear-phishing attacks.
Human factors, SAGE Publications Sage CA: Los Angeles, CA, v. 60, n. 8,
p. 1179–1191, 2018.

MASHIANE, Thulani; KRITZINGER, Elamarie. Theoretical Domains Framework
Applied to Cybersecurity Behaviour. In: SPRINGER. COMPUTER Science On-line
Conference. [S.l.: s.n.], 2020. P. 411–428.

MITNICK, Kevin D; SIMON, William L. The art of deception: Controlling the human
element of security. [S.l.]: John Wiley & Sons, 2003.

MOHEBZADA, Jamshaid G; EL ZARKA, Ahmed; BHOJANI, Arsalan H; DARWISH, Ali.
Phishing in a university community: Two large scale phishing experiments. In: IEEE.
2012 international conference on innovations in information technology (IIT). [S.l.: s.n.],
2012. P. 249–254.

REFERENCES 91

NARWAL, Bhawna; MOHAPATRA, Amar Kumar; USMANI, Kaleem Ahmed. Towards a
taxonomy of cyber threats against target applications. Journal of Statistics and
Management Systems, Taylor & Francis, v. 22, n. 2, p. 301–325, 2019.

OLSTON, Christopher; NAJORK, Marc. Web crawling. [S.l.]: Now Publishers Inc,
2010.

OVELGÖNNE, Michael; DUMITRAŞ, Tudor; PRAKASH, B Aditya;
SUBRAHMANIAN, VS; WANG, Benjamin. Understanding the relationship between
human behavior and susceptibility to cyber attacks: A data-driven approach. ACM
Transactions on Intelligent Systems and Technology (TIST), ACM New York, NY,
USA, v. 8, n. 4, p. 1–25, 2017.

PARK, Andrew J; QUADARI, Ruhi Naaz; TSANG, Herbert H. Phishing website
detection framework through web scraping and data mining. In: IEEE. 2017 8th IEEE
Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON). [S.l.: s.n.], 2017. P. 680–684.
https://doi.org/10.1109/IEMCON.2017.8117212. DOI:
10.1109/IEMCON.2017.8117212.

PRADO, Neriberto; PENTEADO, Ulisses; GRÉGIO, André. Metodologia de detecção
de malware por heurısticas comportamentais. Simpósio Brasileiro em Segurança
da Informação e de Sistemas. ISSN, p. 2176–0063, 2016.

RAMLO, Susan E; NICHOLAS, John B. Divergent student views of cybersecurity.
Journal of Cybersecurity Education, Research and Practice, v. 2019, n. 2, p. 6,
2020.

RAO, Routhu Srinivasa; PAIS, Alwyn Roshan. Jail-Phish: An improved search engine
based phishing detection system. Computers & Security, Elsevier, v. 83, p. 246–267,
2019. https://doi.org/10.1016/j.cose.2019.02.011. DOI:
10.1016/j.cose.2019.02.011.

SADQI, Yassine; MALEH, Yassine. A systematic review and taxonomy of web
applications threats. Information Security Journal: A Global Perspective, Taylor &
Francis, p. 1–27, 2021.

SAHINGOZ, Ozgur Koray; BUBER, Ebubekir; DEMIR, Onder; DIRI, Banu. Machine
learning based phishing detection from URLs. Expert Systems with Applications,

https://doi.org/10.1109/IEMCON.2017.8117212
https://doi.org/10.1109/IEMCON.2017.8117212
https://doi.org/10.1016/j.cose.2019.02.011
https://doi.org/10.1016/j.cose.2019.02.011

REFERENCES 92

Elsevier, v. 117, p. 345–357, 2019. https://doi.org/10.1016/j.eswa.2018.09.029.
DOI: 10.1016/j.eswa.2018.09.029.

SALAHDINE, Fatima; KAABOUCH, Naima. Social engineering attacks: A survey.
Future Internet, Multidisciplinary Digital Publishing Institute, v. 11, n. 4, p. 89, 2019.

SANTOS, Welton; FAZZION, Elverton; FONSECA, Osvaldo; CUNHA, Ítalo;
CHAVES, Marcelo HPC; HOEPERS, Cristine; STEDING-JESSEN, Klaus;
GUEDES, Dorgival; MEIRA JR, Wagner. Uma Metodologia para Agrupamento e
Extraç ao de Informaç oes de URLs de Phishing. In: BRAZILIAN Symposium on
Information and Computational Systems Security. [S.l.: s.n.], 2019.

SHARMEEN, Shaila; AHMED, Yahye Abukar; HUDA, Shamsul; KOÇER, Bari Ş;
HASSAN, Mohammad Mehedi. Avoiding future digital extortion through robust
protection against ransomware threats using deep learning based adaptive
approaches. IEEE Access, IEEE, v. 8, p. 24522–24534, 2020.

SHENG, Steve; HOLBROOK, Mandy; KUMARAGURU, Ponnurangam;
CRANOR, Lorrie Faith; DOWNS, Julie. Who falls for phish? A demographic analysis of
phishing susceptibility and effectiveness of interventions. In: PROCEEDINGS of the
SIGCHI conference on human factors in computing systems. [S.l.: s.n.], 2010.
P. 373–382.

SILVA, Carlo Marcelo Revoredo da; FEITOSA, Eduardo Luzeiro;
GARCIA, Vinicius Cardoso. Heuristic-based strategy for Phishing prediction: A survey
of URL-based approach. Computers & Security, Elsevier, v. 88, p. 101613, 2020.

SIPSER, Michael. Introduction to the Theory of Computation. ACM Sigact News,
ACM New York, NY, USA, v. 27, n. 1, p. 27–29, 1996.

SOUZA, Cristian Henrique M; LEMOS, Marcilio OO; SILVA, Felipe S Dantas;
ALVES, Robinson Luis S. PhishKiller: Uma Ferramenta para Detecç ao e Mitigaç ao de
Ataques de Phishing Através de Técnicas de Deep Learning. In: BRAZILIAN
Symposium on Information and Computational Systems Security. [S.l.: s.n.], 2019.

THAKUR, Kutub; PATHAN, Al-Sakib Khan. Cybersecurity Fundamentals: A
Real-World Perspective. [S.l.]: CRC Press, 2020.

https://doi.org/10.1016/j.eswa.2018.09.029
https://doi.org/10.1016/j.eswa.2018.09.029

REFERENCES 93

YASIN, Affan; FATIMA, Rubia; LIU, Lin; YASIN, Awaid; WANG, Jianmin. Contemplating
social engineering studies and attack scenarios: A review study. Security and
Privacy, Wiley Online Library, v. 2, n. 4, e73, 2019.

ZWILLING, Moti; KLIEN, Galit; LESJAK, Dušan; WIECHETEK, Łukasz; CETIN, Fatih;
BASIM, Hamdullah Nejat. Cyber security awareness, knowledge and behavior: A
comparative study. Journal of Computer Information Systems, Taylor & Francis,
p. 1–16, 2020.

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Resumo expandido
	Abstract
	List of Figures
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Research Problem and Motivation
	Objectives
	General Objectives
	Specific Objectives

	Work Structure

	Basic Concepts
	Social Engineering and Human Factor
	Phishing
	Malware
	Taxonomy in Cybersecurity
	Automata Theory - Deterministic Finite Automaton (DFA)
	Web Crawling

	Related Works
	Selected works and systematic review
	Phishing Detection
	User Behavior

	Phishing Detection and User Behaviour Mapping
	Heuristic Phishing Detection
	Implementation and experimental scenario
	Collections
	URL score and rating metrics
	API Execution and Collections Interactions

	User behavior mapping
	Taxonomy of User Actions and Attack Vectors
	Additional Implementations in Experimental Scenario and new API modules
	Finite State Machine Implementation
	Maturity trees and user profile

	Experimental Results
	Conclusions
	REFERENCES

		2022-04-04T09:06:59-0300

		2022-04-04T09:08:39-0300

