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RESUMO

Nesse trabalho é introduzida a noção de um semigrupo inverso quântico como uma
generalização linearizada de semigrupos inversos. Além da álgebra de um semigrupo
inverso, que é o exemplo natural de semigrupo inverso quântico, são apresentados
vários outros exemplos dessa nova estrutura em diferentes contextos, relacionados
a álgebras de Hopf, álgebras de Hopf fracas e categorias de Hopf. Finalmente, uma
noção generalizada de bisseções locais é definida para algebroides de Hopf comuta-
tivos sobre uma álgebra de base comutativa, gerando novos exemplos de semigrupos
inversos quânticos associados a algebroides de Hopf da mesma maneira que semigru-
pos inversos estão relacionados com grupoides.

Palavras-chave: Semigrupos Inversos Quânticos. Algebroides de Hopf. Grupoides.
Semigrupos Inversos. Birretrações.



ABSTRACT

In this work, the notion of a quantum inverse semigroup is introduced as a linearized
generalization of inverse semigroups. Beyond the algebra of an inverse semigroup,
which is the natural example of a quantum inverse semigroup, several other examples
of this new structure are presented in different contexts, those are related to Hopf
algebras, weak Hopf algebras and Hopf categories. Finally, a generalized notion of
local bisections is defined for commutative Hopf algebroids over a commutative base
algebra giving rise to new examples of quantum inverse semigroups associated to Hopf
algebroids in the same sense that inverse semigroups are related to groupoids.

Keywords: Quantum Inverse Semigroups. Hopf Algebroids. Groupoids. Inverse Semi-
groups. Biretractions.



RESUMO EXPANDIDO

Introdução
A noção básica de grupo já recebeu muitas generalizações em diferentes contextos,
gerando uma miríade de novas estruturas matemáticas. Como os grupos apresen-
tam umas importante relação com as simetrias, pode-se considerar que essas novas
estruturas são novas ferramentas para entender aspectos mais profundos e sutis de
simetrias. De início, é possível generalizar grupos enfraquecendo suas operações. Por
exemplo, se a propriedade dos elementos inversíveis do grupo é enfraquecida, pode-
se encontrar semigrupos inversos. Se além disso, deixa-se de exigir a unicidade do
elemento inverso, pode-se encontrar semigrupos regulares. Pelo conhecido Teorema
de Wagner e Preston (PRESTON, 1954; WAGNER, 1952), todo semigrupo inverso
pode ser visto como um semigrupo de bijeções parcialmente definidas em um conjunto,
com operação dada pela composição. Essas bijeções parcialmente definidas também
lembram outra estrutura que generaliza a noção de grupo: a estrutura de grupoide. No
caso dos grupoides, o que o torna mais geral que o grupo é a sua operação, que não
é globalmente definida.
A relação entre semigrupos inversos e grupoides vem sendo estudada de diversas
maneiras. Por exemplo, sendo S um semigrupo inverso, pode-se associá-lo ao grupoide
indutivo cujo espaço de unidades é o conjunto E(S) dos elementos idempotentes de
S e operação sendo a restrição da operação em S. Por outro lado, dado um grupoide
indutivo, pode-se associá-lo a um novo semigrupo inverso. Essa relação entre semigru-
pos inversos e grupoides é dada pelo teorema Ehresmann-Nambooripad-Schein, que
estabelece um isomorfismo de categorias entre a categoria dos semigrupos inversos
com pré-homomorfismos e a categoria de grupoides indutivos e funtores ordenados
(EHRESMANN, 1960; NAMBOORIPAD, 1979; SCHEIN, 1979).
Também pode-se observar a relação entre semigrupos inversos e grupoides étale.
Essa relação foi primeiramente explorada no contexto de álgebras de operadores (PA-
TERSON, 1999). Um grupoide étale é um grupoide topológico cujas funções source e
target são homeomorfismos locais (MATSNEV; RESENDE, 2010). Dado um grupoide
étale G, o conjunto de suas bisseções locais B(G) é um semigrupo inverso (EXEL,
2008). Por outro lado, dado um semigrupo inverso S, pode-se definir uma ação desse
semigrupo sobre o conjunto dos caracteres do seu conjunto de idempotentes e, dessa
ação, associar seu grupoide de germes Gr (S), que é um grupoide étale (MATSNEV;
RESENDE, 2010).
Por fim, outra maneira completamente diferente de generalizar grupos é pelas álge-
bras de Hopf, que podem ser consideradas como um tipo de "versão linearizada de
grupos". Álgebras de Hopf possuem boas propriedades com relação a dualidade e
a teoria de representações. Diversas generalizações de álgebras de Hopf já foram
estudadas. Aqui mencionamos três estruturas que generalizam álgebras de Hopf e
grupoides: as álgebras de Hopf fracas (BÖHM; NILL; SZLACHÁNYI, 1999), os alge-
broides de Hopf (BÖHM, 2009; BRZEZINSKI; MILITARU, 2002) e as categorias de Hopf
(BATISTA; CAENEPEEL; VERCRUYSSE, 2016). Dentre as estruturas mencionadas,
os algebroides de Hopf são, em certo sentido, a opção mais rica e promissora para
generalizar grupoides no contexto de Hopf.
Dessa forma, é possível que as relações entre semigrupos inversos e grupoides
possam ser generalizadas usando os algebroides de Hopf como generalização de
grupoides.



Objetivos
Nesse momento surge a questão: podemos encontrar uma boa generalização de
semigrupos inversos que trabalhe junto aos algebroides de Hopf da mesma maneira
que os semigrupos inversos e os grupoides se relacionam? Nosso objetivo nesse
trabalho é começar a responder essa pergunta introduzindo os semigrupos inversos
quânticos. Mais especificamente, vamos generalizar a relação de que o conjunto das
bisseções de um grupoide é um semigrupo inverso. Para isso, vamos generalizar
a definição de bisseções locais para algebroides de Hopf (satisfazendo condições
específicas) e mostrar que essa versão de bisseções gera um semigrupo inverso
quântico.

Metodologia
O estudo de ações parciais de álgebras de Hopf e alguns aspectos da teoria de al-
gebroides de Hopf motivaram exemplos do que deveria ser um semigrupo inverso
quântico. A próxima ideia foi tentar generalizar a definição de bisseções locais para
algebroides de Hopf. Começamos trabalhando com exemplos conhecidos de alge-
broides de Hopf comutativos e, tentando encontrar de maneira natural como deveria
ser definida a generalização da bisseção local, chamada aqui de birretração local. Nos
exemplos trabalhados, tentamos dualizar a definição de bisseção local tomando como
birretração uma função partindo do algebroide de Hopf para a álgebra de base, e
dessa maneira, a birretração local aparecia sempre como uma função multiplicativa,
sendo morfismo de módulos à direita, e uma bijeção parcialmente definida quando
composta com a função target. Dessa forma, chegamos à nossa primeira definição de
birretrações locais e com essa definição provamos que as birretrações locais de um
algebroide Hopf comutativo sobre uma álgebra base comutativa formam um monoide
regular.
Um dos exemplos mais importantes nessa parte do trabalho foi o algebroide de Hopf
das funções representativas de um grupoide. Um dos objetivos a ser atingido por
esse exemplo era o de relacionar as bisseções locais de um grupoide com as birre-
trações do algebroide de Hopf de suas funções representativas. É possível construir,
de maneira natural, uma função entre os dois conjuntos. O problema encontrado nesse
passo da pesquisa foi que essa função não era, necessariamente, um morfismo de
monoides regulares. Analisando esse exemplo mais profundamente foi possível ajustar
a definição de birretração local, associando um elemento idempotente da álgebra base
a cada birretração local.

Resultados
Com o ajuste na definição de birretrações locais, obtivemos um morfismo de monoides
regulares entre as bisseções do grupoide e o algebroide de Hopf das suas funções
representativas, que se torna um isomorfismo quando consideramos apenas grupoides
transitivos finitos.
Além disso, a demonstração de que as birretrações locais formam um monoide regular
continua valendo e finalmente mostramos que as birretrações locais geram uma álge-
bra que é um semigrupo inverso quântico.
Por fim, como as demonstrações não dependiam muito da comutatividade do alge-
broide de Hopf mas sim da comutatividade da álgebra de base e das relações entre
as funções source e target, foi possível estender os resultados para algebroides de
Hopf não necessariamente comutativos sobre uma álgebra de base comutativa, com



as funções source e target satisfazendo condições especiais.

Considerações finais
Dessa forma, começamos a responder a pergunta inicial, encontrando no semigrupo
inverso quântico um bom candidato para a generalização de semigrupos inversos no
sentido de se relacionar com algebroides de Hopf da mesma maneira que semigrupos
inversos se relacionam com grupoides. Como objetivos de trabalhos futuros temos
definir as birretrações locais para quaisquer algebroides de Hopf e tentar encontrar
mais relações entre os semigrupos inversos quânticos e os algebroides de Hopf.
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1 INTRODUCTION

The very basic notion of a group has undergone several generalizations in diffe-

rent contexts, giving rise to a myriad of new mathematical structures. Since groups

are inherently related to symmetries, one can consider these new structures arising

from groups as new tools to understand the deep and subtle aspects of symmetries.

In one direction, it is possible to extend groups by weakening their operations. For

example, when someone weakens the group inversion, also giving up the uniqueness

of units, one ends up with regular semigroups and inverse semigroups. By the widely

known theorem due to Wagner and Preston (PRESTON, 1954; WAGNER, 1952), every

inverse semigroup can be viewed as a semigroup of partially defined bijections in a

set, with the operation given by the composition. These partially defined bijections also

evoke another mathematical structure which generalizes the notion of a group, namely,

the groupoid structure. For the case of groupoids, what is weakend is the definition of

the operation, which is not globally defined anymore. It is easier to understand why

groupoids are generalization of groups if we consider a group as a one object category,

whose endomorphisms of that object are the elements of the group. In this case, a

groupoid is a ªmulti-object group", more precisely, a small category in which every

morphism is an isomorphism.

The relationship between inverse semigroups and groupoids has been eluci-

dated in the literature in several ways. For example, starting from an inverse semigroup

S, one can naturally associate a groupoid whose unit space is the set of units E(S)

and the operation is the restriction of the operation in S. This groupoid has a partial

order induced by the partial order of the semigroup itself, in fact, it is an inductive

groupoid, meaning that its set of units is a meet semilattice. On the other hand, given

an inductive groupoid, one can associate to it a new inverse semigroup. This exchange

between inverse semigroups and groupoids composes the content of the Ehresmann-

Nambooripad-Schein theorem, which stablishes a categorical isomorphism between

the category of inverse semigroups with prehomomorphisms and the category of in-

ductive groupoids and ordered functors (EHRESMANN, 1960; NAMBOORIPAD, 1979;

SCHEIN, 1979).

One can also observe the interchange between inverse semigroups and grou-

poids considering the case of étale groupoids. This connection was first explored in

the context of operator algebras (PATERSON, 1999). An étale groupoid is a topological

groupoid in which the source and target maps are local homeomorphisms (MATSNEV;

RESENDE, 2010). Given an étale groupoid G, the set of its local bisections B(G) con-

stitutes an inverse semigroup (EXEL, 2008). In turn, given an inverse semigroup S,

one can define an action of this semigroup on the set of characters of its unit space

and, from this action, associate its germ groupoid Gr (S), which is an étale groupoid
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(MATSNEV; RESENDE, 2010). More precisely, considering the category of inverse

semigroups with semigroup morphisms and the category of étale groupoids with alge-

braic morphisms1, the functor which associates to each inverse semigroup the germ

groupoid of the canonical action on the characteres of its unit space is left adjoint to the

functor which associates to each étale groupoid its semigroup of bisections (A.BUSS;

EXEL; MEYER, 2012).

Another completely different direction in which it is possible to generalize groups

is through Hopf algebras, which can be considered as a kind of ªlinearized version

of groups". Hopf algebras have nice properties relative to duality and representation

theory and, due to the emergence of the quantum groups (DRINFEL’D, 1988) became

more popular in the nineties, even among the physicists, when quantum groups started

to be considered seriously as symmetries of quantum systems, for example, as symme-

tries of the spectrum of diatomic molecules (CHANG; H.Y. GUO, 1992) or symmetries

of Landau states in the quantum Hall effect (SATO, 1995). There are several different

generalizations of Hopf algebras in the literature. Here we mention only three struc-

tures which generalize both Hopf algebras and groupoids: weak Hopf algebras (BÖHM;

NILL; SZLACHÁNYI, 1999), Hopf algebroids (BÖHM, 2009; BRZEZINSKI; MILITARU,

2002) and Hopf categories (BATISTA; CAENEPEEL; VERCRUYSSE, 2016). Among

the aforementioned structures, Hopf algebroids are, in a certain sense, the richest and

most promising option to generalize groupoids in the Hopf context.

The question that arises in this moment is: can we find a good generalization

of inverse semigroups and Hopf algebras which can play the same role with Hopf

algebroids as inverse semigroups do with groupoids? In this work our aim is to start

filling this gap by introducing the quantum inverse semigroups. This subject appeared

as a collection of examples in search of a theory. The lessons coming from the study

of partial actions of Hopf algebras and some aspects of the theory of Hopf algebroids

motivated examples of what should be a quantum inverse semigroup. We generalize

the concept of local bisections for Hopf algebroids and prove that the these "generalized

bisections" generate a quantum inverse semigroup.

This work is structured in four parts. In chapter 2, we recall the definitions of

inverse semigroups, groupoids and Hopf algebroids to stablish the notations, aside

from the proof that the bisections of a groupoid form an inverse semigroup and some

properties of Hopf algebroids that will be used throughout the work. Moreover, we

present an alternate and more algebraic definition for local bisections for groupoids.

Under this new definition, we prove that the statement that the local bisections form an

inverse semigroup still holds. Lastly, we give some examples of Hopf algebroids with

special attention to the Hopf algebroid of the representative functions of a groupoid,
1 An algebraic morphism between the groupoids G and H is a left action of G over the arrows of H

commuting with the right action of H over itself by the multiplication in H (BUNECI, 2008).
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introduced by (KAOUTIT, 2013).

The third chapter is dedicated to the definition and examples of quantum inverse

semigroups.

Chapter 4 introduces the generalized bisections for commutative Hopf algebroids

over a commutative algebra, that are called local biretractions. Then we prove that

the set of all local biretractions is a regular monoid with a convolution product and

that the free vector space generated by them with the extended linearly convolution

product is in fact a quantum inverse semigroup. After that, we recall the Hopf algebroid

examples from the first chapter and find their biretractions. Moreover, we present a

morphism between the local bisections of a groupoid and the local biretractions of the

Hopf algebroid of its representative functions.

Finally, we define local biretractions for not necessarily commutative Hopf al-

gebroids over a commutative algebra with a special condition for the bialgebroids’

structures.

The last chapter concludes this work showing some of the difficulties found in

the process of the construction of the best definition for local biretractions and what we

can expect from future works.
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2 PRELIMINARIES

This chapter contains the definition of inverse semigroups, groupoid, bisections

of a groupoid and Hopf algebroids, together with some properties that are used in

chapters 3 and 4. Then of all relations between inverse semigroups and groupoids, we

elucidate the one about the bisections of a groupoid being an inverse semigroup.

Also, since our aim is to generalize the definition of bisections for Hopf algebroids,

we introduce in the second section of this chapter some examples of Hopf algebroids

that helped us find the best definition of local biretractions. We give special attention to

the Hopf algebroid of the representative functions of a groupoid, so we can later work

on the relations between the bisections of a groupoid and the biretractions of the Hopf

algebroid of its representative functions.

2.1 GROUPOIDS AND INVERSE SEMIGROUPS

Definition 2.1.1 (Groupoid) A groupoid is a set G together with a subset G(2) ⊆ G ×G,

a product G(2) → G, (g,h) 7→ gh and an inverse map i : G → G, g 7→ g±1 (in the sense

that (g±1)±1 = g) such that:

(G1) if (g,h),(h,l) ∈ G(2), then (gh,l), (g,hl) ∈ G(2) and

(gh)l = g(hl).

(G2) (g,g±1) ∈ G(2) for every g ∈ G and if (g,h) ∈ G(2), then

g±1(gh) = h (gh)h±1 = g.

If, in addition, G is a groupoid with a topology and the multiplication and the inversion

are continuous, we say that G is a topological groupoid.

Remark 2.1.2 We also define the unit space G(0) ⊆ G as the image of the source and

target maps s,t : G → G(0)

s(g) = g±1g t(g) = gg±1,

which are well defined, because (g,g±1),(g±1,g) ∈ G(2) and

s(g) = g±1g = g±1(g±1)±1 = t(g±1)

for every g ∈ G, thus Im(s) =Im(t).

If G is a topological groupoid whose unit space G(0) is locally compact and

Hausdorff in the relative topology, with s and t local homeomorphisms, then we say G

is an étale groupoid.
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Remark 2.1.3 From the definition of the source and target maps, we have the following

consequences:

(1) For every g,h ∈ G, (g,h) ∈ G(2) if, and only if, s(g) = t(h). Indeed, if (g,h) ∈ G(2),

then

s(g) = g±1g = g±1((gh)h±1) = (g±1(gh))h±1 = hh±1 = t(h).

On the other hand, s(g) = t(h) implies that g±1g = hh±1. Then, since (g,g±1g) and

(hh±1,h) are in G(2), we have that

(g,h) = ((gh)h±1,h) = (g(hh±1),h) ∈ G(2).

(2) If (g,h) ∈ G(2) then (h±1,g±1) ∈ G(2) and (gh)±1 = h±1g±1.

Indeed, s(h±1) = t(h) = s(g) = t(g±1) implies that (h±1,g±1) ∈ G(2). Then (h,h±1g±1),

(h±1g±1,g) are in G(2) and since (g,h) ∈ G(2) we have from (G2) that (gh,h±1g±1),

(h±1g±1,gh) are in G(2). Then

h±1g±1((gh)(h±1g±1)) = (h±1(g±1(gh))) h±1g±1 = ((h±1h) h±1)g±1 = h±1g±1

((gh)(h±1g±1)) gh = (((gh)h±1) g±1) gh = ((gg±1) g)h = gh,

respectively. Therefore, (gh)±1 = h±1g±1.

(3) If (g,h) ∈ G(2) then s(gh) = s(h) and t(gh) = t(g) :

s(gh) = (gh)±1(gh) = h±1(g±1(gh)) = h±1h = s(h)

t(gh) = (gh)(gh)±1 = ((gh)h±1)g±1 = gg±1 = t(g).

(4) The maps source and target are the identity when restrict to the unit space G(0) :

s(s(g)) = s(g±1g) = s(g)

t(s(g)) = t(g±1g) = t(g±1) = s(g).

Definition 2.1.4 (Inverse Semigroup) An inverse semigroup S is a semigroup in which

every s ∈ S has a unique pseudoinverse s∗ ∈ S in the sense that s = ss∗s and

s∗ = s∗ss∗.

Example 2.1.5 Let X be a set. The set I(X ) formed by all bijections between subsets

of X , that is

I(X ) = {f : Dom(f ) ⊆ X → Im(f ) ⊆ X | f bijective }

is an inverse semigroup. The semigroup operation is given by the composition:

fg = f ◦ g : g±1(Dom(f ) ∩ Im(g)) → f (Dom(f ) ∩ Im(g)).

This inverse semigroup is a monoid, because it contains the identity map IdX : X → X.

Also, I(X ) has a zero element, given by the empty map ∅ : ∅ ⊆ X → ∅ ⊆ X.
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Example 2.1.6 Let A be an algebra. Similarly to the previous example, the set I(A)

formed by all isomorphisms between ideals of A is an inverse semigroup.

Remark 2.1.7 Denote by E(S) the set of all the idempotent elements of an inverse

semigroup S. Observe that if e ∈ E(S), then e∗ = e.

Proposition 2.1.8 Let S be a regular semigroup, that is, a semigroup in which every

element of S has a pseudoinverse. Then the idempotents of S commute if, and only if,

every element of S has a unique pseudoinverse. In other words, a regular semigroup S

is an inverse semigroup if, and only if, its idempotents commute.

Proof. First, suppose that E(S) is commutative. Let s′ and s′′ both be pseudoinverses

of an element s in S. Then we have that s′ = s′ss′, s′′ = s′′ss′′ and ss′s = s = ss′′s.

Observe that the elements s′s,ss′,s′′s,ss′′ are all idempotents, hence

s′ = s′ss′ = s′ss′′ss′ = s′′ss′ss′ = s′′ss′ = s′′ss′′ss′ = s′′ss′ss′′ = s′′ss′′ = s′′.

Now, suppose that the pseudoinverse is unique. Let e,f ∈ E(S). Being (ef )∗ the

pseudoinverse of ef , we have

(f (ef )∗e)(f (ef )∗e) = f ((ef )∗ef (ef )∗)e = f (ef )∗e,

which implies that f (ef )∗e is an idempotent with

(ef )(f (ef )∗e)(ef ) = ef (ef )∗ef = ef

and

(f (ef )∗e)(ef )(f (ef )∗e) = f (ef )∗ef (ef )∗e = f (ef )∗e.

By the uniqueness of the pseudoinverse, we have that (ef )∗ = f (ef )∗e is an idempotent.

Consequently, ef = (ef )∗ ∈ E(S). Similarly, we also have fe ∈ E(S). So,

ef (fe)ef = (ef )(ef ) = ef and fe(ef )fe = (fe)(fe) = fe,

and again by the uniqueness of the pseudoinverse, we conclude that

fe = (ef )∗ = ef .

Therefore, E(S) is commutative. 2

Remark 2.1.9 The above result implies that for any inverse semigroup S, the cor-

respondence s 7→ s∗ is an involutive antimorphism of inverse semigroups. Indeed, for

every s,t ∈ S,

(st)(t∗s∗)(st) = s (tt∗)(s∗s) t = s (s∗s)(tt∗) t = st

and

(t∗s∗)(st)(t∗s∗) = t∗(s∗s)(tt∗) s∗ = t∗(tt∗)(s∗s) s∗ = t∗s∗.

Consequently, (st)∗ = t∗s∗.
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Definition 2.1.10 (Bisection) Let G be a groupoid. A bisection of G is a subset U ⊆ G

such that s|U and t |U are injective. The set of all the bisections of G is denoted by B(G).

Proposition 2.1.11 Let G be a groupoid. Then the set B(G) is an inverse semigroup

with

UV = {gh | (g,h) ∈ U × V and s(g) = t(h)}

U∗ = {g±1 | g ∈ U}

defined for any U,V ∈ B(G).

Proof. First, observe that the product is associative: for any U, V and W bisections of

G, if g(hl) ∈ U(VW ) then (g,h) and (h,l) are in G(2) and

g(hl) = (gh)l ∈ (UV )W ,

leading to U(VW ) ⊆ (UV )W . Analogously, we have that (UV )W ⊆ U(VW ).

Also, for any bisection U of G, s|U∗ = t |U and t |U∗ = s|U are both injective. Thus

U∗ is a bisection. Moreover, to prove that UV is a bisection for any U and V bisections,

take g1h1, g2h2 ∈ UV with (g1,h1), (g2,h2) ∈ U × V such that s(g1h1) = s(g2h2). Then

s(h1) = s(g1h1) = s(g2h2) = s(h2)

and h1,h2 ∈ V implies that h1 = h2. And since s(g1) = t(h1) and s(g2) = t(h2), we obtain

s(g1) = t(h1) = t(h2) = s(g2)

leading to g1 = g2 and, consequently, g1h1 = g2h2. Hence s|UV is injective. Analogously,

we have that t |UV is also injective. Therefore UV is a bisection of G and B(G) is a

semigroup with this product.

Now take g ∈ U. Then g = g(g±1g) with s(g) = t(g±1), which implies that g ∈

UU∗U, that is, U ⊆ UU∗U. On the other hand, take the element k = g(h±1l) ∈ UU∗U

with g,h,l ∈ U, s(g) = t(h±1) and s(h±1) = t(l). Then

s(g) = t(h±1) = s(h) and t(h) = s(h±1) = t(l)

imply that g = h = l . Hence

k = g(g±1g) = g ∈ U

and, consequently, UU∗U ⊂ U. Therefore B(G) is a regular semigroup.

In order to prove that B(G) is an inverse semigroup, we need to prove that the

pseudoinverse U∗ is unique. Take V a bisection o G satisfying

UVU = U and VUV = V .
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If k ∈ V then there exist g,l ∈ V and h ∈ U such that k = ghl with s(g) = t(h) and s(h) =

t(l). Now observe that

s(k ) = s(ghl) = s(l) and t(k ) = t(ghl) = t(g).

Since V is a bisection, we have that k = g = l . Thus k = khk . Also, note that hkh ∈

UVU = U and then s(h) = s(hkh) implies that h = hkh. Therefore, k = h±1 ∈ U∗.

On the other hand, being g±1 ∈ U∗, since UVU = U there exist k ∈ V and

h,l ∈ U such that g = hkl with s(h) = t(k ) and s(k ) = t(l). Then

s(g) = s(hkl) = s(l) and t(g) = t(hkl) = t(h)

imply that g = l = h and g = gkg. Also, kgk ∈ VUV = V and s(kgk) = s(k) imply that

kgk = k . Therefore g±1 = k ∈ V and, consequently, U∗ = V .

2

The interplay between groupoids and inverse semigroups has been vastly ex-

plored in the literature (EHRESMANN, 1960; LAWSON, 1998; NAMBOORIPAD, 1979;

PATERSON, 1999; SCHEIN, 1979). One of the most important sources of inverse

semigroups associated to groupoids are the bisections of étale topological groupoids

(A.BUSS; EXEL; MEYER, 2012; EXEL, 2008; MATSNEV; RESENDE, 2010). As proved

in Proposition 2.1.11, the set of all bisections of a groupoid G defined this way is an

inverse semigroup. Let us redefine bisections in a more algebraic way, so we can better

generalize this notion for Hopf algebroids.

Definition 2.1.12 A local bisection of a groupoid G is a pair (u,X ) in which X is a subset

of G(0) and u : X → G is a function such that

(i) s ◦ u = IdX .

(ii) t ◦ u : X → t(u(X )) is a bijection.

The set X is called the domain of the bissection (u,X ). A global bissection is a local

bissection whose domain is X = G(0).

Note that, item (ii) implies that the function u : X → G is injective. Denote again

by B(G) the set of the local bisections of the groupoid G and by GlB(G) the set of its

global bisections.

Remark 2.1.13 The two notions of a bisection, as a subset of the groupoid restricted to

what the source map is injective and as a pair of a subset of the unit set and a function

are in fact related. On one hand, given a subset U ⊆ G for which s|U : U → G(0) is

injective, define X = s(U) ⊆ G(0) and u : X → G as the inverse of s|U . On the other hand,

given a pair (u,X ), as in Definition 2.1.12, define U = u(X ), as u is already injective, the

corestriction u : X → U is bijective. As the left inverse of u is s, by definition, then it is

the inverse of that corestriction, making s|U injective.
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Several instances of the following result have already appeared in the literature

(see (GARNER, 2019), Example 17, for a version closer to our approach).

Proposition 2.1.14 Let G be a groupoid, then the set B(G) of its local bissections is an

inverse semigroup and the set GlB(G) of its global bissections is a group considering the

product between two local bisections (u,X ) and (v ,Y ) of G as (u,X ) · (v ,Y ) = (uv , XY ),

in which

XY = (t ◦ v )±1(t ◦ v (Y ) ∩ X ) and (uv )(y ) = u(t ◦ v (y ))v (y ).

Proof. The product is associative. Indeed, for (u,X ),(v ,Y ),(w ,Z ) ∈ B(G), we have

((u,X )·(v ,Y ))·(w ,Z ) = ((uv )w ,(XY )Z ) and (u,X )·((v ,Y )·(w ,Z )) = (u(vw),X (YZ )),

where

(XY )Z = (t ◦ v )±1(t ◦ v (Y ) ∩ X ) Z ) = (t ◦ w)±1(t ◦ w(Z ) ∩ (t ◦ v )±1(t ◦ v (Y ) ∩ X )))

X (YZ ) = X (t ◦ w)±1(t ◦ w(Z ) ∩ Y )) = (t ◦ vw)±1(t ◦ vw((t ◦ w)±1(t ◦ w(Z ) ∩ Y )) ∩ X )).

In order to show that these bisections are equal, first note that, for any z ∈ YZ

t ◦ vw(z) = t(v (t ◦ w(z))w(z)) = t(v (t ◦ w(z))) = t ◦ v ◦ t ◦ w(z).

Hence the inverse map of the bijection t ◦ vw : YZ → t ◦ vw(YZ ) is

(t ◦ vw)±1 = (t ◦ w)±1(t ◦ v )±1 : t ◦ v ◦ t ◦ w(YZ ) → YZ .

Then

X (YZ ) = (t ◦ vw)±1(t ◦ vw((t ◦ w)±1(t ◦ w(Z ) ∩ Y )) ∩ X ))

= (t ◦ vw)±1(t ◦ v ◦ t ◦ w((t ◦ w)±1(t ◦ w(Z )) ∩ Y ) ∩ X )

= (t ◦ w)±1(t ◦ v )±1(t ◦ v (t ◦ w(Z ) ∩ Y ) ∩ X )

= (t ◦ w)±1(t ◦ w(Z ) ∩ (t ◦ v )±1(t ◦ v (Y ) ∩ X ))

= (XY )Z .

Now, for z ∈ XYZ ,

u(vw)(z) = u(t ◦ vw(z))vw(z) = u(t ◦ v ◦ t ◦ w(z))v (t ◦ w(z))w(z)

and

(uv )w(z) = uv (t ◦ w(z))w(z) = u(t ◦ v ◦ t ◦ w(z))v (t ◦ w(z))w(z).

Therefore ((u,X ) · (v ,Y )) · (w ,Z ) = (u,X ) · ((v ,Y ) · (w ,Z )).

For any bisection (u,X ) ∈ B(G) define (u,X )∗ = (u,t ◦ u(X )), in which, for any

x ∈ X , u(t ◦ u(x)) = u(x)±1. Then for any x ∈ X ⊆ G(0),

uu(x) = u(t ◦ u(x))u(x) = u(x)±1u(x) = s(u(x)) = x ,
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We conclude that

uuu(x) = u(t ◦ uu(x))uu(x) = u(t(x)) x = u(x)

and

uuu(t ◦ u(x)) = uu(t ◦ u(t ◦ u(x)))u(t ◦ u(x))

= uu(t(u(x)±1))u(t ◦ u(x))

= uu(s ◦ u(x))u(t ◦ u(x))

= s ◦ u(x)(u(x))±1

= (u(x))±1

= u(t ◦ u(x)).

And since

(u,X )∗ · (u,X ) = (u,t ◦ u(X )) · (u,X ) = (uu, (t ◦ u)±1(t ◦ u(X ) ∩ t ◦ (X )) = (IdX ,X )

(u IdX )(x) = u(t ◦ IdX (x)) IdX (x) = u(x)x = u(x)s ◦ u(x) = u(x)

(IdX u)(t ◦ u(x)) = IdX (t ◦ u(t ◦ u(x))) u(t ◦ u(x)) = t((u(x))±1) (u(x))±1 = u(t ◦ u(x))

for every x ∈ X , we have that

(u,X ) · (u,X )∗ · (u,X ) = (u,X ) · (u,t ◦ u(X )) · (u,X )

= (u,X ) · (IdX ,X )

= (u,X )

and

(u,X )∗ · (u,X ) · (u,X )∗ = (IdX ,X ) · (u,t ◦ u(X ))

= (u, (t ◦ u)±1(t ◦ u(t ◦ u(X )) ∩ X ))

= (u,t ◦ u(X ))

= (u,X )∗.

It remains to prove that the idempotents in B(G) commute among themselves. If (u,X )

is an idempotent element, then

(u,X ) = (u,X ) · (u,X ) = (uu,(t ◦ u)±1(t ◦ u(X ) ∩ X )),

implying that t ◦ u(X ) = X and u(t ◦ u(x))u(x) = u(x). Multiplying the last equality on the

right by u(x)±1 we end up with u(t ◦u(x)) = t ◦u(x). And since t ◦u(X ) = X , we conclude

that u = IdX and (u,X ) = (IdX ,X ). Hence multiplying two idempotents we have

(IdX ,X )·(IdY ,Y ) = (IdX IdY ,(t◦IdY )±1(t◦IdY (Y )∩X )) = (IdX∩Y ,X∩Y ) = (IdY ,Y )·(IdX ,X ).
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Therefore, the idempotents commute and B(G) is an inverse semigroup.

The global bisections are of the form (u,G(0)) and clearly, global bisections GlB(G)

form a subsemigroup of B(G). But the only idempotent in GlB(G) is the unit (IdG(0),G(0)).

An inverse semigroup with only one idempotent is a group, therefore GlB(G) is a group.

2

2.2 HOPF ALGEBROIDS

Now for the definition of Hopf algebroids and further this text, k will denote a field

of characteristic 0 and unadorned tensor products will denote tensor products over the

base field k.

Definition 2.2.1 (BÖHM, 2009) Let A be a k algebra. A left bialgebroid over A is a

quintuple (H, sl ,tl ,Δl , εl ) in which:

(LB1) H is a k-algebra, sl : A → H is an algebra map and tl : A → H is an antialgebra

map such that sl (a)tl (b) = tl (b)sl (a), for every a,b ∈ A making H an A-bimodule

with the structure

a ▷ h ◁ b = sl (a)tl (b)h.

(LB2) (H,Δl , εl ), is an A-coring with the above mentioned A-bimodule structure.

(LB3) Δl (H) ⊆ H×l
A H = {

∑
hi ⊗ ki ∈ H⊗A H |

∑
hi tl (a)⊗ ki =

∑
hi ⊗ kisl (a), ∀a ∈ A}

(Takeuchi’s product) and the co-restriction map is an algebra map.

(LB4) εl (hk ) = εl (hsl (εl (k ))) = εl (htl (εl (k ))).

Definition 2.2.2 (BÖHM, 2009) Let A be a k algebra. A right bialgebroid over A is a

quintuple (H, sr ,tr ,Δr , εr ) in which:

(RB1) H is a k-algebra, sr : A → H is an algebra map and tr : A → H is an antialgebra

map such that sr (a)tr (b) = tr (b)sr (a), for every a,b ∈ A making H an A-bimodule

with the structure

a ▶ h ◀ b = htr (a)sr (b).

(RB2) (H,Δr , εr ), is an A-coring with the above mentioned A-bimodule structure.

(RB3) Δr (H) ⊆ H×r
A H = {

∑
hi ⊗ki ∈ H⊗A H |

∑
sr (a)hi ⊗ki =

∑
hi ⊗ tr (a)ki , ∀a ∈ A}

(Takeuchi’s product) and the co-restriction map is an algebra map.

(RB4) εr (hk ) = εr (sr (εr (h))k ) = εr (tr (εr (h))k ).

Definition 2.2.3 (BÖHM, 2009) Let A and A be k algebras. A Hopf algebroid over the

base algebras A and A is a triple H = (Hl ,Hr , S) such that.

(HA1) Hl = H is a left bialgebroid over A and Hr = H is a right bialgebroid over A.
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(HA2) sl ◦ εl ◦ tr = tr , tl ◦ εl ◦ sr = sr ,

sr ◦ εr ◦ tl = tl tr ◦ εr ◦ sl = sl .

(HA3) (Δl ⊗A H) ◦ Δr = (H⊗A Δr ) ◦ Δl and (Δr ⊗A H) ◦ Δl = (H⊗A Δl ) ◦ Δr .

(HA4) S : H → H is a k linear map such that for all a ∈ A, b ∈ A and h ∈ H,

S(tl (a)htr (b)) = sr (b)S(h)sl (a).

(HA5) Denoting by μl and μr , respectively, the multiplication in H as left and right

bialgebroid, we have

μl (S ⊗A H) ◦ Δl = sr ◦ εr , and μr (H⊗A S) ◦ Δr = sl ◦ εl .

Throughout this work we use the Sweedler notations for Δl and Δr : for every

h ∈ H, we write

Δl (h) = h(1) ⊗ h(2) Δr (h) = h(1) ⊗ h(2).

2.2.1 Some Hopf algebroid’s properties

The next properties are valid for a general Hopf algebroid H = (Hl ,Hr ,S) with

the maps sl ,tl ,Δl ,εl , sr ,tr ,Δr and εr .

(P1) For every a ∈ A, b ∈ A and h ∈ H, we have that

S(tr (a)h tl (b)) = sl (b) S(h) sr (a).

Indeed,

S(tr (a)h) = S(tr (a) h(2) tr ◦ εr (h(1)))

= sr ◦ εr (h(1)) S(tr (a) h(2))

= S
(

h(1)
(1)

)
h(1)

(2) S(tr (a) h(2))

= S(h(1)) h(2)
(1) S

(
tr (a) h(2)

(2)
)

= S(h(1)) sr (a) h(2)
(1) S

(
h(2)

(2)
)

= S(h(1)) sr (a) sl ◦ εl (h(2))

(∗)
= S(h(1)) sl ◦ εl (h(2)) sr (a)

= S(tl ◦ εl (h(2)) h(1)) sr (a)

= S(h) sr (a),

where (∗) comes from the fact that sl = tr ◦ εr ◦ sl and the images of tr and sr
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commute by definition. Moreover,

S(h tl (b)) = S(tl ◦ εl (h(2)) h(1) tl (b))

= S(h(1) tl (b)) sl ◦ εl (h(2))

= S(h(1) tl (b)) h(2)
(1)S

(
h(2)

(2)
)

= S
(

h(1)
(1) tl (b)

)
h(1)

(2)S(h(2))

= S
(

h(1)
(1)

)
h(1)

(2) sl (b) S(h(2))

= sr ◦ εr (h(1)) sl (b) S(h(2))

= sl (b) sr ◦ εr (h(1)) S(h(2))

= sl (b) S
(

h(2) tr ◦ εr (h(1))
)

= sl (b) S(h),

again using that sl = tr ◦ εr ◦ sl .

(P2) S is antimultiplicative: for every h,k ∈ H,

S(hk ) = S(tl ◦ εl (h(2)) h(1)k )

= S(h(1)k ) sl ◦ εl (h(2)

= S(h(1) tl ◦ εl (k(2)) k(1)) h(2)
(1)S

(
h(2)

(2)
)

= S
(

h(1)
(1) tl ◦ εl (k(2)) k(1)

)
h(1)

(2) S(h(2))

= S
(

h(1)
(1) k(1)

)
h(1)

(2) sl ◦ εl (k(2)) S(h(2))

= S
(

h(1)
(1) k(1)

)
h(1)

(2) k(2)
(1) S

(
k(2)

(2)
)

S(h(2))

= S
(

h(1)
(1) k (1)

(1)

)
h(1)

(2) k (1)
(2) S(k (2)) S(h(2))

= S
((

h(1)k (1)
)

(1)

) (
h(1)k (1)

)
(2)

S(k (2)) S(h(2))

= sr ◦ εr (h(1)k (1)) S(k (2)) S(h(2))

= S
(

k (2) tr ◦ εr (h(1)k (1))
)

S(h(2))

= S
(

k (2) tr ◦ εr (sr ◦ εr (h(1))k (1))
)

S(h(2))

= S
(

tr ◦ εr (h(1)) k (2) tr ◦ εr (k (1))
)

S(h(2))

= S(k ) sr ◦ εr (h(1)) S(h(2))

= S(k ) S(h(2) tr ◦ εr (h(1)))

= S(k ) S(h).

(P3) S maps unity to unity, because

1H = sr ◦ εr (1H) = S(1H) 1H = S(1H).
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(P4) The composition εl ◦ sr is an antimorphism of algebras: for every a,b ∈ A,

εl ◦ sr (ab) = εl (sr (a) sr (b))

= εl (tl ◦ εl ◦ sr (a) sr (b))

= εl (sr (b) ◁ εl ◦ sr (a))

= εl ◦ sr (b) εl ◦ sr (a).

Analogously, εl ◦ tr , εr ◦ sl and εr ◦ tl are also antimorphisms of algebras.

(P5) The compositions εl ◦ S and εr ◦ S can be written as

εl ◦ S(h) = εl ◦ S(tl ◦ εl (h(2)) h(1))

= εl (S(h(1)) sl ◦ εl (h(2)))

= εl (S(h(1)) h(2))

= εl ◦ sr ◦ εr (h)

and

εr ◦ S(h) = εr ◦ S(h(2) tr ◦ εr (h(1)))

= εr (sr ◦ εr (h(1)) S(h(2)))

= εr (h(1) S(h(2)))

= εr ◦ sl ◦ εl (h)

for every h ∈ H.

(P6) S is anticomultiplicative as in

Δl ◦ S = (S ⊗A S) ◦ Δcop
r .
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Indeed,

Δl ◦ S(h) = Δl ◦ S(tl ◦ εl (h(2)) h(1))

= Δl (S(h(1)) sl ◦ εl (h(2)))

= (S(h(1)))(1) sl ◦ εl (h(2)) ⊗A (S(h(1)))(2)

= (S(h(1)))(1) h (1)
(2) S(h (2)

(2) ) ⊗A (S(h(1)))(2)

=
(

S(h(1)
(1))
)

(1)
h(1)

(2)S(h(2)) ⊗A

(
S(h(1)

(1))
)

(2)

=
(

S(h(1)
(1))
)

(1)
tl ◦ εl (h

(1)
(2)(2)) h(1)

(2)(1)S(h(2)) ⊗A

(
S(h(1)

(1))
)

(2)

=
(

S(h(1)
(1))
)

(1)
h(1)

(2)(1)S(h(2)) ⊗A

(
S(h(1)

(1))
)

(2)
sl ◦ εl (h

(1)
(2)(2))

=
(

S(h(1)
(1))
)

(1)
h(1)

(2)(1)S(h(2)) ⊗A

(
S(h(1)

(1))
)

(2)
h(1) (1)

(2)(2) S(h(1) (2)
(2)(2) )

=
(

S(h(1)
(1))
)

(1)
h(1) (1)

(2) (1)S(h(2)) ⊗A

(
S(h(1)

(1))
)

(2)
h(1) (1)

(2) (2)S(h(1) (2)
(2) )

=
(

S(h(1)(1)
(1))
)

(1)
h(1)(1)

(2)(1)S(h(2)) ⊗A

(
S(h(1)(1)

(1))
)

(2)
h(1)(1)

(2)(2)S(h(1)(2))

=
(

S(h(1)(1)
(1)) h(1)(1)

(2)

)

(1)
S(h(2)) ⊗A

(
S(h(1)(1)

(1)) h(1)(1)
(2)

)

(2)
S(h(1)(2))

=
(

sr ◦ εr (h(1)(1))
)

(1)
S(h(2)) ⊗A

(
sr ◦ εr (h(1)(1))

)

(2)
S(h(1)(2))

= S(h(2)) ⊗A sr ◦ εr (h(1)(1)) S(h(1)(2))

= S(h(2)) ⊗A S(h(1)(2) tr ◦ εr (h(1)(1)))

= S(h(2)) ⊗A S(h(1))

= (S ⊗A S) ◦ Δcop
r (h)

for every h ∈ H.

2.2.2 Commutative Hopf Algebroids

From now on, unless it is explicitly said otherwise, we will be working only with commuta-

tive Hopf algebroids over a commutative base algebra A = A. In this case, the source and target

maps sl , sr , tl and tr are all morphisms of algebras and because of the commutativity of H, we

have sl = tr and sr = tl . Therefore, one can choose arbitrarily one laterality for the bialgebroid

structure. Throughout this work we shall denote by s the right source map and by t the right

target map. Also in the commutative case, the left and right Takeuchi tensor products, H×l
A H

and H×r
A H are identified with the tensor product H⊗A H. Indeed, for every

∑
hi ⊗ki ∈ H⊗A H,

then
∑

sr (a) hi ⊗ ki =
∑

hi sr (a) ⊗ ki

=
∑

hi ◀ a ⊗ ki

=
∑

hi ⊗ a ▶ ki

=
∑

hi ⊗ tr (a) ki

for every a ∈ A. Consequently, H×r
A H = H⊗A H and, analogously, H×l

A H = H⊗A H. Thus the

left and right comultiplications and counits coincide and the counit turns out to be an algebra
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morphism. Finally, we can rewrite some of the axioms in a more suitable way: for any h,k ∈ H

and a,b ∈ A, we have

(1) s,t : A → H are both algebra morphisms and H has the A±bimodule structure

a ▷ h ◁ b = t(a) h s(b);

(2) ε := εl = εr : H → A is an algebra morphism and ε ◦ s = ε ◦ t = IdA;

(3) S(s(a) h) = t(a) S(h) and S(t(a) h) = s(a) S(h);

(4) S(h(1))h(2) = s(ε(h)) and h(1)S(h(2)) = t(ε(h));

(5) h(1)S(h(2))h(3) = h and S(h(1))h(2)S(h(3)) = S(h);

using Δ := Δl = Δr and the notation Δ(h) = h(1) ⊗ h(2).

Remark 2.2.4 Observe that if (H,s,t ,Δ,ε, S) is a commutative Hopf algebroid over a commuta-

tive algebra A, then S2 = IdH. Indeed, for every h ∈ H,

S2(h) = S
(
S(t ◦ ε(h(1)) h(2))

)

= S
(
S(h(2)) s ◦ ε(h(1))

)

= t ◦ ε(h(1)) S2(h(2))

= h(1) S(h(2)) S2(h(3))

= h(1) S
(
h(2) S(h(3))

)

= h(1) S
(
t ◦ ε(h(2))

)

= h(1) s ◦ ε(h(2))

= h.

Example 2.2.5 Let A be a commutative algebra and consider H = A ⊗ A. Then H is endowed

with a Hopf algebroid structure by

s(a) = 1A ⊗ a, t(a) = a ⊗ 1A, Δ(a ⊗ b) = a ⊗ 1A ⊗A 1A ⊗ b,

ε(a ⊗ b) = ab and S(a ⊗ b) = b ⊗ a.

Example 2.2.6 A little generalization of the previous example is the algebra of Laurent poly-

nomials, H = (A ⊗ A)[x ,x±1], for A being a commutative algebra. This algebra is also a Hopf

algebroid with

s(a) = 1A ⊗ a, t(a) = a ⊗ 1A, Δ((a ⊗ b)xn) = (a ⊗ 1A)xn ⊗A (1A ⊗ b)xn,

ε((a ⊗ b)xn) = ab and S((a ⊗ b)xn) = (b ⊗ a)x±n.

2.2.2.1 The Hopf algebroid of the representative functions

Given a groupoid G, we can construct a Hopf algebroid of its representative functions

(KAOUTIT, 2013). In order to define a representative function of G, we need to understand what

is a representation of a groupoid. A representation of a groupoid is called a G-representation

and consists on:
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• E =
⊔

x∈G(0) Ex disjoint union of finite dimensional k-vector spaces Ex such that there

exists an n-dimensional k-vector space V and linear isomorphisms φx : V → Ex for

every x ∈ G(0).

• A family of linear isomorphisms ρEg : Es(g) → Et(g) for every g ∈ G such that for every

x ∈ G(0) and (g,h) ∈ G(2),

ρEx = idEx , ρEgh = ρEgρ
E
h .

For example, I =
⊔

x∈G(0) Ix , with Ix = k for every x ∈ G(0) and ρIg = Idk for every g ∈ G

is a G-representation.

A morphism λ between G-representations (E ,ρE ) and (F ,ρF ) is a family of linear maps

{λx }x∈G(0) with λx : Ex → Fx such that for every g ∈ G,

ρFg λs(g) = λt(g)ρ
E
g .

Denote by Repk(G) the category of the G-representations in k-vector spaces, with tensor

product and duals for G-representations (E ,ρE ) and (F ,ρF ) given by

(E ,ρE ) ⊗ (F ,ρF ) := (E ⊗ F ,ρE ⊗ ρF ) =



⊔

x∈G(0)

(Ex ⊗k Fx ) ,
{
ρEg ⊗k ρ

F
g

}
g∈G




(E ,ρE )∗ =



⊔

x∈G(0)

Ex
∗,{ρE

∗

g }g∈G


 ,

where ρE
∗

: Es(g)
∗ → Et(g)

∗ with ρE
∗

g (φ) = φ ◦ ρEg±1 for every g ∈ G and φ ∈ Es(g)
∗.

Proposition 2.2.7 (KAOUTIT, 2013) Let G be a groupoid and (E ,ρE ) a G±representation. Setting

A = Fun(G(0),k) the commutative k±algebra of all maps from G(0) to k, we have

Γ(E) = {p : G(0) → E | p(x) ∈ Ex ∀x ∈ G(0)}

is a finitely generated and projective A-module.

Proof. In order to prove that Γ(E) is a finitely generated and projective A-module, it is enough

to construct its dual basis. Take V the underlying n±dimensional vector space from (E ,ρE ) with

the isomorphisms φx : V → Ex . Fix {v1, . . . ,vn} a basis for V and consider for each i = 1, . . . ,n,

the maps ei : G(0) → E , x 7→ φx (vi ). Since {φx (v1), . . . ,φx (vn)} is a basis of Ex and p(x) ∈ Ex for

every x ∈ G(0), we can write

p(x) =
n∑

i=1

pi (x)φx (vi ) =
n∑

i=1

pi (x)ei (x)

with pi ∈ A. We can also define for each i = 1, . . . , n a map e∗
i : Γ(E) → A, p 7→ pi , thus

p =
n∑

i=1

e∗
i (p) ei .

Therefore, {e∗
i ,ei }n

i=1 forms a dual basis for the A±module Γ(E). 2
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Now for any G±representation (E ,ρE ), let

TE := EndRep
k
(G)(E ,ρE ) TE ,F := HomRep

k
(G)
(
(E ,ρE ),(F ,ρF )

)

and consider the tensor products

Γ :=
⊕

(E ,ρE )∈Rep
k
(G)

Γ(E∗) ⊗TE
Γ(E).

Γ is a commutative (A ⊗k A)±algebra with the product

(φ⊗TE
p)(ψ⊗TF

q) = (φ⊗A ψ) ⊗TE⊗F
(p ⊗A q)

for every φ ∈ Γ(E∗), ψ ∈ Γ(F), p ∈ Γ(E) and q ∈ Γ(F). Finally, the quotient

Rk(G) :=

⊕
(E ,ρE )∈Rep

k
(G) Γ(E∗) ⊗TE

Γ(E)

JRep
k
(G)

of Γ with the ideal

JRep
k
(G) = ⟨φ⊗TF

λp ± φλ⊗TE
p |φ ∈ Γ(F∗), p ∈ Γ(E),λ ∈ TE ,F ⟩

is a (A ⊗k A)-algebra with the inherited product from Γ and is called the algebra of the represen-

tative functions on the groupoid G. The elements of the algebra are denoted by φ⊗TE
p. Rk(G)

has a commutative Hopf algebroid structure over the commutative base algebra A : for every

a ∈ A, φ⊗TE
p ∈ Rk(G) and x ∈ G(0),

s(a) = 1A ⊗TI
a t(a) = a ⊗TI

1A Δ(φ⊗TE
p) =

n∑

i=1

φ⊗TE
ei ⊗A ei

∗ ⊗TE
p,

ε(φ⊗TE
p)(x) = φ(x) (p(x)) S(φ⊗TE

p) = p̃ ⊗TE∗ φ, with ˜(_) : E ∼= (E∗)∗,

where {ei
∗,ei } is the dual basis of the A-module Γ(E) and I is the trivial G±representation

I =
⊔

x∈G(0) k, with ρIg = Idk.

Example 2.2.8 A group G can be seen as a groupoid G = G with G(0) = {1G}. A G±representation

is a finite dimensional vector space V together with linear isomorphisms ρV
g : V → V such that

ρV
g ρ

V
h = ρV

gh for every g,h ∈ G. Hence the representations of the groupoid G are the same as

the representations of the group. Also, we have that A = Fun(G(0),k) ∼= k,

Γ(V ) = {p : {1G} → V } ∼= V

and Γ(V ∗) ∼= V ∗. Moreover, an endomorphism for the representation (V ,ρV ) is a linear map

α : V → V such that

α ◦ ρV
g = ρV

g ◦ α

for every g ∈ G. Thus α = λ IdV for some λ ∈ k and then TV
∼= k. Consequently, the ideal

JRep
k
(G)(G) = 0. Then the algebra of representative functions of G is the algebra

Rk(G) ∼=
⊕

(V ,ρV )∈Rep
k
(G)

V ∗ ⊗k V

and an element of Rk(G) can be written as a triple (φ,v ,ρV ) with φ ∈ V ∗, v ∈ V and ρV a

G±representation, which can be identified as the representative function for the group G
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f : G −→ k

g 7−→ φ(ρV (g)(v ))

Therefore Rk(G) is exactly the commutative Hopf k±algebra R(G) of the representative functions

on the group G.

Example 2.2.9 Let G be the groupoid known as the unit groupoid where G = G(0) and the source

and target maps are s = t = IdG(0) . Then a G±representation is given by a disjoint union

E =
⊔

x∈G(0)

Ex
∼=

⊔

x∈G(0)

V ,

where V is a n±dimensional vector space and the linear isomorphisms ρEx : Ex → Ex are the

identity map for every x ∈ G(0). Hence the G±representation is simply the set V × G(0). Also,

observe that

Γ(V × G(0)) = {p : G(0) → V × G(0) | p(x) ∈ V × {x}} ∼= An,

where A = Fun(G(0),k). Similarly, Γ((V ×G(0))∗) ∼= An and morphisms between G±representations

are TV×G(0),W×G(0)
∼= Mn,m(A), where W is a m±dimensional vector space. Therefore, the Hopf

algebroid of the representative functions of G is given by the quotient

Rk(G) =

⊕
n∈N An ⊗Mn(A) An

〈
u ⊗Mn(A) (λij )v ± u(λij ) ⊗Mm(A) v

〉

u∈An,v∈Am,(λij )∈Mn,m(A)

.

This quotient, indeed coincides with the algebra A. Consider, for example the following

element of Rk(G)

(f 1, . . . , f n) ⊗Mn(A)




g1

...

gn


.

The vector (f 1, . . . , f n) ∈ An can be viewed as the product 1A(f 1, . . . , f n), in which 1A : G(0) → k

is the constant unit function, and (f 1, . . . , f n) ∈ M1×n(A) then

(f 1, . . . , f n) ⊗Mn(A)




g1

...

gn


 = 1A ⊗M1(A) (f 1, . . . , f n)




g1

...

gn


 = 1A ⊗k

∑

i

f ig i .

Lemma 2.2.10 (Proposition 2.2, (KAOUTIT, 2013)) Let G be a groupoid, A = Fun(G(0),k) and

put B = Fun(G,k). The following map

ζ : Rk(G) −→ B

φ⊗TE
p 7−→ ζ(φ⊗TE

p),

with ζ(φ⊗TE
p)(g) = φ(t(g))

(
ρEg (p(s(g))

)
for each g ∈ G is a (A ⊗k A)±algebra map. Moreover,

we have

(1) i∗ ◦ ζ = ε, with i : G(0) → G being the inclusion map;

(2) ζ ◦ S(φ⊗TE
p)(g) = ζ(φ⊗TE

p)(g±1);
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(3) For every g,h ∈ G such that s(g) = t(h) and every F ∈ Rk(G), we have that

ζ(F )(gh) = ζ(F(1))(g)ζ(F(2))(h),

where Δ(F ) = F(1) ⊗A F(2).

Proof. First, ζ is well-defined because

ζ(φ⊗TF
λp)(g) = φ(t(g))

(
ρFg ((λp)(s(g)))

)

= φ(t(g))
(
ρFg ◦ λs(g)(p(s(g)))

)

= φ(t(g))
(
λt(g) ◦ ρ

E
g (p(s(g)))

)

= (φλ)(t(g))
(
ρEg (p(s(g)))

)

= ζ(φλ⊗TE
p)(g)

for every (EρE ) and (F ,ρF ) G±representations, g ∈ G, φ ∈ Γ(F∗), p ∈ Γ(E) and λ ∈ TE ,F . Also,

ζ(1A ⊗TI
1A) = 1B and for φ⊗TE

p,ψ⊗TF
q ∈ Rk(G) and g ∈ G,

ζ((φ⊗TE
p)(ψ⊗TF

q))(g) = ζ((φ⊗A ψ) ⊗TE⊗F
(p ⊗A q))(g)

= (φ⊗A ψ)(t(g))
(
ρEg ⊗k ρ

F
g ((p ⊗A q)(s(g)))

)

= φ(t(g))
(
ρEg (p(s(g))

)
ψ(t(g))

(
ρFg (t(s(g))

)

=
(
ζ(φ⊗TE

p) ζ(ψ⊗TF
q)
)

(g).

Hence ζ is multiplicative. Moreover,

(1) For every x ∈ G(0) and φ⊗TE
p ∈ Rk(G),

i∗ ◦ ζ(φ⊗TE
p)(x) = ζ(φ⊗TE

p)(i(x))

= φ(t(x))
(
ρEx (p(s(x)))

)

= φ(x)(p(x))

= ε(φ⊗TE
p)(x).

(2) For every g ∈ G and φ⊗TE
p ∈ Rk(G),

ζ ◦ S(φ⊗TE
p)(g) = ζ(p̃ ⊗TE∗ φ)(g)

= p̃(t(g))
(
ρE

∗

g (φ(s(g)))
)

= ρE
∗

g (φ(s(g)))(p(t(g))

= φ(s(g)) ◦ ρEg±1(p(t(g)))

= φ(t(g±1))
(
ρEg±1(p(s(g±1)))

)

= ζ(φ⊗TE
p)(g±1).

(3) For every (g,h) ∈ G(2) and F = φ⊗TE
p ∈ Rk(G),
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ζ(F(1))(g)ζ(F(2))(h) =
n∑

i=1

ζ(φ⊗TE
ei )(g) ζ(e∗

i ⊗TE
p)(h)

=
n∑

i=1

φ(t(g))
(
ρEg (ei (s(g)))

)
e∗

i (t(h))
(
ρEh (p(s(h)))

)

= φ(t(g))

(
ρEg

(
n∑

i=1

ei (s(g)) e∗
i (s(g))

(
ρEh (p(s(h)))

)
))

= φ(t(gh))
(
ρEgh(p(s(gh)))

)

= ζ(φ⊗TE
p)(gh)

= ζ(F )(gh).

2

Remark 2.2.11 The original proposition (Proposition 2.2 (KAOUTIT, 2013)) for the previous

result also states that the morphism ζ is injective.

Example 2.2.12 (KAOUTIT, 2013) Consider the groupoid G = X × G × X , where X is a set, G

is a group, (x ,g,y )±1 = (y ,g±1,x) and

(x ,g,y ) · (y ,h,z) = (x ,gh,z)

for every x ,y ,z ∈ X and g,h ∈ G. Also consider G(0) = {(x ,1G,x) | x ∈ X } ∼= X and the source

and target maps being the projections on the third and first coordinates, respectively. Let A =

Fun(X ,k) the set of all maps from X to k. We will see that

Rk(G) ∼= A ⊗k R(G) ⊗k A.

Using the ζ map from Lemma 2.2.10, a representative function φ⊗TE
p of G can be seen

as a map from G onto k given by

ζ(φ⊗TE
p)(x ,g,y ) = φ(x)

(
ρE(x ,g,y )(p(y ))

)
(1)

for every x ,y ∈ X and g ∈ G.

Now fix x0 ∈ X . Hence for a n±dimensional G±representation (E ,ρE ),

ρE(x ,g,y ) = ρE(x ,1G,x0)ρ
E
(x0,g,x0)ρ

E
(x0,1G,y )

for every (x ,g,y) ∈ G. Let
(

ag
ij

)

1≤i ,j≤n
the n±square matrix representing the k±linear iso-

morphism ρε(x0,g,x0) and denote by (bx0,x
ij )1≤i ,j≤n and (bx ,x0

ij )1≤i ,j≤n the matrices representing

ρE(x ,1G,x0) : Ex0 → Ex and ρE(x0,1G,x) : Ex → Ex0 , respectively, for every x ∈ X. Then, with {e∗
i , ei }

being the dual basis for Γ(E) we can write

p(x) =
n∑

i=1

pi (x)ei (x)
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and from (1) we have

ζ(φ⊗TE
p)(x ,g,y ) = φ(x)

(
ρE(x ,g,y )(p(y ))

)

= φ(x)

(
n∑

l=1

ρE(x ,1G,x0)ρ
E
(x0,g,x0)ρ

E
(x0,1G,y ) pl (y ) el (x0)

)

=
n∑

k ,l=1

pl (y )φ(x)
(
ρE(x ,1G,x0)ρ

E
(x0,g,x0) by ,x0

kl ek (x0)
)

=
n∑

,j ,k ,l=1

pl (y ) by ,x0
kl φ(x)

(
ρE(x ,1G,x0)a

g
jk ej (x0)

)

=
n∑

i ,j ,k ,l=1

pl (y ) by ,x0
kl ag

jk φ(x)
(

bx0,x
ij ei (x)

)

=
n∑

i ,j ,k ,l=1

bx0,x
lk ag

kj by ,x0
ji pi (y )φ(x)(ei (x))

=
n∑

i ,j ,k ,l=1

bx0,x
ij ag

jk by ,x0
kl pl (y )φi (x)

with φi : X → k given by x 7→ φ(x)(ei (x)). Defining

φi : X −→ k pl : X −→ k

x 7−→
∑n

j=1 bx0,x
ij φi (x) x 7−→

∑n
k=1 bx ,x0

kl pl (x)

we have that

ζ(φ⊗Tε
p)(x ,g,y ) =

n∑

i ,j ,k ,l=1

φi (x) ag
jk pl (y ). (2)

Observe that the maps aij : G → k, g 7→ ag
ij are all representative functions on the group G,

because for every i ,j = 1, . . . n,

ag
ij = e∗

i (x0)
(
ρE(x0,g,x0)(ej (x0))

)
,

for all g ∈ G, with ei (x0) ∈ Ex0 and ρE(x0,g,x0) : G → GL(Ex0) a G±representation. Also note that

a1G
ij = e∗

i (x0)
(
ρE(x0,1G,x0)(ej (x0))

)
= e∗

i (x0)(ej (x0)) = δij , (3)

which implies that (a1G
ij )1≤i ,j≤n = In. In addition to that, if a⊗ f ⊗ b is in A⊗k R(G)⊗k A with R(G)

being the Hopf algebra of the representative function on the group G, then f : G → k can be

written as

f (g) = F (ρ(g)(v )) ∀g ∈ G

with v being an element of a n±dimensional vector space V , F : V → k and ρ : G → GL(V )

a representation of the group G. Thus E f =
⊔

x∈X V and ρE
f

(x ,g,h) = ρ(g) : V → V form a

G±representation and defining

φ
b : X −→ V ∗ pa : X −→ V

x 7−→ φ
b(x) : w 7→ b(x) F (w) x 7−→ a(x) v

,
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we have that for every (x ,g,y ) ∈ G,

ζ(φb ⊗T
Ef

pa)(x ,g,y ) = φ
b(y )

(
ρE

f

(x ,g,y )(p
a(x))

)

= φ
b(y )(ρ(g)(a(x) v ))

= a(x) b(y ) F (ρ(g)(v )) (4)

= a(x) f (g) b(y )

= ι(a ⊗ f ⊗ b)(x ,g,y ),

where ι is the the canonical map

A ⊗k R(G) ⊗k A
ι
↪→ Fun(X × G × X ,k).

Consequently, ι(A ⊗k R(G) ⊗k A) ⊆ ζ(Rk(G)) and from the expression (2),

ζ(φ⊗Tε
p)(x ,g,y ) = ι




n∑

i ,j ,k ,l=1

φi ⊗ ajk ⊗ pl


 (x ,g,y )

for every (x ,g,y ) ∈ G, so we have ζ(Rk(G)) ⊆ ι(A ⊗k R(G) ⊗k A). Therefore, the image of Rk(G)

in Fun(X × G × X ,k) by ζ coincides with the image of A ⊗k R(G) ⊗k A in Fun(X × G × X ,k) by ι.

And since the two maps are injective, we have an isomorphism of A±bimodules

Rk(G)
ξ

−→ A ⊗k R(G) ⊗k A

φ⊗TE
p 7−→

∑n
i ,j ,k ,l=1 φi ⊗ ajk ⊗ pl

.

Moreover, this is an isomorphism of A±Hopf algebroids. Indeed, with the Hopf algebroid

structure on A ⊗k R(G) ⊗k A being

s′(a) = 1A ⊗ 1R(G) ⊗ a

t ′(a) = a ⊗ 1R(G) ⊗ 1A

Δ′(a ⊗ f ⊗ b) = (a ⊗ f(1) ⊗ 1A) ⊗A (1A ⊗ f(2) ⊗ b) (5)

ε
′(a ⊗ f ⊗ b)(x) = a(x)b(x)f (1G)

S′(a ⊗ f ⊗ b)(x ⊗ g ⊗ y ) = a(y )b(x)f (g±1).

with a,b ∈ A, x ,y ∈ X and f ∈ R(G), we have that:

(i) For every a ∈ A and (x ,g,y ) ∈ G,

ζ(s(a))(x ,g,y ) = ζ(1A ⊗TI
a)(x ,g,y )

= 1A(x)
(
ρI(x ,g,y )(a(y ))

)

= a(y )

= ι(1A ⊗ 1R(G) ⊗ a)(x ,g,y ),

which implies that

ξ(s(a))(x ⊗ g ⊗ y ) = (1A ⊗ 1R(G) ⊗ a)(x ⊗ g ⊗ y )

= s′(a)(x ⊗ g ⊗ y ).
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and ξ ◦ s = s′. On the other hand,

ζ(t(a))(x ,g,y ) = ζ(a ⊗TI
1A)(x ,g,y )

= a(x)
(
ρI(x ,g,y )(1A(y ))

)

= a(x)

= ι(a ⊗ 1R(G) ⊗ 1A)(x ,g,y )

implies that

ξ(t(a))(x ⊗ g ⊗ y ) = (a ⊗ 1R(G) ⊗ 1A)(x ⊗ g ⊗ y )

= t ′(a)(x ⊗ g ⊗ y )

and consequently, ξ ◦ t = t ′.

(ii) Now for every x ,y ,z,t ∈ X , g,h ∈ G, a ∈ A and φ⊗TE
p ∈ Rk(G),

n∑

i=1

ζ(φ⊗TE
ei ) ⊗A ζ(e∗

i ⊗TE
p)((x ,g,y ) ⊗A (z,h,t))

=
n∑

i=1

ζ(φ⊗TE
ei )(x ,g,y ) ζ(e∗

i ⊗TE
p)(z,h,t)

=
n∑

i=1

φ(x)
(
ρE(x ,g,y )(ei (y ))

)
e∗

i (z)
(
ρE(z,h,t)(p(t))

)

=
n∑

i=1

φ(x)
(
ρE(x ,1G,x0)ρ

E
(x0,g,x0)ρ

E
(x0,1G,y )ei (y ) e∗

i (z)ρE(z,1G,x0)ρ
E
(x0,h,x0)ρ

E
(x0,1G,t) p(t)

)

(∗)
= φ(x)

(
ρE(x ,1G,x0)ρ

E
(x0,g,x0)ρ

E
(x0,1G,y )φy ◦ φ±1

z ρE(z,1G,x0)ρ
E
(x0,h,x0)ρ

E
(x0,1G,t) p(t)

)

= φ(x)
(
ρE(x ,1G,x0)ρ

E
(x0,g,x0)ρ

E
(x0,1G,y )ρ

E
(y ,1G,z)ρ

E
(z,1G,x0)ρ

E
(x0,h,x0)ρ

E
(x0,1G,t) p(t)

)

= φ(x)
(
ρE(x ,1G,x0)ρ

E
(x0,g,x0)ρ

E
(x0,h,x0)ρ

E
(x0,1G,t) p(t)

)

=
n∑

i ,j ,k ,l=1

φi (x) agh
jk pl (t)

=
n∑

i ,j ,k ,l=1

φi (x) ajk
g
(1) ajk

h
(2) pl (t)

=
n∑

i ,j ,k ,l=1

ι(φi ⊗ ajk (1) ⊗ 1A) ⊗A ι(1A ⊗ ajk (2) ⊗ pl )((x ,g,y ) ⊗A (z,h,t))

where (∗) comes from ei (y ) = φy ◦ φ±1
z ◦ φz(vi ) = φy ◦ φ±1

z (ei (z)).
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Hence

(ξ⊗ ξ)Δ(φ⊗TE
p)((x ⊗ g ⊗ y ) ⊗A (z ⊗ h ⊗ t)

=
n∑

r=1

ξ(φ⊗TE
er ) ⊗A ξ(e∗

r ⊗TE
p)((x ⊗ g ⊗ y ) ⊗A (z ⊗ h ⊗ t))

=
n∑

i ,j ,k ,l=1

(φi ⊗ ajk (1) ⊗ 1A) ⊗A (1A ⊗ ajk (2) ⊗ pl )((x ⊗ g ⊗ y ) ⊗A (z ⊗ h ⊗ t))

=
n∑

i ,j ,k ,l=1

Δ′(φi ⊗ aij ⊗ pl )((x ⊗ g ⊗ y ) ⊗A (z ⊗ h ⊗ t))

= Δ′ ◦ ξ(φ⊗TE
p)((x ⊗ g ⊗ y ) ⊗A (z ⊗ h ⊗ t)),

that is, (ξ⊗ ξ) ◦ Δ = Δ′ ◦ ξ.

Also,

ε
′ ◦ ξ(φ⊗TE

p)(x) =
n∑

i ,j ,k ,l=1

ε
′(φi ⊗ ajk ⊗ pl )(x)

=
n∑

i ,j ,k ,l=1

φi (x)pl (x) a1G
jk

=
n∑

i ,j ,k ,l=1

φi (x)pl (x) δjk

=
n∑

i ,j ,k=1

bx0,x
ij bx ,x0

j ,k φi (x)pk (x)

(∗)
= φ(x)

(
In(pj (x))j (ei (x))i

)

= φ(x)(p(x))

= ε(φ⊗TE
p)(x),

where (∗) comes from the fact that (bx0,x
ij )ij

±1
= (bx ,x0

i ,j )ij , because

ρE(x0,1G,x)ρ
E
(x ,1G,x0) = ρEx0

= IdEx0
ρE(x ,1G,x0)ρ

E
(x0,1G,x) = ρEx = IdEx .

Therefore, ξ ◦ S = S′ ◦ ξ and ε
′ ◦ ξ = ε.

(iii) Finally, for (φ⊗TE
p) ∈ Rk(G), g ∈ G and x ,y ∈ X ,

ζ(S(φ⊗TE
p))(x ,g,y ) = ζ(φ⊗TE

p)(y ,g±1,x)

=
n∑

i ,j ,k ,l=1

φi (y ) ag±1

jk pl (x)

=
n∑

i ,j ,k ,l=1

ι ◦ S′(φi ⊗ ajk ⊗ pl )(x ,g,y )

implies that

ξ(S(φ⊗TE
p))(x ⊗ g ⊗ y ) =

n∑

i ,j ,k ,l=1

S′(φi ⊗ ajk ⊗ pl )(x ⊗ g ⊗ y )

= S′ ◦ ξ(φ⊗TE
p)(x ⊗ g ⊗ y ).
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Consequently, ξ is an isomorphism of Hopf algebroids.

Remark 2.2.13 A transitive groupoid G with source s and target t is a groupoid such that for

every pair x ,y ∈ X there exists an element g ∈ G that satisfies x = s(g) and y = t(g). Then, fixing

x0 ∈ G(0), we have G ∼= G(0) × Gx0 × G(0) (Gx0 is the isotropy group for x0) with the isomorphism

ψ(g) =
(

t(g),φ±1
t(g) g φs(g), s(g)

)
,

where for every y ∈ G(0), φy gives the element of G that satisfies x0 = s(φy ) and y = t(φy ) and

source and target given by the projections on third and first coordinates, respectively.

Therefore, we have from Example 2.2.12 that the Hopf algebroid of the representative

functions of a transitive groupoid is

Rk(G) ∼= A ⊗k R(G) ⊗k A,

where A = Fun(G(0),k) and R(G) is the Hopf algebra of the representative functions on the

isotropy group G = Gx0 for some fixed x0 ∈ G(0).

Example 2.2.14 Consider a set X and the groupoid G = X × X with

(x ,y )(y ,z) = (x ,z) (x ,y )±1 = (y ,x).

Observe that this groupoid can be seen as a particular case from Example 2.2.12 with G being

a unitary group {e}. Since the Hopf algebra R({e}) is isomomorphic to k and, consequently,

Rk(G) ∼= A ⊗k A

with the same Hopf algebroid structure seen at the Example 2.2.5.
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3 QUANTUM INVERSE SEMIGROUPS

We want the definition of quantum inverse semigroups to be a generalization of inverse

semigroups in the same sense that Hopf algebras can be thought as a generalization of groups.

With this in mind, we ask for a quantum inverse semigroup to have a comultiplication, a pseudo

antipode and some commutative idempotents related to the convolution product.

3.1 DEFINITION

Definition 3.1.1 (Quantum Inverse Semigroup) A quantum inverse semigroup (QISG) is a

triple (H,Δ,S) in which

(QISG1) H is a (not necessarily unital) k-algebra.

(QISG2) Δ : H → H ⊗ H is multiplicative.

(QISG3) S : H → H is a k-linear map, called pseudo antipode, satisfying

(i) S(hk ) = S(k )S(h), for all h,k ∈ H.

(ii) IdH ∗ S ∗ IdH = IdH and S ∗ IdH ∗ S = S in the convolution algebra Endk(H).

(QISG4) The subalgebras generated by the images of IdH ∗ S and S ∗ IdH mutually commute,

that is, for every h,k ∈ H,

h(1)S(h(2))S(k(1))k(2) = S(k(1))k(2)h(1)S(h(2)).

A quantum inverse semigroup is unital if H is a unital k-algebra and S(1H ) = 1H . A quantum

inverse semigroup is counital if H is a k-coalgebra and εH ◦ S = εH .

Remark 3.1.2 In an inverse semigroup, we have the uniqueness of the pseudo-inverse and,

equivalently, the commutativity of the idempotents. In the definition of quantum inverse semi-

groups, we don’t ask for any of these things, and these are not direct consequences of the

definition.

(i) The pseudo antipode is not always unique. In the case where the idempotents of the

convolution algebra Endk(H) commute, then the pseudo antipode is unique. In fact, being

S and S both pseudo antipodes of the quantum inverse semigroup H, we have that

IdH ∗ S, IdH ∗ S, S ∗ IdH and S ∗ IdH are idempotents in the convolution algebra Endk(H)

and then

S = S ∗ IdH ∗ S = S ∗ IdH ∗ S ∗ IdH ∗ S = S ∗ IdH ∗ S ∗ IdH ∗ S = S ∗ IdH ∗ S

= S ∗ IdH ∗ S ∗ IdH ∗ S = S ∗ IdH ∗ S ∗ IdH ∗ S = S ∗ IdH ∗ S = S.

(ii) Let (H,Δ, ε, S) be a coalgebra satisfying (QISG1), (QISG2), (QISG3) and ε ◦ S = ε. If

the idempotents of the convolution algebra Homk(H ⊗ H,H) commute, then the axiom

(QISG4) follows automatically. In fact, let e, e : H ⊗ H → H given by

e(h ⊗ k ) = h(1)S
(
h(2)
)
ε(k ) and e(h ⊗ k ) = ε(h)S

(
k(1)
)

k(2)
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for every h,k ∈ H. Then e is idempotent in the convolution algebra

HomK(H ⊗ H,H), because

(e ∗ e)(h ⊗ k ) = h(1)S
(
h(2)
)
ε
(
k(1)
)

h(3)S
(
h(4)
)
ε
(
k(2)
)

h(1)S
(
h(2)
)
ε(k ) = e(h ⊗ k )

for every h,k ∈ H. Similarly, we obtain that e is also an idempotent. Also for every h,k ∈ H,

e ∗ e(h ⊗ k ) = h(1)S
(
h(2)
)
ε
(
k(1)
)
ε
(
h(3)
)

S
(
k(2)
)

k(3)

= h(1)S
(
h(2)
)

S
(
k(1)
)

k(2)

and

e ∗ e(h ⊗ k ) = ε
(
h(1)
)

S
(
k(1)
)

k(2)h(2)S
(
h(3)
)
ε
(
k(3)
)

= S
(
k(1)
)

k(2)h(1)S
(
h(2)
)

.

Since the idempotents commute, we have (QISG4).

(iii) In axiom (QISG3), it is imposed that the pseudo antipode is antimultiplicative, even though

in most examples of quantum inverse semigroups it is possible to show this property

directly from other intrinsic characteristics of those particular examples. On the other

hand, it is not required that the pseudo antipode is anticomultiplicative, that is, Δ ◦ S =

(S ⊗S) ◦Δcop. Although this is true in most examples, there are cases where this property

is not valid.

(iv) In reference (LI, 1998), the author introduced a notion somewhat related to our quantum

inverse semigroup, called there as ªweak Hopf algebrasº. This notion of a weak Hopf

algebra does not correspond to the usual notion of weak Hopf algebra in the literature

(BÖHM; NILL; SZLACHÁNYI, 1999), basically because they were bialgebras, while usual

weak Hopf algebras don’t satisfy the unitality of the comultiplication nor the multiplicativity

of the counit. Despite the fact that the notion of pseudo antipode was introduced there,

we must highlight some essential differences between a quantum inverse semigroup and

the so called ªweak Hopf algebrasº (WHA for short). First, a quantum inverse semigroup

need not to be unital nor counital, while the WHA are bialgebras, then they are unital and

counital, therefore, even the algebra of an inverse semigroup could not be, in general, an

example of a WHA. In axiom (QISG3) we demanded the antimultiplicativity of the pseudo

antipode, while for WHA this condition was not postulated, but it is asumed in many points

in order to obtain relevant results. Finally, for WHA there is no similar to axiom (QISG4).

(v) We also acknowledge another similar construction in (AUKHADIEV, 2016) (although

it was not so far published elsewhere), also called quantum inverse semigroups. The

difference is that the notion of a quantum inverse semigroup given there is a C∗-algebra

with a dense bialgebra with a pseudoantipode satisfying (QISG3). Here we do not demand

a quantum inverse semigroup to be unital or counital. Also, the author does not demand

any condition similar to our axiom (QISG4).
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3.2 EXAMPLES

Example 3.2.1 Let S be an inverse semigroup. The algebra

kS =

{
∑

s∈S

asδs | as ∈ k

}

can be endowed with an structure of a counital quantum inverse semigroup with

Δ(δs) = δs ⊗ δs, ε(δs) = 1, S(δs) = δs∗ .

This is a fact because the product from kS inherits all the properties from the product in S and

ε ◦ S(δs) = ε(δs∗) = 1 = ε(δs)

for every s ∈ S. Also, S is anticomultiplicative:

(S ⊗ S) ◦ Δcop(δs) = S(δs) ⊗ S(δs) = δs∗ ⊗ δs∗ = Δ ◦ S(δs)

for every s ∈ S.

When S is an inverse monoid, then kS is a unital and counital quantum inverse semi-

group with 1kS = δ1S
. The axiom (QISG4) is automatically satisfied, because the algebras

generated by the images IdkS ∗S and S ∗ IdkS both coincide with kE(S), which is a commutative

algebra.

Example 3.2.2 An affine inverse semigroup scheme is a functor S from the category of com-

mutative k-algebras to the category of inverse semigroups whose composition with the forgetful

functor U : InvSgrp → Set becomes an affine scheme, that is, a representable functor from the

category of algebras to the category of sets. Let S be an inverse semigroup scheme and H the

commutative algebra which represents it, that is,

S( ) = HomComAlg(H, ).

The assumption that S(A) is an inverse semigroup and that for any algbra morphism φ : A → B

induces a semigroup morphism S(φ) : S(A) → S(B) leads to the conclusion that the multiplica-

tions in each semigroup S(A), define a natural transformation, m : S × S ⇒ S. As the functor S

is representable, one can write the multiplication as

m : HomComAlg(H, ) × HomComAlg(H, ) ⇒ HomComAlg(H, ),

or yet, via the canonical natural isomorphism

HomComAlg(H, ) × HomComAlg(H, ) ∼= HomComAlg(H ⊗ H, )

an associated natural transformation

m̃ : HomComAlg(H ⊗ H, ) ⇒ HomComAlg(H, ).

By Yoneda’s lemma, this natural transformation induces a morphism of algebras

Δ : H → H ⊗ H.
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Such that, for each algebra A and every pair of algebra morphisms x ,y : H → A we have

x .y = mA(x ,y ) = (x ⊗ y ) ◦ Δ.

In the same way, the pseudoinverse operation can be viewed as a natural transformation

( )∗ : Sop ⇒ S. Again, by Yoneda’s lemma, this natural transformation induces a morphism of

algebras (as the algebras are commutative, also an antimorphism of algebras) S : H → H.

Given a commutative algebra A, the identities ss∗s = s and s∗ss∗ = s∗ for each s ∈

HomComAlg(H,A) are equivalent to the expressions IdH ∗S ∗ IdH = IdH and S ∗ IdH ∗S = S. Indeed,

for any h ∈ H and for any algebra map s : H → A

s(h) = ss∗s(h) = s(h(1))s
∗(h(2))s(h(3)) = s(h(1))s(S(h(2)))s(h(3)) = s(h(1)S(h(2))h(3)).

As this equality is valid for every algebra morphism s : H → A and for every commutative

algebra A, we have

h = h(1)S(h(2))h(3), ∀h ∈ H.

Finally, axiom (QISG4) is trivially verified because all algebras are commutative, then,

for every h,k ∈ H the elements IdH ∗ S(h) and S ∗ IdH (k ) do commute. Therefore, the algebra H,

representing the affine inverse semigroup scheme is a quantum inverse semigroup.

Example 3.2.3 Given an inverse semigroup S, let HS be the polynomial algebra generated

by all the matrix coordinate functions of isomorphism classes of finite dimensional k-linear

representations π of S, that is

HS = k[πi ,j | π : S → Mn(k), 1 ≤ i ,j ≤ n],

in which π(s) =
(
πi ,j (s)

)n
i ,j=1. Define the comultiplication on the generators by

Δ(πi ,j ) =
n∑

k=1

πi ,k ⊗ πk ,j

and extend to an algebra morphism Δ : HS → HS ⊗ HS by the universal property of the

polynomial algebra. Considering the natural embedding of HS ⊗ HS as a subalgebra of the

algebra of functions from S × S to k, the comultiplication can be written in the following way:

Δ(πi ,j )(s,t) = πi ,j (st) =
n∑

k=1

πi ,k (s)πk ,j (t).

Also, one can define the pseudoantipode on the generators as

S(πi ,j )(s) = πi ,j (s
∗), ∀s ∈ S,

and extend it by the universal property of the polynomial algebra to an algebra morphism

S : H → H (which is also an anti-algebra morphism because of the commutativity).

It is easy to verify that (HS,Δ,S) is a unital quantum inverse semigroup. The unit of the

polynomial algebra can be seen as the constant function 1HS
: S → k = M1(k) which sends

every element of the semigroup S into 1k, and the pseudoantipode S, as algebra morphism,
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naturally sends 1HS
to 1HS

. It is enough to prove Axiom (QISG3) for the generators, then taking

a generator πi ,j with 1 ≤ i ,j ≤ n and any element s ∈ S, we have

IdH ∗ S ∗ IdH (πi ,j )(s) =
n∑

k ,l=1

πi ,k (s)S(πk ,l )(s)πl ,j (s)

=
n∑

k ,l=1

πi ,k (s)πk ,l (s
∗)πl ,j (s)

= πi ,j (ss∗s)

= πi ,j (s).

Therefore IdH ∗ S ∗ IdH = IdH . Similar reasoning for S ∗ IdH ∗ S = S. Axiom (QISG4) is satisfied

because the algebra HS is commutative.

Example 3.2.4 Every Hopf algebra (H,μ, η,Δ, ε,S) is a unital and counital quantum inverse

semigroup. The axiom (QISG4) follows from the antipode axiom in the Hopf algebra, then the

images of IdH ∗ S = S ∗ IdH = η ◦ ε are contained in the commutative subalgebra k · 1H .

Example 3.2.5 Every weak Hopf algebra is a quantum inverse semigroup. A weak Hopf algebra

is a sextuple (H,μ, η,Δ, ε,S) such that (H,μ,η) is a unital algebra and (H,Δ,ε) is a coalgebra.

Moreover, the comultiplication Δ : H → H ⊗ H is multiplicative and satisfies

(Δ(1) ⊗ 1)(1 ⊗ Δ(1)) = (1 ⊗ Δ(1))(Δ(1) ⊗ 1) = (Δ⊗ Id) ◦ Δ(1),

which can be rewritten as

1(1) ⊗ 1(2)1(1′) ⊗ 1(2′) = 1(1′) ⊗ 1(1)1(2′) ⊗ 1(2) = 1(1) ⊗ 1(2) ⊗ 1(3)

and the counit ε : H → k satisfies ε(hkl) = ε(hk(1)) ε(k(2)l) = ε(hk(2)) ε(k(1)l). Lastly, the antipode

S : H → H in a weak Hopf algebra satifies the following axioms:

h(1)S(h(2)) = εt (h) = ε(1(1)h)1(2),

S(h(1))h(2) = εs(h) = 1(1) ε(h1(2)),

S(h(1))h(2)S(h(3)) = S(h).

With these axioms, we have that H imediatly satisfies (QISG1) and (QISG2). H also satisfies

(QISG4): for every h,k ∈ H,

h(1)S(h(2))S(k(1))k(2) = ε(1(1)h)1(2)1(1′)ε(k1(2′))

= ε(1(1)h)1(1′)1(2)ε(k1(2′))

= S(k(1))k(2)h(1)S(h(2)). (6)
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Besides that, S is antimultiplicative, because

S(hk ) = S
(
h(1)k(1)

)
h(2)k(2)S

(
h(3)k(3)

)

= 1(1) ε
(
h(1)k(1)1(2)

)
S
(
h(2)k(2)

)

= 1(1) ε
(
h(1)k(2)

)
ε
(
k(1)1(2)

)
S
(
h(2)k(3)

)

= S
(
k(1)
)

k(2) ε
(
h(1)k(3)

)
S
(
h(2)k(4)

)

= S
(
k(1)
)

1(1)k(2) ε
(
h(1)1(2)k(3)

)
S
(
h(2)k(4)

)

= S
(
k(1)
)

1(1)k(2) ε

(
h(1)1(2)1

′
(1)

)
ε

(
1′

(2)k(3)

)
S
(
h(2)k(4)

)

= S
(
k(1)
)

1′
(1)k(2) ε

(
h(1)1(1)1

′
(2)

)
ε
(
1(2)k(3)

)
S
(
h(2)k(4)

)

= S
(
k(1)
)

S
(
h(1)1(1)

)
h(2)1(2)k(2) ε

(
1(3)k(3)

)
S
(
h(3)k(4)

)

= S
(
k(1)
)

S
(
h(1)1(1)

)
h(2)1(2)1

′
(1)k(2) ε

(
1′

(2)k(3)

)
S
(
h(3)k(4)

)

= S
(
k(1)
)

S
(
h(1)
)

h(2)k(2)S
(
h(3)k(3)

)

= S
(
k(1)
)

S
(
h(1)
)
ε
(
1(1)h(2)k(2)

)
1(2)

= S
(
k(1)
)

S
(
h(1)
)
ε
(
1(1)h(3)

)
ε
(
h(2)k(2)

)
1(2)

= S
(
k(1)
)

S
(
h(1)
)
ε
(
h(2)k(2)

)
h(3)S

(
h(4)
)

= S
(
k(1)
)

S
(
h(1)
)
ε
(
h(2)1(1)k(2)

)
h(3)1(2)S

(
h(4)
)

= S
(
k(1)
)
ε

(
h(2)1

′
(1)

)
ε

(
1′

(2)1(1)k(2)

)
S
(
h(1)
)

h(3)1(2)S
(
h(4)
)

= S
(
k(1)
)
ε
(
h(2)1(1)

)
ε

(
1′

(1)1(2)k(2)

)
S
(
h(1)
)

h(3)1
′
(2)S

(
h(4)
)

= S
(
k(1)
)
ε
(
h(2)1(1)

)
S
(
h(1)
)

h(3)1(2)k(2)S
(
1(3)k(3)

)
S
(
h(4)
)

= S
(
k(1)
)

S
(
h(1)
)
ε
(
h(2)1(1)

)
h(3)1(2)1

′
(1)k(2)S

(
1′

(2)k(3)

)
S
(
h(4)
)

= S
(
k(1)
)

S
(
h(1)
)

h(2)1(1)k(2)S
(
1(2)k(3)

)
S
(
h(3)
)

= S
(
k(1)
)

S
(
h(1)
)

h(2)k(2)S
(
k(3)
)

S
(
h(3)
)

(∗)
= S

(
k(1)
)

k(2)S
(
k(3)
)

S
(
h(1)
)

h(2)S
(
h(3)
)

= S(k )S(h)

for every h,k ∈ H, where (∗) comes from the expression (6). Finally,

h(1)S(h(2))h(3) = ε(1(1)h(1))1(2)h(2) = ε(h(1))h(2) = h

for any h ∈ H and S(h(1))h(2)S(h(3)) = S(h) for any h ∈ H by definition. Therefore H satisfies

(QISG3) and is a quantum inverse semigroup.

Moreover, H is a unital and counital quantum inverse semigroup, because

S(1) = S(1(1)) 1(2) S(1(3)) = S(1(1)) ε(1(1′)1(2)) 1(2′)

= S(1(1)) ε(1(2)) 1(3)

= S(1(1)) 1(2)

= 1(1) ε(1(2))

= 1
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and

ε ◦ S(h) = ε
(
S(h(1))h(2)S(h(3))

)

= ε
(
S(h(1))h(2)

)
ε
(
h(3)S(h(4))

)

= ε
(
1(1) ε(h(1)1(2))

)
ε
(
ε(1(1′)h(2)) 1(2′)

)

= ε(1(2′)) ε(1(1′)h(2)) ε(h(1)1(2)) ε(1(1))

= ε(h)

for all h ∈ H.

Example 3.2.6 A nontrivial example of a quantum inverse semigroup was inspired in the work

of Theodor Banica and Adam Skalski (BANICA; SKALSKI, 2015) on Quantum Permutation

Groups. Consider the polynomial k-algebra generated by the set {uij | 1 ≤ i ,j , ≤ n} and then

consider the quotient

H = k[uij |1 ≤ i ,j ≤ n] / I,

in which I is the ideal generated by elements of the type

1. uijuik ± δj ,kuij ,

2. uijukj ± δi ,kuij .

Defining the function
Δ̃ : {uij }1≤i ,j≤n −→ H ⊗ H

uij 7−→
∑n

k=1 uik ⊗ ukj
,

one can lift it to a morphism of algebras Δ : k[uij |1 ≤ i ,j ≤ n] → H ⊗ H doing the same on

generators. We need to check that Δ(I) ⊆ I ⊗ k[uij |1 ≤ i ,j ≤ n] + k[uij |1 ≤ i ,j ≤ n] ⊗ I. Indeed,

Δ(uijuik ± δj ,kuij ) =
n∑

p,q=1

uipuiq ⊗ upjuqk ±
n∑

p=1

δj ,kuip ⊗ upj

=
n∑

p,q=1

uipuiq ⊗ upjuqk ±
n∑

p,q=1

δp,quip ⊗ upjuqk

+
n∑

p,q=1

δp,quip ⊗ upjuqk ±
n∑

p=1

δj ,kuip ⊗ upj

=
n∑

p,q=1

(uipuiq ± δp,quip) ⊗ upjuqk +
n∑

p=1

uip ⊗ (upjupk ± δj ,kupj ),

analogous for Δ(uijukj ± δi ,kuij ). Therefore, there is a well defined algebra map Δ : H → H ⊗ H

defined on generators as Δuij =
∑n

k=1 uik ⊗ ukj .

Also, one can define a function

S̃ : {uij }1≤i ,j≤n −→ H = Hop

uij 7−→ uji
,

also, lifting to an algebra morphism S : k[uij |1 ≤ i ,j ≤ n] → Hop. It is easy to see that S(I) ⊆ I,

then we have a well defined algebra map S : H → H = Hop.
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Let us verify that (H,Δ, S) defined as above is indeed a quantum inverse semigroup. First

note that

IdH ∗ S(uij ) =
n∑

k=1

uikS(ukj ) =
n∑

k=1

uikujk = δi ,j

n∑

k=1

uik

and

S ∗ IdH (uij ) =
n∑

k=1

S(uik )ukj =
n∑

k=1

ukiukj = δi ,j

n∑

k=1

ukj .

Then, we have

IdH ∗ S ∗ IdH (ui1j1 . . . uiN jN ) =
n∑

k1,l1=1

. . .

n∑

kN ,lN=1

ui1k1 . . . uiNkN S(uk1l1 . . . ukN lN )ul1j1 . . . ulN jN

=
n∑

k1,l1=1

. . .

n∑

kN ,lN=1

ui1k1 . . . uiNkN ulNkN . . . ul1k1ul1j1 . . . ulN jN

=
n∑

k1,l1=1

. . .

n∑

kN ,lN=1

ui1k1 . . . uiNkNδi1,l1 . . . δiN ,lN ul1j1 . . . ulN jN

=
n∑

k1=1

. . .

n∑

kN=1

ui1k1 . . . uiNkN ui1j1 . . . uiN jN

=
n∑

k1=1

. . .

n∑

kN=1

δj1k1 . . . δjNkN ui1j1 . . . uiN jN

= ui1j1 . . . uiN jN .

leading to IdH ∗S ∗ IdH = IdH and, analogously, S ∗ IdH ∗S = S. The elements of the form I ∗S(h),

naturally commute wih elements of the form S ∗ IdH (k ) due to the commutativity of H, satisfying

(QISG4). Therefore (H,Δ, S) is a quantum inverse semigroup.

Moreover, this quantum inverse semigroup is unital and counital: first, it is unital because

H is a unital algebra and, by construction, S(1H ) = 1H . Also, it is counital because one can define

a function ε̃ : {uij }1≤i ,j≤n → k given by ε̃(uij ) = δi ,j , this can be lifted to an algebra morphism

ε : k[uij |1 ≤ i ,j ≤ n] → k doing the same. It is straightforward to verify that ε(I) = 0, therefore,

there exists an algebra morphism ε : H → H, making, in particular, H to be a commutative

bialgebra. It is also easy to check that S ◦ ε = ε. Note that H is an example of a quantum inverse

semigroup which is not a Hopf algebra, neither a weak Hopf algebra, nor an inverse semigroup

algebra.

3.2.1 Partial representations

Definition 3.2.7 Let H be a Hopf k-algebra, and let B be a unital k-algebra. A partial represen-

tation of H in B is a linear map π : H → B such that

(PR1) π(1H ) = 1B,

(PR2) π(h)π(k(1))π(S(k(2))) = π(hk(1))π(S(k(2))), for every h,k ∈ H.

(PR3) π(h(1))π(S(h(2)))π(k ) = π(h(1))π(S(h(2))k ), for every h,k ∈ H.

(PR4) π(h)π(S(k(1)))π(k(2)) = π(hS(k(1)))π(k(2)), for every h,k ∈ H.
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(PR5) π(S(h(1)))π(h(2))π(k ) = π(S(h(1)))π(h(2)k ), for every h,k ∈ H.

Definition 3.2.8 (ALVES; BATISTA; VERCRUYSSE, 2015) Let H be a Hopf algebra and let

T (H) be the tensor algebra of the vector space H. The partial Hopf algebra Hpar is the quotient

of T (H) by the ideal I generated by elements of the form

(1) 1H ± 1T (H);

(2) h ⊗ k(1) ⊗ S(k(2)) ± hk(1) ⊗ S(k(2)), for all h,k ∈ H;

(3) h(1) ⊗ S(h(2)) ⊗ k ± h(1) ⊗ S(h(2))k, for all h,k ∈ H;

(4) h ⊗ S(k(1)) ⊗ k(2) ± hS(k(1)) ⊗ k(2), for all h,k ∈ H;

(5) S(h(1)) ⊗ h(2) ⊗ k ± S(h(1)) ⊗ h(2)k, for all h,k ∈ H.

Denoting the class of h ∈ H in Hpar by [h], it is easy to see that the map

[ ] : H → Hpar

h 7→ [h]

is a partial representation of the Hopf algebra H on Hpar .

The partial Hopf algebra Hpar has the following universal property: for every partial

representation π : H → B, there is a unique morphism of algebras π : Hpar → B such that

π = π◦ [ ]. In (ALVES; BATISTA; VERCRUYSSE, 2015), it was shown that Hpar has the structure

of a Hopf algebroid over the base algebra

Apar (H) = ⟨εh = [h(1)][S(h(2))] | h ∈ H⟩.

For H being a cocommutative Hopf algebra, things become much simpler. For example, in order

to verify whether a linear map π : H → B is a partial representation, one needs only to check

axioms (PR1) (PR2) and (PR5). In this case, the following result is valid for the universal algebra

Hpar .

Theorem 3.2.9 Let H be a cocommutative Hopf algebra over a field k. Then the partial Hopf

algebra Hpar has the structure of a unital quantum inverse semigroup.

Proof. First, one needs to define a comultiplication Δ : Hpar → Hpar ⊗Hpar which is multiplicative.

For this, define the linear map

δ : H → Hpar ⊗ Hpar

h 7→ [h(1)] ⊗ [h(2)]
.

One can prove that the map δ is a partial representation of H. For example, let us verify axiom

(PR2):

δ(h)δ(k(1))δ(S(k(2))) = [h(1)][k(1)][S(k(4))] ⊗ [h(2)][k(2)][S(k(3))]

= [h(1)][k(1)][S(k(4))] ⊗ [h(2)k(2)][S(k(3))]

= [h(1)][k(1)][S(k(2))] ⊗ [h(2)k(3)][S(k(4))]

= [h(1)k(1)][S(k(2))] ⊗ [h(2)k(3)][S(k(4))]

= [h(1)k(1)][S(k(4))] ⊗ [h(2)k(2)][S(k(3))]

= δ(hk(1))δ(S(k(2))).
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Therefore, there exists a unique algebra map Δ : Hpar → Hpar ⊗ Hpar given by

Δ([h1] · · · [hn]) = [h1
(1)] · · · [h

n
(1)] ⊗ [h1

(2)] · · · [h
n
(2)].

In order to define the pseudo antipode, consider the linear map

S̃ : H → Hop
par

h 7→ [S(h)]
.

For every h,k ∈ H, we have

S̃(h) ·op S̃(k(1)) ·op S̃(S(k(2))) = [S(h)] ·op [S(k(1))] ·op [S(S(k(2)))]

= [S(S(k )(1))][S(k )(2)][S(h)]

= [S(S(k )(1))][S(k )(2)S(h)]

= [S(S(k(2)))][S(hk(1))]

= [S(hk(1))] ·op [S(S(k(2)))]

= S̃(hk(1)) ·op S̃(S(k(2))),

and the other axioms of partial representations are easily verified in the same way. Therefore

S̃ is a partial representation of H in Hop
par , inducing a morphism of algebras S : Hpar → Hop

par , or

equivalently, an antimorphism of algebras S : Hpar → Hpar given by

S([h1] · · · [hn]) = [S(hn)] · · · [S(h1)].

In order to verify the identities IdHpar ∗ S ∗ IdHpar = IdHpar and S ∗ IdHpar ∗ S = S, first note that, for

any h,k ∈ H

[h] εk = [h][k(1)][S(k(2))] = [hk(1)][S(k(2))]

= [h(1)k(1)][S(h(2)k(2))][h(3)k(3)][S(k(4))]

= [h(1)k(1)][S(h(2)k(2))][h(3)k(3)S(k(4))]

= [h(1)k(1)][S(h(2)k(2))][h(3)]

= εh(1)k [h(2)]. (7)

This implies, in particular, that the elements εh do commute when H is cocommutative (ALVES;

BATISTA; VERCRUYSSE, 2015). Indeed

εhεk = [h(1)][S(h(2))] εk

= [h(1)]εS(h(3))k [S(h(2))]

= εh(1)S(h(4))k [h(2)][S(h(3))]

= εh(1)S(h(2))k [h(3)][S(h(4))]

= εk [h(1)][S(h(2))]

= εkεh.

Let us prove the identity IdHpar ∗ S ∗ IdHpar ([h
1] · · · [hn]) = [h1] · · · [hn] by induction on n ≥ 1. For

n = 1, we have

IdHpar ∗ S ∗ IdHpar ([h]) = [h(1)][S(h(2))][h(3)] = [h(1)S(h(2))][h(3)] = [h].
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Suppose valid for n, then

IdHpar ∗ S ∗ IdHpar ([h
1] · · · [hn+1]) = [h1

(1)] · · · [h
n+1
(1) ][S(hn+1

(2) )] · · · [S(h1
(2))][h

1
(3)] · · · [h

n+1
(3) ]

= [h1
(1)] · · · [h

n
(1)]εhn+1

(1)
[S(hn

(2))] · · · [S(h1
(2))][h

1
(3)] · · · [h

n
(3)][h

n+1
(3) ]

(∗)
= εh1

(1)···h
n
(1)h

n+1
(1)

[h1
(2)] · · · [h

n
(2)][S(hn

(3))] · · · [S(h1
(3))][h

1
(4)] · · · [h

n
(4)][h

n+1
(3) ]

= εh1
(1)···h

n
(1)h

n+1
(1)

[h1
(2)] · · · [h

n
(2)][h

n+1
(2) ]

= [h1] · · · [hn]εhn+1
(1)

[hn+1
(2) ]

= [h1] · · · [hn][hn+1
(1) ][S(hn+1

(2) )][hn+1
(3) ]

= [h1] · · · [hn+1]

where (∗) comes from the expression (7). For the identity S∗ IdHpar ∗S = S, consider [h1] · · · [hn] ∈

Hpar and use the fact that S is involutive, then

S ∗ IdHpar ∗ S([h1] · · · [hn])

= [S(hn
(1))] · · · [S(h1

(1))][h
1
(2)] · · · [h

n
(2)][S(hn

(3))] · · · [S(h1
(3))]

= [S(hn
(3))] · · · [S(h1

(3))][S(S(h1
(2)))] · · · [S(S(hn

(2)))][S(hn
(1))] · · · [S(h1

(1))]

= [S(hn)(1)] · · · [S(h1)(1)][S(S(h1)(2))] · · · [S(S(hn)(2))][S(hn)(3)] · · · [S(h1)(3)]

= [S(hn)] · · · [S(h1)]

= S([h1] · · · [hn]).

Finally, in order to verify Axiom (QISG4), note that

IHpar ∗ S([h1] · · · [hn]) = [h1
(1)] · · · [h

n
(1)][S(hn

(2))] · · · [S(h1
(2))]

= [h1
(1)] · · · [h

n±1
(1) ]εhn [S(hn±1

(2) )] · · · [S(h1
(2))]

= εh1
(1)···h

n±1
(1) hn [h1

(2)] · · · [h
n±1
(2) ][S(hn±1

(3) )] · · · [S(h1
(3))]

= εh1
(1)···h

n±1
(1) hn [h1

(2)] · · · [h
n±2
(2) ]εhn±1

(2)
[S(hn±2

(3) )] · · · [S(h1
(3))]

= εh1
(1)···h

n±1
(1) hnεh1

(2)···h
n±2
(2) hn±1

(2)
[h1

(3)] · · · [h
n±2
(3) ][S(hn±2

(4) )] · · · [S(h1
(4))]

...

= εh1
(1)···h

n±1
(1) hnεh1

(2)···h
n±2
(2) hn±1

(2)
· · · εh1

(n)
,

while, on the other hand,

S ∗ IHpar ([h
1] · · · [hn]) = [S(hn

(1))] · · · [S(h1
(1))][h

1
(2)] · · · [h

n
(2)]

= [S(hn
(2))] · · · [S(h1

(2))][S(S(h1
(1)))] · · · [S(S(hn

(1)))]

= [S(hn)(1)] · · · [S(h1)(1)][S(S(h1)(2))] · · · [S(S(hn)(2))]

= εS(hn)(1)···S(h2)(1)S(h1)εS(hn)(2)···S(h2)(2)
· · · εS(hn)(n)

= εS(hn
(n))···S(h2

(n))S(h1)εS(hn
(n±1))···S(h2

(n±1))
· · · εS(hn

(1))
.

As both expressions can be written in terms of combinations of products of elements εx , for

x ∈ H, then they commute among themselves. Therefore, for a cocommutative Hopf algebra H,

the universal Hopf algebra Hpar is a quantum inverse semigroup. 2
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3.2.2 Hopf Categories

Hopf categories were introduced in (BATISTA; CAENEPEEL; VERCRUYSSE, 2016) in

the context of enriched categories over a strict braided monoidal category V. In this section we

will consider the case of V = KM, the symmetric monoidal category of left K-modules over a

commutative ring K.

Let Coalg(K) be the category of K-coalgebras. This is a monoidal category with respect

to the tensor product of coalgebras, with unit given by the trivial coalgebra K. Hence we may

consider enriched categories over Coalg(K), or Coalg(K)-categories.

Unraveling the definition, a (small) Coalg(K)-category H over the set X consists of a

family {Hx ,y }x ,y∈X of K-coalgebras, with structure morphisms

Δx ,y : Hx ,y → Hx ,y ⊗ Hx ,y , εx ,y : Hx ,y → K, (8)

plus K-linear mappings μx ,y ,z : Hx ,y ⊗ Hy ,z → Hx ,z and ηx : K → Hx ,x such that

μx ,y ,t ◦ (Hx ,y ⊗ μy ,z,t ) = μx ,z,t ◦ (μx ,y ,z ⊗ Hz,t ); (9)

μx ,x ,y ◦ (ηx ⊗ Hx ,y ) = Hx ,y = μx ,y ,y ◦ (Hx ,y ⊗ ηy ). (10)

Moreover, the coalgebra structure and the multiplications μx ,y and unit mappings ηx are required

to be compatible in the sense of the following equalities: first, Δ is compatible with multiplications

and unit mappings by

Δx ,z ◦ μx ,y ,z = (μx ,y ,z ⊗ μx ,y ,z) ◦ (Hx ,y ⊗ τHx ,y ,Hy ,z ⊗ Hy ,z) ◦ (Δx ,y ⊗ Δy ,z), (11)

Δx ,x ◦ ηx = ηx ⊗ ηx , (12)

where τHx ,y ,Hy ,z is the twist map

τHx ,y ,Hy ,z : Hx ,y ⊗ Hy ,z → Hy ,z ⊗ Hx ,y , h ⊗ k 7→ k ⊗ h;

the equalities respective to the counit mappings are

εx ,y ⊗ εy ,z = εx ,z ◦ μx ,y ,z , (13)

εx ,x ◦ ηx = K. (14)

So let H be a Coalg(K)-category and let

alg(H) = ⊕x ,y∈X Hx ,y .

Since alg(H) is a direct sum of coalgebras it has a canonical coalgebra structure as follows,

where ªax ,y º indicates an element of the component Hx ,y :

• Δ : alg(H) → alg(H) ⊗ alg(H) defined by Δ(ax ,y ) = Δx ,y (ax ,y );

• ε : alg(H) → K defined by ε(ax ,y ) = εx ,y (ax ,y ).

We also can define a product on alg(H) by

• μ : alg(H) ⊗ alg(H) → alg(H),
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μ(ax ,y ,by ,z) = μx ,y ,z(ax ,y ,by ,z)

μ(ax ,y , bw ,z) = 0 whenever y ̸= w .

The triple alg(H) = (alg(H), μ,Δ) satisfies conditions (QISG1) and (QISG2). In fact, it follows

from equalitities (9)-(14) that Δ and ε are multiplicative, and also that alg(H) is an algebra, which

is unital if and only if X is finite. Moreover, in any case alg(H) is at least an idempotent ring since

it has a system of local units: the idempotents ηx (1) commute amongst themselves and the set

of finite sums ηx1(1) + · · · + ηxn (1), where n ≥ 1 and the elements x1,x2, · · · , xn are distinct, is a

system of local units for alg(H).

A Hopf K-category is a Coalg(K)-category H with an antipode which, in this context, is

a family of K-linear maps Sx ,y : Hx ,y → Hy ,x such that

μx ,y ,x ◦ (Hx ,y ⊗ Sx ,y ) ◦ Δx ,y = ηx ◦ εx ,y : Hx ,y → Hx ,x ; (15)

μy ,x ,y ◦ (Sx ,y ⊗ Hx ,y ) ◦ Δx ,y = ηy ◦ εx ,y : Hx ,y → Hy ,y , (16)

for all x ,y ∈ X . This family induces a K-linear map S : alg(H) → alg(H) which satisfies, in

Sweedler notation, the equalities

(hx ,y )(1)S((hx ,y )(2)) = εx ,y (hx ,y )ηy (1), (17)

S((hx ,y )(1))(hx ,y )(2) = εx ,y (hx ,y )ηx (1). (18)

Let S : alg(H) → alg(H) be the K-linear map induced by the family (Sx ,y )x ,y∈X . Then

(Id ∗ S ∗ Id)(hx ,y ) = (hx ,y )(1)S((hx ,y )(2))(hx ,y )(3)

= εx ,y ((hx ,y )(1))ηy (1)(hx ,y )(2) = hx ,y

and

(S ∗ Id ∗ S)(hx ,y ) = S((hx ,y )(1))(hx ,y )(2)S((hx ,y )(3))

= εx ,y ((hx ,y )(1))ηx (1)(hx ,y )(2) = hx ,y

In (BATISTA; CAENEPEEL; VERCRUYSSE, 2016, Lemma 3.6) it is proved that

Sx ,z ◦ μx ,y ,z = μz,y ,x ◦ (Sy ,z ⊗ Sx ,y ) ◦ τHx ,y ,Hy ,z (19)

Δy ,x ◦ Sx ,y = τHy ,x ,Hy ,x ◦ (Sx ,y ⊗ Sx ,y ) ◦ Δx ,y . (20)

Hence for hx ,y ,ky ,z ∈ alg(H) we have

S(hx ,yky ,z) = S(ky ,z)S(hx ,y ),

S(hx ,y )(1) ⊗ S(hx ,y )(2) = S((hx ,y )(2)) ⊗ S((hx ,y )(1)),

which implies that

S(hk ) = S(k )S(h), S(h(1)) ⊗ S(h(2)) = S(h(2)) ⊗ S(h(1))

for all h,k ∈ alg(H).
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Finally,

(hx ,y )(1)S((hx ,y )(2))S((kz,w )(1))(kz,w )(2)

= εx ,y (hx ,y )εz,w (kz,w )ηx (1)ηw (1)

= εx ,y (hx ,y )εz,w (kz,w )ηw (1)ηx (1)

= S((kz,w )(1))(kz,w )(2)(hx ,y )(1)S((hx ,y )(2)),

and it follows that alg(H) is a counital quantum inverse semigroup.

In ((BATISTA; CAENEPEEL; VERCRUYSSE, 2016), Prop 7.1) it is proved that, for the

particular case of a Hopf category H with a finite set of objects, the algebra alg(H) is a weak Hopf

algebra, which is also a quantum inverse semigroup. One can easily verify that the structure

of quantum inverse semigroup of alg(H) obtained here coincides, in the case of finite Hopf

categories, with the structure of quantum inverse semigroup for weak Hopf algebras described

in Example 3.2.5.
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4 GENERALIZED BISECTIONS ON HOPF ALGEBROIDS

In chapter 2, we redefined local bisections for any groupoid (G,s,t) as a pair (u,X ) with

u : X ⊆ G(0) → G satisfying s ◦ u = IdX and t ◦ u : X → t ◦ u(X ) being a bijection. Then for

any groupoid G, the set of all local bisections of G is an inverse semigroup. In this chapter, we

dualize this definition for commutative Hopf algebroids over a commutative base algebra and

create the local biretractions. Lastly, we extend this definition for not necessarily commutative

Hopf algebroids over commutative algebras under a special condition.

4.1 BIRETRACTIONS

Here we introduce the notion of a local biretraction of a Hopf algebroid, as a dual

version of local bissections in groupoids. First we focus on commutative Hopf algebroids over a

commutative base algebra and then we find a morphism between the bisections of a groupoid

and the biretractions of the Hopf algebroid of its representative functions.

Definition 4.1.1 Let H be a commutative Hopf algebroid over a commutative algebra A. A local

biretraction in H is a linear and multiplicative map α : H → A such that

(BRT1) α ◦ s(a) = aα(1H) for every a ∈ A.

(BRT2) There exists eα ∈ A such that α ◦ t(eα) = α(1H) and

α ◦ t |A eα : A eα −→ Aα(1H)

is a bijection.

A local biretraction α is global if α(1H) = 1A. Denote the set of local biretractions of H by

Brt(H, A) and the set of global biretractions of H by GlBrt(H, A).

Remark 4.1.2 Observe that

(1) For a local biretraction α : H → A, α(1H) is an idempotent in A, since α is multiplicative.

Moreover, for every h ∈ H and a ∈ A,

α(h) = α(h)α(1H) ∈ Aα(1H) and aα(1H) = α ◦ s(a) ∈ α(H).

Hence the image α(H) coincides with the ideal Aα(1H) ⊴ A. Also, note that α(1H) is the

unity of the ideal Aα(1H).

(2) The element eα is idempotent:

α ◦ t(eα) = α(1H) = α(1H)α(1H) = α ◦ t(eα)α ◦ t(eα) = α ◦ t(eα eα).

Since α ◦ t |A eα is bijective and eα eα ∈ A eα, we have that

eα eα = eα.
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(3) Suppose that there exist eα and f α in A such that α ◦ t(eα) = α(1H) = α ◦ t(f α) and the

maps

α ◦ t |A eα : A eα −→ Aα(1H)

and

α ◦ t |Af α : Af α −→ Aα(1H)

are both bijections. Then,

α ◦ t (eαf α) = α ◦ t (eα)α ◦ t (f α) = α(1H).

Since the element eαf α is in both ideals A eα and Af α, we obtain

eα = eαf α = f α.

Therefore, the element eα from (BRT2) is unique.

(4) For any local biretraction α : H → A and a ∈ A,

α ◦ t(a) = α ◦ t(a)α(1H) = α ◦ t(a)α ◦ t(eα) = α ◦ t(a eα).

(5) For a local biretraction α : H → A, the map α ◦ t |A eα : A eα −→ Aα(1H) is an element of

the inverse semigroup I(A) of the isomorphisms between ideals of A.

Remark 4.1.3 For a commutative Hopf algebroid over an integral domain A, we only have

global biretractions, since the only idempotent element in A is 1A.

As we have seen before, the set of local bisections of a groupoid G is an inverse semi-

group. Let us explore deeply the algebraic structure of the set of biretractions of a commutative

Hopf algebroid.

Theorem 4.1.4 Let (H, s, t ,Δ, ε, S) be a commutative Hopf algebroid over a commutative alge-

bra A. Then the set Brt(H, A) of local biretractions of H is a regular monoid with the convolution

product

(α ∗ β)(h) = β(α(h(1)) ▷ h(2)) = β ◦ t ◦ α(h(1))β(h(2))

for every α,β ∈ Brt(H, A) and any h ∈ H.

Proof. For every α,β ∈ Brt(H, A), α ∗ β is a local biretraction, because α ∗ β is multiplicative and

for each a ∈ A,

(α ∗ β) ◦ s(a) = β ◦ t ◦ α(1H)β(s(a))

= aβ ◦ t ◦ α(1H)β(1H)

= a (α ∗ β)(1H),



Chapter 4. Generalized bisections on Hopf algebroids 55

hence α ∗ β satisfies (BRT1). Also, since t represents the left action, we can use the fact that

Δ(t(a)) = t(a) ⊗A 1H for every a ∈ A, which implies that (α ∗ β) ◦ t = β ◦ t ◦ α ◦ t and

(α ∗ β) ◦ t
(

(α ◦ t)±1
(

eβ α(1H)
))

= β ◦ t ◦ α ◦ t ◦ (α ◦ t)±1
(

eβ α(1H)
)

= β ◦ t
(
α(1H) eβ

)

= β ◦ t ◦ α(1H)β(1H)

= (α ∗ β)(1H).

Here, we are simplifying the notation by using (α ◦ t)±1 = ((α ◦ t)|A eα)±1 . In order to prove that

α ∗ β satisfies (BRT2), we will prove that the map

(α ∗ β) ◦ t |A (α◦t)±1(eβ α(1H)) : A (α ◦ t)±1
(

eβ α(1H)
)
−→ A (α ∗ β)(1H)

is a bijection, leading to α ∗ β being a biretraction with eα∗β = (α ◦ t)±1
(
eβ α(1H)

)
. Indeed,

• (α ∗ β) ◦ t |A (α ◦ t)±1(eβ α(1H)) : A (α ◦ t)±1
(
eβ α(1H)

)
−→ A (α ∗ β)(1H) is surjective: for

each a ∈ A,

(α ∗ β) ◦ t
(

(α ◦ t)±1
(

(β ◦ t)±1(aβ(1H))α(1H)
)

(α ◦ t)±1
(

eβ α(1H)
))

= β ◦ t ◦ α ◦ t ◦ (α ◦ t)±1
(

(β ◦ t)±1(aβ(1H)) eβ α(1H)
)

= β ◦ t
(

(β ◦ t)±1(aβ(1H)) eβ α(1H)
)

= β ◦ t ◦ (β ◦ t)±1
(

aβ ◦ t
(
α(1H) eβ

)
β(1H)

)

= aβ ◦ t
(
α(1H) eβ

)

= aβ ◦ t ◦ α(1H)β(1H)

= a (α ∗ β)(1H).

• (α ∗ β) ◦ t |A (α◦t)±1(eβ α(1H)) is injective: suppose that, for some a ∈ A,

(α ∗ β) ◦ t
(

a (α ◦ t)±1
(

eβ α(1H)
))

= 0.

Since α ◦ t |A eα and β ◦ t |A eβ are injective,

0 = β ◦ t ◦ α ◦ t
(

a (α ◦ t)±1
(

eβ α(1H)
))

= β ◦ t
(
α ◦ t(a) eβ

)

⇒ 0 = α ◦ t(a) eβ = α ◦ t
(

a (α ◦ t)±1
(

eβ α(1H)
)

eα
)

⇒ 0 = a (α ◦ t)±1
(

eβ α(1H)
)

eα = a (α ◦ t)±1
(

eβ α(1H)
)

.

This convolution product of biretractions of H is associative. Indeed, consider α,β, γ ∈

Brt(H, A), then for any h ∈ H,

((α ∗ β) ∗ γ)(h) = γ ◦ t ◦ (α ∗ β)(h(1)) γ(h(2))

= γ ◦ t(β ◦ t ◦ α(h(1))β(h(2))) γ(h(3))

= γ ◦ t ◦ β ◦ t ◦ α(h(1)) γ ◦ t ◦ β(h(2)))γ(h(3))

= (β ∗ γ) ◦ t ◦ α(h(1)) (β ∗ γ)(h(2))

= (α ∗ (β ∗ γ))(h).
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The counit ε : H → A is a global biretraction, because it is linear, multiplicative, ε(1H) =

1A and ε ◦ t = ε ◦ s = IdA. The counit ε is the unit for the convolution product. Indeed, for any

local biretraction α and any h ∈ H, we have

ε ∗ α(h) = α ◦ t ◦ ε(h(1))α(h(2))

= α
(
t(ε(h(1))) h(2)

)

= α(h),

and

α ∗ ε(h) = ε ◦ t ◦ α(h(1)) ε(h(2))

= α(h(1)) ε(h(2))

= α(h(1))α ◦ s ◦ ε(h(2))

= α
(
h(1) s(ε(h(2)))

)

= α(h).

Therefore, the set Brt(H, A) is a monoid relative to the above defined convolution product.

Now, we have to define a pseudo-inverse for any biretraction α ∈ Brt(H, A). Define

α∗ = (α ◦ t)±1 ◦ α ◦ S,

where we use (α ◦ t)±1 = (α ◦ t |A eα)±1. Since α,t and S are multiplicative, we have that α∗ is

multiplicative and observe that

α∗(1H) = (α ◦ t)±1 ◦ α ◦ S(1H) = (α ◦ t)±1 ◦ α(1H) = eα.

So, α∗ is a biretraction, because

α∗ ◦ s(a) = (α ◦ t)±1 ◦ α ◦ S ◦ s(a) = (α ◦ t)±1 ◦ α ◦ t(a) = a eα = aα∗(1H)

and

α∗ ◦ t(a) = (α ◦ t)±1 ◦ α ◦ S ◦ t(a) = (α ◦ t)±1 ◦ α ◦ s(a) = (α ◦ t)±1(aα(1H))

for every a ∈ A, which implies that α∗ ◦ t |A α(1H) : A α(1H) → A eα is a bijection with eα∗

= α(1H).

Finally, we need to prove that every biretraction α : H → A satisfies α ∗ α∗ ∗ α = α and

α∗ ∗ α ∗ α∗ = α∗. Observe that for any h ∈ H,

(α ∗ α∗)(h) = α∗ ◦ t ◦ α(h(1))α
∗(h(2))

= (α ◦ t)±1 ◦ α ◦ S ◦ t ◦ α(h(1)) (α ◦ t)±1 ◦ α ◦ S(h(2)))

= (α ◦ t)±1 (α ◦ s ◦ α(h(1))α(S(h(2)))
)

= (α ◦ t)±1 (α(h(1))α(S(h(2)))
)

= (α ◦ t)±1 ◦ α(h(1)S(h(2)))

= (α ◦ t)±1 ◦ α ◦ t(ε(h))

= ε(h) eα (21)
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and

(α∗ ∗ α)(h) = α ◦ t ◦ α∗(h(1))α(h(2))

= α ◦ t ◦ (α ◦ t)±1 ◦ α ◦ S(h(1))α(h(2))

= α ◦ S(h(1))α(h(2))

= α(S(h(1)) h(2))

= α ◦ s ◦ ε(h)

= ε(h)α(1H) (22)

Then,

α ∗ α∗ ∗ α(h) = α ◦ t ◦ (α ∗ α∗)(h(1))α(h(2))

= α ◦ t(ε(h(1)) eα)α(h(2))

= α(t ◦ ε(h(1)) h(2))

= α(h) (23)

and

α∗ ∗ α ∗ α∗(h) = α∗ ◦ t ◦ (α∗ ∗ α)(h(1))α
∗(h(2))

= (α ◦ t)±1 ◦ α ◦ S ◦ t
(
ε(h(1))α(1H)

)
(α ◦ t)±1 ◦ α ◦ S(h(2))

= (α ◦ t)±1 ◦ α
(
s ◦ ε(h(1)) S(h(2))

)

= (α ◦ t)±1 ◦ α ◦ S
(
h(2) t ◦ ε(h(1))

)

= α∗(h). (24)

for every h ∈ H. Therefore, Brt(H, A) is a regular monoid. 2

Remark 4.1.5 We can not prove, in general, that Brt(H, A) is an inverse semigroup. Consider

an idempotent E ∈ Brt(H, A) and denote its associated idempotent in A by eE then, for any

a ∈ A,

E ◦ t(a) = (E ∗ E)(t(a)) = E ◦ t ◦ E(t(a)) E(1H)

= E ◦ t ◦ E ◦ t(a).

Then, E ◦ t : A → A is a linear and multiplicative map in A which is idempotent with respect to

the composition. Moreover, for every a ∈ A,

E ◦ t(E ◦ t(a) ± a E ◦ t(1A)) = E ◦ t ◦ E ◦ t(a) ± E ◦ t(a) E ◦ t ◦ E ◦ t(1A)

= E ◦ t(a) ± E ◦ t(a)

= 0,

which implies that E ◦ t(a) eE = a E(1H) eE . Thus for every idempotent E ,F ∈ Brt(H,A), we have

that

(E ∗ F )(h) eE eF = F ◦ t ◦ E(h(1)) F (h(2)) eE eF

= E(h(1)) F (1H) eF F (h(2)) eE

= E(h(1)) F (h(2)) eE eF
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(F ∗ E)(h) eE eF = E ◦ t ◦ F (h(1)) E(h(2)) eE eF

= F (h(1)) E(1H) eE F (h(2)) eF

= F (h(1)) E(h(2)) eE eF .

for every h ∈ H. Therefore, there is no a priori reason to suppose that the idempotents of

Brt(H,A) should commute in general.

Remark 4.1.6 Let α,β ∈ Brt(H, A). Then,

((α ∗ β) ◦ t |A eα)±1 =
(
α ◦ t |A eα∗β

)±1
◦
(
β ◦ t |A eβ

)±1 |A (α∗β)(1H) : A (α ∗ β)(1H) −→ A eα∗β,

or simplifying the notation as before,

((α ∗ β) ◦ t)±1 = (α ◦ t)±1 ◦ (β ◦ t)±1.

Indeed, we have for every a ∈ A,

(α ◦ t)±1 ◦ (β ◦ t)±1 ◦ (α ∗ β) ◦ t
(

a eα∗β
)

= (α ◦ t)±1 ◦ (β ◦ t)±1 ◦ β ◦ t ◦ α ◦ t
(

a (α ◦ t)±1
(

eβ α(1H)
))

= (α ◦ t)±1 ◦ (β ◦ t)±1 ◦ β ◦ t
(
α ◦ t

(
a (α ◦ t)±1

(
eβ α(1H)

))
eβ
)

= (α ◦ t)±1
(
α ◦ t

(
a (α ◦ t)±1

(
eβ α(1H)

))
eβ
)

= (α ◦ t)±1 ◦ (α ◦ t)
(

a (α ◦ t)±1
(

eβ α(1H)
))

= (α ◦ t)±1 ◦ (α ◦ t)
(

a (α ◦ t)±1
(

eβ α(1H)
)

eα
)

= a (α ◦ t)±1
(

eβ α(1H)
)

= a eα∗β

and

((α ∗ β) ◦ t) ◦ (α ◦ t)±1 ◦ (β ◦ t)±1 (a (α ∗ β)(1H))

= β ◦ t ◦ α ◦ t ◦ (α ◦ t)±1 ◦ (β ◦ t)±1 (aβ ◦ t ◦ α(1H)β(1H))

= β ◦ t ◦ α ◦ t ◦ (α ◦ t)±1 ◦ (β ◦ t)±1
(

aβ(1H)β ◦ t
(
α(1H) eβ

))

= β ◦ t ◦ α ◦ t ◦ (α ◦ t)±1
(

(β ◦ t)±1(aβ(1H)) eβ α(1H)
)

= β ◦ t
(

(β ◦ t)±1(aβ(1H))α(1H) eβ
)

= β ◦ t ◦ (β ◦ t)±1
(

aβ ◦ t
(
α(1H) eβ

)
β(1H)

)

= aβ ◦ t
(
α(1H) eβ

)

= a (α ∗ β)(1H).
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Remark 4.1.7 Observe that the pseudoinverse α∗ of a biretraction α ∈ Brt(H, A) satisfies

(α∗)∗ = α. Indeed, for any h ∈ H,

(α∗)∗(h) = (α∗ ◦ t)±1 ◦ α∗ ◦ S(h)

= α ◦ t ◦ (α ◦ t)±1 ◦ α ◦ S(S(h))

= α ◦ S2(h)

(∗)
= α(h),

where (∗) comes from Remark 2.2.4. Also, for any α,β ∈ Brt(H, A), we have that (α ∗ β)∗ =

β∗ ∗ α∗. Indeed, for every h ∈ H,

(α ∗ β)∗(h) = ((α ∗ β) ◦ t)±1 ◦ (α ∗ β) ◦ S(h)

= (α ◦ t)±1 ◦ (β ◦ t)±1 (β ◦ t ◦ α ◦ S(h(2))β ◦ S(h(1))
)

= (α ◦ t)±1 ◦ α ◦ S(h(2)) (α ◦ t)±1 ◦ (β ◦ t)±1 ◦ β ◦ S(h(1))

= α∗(h(2)) (α∗ ◦ t) ◦ (β ◦ t)±1 ◦ β ◦ S(h(1))

= α∗ ◦ t ◦ β∗(h(1))α
∗(h(2))

= (β∗ ∗ α∗)(h).

Consider now the free vector space generated by the biretractions of H and extend

linearly the convolution product to this space. Then, we have an algebra structure on the space

kBrt(H, A), henceforth denoted by B(H).

Theorem 4.1.8 Let H be a commutative Hopf algebroid over a commutative algebra A. Then

the algebra B(H), generated by the set of all biretractions of H with the convolution product

is a unital quantum inverse semigroup with a comultiplication Δ : B(H) → B(H) ⊗ B(H) and a

pseudo antipode S : B(H) → B(H) defined on the basis elements of Brt(H, A) as

Δ(α) = α⊗ α and S(α) = α∗ = (α ◦ t)±1 ◦ α ◦ S

and linearly extended to B(H).

Proof. As we have already proven in the last theorem, Brt(H, A) is a regular monoid, hence the

algebra B(H) is a unital algebra. For proving that the comultiplication is multiplicative with respect

to the convolution product, it is enough to check on the biretractions. Being α,β ∈ Brt(H, A),

Δ(α ∗ β) = (α ∗ β⊗ α ∗ β) = (α⊗ α)(β⊗ β) = Δ(α)Δ(β).

Hence B(H) satisfies (QISG1) and (QISG2).
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Again, to prove that S is antimultiplicative, it is enough to check on the biretractions.

Then for h ∈ H and α,β ∈ Brt(H, A), we have

S(α ∗ β)(h) = ((α ∗ β) ◦ t)±1 ◦ (α ∗ β) ◦ S(h)
(∗)
= ((α ∗ β) ◦ t)±1 (β ◦ t ◦ α ◦ S(h(2))β ◦ S(h(1))

)

(∗∗)
= (α ◦ t)±1 ◦ (β ◦ t)±1

(
β ◦ t ◦ α ◦ S(h(2))β ◦ S(h(1))β ◦ t

(
eβ
))

= (α ◦ t)±1 ◦ (β ◦ t)±1 ◦ β ◦ t
(
α ◦ S(h(2)) (β ◦ t)±1 ◦ β ◦ S(h(1)) eβ

)

= (α ◦ t)±1
(
α ◦ S(h(2)) eβ (β ◦ t)±1 ◦ β ◦ S(h(1))

)

= (α ◦ t)±1 ◦ α ◦ S(h(2)) (α ◦ t)±1 ◦ (β ◦ t)±1 (β ◦ S(h(1))α(1H)
)

= α∗(h(2)) (α ◦ t)±1 (β∗(h(1))α(1H)
)

,

where we used in (∗) the property (P6) of Hopf algebroids, and in (∗∗) the result ((α ∗ β) ◦ t)±1 =

(α ◦ t)±1 ◦ (β ◦ t)±1 from Remark 4.1.6. On the other hand,

(S(β) ∗ S(α)) (h) = (β∗ ∗ α∗)(h)

= α∗ ◦ t ◦ β∗(h(1))α
∗(h(2))

= (α ◦ t)±1 ◦ α ◦ S ◦ t ◦ β∗(h(1))α
∗(h(2))

= (α ◦ t)±1 ◦ α ◦ s ◦ β∗(h(1))α
∗(h(2))

= (α ◦ t)±1 (β∗(h(1))α(1H)
)
α∗(h(2)).

Consequently, S(α ∗ β) = S(β) ∗ S(α) and S is antimultiplicative. Hence H satisfies item

(i) of (QISG3) and the equations (23) and (24) imply the item (ii).

Finally, for checking axiom (QISG4), we use the equations (21) and (22). Then for

α,β ∈ Brt(H,A) and h ∈ H,

α(1) ∗ S(α(2)) ∗ S(β(1)) ∗ β(2)(h) = (α ∗ α∗) ∗ (β∗ ∗ β)(h)

= (β∗ ∗ β) ◦ t ◦ (α ∗ α∗)(h(1)) (β∗ ∗ β)(h(2))

= (β∗ ∗ β) ◦ t (ε(h(1)) eα) (β∗ ∗ β)(h(2))

= ε ◦ t
(
ε(h(1)) eα

)
ε(h(2))β(1H)

= ε(h(1)) eα
ε(h(2))β(1H)

= ε(h) eα β(1H)

and

S(β(1)) ∗ β(2) ∗ α(1) ∗ S(α(2))(h) = (β∗ ∗ β) ∗ (α ∗ α∗)(h)

= (α ∗ α∗) ◦ t ◦ (β∗ ∗ β)(h(1)) (α ∗ α∗)(h(2))

= (α ∗ α∗) ◦ t(ε(h(1))β(1H)) (α ∗ α∗)(h(2))

= ε ◦ t(ε(h(1))β(1H)) eα
ε(h(2))

= ε(h) eα β(1H).
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Therefore, B(H) is a quantum inverse semigroup. More than that, the algebra B(H) is a unital

quantum inverse semigroup. Indeed, for h ∈ H,

S(ε)(h) = (ε ◦ t)±1 ◦ ε ◦ S(h)

= ε ◦ S(h)

= ε ◦ S
(
t(ε(h(1))) h(2)

)

= ε
(
S(h(2)) s(ε(h(1)))

)

= ε
(
h(1)S(h(2))

)

= ε ◦ t ◦ ε(h)

= ε(h).

2

Example 4.1.9 Let H be a commutative Hopf algebra, considered as a Hopf algebroid over the

field k with s = t : k → H, k 7→ k · 1H . Since the only idempotent in k is 1, then all biretractions

are global and being α : H → k a k±linear and multiplicative map,

α ◦ s(k ) = α(k · 1H ) = k α(1H ) = k

for every k ∈ k. Therefore, the set of biretractions coincides with the group of algebra morphisms

between H and k, that is, the group G(H◦) of group-like elements of the finite dual Hopf algebra

H◦.

Example 4.1.10 Let A be a commutative Hopf algebra and consider the Hopf algebroid H =

A ⊗ A, from Example 2.2.5. Let M(A) be the set of multiplicative functions φ : A → A and

M(A) ×b E(A) = {(φ, e) ∈ M(A) × E(A) |φ|Ae : Ae −→ Aφ(e) is a bijection}.

Consider the equivalence relation

(φ, e) ∼ (ψ, f ) ⇔ e = f and φ|Ae = ψ|Ae.

Representing the class of an element (φ, e) ∈ M(A) ×b E(A) by [φ,e], then the biretrac-

tions of H are classified by the set

M(A) ⋉ E(A) :=
{

[φ,e] : (φ,e) ∈ M(A) ×b E(A)
}

,

which is a regular monoid with the multiplication

[φ,e] [ψ,f ] = [φ ◦ψ,ψ±1(eψ(f ))].

Indeed, the multiplication is well defined, because if [φ,e] = [φ′,e′] and [ψ,f ] = [ψ′,f ] then

e = e′, f = f ′, φ|A e = φ
′|A e, ψ|A f = ψ′|A f and

ψ′±1(eψ′(f )) = ψ′±1(eψ(f )) = ψ±1(eψ(f )),
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which implies that

φ
′ ◦ψ′

(
aψ′±1(e′ψ′(f ′))

)
= φ

′ ◦ψ′
(

aψ±1(eψ(f ))
)

= φ
′ ◦ψ

(
aψ±1(eψ(f ))

)

= φ
′ (ψ(a)ψ(f )e)

= φ (ψ(a)ψ(f )e)

= φ ◦ψ
(

aψ±1(eψ(f ))
)

for every a ∈ A. Hence [φ,e][ψ,f ] = [φ′,e′][ψ′,f ′].

Also, the function

φ ◦ψ|Aψ±1(eψ(f )) : Aψ±1(eψ(f )) −→ Aφ(eψ(f ))

is bijective, because

• φ ◦ψ|Aψ±1(eψ(f )) is injective:

0 = φ ◦ψ(aψ±1(eψ(f ))) = φ(ψ(a)ψ(f ) e)

⇒ 0 = ψ(aψ±1(eψ(f )) e = ψ(aψ±1(eψ(f )) = ψ(aψ±1(eψ(f ) f ))

⇒ 0 = aψ±1(eψ(f )) f = aψ±1(eψ(f )).

• φ ◦ψ(Aψ±1(eψ(f ))) = Aφ(eψ(f )) : given aφ(eψ(f )) ∈ Aφ(eψ(f )), we have

aφ(eψ(f )) = φ(φ±1(aφ(e))ψ(f ))

= φ ◦ψ ◦ψ±1(φ±1(aφ(e))ψ(f )

= φ ◦ψ
(
ψ±1(φ±1(aφ(e)))ψ±1(eψ(f ))

)
∈ φ ◦ψ(Aψ±1(eψ(f ))).

Now given the element [φ,e] ∈ M(A) ⋉ E(A), we have that

[φ,e][IdA,1A] = [φ ◦ IdA, (IdA)±1(e IdA(1A))] = [φ,e]

[IdA,1A][φ,e] = [IdA ◦ φ,φ±1(1A φ(e))] = [φ,e],

that is, [IdA,1A] is the unity element of M(A) ⋉ E(A). On the other hand, denotating by φ
±1 the

multiplicative map from A to A that takes every a ∈ A to φ
±1(aφ(e)), then φ

±1|Aφ(e) = (φ|A e)±1 :

Aφ(e) → Ae is a bijection and

[φ,e][φ±1,φ(e)][φ,e] = [IdA,φ(eφ
±1(φ(e)))][φ,e]

= [IdA,φ(e)][φ,e]

= [φ,φ±1(φ(e)φ(e))]

= [φ,e]

[φ±1,φ(e)][φ,e][φ±1,φ(e)] = [IdA,φ±1(φ(e)φ(e))][φ±1,φ(e)]

= [IdA,e][φ±1,φ(e)]

= [φ±1,φ(eφ
±1(φ(e)))]

= [φ±1,φ(e)].
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Therefore, every element [φ, e] has a pseudoinverse and M(A) ⋉ E(A) is a regular monoid.

Thus given the element [φ,e] ∈ M(A) ⋉ E(A), we can define the multiplicative map

α[φ,e] : A ⊗ A → A

a ⊗ b 7→ φ(ae) b,

which is clearly a biretraction with eα[φ,e] = e, because for every a ∈ A,

α[φ,e] ◦ s(a) = α[φ,e](1A ⊗ a) = aφ(e) = aα[φ,e](1A⊗A),

α[φ,e] ◦ t(e) = α[φ,e](e ⊗ 1A) = φ(e) = α[φ,e](1A⊗A)

and α[φ,e] ◦ t |Ae = φ|Ae is a bijection. The convolution product between two local biretractions

α[φ,e],α[ψ,f ] ∈ Brt(A ⊗ A,A) is given by

α[φ,e] ∗ α[ψ,f ](a ⊗ b) = α[ψ,f ] ◦ t ◦ α[φ,e](a ⊗ 1A)α[ψ,f ](1A ⊗ b)

= α[ψ,f ](φ(ae) ⊗ 1A)ψ(f ) b

= ψ(φ(ae)f )ψ(f ) b

= ψ(φ(ae)f ) b

= ψ ◦ φ(aφ
±1(fφ(e))) b

= α[ψ◦φ,φ±1(fφ(e))](a ⊗ b)

= α[ψ,f ] [φ,e](a ⊗ b)

for every a,b ∈ A. Then there is an isomorphism of semigroups

α : (M(A) ⋉ E(A))op → Brt(A ⊗ A,A)

[φ,e] 7→ α[φ,e]
,

whose inverse is
λ : Brt(A ⊗ A,A) → (M(A) ⋉ E(A))op

β 7→ [β ◦ t , eβ]
.

Indeed, for every [φ,e] ∈ M(A) ⋉ E(A),

λ ◦ α([φ,e]) = [α[φ,e] ◦ t , eα[φ,e] ] = [φ, e]

and for every β ∈ Brt(A ⊗ A,A) and a,b ∈ A,

α ◦ λ(β)(a ⊗ b) = α[β◦t ,eβ](a ⊗ b) = β ◦ t(a eβ) b = β ◦ t(a)β ◦ s(b) = β(a ⊗ 1A)β(1A ⊗ b) = β(a ⊗ b).

Moreover, this is an isomorphism of regular monoids:

• α maps unity to unity: for every a,b ∈ A,

α[IdA,1A](a ⊗ b) = IdA(a)b = ab = ε(a ⊗ b).

• α even maps the specific pseudoinverse [φ±1,φ(e)] of [φ,e] to the pseudoinverse

α∗
[φ,e]: for every a,b ∈ A,

α∗
[φ,e](a ⊗ b) = (α[φ,e] ◦ t)±1 ◦ α[φ,e] ◦ S(a ⊗ b)

= (α[φ,e] ◦ t)±1 ◦ α[φ,e](b ⊗ a)

= φ
±1(φ(be)a)

= φ
±1(aφ(e)) b

= α[φ±1,φ(e)](a ⊗ b).
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Example 4.1.11 Generalizing slightly the previous example, we can find the local biretractions

for the Hopf algebroid H = (A ⊗ A)[x ,x±1] from Example 2.2.6, with A commutative. Consider

the set

(M(A) ⋉ E(A)) ×′ A = {([φ,e],p) ∈ (M(A) ⋉ E(A)) × A | ∃p′ ∈ A : pp′ = φ(e)},

where M(A) ⋉ E(A) is the regular monoid from the previous example.

Observe that if p′,p′′ ∈ A both satisfy pp′ = φ(e) = pp′′, then

p′
φ(e) = p′pp′′ = p′′pp′ = p′′

φ(e). (25)

Now, considering the equivalence relation

([φ,e],p) ∼ ([ψ,f ],q) ⇔ [φ,e] = [ψ,f ] and pφ(e) = qφ(e)

and representing by [[φ,e],p] the class of equivalent elements by this relation, we have that

Brt(A ⊗ A)[x ,x±1] can be identified with

(M(A) ⋉ E(A)) ⋉ A :=
{

[[φ, e], p] : ([φ,e],p) ∈ (M(A) ⋉ E(A)) ×′ A
}

,

which is a regular monoid with the product

[[φ,e],p]
[
[ψ,f ],q

]
=
[
[φ,e][ψ, f ], pφ(q)

]
=
[
[φ ◦ψ,ψ±1(eψ(f ))], pφ(q)

]
,

unity [[IdA,1A],1A] and [[φ,e],p]∗ =
[
[φ,e]∗,φ±1(p′

φ(e))
]

.

Indeed, the product is well defined, because if we take [[φ,e],p] =
[
[φ′,e′],p

]
and

[
[ψ,f ],q

]
=
[
[ψ′,f ′],q

]
, then from the previous example,

ψ±1(eψ(f )) = ψ′±1(e′ψ′(f ′)) φ ◦ψ|Aψ±1(e ψ(f )) = φ
′ ◦ψ′|Aψ±1(e ψ(f )).

And p φ(e) = p φ(e) and q ψ(f ) = q ψ(f ) imply that

p φ(q)φ ◦ψ(ψ±1(eψ(f ))) = p φ(q)φ(eψ(f ))

= p φ(e)φ(q ψ(f ))

= p φ(e)φ(q ψ(f ))

= p φ(q ψ(f ) e)

= p φ
′(q)φ ◦ψ(ψ±1(eψ(f ))).

Also, we can take (pφ(q))′ = p′
φ(q′), because

pφ(q) p′
φ(q′) = pp′

φ(qq′)

= φ(e)φ(ψ(f ))

= φ ◦ψ(ψ±1(eψ(f ))).

Now, given [[φ,e],p] ∈ (M(A) ⋉ E(A)) ⋉ A, we have

[[φ,e],p] [[IdA,1A],1A] = [φ,e, p φ(1A)] = [[φ,e],p]

[[IdA,1A],1A] [[φ,e],p] = [[φ,e],1A IdA(p)] = [[φ,e],p]
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and

[φ,e],p]
[
[φ±1,φ(e)],φ±1(p′

φ(e))
]

[[φ,e],p] =
[
[IdA,φ(e)], p φ(φ±1(p′

φ(e)))
]

[[φ,e],p]

= [[IdA,φ(e)],φ(e)] [[φ,e],p]

= [[φ,e],φ(e) IdA(p)]

= [[φ,e],p]

[
[φ±1,φ(e)],φ±1(p′

φ(e))
]

[[φ,e],p]
[
[φ±1,φ(e)],φ±1(p′

φ(e))
]

=
[
[IdA,e],φ±1(p′

φ(e))φ±1(p)
] [

[φ±1,φ(e)],φ±1(p′
φ(e))

]

= [[IdA,e],e]
[
[φ±1,φ(e)],φ±1(p′

φ(e))
]

=
[
[φ±1,φ(e)], e IdA(φ±1(p′

φ(e)))
]

=
[
[φ±1,φ(e)],φ±1(p′

φ(e))
]

.

Therefore, (M(A) ⋉ E(A)) ⋉ A is a regular monoid.

Then, given [[φ,e],p] ∈ (M(A) ⋉ E(A)) ⋉ A, we can define for n ∈ N,

α[[φ,e],p] : (A ⊗ A)[x ,x±1] → A

(a ⊗ b)xn 7→ φ(ae)bpn

(a ⊗ b)x±n 7→ φ(ae)b(p′)n,

which is also well defined because of (25).

This map is a biretraction in H just like in the previous example and the convolution

product between two local biretractions α[[φ,e],p],α[[ψ,f ],q] is given by

α[[φ,e],p] ∗ α[[ψ,f ],q]((a ⊗ b)xn) = α[[ψ,f ],q] ◦ t ◦ α[[φ,e],p]((a ⊗ 1A)xn)α[[ψ,f ],q]((1A ⊗ b)xn)

= ψ(φ(ae)pnf )ψ(f )bqn

= ψ ◦ φ(aφ±1(f (φ(e))))bψ(pn)qn

= α[[ψ◦φ,φ±1(fφ(e))],qψ(p)]((a ⊗ b)xn)

= α[[ψ,f ],q][[φ,e],p]((a ⊗ b)xn)

and

α[[φ,e],p] ∗ α[[ψ,f ],q]((a ⊗ b)x±n) = α[[ψ,f ],q] ◦ t ◦ α[[φ,e],p]((a ⊗ 1A)x±n)α[[ψ,f ],q]((1A ⊗ b)x±n)

= ψ(φ(ae)(p′)nf )ψ(f )b(q′)n

= ψ ◦ φ(aφ±1(f (φ(e))))bψ((p′)n)(q′)n

(∗)
= α[[ψ◦φ,φ±1(fφ(e))],qψ(p)]((a ⊗ b)x±n)

= α[[ψ,f ],q][[φ,e],p]((a ⊗ b)x±n)

for every (a ⊗ b)xn ∈ (A ⊗ A)[x ,x±1], where (∗) comes from (qψ(p))′ = q′ψ(p′). Therefore, the

map
α : ((M(A) ⋉ E(A)) ⋉ A)op → Brt((A ⊗ A)[x ,x±1],A)

[[φ,e],p] 7→ α[[φ,e],p]



Chapter 4. Generalized bisections on Hopf algebroids 66

is an isomorphism of semigroups, whose inverse is given by

λ : Brt((A ⊗ A)[x ,x±1],A) → ((M(A) ⋉ E(A)) ⋉ A)op

β 7→ [[β ◦ t , eβ],β(x)]
.

Indeed, for every [[φ,e],p] ∈ (M(A) ⋉ E(A)) ⋉ A and every (a ⊗ b)xn ∈ (A ⊗ A)[x ,x±1],

α[[α◦t ,eα],α(x)]((a ⊗ b)xn) = α ◦ t (a eα) b α(xn)

= α ◦ t(a)α ◦ s(b)α(xn)

= α((a ⊗ b)xn)

and [α[[φ,e],p] ◦ t , eα[[φ,e],p] ,α[[φ,e],p](x)] = [[φ, e],φ(e)p] = [[φ, e], p].

Moreover, this is an isomorphism of regular monoids, because α maps unity to unity:

α[[IdA,1A],1A]((a ⊗ b)xn) = IdA(a) b (1A)n = ab = ε((a ⊗ b)xn).

α also maps the specific pseudoinverse
[
[φ±1,φ(e)],φ±1(p′

φ(e))
]

of [[φ,e],p] to the pseudoin-

verse α∗
[[φ,e],p]:

α∗
[[φ,e],p]((a ⊗ b)xn) = (α[[φ,e],p] ◦ t)±1 ◦ α[[φ,e],p] ◦ S((a ⊗ b)xn)

= (α[[φ,e],p] ◦ t)±1 ◦ α[[φ,e],p]((b ⊗ a)x±n)

= φ
±1(φ(be)a(p′)n)

= φ
±1(a(p′)n

φ(e)) b

= φ
±1(aφ(e))b

(
φ

±1(p′
φ(e))

)n

= α[[φ±1,φ(e)],φ±1(p′φ(e))]((a ⊗ b)xn)

for every (a ⊗ b)xn ∈ (A ⊗ A)[x ,x±1] and analogously for (a ⊗ b)x±n.

4.1.1 Biretractions and the representative functions of a discrete groupoid

Remember from the first chapter that from a groupoid G we can construct the Hopf

algebroid Rk(G) of its representative functions. This Hopf algebroid is commutative over the

commutative algebra A = Fun(G(0),k), thus we can study its biretractions.

Here we create local biretractions using the local bisections of the groupoid. From

Lemma 2.2.10 we have a multiplicative map ζ from Rk(G) to Fun(G,k) that we can adapt in

a natural way to create a morphism between the bisections B(G) of G and the biretractions

Brt(Rk(G), A) of Rk(G).

Proposition 4.1.12 Let G a groupoid, A = Fun(G(0),k) and H = Rk(G) the Hopf algebroid of

representative functions of G from the section 2.2.2.1. The map α : B(G) → Brt(Rk(G), A),

(u,X ) 7→ α(u,X ) given by

α(u,X )(φ⊗TE
p)x = φ(t ◦ u(x))

(
ρEu(x)(p(x))

)
〚x ∈ X 〛

for every φ⊗TE
p ∈ H and x ∈ G(0) is well defined and a morphism of regular monoids.
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Proof. First, α can be written as

α(u,X )(φ⊗TE
p)x = ζ(φ⊗TE

p)(u(x))〚x ∈ X 〛, (26)

with ζ from Lemma 2.2.10. Hence each α(u,X ) is well defined and multiplicative. Also, (BRT1) is

valid, because

(α(u,X ) ◦ s(a))x = α(u,X )(1A ⊗TI
a)x = a(x)〚x ∈ X 〛 = a(x)α(u,X )(1H)x

for every x ∈ G(0) and a ∈ A. To prove that α(u,X ) satisfies (BRT2) for every bisection (u,X ) of G,

remember that (u,X )∗ = (u,t ◦ u(X )), with u(t ◦ u(x)) = u(x)±1. Then,

α(u,X ) ◦ t
(
α(u,X )∗(1H)

)
x = α(u,X )∗(1H)t◦u(x)〚x ∈ X 〛

= 〚t ◦ u(x) ∈ t ◦ u(X )〛〚x ∈ X 〛

= 〚x ∈ X 〛

= α(u,X )(1H)x

and α(u,X )∗(1H) is our candidate for eα(u,X ) . Observe that the map

α(u,X ) ◦ t |Aα(u,X )∗ (1H) : Aα(u,X )∗(1H) −→ Aα(u,X )(1H)

is injective. Indeed, for any a ∈ A such that

α(u,X ) ◦ t
(
aα(u,X )∗(1H)

)
= 0,

we have that

a(t ◦ u(y ))〚y ∈ X 〛 = (aα(u,X )∗(1H))t◦u(y )〚y ∈ X 〛 = 0 (27)

for every y ∈ G(0). Then
(
aα(u,X )∗(1H)

)
x = a(x)〚x ∈ t ◦ u(X )〛

(∗)
= a(t ◦ u((t ◦ u)±1(x)))〚(t ◦ u)±1(x) ∈ X 〛〚x ∈ t ◦ u(X )〛

= 0

for every x ∈ G(0), where we used the equation (27) in (∗) with y = (t ◦ u)±1(x).

Now, observe that for every φ⊗TE
p ∈ H and x ∈ G(0),

α(u,X ) ◦ S(φ⊗TE
p)x = ζ ◦ S(φ⊗TE

p)(u(x)) 〚x ∈ X 〛

= ζ(φ⊗TE
p)((u(x))±1) 〚x ∈ X 〛

= φ(t((u(x))±1))
(
ρE(u(x))±1

(
p(s(u(x))±1

))
〚x ∈ X 〛

= φ(t ◦ u(t ◦ u(x)))
(
ρEu(t◦u(x)) (p(t ◦ u(x))

)
〚t ◦ u(x) ∈ t ◦ u(X )〛

= α(u,X )∗
(
φ⊗TE

p
)

t◦u(x) ,

which implies that α(u,X ) ◦ S = α(u,X )∗ . Thus α(u,X ) ◦ t |Aα(u,X )∗ (1H) : Aα(u,X )∗(1H) −→ Aα(u,X )(1H)

is surjective, because for every a ∈ A and every x ∈ G(0),
(
aα(u,X )(1H)

)
x =

(
α(u,X ) ◦ s(a)

)
x

=
(
α(u,X ) ◦ S ◦ t(a)

)
x

= α(u,X )∗(t(a))t◦u(x)

= α(u,X ) ◦ t
(
α(u,X )∗(t(a))

)
x .
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Therefore, eα(u,X ) = α(u,X )∗(1H) satisfies (BRT2) and α(u,X ) is a local biretraction.

Now, for (u,X ) and (v ,Y ) local bisections of G with (u,X ) · (v ,Y ) = (uv ,Z ),

α(u,X ) ∗ α(v ,Y )(φ⊗TE
p)x

=
n∑

i=1

α(v ,Y ) ◦ t ◦ α(u,X )(φ⊗TE
ei )x α(v ,Y )(e∗

i ⊗TE
p)x

=
n∑

i=1

α(v ,Y )(α(u,X )(φ⊗TE
ei ) ⊗TI

1A)x α(v ,Y )(e∗
i ⊗TE

p)x

=
n∑

i=1

α(u,X )(φ⊗TE
ei )t◦v (x)

(
ρIv (x)(1A(x))

)
〚x ∈ Y 〛α(v ,Y )(e∗

i ⊗TE
p)x

=
n∑

i=1

φ(t ◦ u ◦ t ◦ v (x))
(
ρEu◦t◦v (x)(ei (t ◦ v (x)))

)
e∗

i (t ◦ v (x))
(
ρEv (x)(p(x))

)
〚x ∈ Y 〛〚t ◦ v (x) ∈ X 〛

=
n∑

i=1

φ(t ◦ uv (x)) (e∗
i (ρεu) ei ) (t ◦ v (x))

(
ρEv (x)(p(x))

)
〚x ∈ Z 〛

= φ(t ◦ uv (x))ρEu◦t◦v (x)ρ
E
v (x)(p(x))〚x ∈ Z 〛

= φ(t ◦ uv (x))
(
ρEuv (x)(p(x))

)
〚x ∈ Z 〛

= α(uv ,Z )(φ⊗TE
p)x

for every φ⊗TE
p ∈ H and every x ∈ G(0). Consequently, α is a morphism of semigroups. Finally,

with i : G(0) → G being the inclusion map of the groupoid, we have that

α(i ,G(0))(φ⊗Tε
p)x = φ(t ◦ i(x))

(
ρεi(x)(p(x))

)
〚x ∈ G(0)〛

= φ(x)(p(x))

= ε(φ⊗Tε
p)x

and

α∗
(u,X )(φ⊗Tε

p)x = (α(u,X ) ◦ t)±1 ◦ α(u,X ) ◦ S(φ⊗Tε
p)x

= (α(u,X ) ◦ t)±1 ◦ α(u,X )∗
(
φ⊗TE

p
)

t◦u(x)

= α(u,X )∗
(
φ⊗TE

p
)

x

for every φ⊗TE
p ∈ H and x ∈ G(0). Therefore, α is a morphism of regular monoids.

2

The morphism between bisections and biretractions introduced above is not necessarily

a bijection. But we can prove it is an isomorphism for some specific groupoids:

Proposition 4.1.13 Let G be a finite and transitive groupoid, A = Fun(G(0),k) and H = Rk(G)

the Hopf algebroid of representative functions of G. Then there exists an isomorphism of regular

monoids between the bisections B(G) of G and the set of the biretractions Brt(H,A) of H.

Proof. The Proposition 4.1.12 gives a morphism between the regular monoids B(G) and Brt(H,A).

Hence it is enough to prove that when G is a finite and transitive groupoid, this morphism is

bijective.
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We saw on Remark 2.2.13 that the groupoid G can be seen as the groupoid G(0)×G×G(0),

where G is a group, and that H ∼= A ⊗k R(G) ⊗k A, with R(G) being the Hopf algebra of

representative functions of the group G. Recall from Example 2.2.12 the Hopf algebroid structure

of A ⊗k R(G) ⊗k A given by the expressions (5). Besides that, if (u,X ) ∈ B(G), we can write

u : X −→ G(0) × G × G(0)

x 7−→ (λ(x),φ(x),μ(x))

with λ,μ : X → G(0) and φ : X → G. By the definition of bisections, we have that x = s◦u(x) = μ(x)

for all x ∈ X and t ◦ u = λ : X → λ(X ) is a bijection. Thus u can be written as

u(x) = (λ(x),φ(x),x)

for all x ∈ X , with φ : X → G and λ : X → λ(X ) being a bijection. Now for a⊗f⊗b ∈ A⊗kR(G)⊗kA,

recall the function ξ and equation (4) from Example 2.2.12 that we can write

a ⊗ f ⊗ b = ξ
(
φb ⊗T

Ef
pa
)

.

Hence from expression (26), the morphism α from Proposition 4.1.12 can be written for G as

α(u,X )(a ⊗ f ⊗ b)x = ζ(φb ⊗T
Ef

pa) (λ(x),φ(x),x) 〚x ∈ X 〛

= a(λ(x)) f (φ(x)) b(x) 〚x ∈ X 〛

for every a ⊗ f ⊗ b ∈ A ⊗k R(G) ⊗k A and x ∈ G(0). So we want to prove that the morphism

α : B(G) → Brt(A⊗k R(G)⊗k A, A), (u,X ) 7→ α(u,X ) is bijective. From now on, we use H to denote

A ⊗k R(G) ⊗k A.

First, suppose that (u,X ) and (v ,Y ) are both bisections of G with

u(x) = (λ(x),φ(x),x) v (y ) = (λ′(y ),φ′(y ),y )

and α(u,X ) = α(v ,Y ). Then

〚x ∈ X 〛 = α(u,X )(1H)(x) = α(v ,Y )(1H)(x) = 〚x ∈ Y 〛,

which implies that X = Y . Also, for any x ∈ X ,

1 = δλ(x)(λ(x)) = α(u,X )(δλ(x) ⊗ 1R(G) ⊗ 1A)x = α(v ,Y )(δλ(x) ⊗ 1R(G) ⊗ 1A)x = δλ(x)(λ
′(x))

implies that λ = λ′. Similarly, we have that φ = φ
′ and, consequently, (u,X ) = (v ,Y ). Therefore, α

is injective.

On the other hand, let β : A ⊗k R(G) ⊗k A → A be a local biretraction and a ⊗ f ⊗ b in

A ⊗k R(G) ⊗k A. Then by definintion,

β(1A ⊗ 1R(G) ⊗ b) = β ◦ s′(b) = b β(1H);

β(a ⊗ 1R(G) ⊗ 1A) = β ◦ t ′(a)

and there exists eβ ∈ A such that β ◦ t ′(eβ) = β(1H) and

β ◦ t ′|A eβ : A eβ −→ Aβ(1H)
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is a bijection.

Since β(1H) and eβ are idempotents in A = Fun(G(0),k), we have that β(1H) = χX and

eβ = χY for some X ,Y ⊆ G(0), where χX (x) = 〚x ∈ X 〛. Denoting χx := χ{x}, we have that

β(1A ⊗ 1R(G) ⊗ b)x = b(x)β(1H)x = b(x)〚x ∈ X 〛. (28)

Also,

χX = β(1H) =
∑

x∈G(0)

β(χx ⊗ 1R(G) ⊗ 1A) =
∑

x∈G(0)

β ◦ t ′(χx )

χX = β(1H) = β ◦ t ′(χY ) =
∑

x∈Y

β(χx ⊗ 1R(G) ⊗ 1A) =
∑

x∈Y

β ◦ t ′(χx )

and if x ̸= y , then β ◦ t ′(χx )β ◦ t ′(χy ) = β ◦ t ′(χxχy ) = 0. Thus β ◦ t ′(χx ) = 0 for all x ∈ G(0) \ Y and

there exists a bijection λ : X → Y , x 7→ λ(x) such that

β ◦ t ′(χλ(x)) = χx .

Hence we have that for every x ∈ G(0),

β(a ⊗ 1R(G) ⊗ 1A)x =
∑

y∈G(0)

a(y )β(χy ⊗ 1R(G) ⊗ 1A)x

=
∑

y∈Y

a(y )β ◦ t ′(χy )x

= a(λ(x))〚x ∈ X 〛. (29)

Finally, since G is transitive and finite, we have that R(G) = Fun(G,k) (SIMON, 1996),

hence f can be written as

f (g) =
∑

h∈G

f (h) ph,

where ph(g) = 〚g = h〛, for all g ∈ G, and all ph are functions of R(G). Then

χX = β(1H) =
∑

g∈G

β(1A ⊗ pg ⊗ 1A)

with β(1A ⊗ pg ⊗ 1A)β(1A ⊗ ph ⊗ 1A) = 0 whenever g ̸= h. Thus we can define a map φ : X → G

that takes each x ∈ X to the unique g = φ(x) ∈ G such that β(1A ⊗ pφ(x) ⊗ 1A)x = 1. Therefore,

β(1A ⊗ f ⊗ 1A)x =
∑

g∈G

f (g)β(1A ⊗ pg ⊗ 1A)x

= f (φ(x))〚x ∈ X 〛 (30)

for all x ∈ G(0).

So, from expressions (28), (29) and (30), and considering the bisection u : X → G,

x 7→ (λ(x),φ(x),x), we can write

β(a ⊗ f ⊗ b)x =β(a ⊗ 1R(G) ⊗ 1A)x β(1A ⊗ f ⊗ 1A)x β(1A ⊗ 1R(G) ⊗ b)x

= a(λ(x)) f (φ(x)) b(x) 〚x ∈ X 〛

= α(u,X )(a ⊗ f ⊗ b)x .

Observe that λ and φ do not depend on a ⊗ f ⊗ b. Therefore β = α(u,X ) and α is surjective. 2
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Remark 4.1.14 As a particular case from the finite and transitive groupoids, take the groupoid

G = X × X , with X being a finite set. Thus a bisection u : Y ⊆ X → X of G can be written for an

element y ∈ Y as

u(y ) = (λ(y ),y ),

where λ : Y → λ(Y ) is a bijection, that is, any bisection of G is determined by a subset Y ⊆ X

and a bijection λ : Y → λ(Y ) ⊆ X , which from the Proposition 4.1.13, also determines the

biretractions for the Hopf algebroid of the representative functions of G.

On the other hand, from Example 2.2.14, the representative functions of G are given by

Rk(G) ∼= A⊗k A. From Example 4.1.10, a biretraction for A⊗k A with A = Fun(X ,k) is determined

by a pair [φ,e] such that φ : A → A is multiplicative, e2 = e ∈ A and φ|Ae : A e → Aφ(e) is a

bijection.

These two characterizations of the biretractions are the same, because since e and φ(e)

are idempotents in A, there exist Z ,Y ⊆ X such that e = χZ and φ(e) = χY . And since X is finite

and φ is multiplicative, there exists a bijection λ : Y → Z such that for each y ∈ Y , φ(χλ(y )) = χy .

Therefore [φ,e] is also determined by a subset y ⊆ X and a bijection λ : Y → Z ⊆ X .

4.1.2 The noncommutative case

We can go one step further and work with a not necessarily commutative Hopf algebroid

over a commutative algebra. In this case we have only one base algebra, which is commutative,

but we still have two different structures of a left-bialgebroid and of a right bialgebroid. The defi-

nition of a biretraction for this structure should be an extension of the definition for commutative

Hopf algebroids.

Let us consider a Hopf algebroid H over a commutative algebra A such that sl = tr = t

and sr = tl = s. In this case we can use the exact same definition of biretraction that we used in

the commutative case: a biretraction for H is a multiplicative linear map α : H → A satisfying

(BRT1) α ◦ s(a) = aα(1H) for every a ∈ A.

(BRT2) There exists eα ∈ A such that α ◦ t(eα) = α(1H) and

α ◦ t |A eα : A eα −→ Aα(1H)

is a bijection.

Denote the set of local biretractions of H by Brt(H, A).

Remark 4.1.15 Exactly like in the commutative case, we have that for a biretraction α : H → A,

α(1H) and eα are idempotent elements of A and eα satisfying (BRT2) is also unique.

Remark 4.1.16 Since A is commutative and α is multiplicative, we have that α(hk) = α(kh) for

every h,k ∈ H.

Remark 4.1.17 With sl = tr = t and sr = tl = s we have that all maps εl ◦ s, εl ◦ t , εr ◦ s and εr ◦ t

are the identity map IdA. Then from the property (P5) of Hopf algebroids, we have the identities
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εr ◦ S = εl and εl ◦ S = εr . Also, for every a ∈ A,

Δl ◦ t(a) = Δl (a ▷ 1H) = a ▷ (1H ⊗ 1H) = t(a) ⊗ 1H

Δl ◦ s(a) = Δl (1H ◁ a) = (1H ⊗ 1H) ◁ a = 1H ⊗ s(a).

Analogously, we have Δr ◦ t(a) = t(a) ⊗ 1H and Δr ◦ s(a) = 1H ⊗ s(a).

Remark 4.1.18 The counits εl and εr are not always biretractions, because they are not ne-

cesssarily multiplicative functions, but given a biretraction α and using the notation Δr (h) =

h(1) ⊗A h(2) we have that

eα
εl (h) = (α ◦ t)±1 ◦ α ◦ t ◦ εl (h)

= (α ◦ t)±1 ◦ α(h(1) S(h(2)))

= (α ◦ t)±1α(h(1)S(h(2)))

for every h ∈ H. Since t = sl is multiplicative by the definition of Hopf algebroid, we still have

α ◦ t multiplicative. And since Δr is multiplicative and S is antimultiplicative, we have from

Remark 4.1.16 that eα
εl is multiplicative. Then eα

εl is a biretraction with eeα
εl = eα, because

(eα
εl ) ◦ t |A eα = IdA eα . On the other hand, for every h ∈ H,

α(1H) εr (h) = α ◦ s ◦ εr (h) = α(S(h(1)) h(2)),

which is also multiplicative. Then α(1H) εr is a biretraction with eα(1H) εr = α(1H), because

(α(1H) εr ) ◦ t |Aα(1H) = IdAα(1H). And using εl = εr ◦S and the property (P6) from Hopf algebroids

α(1H) εl (h) = α(1H) εr ◦ S(h)

= α(S ◦ S(h(2)) S(h(1)))

= α ◦ S(h(1) S(h(2)))

for all h ∈ H, which implies that α(1H) εl is multiplicative and hence is a biretraction with

eα(1H) εl = α(1H).

Theorem 4.1.19 Let H be a Hopf algebroid over a commutative algebra A such that sl = tr = t ,

sr = tl = s. Then the set Brt(H, A) is a regular semigroup with the convolution product between

two biretractions α and β given by

(α ∗ β)(h) = β(α(h(1)) ▷ h(2)) = β ◦ t ◦ α(h(1))β(h(2)).

Proof. Like in the commutative case, this product is associative and well-defined. Now define a

pseudoinverse for any biretraction α ∈ Brt(H, A) and h ∈ H as

α∗(h) := (α ◦ t)±1 ◦ α ◦ S(εl (h
(1)) ▷ h(2))

= (α ◦ t)±1 ◦ α ◦ S(t ◦ εl (h
(1)) h(2))

= (α ◦ t)±1 ◦ α(S(h(2)) s ◦ εl (h
(1)))

= (α ◦ t)±1
(
εl (h

(1))α ◦ S(h(2))
)

.
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Observe that all maps α ◦ t , S,Δr and t ◦ εl are multiplicative or antimultiplicative, thus

from Remark 4.1.16, α∗ is multiplicative. Moreover, we have for every a ∈ A that

α∗ ◦ s(a) = (α ◦ t)±1(εl (1H)α ◦ S ◦ s(a)) = (α ◦ t)±1 ◦ α ◦ t(a) = aeα = aα∗(1H)

and

α∗ ◦ t(aα(1H)) = (α ◦ t)±1(εl ◦ t(aα(1H))α ◦ S(1H))

= (α ◦ t)±1(aα(1H)),

that is, α∗ ◦ t |Aα(1H) = (α ◦ t)±1|Aα(1H). Then α∗ is a biretraction with eα∗

= α(1H). Also,

α ∗ α∗(h) = α∗ ◦ t ◦ α(h(1))α
∗(h(2))

= (α ◦ t)±1(εl ◦ t ◦ α(h(1))α ◦ S(1H)) (α ◦ t)±1
(
εl

(
h(2)

(1)
)
α ◦ S

(
h(2)

(2)
))

= (α ◦ t)±1 ◦ α
(

h(1) s ◦ εl

(
h(2)

(1)
)

S
(

h(2)
(2)
))

= (α ◦ t)±1 ◦ α
(

h(1)
(1) s ◦ εl

(
h(1)

(2)

)
S(h(2))

)

= (α ◦ t)±1 ◦ α (h(1)S(h(2)))

= (α ◦ t)±1 ◦ α ◦ t ◦ εl (h)

= eα
εl (h) (31)

and

α∗ ∗ α (h) = α ◦ t ◦ α∗(h(1))α(h(2))

= α ◦ t ◦ (α ◦ t)±1
(
εl

(
h(1)

(1)
)
α ◦ S

(
h(1)

(2)
))

α(h(2))

= εl (h
(1))α

(
S
(

h(2)
(1)

)
h(2)

(2)

)

= εl (h
(1))α ◦ s ◦ εr (h(2))

= εl (h
(1)) εr (h(2))α(1H)

= εl (s ◦ εr (h(2))h(1))α(1H)

(∗)
= εl (h

(1)s ◦ εr (h(2)))α(1H)

= α(1H) εl (h) (32)

for every h ∈ H. Recall that for a biretraction α, we have α(hk ) = α(kh) for every h,k ∈ H, which

was used in (∗) for the biretraction α(1H) εl .

Now using the identities (31) and (32), we get

α ∗ α∗ ∗ α (h) = α ◦ t ◦ (α ∗ α∗)(h(1))α(h(2))

= α ◦ t(eα
εl (h(1)))α(h(2))

= α(t ◦ εl (h(1))h(2))

= α(h) (33)
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and

α∗ ∗ α ∗ α∗(h) = α∗ ◦ t ◦ (α∗ ∗ α)(h(1))α
∗(h(2))

= (α ◦ t)±1
(
εl ◦ t ◦ (α∗ ∗ α)(h(1))α ◦ S(1H)) εl

(
h(2)

(1)
)
α ◦ S

(
h(2)

(2)
))

= (α ◦ t)±1
(
α(1H) εl (h(1)) εl

(
h(2)

(1)
)
α ◦ S

(
h(2)

(2)
))

= (α ◦ t)±1
(
εl

(
h(1)

(1)

)
εl

(
h(1)

(2)

)
α ◦ S(h(2))

)

= (α ◦ t)±1
(
εl

(
t ◦ εl

(
h(1)

(1)

)
h(1)

(2)

)
α ◦ S(h(2))

)

= (α ◦ t)±1(εl (h
(1))α ◦ S(h(2)))

= α∗(h) (34)

for all h ∈ H. Therefore, Brt(H, A) is a regular semigroup. 2

Remark 4.1.20 Observe that given a biretraction α : H → A,

((eα
εl ) ∗ α) (h) = α ◦ t(eα

εl (h(1)))α(h(2))

= α(t ◦ εl (h(1))h(2))

= α(h)

and

(α ∗ (α(1H) εl )) (h) = α(1H) εl ◦ t ◦ α(h(1))α(1H) εl (h(2))

= α(h(1)) εl (h(2))

= α(s ◦ εl (h(2))h(1))

= α(h)

for every h ∈ H. Also note that

(eα
εl )

∗(h) = (eα
εl ◦ t)±1(εl (h

(1)) eα
εl ◦ S(h(2)))

= eα
εl (h

(1)) εr (h(2))

= eα
εl (h)

and analogously, (α(1H) εl )∗(h) = α(1H) εl (h) for all h ∈ H.

Now, just like in the commutative case, consider the free vector space generated by the

biretractions of H and extend linearly the convolution product to this space. Then, we have an

algebra structure on the space kBrt(H, A), henceforth denoted by B(H).

Theorem 4.1.21 Let H be a Hopf algebroid over a commutative algebra A such that sl = tr = t ,

sr = tl = s. Then the algebra B(H), generated by the set of biretractions of H with the convolution

product is a quantum inverse semigroup with the comultiplication Δ : B(H) → B(H) and S : H →

H defined on the biretractions as Δ(α) = α⊗ α and S(α) = α∗ and linearly extended for B(H).
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Proof. The comultiplication Δ is multiplicative, just like in the commutative case. Also, S is

antimultiplicative: for every α,β ∈ Brt(H, A) and h ∈ H,

S(α ∗ β)(h) = (α ∗ β)∗(h)

= ((α ∗ β) ◦ t)±1(εl (h
(1)) (α ∗ β) ◦ S(h(2)))

= (α ◦ t)±1 ◦ (β ◦ t)±1
(
εl (h

(1))β ◦ t ◦ α
((

S(h(2))
)

(1)

)
β

((
S(h(2))

)

(2)

))

(∗)
= (α ◦ t)±1

(
(β ◦ t)±1

(
εl (h

(1))β ◦ S(h(2)(1))
)
α ◦ S(h(2)(2))

)

= (α ◦ t)±1
(
β∗(h(1))α ◦ S(h(2))

)
,

where in (∗) we used the property Δl ◦ S = (S ⊗l S) ◦ Δcop
r , which holds for any Hopf algebroid.

Conversely,

(S(β) ∗ S(α))(h) = (β∗ ∗ α∗)(h)

= α∗ ◦ t ◦ β∗(h(1))α
∗(h(2))

= (α ◦ t)±1(εl ◦ t ◦ β∗(h(1))α ◦ S(1H))α∗(h(2))

= (α ◦ t)±1
(

(β ◦ t)±1
(
εl

(
h(1)

(1)
)
β ◦ S

(
h(1)

(2)
))

εl

(
h(2)

(1)
)
α ◦ S

(
h(2)

(2)
))

= (α ◦ t)±1
(

(β ◦ t)±1
(
εl

(
h(1) (1)

(1)

)
β ◦ S

(
h(1) (2)

(1)

)
β ◦ t ◦ εl

(
h(1)

(2)

))
α ◦ S(h(2))

)

= (α ◦ t)±1
(

(β ◦ t)±1
(
εl

(
h(1)(1)

)
β
(

S
(

h(1)(2)
(1)

)
t ◦ εl

(
h(1)(2)

(2)

)))
α ◦ S(h(2))

)

= (α ◦ t)±1
(

(β ◦ t)±1
(
εl

(
h(1)(1)

)
β ◦ S(h(1)(2))

)
α ◦ S(h(2))

)

= (α ◦ t)±1
(
β∗(h(1))α ◦ S(h(2))

)

for every h ∈ H. Consequently, S(α ∗ β) = S(β) ∗ S(α).

Finally, for checking axiom (QISG4) for any α,β ∈ Brt(H,A), the expressions (31) and

(32) imply that for every h ∈ H,

α(1) ∗ S(α(2)) ∗ S(β(1)) ∗ β(2)(h) = (α ∗ α∗) ∗ (β∗ ∗ β)(h)

= (β∗ ∗ β) ◦ t ◦ (α ∗ α∗)(h(1)) (β∗ ∗ β)(h(2))

= β(1H) εl ◦ t ◦ (α ∗ α∗)(h(1)) εl (h(2))

= β(1H) eα
εl (h(1)) εl (h(2))

= β(1H) eα
εl (h)

The same result for S(β(1)) ∗ β(2) ∗ α(1) ∗ S(α(2))(h).

Therefore, B(H) is a Quantum Inverse Semigroup. 2

Remark 4.1.22 Consider a Hopf algebroid H over a commutative algebra A with s = sl = tl =

sr = tr . A local biretraction for H is a linear and multiplicative map α : H → A that satisfies

α ◦ s(a) = aα(1H) for every a ∈ A and there exists eα ∈ A such that α ◦ s(eα) = α(1H) and
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α ◦ s|A eα : A eα −→ Aα(1H) is a bijection. Combining both conditions we have

α ◦ s(α(1H) eα) = α ◦ s(α(1H))α ◦ s(eα)

= α(1H)α(1H)α(1H)

= α(1H).

Since α(1H) eα ∈ A eα then α(1H) eα = eα. Therefore

α(1H) = α ◦ s(eα) = eα α(1H) = eα.

Moreover, for every a ∈ A,

α ◦ s(aα(1H)) = aα(1H)α(1H) = aα(1H).

Consequently, we can describe a local biretraction for H as a linear and multiplicative map

α : H → A such that α ◦ s|Aα(1H) = IdAα(1H).

Example 4.1.23 Recall the definition of a weak Hopf algebra from Example 3.2.5. A weak

Hopf algebra (H,μ,η,Δ,ε, S) has a structure of Hopf algebroid over the algebras Ht = εt (H) and

Hs = εs(H) given by

sr (x) = x tr (x) = ε(x1(1))1(2) Δr = πr ◦ Δ εr = εs

for every x ∈ Hs, where πr : H ⊗k H → H ⊗Hs H and

sl (x) = x tl (x) = ε(1(2)x)1(1) Δl = πl ◦ Δ εl = εt

for every x ∈ Ht , where πl : H ⊗k H → H ⊗Ht H.

Observe that for every x ∈ Hs, x can be written as x = εs(h) = 1(1) ε(h1(2)) for some

h ∈ H. Then

εs(x) = 1(1) ε(x1(2))

= 1(1) ε(1(1′) ε(h1(2′))1(2))

= 1(1) ε(h1(2′)) ε(1(1′)1(2))

= 1(1) ε(h1(2))

= x .

Similarly, we have that εt (x) = ε(1(1)x)1(2) = x for every x ∈ Ht .

Now suppose that Ht = Hs and that A := Ht = Hs is commutative. Then, for every x ∈ A,

we have that

1(1)ε(x1(2)) = x = ε(1(1)x)1(2),

which implies that

tr (x) = ε(x1(1)) 1(2)

= ε(ε(1(1′)x) 1(2′)1(1)) 1(2)

= ε(1(2′)1(1)) ε(1(1′)x) 1(2)

= ε(1(1′)1(2)) ε(1(1)x) 1(2′)

= ε(1(1)x) 1(2)

= x
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and

tl (x) = ε(1(2)x) 1(1)

= ε(1(2)1(1′) ε(x1(2′))) 1(1)

= ε(x1(2′)) ε(1(2)1(1′)) 1(1)

= ε(x1(2)) ε(1(1)1(2′)) 1(1′)

= ε(x1(2)) 1(1)

= x .

Therefore, we have that sl = tr = sr = tl are all the inclusion map A → H. We also have that

x = ε(x1(1))1(2) = ε(x1(2))1(1) = ε(1(2)x)1(1) = ε(1(1)x)1(2)

for every x ∈ A and if h ∈ H.

Then by the Remark 4.1.22, a local biretraction for a weak Hopf algebra with A := Ht = Hs

commutative is a linear and multiplicative map α : H → A such that α|Aα(1H ) = IdAα(1H ).

Example 4.1.24 As a particular case from the previous example, consider a finite groupoid G

and its groupoid algebra kG given by

kG =




∑

g∈G

ag δg | g ∈ G, ag ∈ k





with product δgδh = δgh if (g,h) ∈ G(2) and δgδh = 0, otherwise. kG is an algebra with unity

1kG =
∑

x∈G(0)

δx ,

because (g,h) ∈ G(2) if, and only if, s(g) = t(h) implies that


∑

g∈G

ag δg





∑

x∈G(0)

δx


 =

∑

g∈G

x∈G(0)

ag δgδx =
∑

g∈G

ag δgδs(g) =
∑

g∈G

agδg



∑

x∈G(0)

δx





∑

g∈G

ag δg


 =

∑

g∈G

x∈G(0)

ag δxδg =
∑

g∈G

ag δt(g)δg =
∑

g∈G

agδg

for every
∑

g∈G ag δg ∈ kG. kG is also a coalgebra with structure given in its base elements by

Δ(δg) = δg ⊗ δg and ε(δg) = 1. From the Example 3.2.5, kG is a weak Hopf algebra with

εt (δg) = ε(1(1)δg) 1(2) =
∑

x∈G(0)

ε(δxδg) δx = ε(δt(g)δg) δt(g) = δt(g),

εs(δg) = 1(1) ε(δg1(2)) =
∑

x∈G(0)

δxε(δgδx ) = δs(g)ε(δg δs(g)) = δs(g)

and S(δg) = δg±1 for every g ∈ G. Finally, kG also has a Hopf algebroid structure over the algebra

A = ⟨δx | x ∈ G(0)⟩k given by sl = tl = sr = tr being the inclusion maps A → kG,

Δl = Δr = πA ◦ Δ εl = εt εr = εs
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and the same S. Note that δxδx = δx and δxδy = 0 for all x ̸= y in G(0).

Observe that A is a commutative algebra. Hence by the Remark 4.1.22, a biretraction

for kG is a linear and multiplicative map α : kG → A such that α|Aα(1kG ) = IdAα(1kG ). Now we have

for any α : kG → A biretraction,

• α(1kG) is an idempotent. Then, α(1kG) can be written as

α(1kG) =
∑

x∈X

δx

for some X ⊆ G(0). If X = G(0), we have a global biretraction.

• Fix the subset Xα ⊆ G(0) such that α(1kG) =
∑

x∈Xα δx . If y ∈ Xα,

δy =
∑

x∈Xα

δyδx = δyα(1kG)
(BRT1)

= α(δy ).

Then ∑

x∈Xα

δx = α(1kG) =
∑

y∈G(0)

α(δy ) =
∑

x∈Xα

δx +
∑

z∈G(0)\Xα

α(δz),

which implies that
∑

z∈G(0)\Xα α(δz) = 0, hence for every y ∈ G(0) \ Xα,

α(δy ) = α(δy )




∑

z∈G(0)\Xα

α(δz)


 = 0.

• Now for any g ∈ G, we have that

α(δg) = α(δgδs(g)) = α(δg)α(δs(g))

α(δg) = α(δt(g)δg) = α(δt(g))α(δg).

Hence if s(g) /∈ Xα or t(g) /∈ Xα, then α(δg) = 0. And writing

α(δg) =
∑

y∈G(0)

ag
yδy

with all ag
y in k, then s(g),t(g) ∈ Xα imply that

α(δg) = α(δg)α(δs(g)) =
∑

y∈G(0)

ag
yδyδs(g) = ag

s(g)δs(g)

and

α(δg) = α(δt(g))α(δg) =
∑

y∈G(0)

ag
yδt(g)δy = ag

t(g)δt(g).

Hence for α(δg) to be nonzero, we need s(g) = t(g) ∈ Xα. Moreover, we have that if

s(g) = t(g) = x ∈ Xα then α(δg) = ag δx with ag ∈ k \ {0}. Indeed, if α(δg) = 0 then

0 = α(δg)α(δg±1) = α(δt(g)) = α(δx ) = δx ,

which is a contradiction.
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• Brt(kG,A) is commutative: for any α,β ∈ Brt(kG,A) we have

α(δg) =





ag δx , if s(g) = t(g) = x ∈ Xα ⊆ G(0)

0, otherwise

and

β(δg) =





bg δy , if s(g) = t(g) = y ∈ Y β ⊆ G(0)

0, otherwise

with ag ∈ k \ {0}, bg ∈ k \ {0}, ax = 1 and by = 1 for every x ∈ Xα and y ∈ Y β. Then

(α ∗ β)(δg) = β ◦ t ◦ α(δg)β(δg)

= β ◦ α(δg)β(δg)

= β(ag δx )β(δg) 〚s(g) = t(g) = x ∈ Xα〛

= agbg δx 〚s(g) = t(g) = x ∈ Xα ∩ Y β〛

= (β ∗ α)(δg)

for every g ∈ G. Observe that this means that Brt(kG,A) is an inverse semigroup, with α∗

given by

α∗(δg) = (α ◦ t)±1 (
εl (δg)α ◦ S(δg)

)
= δt(g) α(δg±1) = α(δt(g) δg±1) = α(δg±1) = α ◦ S(δg)

for every g ∈ G. Brt(kG,A) also has a unity 1 : kG → A given by

1(δg) = δx 〚s(g) = t(g) = x〛

for every g ∈ G.

With these remarks, we can represent the biretractions using the characters from the

isotropy groups Gx = {g ∈ G | s(g) = t(g) = x}. Being G(0) = {x1, . . . ,xn}, consider the algebra

F =
n∏

i=1

{φi : Gxi → k \ {0} morphism of groups} ∪ {0 = φi : Gxi → k}

with the pointwise product. The elements of F are n±tuple of characters from the isotropy groups

of G or zero maps. F is also a commutative inverse semigroup with (φ1, . . . ,φn)∗ = (φ∗
1, . . . ,φ∗

n),

where

φ
∗
i (g) =




φi (g±1), if φi ̸= 0

0, if φi = 0.

For each (φ1, . . . ,φn) ∈ F and g ∈ G, we can define the map α(φ1,...,φn) : kG → A

α(φ1,...,φn)(δg) =




φi (g) δxi , if s(g) = t(g) = xi

0, if s(g) ̸= t(g),

which is a biretraction, because for every i = 1, . . . ,n,

α(φ1,...,φn)(δxi ) = φi (xi ) δxi =




δxi , if φi is a morphism of groups

0, if φi = 0,
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hence α(φ1,...,φn) is a local biretraction with Xα = {xi ∈ G(0) |φi is a morphism of groups }. Then

for every (φ1, . . . ,φn), (ψ1, . . . ,ψn) ∈ F and g ∈ G,

α(φ1,...,φn) ∗α(ψ1,...,ψn)(δg)

= α(ψ1,...,ψn) ◦ α(φ1,...,φn)(δg)α(ψ1,...,ψn)(δg)

= α(ψ1,...,ψn)(φi (g) δxi )α(ψ1,...,ψn)(δg) 〚s(g) = t(g) = xi〛

= φi (g)ψi (g)ψi (xi ) δxi 〚s(g) = t(g) = xi〛

= φi (g)ψi (g) δxi 〚s(g) = t(g) = xi〛

= α(φ1ψ1,...,φnψn)(δg)

= α(φ1,...,φb)(ψ1,...,ψn)(δg)

and the map

α : F −→ Brt(kG,A)

(φ1, . . . ,φn) 7−→ α(φ1,...,φn)

is an isomorphism of inverse semigroups.

Observe that Brt(kG,A) is a commutative inverse semigroup with unity, but is not neces-

sarily a group. Indeed, for a biretraction α(φ1,...,φn) with φi ≠ 0 for every i such that xi ∈ Xα ⊆ G(0),
(
α(φ1,...,φn) ∗ α

∗
(φ1,...,φn)

)
(δg) = φi (g)φi (g

±1) δxi 〚s(g) = t(g) = xi ∈ Xα〛

= φi (xi ) δxi 〚s(g) = t(g) = xi ∈ Xα〛

= δxi 〚s(g) = t(g) = xi ∈ Xα〛

for every g ∈ G, which is not the unity of Brt(kG,A), unless Xα = G(0), that is, unless α(φ1,...,φn) is

a global biretraction. Therefore, we have that GlBrt(kG,A) is a group.

Example 4.1.25 (The algebraic quantum torus) Consider an algebra Tq over C, generated

by two invertible elements U and V satisfying UV = q VU, with q ∈ C
×. The algebra Tq has a

structure of Hopf algebroid over the commutative C-algebra A = C[U] :

• s = sl = tl = sr = tr : A → Tq is the inclusion map;

• Δl (UnV m) = UnV m ⊗A V m and εl (UnV m) = Un;

• Δr (V mUn) = V mUn ⊗A V m and εr (V mUn) = Un;

• S(UnV m) = V ±mUn.

Observe that the only idempotent of A is 1. Then we can only have global biretractions

for Tq. By the Remark 4.1.22, a global biretraction for Tq can be described as a linear and

multiplicative map α : Tq → A such that α|A = IdA.

Moreover, since α is multiplicative, we have that

α(V )α(V ±1) = α(V ±1)α(V ) = α(V ±1V ) = α(1C) = 1C ⇒ α(V )±1 = α(V ±1),

which implies that α(V ) is invertible in A, and consequently,

Uα(V ) = α(UV ) = q α(VU) = q Uα(V )
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⇒ q = 1C.

So we only have global biretractions for the commutative torus T1. In this case, we have

that a global biretraction for T1 is a multiplicative and linear map α : T1 → A such that α(U) = U

and α(V ) = qα U tα , with qα ∈ C and tα ∈ Z.

Moreover, since the zero map is not a global biretraction, any global biretraction α :

T1 → A is in fact a morphism of algebras (since α(1T1) = 1A). T1 and A are algebras of Laurent

polynomials, T1 = C[U,U±1, V , V ±1] and A = C[U,U±1]. General arguments from algebraic

geometry show that algebra morphisms α : T1 → A correspond to maps f : C× → C
× × C

×

whose entries are Laurent polynomials in z, i.e., f (z) = (p1(z),p2(z)) with pi (U) ∈ A. Given such

a map, the associated morphism of algebras is α(U) = p1(U),α(V ) = p2(V ).

In particular, given a real number θ and an integer n, the biretraction α : T1 → A given

by α(V ) = e2πiθUn corresponds to the the map f : C
× → C

× × C
×, f (z) = (z, e2πiθzn). The

restriction of f to the unit circle S1 yields the map

g : S1 → S1 × S1, e2πit 7→ (e2πit , e2πi(θ+tn)).

Hence biretractions of the Hopf algebroid T1 include imersions of T1 in T 2. Also, we can say

that α rolls up the unit circle S1 around the torus T 2. Indeed, observe that

α ∗ α(V ) = α ◦ α(V )α(V )

= α(e2πiθUn) e2πiθUn

= e2πiθα(U)n e2πiθUn

= e2πi 2θU2n

and, analogously,

αk := α ∗ · · · ∗ α︸ ︷︷ ︸
k times

(V ) = e2πi kθUkn

Consequently, we can associate αk with the restriction

gk : S1 → S1 × S1, e2πit 7→ (e2πit , e2πik (θ+tn)).

We remark that g is a closed curve that starts and ends at (1,e2πiθ) for t = 0 and for

t = 1, and runs along the torus as shown in Figure 1.

Observe that the curve g2 acts similarly to g but rolls up twice as fast (vertically) along

the torus, starting and ending at (1, e4πiθ). In general, the map gk rolls up the torus k±times

faster than g vertically, starting and ending at (1,e2kπiθ).
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Figure 1 ± Representation of the curve g
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5 CONCLUSION

We started this work with a question: can we find a good generalization of inverse

semigroups and Hopf algebras which can play the same role with Hopf algebroids as inverse

semigroups do with groupoids?

Trying to find the answer, we first analysed the definition that relates inverse semigroups

and groupoids: the bisections. We started working with known examples of commutative Hopf

algebroids and tried to find the best definition of biretractions that would generalize the notion

of bisections. Trying to dualize the definition of bisections for these Hopf algebroids, we started

analysing maps from the Hopf algebroid to the base algebra defined in a natural way, and kept

finding maps α that were at the same time multiplicative, right-module morphisms and that their

composition with the target map were partially defined bijections.

Hence our first definition of a biretraction for a commutative Hopf algebroid H over a

commutative algebra A was that α : H → A should be a multiplicative map satisfying

(BRT1) α ◦ s(a) = aα(1H) for every a ∈ A.

(BRT2) The restriction

α ◦ t |Aα(1H) : Aα(1H) −→ Aα(1H)

is a bijection.

With this definition, we were able to define a product and a pseudoinverse for the local

biretractions in a way that the set Brt(H,A) is a regular monoid.

At the same time, we wanted to use the example of the Hopf algebroid of representative

functions of a groupoid G to relate the set B(G) of all local bisections of groupoid with the set

Brt(H,A) of all local biretractions of the Hopf algebroid of its representative functions. We had

a map from B(G) to Brt(H,A) defined in a natural way, but this map was not necessarily a

morphism os regular monoids. Analysing this map it was clear that we need to redefine the

condition (BRT2). The problem is that the partial bijection α ◦ t |Aα(1H) has equals domain and

image. Thus inspired by the example of the representative functions and by the classic inverse

semigroup of partially defined bijections of a set, which considers different domains and images,

we thought that would be better to restrict the map α◦ t to the ideal A eα, where α◦ t(eα) = α(1H),

such that the restriction α ◦ t |A eα : A eα → Aα(1H) is a bijection. And it turned out that the

element eα defined in this way is unique and idempotent.

On the other hand, we wanted the definition of quantum inverse semigroups to be a

generalization of inverse semigroups in the same sense that Hopf algebras are a generalization

of groups. With this is mind, it got created the Definition 3.1.1. Then we just needed to adjust

the definitions of the product and the pseudoinverse in Brt(H,A) so the algebra B(H) generated

by the local biretractions has a structure of quantum inverse semigroup, just like the bisections

of a groupoid form an inverse semigroup.

So we were able to generalize the definition of bisections for Hopf algebroids and also

created a structure that generalize inverse semigroups at least with this particular relation.

We also created a definition of biretractions for non necessarily commutative Hopf alge-

broids over a commutative algebra with sl = tr and tl = sr . Observe that in a lot of instances
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from the proofs of the Theorems 4.1.19 and 4.1.21 we used the commutative property of the

base algebra along with the properties sl = tr and sr = tl so we could maneuver between the

left and right bialgebroid structures. Thus it seems like for the general case, we should define

as biretraction a map that creates a relation between the two structures. Also, it is not expected,

in the general case of noncommutative Hopf algebroids, for the biretractions to be multiplicative,

but this definition should be an extension of the definition for the commutative case.

It remains for the future to find a good definition of biretractions for any Hopf alge-

broid. Being H = (Hl ,Hr , S) a Hopf algebroid with bialgebroid structures (Hl ,sl ,tl ,Δl , εl ) and

(Hr ,sr ,tr ,Δr ,εr ), it is an initial thought to replace (BRT1) and the multiplicative property valid for

the commutative case by the following conditions: a local biretraction of H is a pair of linear

maps α : H → A and α : H → A satisfying for every a ∈ A, b ∈ A and h,k ∈ H,

α(tl (a) h) = α(h ◁ a) = α(h) a α(hk ) = α(h tl ◦ α(k )) (35)

α(h sr (b)) = α(h ◀ b) = α(h) b α(hk ) = α(sr ◦ α(h) k ). (36)

that is, α should be a left A±module morphism and α a A±morphism, which extends (BRT1) and

the second line is what replaces the multiplicative property. These conditions are inspired by

(XIAO, 2021), where was proposed a definition of "bisections" for bialgebroids.

With these conditions, all maps α ◦ sl , α ◦ tr , α ◦ sl and α ◦ tr are multiplicative or

antimultiplicative. Indeed, for every a ∈ A and h ∈ H,

α(sl (a) h) = α(sl (a) tl ◦ α(h)) = α(tl ◦ α(h) sl (a)) = α ◦ sl (a)α(h),

which implies that

α ◦ sl (a1 a2) = α(sl (a1) sl (a2)) = α ◦ sl (a1)α ◦ sl (a2)

for all a1,a2 ∈ A. Consequently, α ◦ sl is multiplicative. Analogously, using the facts that sl is

multiplicative, tr is antimultiplicative and that sl ◦ εl ◦ tr = tr and tr ◦ εr ◦ sl = sl , we have that

α(tr (b) h) = α ◦ tr (b)α(h) α(h tr (b)) = α ◦ tr (b)α(h) α(h sl (a)) = α ◦ sl (a)α(h)

for every a ∈ A, b ∈ A and h ∈ H. Hence α ◦ sl and α ◦ tr are antimultiplicative and α ◦ tr
is multiplicative. And these are properties that will probably facilitate the work of defining a

condition for the pair (α,α) that extends (BRT2).

Moreover, is possible to define products for the maps satisfying the conditions (35) and

(36): for any maps α,β : H → A satisfying (35) and α,β : H → A satisfying (36), define for each

h ∈ H,

(α ∗ β)(h) = β(α(h(1)) ▷ h(2)) = β(sl ◦ α(h(1)) h(2)) = β ◦ sl ◦ α(h(1))β(h(2))

(α ∗ β)(h) = β(α(h(1)) ▶ h(2)) = β(h(2) tr ◦ α(h(1))) = β ◦ tr ◦ α(h(1))β(h(2)).
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These products are associative and well defined, because for every a ∈ A and h, k ∈ H,

(α ∗ β)(tl (a) h) = β ◦ sl ◦ α(h(1))β(tl (a) h(2)) = β ◦ sl ◦ α(h(1))β(h(2)) a = (α ∗ β)(h) a

(α ∗ β)(h tl ◦ (α ∗ β)(k )) = β ◦ sl ◦ α(h(1))β(h(2) tl ◦ (α ∗ β)(k ))

= β ◦ sl ◦ α(h(1))β(h(2) tl
(
β ◦ sl ◦ α(k(1))β(k(2))

)
)

= β ◦ sl ◦ α(h(1))β(h(2) tl ◦ β(k(2)) tl ◦ β ◦ sl ◦ α(k(1)))

= β ◦ sl ◦ α(h(1))β(h(2) tl ◦ β(k(2)) sl ◦ α(k(1)))

= β ◦ sl ◦ α(h(1))β(h(2) sl ◦ α(k(1)) tl ◦ β(k(2)))
(∗)
= β ◦ sl ◦ α(h(1) tl ◦ α(k(1)))β(h(2) tl ◦ β(k(2)))

= β ◦ sl ◦ α(h(1) k(1))β(h(2) k(2))

= (α ∗ β)(hk ),

where we used the property of the Takeuchi product on (∗). Hence α ∗ β satisfies (35) and,

analogously, α ∗ β satisfies (36).

We can call the maps α : H → A satisfying (35) left-retractions of H and the maps

α : H → A right-retractions of H. This way, a local biretractions of H is a pair of a left-retraction

and a right-retraction. Also, it is expected for a "pseudoinverse" of a left-retraction to be a right-

retraction and for a "pseudoinverse" α∗ of a right-retraction α to be a left-retraction, because of

the action of S. Therefore, for this definition to be an extension of the definition for commutative

Hopf algebroids, we can redefine a local biretraction of H as a pair (α,α∗) of a left-retraction and

its "pseudoinverse". So it remains to create a condition that extends (BRT2) and a product that

enable us to define a pseudoinverse (α,α∗)∗.

Finally, we want, in future works, to answer the questions:

• Can we extend the definition of local biretractions for any Hopf algebroid? Will we also

be able to create a quantum inverse semigroup generated by these biretractions?

• Can we use the quantum inverse semigroups and Hopf algebroids’ structures to

extend other relations between inverse semigroups and groupoids?
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