

Vanio Rodrigues Filho

Fixed Search Patterns and VLSI Architecture for the Efficient
Computation of the Versatile Video Coding Fractional Motion

Estimation

Dissertação submetida ao Programa de Pós-
Graduação em Ciência da Computação para
a obtenção do título de Mestre em Ciência
da Computação.
Orientador: Prof. José Luís Almada Güntzel,
Dr.

Florianópolis

2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Rodrigues Filho, Vanio
 Fixed Search Patterns and VLSI Architecture for the
Efficient Computation of the Versatile Video Coding
Fractional Motion Estimation / Vanio Rodrigues Filho ;
orientador, José Luís Almada Güntzel, 2022.
 80 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2022.

 Inclui referências.

 1. Ciência da Computação. 2. Video Coding. 3. Fractional
Motion Estimation. 4. Hardware Architecture. I. Güntzel,
José Luís Almada. II. Universidade Federal de Santa
Catarina. Programa de Pós-Graduação em Ciência da Computação.
III. Título.

Vanio Rodrigues Filho

Fixed Search Patterns and VLSI Architecture for the Efficient Computation

of the Versatile Video Coding Fractional Motion Estimation

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Profa. Cristina Meinhardt, Dra.

Universidade Federal de Santa Catarina

Prof. Marcelo Porto, Dr.

Universidade Federal de Pelotas

Prof. Vladimir Afonso, Dr.

Instituto Federal de Educação, Ciência e Tecnologia Sul-Rio-Grandense

CertiĄcamos que esta é a versão original e Ąnal do trabalho de conclusão que foi

julgado adequado para obtenção do título de Mestre em Ciência da Computação.

Profa. Patricia Della Méa Plentz, Dra.

Coordenadora do Programa

Prof. José Luís Almada Güntzel, Dr.

Orientador

Florianópolis, 2022.

Aos meus pais, Tati, Duda e ao pessoal do ECL.

ACKNOWLEDGEMENTS

I would like to acknowledge my parents Vanio Rodrigues and Tania Pereira, as

well as my sister Tatiani for supporting me on this indescribably long journey. I would

also like to acknowledge my girlfriend Maria Eduarda for believing in me even when I did

not. Third, I would like to acknowledge all my friends and colleagues at the ECL for all

the unconditional help since my TCC. Especially for Ismael, Mateus and my advisor José

Luís.

This study was Ąnanced in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

ŞItŠs the questions we canŠt answer that teach us the most. They teach
us how to think. If you give a man an answer, all he gains is a little

fact. But give him a question and heŠll look for his own answersŤ
PATRICK ROTHFUSS, ŚThe Wise ManŠs FearŠ (2011).

RESUMO

A codiĄcação de vídeo é o núcleo de qualquer aplicação de vídeo, pois permite a com-
pressão de vídeos, viabilizando seu armazenamento e transmissão através da web. A
importância dos algoritmos de codiĄcação de vídeo aumentou signiĄcativamente nestes
dias de isolamento físico imposto pela pandemia do Covid-19, quando a videoconferência
se tornou uma ferramenta muito poderosa para evitar a interrupção completa de ativi-
dades como trabalhos e estudos. A Ąm de permitir a compatibilidade entre os sistemas
de codiĄcação e decodiĄcação, vários padrões têm sido desenvolvidos ao longo dos anos
por agências internacionais de padronização, como ITU-T e ISO, com a colaboração da
indústria e da academia. Finalizado em julho de 2020, o Versatile Video Coding (VVC)
é o padrão de codiĄcação de vídeo mais recente, tendo sido desenvolvido para melhorar
a eĄciência de codiĄcação em mais de 40% para a mesma qualidade de imagem, quando
comparado ao seu antecessor, o High Efficiency Video Coding (HEVC). No entanto, o
aumento expressivo de tempo de codiĄcação do VVC leva a uma maior dissipação de
energia e diĄculta a sua implementação em software para aplicações de tempo real. Por-
tanto, é de extrema importância desenvolver técnicas para diminuir a complexidade das
etapas computacionalmente mais intensivas deste novo padrão, mantendo, tanto quanto
possível, suas melhorias de eĄciência de codiĄcação. Como geralmente ocorre quando um
novo padrão de codiĄcação de vídeo é lançado, as etapas mais intensivas, "e.g., a Fracti-
onal Motion Estimation (FME), são candidatas naturais a tais estudos, não apenas pela
complexidade, mas também pela repetitividade intrínseca de operações. Em particular,
quando se trata de dispositivos portáteis, codiĄcadores de vídeo integrados em hardware
que sejam energeticamente eĄcientes são indispensáveis para estender a vida útil da ba-
teria do dispositivo. Dessa forma, este trabalho objetiva reduzir a complexidade da FME
do VVC por meio da adoção de um padrão de busca Ąxo no projeto de uma arquitetura
VLSI dedicada. Como primeiro passo, foi estimado o impacto da FME na eĄciência de
codiĄcação do VVC em termos de BD-Rate executando o VVC Test Model (VTM) com a
FME desabilitada. Em seguida, quatro padrões Ąxos de busca foram avaliados em termos
de eĄciência de codiĄcação e recursos de hardware, sendo três deles propostos neste tra-
balho e o quarto encontrado na literatura. A eĄciência de codiĄcação foi avaliada através
da implementação dos padrões dentro do VTM. Os recursos de hardware foram avaliados
em termos de área e potência usando como base uma arquitetura estado da arte de hard-
ware da FME. O padrão Cross, proposto neste trabalho, mostrou-se o de maior potencial
de minimização de hardware com uma redução aceitável na eĄciência de codiĄcação e,
portanto, foi selecionado para um projeto de hardware dedicado. A arquitetura projetada
foi descrita em verilog e sintetizada usando o Ćuxo standard cell para a tecologia de 45nm.
A área ocupada pela arquitetura desenvolvida é inferior a 41,4% da arquitetura base, com
um potência dissipada total de apenas 28.9% em média. A arquitetura projetada também
é capaz de comprimir vídeos em tempo real para resoluções de até 8K a 30 quadros por
segundo, porém com um aumento de BD-Rate de 0,34% para conĄguração LD-P e 0,28%
para conĄguração RA.

Palavras-chave: CodiĄcação de vídeo. Estimação de Movimento Fracionária. Padrão

de busca. Arquitetura VLSI. Versatile Video Coding.

RESUMO EXPANDIDO

Introdução

A codiĄcação de vídeo é o núcleo de qualquer aplicação de vídeo, pois permite a com-
pressão de vídeos, viabilizando seu armazenamento e transmissão através da web. A
importância dos algoritmos de codiĄcação de vídeo aumentou signiĄcativamente nestes
dias de isolamento físico imposto pela pandemia do Covid-19, quando a videoconferência
se tornou uma ferramenta muito poderosa para evitar a interrupção completa de ativi-
dades como trabalhos e estudos. A Ąm de permitir a compatibilidade entre os sistemas
de codiĄcação e decodiĄcação, vários padrões têm sido desenvolvidos ao longo dos anos
por agências internacionais de padronização, como ITU-T e ISO, com a colaboração da
indústria e da academia. Finalizado em julho de 2020, o Versatile Video Coding (VVC)
é o padrão de codiĄcação de vídeo mais recente, tendo sido desenvolvido para melhorar
a eĄciência de codiĄcação em mais de 40% para a mesma qualidade de imagem, quando
comparado ao seu antecessor, o High Efficiency Video Coding (HEVC). No entanto, o au-
mento expressivo de tempo de codiĄcação do VVC leva a uma maior dissipação de energia
e diĄculta a sua implementação em software para aplicações de tempo real. Portanto, é
de extrema importância desenvolver técnicas para diminuir a complexidade das etapas
computacionalmente mais intensivas deste novo padrão, mantendo, tanto quanto possí-
vel, suas melhorias de eĄciência de codiĄcação. Como geralmente ocorre quando um novo
padrão de codiĄcação de vídeo é lançado, as etapas mais intensivas, e.g., a Estimação de
Movimento Fracionária (FME), são candidatas naturais a tais estudos, não apenas pela
complexidade, mas também pela repetitividade intrínseca de operações.
A FME é uma ferramenta que busca reĄnar os resultados da Estimação de Movimento
(ME) ao gerar pixels em posições fracionárias, ou seja, entre os pixels originalmente
capturados. Ela é uma das ferramentas computacionalmente intensas do HEVC Test
Model (HM), sendo responsável por 33,88% do tempo total de codiĄcação, em média
(BLASI et al., 2015). Quando está desabilitado em HM, a taxa de bits aumenta em
média 7,01%, 6,27% e 16,33% para as sequências Ultra High DeĄnition - 3840×2160
(UHD), Full HD - 1920×1080 (FHD) e High DeĄnition - 1280×720 (HD), respectivamente,
considerando a mesma qualidade de vídeo (BLASI et al., 2015). Soluções para mitigar este
problema geralmente envolvem a simpliĄcação dos Ąltros de interpolação, responsáveis
por gerar artiĄcialmente esses novos pixels, ou a limitação do número de candidatos
pesquisados no processo (LV et al., 2014; HE et al., 2015; KALALI; HAMZAOGLU,
2018; LIM et al., 2016; DING; YE; WANG, 2015). O principal desaĄo do projeto de
hardware da FME é lidar com dependências de dados durante a interpolação e a busca.
Portanto, padrões alternativos de busca FME podem aliviar a quantidade de operações
aritméticas necessárias, tanto na interpolação quanto na busca, ao limitar o escopo da
FME a apenas alguns dos candidatos mais prováveis de serem escolhidos como referência
para codiĄcação.

Objetivos

O padrão VVC traz uma série de novas ferramentas de codiĄcação que resultam em um
aumento substancial da complexidade em relação aos padrões de codiĄcação de vídeo pre-
decessores. No entanto, de acordo com o conhecimento do autor, até agora nenhum estudo
sobre como a FME contribui para a eĄciência de codiĄcação deste padrão recentemente
concluído foi publicado e nenhum projeto de hardware dedicado foi proposto. Portanto,

este trabalho traz cinco contribuições:

1. Avaliação quantitativa do impacto da eĄciência de codiĄcação da FME em vídeos
codiĄcados com o VVC.

2. Proposta de três padrões Ąxos (simpliĄcados) de busca para a FME de VVC.
3. Avaliação da eĄciência de codiĄcação dos três padrões Ąxos propostos juntamente

com trabalho correlato.
4. Estimativa da redução de hardware fornecida para cada padrão de busca quando

comparado com uma arquitetura baseline.
5. Projeto e avaliação de uma arquitetura de hardware dedicado que implementa o pa-

drão de busca Ąxo que leva (potencialmente) ao melhor trade-off entre minimização
de consumo de energia e perda de eĄciência de codiĄcação, comparando-a com a
arquitetura baseline.

Metodologia

A Ąm de alcançar a primeira e terceira contribuições, foram realizados experimentos com
o software de referência VVC Test Model (VTM) v13.0 codiĄcando sequências de vídeo
do Common Test Conditions (CTC) (BOSSEN, 2012), de modo a avaliar a eĄciência de
codiĄcação da FME . Para avaliar suas eĄciências de codiĄcação, os padrões simpliĄcados
foram implementados dentro do VTM (terceira contribuição). Para a segunda contribui-
ção, os padrões propostos foram elaborados buscando reduzir o número de candidatos
computados pela FME, analisando apenas os candidatos mais prováveis de serem esco-
lhidos como referência. As características de uma arquitetura de hardware para FME
também foram levadas em consideração na deĄnição de cada padrão. Para chegar à
quarta contribuição, foi realizada uma análise sobre a arquitetura baseline. Cada padrão
foi avaliado para estimar a redução potencial de hardware. Uma implementação em hard-
ware e avaliação do potencialmente melhor padrão de busca é a última contribuição deste
trabalho. O hardware proposto é comparado a uma arquitetura baseline para se chegar
às conclusões deste trabalho.

Resultados e Discussão

Os experimentos realizados mostraram que desabilitar a FME do VVC leva a um aumento
de Bjøntegaard Delta Bitrate (BD-Rate) em média de 0,64% de para sequências de vídeos
da classe B (sequências FHD), enquanto Blasi et al. (2015) mostrou que ao desabilitar a
FME do HEVC resulta em um aumento de BD-Rate em média de 6,27% para sequências
FHD. Essa diminuição do impacto da FME no VVC em relação ao HEVC pode ser devido
à adição de novas ferramentas de predição inter-frame.
Os três padrões de busca propostos, denominados Box , Cross e Diamond, e um de um
trabalho relacionado, denominado Ding (a), foram implementados no VTM para medir
sua eĄciência de codiĄcação em comparação com a FME padrão. Os resultados das
execuções mostraram que Diamond e Ding (a) tiveram a melhor eĄciência de codiĄcação,
com uma média de BD-Rate de 0,18% e 0,19% para Low Delay with P slices only (LD-P)
e 0,15% e 0,16 % para acra, respectivamente. Cross apresentou resultados ligeiramente
piores, com BD-Rates médios de 0,34% e 0,28%, para LD-P e Random Access (RA),
respectivamente. Box teve a pior eĄciência de codiĄcação entre os padrões de busca Ąxos
testados, com aumentos de BD-Rate de 0,57% e 0,44% para LD-P e RA, respectivamente.
Com base em resultados detalhados da síntese da arquitetura baseline, foram traçadas
estimativas de redução de área e potência de para uma possível implementação de cada
padrão de busca com design de hardware semelhante. Dentre os quatro padrões avaliados,

o Cross foi estimado como tendo a maior redução de área ocupada e dissipação dinâmica
de potência em relação à baseline: 49,4% e 53,0%, respectivamente. Tais reduções são
consequência majoritariamente da remoção de buffers utilizados para armazenar amostras
fracionárias, resultando assim em um cálculo mais eĄciente da FME para uma arquitetura
Very-large-scale Integration (VLSI). Além de ser o padrão mais promissor na redução
de hardware, Cross também resulta em eĄciência de codiĄcação ligeiramente pior que
Diamond, Cross e, portanto, foi escolhido para um design de hardware dedicado.

Considerações Finais

Esta dissertação de mestrado apresenta um estudo sobre a FME no padrão de compressão
de vídeo VVC. Nela é apresentado o impacto em eĄciência de codiĄcação ao desabilitar a
FME, assim como o impacto de realizar a FME de forma simpliĄcada, computando apenas
um subconjunto de candidatos fracionários. Quatro padrões de busca simpliĄcados foram
avaliados, três propostos neste trabalho e um retirado da literatura, em relação a eĄciência
de codiĄcação e estimativas de redução de área ocupada e potência dissipada. Cross foi o
padrão mais promissor, com reduções elevadas do hardware implementado, isso se deve ao
fato desse padrão não computar as posições fracionárias que mais demandam de operações,
resultando em um hardware com menos buffers e que consegue operar em uma frequência
de operação menor para a mesma resolução alvo.

Palavras-chave: CodiĄcação de vídeo. Estimação de Movimento Fracionária. Padrão

de busca. Arquitetura VLSI. Versatile Video Coding.

ABSTRACT

Video coding is the core of any video application, since it allows for compressing videos,
making possible their storage and transmission through the web. The importance of video
coding algorithms raised signiĄcantly in these days of physical isolation imposed by the
Covid-19 pandemic, when video conference became a very powerful tool to avoid the com-
plete interruption of work and study activities. In order to allow for the compatibility
between coding and decoding systems, a number of standards have been developed over
the years by international standardization agencies, such as ITU-T and ISO, with the col-
laboration of industry and academia. Finalized in July 2020, the Versatile Video Coding
(VVC) is the most recently launched video coding standard, being developed to improve
the coding efficiency by more than 40% for the same image quality, when compared to its
predecessor, the High Efficiency Video Coding (HEVC). However, the dramatic complex-
ity increase of VVC leads to a higher power dissipation and hinders its implementation
in software for real-time applications. Therefore, it is of utmost importance to develop
techniques to lower the complexity of the most computationally intensive tasks of this
new standard while keeping, as much as possible, its coding efficiency improvements. As
usually occurs when a new video coding standard is released, the most intensive tasks,
e.g., the Fractional Motion Estimation (FME), are natural candidates for such studies,
not only due to their complexity but also to the intrinsic repetitiveness of operations. In
particular, when targeting portable devices, energy-efficiency hardware embedded video
encoders are indispensable to extend the deviceŠs battery life. Thereby, this work focuses
on reducing the complexity of the VVC FME by employing a Ąxed search pattern to
design a dedicated VLSI architecture. As Ąrst step, the impact of the FME on the VVC
coding efficiency was estimated in terms of BD-Rate by executing the VVC Test Model
(VTM) with the FME disabled. Then, four Ąxed search patterns were evaluated in terms
of coding efficiency and hardware resources, three of them proposed in this work and the
fourth one found in the literature. Coding efficiency was evaluated by implementing the
patterns within VTM. Hardware resources were evaluated in terms of area and power
by using as baseline a state-of-the-art FME hardware architecture that searches over all
available candidates. The proposed Cross pattern led to the largest hardware minimiza-
tion potential with acceptable reduction in coding efficiency and therefore was selected
for a dedicated hardware design. The designed architecture was described in verilog and
synthetize using a standard cell Ćow for a 45nm technology. The developed architecture
occupied area is down to 41.4% of that of the baseline architecture, while dissipating just
28.9% of the total power, on average. The architecture is also capable of running real
time applications on video resolutions of up to 8K@30fps. The trade-off is a BD-Rate
increase of 0.34% for LD-P conĄguration, and 0.28% for the RA conĄguration.

Keywords: Video coding. Fractional Motion Estimation. Search pattern. VLSI archi-

tecture. Versatile Video Coding.

LIST OF FIGURES

Figure 1 Ű Grayscale ramp of luma samples and example of a frame represented

with grayscale . 23

Figure 2 Ű A frame representation and its three channels. 26

Figure 3 Ű Three possible representations for the YCbCr color model 26

Figure 4 Ű Intra- and inter-frame redundancies . 28

Figure 5 Ű Intensity proĄle and row proĄle of a grayscale picture 29

Figure 6 Ű SimpliĄed video encoder hybrid model 30

Figure 7 Ű Multi-type tree splitting modes supported by VVC 31

Figure 8 Ű Example of a frame partitioned into CU 32

Figure 9 Ű Detailed view of the prediction unit of a video encoder 33

Figure 10 Ű Example of FBMA . 35

Figure 11 Ű FME sample interpolation . 38

Figure 12 Ű Interpolation of luma samples in VVC 40

Figure 13 Ű All luma candidates available in the VVC FME 41

Figure 14 Ű VTM search pattern for the FME . 41

Figure 15 Ű Search evaluation patterns proposed and evaluated by Ding, Ye & Wang

(2015) . 44

Figure 16 Ű Average running time per module for VVC and HEVC. 47

Figure 17 Ű Heatmaps of selected Bref by the FME 50

Figure 18 Ű Search patterns proposed for the VVC FME 51

Figure 19 Ű Search pattern proposed by Ding, Ye & Wang (2015) for the HEVC FME 52

Figure 20 Ű Chart with the BD-Rate results for the Ąxed patterns using VTM v13.0 56

Figure 21 Ű Interpolation and Block matching datapath from Seidel et al. (2021) . . 58

Figure 22 Ű Sums and Shifts (SS) and Filter datapath for HEVC FME proposed by

Seidel et al. (2021) . 59

Figure 23 Ű Rate term (λ×r) and Exp Golomb datapath 61

Figure 24 Ű Clock cycles diagram of the Seidel et al. (2021) architecture 62

Figure 25 Ű Interpolation datapath of the proposed Cross-based VVC Fractional

Motion Estimation (FME) hardware architecture 65

Figure 26 Ű SS datapath for the VVC FME . 66

Figure 27 Ű Block matching datapath of the proposed Cross-based hardware archi-

tecture . 66

Figure 28 Ű Clock cycle diagram of the Cross-based VVC FME hardware architecture 67

Figure 29 Ű Area breakdown of the baseline and the proposed Cross-based FME

architectures . 70

Figure 30 Ű Power breakdown of the baseline and the proposed Cross-based FME

architectures . 71

Figure 31 Ű Systematic literature review process. 80

LIST OF TABLES

Table 1 Ű Entropy coding example . 27

Table 2 Ű Coefficients deĄned by VVC for the interpolation of luma samples for

FME . 38

Table 3 Ű Coding efficiency of the patterns presented by Ding, Ye & Wang (2015) 44

Table 4 Ű Comparison between related work results 45

Table 5 Ű Results of BD-Rate when disabling the FME in VTM v13.0 49

Table 6 Ű BD-Rate results for the Ąxed patterns using VTM v13.0 for the LD-P

proĄle . 53

Table 7 Ű BD-Rate results for the Ąxed patterns using VTM v13.0 for the RA proĄle 54

Table 8 Ű Area share (%) of the Seidel et al. (2021) FME architecture and esti-

mates for the four Ąxed patterns . 62

Table 9 Ű Frequency required by each pattern for a target throughput 63

Table 10 Ű Synthesis results for the baseline and Cross-based FME architectures . . 69

LIST OF SYMBOLS

Bcan Candidate block.

Bori Original block.

Bref Reference block.

Bres Residue block.

D Differences matrix; D = Bcan- Bori.

Fori Original Frame.

Fref Reference Frame.

Fres Residual Frame.

jcost The lagrangian rate-distortion cost of selecting a given candidate as reference.

λ The Lagrange multiplier.

S Set of candidate blocks.

LIST OF ABBREVIATIONS AND ACRONYMS

ALF Adaptive Loop Filter . 47

AMVP Advanced Motion Vector Prediction . 47

AMVR Advanced Motion Vector Resolution . 37

BD-Rate Bjøntegaard Delta Bitrate . 9, 20, 42Ű44, 46

BMA Block Matching Algorithm . 30

CB Coding Block . 31

CMOS Complementary metalŰoxideŰsemiconductor . 63

CTB Coding Tree Block . 31

CTC Common Test Conditions . 9, 21

CTU Coding Tree Unit . 31

CU Coding Unit . 12, 31

DC® Synopsys® Design Compiler . 62

DCT Discrete Cosine Transform . 30

EDA Electronic Design Automation . 69

FBMA Fullsearch Block Matching Algorithm . 12, 34

FHD Full HD - 1920×1080 . 8, 21

FME Fractional Motion Estimation . 7, 11, 12, 21

FOVS First-Order Vertical Samples . 37

fps frames per second . 20

FSM Finite State Machine . 60

HD High DeĄnition - 1280×720 . 8, 21

HEVC High Efficiency Video Coding . 7, 8, 20

HM HEVC Test Model . 8, 20

HS Horizontal Samples . 37

HVS Human Visual System. 24

IME Integer Motion Estimation . 36

JVET Joint Video Exploration Team . 20

LD Low Delay . 43

LD-P Low Delay with P slices only . 9, 42, 43, 48

MC Motion Compensation . 45

MCM Multiplierless Constant Multiplication. 43

ME Motion Estimation . 34

MV Motion Vector. 34

MVD Motion Vector Difference . 46

PMD Portable Mobile Device . 20

PU Prediction Unit . 43

QP Quantization Parameter. 46

RA Random Access . 9, 43

RD Rate-Distortion . 34

RDO Rate-Distortion Optimization . 34

RTL Register Transfer Level . 45, 64

SAD Sum of Absolute Differences . 33

SATD Sum of Absolute Transformed Differences . 34

SIMD Single Instruction/Multiple Data. 46

SOVS Second-Order Vertical Samples . 37

SS Sums and Shifts . 12, 57

TB Transpose Buffer . 57

TSMC Taiwan Semiconductor Manufacturing Company Limited 62, 68

UHD Ultra High DeĄnition - 3840×2160 . 8, 20

VCS® Synopsys® Verilog Compiler Simulator . 67

VLSI Very-large-scale Integration . 10, 49

VTM VVC Test Model . 7, 9, 20

VVC Versatile Video Coding. 7, 8, 20

CONTENTS

1 INTRODUCTION . 20

1.1 RATIONALE, CONTRIBUTIONS AND METHODOLOGY 21

1.2 ORGANIZATION OF THIS DOCUMENT 22

2 VIDEO CODING CONCEPTS, THE HYBRID MODEL AND

THE PREDICTION STEP . 23

2.1 PSYCHOVISUAL REDUNDANCIES 24

2.2 STATISTICAL REDUNDANCIES . 27

2.3 THE HYBRID VIDEO CODEC MODEL 30

2.4 BLOCK PARTITIONING . 31

2.5 PREDICTION UNIT . 32

3 FRACTIONAL MOTION ESTIMATION IN VVC AND RE-

LATED WORK . 37

3.1 INTERPOLATION . 37

3.2 BLOCK MATCHING . 39

3.3 RELATED WORK ON FME HARDWARE DESIGN 42

4 IMPACTS OF THE FME AND PROPOSAL OF VVC FME

SEARCH PATTERNS . 46

4.1 IMPACTS OF THE FME . 46

4.2 EXPERIMENTAL ASSESSMENT OF THE CODING EFFICIENCY

IMPACT OF THE FME ON VVC . 48

4.3 PROPOSED FIXED SEARCH PATTERNS 49

4.4 CODING EFFICIENCY EVALUATION OF THE FIXED SEARCH

PATTERNS . 52

5 DEDICATED HARDWARE ARCHITECTURE FOR THE

VVC FME . 57

5.1 THE BASELINE HARDWARE . 57

5.1.1 Finite State Machine . 60

5.2 FIXED SEARCH PATTERN HARDWARE ESTIMATES 62

5.2.1 Area Reduction Estimate . 62

5.2.2 Power Reduction Estimate . 63

5.3 CROSS ARCHITECTURE . 64

5.3.1 Datapath . 64

5.3.2 Finite State Machine . 67

5.4 HARDWARE EVALUATION METHOD 67

19

5.5 SYNTHESIS RESULTS . 68

6 CONCLUSIONS . 72

6.1 FUTURE WORK . 73

REFERENCES . 74

APPENDIX A Ű LIST OF PUBLICATIONS AND AWARDS 78

A.1 PUBLICATIONS AS FIRST AUTHOR 78

A.2 CONTRIBUTION TO OTHER PUBLICATIONS 78

A.3 AWARD . 78

APPENDIX B Ű SYSTEMATIC LITERATURE REVIEW . 79

20

1 INTRODUCTION

In the last decade, the dissemination of high-speed internet connection worldwide

together with the popularization of smartphones enabled an exponential growth in digital

video consumption. The use of technologies such as video conferencing and streaming have

become essential for the daily activities of most people. According to Cisco (2018), in 2016

73% of all internet traffic was video, and this should grow to 82% by 2022. The Covid-19

pandemic intensiĄed this even further, as more people are relying on video services to

perform their professional activities, to follow classes, or meet relatives and friends. As

claimed by Koeze & Popper (2020), the Northern American people in particular have

been spending more time online, with NetĆix and Youtube receiving an increase in 16.0%

and 15.3% in traffic, respectively, during the Ąrst three months of 2020.

To keep up with the demand of the global market, new technologies are constantly

under development. Higher resolutions and frame rates are continuously demanded by

those who seek a better video experience. However, this search leads to new issues that

must be solved. A Ultra High DeĄnition - 3840×2160 (UHD) video without any compres-

sion (i.e., in the "raw" format) at 30 frames per second (fps) and using 24 bits per pixel

requires a bitrate of 5.971 Gbits/s, far from what current connections can provide. If this

sequence is 10 minutes long, it will require 447 GB to be stored, which is not acceptable

for ordinary users. Therefore, video compression is mandatory to make it possible to

store and share digital videos. To compress videos, video coders rely on standards so that

compatible devices can decode the information and reproduce the video.

The Versatile Video Coding (VVC) (ITU-T, 2020) is the new coding standard

developed by the Joint Video Exploration Team (JVET), Ąnalized in July of 2020. It is

estimated to provide more than 40% BD-Rate1 gain (PAKDAMAN et al., 2020), i.e., a

40% coding efficiency improvement, when compared to its predecessor, the High Efficiency

Video Coding (HEVC) (ITU-T, 2013). However, this gain comes with an increase in en-

coding time of around 10× when comparing the VVC Test Model (VTM) and theHEVC

Test Model (HM), which are the reference software models for VVC and HEVC, respec-

tively.

Whenever a video is captured using a Portable Mobile Device (PMD), it must be

compressed in real time due to storage limitations (VANNE et al., 2012). However, video

compression is a computationally intensive process that consumes large amounts of energy.

Therefore, video compression as a task embedded into PMD must also consider energy

efficiency (BRäSCHER; SEIDEL; GüNTZEL, 2017). A common and effective approach to

allow real-time compression while minimizing energy usage consists in adopting dedicated

1 Bjøntegaard Delta Bitrate (BD-Rate) is a metric that compares the efficiency of two codiĄcations
represented in percentage, were a negative value indicates a bitrate reduction to encode the same
sequence for the same quality, and a positive value indicates a bitrate increase (BJØNTEGAARD,
2001).

21

hardware accelerators for the video encoder.

1.1 RATIONALE, CONTRIBUTIONS AND METHODOLOGY

Fractional Motion Estimation (FME), which is a reĄnement search of newly in-

terpolated candidates using pre-existing ones, is one of the most compute-intensive tools

in the HM, being responsible for 33.88% of the total encoding time, on average (BLASI et

al., 2015). When it is disabled in HM, the bitrate increases on average by 7.01%, 6.27%

and 16.33% for UHD, Full HD - 1920×1080 (FHD) and High DeĄnition - 1280×720 (HD)

sequences, respectively, considering the same video quality (BLASI et al., 2015). To miti-

gate this problem, the HEVC FME solutions usually involve simplifying the interpolation

Ąlters or limiting the number of candidates searched in the process (LV et al., 2014; HE

et al., 2015; KALALI; HAMZAOGLU, 2018; LIM et al., 2016; DING; YE; WANG, 2015).

The main challenge of FME hardware design is dealing with data dependencies

during interpolation and search. Therefore, alternative FME search patterns can alleviate

both interpolation and search by limiting the latter to a few, most probable candidates.

The VVC standard brings a number of new coding tools that result in substantial

increase of complexity with respect to the previous standards. However, to the best of

the authorŠs knowledge, so far no study on how FME contributes to the coding efficiency

of this recently Ąnished standard has been published and no dedicated hardware design

has been proposed. Therefore, this work brings Ąve contributions:

1. Quantitative assessment of the coding efficiency impact of the FME on videos en-

coded with VVC.

2. Proposal of three (simpliĄed) Ąxed search patterns for the FME of VVC.

3. Evaluation of the coding efficiency of the three proposed Ąxed patterns along with

another one found in the literature.

4. Estimation of the hardware reduction provided by each pattern when compared to

a baseline FME architecture.

5. Design and evaluation of a dedicated hardware architecture that implements the

Ąxed search pattern leading to the best (potential) trade-off between energy mini-

mization and coding efficiency loss, comparing it to a baseline FME architecture.

In order to achieve the Ąrst and third contributions, experiments were conducted

with the VTM v13.0 by encoding video samples from the Common Test Conditions

(CTC) (BOSSEN, 2012), so as to evaluate the coding efficiency. For the case stated

in the Ąrst contribution, the FME function was disabled. For evaluating the coding ef-

Ąciency the Ąxed patterns were implemented within VTM (third contribution). For the

second contribution, the proposed patterns were designed searching to reduce the num-

ber of candidates computed by the FME, only analyzing the most likely candidates of

22

being chosen as reference. Executions of the default FME showed the percentage of each

candidate being chosen as reference. The characteristics of an FME hardware architec-

ture were also taken into consideration when deĄning each pattern. To reach the fourth

contribution, an analysis over the baseline architecture was conducted. Each pattern was

evaluated to estimate potential hardware reduction. A hardware implementation and

evaluation using the potentially best pattern is the last contribution of this work. The

proposed hardware is compared to the baseline architecture to draw the conclusions.

1.2 ORGANIZATION OF THIS DOCUMENT

The remaining chapters are organized as follows:

• Chapter 2 brings fundamental video coding concepts, as well as notations and deĄni-

tions that are used in this manuscript. It also brings an overview of the hybrid video

codec model, and reviews the most relevant concepts related to block partitioning

and prediction step.

• Chapter 3 presents the most relevant aspects of FME, with special attention to the

VVC FME, and presents and discusses the most relevant related work on dedicated

FME hardware architectures found in the literature.

• Chapter 4 presents the quantitative assessment of the coding efficiency impact of

the FME on VVC and the evaluation of the Ąxed FME search patterns.

• Chapter 5 presents the baseline architecture, area and power reduction estimates

for the proposed FME search patterns, and a hardware architecture based on the

potentially best search pattern. In addition, it presents the synthesis results of a

hardware architecture.

• Chapter 6 draws the research conclusions.

24

BrieĆy addressed in Chapter 1, everyday consumption of ŞrawŤ digital video

demands resources our current technology is unable to provide. Equation 2.1 shows the

required bitrate per second to compute a video with no compression. For example, an

video with 8K (7680 × 4320) resolution running at 30 fps and 24 bits per pixel requires a

bitrateraw of 23.89Gbps, nearly 3GB per second.

bitrateraw = bits per pixel × width × height
︸ ︷︷ ︸

Frame Resolution

× frame rate (2.1)

The total size of a digital video Ąle is obtained by multiplying the bitrateraw for

the duration of the video sequence, as shown in Equation 2.2. For the previous example,

the total Ąle size of the ŞrawŤ 8K video with one hour of duration would be 10.75TB,

which is unreachable by current technology.

sizeraw = bitrateraw × sample duration (2.2)

This example shows clearly that digital video data needs to be compressed to

enable its storage and transmission, which can be achieved by reducing the redundancies

within its representation. Shi & Sun (2008) classify video redundancies as:

1. Psychovisual: associated to characteristics of the Human Visual System (HVS);

2. Statistical: associated to the repetitions of symbols in the video. They are subdi-

vided in:

a) Coding: the statistical redundancy associated with coding techniques, i.e.,

the entropy;

b) Interpixel: pixels within a frame or a sequence of frames are not statistically

independent. Such class can be further divided into:

i. Spatial: the statistical correlation existing in pixels within the same

frame, i.e., intra-frame;

ii. Temporal: the statistical correlation existing in pixels within a sequence

of frames, i.e., inter-frame.

The next two sub-sections discuss redundancies in more detail.

2.1 PSYCHOVISUAL REDUNDANCIES

The psychovisual redundancies are related to information which the HVS is not

sensitive enough to differentiate. The HVS does not perceive visual information equally

and the main reason is that the number of cone cells, responsible for differentiating the

distinct light wavelengths, i.e., color, is far less numerous and less sensitive than rod cells,

which are responsible for perceiving light sensitive, i.e., brightness (HUNT, 2005). Con-

sequently, subtle variations to color are harder to be perceived than subtle variations to

25

luminance (HUNT, 2005). Then, since color information is less important than bright-

ness information, we may say that raw videos contain psychovisual redundancies which

are explored by video compression techniques so as to reduce the data needed to represent

them (SHI; SUN, 2008).

More speciĄcally , chroma subsampling is a type of compression that explores

the aforementioned characteristic of the HVS, by reducing the amount of chroma data to

represent a digital image. However, to apply chroma subsampling, it is necessary to use a

color model that represents color and light in separate components, e.g., YCbCr (ITU-T,

2002; ITU-T, 1995). In this color model, Y is the luma component and Cb and Cr are

the blue- and red-difference chroma components. The Y component is determined as a

weighted average of the RGB component, as deĄned in Equation 2.3.

Y = KR.R + KG.G + KB.B (2.3)

Where KR, KG and KB are derived from the RGB space, and must satisfy the

condition in Equation 2.4.

KR + KG + KB = 1 (2.4)

ITU-R recommendation BT.601-7 (ITU-R, 2011) deĄnes KR = 0.299, KG = 0.587

and KB = 0.114. The chroma components are derived from the difference between the

R, G or B components and Y component, as shown in Equation 2.5 to Equation 2.7.

Cb = B − Y (2.5)

Cr = R − Y (2.6)

Cg = G − Y (2.7)

The complete representation of a pixel is given by the Y component and the

three chroma components. However, since Equation 2.4 is always true, only two chroma

components are required to store and transmit videos, as the third chroma component

can be derived from the other two. In the case of YCbCr, the green-difference (Cg) is

not stored or transmitted. Figure 2 shows a frame representation, where the frame is

constituted from a grid of pixels, each pixel being composed of three components of the

YCbCr color space. The frame representation of a component is called channel, as seen

on the right side of the picture.

As previously mentioned, the amount of data to represent videos can be reduced

by applying chroma subsampling. Figure 3 illustrates three possible representations for

the YCbCr color model. In Figure 3a, every pixel is represented by the three components.

In Figure 3b, one in every two columns of pixels is represented only by the Y component

27

used within an encoding model that explores the types of redundancies.

2.2 STATISTICAL REDUNDANCIES

Statistical redundancies are related to the repetitions of symbols in the video. Shi

& Sun (2008) classify these redundancies into two types: interpixel and coding. Similarly

to psychovisual, interpixel is related to redundancies associated with data contained in to

represent the video. To reduce the bitrate, the encoder can eliminating this redundancies,

e.g., chroma sampling, or utilizing correlation within pixel data to represent the image

with fewer bits, as will be seen in the following sections. Coding redundancies, on the

other hand, are different in the way that they are independent from the information, but

instead are related to the way this information is encoded (SHI; SUN, 2008). Entropy

coding can be applied to reduce these coding redundancies, compressing data by changing

the representation of each symbol from a constant number of bits to a variable number,

depending on the occurrence probability of each symbol.

Table 1 illustrates the entropy coding principle. The leftmost column lists six

symbols to be encoded, the following columns list the occurrence probability, the Ąxed

length base code, and the variable length new code. In the Ąxed base code, all symbols are

encoded with three bits. In the variable new code, high probability symbols are encoded

with fewer bits, whereas low probability symbols are encoded with more bits.

Table 1 Ű Entropy coding example.

Symbol Probability Base code New code
a 0.5 000 0
b 0.2 001 01
c 0.1 010 001
d 0.1 011 010
e 0.05 100 0001
f 0.05 101 0010

The average bit length per symbol for the Ąxed base code is three bits, evidently.

Equation 2.8 calculates the average bit length per symbol encoded with the variable length

new code, 1.9 bits per symbol, 63.3% of the base code average bit length.

L = 0.5 × 1 + 0.2 × 2 + 0.1 × 3 + 0.1 × 3 + 0.05 × 4 + 0.05 × 4 = 1.9 (2.8)

Entropy coding is a lossless type of data compression, meaning the decoded data

is the same as the original data. Thus, no information is lost. On the contrary, chroma

subsampling is a lossy type of data compression, meaning that information is lost in

the coding process and the reconstructed data is not the same as the original. As a

consequence, this lossy compression will cause loss in video quality. The key idea is to

avoid introducing losses that are visually perceptible (SEIDEL, 2019).

28

The second type of statistical redundancies is interpixel. The interpixel redun-

dancy is the statistical correlation between pixels in the same frame, i.e., intra-frame, or

distinct frames, i.e., inter-frame. Figure 4 illustrates the two types of interpixel redun-

dancies. On the top left corner of Frame t=0, the data of the pixels representing that

slice of the wall are very similar. Video coding tools can explore these data similarities

across multiple pixels of the same frame to reduce the amount of bits required to encode

these pixels. Likewise, there are data similarities across neighboring frames. For instance,

the data needed to represent the basketball players are the very similar between Frame

t=0 and Frame t=1, and thus can also be explored to achieve higher compression rates.

Figure 4 Ű Intra- and inter-frame redundancies. Intra-frame redundancy is the correlation between adja-
cent pixels within a given frame, as illustrated by the wall on the top left corner of Frame

t=0. In turn, inter-frame redundancy dwells on correlation within neighboring frames, as
illustrated by the capture of the players on the pitch at Frame t=0 and Frame t=1.

Frame t=0 Frame t=1

Source: adapted from Cancellier (2016).

The correlation of data within nearby samples can be better discerned when

analyzing the data of a single channel. Figure 5 shows a grayscale picture with 8 bits per

pixel, and the proĄle of the luma values for the row 318 and column 62. From Figure 5b,

one may observe that samples from row 1 through row 160 hold values that are close to

each other, same for samples from row 372 and 531. Smaller intervals with good value

correlation are also present across the intensity proĄle. The column proĄle, shown in

Figure 5c, has plenty of correlation within the samples as well: the luma values are very

similar from columns 1 through 259 and from columns 560 through 689, adding to more

data redundancies.

In video coding, prediction is a key technique which allows the encoding tools

to explore interpixel redundancies, both intra- and inter-frame. Prediction attempts to

reduce the redundancies between pixels by forming a residual frame (Fres), the residual

frame is the difference between the original frame (Fori) and a reference frame (Fref).

Such Fres is expected to present lower entropy than its related Fori. Therefore, the Fres

is encoded along with the Fref. The decoder is responsible for reconstructing the Fori by

adding the Fres to the Fref. This compression can be lossy if the Fres if quantized prior

the bitstream generation, then the decoded ForiŠ may not be identical to the Fori.

31

difference between Bori and Bref, is sent to the transform step, followed by a quantization

step that consists in reducing the signal representation intervals. Said intervals are set by

quantization parameters and the information between this intervals is lost, making it a

lossy compression. Lastly, an entropy encoding is performed to further reduce the amount

of data to represent the video, thus generating the bitstream.

Part of the decoding loop consists of reversing the encoding steps by entropy

decoding, inverse quantization and inverse transform. The data resulted is a reconstructed

residue block which added to the reference frame is used to reconstruct the original frame.

2.4 BLOCK PARTITIONING

As mentioned in Section 2.3, each frame is partitioned into blocks before under-

going the prediction, such partitioning being deĄned by the coding standard. This section

relies on the VVC to explain the frame partitioning mechanism, since it is the most recent

standard. However, it is worth mentioning that all other video coding standards adopt

similar partitioning mechanisms.

In VVC, each frame is divided into the so-called Coding Tree Units (CTUs). For

each frame in a video that uses the YCbCr color model, a CTU is an N×N block of luma

sample and the two corresponding chroma samples, each component being called Coding

Tree Block (CTB). The maximum allowed size of the luma block in a CTU is 128×128

(CHEN; YE; KIM, 2020).

Each CTU is then split into Coding Units (CUs) using a quaternary-tree struc-

ture. Afterwards, each quaternary-tree leaf node can be further split using Ąve splitting

types in a multi-type tree structure, as shown in Figure 7. A vertical binary split decom-

poses an N×M unit into two N/2×M units, whereas a vertical ternary split decomposes an

N×M unit into N/4×M, N/2×M and N/4×M units (CHEN; YE; KIM, 2020). Horizontal

binary and ternary split operate in a similar way, but in the opposite axis. The block

partitioning can also choose to not split the unit. A mode decision step is responsible

for the partitioning mode of each CTU. Same as the CTU, the CU consists of a luma

sample block and two corresponding blocks of chroma samples, called Coding Block (CB)

(CHEN; YE; KIM, 2020).

Figure 7 Ű Multi-type tree splitting modes supported by VVC.

Vertical Binary Horizontal Binary Vertical Ternary Horizontal Ternary Quaternary

Source: adapted from Chen, Ye & Kim (2020).

34

Dm×n = Bori
m×n−Bcan

m×n (2.11)

The Bres, which will encoded, is the difference sample by sample of the Bori and

Bcan as deĄned in Equation 2.12.

Bres
m×n=Bori

m×n−Bref
m×n (2.12)

Another widely used metric is Sum of Absolute Transformed Differences (SATD).

It computes a transform over Dm×n anticipating the transform process of the Bres that

is executed after the prediction (Figure 6). Although, transforming the Dm×n for each

Bcan for the Bref decision is a very compute-intensive task. The trade-off is picking a Bres

that will produce minimal residue after the transformation step, therefore minimizing the

bitrate (SEIDEL, 2019).

In the intra-frame prediction, the set of Bcans is located within the same frame

as Bori. They are artiĄcially created by interpolation of samples from the borders of

neighbor blocks outside the Bori. Distinct intra modes deĄne how the corresponding

Bcans are generated. A BMA is used to select the best mode Ąnding the Bref over a set

of S that minimizes the applied cost metric. To allow decoding, the selected mode is also

included in the bitstream along with the Bres.

The inter-frame prediction is based on Motion Estimation (ME). ME is the pro-

cess of Ąnding a Bref, over a set of S inside a search area of a Fref, that is the most

similar to the Bori according to the applied distortion metric, as illustrated in Figure 10.

A Fullsearch Block Matching Algorithm (FBMA) is performed to obtain the optimum

value by including all blocks inside the search windows in the set of S. However, fast

BMA algorithms, that searches only on some of the candidates, may be used to speed up

the search, at a cost of a sub-optimal block matching. Besides the Bres, a Motion Vector

(MV) that stores the coordinates of the Bref in reference of the Bres is also encoded, so

that the decoder can identify the Bref of each Bres for future reconstruction of the encoded

block. The residue MV in this example of Figure 10 is −→mvres = (3, −2).

Using only a distortion metric to compute the cost of each Bcan is a rather sim-

plistic approach. Since the −→mvres is also encoded to the bitstream, it will also affect the

candidateŠs cost. Smaller −→mvres will need fewer bits to be encoded, while larger −→mvres will

require more bits to be encoded. Therefore, to improve coding efficiency, encoders often

rely on an optimization to the cost metrics that take into consideration the distortion

metric and the number of bits needed to encode such Bori, called Rate-Distortion Opti-

mization (RDO) (SULLIVAN; WIEGAND, 1998; ORTEGA; RAMCHANDRAN, 1998).

In RDO, the cost function (Equation 2.9) is usually a compound metric that con-

siders both rate (compression) and distortion (quality), thus called Rate-Distortion (RD)

cost. The Lagrangian RD cost (jcost) weights both terms by means of a pre-calculated

Lagrange Multiplier (λ), as deĄned in Equation 2.13.

35

Figure 10 Ű Example of FBMA considering a 16×16 pixel search area and 8×8 pixel block size, resulting
in 9×9 B

cans ∈ S. The selected B
ref is the B

can at coordinates (3, −2). After B
ref is selected,

the B
res is computed, as deĄned in Equation 2.12.

Reference block (Bref)Original block (Bori) Residue block (Bres)

Reference Frame (Fref) Original Frame (Fori)

Coding order
Set of candidate blocks (S):

-4

4

-3

3

-2

2

-1

1

0

0

1

-1

2

-2

3

-3

4

-4

Source: Seidel (2019).

jcost(B
ori, Bcan) = distortion



Bori, Bcan


+λ×rate


Bori, Bcan


(2.13)

A simpliĄed way to obtain a rate estimate is by considering the size (g(a)) of

exponential Golomb codes to represent the residual MV coordinates, as shown in Equa-

tion 2.14 (Trudeau; Coulombe; Desrosiers, 2014).

36

rate(−→mv) = rate(x, y) = g(x) + g(y) (2.14)

where g(a) is the number of bits to encode the given a using exponential Golomb

codes (Trudeau; Coulombe; Desrosiers, 2014), such a function being deĄned in Equa-

tion 2.15.

g(a) = 2 × ⌊log2(2 × ♣a♣ + 1)⌋ + 1 (2.15)

To further increase coding efficiency, ME is usually split into 2 steps, Integer

Motion Estimation (IME) and Fractional Motion Estimation (FME). IME is the initial

search within a search area in a Fref, as illustrated in Figure 10. FME is a reĄnement

over IME, where new Bcan are artiĄcially generated in fractional positions, i.e., between

pixels around the Bref chosen by the IME.

37

3 FRACTIONAL MOTION ESTIMATION IN VVC AND RELATED

WORK

This chapter begins with a description of the most relevant aspects of FME, while

highlighting the particular features of the VVC FME. Then, in Section 3.3 it presents and

discusses the proposals of dedicated FME hardware architectures found in the literature.

FME is further divided into two steps:

1. Interpolation: were samples in fractional positions around the −→mvime are generated

to form new Bcans;

2. Block Matching: where a BMA searches the new Bcans to Ąnd a reĄned Bref.

The FME is performed independently for each channel. In HEVC, the luma

samples have a CU with 1/4-precision positions, i.e., the interpolation can artiĄcially

generate 4× the number of Bcans, requiring two more bits to represent the −→mvres. These

samples are generated using a 7/8-tap Ąlters. The taps indicate the number of samples

necessary as inputs, e.g., a 7-tap Ąlter assembles a luma sample from an array of seven

samples. VVC, in turn, introduced Advanced Motion Vector Resolution (AMVR), which

enables each CU to be encoded with a different MV precision. When AMVR is set to

default, the CU has 1/4-precision as in HEVC, while it can change the FME precision to

1/2-precision (CHEN; YE; KIM, 2020).

3.1 INTERPOLATION

As illustrated in Figure 11, samples in fractional positions, often referred to as

fractional samples, are generated in both horizontal and vertical directions. They are

classiĄed in one of three types, according to the array of samples they are generated

with: Horizontal Samples (HS), First-Order Vertical Samples (FOVS) and Second-Order

Vertical Samples (SOVS). HS are generated with an horizontal array of integer samples as

inputs in the interpolation Ąlter, whereas FOVS and SOVS are generated with a vertical

array of samples. However, observe that HS are used to generate SOVS and therefore, the

generated HS need to be temporarily stored which in hardware implementations ,must be

done in a dedicated buffering unit.

To generate the fractional samples, the inputs are processed with an interpolation

Ąlter. Table 2 shows the coefficients of the VVC interpolation Ąlters. Each input is

multiplied by a Ąlter coefficient depending on its position with respect to the sample to

be interpolated. The quarter-pel coefficients (qi) are use to generate samples with 1/4 MV

precision, i.e., half-pel samples, e.g., −→mvres = (0.25, −0.5). The half-pel coefficients (hi) are

used for samples with 1/2 MV precision, i.e., quarter-pel samples, e.g., −→mvres = (0.5, −0.5).

The alternative halt

i are use for half-pel samples whenever the AMVR sets the FME

precision to 1/2.

39

the maximum value is 255, therefore all values of fractional samples that surpass this

threshold are clipped to 255 to avoid overĆow. Similarly, fractional samples with negative

values are clipped to 0. Filters up (Equation 3.1) and down (Equation 3.4) are applied to

quarter-pel samples, whereas Ąlters middle (Equation 3.2) and middlealt (Equation 3.3)

generate half-pel samples, for 1/4 and 1/2 MV precision, respectively.

upk = clip



0, 2b−1,
6∑

i=0

(qi−3×ink+i−3) >> 6



(3.1)

middlek = clip



0, 2b−1,
7∑

i=0

(hi−3×ink+i−3) >> 6



(3.2)

middlealt

k = clip



0, 2b−1,
5∑

i=0



halt
i−2×ink+i−3



>> 6



(3.3)

downk = clip



0, 2b−1,
6∑

i=0

(q3−i×ink+i−3) >> 6



(3.4)

Figure 12 illustrates the interpolation process for three HS, utilizing the three

1/4-precision Ąlters, up, middle and down. The process for FOVS and SOVS is similar,

just changing the x axis by the y axis. A fractional sample requires three to four input

samples in each direction. If for example the current block size is 8 × 8, as seen in

Figure 11, the HS on the edge will need 4 integer samples from the right and left outside

the Bref, same for FOVS but on the top and bottom. For SOVS, it is required extra 4

rows of HS on the top and bottom to be interpolated prior to the interpolation of SOVS.

Therefore, if the current block size is, for example, 8×8, a 16×16 block of integer sample

centered around the Bref

ime
is required. For a block size of 16 × 16, a 24 × 24 integer sample

block is required.

3.2 BLOCK MATCHING

In VTM, the VVC FME has 48 luma fractional Bcan when set to 1/4-precision,

and 8 luma Bcan when set to the alternative 1/2-precision, as illustrated by Figure 13. As

seen in Section 2.5, for the reconstruction of an inter-predicted block, it is necessary the

Bres and −→mv. Furthermore, for the reconstruction of a fractional inter-predicted block, the

decoder needs the Bres, the −→mvfme, and the interpolation Ąlter used to generate the Bref.

Therefore, the Ąlters coefficients must be deĄned by the video coding standard, allowing

in that way, that any decoder has the tools to reconstruct the fractional samples of Bref

at the −→mvfme position. However, the metrics to chose this block as Bref are not necessary

for its reconstruction, leading to design opportunities where a BMA is chosen to Ąt the

requirements of certain application.

There are numerous algorithms to perform the block matching. One possible

solution is applying a FBMA to the FME which, as discussed previously, computes the

40

Figure 12 Ű Interpolation of luma samples in VVC. The three types of Ąlters are depicted generating
horizontal samples. As most fractional pixels will be interpolated in the vertical direction,
we named the Ąlters which generate them considering the position of the central coefficient
(i = 0) used for their interpolation: up (7-tap), middle (8-tap) and down (7-tap). Up is used
for samples in positions a, d, e, f and g; middle for b, h, i, j and k; down for c, n, p, q and r.

d e f g

h i j k

n p q r

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

s+3

t+3

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

A1,1

-1 4 -11

40 40

-11 4 -1

-1 4 -10

58

17

-5 1

1 -5

17
58

-10 4 -1

Pels: Integer Horizontal Vertical Vertical 2nd order

Interpolated samples

Filter: Up Middle Down

Coefficients

srci clip

((

∑

i

ci×srci

)

� 6

)

ci

Key

Source: adapted from Diniz et al. (2015), Afonso et al. (2015), Afonso et al. (2016).

cost for every Bcan requiring a lot of computation. Another approach is applying a BMA

for a smaller search window which can be a more viable option since it relies on fewer

Bcans. The reference software models, HM and VTM, implement a 2-step search pattern

where 9 Bcans are evaluated in each step, as illustrated in Figure 14. At Ąrst search,

also referred to as half-pel search, the BMA computes the cost of the eight Bcans with

1/2-precision and in the integer position, as illustrated in Figure 14a. In a second search,

also referred to as quarter-pel search, the BMA evaluates the Bcans around the chosen

candidate in the Ąrst search, as well as the chosen candidate, as illustrated in Figure 14b.

When the precision of the FME is set to 1/2, the VTM executes only the Ąrst search,

which already includes all available fractional candidates for such precision.

In the example of Figure 14, after executing both search steps, the Bcan in the

coordinates (xfrac, yfrac) = (0.5, −0.25) is the best position according to the BMA, leading

to the lowest value of the metric cost according to its algorithm, therefore being chosen

41

Figure 13 Ű All luma candidates available in the VVC FME, as deĄned in VTM, for the two modes of
operation: (a) 1/4-precision and (b) 1/2-precision.

(a)

-1

-1

10

0

1

0 25 26 27242322

18

11

4

31

38

45

15

8

1

28

25

42

16

9

2

29

36

43

17

10

3

30

37

44

19

12

5

32

39

46

20

13

6

33

40

47

21

14

7

34

41

48

(b)

-1

-1

10

0

1

0.5

0.5

-0.5

-0.5

0 54

2

7

1

6

3

8

Source: the author.

Figure 14 Ű VTM default 2-step search pattern for the FME. (a) In the Ąrst search, eight B
can in fractional

positions plus the one in integer position (0,0) are evaluated by the BMA. The eight searched
positions are always the same. (b) Second search around the B

can picked in the Ąrst step
(0.5,0). The nine B

can are evaluated once again by the BMA and the best one (0.5,-0.25)
according to the metric cost is chosen as B

ref.

(a)

-1

-1

10

0

1

0.5

0.5

-0.5

-0.5

1 11

1

1

1

1

1

1

(b)

-1

-1

10

0

1

0.5

0.5

-0.5

-0.5

2 2 2

2

2

2

2

2

2

Source: the author.

as Bref. The value of the −→mv is then updated to incorporate the fractional precision by

adding the fractional coordinate to the −→mvime, as deĄned by Equation 3.5.

−→mvfme = −→mvime + (xfrac, yfrac). (3.5)

Even though it is used in the reference model of both VVC and HEVC, this

search algorithm has a few shortcomings. For example, for hardware implementations,

when designing the FME with this search algorithm, the architecture may interpolate only

the 8 Bcans of the Ąrst search, and once the BMA has chosen the best, it interpolates the

42

last 8 Bcans, leading to big data stalls. Or, the architecture may interpolate all samples

before executing the two-step search, in this case, leading to unnecessary calculations,

since only 16 Bcans of a total of 48 Bcans are computed by this BMA.

Section 3.3 discusses efficient algorithms to implement the FME interpolation

and/or search in dedicated hardware architectures.

3.3 RELATED WORK ON FME HARDWARE DESIGN

This section explores the main ideas behind the related work selected during the

conducted systematic literature review1. They propose different alternatives to the FME

implementation by changing the interpolation Ąlters coefficients or proposing new search

methods. It is worth mentioning that to the best of our knowledge, no work on the

interpolation and/or search for the FME VVC has been published yet. Nonetheless, this

work on the VVC FME can be compared to the related work applied to HEVC since it is

HEVC compatible.

Badry, Shalaby & Sayed (2018) present an interpolation-free algorithm for the

FME. They propose to select the Bref based on the statistical analysis of the matching

error surface around the integer sample MV location (BADRY; SHALABY; SAYED,

2018). Such strategy led to a degradation in BD-Rate of 2.2%, the highest amongst all

related work, while obtaining a 96% reduction of the FME computational cost.

Lv et al. (2014) tested four different tap interpolation Ąlters, a 4-tap, a 6-tap,

an 8-tap (slightly different from the standard) and a 10-tap Ąlter in the HM v11.0 with

the LD-P conĄguration. The proposed method consists in using a resolution-adaptive

interpolation Ąlter, therefore selecting the best interpolation Ąlter to be used based on

the resolution of the video being coded. After the interpolation, it utilizes the standard

FME search from HM which, in a hardware implementation, will lead to stalls, repetitive

memory accesses and operations. Their results show that for Class A sequences of the

HEVC CTC the 4-tap Ąlter led to the best BD-Rate, with an average of −3.4% for the

luma component. For the Class B, the best results came from the 6-tap, averaging a

BD-Rate of 0.0%. It was also the best for the Class E, with an average of −1.0% in

BD-Rate. For classes C and D, the 10-tap Ąlter brought the best results, with averages in

BD-Rate for the luma of −0.5% and −1.5%, respectively. Even though, this Ąlter design

could be used in a more efficient search, if the mentioned architectural issues were Ąxed.

On the other hand, a hardware implementation of multiple idle Ąlters will have a negative

impact on occupied area and leakage power.

Kalali & Hamzaoglu (2018) proposed two approximate HEVC interpolation Ąl-

ters, each one composed of a 3-tap and a 4-tap for the samples that are interpolated with

a 7-tap and an 8-tap in HM, respectively. Unlike Lv et al. (2014), Kalali & Hamzaoglu

1 Appendix B brings the methodology employed in the systematic review of the literature.

43

(2018) compare both Ąlters instead of using them together. The Ąlters are implemented

with Multiplierless Constant Multiplication (MCM), which reduces the number and sizes

of the adders. The interpolation architecture is implemented in an FPGA board. It in-

terpolates all the candidate samples for an 8×8 Prediction Unit (PU) block in 44 clock

cycles. The proposed Ąlters presented a degradation in BD-Rate of 0.40% and 1.14%

for the luma samples. The Ąrst ten frames of each sequence were coded with the LD-P

conĄguration in HM 15.0. This architecture consumes up to 67.1% less energy than the

original hardware proposed by the same authors. Such results are expected since the au-

thor removed more than half of the coefficients in each Ąlter, resulting not only in smaller

Ąlters, but also in less memory reads to feed the Ąlters.

He et al. (2015) proposed a bilinear quarter-pixel approximation together with a

new search pattern to reduce the complexity of the FME. Their proposed interpolation

unit generates the 24 fractional samples that are closest to the integer sample. However,

only 12 candidates are searched, such selection being based on the evaluation of the

neighbors integer samples costs. A SATD is performed at the search module. The output

of the architecture is the fractional MV. It only supports partitions of 16×8 PU sizes

and larger. Results generated with HM 10.0 and selected resolutions showed a BD-

Rate degradation of 2.07% for their proposed work, while claiming to improve the power

efficiency by 52%.

Lim et al. (2016) presented a fast FME algorithm by reducing the number of

searched points. The authors ran simulations with HM 13.0 and observed that during

the Ąrst step of the search, the half fractional candidates located in one of the x/y-axis

had a 45.3% chance of being picked against 7.4% of the samples outside the axes, while

integer sample is picked in the 47.3% of the remaining cases. For this reason, Lim et

al. (2016) propose an algorithm that either skips the 1-step search or performs it only

on the 4 candidates located in one of the x/y-axis. The 2-step, instead of searching all

the 8 candidates around the candidate chosen in the 1-step (Figure 14b), searches only

3 candidates, the ones between the half position chosen and the integer position. If the

1-step is skipped, then the search module evaluates only the four closest quarter samples

located at the x/y-axis. The algorithm leads to a BD-Rate of 0.93% for the Random

Access (RA) conĄguration and 0.68% for the Low Delay (LD) conĄguration, when coding

the Ąrst 32 frames of Ąve selected sequences. Even though those results are impressive

when compared to other works, this algorithm can mainly be applied to software im-

plementations of the FME. An efficient hardware implementation would require a more

consistent pattern of search, since a lot of quarter candidates searched would not be avail-

able, leading to big data stalls. This could be avoided by an early computation of some

quarter samples, especially the horizontal ones, although they may lead to some unnec-

essary calculations. Moreover, for an efficient hardware implementation, the FME would

ideally interpolate Bcan in positions that share the inputs, at the same time searching

Bcan that share samples, thus avoiding repetitive operations and hardware stalls.

45

to this work since it was developed in the same research group, granting full access to its

RTL descriptions and testbench. This made it possible to reuse some building blocks and

use the same design tools, so as to establish fair comparisons. Consequently, the synthesis

results mostly reĆect the changes in the architecture, leading to a better conclusion on

the impacts and trade-offs of the proposed algorithm.

Although no work on the interpolation and/or search for the FME VVC could be

found in the literature, a few works propose the implementation of hardware accelerators

for the interpolation Ąlters of VVC, targeting the Motion Compensation (MC) Azgin,

Kalali & Hamzaoglu (2020), Silva et al. (2021), Mahdavi & Hamzaoglu (2021). MC is

executed during the reconstruction of the encoded frame: it processes the information

of the ME to reconstruct inter-predicted frames. Therefore, the MC requires the imple-

mentation of all Ąlters supported by the video coding standard, allowing it to always

reconstruct the information correctly. MC has 15 different interpolation Ąlters for the

fractional MV precision of up to 1/16 pixel supported by VVC. Since these three works

target the MC rather than the ME, they cannot be compared to the woks addressing the

FME due to major differences between the two processes.

Table 4 shows a comparison between the results of related work that propose

dedicated hardware architectures for the HEVC FME. It is worth mentioning that the

FME VVC architecture proposed in this work can be compared to those in Table 4 because

it is HEVC compatible.

Table 4 Ű Comparison between related work results.

Badry Kalali He Ding Afonso Seidel
Related Work et al. 2018 et al. 2018 et al. 2015 et al. 2015 et al. 2015 et al. 2021

Standard HEVC HEVC HEVC HEVC HEVC HEVC
Technology 65 nm 90 nm 65 nm Xilinx FPGA 45 nm 45 nm

Maximum Frequency (MHz) 602 300 188 200 397 400
Maximum Resolution 2160p@60fps 2160p@45fps 4230p@30fps 2160p@60fps 2160p@60fps 2160p@60fps

Gate Count (K) 26.6 13.2 1183 n.a. 148 n.a.
Total Power (mW) 18.6 16.4 198.6 n.a. 15.8 27.9

BD-Rate (%) 2.2 n.a. n.a. 2.4 4.0 1.2

46

4 IMPACTS OF THE FME AND PROPOSAL OF VVC FME SEARCH

PATTERNS

This chapter discusses the impact of the FME on VVC. Particularly, it presents

coding efficiency results obtained by disabling the FME on the VTM v13.0 (BOSSEN;

LI; SUEHRING, 2020a). It also proposes Ąxed search patterns for the VVC FME and

evaluates them in terms of coding efficiency.

4.1 IMPACTS OF THE FME

In the HM, FME is responsible for up to 33.88% of inter prediction encoding time

(BLASI et al., 2015). Particularly, 46.9% of FME time is spent interpolating the half and

quarter samples, while the remaining 53.1% is spent at the BMA (BLASI et al., 2015).

Disabling FME entirely when encoding UHD sequences accounts for a Bjøntegaard Delta

Bitrate (BD-Rate) average increase of 7.01% (BLASI et al., 2015).

Although several works have been published on the VVC all along its devel-

opment, and the number of works on the complexity and impacts of different tools is

evergrowing, there is still a lack of studies that explore the complexity and impacts of the

VVC FME. Siqueira, Correa & Grellert (2020) performed rate-distortion and complex-

ity comparison of HEVC and VVC by using HM v16.9 and VTM v5.0 reference models,

respectively, set for the RA proĄle and encoding for Quantization Parameter (QP) 22,

27, 32 and 37, in accordance with the CTC manual. The proĄling results are presented

in Figure 16, which shows the complexity per module for both reference models. As one

may observe, from all modules presented in Figure 16, FME is the only that decreased in

complexity. Siqueira, Correa & Grellert (2020) attribute the Single Instruction/Multiple

Data (SIMD) optimization in VTM to cause this large decrease in the processing time of

this step.

In Chapter 3, it was discussed the introduction of the AMVR in VVC, a new

tool that is capable of changing the MV precision. While HEVC only computes the FME

in quarter-pel precision, VVC may compute the FME in quarter-pel or in a simpliĄed

half-pel. When running in half-pel precision, the complexity of the FME is considerably

lower, having only 8 Bcans when compared to 48 Bcans for quarter-pel precision. In such

a case, VTM interpolates less candidates and executes a single search, thus lowering the

overall complexity of the FME in VVC, when compared to its predecessor. Therefore, the

introduction of AMVR may also decrease the processing time of the FME.

Oppositely, beyond the inter coding features in HEVC, a number of new and

reĄned inter prediction coding tools were added to allow VVC to reach a substantial

improvement in coding efficiency (CHEN; YE; KIM, 2020), namely:

• Extended merge prediction.

• Merge Mode with Motion Vector Difference (MVD).

48

4.2 EXPERIMENTAL ASSESSMENT OF THE CODING EFFICIENCY IMPACT OF

THE FME ON VVC

So far, no work was found in the literature showing experimental results or

even estimates of the overall impacts of the FME on the VVC coding efficiency. Hence,

the Ąrst contribution of this work relies on such qualitative assessment. To accomplish

that, the VTM v13.0 (BOSSEN; LI; SUEHRING, 2020a) was executed following the

CTC (BOSSEN et al., 2019), for the FME disabled and for the default conĄguration of

the VTMŠs FME, the latter being used as baseline for BD-Rate calculations. The conĄg-

urations used were Low Delay with P slices only (LD-P) and RA. In LD-P conĄguration,

after the Ąrst frame is encoded (using only intra-prediction, i.e., I-slice) the remaining

frames are encoded using only information of past frames which were either intra (I-slice)

or inter predicted (P-slice). In RA, an I-slice is encoded every N frames, while the remain-

ing ones are B-slice or Bi-Directional. Blocks in B-slice frames can be predicted using

information of frames from the past and future, switching the encoding order, resulting

in a better compression performance. However, this switching of the encoding order of

frames will cause decoding delays since a frame will have to wait until all frames that it

references are decoded, because it may include future frames. Therefore, LD-P is optimal

for applications that require extreme low delay even at the cost of worst coding efficiency,

such as video conferencing or live streams. Table 5 shows the obtained results. A positive

BD-Rate means that more bits are needed for the same quality level, whereas a negative

value indicates improvement in coding efficiency when compared to a baseline, which in

this particular analysis is VTM v13.0 with the default search pattern.

The average BD-Rates are 0.95% and 0.61% for LD-P and RA, respectively,

thus indicating coding efficiency reductions, particularly for some classes, such as C and

D, disabling the FME has more negative impact than for others, such as A1 and A2.

However, the impact of disabling the FME in VVC is far lower from the average BD-Rate

of 7.01% reported by Blasi et al. (2015) when disabling the FME in HEVC. In light of the

discussion presented in Section 4.1, it is fair to speculate that the newly introduced inter

prediction tools are responsible for Ąnding new Brefs for the blocks originally predicted

with FME, thereby compensating, to some extend, the negative impacts of disabling the

FME.

Moreover, VVC brings a multitude of new tools while also improving the old ones

to further increase the coding efficiency, with bitrate savings above 40% (PAKDAMAN

et al., 2020), which causes an increase in encoding time of around 10× (SIQUEIRA;

CORREA; GRELLERT, 2020) when comparing VTM and HM. As previously discussed

in this section, in the case of FME, VVC introduced simpliĄcations rather than complexity.

In conclusion, having assessed the impact of FME in VVC and considering the increase

in complexity of this new video coding standard, the next research steps aimed to Ąnd a

way of simplifying the FME envisaging a hardware implementation that could be both

49

Table 5 Ű Results of BD-Rate when disabling the FME in VTM v13.0 on LD-P and RA conĄgurations.
The (∗) indicates sequences that were encoded only for the Ąrst second of the video.

BD-Rate (%)
Class Sequence

LD-P RA
Tango2* 0.072694 -0.026479

CampĄre* 0.500769 0.106302A1
FoodMarket4* 0.236226 -0.006388

CatRobot* 0.338789 0.286452
DaylightRoad2* 0.833952 0.507905A2
ParkRunning3* 0.408677 0.303408

MarketPlace 0.787148 0.578650
RitualDance 0.456016 0.541155

Cactus 0.392880 0.224483
BasketballDrive 1.718843 0.907799

B

BQTerrace 1.857627 0.942731
RaceHorsesC 1.132070 1.380367

BQMall 1.226958 0.922000
PartyScene 1.706121 1.039828

C

BasketballDrill 1.445063 0.505261
RaceHorses 1.230089 1.832394
BQSquare 1.777032 0.924396

BlowingBubbles 2.334300 1.475541
D

BasketballPass 1.618316 1.193067
FourPeople 0.773862 0.344030

Johnny 0.698289 0.401921E
KristenAndSara 0.670167 0.347910
ArenaOfValor 0.337606 0.477251

BasketballDrillText 1.563618 0.580196
SlideEditing 0.292683 -0.016440

F

SlideShow 0.268420 0.195042
Average 0.95 0.61

coding and energy efficient.

4.3 PROPOSED FIXED SEARCH PATTERNS

This section describes the process of designing Ąxed search patterns especially

tailored to reduce the VVC FME complexity for a Very-large-scale Integration (VLSI)

architecture. The devised search patterns constitute the second contribution of this work.

To deĄne the course of action, the VTM v6.2 (BOSSEN; LI; SUEHRING, 2020b)

was executed to measure the percentage that each Bcan position is chosen as Bref by the

default BMA of the VTM FME. The results are illustrated in Figure 17, were each Ągure

shows the average of the heatmap signature of the chosen Bref position by the FME,

using the distortion metric SATD and following the CTC (BOSSEN et al., 2019), for

conĄgurations LD-P and RA. As commented in Section 3.1, the FME has two modes

of operation in VTM: a two-step search that outputs a quarter-pel precision MV, and

an alternative single-step search that outputs a half-pel precision MV. Figure 17a and

Figure 17d show the results for all FME executions, Figure 17b and Figure 17e present

the collected data for the cases where the FME executes the two-step search, whereas

Figure 17 (c) and (f) show the results for the executions when the alternative one-step

search was selected. Regarding the two search modes, for RA conĄguration the two-step

51

Figure 18 Ű Search patterns proposed for the VVC FME: (a) Box, (b) Cross and (c) Diamond. The black
circles indicate positions tested when the alternative Ąlter is used.

(a) Box.

-1 0 1

1

0

-1

(b) Cross.

-1 0 1

1

0

-1

(c) Diamond.

-1 0 1

1

0

-1

Source: the author.

by joining all Bcans searched by Cross and Box , with the purpose of getting the beneĄts

of directly calculation most of Bcans, while additionally searching some of the Bcans more

likely to be chosen as Bref.

Particularly, the hardware friendliness of these patterns rely on:

1. Minimizing the number of SOVS Bcans, thus reducing the amount of memory re-

quired to store the HS. Seidel et al. (2018) conducted a power evaluation of their

FME architecture, which showed that the buffer responsible for storing the HS in-

terpolation corresponds to the highest consuming module of the architecture, being

responsible for 34.9% of the total power dissipation. The proposed patterns only

search a maximum of 4 out of a total of 36 SOVS. Consequently, a smaller portion

of the HS needs to be stored and the amount of Bcan search decreases considerably.

2. Interpolating and searching in Ąxed fractional positions, which eliminates stalls due

to mode decisions during its operation. An 8×8 Bcan composed of HS or FOVS

takes only 8 clock cycles to be interpolated, whereas a Bcan composed of SOVS

takes 24 clock cycles if the necessary HS where not interpolated yet. Another way

to eliminate this stall for a not Ąxed search pattern could be interpolating all Bcans

while designing a BMA that computes only a changeable group of Bcans, but this

would lead to numerous unnecessary calculations.

As presented in Section 3.3, Ding, Ye & Wang (2015) proposed a similar solution

for the HEVC FME. They evaluated six patterns, choosing three of them to propose an

adaptive hardware solution. From their six patterns (Figure 15), the one illustrated in

Figure 19 shows to be the most promising one when analyzing the coverage area of the

percentage its Bcans and its possible hardware minimization. Therefore, their pattern

was also evaluated in VTM, along with the three proposed ones. Since Ding, Ye & Wang

(2015) refers to this pattern as (a), from this point onward it will be referred to as Ding (a).

52

Figure 19 Ű Search pattern proposed by Ding, Ye & Wang (2015) for the HEVC FME, in this work
referred to as Ding (a).

-1 0 1

1

0

-1

Source: Adapted from Ding, Ye & Wang (2015).

From the 48 total candidates available, Box , Cross, Diamond and Ding (a) in-

terpolate and search 8, 12, 16 and 12 candidates in fractional positions, respectively. In

turn, the default FME implemented in VTM searches 16 candidates in the two step search,

where only the Ąrst 8 are Ąxed and the others will be tested depending on the candidate

chosen in the Ąrst step. It is also worth pointing out that even though these patterns

were implemented and evaluated for the VVC, they are compatible with its predecessor,

the HEVC.

4.4 CODING EFFICIENCY EVALUATION OF THE FIXED SEARCH PATTERNS

This section presents the coding efficiency of the four Ąxed patterns, the three

proposed ones plus Ding (a). The four search patterns were implemented in the VTM

v13.0 (BOSSEN; LI; SUEHRING, 2020a) and tested to encode all video sequences from

the CTC (BOSSEN et al., 2019) using proĄles LD-P and RA. While the video sequences

in classes B through F were completely encoded, only the Ąrst second of video sequences

in classes A1 and A2 were encoded due to infrastructure limitations. It is worth men-

tioning that classes A1 and A2 encompass 4K videos, which encoding requires signiĄcant

computing resources.

Table 6 and Table 7 present the coding efficiency results of the four search patterns

for LD-P and RA proĄles. Diamond resulted in the lowest coding efficiency reductions

amongst all patterns, with average BD-Rates of 0.18% and 0.15% for LD-P and RA,

respectively, closely followed by Ding (a), with average BD-Rates of 0.19% and 0.16%.

Such results were expected since Diamond and Ding (a) search a higher number candidates

than the other two patterns. Cross is the pattern with the third lowest coding efficiency

reductions, with average BD-Rates of 0.34% and 0.28% for LD-P and RA, respectively,

whereas Box is the one with the highest reductions, with BD-Rates of 0.57% and 0.44%.

While Cross lacks the inner SOVS Bcans, Box only searches in Bcans around the integer

53

position. Additionally, it seems that changes to simplify the FME or disabling it have a

more negative impact in sequences encoded with the LD-P proĄle than the RA.

Table 6 Ű BD-Rate results for the Ąxed patterns using VTM v13.0 for the LD-P proĄle. The (∗) indicates
sequences that were encoded only for the Ąrst second of the video.

BD-Rate (%)
Class Sequence

Box Cross Diamond Ding (a)
Tango2* 0.177569 0.115786 -0.074266 0.091379

CampĄre* 0.517884 0.136278 0.029105 0.082301A1
FoodMarket4* 0.153291 0.122531 0.035496 0.040477

CatRobot* 0.272028 0.156764 0.076500 0.139164
DaylightRoad2* 0.711394 0.356571 0.208700 0.283688A2
ParkRunning3* 0.355336 0.190854 0.113097 0.151363

MarketPlace 0.674109 0.245318 0.175464 0.234294
RitualDance 0.429796 0.180560 0.127796 0.120424

Cactus 0.444217 0.161237 -0.019382 0.004324
BasketballDrive 1.663857 0.167225 0.101318 0.145286

B

BQTerrace 1.321775 0.589345 0.303804 0.323983
RaceHorsesC 0.853766 0.427555 0.367078 0.282956

BQMall 0.967253 0.336600 0.340489 0.278434
PartyScene 1.138887 0.596778 0.313923 0.421542

C

BasketballDrill 1.419108 0.328124 0.221464 0.199153
RaceHorses 0.788592 0.503344 0.305047 0.280567
BQSquare 1.006846 0.811808 0.403866 0.446245

BlowingBubbles 1.328506 1.058116 0.513607 0.562799
D

BasketballPass 1.349029 0.427350 0.191083 0.154444
FourPeople 0.665680 0.170158 0.021398 0.051330

Johnny 0.614567 0.285275 0.219499 -0.000518E
KristenAndSara 0.547485 0.380600 0.156978 0.056629
ArenaOfValor 0.283456 0.147155 0.117576 0.163965

BasketballDrillText 1.195346 0.559634 0.313910 0.381438
SlideEditing 0.261484 0.254875 -0.045460 0.033588

F

SlideShow 0.231860 0.145683 0.033151 0.027967
Average 0.57 0.34 0.18 0.19

Figure 20 shows a plot with the coding efficiency results of the four Ąxed search

patterns and for the FME disabled for LD-P (top) and RA (bottom), thus allowing for an

overall comparative evaluation. For LD-P conĄguration, for most sequences, especially

from classes B, C and D, disabling the FME or implementing Box as search pattern com-

promise coding efficiency the most, by a signiĄcant margin. In contrast, Cross, Diamond

and Ding (a) have similar BD-Rate results for the majority of classes, with the exclusion

of Class D sequences.

For RA conĄguration, although the coding efficiency is better for all analyzed

implementations of FME search, the results are similar, with Box being the worst of

the search patterns. In this conĄguration, Cross presents some BD-Rate results that are

similar to those of Box , being a middle ground between Box and the Diamond.

The class B results illustrate how the different contents of each sequence may

inĆuence the coding efficiency drastically, especially for LD-P, even if it is just by applying

changes to a single coding tool, in this case the FME. For BQTerrace, Box results in BD-

Rate increases of 1.66%, whereas Cross and Ding (a) present BD-Rate of 0.17% and 0.15%,

54

Table 7 Ű BD-Rate results for the Ąxed patterns using VTM v13.0 for the RA proĄle. The (∗) indicates
sequences that were encoded only for the Ąrst second of the video.

BD-Rate (%)
Class Sequence

Box Cross Diamond Ding (a)
Tango2* 0.012811 -0.013829 -0.017488 0.008907

CampĄre* 0.123548 -0.003286 0.008737 -0.001961A1
FoodMarket4* 0.060345 0.063181 -0.031658 -0.008866

CatRobot* 0.184295 0.169241 0.082906 0.091013
DaylightRoad2* 0.388869 0.284623 0.180417 0.184030A2
ParkRunning3* 0.173146 0.132987 0.085806 0.100589

MarketPlace 0.433381 0.312715 0.189935 0.205904
RitualDance 0.336134 0.303203 0.163251 0.172462

Cactus 0.342091 0.055867 0.026741 0.034058
BasketballDrive 0.748574 0.290906 0.164625 0.181255

B

BQTerrace 0.543398 0.401025 0.167158 0.171929
RaceHorsesC 0.859642 0.647990 0.410251 0.389228

BQMall 0.572497 0.381714 0.190935 0.211516
PartyScene 0.622009 0.445240 0.198033 0.240968

C

BasketballDrill 0.458969 0.134769 0.066614 0.072337
RaceHorses 0.991085 0.953203 0.519853 0.561271
BQSquare 0.578639 0.550965 0.221419 0.197478

BlowingBubbles 0.867539 0.692329 0.397637 0.309402
D

BasketballPass 0.828561 0.513310 0.274694 0.310982
FourPeople 0.282363 0.152837 0.100081 0.074771

Johnny 0.373255 0.225192 0.127206 0.069411E
KristenAndSara 0.325838 0.191468 0.134193 0.148991

: ArenaOfValor 0.470218 0.224508 0.132293 0.132043
BasketballDrillText 0.562219 0.144907 0.058323 0.041165

SlideEditing 0.021667 -0.008066 -0.014123 0.011970
F

SlideShow 0.226671 0.159714 0.143143 0.162381
Average 0.44 0.28 0.15 0.16

respectively. Implementing the Diamond search results in BD-Rate of 0.10%, increasing a

tenth of a percent the number of bits necessary to encode BQTerrace for the same quality,

when compared to the reference model of the VVC FME, a 1.56% gap between the worst

to the best coding efficiency pattern. For MarketPlace, another class B sequence, the

coding efficiency of the search pattern is more similar, with Box increasing the BD-Rate

in 0.67%, Cross and Ding (a) in 0.24% and 0.23%, respectively, and Diamond with 0.17%,

0.50% separating the best coding efficiency pattern from the worst. In classes A1, A2, E

and F the three patterns Cross, Diamond and Ding (a) still outperform Box and FME

disabled, quite signiĄcantly for some sequences, and not so much for others.

In conclusion, Diamond and Ding (a) have the best coding efficiency out of the

four analyzed Ąxed search patterns. It was expected little to no gap between this two

patterns, since the 4 Bcans search for Diamond but not included in the search window of

Ding (a), have a selection rate of around 1% each (Figure 17a and Figure 17d). Although

not as coding efficient as Diamond and Ding (a), Cross is a close third, keeping the BD-

Rate increases close to the two for most of the CTC sequences. On the contrary, the

Box coding efficiency is closer to disabling the FME than to the other search patterns.

The main reason for the Box poor performance is the alternative 1/2-precision execution,

55

where Box has no fractional positions, therefore the integer position is always chosen as

reference. On the other hand, Cross, Diamond and Ding (a) search in four Bcans, as

illustrated by the black circles in Figure 18.

57

5 DEDICATED HARDWARE ARCHITECTURE FOR THE VVC FME

This chapter presents the baseline architecture used in this work, as well as the

proposed VVC FME hardware architecture.

5.1 THE BASELINE HARDWARE

Before proceeding to dedicated hardware design, the trade-off between coding ef-

Ąciency reduction of the patterns and consequent hardware minimization was investigated

by assuming as baseline the hardware architecture presented by Seidel et al. (2021). Such

architecture was developed to perform the HEVC FME full search with 48-candidates.

Particularly, in their article Seidel et al. (2021) presented breakdowns of area and power

considering each module in the proposed architecture. Hence, by relying on those break-

downs it is possible to estimate area and power reductions achieved by the four patterns

considered in this work.

Figure 21 illustrates the hardware architecture proposed by Seidel et al. (2021).

The architecture works with 8×8 blocks and takes 51 clock cycles to interpolate and

search all 48 fractional candidates available in HEVC FME. The interpolation datapath

takes 16 integer samples as input per cycle, a register barrier is located at the beginning

of the architecture to maintain the input data stable for the entire clock cycle, as shown

in Figure 21a. These inputs will generate HS directly through the interpolation Ąlters

(Filter). They also generate FOVS, but Ąrst these integer samples need to be transpose

by the Integer Pel Transpose Buffer (TB). The SOVS samples are generated from the HS,

which must be previously interpolated and later stored and transposed at the Horizontal

Pel TB.

The interpolated fractional samples are clipped by the Clip module before the

block matching, so that their values are within the range between 0 and 255 to maintain

the same 8 bits per pixel of the input samples. All values above 255 are clipped to 255,

and all negative values are clipped to 0. The interpolation issues 27 interpolated samples

per clock cycle, which is all the samples in fractional positions of the interpolated row or

column. A register barrier was implemented at the ClipŠs inputs to possibly shorten the

critical path, besides preventing unnecessary switching activity while the Filter Šs output

(ClipŠs input) is not stable.

The Filter, which is the module responsible for the interpolation of the samples,

is divided into two sub-modules, as shown in Figure 22. The Sums and Shifts (SS) (Fig-

ure 22a) generates all the products between the inputs and the coefficients (Table 2). It is

implemented using an MCM (VORONENKO, 2017), an optimizer that explores common

sub-expressions among source samples to generate every input coefficient multiplication

while avoiding redundant Ąlter operations by exploiting coefficient sharing. Equation 5.1

describes this vector function of the multiplication of input samples x by the eight distinct

58

Figure 21 Ű (a) Interpolation datapath for FME from Seidel et al. (2021), which is also responsible for
transposing samples when needed, avoiding extra memory accesses. (b) Block matching
datapath from Seidel et al. (2021).

(a)

Interpolation
datapath

mux 3:1

Integer

Pel

Transpose

Buffer

(TB)

8 × 16 × 8

bits

Integer Inputs

8×8 bits

4×8 bits4×8 bits

Integer samples (Bref-ime’
i,:

)
16×8 bits

Horizontal Pel

Transpose

Buffer (TB)

27 × 16 × 10 bits

“0”

16×2 bits

“0”

16×8 bits

16×2 bits

16×10 bits 16×10 bits

16×8 bits

16×10 bits

Filter

Clip

27 Interpolated samples (8 bpp, unsigned)

27×10 bits

27×1

bits

16×10 bits

27×11 bits

27×8 bits

(b)

Block Matching (BM) datapath

Transpose Buffer

(Original Block)

8 × 8 × 8 bits

Buffer (Original In)

8 Original Block Samples (8 bpp, unsigned)

8×8 bits

8×8 bits

8×8 bits

8 8 8 8 8 8

9×8 bits 9×8 bits 9×8 bits

27 Interpolated samples (8 bpp, unsigned)

27×8 bits

Ja
1

λR1

16

Jb
1

λR1

16

17

Ja
2

λR2

16

Jb
2

λR2

16

17

Ja
3

λR3

16

Jb
3

λR3

16

17

Ja
4

λR4

16

Jb
4

λR4

16

17

Ja
5

λR5

16

Jb
5

λR5

16

17

Ja
6

λR6

16

Jb
6

λR6

16

17

8×8 bits

8×8 bits

8×8 bits

17

8×8 bits

17

8×8 bits

17

8×8 bits

17

8×8 bits

17

8×8 bits

min(J1, J2)

17 17

min(J3, J4)

17 17

min(J5, J6)

17 17

Reg (best J)

min(min(J5, J6), best J)min(min(J1, J2), min(J3, J4))

min of all

Output Reg (best J)

j fme-best
cost

17 bits

Original Pel TB

8 × 8 × 8 bits

Source: Seidel et al. (2021).

59

coefficients of the HEVC FME Ąlters.

−→ss(x) = [x; 4×x; 10×x; 5×x; 11×x; 40×x; 58×x; 17×x] (5.1)

Each input sample has its own SS module, as illustrated in Figure 22b. Each

color of the SSindex inside the Filter represents the datapath of Figure 22a it contains:

e.g., SS10 contains 2 outputs, one being −→ss(xn)
0

and the other is −→ss(xn)
1
. The Routing

and Sums is a sum tree that sums the products of the SS following the Ąlters equations of

each fractional position (Equation 3.1 to Equation 3.4), thus generating the interpolated

samples.

Figure 22 Ű (a) Sums and Shifts (SS) and (b) Filter datapath for HEVC FME proposed by Seidel et al.
(2021). The dotted colored boxes in (a) represent the SS modules with the same color in (b).

(a)

- ®ss(xn)0®ss(xn)1- ®ss(xn)2- ®ss(xn)3- ®ss(xn)4®ss(xn)5®ss(xn)6®ss(xn)7

<< 3

40xn

<< 1

58xn

+

11xn

-

29xn

<< 1

34xn

+

17xn

<< 4

16xn

xn

<< 1

10xn

+

5xn

<< 2

4xn

(b)

Filter

SS
−4 SS

−3 SS
−2 SS

−1

8 SS

SS8 SS9 SS10 SS11

Routing and Sums

1× 2× 4× 8× 1×2×4×8×

27 Interpolated Samples (25 bpp, signed)

27×25 bits

16 bits 16 bits 16 bits 16 bits 16 bits16 bits16 bits16 bits

Source: Filho et al. (2020, apud Seidel et al. (2021)).

The block matching datapath shown in Figure 21a takes the 27 interpolated

samples as inputs per cycle along with the Bori. The Bori is provided for the architecture

when the block matching datapath is computing the HS and then, stores and transposes

the Bori at the Original Pel TB. It is necessary to transpose this samples due to the

fact that FOVS and SOVS are interpolated in columns, whereas HS, on the opposite, are

interpolated HS in rows. Therefore, it is more efficient to transpose only the Bori, which

is a 8×8 block, than all FOVS and SOVS.

60

The architecture of Seidel et al. (2021) was based on the architecture proposed

by Filho et al. (2020). One of the main novelties of Filho et al. (2020) architecture lies

in the computation of the rate term of Equation 2.13. Computing such a term internally

improves coding efficiency by ensuring that the optimal RD candidate is selected. In ad-

dition, it also reduces the required energy by avoiding external computations. Figure 23a

shows the design of Filho et al. (2020) for computing the λ×rate of six fractional MVs in

parallel. Each rate estimate is obtained as deĄned in Equation 2.14 and is used to select

a pre-computed value of the multiplication in λ×rate. This approach avoids the use of

multiplications and seeks to reduce the switching activity because while the set of MVs

changes eight times during each FME execution, λ changes only once per frame. More-

over, as all the 32 possible rate estimates are known beforehand, such multiplications were

implemented using MCM. Figure 23b shows their design for Equation 2.15, which is used

to obtain each rate estimate. The output of the module in Figure 23b is selected via a

series of multiplexers. The Js modules are responsible for calculating the Langragian RD.

Six Js modules are required to match the throughput of HS and FOVS and prevent the

architecture from data stalling. However, during the RD calculation of SOVS, samples

from twelve different candidates will be computed per clock cycle, hence the necessity of

twelve Js modules. The outputs of the architecture are the lowest jcost and the fractional

position of the candidate that generate this cost.

5.1.1 Finite State Machine

The architecture proposed by Seidel et al. (2021) has two Finite State Machine

(FSM)s. One to control the interpolation module and another for the block matching

datapath. Figure 24 presents clock cycle diagram for the Cross-based version illustrating

the behavior of both FSMs across a computation of an 8 × 8 block1.

During the Ąrst 16 cycles the architecture interpolates the HS around the search

area i starts. The interpolation FSM sets the enable on the Horizontal Pel TB and Integer

Pel TB to store the interpolated samples, and the integer samples for the interpolation

of the both types of vertical samples. At cycle 5 the interpolation FSM sets an enable

control signal to the block matching FSM. This occurs when the Ąrst HS are available at

the interpolation datapath output.

The block matching FSM stays idle for the Ąrst 4 cycles after the enable signal,

the Ąrst 4 rows of HS available are outside the borders of the integer 8 × 8 block, only

being computed for the interpolation of SOVS. At clock cycle 9, the Ąrst of the eight

rows of HS inside the integer block are available to the block matching. The last 4 rows

interpolated are also outside the borders of the integer block and so, are not computed

by the block matching.

1 With the exception of the Ąrst execution, which takes more clock cycles to Ąll all the register barriers.

62

Figure 24 Ű Clock cycles diagram of the Seidel et al. (2021) architecture to process an 8x8 block.

clk 0 5 9 16 17 21 24 29 51 56

Interpolationi

HS FOVS SOVS

Block Matchingi

Idle HS Idle FOVS SOVS

51 cycles

Source: the author.

5.2 FIXED SEARCH PATTERN HARDWARE ESTIMATES

This section presents the area and power reduction estimates for the four Ąxed

search patterns, the three proposed ones plus Ding (a). The estimates are based on area

and power synthesis reports of the baseline hardware architecture proposed by Seidel et

al. (2021).

5.2.1 Area Reduction Estimate

Table 8 presents the area-share percentage of the main modules of the baseline ar-

chitecture (SEIDEL et al., 2021) using SAD as distortion metric, as well as area reduction

estimates for the four Ąxed patterns analyzed. The baseline architecture was synthesized

using the Synopsys® Design Compiler (DC®) (SYNOPSYS, 2019a). All syntheses used a

45nm standard cell library from TSMC (TSMC, 2011). The area results of Seidel et al.

(2021) are for a target throughput of 1080p@30fps (period of 20ns).

Table 8 Ű Area share (%) of the Seidel et al. (2021) FME architecture and estimates for the four Ąxed
patterns.

Module Seidel et al. (2021) Ding (a) Box Cross Diamond
Horizontal Pel TB 41.7 27.8 27.8 0.0 27.8

Integer Pel TB 6.5 6.5 6.5 6.5 6.5
Filter 22.0 18.0 15.0 22.0 22.0

Original Pel TB 3.8 3.8 3.8 3.8 3.8
J Tree 15.0 7.5 5.0 7.5 7.5

Rate term 6.1 4.1 2.0 6.1 6.1
Others 4.9 4.9 4.9 4.9 4.9
Total 100 72.6 65.0 50.8 77.0

For Box , Diamond and Ding (a), one third of the Horizontal Pel TB can be

removed since no Bcan computed by these patterns is generated from b HS (Figure 12),

excepting a and c. Cross, in turn, does not require this buffer at all, as Bcan composed

by SOVS are not included in its search window. For the J tree, Ding (a), Cross and

Diamond need only six of the original twelve J modules, since a maximum samples from

six different candidates will be available for the block matching, Box will have a maximum

of four. Since Box does not compute half-pel sample, it does not need the middle Ąlter

63

(Equation 3.2), but some of the ALU that generate the coefficients of middle Ąlter must

be used to generate for up and down. In these situations, a more detailed analysis on

the synthesis reports would be required to Ąnd a more accurate estimate. In summary,

Diamond has the lowest estimated area reduction with only 23.0% of the total area of

the baseline architecture, Ding (a) is estimated to reduce 27.4%, and Box is estimated

to be 35.0%. Hence, in terms of area, Cross is the best pattern since its estimated area

reduction is 49.2%, the largest amongst the four patterns, most of this reduction coming

from the removal of the Horizontal Pel TB, 41.7%.

5.2.2 Power Reduction Estimate

Apart from the area advantage, the minimization of hardware may likewise bring

positive impacts on power dissipation. From the area reduction estimate, the analyzed

patterns will have considerably lower amount of transistors, which may indicate lower

switching activity. However, it is inaccurate to estimate a possible power reduction from

the area reduction, considering there is no data on switching activity, and also the utiliza-

tion of synthesis tools such as clock gating can mitigate the power dissipation of inactive

transistors. Nonetheless, it is possible to calculate the required operation frequency for a

target throughput, as shown in Equation 5.2, where N is the number of cycles per block,

W and L are the width and length of the sequence, BW and BL are the block width and

length.

F =
N×W×L×fps

BW ×BL

(5.2)

From the frequency it is possible to calculate the switching power dissipated by a

chip using static CMOS gates, as deĄned in Equation 5.3, where C is the capacitance being

switched per clock cycle, V is the supply voltage, and F is the frequency of operation.

P = C×V 2×F (5.3)

Table 9 shows the required operating frequencies for the baseline architecture

(SEIDEL et al., 2021) and the studied Ąxed patterns to process 4K (3840×2160) videos

at 60 fps.

Table 9 Ű Frequency required by each pattern for a target throughput.

Pattern Seidel et al. (2021) Ding (a) Box Cross Diamond
of Candidate blocks 48 12 8 12 16
Cycles per 8×8 block 51 42 42 24 42

Freq.@4K 60 fps (MHz) 396 326 326 186 326

A 8×8 block size 48 Bcans architecture takes 51 clock cycles to compute all Bcans,

from which 16 clock cycles are required for the HS, 8 for the FOVS and 27 for the SOVS.

As detailed in Table 9, with the modiĄcations proposed by Ding (a) an 8 × 8 block size

64

architecture takes 42 clock cycles (17.6% less cycles than the architecture of Seidel et al.

(2021)) per block to compute 12 fractional Bcans. Box and Diamond take the same 42

clock cycles, but compute 8 and 16 Bcans, respectively. Cross, however, takes just 24

clock cycles (53.0% less cycles) to compute 12 fractional Bcans. It is worth remembering

that VTM searches 8 or 16 Bcans, depending on the MV precision.

The number of cycles to compute each block is directly proportional to the fre-

quency of operation, as shown by Equation 5.2, and the frequency of operation is directly

proportional to the switching power dissipation, as deĄned in Equation 5.3. Therefore,

Box , Diamond and Ding (a) are estimated to reduce the switching power by only 17.6%,

while Cross may reach 53% when compared to the baseline architecture. It is worth point-

ing out that these are very conservative estimates, once they do not take into consideration

the area reduction resulting from not using a number of modules that are required by the

baseline architecture. Besides the reduction in power dissipation, a lower frequency of

operation for the same throughput also represents a higher maximum throughput for the

same technology.

From these estimates, Cross is clearly the most promising pattern to drastically

reduce the occupied area and power dissipation, which is trade off by a minor BD-Rate

increase when compared to Ding (a) and Diamond 2. Therefore, Cross is the chosen Ąxed

pattern to be implemented in dedicated hardware in this work.

5.3 CROSS ARCHITECTURE

This section presents the datapath and FSM of the proposed architecture for this

work.

5.3.1 Datapath

As explained in Section 3.3, Seidel et al. (2021) was selected as baseline for this

work because it was developed in the same research group, what granted full access to its

Register Transfer Level (RTL) descriptions and testbench, make it possible to establish a

fair and accurate comparison between baseline architecture and proposed one, since their

designs share the same base modules.

Figure 25 shows the interpolation datapath of the proposed Cross-based hardware

architecture for the VVC FME hardware architecture. The same 16 samples are required

at the input, following the same path of register barriers at the beginning to the now

mux 2:1 and Integer Pel TB. The Cross pattern requires all FOVS to be computed

and therefore , thisTB keeps the same conĄguration of the baseline. As explained in

Subsection 5.2.1, a Cross architecture does not require a TB to store and transpose the

2 The trade-off between coding efficiency and computation complexity is very subjective, always de-
pending on the type of application and its speciĄcations.

65

HS, since no SOVS will be computed by this FME design. Consequently, the Horizontal

Pel TB is completely removed. Also the size of the multiplexer that controls the samples

to be interpolated is reduced from 3 16-samples inputs to just 2.

Figure 25 Ű Interpolation datapath of the proposed Cross-based VVC FME hardware architecture.

Interpolation
datapath

mux 2:1

Integer

Pel

Transpose

Buffer

(TB)

8 × 16 × 8

bits

Integer Inputs

8×8 bits

4×8 bits4×8 bits

Integer samples (Bref-ime’
i,:

)
16×8 bits

“0”

16×2 bits

“0”

16×8 bits

16×8 bits

16×2 bits

16×10 bits 16×10 bits

Filter

Clip

27 Interpolated samples (8 bpp, unsigned)

16×10 bits

27×11 bits

27×8 bits

Source: the author.

The baseline architecture was designed for the HEVC FME. Therefore, modiĄca-

tions to the Ąlters were required so as to implement the newly introduced three alternative

half-pel coefficients (Table 2) for the VVC FME. To keep the same coefficient sharing,

the vector function Equation 5.1 was modiĄed to also generate these new coefficients, as

described in Equation 5.4.

−→ss(x) = [x; 3×x; 4×x; 9×x; 10×x; 5×x; 11×x; 20×x; 40×x; 58×x; 17×x] (5.4)

Figure 26 presents the new SS modules with support for the VVC alternative

half-pel precision FME Ąlters. Two arithmetic logic units had to be added to generate the

coefficients 3xn and 9xn, increasing the maximum number of arithmetic logic units per

SS from four to six. For the 20xn, only bit shifting was necessary since a 5xn was already

generated for the other Ąlters. The Routing and Sums (Figure 22b) was also modiĄed to

include the required sums for the alternative Ąlter.

66

Figure 26 Ű Updated SS datapath to support the VVC FME alternative half-pel Ąlter.

-
−→
𝒔𝒔(𝒙𝒏)0

−→
𝒔𝒔(𝒙𝒏)1

−→
𝒔𝒔(𝒙𝒏)2

−→
𝒔𝒔(𝒙𝒏)3-

−→
𝒔𝒔(𝒙𝒏)4-

−→
𝒔𝒔(𝒙𝒏)5-

−→
𝒔𝒔(𝒙𝒏)6

−→
𝒔𝒔(𝒙𝒏)7

−→
𝒔𝒔(𝒙𝒏)8

−→
𝒔𝒔(𝒙𝒏)9

−→
𝒔𝒔(𝒙𝒏)10

+

3𝒙𝒏

<< 1

+

9𝒙𝒏

<< 2

20𝒙𝒏

<< 3

40𝒙𝒏

<< 1

58𝒙𝒏

+

11𝒙𝒏

-

29𝒙𝒏

<< 1

34𝒙𝒏

+

17𝒙𝒏

<< 4

16𝒙𝒏

𝒙𝒏

<< 1

10𝒙𝒏

+

5𝒙𝒏

<< 2

4𝒙𝒏

2𝒙𝒏

Source: the author.

In the block matching datapath, as illustrated in Figure 27, the main modiĄcation

is the removal of six J 3 modules. Each J module performs the SAD (Equation 2.10),

row-by-row, between Bori and each interpolated Bcan, which is added to the appropriate

λ×rate to obtain jcost, since a maximum of samples from six different candidates will be

available at a given moment. Twelve J are required only during the block matching of

SOVS. Other minor submodules for control and routing of the data of these modules were

also removed, further reducing the hardware.

Figure 27 Ű Block matching datapath of the proposed Cross-based hardware architecture.

Block Matching (BM) datapath

Transpose Buffer

(Original Block)

8 × 8 × 8 bits

Buffer (Original In)

8 Original Block Samples (8 bpp, unsigned)

8×8 bits

8×8 bits

8×8 bits

8 8 8 8 8 8

9×8 bits 9×8 bits 9×8 bits

27 Interpolated samples (8 bpp, unsigned)

27×8 bits

Ja
1

λR1

16
Ja

2

λR2

16
Ja

3

λR3

16
Ja

4

λR4

16
Ja

5

λR5

16
Ja

6

λR6

16

8×8 bits

8×8 bits 8×8 bits 8×8 bits 8×8 bits 8×8 bits 8×8 bits

min(J1, J2)

17 17

min(J3, J4)

17 17

min(J5, J6)

17 17

Reg (best J)

min(min(J5, J6), best J)min(min(J1, J2), min(J3, J4))

min of all

Output Reg (best J)

j fme-best
cost

17 bits

Original Pel TB

8 × 8 × 8 bits

Source: the author.

3 These J modules use the SAD as distortion metric.

67

5.3.2 Finite State Machine

As presented in Section 5.1, the baseline architecture is controlled by 2 FSMs,

one for the interpolation datapath and another for the block matching datapath. The

Cross-based architecture adopts the same control unit organization.

Figure 28 presents the clock cycle diagram for the Cross-based FSMs. The exe-

cution of a fractional search around a search area i starts at the clock cycle 0. At the Ąrst

16 cycles, the architecture receives a row of integer samples per cycle around the search

area i. The Ąrst and last four rows are outside the search window are only utilized to

generate HS for the interpolation of SOVS, as explained in Section 5.1. Consequently,

during these cycles, the interpolation FSM disables the Filter and just stores the integer

samples at the Integer Pel TB for later interpolation of FOVS (Int. Pel Storage 1 and

2). The HS interpolation starts at cycle 4, ending 8 cycles later. The FOVS starts at

the cycle 16 and ends at cycle 24, same as the baseline architecture. Since no SOVS is

computed, the interpolation FSM can start the interpolation of the fractional samples of

a next search area j at cycle 24.

The block matching FSM is pretty similar to the baseline FSM, the initial states

work the same, only removing the states to compute the distortion rate for the SOVS.

Therefore, the block matching Ąnishes the computation of all Bcans in cycle 29. At the

end of its execution, the fractional coordinates of the Bref (xfrac,yfrac) and the jcost are

issued, and the FSM sets the control signal to start the computation of the next Bcans.

Figure 28 Ű Clock cycle diagram of the Cross-based VVC FME hardware architecture to process an 8x8
block.

clk 0 4 5 12 16 24 28 29 36 40 48 53

Interpolationi

Int. Pel
Storage 1 HS

Int. Pel
Storage 2 FOVS

Interpolationj

Int. Pel
Storage 1 HS

Int. Pel
Storage 2 FOVS

Block Matchingi

Idle HS Idle FOVS

Block Matchingj

Idle HS Idle FOVS

24 cycles 24 cycles

Source: the author.

5.4 HARDWARE EVALUATION METHOD

The baseline architecture was validated using the framework proposed by Bonotto

et al. (2018). This framework allows for performing functional veriĄcation veriĄcation us-

ing Synopsys® Verilog Compiler Simulator (VCS®) (SYNOPSYS, 2012) with real stimuli

from a video sequence, matching the results with HM. To validate the Cross-based FME

hardware architecture, a reference software that executed a FBMA and a Cross search for

68

the FME was developed in C++. Its correctness was veriĄed with real stimuli from the

Ąrst 100 8×8 FME executions using the default two step search, the Ąrst 100 executions

of the alternative search for RaceHorsesC sequence on VTM v13.0. To perform a func-

tional veriĄcation, the Cross-based FME hardware architecture was then tested with the

developed reference software using Icarus Verilog (WILLIAMS, 2017). For such, random

generated stimuli of over 1,000 8×8 original block and related candidates were used as

inputs of the testbench.

The architecture was synthesized with DC® (SYNOPSYS, 2019b) in Topograph-

ical mode to estimate routing parasitics and thus, obtain realistic timing, area and power

estimates, using a 45nm TSMC standard cell library (TSMC, 2011) and the toolŠs default

switching activity. The input and output delays were limited to 60% of the clock period

(SEIDEL, 2014). Also, the maximum primary input capacitance was set to 10× a 2-input

AND gate whereas the maximum primary output capacitance was set to 30× a 2-input

AND gate. Finally, to get detailed area and power reports for each module separately,

DC® was restricted to keep the RTL hierarchy during syntheses.

Seidel et al. (2021) synthesized their architecture for 4 distinct periods: 20ns,

10ns, 5ns, and 2.5ns, which were chosen to meet the throughputs required for 4 dis-

tinct video conĄgurations: 1080p@30fps, 1080p@60fps, 2160p@30fps and 2160p@60fps.

They tried to increase the frequency further with a target period of 1.25ns (2160@120fps

or 4320@30fps), but the tool was unable to meet such a timing constraint of the syn-

thesis tool. Accordingly, the Cross-based architecture was synthesized with 4 different

periods: 42.8ns, 21.4ns, 10.7ns, 5.3ns, to match the same target throughput of the base-

line architecture. It was also synthesized for 2 extra periods, 2.6ns (4320p@30fps) and

1.3ns (4320p@60fps). For the 1.3ns the tool was unable to meet the timing constraint.

Moreover, Seidel et al. (2021) synthesized all architectures with clock-gating, which is a

common and efficient technique that disables the clock activity of components that are

not operating to reduce dynamic power dissipation. To insert clock-gating they relied on

the automatic clock-gating insertion option from the synthesis tool, which is the simplest

strategy. For comparison purposes, the Cross-based VVC FME architecture was also

synthesized using the clock-gating technique.

It is worth reminding that the architecture proposed by Seidel et al. (2021) was

design only for the HEVC, whereas the Cross-based architecture is design for VVC but

is compatible with HEVC as well.

5.5 SYNTHESIS RESULTS

Table 10 presents the synthesis results for both FME architectures. For all tar-

get periods syntheses with results for both architectures, the Cross-based architecture

occupies 41.4% to 42.4% the area of the baseline, a reduction of up to 58.6% of the total

occupied area, with an average of 42.2%. The reduction is even higher than that estimated

69

in Subsection 5.2.1, what is mainly due to a conservative estimate that did not considered

some minor reductions, such as those from the Clip module. The baseline architecture

was originally synthesized with Synopsys (2019a). To check for a possible discrepancy be-

tween versions of the EDA tool, the baseline architecture was synthetized with the same

version as the Cross-based (SYNOPSYS, 2019b), and using the same conĄgurations. The

result showed an increase in occupied area of just 0,89%.

Table 10 Ű Synthesis results for the Baseline (SEIDEL et al., 2021) and Cross-based FME architectures.

Architecture Baseline Cross Baseline Cross Baseline Cross Baseline Cross Baseline Cross
Target throughput 1080p@30fps 1080p@60fps 2160p@30fps 2160p@60fps 4320p@30fps

Period (ns) 20.0 42.8 10.0 21.4 5.0 10.7 2.5 5.3 1.25 2.6
Area (µm2) 86302.28 36646.92 86364.03 36660.33 88867.67 36815.38 96400.30 40840.83 n.a. 42969.45

Dynamic power (µW) 1392.70 312.05 2821.90 600.37 5500.00 1202.90 11767.10 2840.82 n.a. 5862.80
Static power (µW) 1344.80 614.63 1345.40 614.52 1481.00 629.76 1814.80 731.36 n.a. 802.20
Total power (µW) 2737.50 926.68 4167.30 1214.85 6981.00 1832.69 13581.90 3572.18 n.a. 6665.00

The dynamic power reduction of Cross-based over the baseline architecture for

the different target periods was 78.0% on average, a considerable disparity over the 53.0%

presented in Subsection 5.2.2. In the estimation, the dynamic power reduction only ac-

counted the 53.0% lower frequency of operation, which is directly proportional to the

dynamic power (Equation 5.3)4. But in reality, a lower number of nets and ports will re-

duce the dynamic power dissipation. The static power and occupied area stay reasonably

constant for across the lower throughputs, but for higher throughputs they increase signif-

icantly, e.g., 16.1% increase in static power dissipation from 2160p@30fps to 2160p@60fps

for the Cross-based architecture, which hints that the synthesis tool is using larger gates

to meet the tighter timing constraints.

The total power of the Cross-based architecture is 28.9% of the baseline archi-

tecture for the same target period, on average, a 71.1% reduction. As the static power

reduction is not quite signiĄcant as the dynamic power, the total power reduction does

not keep up with the dynamic power reduction. Due to its lower frequency of operation,

the Cross-based architecture, is capable of working for a higher throughput. Whereas the

baseline architecture failed to meet the timing constraint for 4320@30fps, Cross is capable

of such. After all, the target period for such, 2.6ns, is nearly the same as the target period

for the baseline to run at 2160@60fps, 2.5ns. To run at such a higher frequency, the area

increases in 5.2% and total power nearly doubles it for the baseline.

Figure 29 and Figure 30 present the area and power breakdowns, respectively, for

the lowest and highest throughput of the baseline architecture. As explored in Section 5.1,

for the baseline architecture, the Horizontal Pel TB is the biggest module (Figure 29a)

with 41.7% and 38.4%, for the smaller and higher throughput, respectively. It is also the

biggest in terms of power dissipation, over 40% of the total power total is dissipated by

this module (Figure 30a). This is one of the main reasons for proposing the Cross search

pattern, which does not require such an area and power hungry module.

4 This relation can be observed in Table 10: for both architectures the power dissipation nearly doubles
when the period is halved.

70

Figure 29 Ű Area breakdown of the baseline and the proposed Cross-based FME architectures. The outer
ring represents the share of Interpolation and Block matching.

(a) Baseline.

1080p@30fps

Interpolation

Block Matching

41.7%

6.5%
22.0%

4.9%

6.1%

3.8%

15.0%

2160p@60fps

38.4%

5.9%23.2%

5.2%

6.6%

3.6%

17.1%
Horizontal Pel TB
Integer Pel TB
Filter
Others
LambdaRate
Original TB
J Tree

Interpolation

Block Matching

(b) Cross.

1080p@30fps

Interpolation

Block Matching

15.1%

35.3%

9.8%

14.3%

7.9%

17.6%

2160p@60fps

12.9%

36.7%

9.4%

14.3%

7.0%

19.7%
Integer Pel TB
Filter
Others
LambdaRate
Original TB
J Tree

Interpolation

Block Matching

As a result of the modiĄcations to the baseline architecture to built the Cross-

based architecture, the biggest module is now the Filter, 35.3% and 36.7% of the total

area for the 1080p@30fps and 2160p@60fps targets, respectively (Figure 29b). The im-

plementation of the VVC alternative half-pel Ąlter at the Filter occupies 5.4% and 6.3%

of the total area, respectively, which is roughly 17% of the Filter area. The Filter is also

the most power demanding module, dissipating from 44.4% to 36.3% of the total power

of the architecture (Figure 30b). The submodules that implement the alternative half-pel

Ąlter in Filter are responsible for 8.1% to 6.1% of the total power, for the lower and higher

throughput, respectively, approximately 18% of the total power dissipated by Filter.

From Figure 29 and Figure 30, one may also observe the overall percentage of the

J Tree that is the only module that swells when increasing the operation frequency for

both architectures, suggesting that the tool is resizing the gates of this module to meet

the more demanding timing constraints. Taking a closer look at the synthesis of the Cross

for the target period of 1.3ns, which did not meet the toolŠs timing constraints, the J Tree

occupies 23.8% of the total area. Moreover, when setting the tool to synthesize without

maintaining the RTL hierarchy, the only path that could not meet the time constraints

71

Figure 30 Ű Power breakdown of the baseline and the proposed Cross-based FME architectures. The
outer ring represents the share of Interpolation and Block matching.

(a) Baseline.

1080p@30fps

Interpolation

Block Matching

42.6%

6.6%
23.9%

5.4%

4.7%
2.7%

10.2%
3.9%

2160p@60fps

45.3%

7.2%
14.2%

5.4%

4.8%
2.6%

10.2%

10.3% Horizontal Pel TB
Integer Pel TB
Filter
Others
LambdaRate
Original TB
J Tree
Clock Tree Estimate

Interpolation

Block Matching

(b) Cross.

1080p@30fps

Interpolation

Block Matching

12.7%

44.6%
8.1%

11.4%

5.3%

15.5%
2.4%

4320p@30fps

13.0%

36.3%

10.2%

10.5%

4.5%

21.2%

4.3%
Integer Pel TB
Filter
Others
LambdaRate
Original TB
J Tree
Clock Tree Estimate

Interpolation

Block Matching

was inside the block matching passing through the J Tree. With a clock of 1.30ns, the

tool sets a clock uncertainty requiring the data to arrive in 1.25ns, while the arrival time

is 1.28ns, therefore violating the timing constraints by 0.03ns.

72

6 CONCLUSIONS

Finalized in July of 2020, the VVC standard brings a number of new tools to sub-

stantially improve coding efficiency, which resulted in a signiĄcant increase in complexity.

Therefore, the use of such a new standard in mobile devices requires not only the use of

dedicated VLSI architectures, but also the adoption of techniques that could reduce its

complexity to meet the real-time and energy efficiency requirements. In this context, the

most intensive encoding tools, such as the FME, are the Ąrst ones to be considered for

optimization.

This work brings as Ąrst contribution, a quality assessment of the coding effi-

ciency impact of the FME in VVC, considering the reference software VTM and the CTC

guidelines. The conducted experiments shown that disabling the FME in VVC leads to

an average BD-Rate of 0.64% for class B video sequences (which are FHD sequences)

and the RA conĄguration, whereas Blasi et al. (2015) showed that disabling the FME in

HEVC results in an average BD-Rate of 6.27% for FHD sequences. Such lower impact

of the FME in VVC in comparison to HEVC might be due to the addition of new inter-

prediction tools and a simpliĄed 1/2-MV precision mode for the FME in the most recent

standard.

Based on the analysis of the gathered data that shows the behavior of the FME

illustrated with heatmaps, this work proposes three Ąxed (simpliĄed) Ąxed search patterns

for the VVC FME. They were design to reduce the complexity of computing all 48 Bcans

that most works on FME hardware architectures apply to the BMA, therefore following

the same train of thought of the VVC developers of reducing the FME complexity, but

applying this idea to hardware.

The proposed Ąxed search patterns and one from a related work, named Ding (a),

were implemented in VTM to measure their coding efficiency compared to the default

FME. The results showed Diamond and Ding (a) having the best coding efficiency, with

an average BD-Rate of 0.18% and 0.19% for LD-P and 0.15% and 0.16 % for RA con-

Ągurations, respectively. Cross presented slightly worse results, with 0.34% and 0.28%

average BD-Rates, for LD-P and RA, respectively. Box had the worst coding efficiency

among the tested Ąxed search patterns, with BD-Rate increases of 0.57% and 0.44% for

LD-P and RA, respectively.

Based on detailed synthesis results of the baseline architecture found in the lit-

erature, estimates on area and power reduction of implementing each pattern in a similar

hardware design were drawn. Amongst the four evaluated patterns, Cross was estimated

to have the biggest reduction in occupied area and dynamic power dissipation with respect

to the baseline: 49.4% and 53%, respectively. Such reductions are the consequence of the

lack of SOVS inside the search window, thus resulting in a more efficient computation of

the FME for a VLSI architecture. Although presenting slightly worse coding efficiency

results than Diamond, Cross was chosen for a dedicated hardware design because it was

73

the most promising pattern in terms of hardware reduction.

The baseline architecture was originally synthetized by Seidel et al. (2021) in four

distinct periods, 20ns, 10ns, 5ns, and 2.5ns, to meet the throughput requirements of four

distinct video conĄgurations: 1080p@30fps, 1080p@60fps, 2160p@30fps and 2160p@60fps,

respectively. The synthesis periods for Cross were chosen to match those four video con-

Ągurations, plus 4320@30fps, for which the baseline was unable to meet the timing con-

straints in the synthesis Ćow. Results showed that the occupied area of the presented

Cross-based architecture is 42.4% (57.8% of reduction) when compared to baseline ar-

chitecture, on average. The total power of the Cross-based architecture is, on average,

28.9% (71.1% reduction) of that exhibited by the baseline architecture for the same target

period. These results conĄrm the initial premise that the proposed Ąxed search patterns

can considerably promote hardware minimization when designing a VLSI architecture

tailored for the VVC FME, without major losses in coding efficiency. The estimates

on potential reductions resulted from search patterns that partially compute SOVS, i.e.,

Box , Diamond and Ding (a) did not look so promising. In conclusion, if the application

requires maximum coding efficiency, disregarding the increase in complexity, then a 48

Bcans FME architecture is the most appropriate. However, if the application is aimed at

low-power high throughput, then a Cross-based VLSI is the most suitable.

6.1 FUTURE WORK

A possible future work relies on obtaining realist power estimates using switch-

ing activity from real stimuli from a video sequence for both baseline and Cross-based

architectures, so as to provide more realist comparisons and analyses over the impact of

adopting a Cross-based design.

As presented in Section 5.5, the synthesis for the target period of 1.3ns violated

the timing constraint by 0.03ns. Thus, another future work would be to reduce the critical

paths to allow this architecture to meet the timing constraints of the 1.3ns synthesis. By

doing so, such an architecture would be capable of processing in real time 8K (7680×4320)

videos at 60fps.

74

REFERENCES

AFONSO, V. et al. Hardware implementation for the HEVC fractional motion estimation
targeting real-time and low-energy. Journal of Integrated Circuits and Systems,
v. 11, n. 2, p. 106Ű120, 2016.

AFONSO, V. et al. Memory-aware and high-throughput hardware design for the
HEVC fractional motion estimation. In: Proceedings of the 28th Symposium on
Integrated Circuits and Systems Design (SBCCI). [S.l.: s.n.], 2015. p. 1Ű6.

AZGIN, H.; KALALI, E.; HAMZAOGLU, I. An approximate versatile video coding
fractional interpolation hardware. In: 2020 IEEE International Conference on
Consumer Electronics (ICCE). [S.l.: s.n.], 2020. p. 1Ű4.

BADRY, E.; SHALABY, A.; SAYED, M. S. A hardware friendly fractional-pixel
motion estimation algorithm based on adaptive weighted model. In: Proceedings
of the International Conference on Microelectronics, ICM. [s.n.], 2018. v.
2017-December, p. 1Ű4. Cited By :1. Disponível em: www.scopus.com.

BJØNTEGAARD, G. Calculation of average PSNR differences between
RD-curves. Austin, Texas, USA, 2001.

BLASI, S. et al. Adaptive precision motion estimation for HEVC coding. In: Picture
Coding Symposium (PCS), 2015. [S.l.: s.n.], 2015. p. 144Ű148.

BONOTTO, B. et al. A named-pipe library for hardware simulation. In: 33o Simpósio
Sul de Microeletrônica (SIM). [S.l.]: SBC, 2018.

BOSSEN, F. Common test conditions and software reference conĄgurations.
Shanghai, 2012.

BOSSEN, F. et al. JVET common test conditions and software reference
conĄgurations for SDR video. Geneva, 2019.

BOSSEN, F.; LI, X.; SUEHRING, K. VVC Test Model (VTM) v13.0. 2020.
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tags/VTM-13.0.

BOSSEN, F.; LI, X.; SUEHRING, K. VVC Test Model (VTM) v6.2. 2020.
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tags/VTM-6.2.

BOSSEN, F. et al. Vvc complexity and software implementation analysis. IEEE
Transactions on Circuits and Systems for Video Technology, v. 31, n. 10, p.
3765Ű3778, April 2021.

BRäSCHER, A. B.; SEIDEL, I.; GüNTZEL, J. L. Improving the energy efficiency of a
low-area SATD hardware architecture using Ąne grain PDE. In: Proceedings of the
2017 Symposium on Integrated Circuits and Systems Desing (SBCCI). [S.l.:
s.n.], 2017. p. 155Ű161.

CANCELLIER, L. H. L. Algoritmo de Eliminações Sucessivas baseado em Soma
das Diferenças Transformadas Absolutas. MonograĄa Ů UFSC, 2016.

75

CHAKRABARTI, I. et al. Motion Estimation for Video Coding: Efficient
Algorithms and Architectures. [S.l.]: Springer International Publishing, 2015.
(Studies in Computational Intelligence).

CHEN, J.; YE, Y.; KIM, S. H. Meeting Report: Algorithm description for
Versatile Video Coding and Test Model 8 (VTM 8). Brussels, BE, 2020.

CISCO. VNI Complete Forecast Highlights: Global - 2022 Forecast Highlights.
[S.l.], 2018.

DING, D.; YE, X.; WANG, S. 1/2 and 1/4 pixel paralleled fme with a scalable search
pattern for hevc ultra-hd encoding. In: 2015 IEEE 16th International Conference
on Communication Technology (ICCT). [S.l.: s.n.], 2015. p. 278Ű281.

DINIZ, C. M. et al. A reconĄgurable hardware architecture for fractional pixel
interpolation in high efficiency video coding. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, v. 34, n. 2, p. 238Ű251,
2015.

FILHO, V. R. et al. Standalone rate-distortion FME architecture. In: 2020 33rd
Symposium on Integrated Circuits and Systems Design (SBCCI). [S.l.: s.n.],
2020. p. 1Ű6.

HE, G. et al. High-throughput power-efficient vlsi architecture of fractional motion
estimation for ultra-hd hevc video encoding. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, v. 23, n. 12, p. 3138Ű3142, 2015.

HUNT, R. The Reproduction of Colour. Wiley, 2005. (The Wiley-IS&T
Series in Imaging Science and Technology). ISBN 9780470024263. Disponível em:
https://books.google.com.br/books?id=nFtW4LG24fEC.

ITU-R. Recommendation ITU-R BT.601-7, Studio encoding parameters of
digital television for standard 4:3 and wide-screen 16:9 aspect ratios. 2011.

ITU-T. Studio encoding parameters of digital television for standard 4:3 and
wide-screen 16:9 aspect ratios. Genebra, 1995.

ITU-T. Parameter values for the HDTV standards for production and
international programme exchange. Genebra, 2002.

ITU-T. Recommendation ITU-T H.265: High efficiency video coding. Genebra,
2013.

ITU-T. Versatile Video Coding, Draft 10. 2020. Disponível em:
https://jvet.hhi.fraunhofer.de/.

KALALI, E.; HAMZAOGLU, I. A low energy hevc sub-pixel interpolation hardware. In:
2014 IEEE International Conference on Image Processing (ICIP). [S.l.: s.n.],
2014. p. 1218Ű1222.

KALALI, E.; HAMZAOGLU, I. Approximate hevc fractional interpolation Ąlters and
their hardware implementations. IEEE Transactions on Consumer Electronics,
p. 1Ű1, 2018. ISSN 0098-3063.

76

KOEZE, E.; POPPER, N. The Virus Changed
The Way We Internet. [S.l.], 2020. Disponível em:
https://www.nytimes.com/interactive/2020/04/07/technology/coronavirus-internet-
use.html. Acesso em: 2020-07.

LIM, D. . et al. A fast fractional motion estimation algorithm for high efficiency
video coding. In: International Conference on Electronics, Information, and
Communications, ICEIC 2016. [S.l.: s.n.], 2016.

LV, H. et al. A resolution-adaptive interpolation Ąlter for video codec. In: Proceedings
- IEEE International Symposium on Circuits and Systems. [S.l.: s.n.], 2014. p.
542Ű545.

MAHDAVI, H.; HAMZAOGLU, I. A vvc fractional interpolation hardware using
memory based constant multiplication. In: 2021 IEEE International Conference on
Consumer Electronics (ICCE). [S.l.: s.n.], 2021. p. 1Ű5.

ORTEGA, A.; RAMCHANDRAN, K. Rate-distortion methods for image and video
compression. IEEE Signal Processing Magazine, v. 15, n. 6, p. 23Ű50, 1998.

PAKDAMAN, F. et al. Complexity analysis of next-generation vvc encoding and
decoding. In: IEEE. IEEE International Conference on Image Processing
(ICIP). [S.l.], 2020.

PASTUSZAK, G.; TROCHIMIUK, M. Algorithm and architecture design of the motion
estimation for the H.265/HEVC 4K-UHD encoder. Journal of Real-Time Image
Processing, Springer Berlin Heidelberg, p. 1Ű13, 2015.

PASTUSZAK, G.; TROCHIMIUK, M. Algorithm and architecture design of the motion
estimation for the H.265/HEVC 4K-UHD encoder. Journal of Real-Time Image
Processing, v. 12, n. 2, p. 517Ű529, Aug 2016.

POYNTON, C. Digital Video and HD: Algorithms and Interfaces. Second. [S.l.]:
Morgan Kaufmann, 2012. (The Morgan Kaufmann Series in Computer Graphics). ISBN
9780123919267.

RICHARDSON, I. E. G. H.264 and MPEG-4 video compression: video coding
for next-generation multimedia. West Sussex, England: John Wiley & Sons Ltd,
2004. 206 p.

SEIDEL, I. Análise do impacto de pel decimation na codiĄcação de vídeos de
alta resolução. Dissertação (mestrado) Ů UFSC, 2014.

SEIDEL, I. Exploiting SATD Properties to Reduce Energy in Video Coding.
Dissertação (Ph.D. thesis) Ů UFSC, 2019.

SEIDEL, I. et al. Coding- and energy-efficient FME hardware design. In: 2018 IEEE
International Symposium on Circuits and Systems. [S.l.]: IEEE, 2018.

SEIDEL, I. et al. Sad or satd? how the distortion metric impacts a fractional motion
estimation vlsi architecture. In: 2021 IEEE 23rd International Workshop on
Multimedia Signal Processing (MMSP). [S.l.: s.n.], 2021. p. 1Ű6.

77

SHI, Y. Q.; SUN, H. Image and Video Compression for Multimedia Engineering:
Fundamentals, Algorithms, and Standards. second. [S.l.]: CRC Press/Taylor &
Francis, 2008. (Image Processing Series). ISBN 9780849334917.

SILVA, G. G. et al. Approximate hardware architecture for interpolation Ąlter of versatile
video coding. Journal of Integrated Circuits and Systems, v. 16, n. 2, p. 1Ű8, 2021.

SIQUEIRA, I.; CORREA, G.; GRELLERT, M. Rate-distortion and complexity
comparison of HEVC and VVC video encoders. In: 2020 IEEE 11th Latin American
Symposium on Circuits Systems (LASCAS). [S.l.: s.n.], 2020. p. 1Ű4.

SULLIVAN, G.; WIEGAND, T. Rate-distortion optimization for video compression.
Signal Processing Magazine, IEEE, v. 15, n. 6, p. 74Ű90, Novembro 1998.

SYNOPSYS. Synopsys VCS, Version G-2012.09. 2012.

SYNOPSYS. Synopsys Design Compiler, V.P-2019.03-SP4. 2019.

SYNOPSYS. Synopsys Design Compiler, V.S-2021.06-SP4. 2019.

Trudeau, L.; Coulombe, S.; Desrosiers, C. Rate distortion-based motion estimation
search ordering for rate-constrained successive elimination algorithms. In: 2014 IEEE
International Conference on Image Processing (ICIP). [S.l.: s.n.], 2014. p.
3175Ű3179. ISSN 1522-4880.

TSMC. TSMC STANDARD CELL Library TCBN45GSBWPTC. [S.l.], 2011.

VANNE, J. et al. Comparative rate-distortion-complexity analysis of HEVC and AVC
video codecs. IEEE Journal of Selected Topics in Signal Processing, v. 22, n. 12,
p. 1885Ű1898, Dezembro 2012.

VORONENKO, C. M. U. Y. Spiral Software/Hardware Generator for DSP
Algorithm. 2017. Disponível em: http://spiral.ece.cmu.edu/mcm/gen.html. Acesso em:
2017-10.

WILLIAMS, S. Icarus Verilog. 2017. Disponível em: http://iverilog.icarus.com. Acesso
em: july, 2020.

78

APPENDIX A Ű LIST OF PUBLICATIONS AND AWARDS

A.1 PUBLICATIONS AS FIRST AUTHOR

IEEE International Workshop on Multimedia Signal Processing

(MMSP2021)

• Title: Hardware-Friendly Search Patterns for the Versatile Video Coding Frac-

tional Motion Estimation

• Authors: RODRIGUES FILHO, Vanio; MONTEIRO, Marcio; SEIDEL, Ismael;

GRELLERT, Mateus; GÜNTZEL, José Luís.

• DOI: 10.1109/MMSP53017.2021.9733603.

IEEE Symposium on Integrated Circuits and Systems Design (SBCCI 2020)

• Title: Standalone Rate-Distortion FME Architecture

• Authors: RODRIGUES FILHO, Vanio; MONTEIRO, Marcio; SEIDEL, Ismael;

GRELLERT, Mateus; GÜNTZEL, José Luís. Standalone Rate-Distortion FME.

• DOI: 10.1109/SBCCI50935.2020.9189898.

A.2 CONTRIBUTION TO OTHER PUBLICATIONS

IEEE International Workshop on Multimedia Signal Processing

(MMSP2021)

• Title: SAD or SATD? How the Distortion Metric Impacts a Fractional Motion

Estimation VLSI Architecture

• Authors: SEIDEL, Ismael; RODRIGUES FILHO, Vanio; GRELLERT, Mateus;

AGOSTINI, Luciano; GÜNTZEL, José Luís.

• DOI: 10.1109/MMSP53017.2021.9733518.

A.3 AWARD

Best Poster (Graduate Category) of the IEEE Seasonal School on Digital

Processing of Visual Signal and Applications (DPVSA 2021)

• Title: Search Patterns to Reduce the Complexity of the VVC FME

• Authors: RODRIGUES FILHO, Vanio; MONTEIRO, Marcio; SEIDEL, Ismael;

GRELLERT, Mateus; GÜNTZEL, José Luís.

• url: https://wp.ufpel.edu.br/dpvsa2021/best-poster-awards/

79

APPENDIX B Ű SYSTEMATIC LITERATURE REVIEW

This appendix contains the search string used and the systematic review process

presented culminating with the related works in 3.3.

The Ąrst step of our systematic review was to deĄne a search string. The string

cannot be very restricted, otherwise there is a potential of Ąltering out works that may be

related but had one or two parameters that did not match with the search string. Ideally,

it should not be too broad either, otherwise the amount of works would be too large to

be analyzed within a realistic time frame. Since this work proposes a new algorithm for

the computation of the FME, our search string returns every work that can potentially

be related.

The search string used for this literature review was:

video

AND

(compression OR coding OR encoding)

AND

(hevc OR "high efficiency video coding" OR vvc OR "versatile video coding")

AND

(fme OR "fractional motion estimation" OR "interpolation Ąlter")

There was no need to Ąlter by date, since we Ąlter by coding standards. HEVC

was release in 2013, while its successor, VVC, was just release in July 2020. Thus, adding

this terms to the string made the search to return works published no earlier than 2013.

The database used for this review was Scopus, which is the largest abstract and

citation database of peer-reviewed literature. As illustrated in Figure 31, the search string

returned 129 references1, of which, 126 were journals or conference proceedings written

in English.

The next step was to eliminate any work that was not related to implementations

of the FME for HEVC or VVC. We also removed neural networks design since those works

are out of the scope of our work.

The Ąnal step was to identify works proposing alternative FME algorithms That

is, we kept only works that propose modiĄcations to the overall execution of the FME.

By doing it so, removing works which main contributions were hardware implementation

techniques. Since this techniques can be applied, in most cases, to any FME hardware

architecture. We also eliminated multi standard architectures, mainly because they are

focused on reusing hardware and calculations across different standards, while our work

aims to explore the characteristics of a single standard (VVC). In addition, it would not

1 Searched on October, 13th 2021.

80

be pointless to compare the designs since they have major differences in functionality and

application.

Once applied the aforementioned decisions we ended up with seven related works,

which are discussed in the next section.

Figure 31 Ű Systematic literature review process. The (∗) indicates steps that use ScopusŠs build-in search
Ąlters.

Search string

English*

Journal or Conference Proceeding*

FME Implementations for HEVC or VVC

Removal of Neural Networks Designs

Algorithms for FME

Related Works

129

126

124

54

43

7

Source: the author.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Resumo Expandido
	Abstract
	List of abbreviations and acronyms
	Introduction
	Rationale, Contributions and Methodology
	Organization of this document

	Video Coding Concepts, The Hybrid Model and The Prediction Step
	Psychovisual Redundancies
	Statistical Redundancies
	The Hybrid Video Codec Model
	Block Partitioning
	Prediction unit

	Fractional Motion Estimation in VVC and Related Work
	Interpolation
	Block Matching
	Related Work on FME Hardware Design

	Impacts of the FME and Proposal of VVC FME Search Patterns
	Impacts of the FME
	Experimental Assessment of the Coding Efficiency Impact of the FME on VVC
	Proposed Fixed Search Patterns
	Coding Efficiency Evaluation of the Fixed Search Patterns

	Dedicated Hardware Architecture for the VVC FME
	The Baseline hardware
	Finite State Machine

	Fixed Search Pattern Hardware Estimates
	Area Reduction Estimate
	Power Reduction Estimate

	Cross architecture
	Datapath
	Finite State Machine

	Hardware Evaluation Method
	Synthesis Results

	Conclusions
	Future Work

	References
	List of publications and awards
	Publications as first author
	Contribution to other publications
	Award

	Systematic literature review

		2022-04-07T09:46:49-0300

		2022-04-07T10:56:31-0300

