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Abstract

Among the production quality department’s attributions at the Fraunhofer Institute for
Production Technology IPT is the development of solutions for manufacturing using
machine learning models. Many of these projects are carried out in partnership with
third-party companies. The institute has well-established processes for the research
phase where the problem in the partner’s production line is explored together with the
available static data following the CRISP-DM methodology. These procedures have a
machine learning model that satisfies the metrics specified and the necessary data
treatments to feed it as its main results. However, the deployment step where the model
is embedded in a robust application capable of being implemented within the manu-
facturing environment took more time than expected and resulted in significant project
delays in past experiences. The department analyzed that this happens partially due
to the lack of automation on integration steps and development guidelines. Therefore,
the solutions proposed by this FPW involve the creation of a continuous integration
pipeline capable of building, testing, and releasing the application automatically during
its development, and a series of general UML diagrams that can be adapted to different
machine learning solutions built for manufacturing. A data science project previously
elaborated by the institute was converted into an application developed and deployed
in two different simulated environment architectures using these solutions. The results
achieved indicate an increase in the development agility and the software structure ro-
bustness. The applications were deployed following basic steps and integrated correctly
in the environments, which demonstrates the solution benefits and motivates its usage
in non-simulated environments in future projects.

Keywords: Production quality. Machine learning. Continuous integration. UML dia-
grams.



Resumo

Entre as atribuições do departamento de qualidade da produção do Instituto Fraunhofer
para Tecnologia da Produção IPT está a resolução de problemas de manufatura através
da implementação de modelos de aprendizado de máquina. Muitos desses projetos se
dão em parcerias estabelecidas com empresas terceiras. O instituto contém processos
e fases bem estabelecidas para as etapas de pesquisa onde o problema e o conjunto
de dados estáticos são explorados seguindo a metodologia CRISP-DM até se obter um
processo de tratamento de dados e um modelo que satisfaça as métricas projetadas.
No entanto, o processo de incorporação do modelo em uma aplicação robusta capaz
de ser implementada junto ao ambiente de manufatura mostrou-se demasiadamente
lento em projetos passados devido, em parte, à falta de automatização de processos
de integração e definições de desenvolvimento. As soluções propostas por este PFC
constituem a criação de um pipeline de integração contínua capaz de construir, testar e
disponibilizar a aplicação automaticamente durante seu desenvolvimento, e uma série
de diagramas UML genéricos que podem ser adaptados para diferentes soluções de
aprendizado de máquina voltado para manufatura. Um projeto de ciência de dados
elaborado pelo instituto foi convertido em uma aplicação desenvolvida e implementada
em dois tipos de ambientes simulados utilizando-se tais soluções. Os resultados al-
cançados sinalizaram maior agilidade de desenvolvimento e robustez satisfatória da
arquitetura de software. As aplicações foram implantadas com facilidade e integraram-
se corretamente aos ambientes, o que motiva o uso das soluções em projetos futuros
com a implementação em ambientes não simulados.

Palavras-chave: Qualidade da produção. Aprendizado de máquina. Integração contí-
nua. Diagramas UML.
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1 Introduction

When dealing with complex tasks inside a company the idea of bringing agility
and automation to the processes is usually stimulated. Making things faster and with
better quality will consequently save time for the company and result in money savings,
sometimes even revealing new business lines.

In this spectrum, artificial intelligence (AI) plays an important role to bring agility
to manufacturing processes. Modern production facilities tend to produce a consid-
erable amount of data and the ability to convert them into useful key performance
indicators it is already an essential management activity. Moreover, the usage of busi-
ness intelligence software to exhibit the business data into convenient dashboards,
charts, and graphs guide the decision-making process in companies of different seg-
ments (IBM, 2021). However, with machine learning (ML) applications the analysis of
data goes beyond visualization. It makes it possible to develop models that can predict
failures and undesired behaviors, automate tasks, and optimize processes.

The path to building these models usually includes having knowledge in the
domain, data science proceedings, and software engineering. Thus, the first model
prototypes are developed in experimentation environments with researches that go
from data understanding to the tuning and evaluation of the best performing machine
learning algorithms. For instance, the CRISP-DM methodology explained in section 3.2
breaks ML projects down into analytical steps necessary to achieve the best results.

Nonetheless, reaching a suitable model is not the final step of the AI implemen-
tation in production. It is still necessary to perform the deployment stage, where, in
general terms, the models have to be integrated into the daily activities on the pro-
duction line accordingly with its specifications. For example, if a company wants a ML
model to constantly monitor data from manufacturing to generate a warning when a
failure is predicted, the deployment stage will probably include the development of an
application that can consume data directly from the plant environment, make the nec-
essary transformations, feed the model, and perform actions based on the predictions
or make them available to the responsible team.

Since the ML model is sometimes seen as the final product of such an application,
the deployment stage is occasionally ignored in the first phases of development. This
results in many difficulties for the team to properly implement the project on the company
wasting much more time than expected. On the other hand, using techniques that
integrate development and operations steps from the beginning of the project is a
difficult task when no standards or procedures for the development are defined.

However, the lack of a development culture is not the only problem. A slight
change in the focus of the solution implementation can culminate in the usage of a
completely different method. The existing processes to deploy ML projects tend to
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investigate general procedures that do not consider the nuances of each application
type. As an emerging technology, the architectural patterns and operational definitions
are still being deeply explored, which makes it necessary to consider the company’s
specific needs when seeking a solution to this stage.

The Fraunhofer Institute for Production Technology, a reference in production
solutions, has also identified these problems in some of their machine learning projects.
Therefore, this project will explore the proceeding of such applications and propose a
cycle that properly integrates development and operations turned to AI in production
considering the existing process and tools used by the institute. The focus is on au-
tomating the development steps where possible, having the deployment as the main
project’s motivation, even though it will not limit itself to this stage.

1.1 Objectives

This project aims to explore the whole lifecycle of machine learning models in
production, having the objectives described in this section.

1.1.1 Main objective

Define and automate a continuous integration pipeline suitable for the ML ap-
plications turned to production, developed by the Fraunhofer Institute for Production
Technology, to accelerate the path to deployment and enhance the software quality.

Furthermore, validate the built pipeline developing a deployment application for
a use case scenario in production, where the needed improvements must be observed
and refactored back on the pipeline.

1.1.2 Specific objectives

• Build a repository on a git platform with the continuous integration pipeline stages
defined and configured.

• Define a set of code best practices for deployable AI applications.

• Build general code structure diagrams to be a reference for the development.

• Define a testing pipeline that fits the most into the deployment applications, ex-
plaining how to structure and develop the software tests that will compound it.

• Provide integration between project management best practices and the git plat-
form.

• Define the rules that will guide the management of branches during the develop-
ment of the deployment applications.
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• Integrate adequate tools that can bring agility and automation to different pro-
cesses of the continuous integration pipeline.

• Make it possible to run the application regardless of the environment.

• Provide orientation for the code documentation.

• Write guideline documents for all the defined standards and configurations. Having
easily readable material available to serve as a reference for the development.

1.2 Methodology

The early stages of this project were composed of a series of meetings with the
institute presenting the main problem and the areas that it embraces. After performing
research on that areas, a discussion on the solution fields to explore and to gain a
common understanding was held. Especially to ensure that the student and the institute
had the same comprehension of the project’s goals and steps.

After this research exploration, meetings with other colleagues from the depart-
ment were crucial to limit the scope of the project to the most important and urgent
points. The focus on building a solid base from which future research activities can be
derived was also defined.

Regarding the ML projects that are the base for this work, CRISP-DM is the
methodology followed to describe the data science lifecycle. The goal of this project
includes giving better directions on how to properly implement some of its stages.

Finally, a schedule of the activities was made and, during the whole project, an
agile methodology was followed based on sprints of one week. In each weekly meeting,
the previous tasks were reviewed and the new sprint was planned. Furthermore, the
challenges found on a precedent project inside the institute were one of the main
motivations for this work. Therefore, several meetings were scheduled with the team that
has worked on it to ensure that the development was covering most of the challenges
and avoiding wasting time with definitions that had already been explored.

1.3 Document Structure

In chapter 2, the scenario where the project took place is described. More details
about the IPT and its business model are provided together with the problems that
motivate the work performed. Moreover, the proposed solution is described for the first
time in this document.

Chapter 3 contains the background concepts necessary to understand the so-
lution details and the path to achieve it. Research fields, such as DevOps and event
streaming, are explained inside this chapter, as well as the operation of some of the
tools used, such as Docker and Apache Kafka.
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In chapter 4, the solution design is described. The requirements of the systems
to be implemented are defined and the general Unified Modeling Language (UML)
diagrams for ML applications built for manufacturing, one of the main results of the
project, are presented.

In chapter 5, the solutions’ implementation is described. The applications elabo-
rated and how they were applied in the institute’s architecture, the technologies used,
and the environments simulated are exhibited.

Chapter 6 evaluates the solution’s impacts and the results that it brought to solve
the problem described in chapter 2.

Finally, chapter 7 makes a conclusion analyzing the relation of the project with
the Control and Automation Engineering course and bringing suggestions for future
projects.
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2 Scenario Description

In this chapter, the scenario that embraces this project will be clarified. It will first
give an overview of the business model and the guidance of machine learning projects
inside the partner institute. Then, the problem that motivates this work will be better
described followed by the planned solution.

2.1 Fraunhofer-Gesellschaft

The Fraunhofer-Gesellschaft is the organization leader in applied research in
Europe (FRAUNHOFER-GESELLSCHAFT, 2020). Founded in 1949, the non-profit
organization has been playing an important role in the worldwide innovation sector
configuring itself as a key bridge between the research and the industrial environment
in several fields.

The structure of the organization is divided into 75 institutes and research in-
stitutions located in Germany, the country in which stays its headquarters, and other
affiliations throughout the globe.

2.2 Institute for Production Technology

The Fraunhofer Institute for Production Technology (IPT) is among the eleven
institutes that compose the Fraunhofer-Gesellschaft’s Group for Production (Fraunhofer
IPT, 2020). Located in Aachen, Germany, IPT has already developed several research
and development projects within important partner companies to explore different trends
in the manufacturing industry.

Focused in the fields of process technology, production machinery, technology
management, production quality, and metrology (Fraunhofer IPT, 2019b), the institute
seeks, since the beginning of its activities in 1980, to combine knowledge of differ-
ent areas to come up with new products and solutions that can help to improve the
manufacturing sector worldwide. Therefore, IPT has “transfer research findings into
economically viable and unique innovations in the field of production” (Fraunhofer IPT,
2019c) as one of its mission statements.

Moreover, the institute acts, since 1994, to promote technology transfer between
the European and American markets in partnership with the Fraunhofer Center for Man-
ufacturing Innovation in Boston, USA (Fraunhofer IPT, 2019a). Thus, configuring itself
again as an important international actor for the production technology improvement.

2.2.1 Business model

IPT develops many projects with different clients from the manufacturing industry
usually intending to optimize processes or develop new products for modern produc-
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tion facilities. These projects seek to analyze all the production line steps and their
interactions to have a result that fits properly on the client’s business reality.

To explore the clients’ needs, the institute’s big projects are usually covered by
three main stages. First, the research and development (R&D) phase will identify new
technologies, make conceptual models and develop prototypes that will fill the main
gaps found in the client’s process. This stage focus on optimizations that can lead
the customer to achieve higher competitiveness in the market. Then, the purchasing
phase will make a diagnosis of the company’s relation with their suppliers trying to find
improvement points since this is considered a crucial sector by the institute. Finally,
there is the production phase which emphasizes the institute’s focus on developing
groundbreaking technologies that guide their clients and, therefore, the manufacturing
sector as a whole, to be constantly evolving their production systems to an optimal
stage. (Fraunhofer IPT, 2019d)

During all the previously mentioned phases, the institute also analyzes the man-
agement of operations and technologies applied by their clients. If necessary, IPT uses
its expertise in this field to propose changes and improvements also on the business
management level. This simplified stages workflow when working with clients can be
visualized in Figure 1.

Figure 1 – Simplified workflow of the institute projects with companies

Source: (Fraunhofer IPT, 2019d)

These projects in cooperation with partner companies of industry represent a
core part of the institute’s business model. However, it is important to mention that
IPT also receives funds from public organizations, such as the European Union and
different German federal ministries (Fraunhofer IPT, 2022), especially for R&D projects.
This collaboration with research funding institutions also configures itself as a key factor
in the institute’s activities.

2.2.2 Production quality department

To reach the objectives established by the project’s phases in section 2.2.1,
the institute is divided into different departments that focus their expertise on specific
research areas. Among them, there is the production quality department in which this
project took place.
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The institute’s work guidelines are naturally valid for this department, however,
the focus is directed to projects that aim to improve the quality of manufacturing products
and processes. To achieve that, the division has focused on having a data-driven
approach building through the last years a broad knowledge especially on the data
acquirement and availability from production, the analysis of this data, and how to
implement actions based on these analyses (Fraunhofer IPT, 2021).

Another subdivision inside the department is the Automated Machine Learn-
ing group, where the main mission is to develop automation solutions for the whole
ML pipeline. To achieve that, the team leads partnerships that pursue solving produc-
tion quality problems with machine learning models capable of making predictions of
anomalies or undesired behaviors in manufacturing.

The projects of this subdivision are the ones on which the solution to be de-
scribed by this report aims to focus. In these cases, the manufacturing company usually
presents the idea of the problem they have on their production line, sometimes after
making a detailed exploration of it, and at other with this exploration to be made by
the institute. After discussing the problem and defining the objectives, the department’s
team, following the Cross-Industry Standard Process for Data Mining (CRISP-DM)
steps, better described in section 3.2, receives some static data files from the real plant
and goes through a long data analysis work and many experimentations to come up
with an adequate machine learning model. Then, it can generate predictions that fulfill
the established goals and make it possible to act on the production before the undesired
behavior happens, therefore enhancing its quality and saving money.

With this study, the institute can then provide this know-how or the ML models
to the client which can build the best structure to implement it in its daily activities.
As mentioned, the process to achieve these machine learning models and knowledge
about the production facility is very research-centric embracing many experiments. To
have an adequate environment for this type of operation, the department usually works
with Jupyter Notebooks 1.

2.3 Problem description and motivation

With the general process of machine learning projects inside the institute de-
scribed, it is possible to relate it with the problems briefly introduced in Chapter 1. In
many partnerships, the main goal is to properly identify a problem in the production line
and achieve knowledge on how to solve it using artificial intelligence. In such cases, the
outputs that come from the data science research - sometimes even resulting in a ML
1 Jupyter Notebook is a web-based application that provides the ability to develop Python programs

using interactive computing. Furthermore, it represents not only the code but also exploratory text,
mathematical expressions, images, and other rich media representations of objects. (Jupyter Team,
2015)
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model serialized on a file - are an adequate final solution for the partner company.
However, the institute realized that implementing this research knowledge is not

a simple task. As mentioned earlier, the deployment process - described as the final
stage of the CRISP-DM methodology - can have multiple operational problems. To
reach an appropriate application that will be running in the production environment it
will usually be necessary to deal with the communication with databases and other
microservices. Furthermore, the implementation aims to achieve a software easy to
understand and with a high level of maintainability, a state which demands the usage
of different patterns during code development.

These characteristics are usually not deemed in programs with a relevant amount
of experimentation on its development, where a considerable part of the produced code
will not even be forming the final application. On the other hand, the experimentation
stage is crucial to achieving the best project outcomes. Using strict code structures and
architectures since the beginning of ML projects, for example, could result in a very
slow process where it is really hard to reach important data and models understanding.

2.3.1 Precedent project

In a specific precedent project, from which the observations made are one of
the main motivations for this project, the necessity of having a better transition from the
research application to one deployable in manufacturing environments became clear to
the institute. This case was one of the first in which the partner company also showed
interest to have the deployment stage as part of the delivered solution.

Since this was a definition that changed while the project was in course, the team
had to take the developed research application and try to adequate it to production
without having time to define work guidelines and consider integration aspects.

The Jupyter Notebooks were then converted in object-oriented Python scripts
and the solution was correctly deployed. However, this process took a long and exhaus-
tive period that consumed much more of the team’s time than expected. To illustrate
that, there were moments where the scripts were working fine inside IPT’s environment
but have to be sent for testing to the partner company since their environment is dis-
connected from the institute. Then, also taking time from the company employers, the
tests showed that the scripts were not ready for production and had to come back to
development. Having in mind that this was a slow process since it was necessary to
send the whole program from one team to another, it exemplifies an integration problem
in a scenario that could happen in future projects led by the institute.

Furthermore, new classes and packages had to be designed to transform the
application. For the software to run in production, it was necessary to develop the com-
munication with the data source and the preparation of live data while also considering
maintainability and scalability aspects. Thus, the ML models that were considered the
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final solution at the beginning of the project still had a long period until being deployed in
production. This lack of preparation for this stage is something harmful to the institute’s
project since it is likely that it will consume a great part of their schedules.

Figure 2 shows the simplified implementation process used on this precedent
project, going from the requirements and problems definition, passing through the
experimentation phase using Jupyter Notebooks until the implementation using Python
scripts.

Figure 2 – Implementation approach overview used on precedent project

Source: (BELCK, 2020)

Even though the models developed had used advanced data science skills and
provided an efficient and innovative solution to predict manufacturing failures to the
partner company, the project loses part of its efficiency when it is not possible to
demonstrate the results integrated into a production environment.

All the problems listed in this section and the fact that they happened on a real
project inside the institute enhance and motivate the implementation of a solution that
can make the development and deployment process of such applications faster and
more reliable, seeking to achieve the objectives already presented in section 1.1.

2.4 Proposed solution

Having the scenario and previous problems faced by the institute in mind, it is
possible to formulate the steps to be implemented aiming to improve the integration
between development and operation tasks for this type of application.

The main idea of the solution is to build a framework that can guide the develop-
ment and speed up the deployment process. This can be achieved by the implementa-
tion of a continuous integration pipeline, better described in section 3.3.1.1, that will run
automatically in some stages of the project. Then, integration tasks containing all the
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needed configuration to test and build the application will be automatically performed
and will result in an instance ready to follow to production. Therefore, the majority of the
operational tasks will not request manual steps, which will fulfill the lack of standards
on this phase of the precedent project.

This pipeline can then be configured on a template git repository, which in turn
can be imported inside another repository when starting a new machine learning project.
However, the actions to be built inside the pipeline need to be executed in some machine.
Thus, it is also necessary to configure an actions runner in a private computer that will
be connected with our repository and will run the process when they are activated by
the triggers established on the cycle.

Additionally, the research stage where experiments are led by the team to define
the best solution to the problem remains an important step, just like on the precedent
project. Although the freedom to try different approaches is one of the crucial char-
acteristics of this phase, the solution to be implemented can also define important
guidelines and tools to solve the most common problems found during its develop-
ment, e.g. the tracking of the different experiments metrics and parameters. Therefore,
the implemented actions will not only focus on the deployment but also on the entire
development process.

Another important observation is that, despite the applications’ peculiarities and
diversity, general machine learning projects applied to production have many points in
common. Hence, in addition to the integration pipeline, a crucial stage of the proposed
solution is also to define diagrams and code structures that will be a reference to guide
and speed up the evolution of the research application into the one to be implemented
on production. In Figure 3 an overview of the solution idea is shown.
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Figure 3 – Solution overview
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Briefly, this project believes that these actions implemented together will form a
solid structure that will guide machine learning projects to easily deploy in the client’s
environment, in that way enabling further exploration of this field.
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3 Background

This chapter will introduce and explain the theories and concepts used in the so-
lution. Many of the aspects explained here will be mentioned over the other document’s
chapters, therefore being crucial to understanding them. Among the topics here clarified
there is the brief definition of machine learning models, the CRISP-DM methodology
used in the projects for which the solutions are directed, and the explanation of software
engineering concepts, architectures, and tools used in the implementation.

3.1 Machine Learning

The applications that seek the deployment of ML models in a manufacturing
environment are the ones to which the project’s solutions are directed. Therefore, it is
important to define a ML model as a file that contains the expression of an algorithm
and that is trained with relevant data to find patterns or make predictions when exposed
to new data (PARSONS, 2021).

However, since the best-performing models and the data preparation steps are
built in the research application, it is not necessary to have deep knowledge in this field
to understand the deployment of the production application. Some ML model types are
briefly explained in this section to clarify the input models of the validation use case in
Chapter 5.

3.1.1 Logistic Regression

Logistic regression is a type of ML model commonly used when the target vari-
able is categorical, especially in binary analysis. Also known as the logit model, it is
based on the logistic function f (z) = 1

1+e–z , which will always return a value inside the
[0, 1] interval regardless of the value of z. This characteristic motivates the model us-
age in cases where a probability of an event happening is the variable to be predicted.
(KLEINBAUM et al., 2002)

3.1.2 Random Forest Classifier

Random forest classifier is another type of ML model that aggregates different
decision trees to make classification predictions. The output result is the class that
appeared the most in the trees’ results. Since these trees are uncorrelated, the model’s
result outperforms any of the constituent individual results. (YIU, 2019)

3.2 CRISP-DM

As already mentioned a few times in this document, the CRISP-DM methodology
(CHAPMAN et al., 2000) plays an important role in this project because it is the base
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guidance used to explore the data from the manufacturing lines in most parts of the
department’s partnership projects.

Created with the purpose to standardize data mining processes, the methodology
proposes a cycle composed of 6 main steps that became widely used on data science
applications and it stands as the most popular project management framework in this
field (SALTZ, 2020).

These proceedings have different workflows that aim to guide the data science
team to know what are the next steps on each phase of their projects. The methodology
stages are then briefly explained in the bullet points below, which are all based on
(CHAPMAN et al., 2000).

• Business understanding: In the first stage the team must aim to understand the
problem and requirements of the solution from a business perspective, usually
elaborating a preliminary plan. Some project definitions are also established in
this phase, such as if the application will be deployed or if it will stand just as a
prototype.

• Data understanding: This is the stage where the first analytical steps with data
are performed. Initiating with a data collection, the team should implement actions
on it to properly understand the data and to be able to describe it deeper. The
seeking for insights over the data, the verification of its quality, the detection of
subsets, the identification of the data source in production, and other tasks with
an exploration profile should also be executed.

• Data preparation: The main aspect that describes this stage is that its output
should be the dataset with all the transformations that will be applied upon it,
in other words, the dataset in the form that it will be consumed by the models.
Therefore, among the actions the team should perform, there is the selection
of data that will be used, data cleaning steps to enhance data quality, merge
information that comes from different data sources or tables, develop the feature
engineering to extract new attributes from the original raw data, and format other
needed data attributes. This stage will already involve many code development to
perform the listed activities.

• Modeling: The modeling stage will build the models and select the techniques to
achieve them. This selection will imply analyzing different available approaches,
searching optimal values for the models’ parameters, and evaluating the technical
results looking to the reached metrics. It is expected that, during the development
of these tasks, the team will need to step back on the cycle and perform data
preparation actions again.
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• Evaluation: In this stage the evaluation of the models is performed considering
the business objectives and restrictions. In other words, the team will ensure that
the models do not have only good technical metrics but also fits properly in the
considerations made on the first steps of the methodology and solves the existing
problems. Then, it will be decided if the solution is ready to be deployed or if the
cycle should restart with the business understanding.

• Deployment: The last stage will elaborate a plan to deploy the result achieved
so far into the business. Usually, the customer will have active participation in
this process that will also plan the monitoring and maintenance of the application,
produce a final report, and make a review of to whole project listing improvement
points.

In Figure 4, it is possible to see the CRISP-DM diagram which illustrates the
methodology flow over the stages described. There is also an outer cycle that embraces
all the steps demonstrating the cyclic nature of this type of project.

Figure 4 – CRISP-DM diagram

Source: (Data Science Process Alliance, 2018)

Having the stages description and the sequence of their execution in mind, it is
possible to observe that some initial phases, especially data preparation and modeling,
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will produce a lot of code that will not necessarily be on the final application. These
two stages interact a lot with each other forming a mini loop inside the major cycle
and, together, they create several experiments that have the metrics and parameters
evaluated according to the project requirements. Therefore, they form what is defined
as research application by this document and enhance the comprehension of why it is
important to have a step with a flexible code structure inside the proposed solution.

Moreover, even though it has sub-processes described, the deployment stage
does not state specifically how to implement the solution. This is because each data
mining application will have its peculiarities and own requirements. (CHAPMAN et al.,
2000) states that “the deployment phase can be as simple as generating a report or
as complex as implementing a repeatable data mining process across the enterprise”.
Considering that the type of applications explored here needs to be implemented in
an environment different from the development one, becomes clear the importance of
having a better structure that makes the deployment easier and that this solution does
not come naturally from simple following CRISP-DM.

3.3 Software Engineering

A considerable part of this project will involve establishing and implementing
definitions to guide and speed up the development, deployment, and maintenance of
machine learning software applications. Software engineering can be described as the
field that studies techniques to design, build, and test software aiming to satisfy the
user requirements (MARTIN, 2021), which makes it important to understand some of
its concepts in this section.

3.3.1 DevOps

Being formed by the joint of the words “development” and “operations”, it is pos-
sible to initially define DevOps as a culture that promotes better interaction between
the software development and the information technology operations teams (COURTE-
MANCHE; MELL; GILLIS, 2021).

The DevOps movement started to be widely discussed around 2008 when many
software companies noticed that the incorporation of agile methodologies was not
enough to ensure fast implementation of the developed solutions. The structural sepa-
ration between development and operations, from the different key performance indica-
tors to the different leadership’s board, resulted in a culture where each team focuses
only on their own tasks and demands. That, in turn, makes it harder to effectively deploy
the solutions and deliver them to the clients (BUCHANAN, 2021).

It is easy to observe that this lack of integration among these phases relates a
lot to the main problem to be explored by this project. The DevOps practices have the
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objective to fulfill this gap and that is why its definition is so crucial for the rest of this
document.

To better exemplify what this concept means, an essential characteristic of its
implementation is to create a DevOps pipeline: a set of automated processes that
embraces both development and operations tasks executing them aiming to build the
application, ensure its quality, and let it ready to be deployed on the production environ-
ment (HALL, 2021). The idea of bringing automation for this process is an important
attribute of the solution proposed in section 2.4.

With this exemplification in mind, it is possible to improve the initially given defi-
nition of DevOps with the (BUCHANAN, 2021) statement that “DevOps touches every
phase of the development and operations lifecycle. From planning and building to moni-
toring and iterating, DevOps brings together the skills, processes, and tools from every
facet of an engineering and IT organization.”.

Furthermore, it is important to point out that the stages of DevOps cycles will
vary from application to application. For example, a program being developed in a
compiled language will have to be concerned about the compilation of the code on
the build stage, while another one that uses only interpreted languages will have other
concerns. Anyhow, in Figure 5 a general DevOps cycle proposal that properly illustrates
the discussion so far is shown.

Figure 5 – DevOps cycle stages example

Source: (GITLAB, 2021)

3.3.1.1 Continuous integration and continuous delivery

To build the mentioned pipeline, one of the main DevOps best practices is the
implementation of continuous integration (CI) and continuous delivery (CD). These two
concepts carry the idea of automating the technical and management aspects of the
whole development lifecycle.
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As the name suggests, CI is the practice to be continuously integrating dif-
ferent versions of code inside a common repository. It allows developers to merge
code changes on the same branch and also manage its different versions (REHKOPF,
2021b). Usually, a git repository provides the ability to develop these tasks, however, a
solid workflow must be defined by the team.

Nonetheless, the application of continuous integration does not limit itself to
having a well-configured git repository. The integration of code in real modern use
cases also involves testing its quality, verifying syntax styles, and other integration
tasks that will result in a much more reliable and scalable solution. These activities
should be automated when possible and will usually include the use of different tools
as support to speed up the development process. (REHKOPF, 2021b)

On the other hand, CD is a set of actions that aim to take the application with
code integrated by CI and continuously coordinate the release of this program. Having
automation again as a key value, CD just considers a new feature done when it is
released to the end-user since this is the reason for the whole project. Following this
concept will imply the understanding that there is no work done if it runs only on the
machines of their developers. (REHKOPF, 2021a)

Again, it becomes clear how these concepts are important for the proposed
solution. To be able to implement it, the particular CI/CD steps will have to be defined
and configured for the general application and validated on a motivational project.

There is another concept, called continuous deployment, that embraces the stan-
dard DevOps pillars. In this process, the application is not only released automatically
but also deployed to the customers without any human intervention (PITTET, 2021). Of
course, the deployment stage will also be as automatized as possible in the DevOps
cycle of the institute’s applications, however, it will usually deal with a production en-
vironment disconnected from the development one, which can prevent the complete
implementation of this last concept.

3.3.2 MLOps

Since the machine learning applications have a lifecycle that differs in many
aspects from normal software applications, the set of aspects that can lead high-
performance models to be continuously integrated and delivered to production are
usually treated in a sub-field called MLOps.

Thus, the majority of the DevOps characteristics can be also considered for this
sub-field, since its definition can be given by “an engineering discipline that aims to unify
ML systems development (dev) and ML systems deployment (ops) to standardize and
streamline the continuous delivery of high-performing models in production” (TYAGI,
2021). However, it is important to have in mind that MLOps will involve different steps
and will probably form different cycles to reach an integrated result.
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For instance, referring back to the proposed solution’s brief explanation in sec-
tion 2.4, the consideration of having a separated research application could already
break some of the DevOps principles. But, since the proposal is dealing with a ma-
chine learning application, the experimentation stage is crucial for the delivery of a
high-performing model.

In sum, it is important to have the MLOps concept well-defined in this docu-
ment as a DevOps branch that adapts it to ML applications, differing sometimes from
standards used on general software projects.

3.3.3 SOLID Principles

The SOLID principles are a set of development patterns used to bring a clean
architecture for a software project. They will be used during the modeling of the general
ML applications.

First defined by (MARTIM, 2002), the SOLID principles form an acronym with 5
major design principles that impact code architecture. Each one of them deals with a
specific software modeling problem but, together, they aim to build a clean code guiding
the developer on the arrangement of functions and data structures.

These principles are intended to be applied on the module level that will conse-
quently guide the code implementation. Their goals are explained by (MARTIM, 2017)
as the creation of mid-level software structures that can tolerate change, are easy
to understand, and are the basis of components that can be used in many software
systems.

Also in (MARTIM, 2017), a description of the principles focusing on their archi-
tectural implications can be found. The bullet points below will try to resume each letter
of the acronym based on this reference.

• The letter S stands for the Single Responsibility Principle (SRP), which tells us
that a software module should have one, and only one, reason to change. This
does not mean that a function must deal with only one task, but it states that a
module should have only one actor, which is its reason to change.

• The letter O stands for the Open-Closed Principle (OCP), stating that a software
module should be open for extension but closed to modification. Whenever a
software component is running in production without having an error, the imple-
mentation of a new task should not imply modifications on their existing structures,
but the arrangement of the components should be already designed in a form that
makes their extension easier. A dependency hierarchy will be crucial for prevent-
ing the high-level components from changes in lower-level components.

• The letter L stands for the Liskov Substitution Principle (LSP), which states, in
an informal definition, that a sub-component should always be able to substitute
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its parent-component without raising any error. This can be very related to the
classes inheritance inside the object-oriented programming, as illustrated by one
of the examples given by (MARTIM, 2017) where a class “Square” is created as
a sub-class of “Rectangle”, shown in Figure 6. Although these forms share many
aspects, the height and width of the “Rectangle” are independently immutable,
which is not true to the “Square” and can confuse the user when it believes that is
dealing with a “Rectangle”. The SOLID principles extend LSP to the architecture
level using it as an important ally to implement a clean software design.

Figure 6 – Square/Rectangle problem that illustrates LSP

Source: (MARTIM, 2017)

• The letter I stands for the Interface Segregation Principle (ISP), stating that clients
should not depend upon interfaces that they do not use. Making a class dependent
on something that carries more information than what it needs will break the
cohesion of the code architecture. Instead, this interface should be segregated into
several interfaces that will be correlated only with objects that need to use them.
Just like on the LSP, the word interface refers to any component that describes
this implementation dependency and not to a specific programming language
component.

• Finally, the letter D stands for the Dependency Inversion Principle (DSP), which
states that software models should rely only on abstractions and not on concre-
tions. Abstract objects will usually require fewer changes, therefore configuring
itself as a more reliable structure. Together with OCP, this principle is crucial for
ensuring code flexibility. With its implementation, high-level objects will never de-
pend on low-level objects implementation but will always be opened to extend the
abstract concept of the object to them.
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The implementation of these principles on the modules that will compound the
design components does not completely ensure a system without undesired bad prac-
tices in the code architecture. Besides SOLID, it is also important to have other software
engineering principles in mind, such as the cohesion of components which will tell how
to arrange program classes into different source files - in the case of interpreted lan-
guages.

However, they will serve as important guidance to achieve a clean architecture
when designing the modules, classes, and components of the general application so-
lution. Having in mind that this solution will be used as a reference to be adapted for
different machine learning applications developed by different teams, it is very important
to be easy to understand its concepts. This supports the necessity of the implementa-
tion of the SOLID principles for this project.

3.3.4 Software tests

To establish an integrated development cycle in a software project it is very im-
portant to have a clear tests’ chain. These software tests can be used to ensure different
system behaviors. The analysis if a new small feature did not break old ones and the
examination if the whole program’s workflow is working integrated with production are
some of the advantage examples.

With the dominance of agile methodologies on software projects, being able
to continuously ensure that a program is working as it supposes to be turned into a
crucial task that enhanced the importance of software tests automation. This relevance
has even contributed to the invention of programming methodologies that have them
as a base. Thus, different concepts of software tests were designed and the methods
to implement them depend on the requirements and environments of each project.
(FOWLER, 2019)

In this section, the most relevant tests’ aspects to this project have their definition
explained considering that the creation of an automated testing pipeline is one of the
proposed solution objectives.

3.3.4.1 Test doubles

Before reaching the different software test types, it is important to establish
the concept of test doubles to understand how these examination methods work. The
objects and functions inside a program tend to be tied together in different workflows
containing a correct order of how the tasks should be executed on production. Therefore,
many of the actions to be tested are programmed to only initialize after a series of events
using several dependencies created on previous steps. To make the verification easier
and avoid executing a large sequence of operations each time, software tests create
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fake objects - test doubles - to replace real dependencies which the test does not have
control of.

There are different classifications of these fake objects used for testing purposes.
(FOWLER, 2016) divides them into five groups according to their usage, but the classifi-
cation given by (OSHEROVE, 2014) is simpler and more practical dividing test doubles
mainly into stubs and mocks.

Thus, the creation of stubs and mocks is a crucial step in the development of
software tests and their injection in the code can be made with the assistance of testing
frameworks, which makes it important to know the definition of each one. A stub is a
normal fake object created to replace an external dependency, tests can usually use
several stubs. On the other hand, mocks are also fake objects but they are used to
decide whether the test has passed or not. In other words, mocks are similar to stubs
but it is used used to verify if the production code under test called the fake object as
expected. (OSHEROVE, 2014)

3.3.4.2 Unit tests

The base of tests pyramids is usually filled with this type of test. Unit tests are
essentially designed inside software applications to test small units of work that execute
a specific action when a method or a task is called. These tests are written in code
usually on the same repository of their project, which allows their easy automation.

Furthermore, they are usually written with the support of a testing framework,
and, using statements, they always check if the unit of work performed what was
expected, which will decide if the test passes or fails. Thus, its structure will rarely be
different from defining needed dependencies, executing the production method under
test, and checking the results through assertion functions.

However, the misunderstanding of the unit tests characteristics can lead to a
code with undesired behavior. Since the testing pipeline needs to have a fluid execution,
defining how a unit test should behave is also necessary. In this document, the unit test
definition stated by (OSHEROVE, 2014), which also lists some properties that relevant
unit tests should have, will be considered when referring to this topic. Below, there are
the explanation of some of these properties, based on (OSHEROVE, 2014), considered
more relevant in the context of this work.

• It should run quickly: one of the main advantages of this type of test is the idea
of checking the quality of several parts of the production code in a few seconds.
When a test takes too much time to run it is probably dealing with dependencies
that unit tests should not deal with.

• It should be automated and repeatable: as mentioned before, these tests are
written with the assistance of a testing framework. Then, their run should be
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created in an automated form that can be easily repeated.

• It should be relevant tomorrow: the value of implementing unit tests increases
as the project advances since old unit tests will always be able to run and identify
if some feature is broken. If a unit test losses its relevance tomorrow, then there
is no meaning in implementing it in the first place.

• It should be consistent in its results: this crucial statement describes very well
the nature of unit tests. Since they should not rely on anything outside the source
code, they should always return the same result in different executions if nothing
changed between them.

• When it fails, it should be easy to detect what was expected and determine
how to point out the problem in the production code: the statements of a
unit test should always be very clear. Their main advantage is to believe that
when something breaks inside the code they will always successfully catch this
error. However, just knowing that something is wrong is not enough, the developer
should also be able to identify where is the problem and what caused it, so a
strategy to solve it can be made.

3.3.4.3 Integration tests

Unit tests are not enough to cover the verification of all the actions inside a
software project. Some functionalities can demand less isolation to be tested, which
can break certain unit tests characteristics. Integration tests are then used to fulfill this
lack of verification and are defined by (OSHEROVE, 2014) as “any tests that aren’t fast
and consistent and that use one or more real dependencies of the units under test”.

With that definition in mind, it is possible to understand the necessity to imple-
ment integration tests to keep a high level of maintainability in a complex project. Many
features have to use real dependencies to be properly tested and even the communi-
cation between different packages inside the program can be hard to verify using the
isolation demanded by the unit test properties.

This type of test can be usually implemented using the standard testing frame-
works available for different code languages and it will compound one of the CI cycle
stages to be developed. But on the other hand, it is important to differentiate its definition
from the other test types to ensure that their execution will not culminate in significant
pipeline delays.

3.3.4.4 Contract tests

It is not common to have a completely isolated program on production applica-
tions. The source code to be developed has to communicate with different external
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services to get access to some data, publish information, or execute specific actions.
To have fast tests on the source code methods that deal directly with external

services, it is a good approach to make a test double containing the expected response
from the third-party program and use it in unit and integration tests. However, if the
external service changes its operations, such as the communication protocol or the
response format, it could break the application without having the error identified by the
implemented tests.

Contract tests are developed to solve this problem. Their concept relies on mak-
ing a real request to the external service and comparing its response with the test
double created to represent it on the other tests. A failure on the set of contract tests
would mean that the contract between the application and the external service is broken,
in other words, the source code was expecting different behavior from the third-party
program and it has to be verified. (FOWLER, 2011)

In conclusion, contract tests are used to verify if external services are still working
as expected by the application and its implementation can be very useful in projects that
have to communicate with other programs, which will usually be the case of machine
learning applications in production.

3.3.4.5 End-to-end tests

The other test types previously described in this section had different levels
of isolation from the other parts of the program. In the case of end-to-end tests, the
isolation will be as low as possible since their idea is to test the whole program workflow
from the beginning to the end. Every action that the project can perform should be
executed and the different interactions with external dependencies, real databases, and
other production hardware should be tested. (BOSE, 2021)

As it is possible to observe in its definition, this type of test can be hard to
be implemented. A machine learning project, for example, may involve writing back
predictions inside a database (DB) and an end-to-end test could be useful to analyze
its entering execution. However, making a test to write things on the real production
environment can be harmful for obvious reasons, so the necessity to have an easy
roll-back mechanism or an entire separated environment to perform these tests makes
its maintainability difficult.

Even though some frameworks can help with its implementation and automation,
end-to-end tests can be very different from project to project since it relies on the
hardware architecture. Therefore, tests that manually verify the whole program workflow
are also considered end-to-end tests on this document.

Since it passes through the whole program stack without using test doubles, the
end-to-end test can be powerful to find particular bugs that are being missed by the rest
of the testing pipeline. But, as it was described, its implementation is itself a challenge,
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which will imply the usage of only a few tests of this type on most projects. (FOWLER,
2013)

3.4 Software architectures and tools

During the solution development, different architectures were considered to pro-
vide a wide utilization range for the CI pipeline and the software modeling. Moreover, the
validation use case where were performed tests to evaluate the project’s outcomes had
to use different tools to correctly simulate the environments. Therefore, it is important
to clarify these topics for the understanding of Chapters 4 and 5.

3.4.1 Event stream processing

General applications that deal with the incoming of new data are usually de-
signed to receive it in batches. This standard design structure makes it easier to add
the data on a storage system and, when appropriate, the applications can make a
single request and receive the whole batch all at once. However, this architecture can
be problematic in cases where the data does not have a proper beginning or end, which
would imply arbitrary decisions to separate the batches.

The storage and processing of data based on event streams is a different ar-
chitecture that gives a continuous flow to never-ending data sources and provides the
ability to perform actions upon data in motion. Considering the modern applications’
requirements, this is a crucial data processing method that brings agility and flexibility
to production. It makes it easier for edge devices to publish or consume data from the
streams instead of having to centralize it on the core storage first. (Confluent, 2021)

Moreover, data can be time-sensitive in some use cases, which means that
it loses its value when time passes. For example, the information of sensors in a
manufacturing plant that can be used to predict errors in the final product does not have
too much value if it is analyzed only after the product is already manufactured. The
system can prevent results outside the desired metrics if the information is processed
earlier. Data streaming technologies enable a real-time reaction to data (Confluent,
2021) which can be very useful in critical systems.

Nonetheless, some fields need more attention when developing an application
inside an event data streaming architecture. The flexibility to append new devices as
consumers of a stream can imply a bad data consistency, a service can consume a
piece of information that was already treated and modified inside another application.
Furthermore, fault tolerance and data guarantees are usually characteristics intrinsic to
the database management system in batch processing applications, while it has to be
ensured in streaming since the data can come from different numerous sources. Thus,
it is necessary to have all the possible data flows in mind when designing the use of
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this structure in a project. (Confluent, 2021)
In machine learning projects the data can have different natural behaviors. Its

source can be set on a unique central system or hundreds of devices and the data
creation can be very slow or it can occur in events of milliseconds period, the fact is
that these projects depend on data to work properly. Therefore, it is important to have
the streaming technology concept well defined to be considered while proposing a fast
deployment solution in this project.

3.4.1.1 Apache Kafka

To use event stream processing in a project it is necessary to have a structure
that allows it to happen. Problems like data availability and consistency have to be
considered to have a reliable streaming architecture and it is not feasible to build this
whole system from the scratch in every project.

Apache Kafka is an open-source streaming platform that provides the needed
features to properly implement this architecture. Kafka provides three key resources
to drive an application based on event streaming: the ability to publish and subscribe
to streams of events, store streams of events for as long as necessary, and process
streams of events as they occur or retrospectively. (Apache, 2021)

Additionally, the platform is built on a distributed and elastic structure, that makes
it possible for the application to scale and handle big amounts of data. Some other
concerns regarding security and data replication are also dealt with by Kafka. (Apache,
2021)

Applications and devices can communicate with Kafka in the form of clients,
being them publishers (data writers) or subscribers (data readers). The interaction
of these clients with the data and Kafka’s simplified operation can be understood by
comprehending its main objects, which are described below based on the explanations
given by (NARKHEDE; SHAPIRA; PALINO, 2017).

• Messages: Since Kafka is event-oriented, messages are essentially the units of
data that arrive on it. The data does not demand to be interpreted by Kafka, so it
can have almost any format of information.

• Clusters and brokers: The broker is the Kafka server that coordinates the stream-
ing operation. It is the broker that will receive the data from the different devices,
make needed assignments, and store it in the host’s disk. The server will also
warn the consumer applications when there are new incoming data to process. In
Kafka, these actions are usually performed using more than one broker that can
communicate with each other and enhance the streaming quality and reliability,
forming a Kafka Cluster.
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• Topics: This is the way to separate and label data inside Kafka. The producers
will choose a specific topic to publish a specific kind of data, which will allow other
services to subscribe to that topic and read this data following the incoming order.
This procedure represents the stream processing, making clear why topics are so
important in Kafka’s structure.

• Partitions: Topics are also divided into partitions, which is the instance where the
data is written. Since a topic can have several partitions allocated in different
servers, Kafka can provide data redundancy.

In Figure 7, it is possible to observe an example of a Kafka structure with data
replicated in two different brokers. This simplified overview resumes how Kafka can be
used to manage and stream data among different applications inside a project.

Figure 7 – Apache Kafka components overview

Source: (NARKHEDE; SHAPIRA; PALINO, 2017)

3.4.2 Docker

As mentioned in Chapter 2, one of the focuses of this project is to facilitate the
deployment process, which can be done with the support of containers and images.

The development of an application does not have to deal only with the code but
also with environment configurations. It is usually not possible to simply migrate the
source code to production and run it without having to configure dependencies that
were already built on the development environment. Due to the limitations of production
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structures, which sometimes include not having access to the internet, this task of
building a platform containing all the pre-requisites to run the application on a new
computer can be difficult.

Docker provides the ability to package the application into one or several stan-
dardized units containing the source code, runtime, system tools, system libraries, and
any other necessary setting to run the application. This creates a blueprint of how to
build the desired system, which can then be executed to run inside a Docker Engine.
(Docker Inc, 2021)

This blueprint is called Docker image and is used to solve the compatibility
problem previously described. Since the system will always be entirely constructed
based on its Docker image, it should be able to run exactly in the same way on every
computer. When this image is set to run, it becomes a Docker container, which is the
instance that will use the computer resources to perform the application actions. Again,
the isolation of the container makes that every environment can run it without having to
be concerned with any dependency, having in mind that all the needed configurations
were correctly injected when creating the Docker image. (CHAWLA, 2020)

A Docker image is for its containers what a class is for its instances. The declara-
tion of the class is what describes everything about that object, its methods, attributes,
and connections, but the real word entity just exists when an instance of that class is
created. In the same line, a Docker image is only used to perform real actions when a
Docker container is instantiated. (CHAWLA, 2020)

The containers can have their execution compared to the usage of virtual ma-
chines due to their similar resource isolation. However, containers aim to package the
application and its dependencies only, which allow them to use the host machine’s
operational system (OS) kernel. On the other hand, each virtual machine requires a
copy of the whole OS, making containers a much lightweight and easy to run solution.
(Docker Inc, 2021)

In a nutshell, Docker establishes the standards to isolate the application with
all its dependencies together and make connections with other isolated systems, but
also sharing important resources such as the processing unit and the host’s OS. The
simplified Docker architecture can be visualized in Figure 8 which also compares it with
the standard architecture of virtual machines for clarification.
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Figure 8 – Docker containers architecture vs virtual machines architecture

Source: (Docker Inc, 2021)

In the context of this project, Docker was used to automatically build an image
of the machine learning applications directly from the CI pipeline and let them available
for being deployed in the form of containers inside the production environments.
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4 Solution design

The previous chapters formalized the problem and its relevance to the institute,
the general solution, and the background concepts that enable the understanding of the
implementations. Then, this chapter will now explore the solution designed to achieve
the established objectives.

In this project, it is possible to separate the solution into two systems. The
first one is the continuous integration pipeline which is not a conventional software
application, but it has to be planned, developed, and executed independently to stand as
the main solution for DevOps integration. The other system is the deployable machine
learning application that will use the CI pipeline and other generic diagrams to guide its
development from the data science research.

These two systems can be easily related to the main objectives of this project
presented in section 1.1.1. However, it is important to clarify that the main solutions are
the CI pipeline, the UML diagrams, and the guideline documents that aim to enhance
the path to the deployment of any future production ML application to be implemented
by the institute. Nonetheless, to properly validate these solutions it is necessary to
use them in the development of an application that completed the research phase. In
Chapter 5, an institute’s project with two existing ML models was used as a validation
use case and converted into a deployable application.

4.1 System requirements

Having in mind the project objectives and the proposed solution, the implemen-
tation design starts by defining the system requirements which will then guide the
development. The functional requirements to be established will describe what the sys-
tem does and the main features it must-have, while the non-functional requirements
will state how the features should be implemented such as defining technologies and
establishing desired properties (QRA Corp, 2019).

Below are presented the planned CI pipeline functional requirements:

1. Trigger the execution of the stages when a new instance of the application arrives
on the git repository.

2. Automatically generate and publish a container with the application and all its
dependencies on the same image, in order to make the deployment into another
environment as easy as possible.

3. Automatically identify and execute the software tests and code best practices
verification.

4. Provide standards to the applications’ versions that can be deployed.
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5. Automatically export simplified reports about the pipeline results.

6. It should be possible to have different stages according to the type of pipeline (e.g.
the trigger branch type or if the execution was triggered by a merge request).

Next, the planned CI pipeline non-functional requirements are also presented:

1. It must be implemented using GitLab since this is the DevOps platform that the
institute has a license.

2. Have a scalable CI structure so different machine learning applications can easily
adapt it to their needs.

3. Have the possibility to choose a specific machine to execute the CI pipeline.

In addition, it is possible to list the generic requirements this project wants to
achieve on the future machine learning applications turned to production that will be
developed and deployed using the solutions presented in this report which, therefore,
are also valid for the validation use case.

Below are presented the planned general functional requirements for the
machine learning applications that will use the solution.

1. Import/receive information from a data source.

2. Execute a data transformation pipeline.

3. Import a machine learning model inside its structure.

4. Feed the model and collect predictions.

5. Export the predictions to an adequate monitoring system.

6. It must be adequate to the production environment and deployed simply.

Also, the planned non-functional requirements for the machine learning ap-
plications that will use the solution are presented below.

1. Have a robust architecture easy to understand and with a high maintainability
level.

2. It must implement software tests that also enhance the reliability and maintainabil-
ity.

3. It should have Python as its main language since this is the programming lan-
guage that the department is more used to.

4. It must be modular and adaptable to different deployment architectures.
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4.2 General class diagram

With the requirements listed, the design solution advanced to the development of
a general class diagram for machine learning applications to be implemented in produc-
tion environments. This diagram by itself is an important outcome of this project since
implementing its structure will enable a robust and reliable solution for the deployment
to several of the future ML projects led by the institute. Therefore, this should already
bring much more agility to this development process and save time and money from
these projects.

However, building a software program based on a class diagram does not ensure
that it will have a clean architecture. A bad class diagram can lead the application to
have a bad structure which would only make the deployment process and the maintain-
ability even harder. To avoid that, the class diagram presented in this section sought to
follow the SOLID principles described in section 3.3.3.

The focus on having a clean architecture is even more important for the kind
of applications that this solution is directed to. After achieving a satisfactory program
operating the models in production, the predictions made should be valid for a long
period. This implies that the software will only receive maintenance when the monitoring
indicates a depreciation of the model reliability or when something changes on the
manufacturing line and new features wanted to be added. This in turn can imply a
different development team having to deal with code developed entirely by someone
else in the past, especially if the fast researchers’ rotation of IPT is taken into account.
Software in that situation is called legacy code and can be hard to understand and
make changes due to the lack of references. Implementing a clean and maintainable
architecture is a great instrument to avoid this scenario in projects with that gaps in
development.

The elaborated software architecture is divided into packages and will be exhib-
ited gradually in these sections for better visualization and understanding. However, the
complete class diagram can be visualized in Appendix A and its analysis is stimulated
to understand all the connections.

4.2.1 Data source package

As the functional requirements state, a crucial feature of a machine learning
application in production is to communicate and acquire inputs from a data source.
For that purpose, the data source package was developed inside the diagram, and
its operation is entirely coordinated by the DataSourceManager. This class should
establish communication with the data source and take care of the operational details
as well as integrate the tasks that will be performed and ensure their correct execution.

The package diagram can be visualized in Figure 9 and its manager holds
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instances of the two classes that will perform the requests to the database. The
DataBaseReader will gather data from the data source which, in standard applica-
tions, will mean the execution of Structured Query Language (SQL) statements seeking
optimal performance. On the other hand, DataBaseWriter is responsible for writing
the predictions back into the database, which will include making data adjustments
(e.g. concatenating the results) and performing the SQL post. Both classes receive the
needed database information, such as the login session, directly from the manager
class.

In addition, to make the correct management of the relevant database tables in
a high-level approach, the class diagram proposes the usage of an Object Relational
Mapper (ORM). Using this procedure, the tables and their attributes are represented
inside the software as normal object-oriented classes. Then, they are all attached to
the same declarative base and the other classes can perform different actions without
having to be concerned with SQL requests but can do that similarly to managing any
standard code object and instances.

It is generally necessary to use a library or framework to make the implementa-
tion of ORM easier. SQLAlchemy is an open-source library widely used that proved to
be a great alternative for Python language.

Finally, the manager class is the only interface for the rest of the software to deal
with the database since the low-level methods should be protected. This is important to
avoid the execution of undesired requests that could change the production database
and interfere with manufacturing processes. In fact, in the ideal scenario, even this
package will be capable of performing only reading commands in tables that already
exist whereas the write commands should only be possible in new tables created
specifically for the machine learning implementation.

4.2.2 Model package

Another important part of the class diagram is the model package. As the name
suggests, it will be responsible for coordinating all the actions to be performed with the
assistance of the machine learning model. Similar to the last package, it will also have
a manager class that will gather all the information needed for those actions and will be
the only interface for the models to the rest of the software.

The main methods this class has to implement are the models’ import and the
acquirement of the desired predictions by feeding them with the transformed data, as
it is possible to see in Figure 10. For some specific applications, it can be necessary
to train the model from the beginning at each execution, the precedent project that
inspires this study is one example of that. In these cases, another method would be
necessary and it is written in red on the diagram to signalize that it will not be present
in a standard general application.
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Figure 9 – Data source package on the general class diagram

An important observation is that the specific method that executes the predictions
will have big variations according to the ML solution to be implemented. For instance,
a use case where a single model is sent to production will result in a simple method
that provides data to that model and return the predictions, whereas a use case with
specialized models would demand a selection of which data goes into each model
and separate their execution in threads to enable parallel programming. The same can
happen with the implementation of cascaded models, competing models, and other
models arrangements. However, these adaptations will only change how the method
will be implemented and will not necessarily change the architecture design, therefore
making the class diagram valid for different model approaches.

Furthermore, in the majority of cases, the model will not be embedded inside
the software structure but has to be imported from a serialized file. To handle that,
the package also has two other classes, one to deserialize the model into the code
structure and another one to serialize it for the specific applications that build or change
the model inside their executions and have to store them after that. Both classes are
abstractions, which means that they describe the attributes and methods a class of
this type must have like a recipe. When a child class inherits from them, they need to
perform what is described in the parent class but have the freedom to do that concretely.

The usage of these abstractions is very important to ensure that the class di-
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agram is respecting the SOLID principles to achieve a clean architecture. DSP is not
broken in that case because the classes still rely on abstractions and not concretions.
OCP, in turn, will still be respected in some future maintenance of the code since, for ex-
ample, to implement the possibility to deserialize the model using another technology it
is not necessary to modify the production code that is already working but an extension
of the abstract class can be made.

In the class diagram, the child classes for dealing with serializations are planned
to be implemented using pickle or joblib, two of the most used Python libraries for
these tasks, each one with its computational advantages for specific cases. Again, if
these libraries are obsolete in the future, the architecture can receive maintenance with
another extension to new technology.

Figure 10 – Model package on the general class diagram

4.2.3 Configuration package

Some of the tasks listed on the requirements will depend on the information
that can change in each application’s execution. Part of this information should also
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be protected and cannot be hardcoded inside the software because this would make it
available for everyone that has access to the project’s repository.

To handle that, a small configuration package was designed inside the general
class diagram and can be visualized in Figure 11. It is compounded by a central class
that must be able to load the configuration from a file put in a previously defined folder
inside the application. Then, it must convert it into other structural classes that have no
methods but are designed only to organize this information.

The configuration data will vary from application to application but is reasonable
to assume that the database address and login credentials will be necessary. Also,
other execution decisions, such as which serialization type to use to import the ML
models, can be required. Therefore, the diagram separates these structural classes
into DBParameters and ExecutionParameters as motivational examples, but it should
be adapted to each case without representing big changes to the architecture since the
classes have no methods or extra connections.

Nonetheless, the loading of these parameters can use the technology preferred
by the project. However, Python applications have a built-in structure called dictionaries
that are very similar to the JavaScript Object Notation (JSON) data-interchange format
representation so its usage is indicated.

Figure 11 – Configuration package on the general class diagram

4.2.4 Controller and data preparation classes

The last requirement of general machine learning applications to compound the
design solution is the ability to execute data preparation pipelines that will be described
by the research experiment. To keep the architecture cohesion, the model package
should only deal with tasks that interact directly with the ML models so the data pipeline
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must be executed earlier.
On the other hand, it is expected that the data transformation will be compounded

by several complex operations but without the necessity of having different architecture
components. For that reason, a single class was designed to control the sequence of
preparation steps, as it is possible to see in Figure 12.

This pipeline usually contains tasks such as data cleaning, format transforma-
tions, and other feature engineering actions made during the experimentation to in-
crease data quality and, therefore, increase the model’s performance. Each one of
these steps can be described as a protected method inside the class, which is called
in the correct sequence and receiving the correct parameters inside the execute_
preparation_pipeline method accessible from external classes. In short, the class
should receive the raw data, process it in the correct order, and return the data ready
to feed the model.

Finally, the MainController class is responsible to manage the application exe-
cution as a whole. It has an instance of all manager classes of the packages and the
data preparation, which means that this class will control the workflow of the high-level
methods and the inputs and outputs of each package. To do that, it will also have other
attributes such as the current state of the data and the imported execution configura-
tions. This class will contain the application’s “start method” to be called in the command
that will be executed inside the Docker container when running in production.

In sum, these last classes enable the execution of the remaining system require-
ments and connect the other packages resulting in clean and robust design architecture.
This diagram will then be the base for the development of the components aiming to
have a faster deployment of such applications.
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Figure 12 – Main controller and data preparation classes

4.3 General sequence diagram

With the general class diagram constructed it is possible to build a sequence
diagram to describe the application’s workflow and how the classes and packages
should interact. This will be important to guide the development when constructing the
methods and the controller class.

In Figure 13 it is possible to see that the execution is divided into three main
stages. The first one aims to get new data from the database and it initializes with an
optional step where the last processed data frame is imported to define where the last
loop stopped. Then, the main controller interacts with the database package to make
the data request and optionally saves it back in the serialized data frame.

The next stages start interacting with the data preparation package to execute
the set of transformation methods and obtain the treated data in the main controller.
Next, the models’ package receives this data and feeds the models, importing them from
a serialized object if they are not completely built inside the method on each execution.
When the predictions are done, the main controller sends them to the database package
in the last stage, which will write them in the correspondent table.

The stages are repeated in the same order in the main loop. However, before
the first iteration, the configuration package imports the execution parameters which
can contain database credentials, batch size, a serialization library, and other details
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Figure 13 – General sequence diagram

4.4 Deployment architecture

Another important concept that must be taken into account when developing
the machine learning application is the architecture of the environment where it will be
deployed. The necessary use of some specific technology during the implementation
will result in changes on the design level as well, which implies changes in the class
diagram structure.

(HEYMANN, 2021) cites some of the most common architectures to deploy ML
models, as it is shown in Figure 14. The general class diagram explained in section 4.2
was developed having the shared database architecture in mind, which is the simplest
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structure where the application runs according to a schedule or a human request
and shares the results by publishing the predictions on the database. Then, it can
be consulted by any other application that wants to make decisions driven by the
predictions.

This design solution already covers a considerable amount of use cases, since
this is an architecture easy to build in manufacturing lines. Moreover, it could fit well for
other patterns implementing small changes in the class diagram. Since one of the non-
functional requirements states the necessity to be adaptable to different architectures, it
was decided to formulate the necessary changes in the original general class diagram
to one of the other architectures.

Figure 14 – Architecture patterns

Source: (HEYMANN, 2021)

The architecture pattern that has fewer points in common with the shared database
is the streaming platform. As (HEYMANN, 2021) states, it brings many advantages to
the system with real-time predictions and very good scalability, but with high complexity
to be implemented. For that reason, the needed changes on the design solution were
elaborated considering a streaming ML application for an extra use case validation.

The first step was the creation of an extra package to handle the streams, which
can be seen in Figure 15. Streaming platforms like Kafka are divided into topics that
can have publishers and consumers of live data. These structures are represented in
the classes Producer and Consumer which will be controlled by the StreamManager
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following the approach used in the other packages. This last one will be the interface for
writing messages on topics from the rest of the software, but the access to the consumer
will still be open from external classes since they will probably need to operate in a loop
subscribed to the consumer waiting for new messages to arrive.

The producer and consumer classes will usually need to use an external library
to correctly implement the communication with the topics from the streaming platform
since this field has considerable support from open source communities.

Figure 15 – Stream package in the general class diagram adaptation for streaming
architecture

Furthermore, the class diagram based on a shared database approach has
one controller class that connects all the packages and handles the execution flow. In
this new scenario, each stream must execute independently, similar to having different
applications making small tasks of the complete execution pipeline. To represent that
in the class diagram each stream must be represented in a controller class that will be
connected only with the packages that the tasks to be executed in that stream need.
Then, for example, each controller class must be initialized independently in different
containers inside the production environment when deployed.

One usage of this architecture is to separate the data preparation actions in one
stream and the predictions execution in another one, which is represented in Figure 16.
When new data arrives directly from the manufacturing sensors to one topic, the data
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preparation stream can read and handle each value individually and write it back in
another topic without having to wait for any prediction. In turn, the predictions stream
will also receive the treated values individually and can handle them independently. This
case exemplifies the advantages of this architecture, since if the predictions stream is
working slower for any reason this will not prevent the preparation of new data that
arrives in the streaming platform.

Finally, some elements of the first class diagram should be deleted for this new
architecture. For instance, if the data will arrive in the first stream directly by a topic,
then the database reader class is not necessary anymore. The complete general class
diagram for streaming architectures can be visualized in Appendix B.

Figure 16 – Stream controllers in the general class diagram adaptation for streaming
architecture

With the requirements established and the developed UML diagrams compound-
ing the solution design, the machine learning applications for manufacturing inside the
institute will have a solid base to guide its development. The next chapter will cover the
details of practical implementations, beginning with the CI pipeline and advancing to
the use case validation.
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5 Development

The diagrams introduced in the last chapters are an essential part of the pro-
posed solution, but they are not enough to make the path to deployment ideally fast. As
explained before, the main proposal of this project is to create and set up a continuous
integration environment that automatically runs important verification and integration
steps.

In this chapter, the elaboration of the CI pipeline will be explained together with
its stages and release to the ML projects carried within the institute. Also, an existing
data-science project for a manufacturing use case developed by the institute will be
analyzed and transformed into a deployable application using the built mechanism.

5.1 CI pipeline

As stated in chapter 3, the continuous integration pipeline aims to constantly per-
form automated actions in order to overcome integration barriers and enhance the path
to deployment. In practice, this pipeline does not have to include any standard stages
and can be developed just like any other software application. However, it is common
to follow some DevOps general patterns when defining the execution sequence.

For the machine learning applications inside the institute, it is necessary to per-
form actions that transform the source code into something accessible and executable
in different environments. Furthermore, it is necessary to ensure that each new code
that arrives at the central repository is following the established standards and will not
break any past feature, which will in turn result in an application that is easier to be
integrated.

There are several DevOps platforms where it is possible to develop and run a
CI/CD pipeline together with the software development (Katalon, 2021). However, IPT
already has a partnership with GitLab and uses it as their repositories manager which
limits the solution to be implemented using this platform, as stated in the non-functional
requirements.

With that in mind, the standard approach GitLab uses to develop the CI actions
is by creating a YAML file named “.gitlab-ci.yml” inside the application’s repository. Thus,
whenever there is a new commit, this file will be read by the platform which will then
define if a pipeline will run and the stages that will compound it.

Among other configurations, the CI pipeline structure inside GitLab is formed
by stages and jobs. The jobs are the instances to be executed while the stages are a
group of jobs that fits in the same category. The execution sequence can be explicitly
defined with trigger rules created in a separated section inside the jobs’ description in
the YAML file. Each job run only after all the defined rules are successfully satisfied
regardless the stage in which they are configured.
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Nonetheless, jobs have to be picked by GitLab runners, which are environments
inside some machine, to be executed. The GitLab platform has several optimized shared
runners that can be used to execute CI pipelines from different projects worldwide,
but they have only 400 minutes of free execution time per month for private projects.
To overcome that problem, it is possible to set up a runner instance inside a private
machine and configure it accordingly. For this project, several tests were performed
using a docker-in-docker structure for a private GitLab runner, which is then planned as
the ideal case for running the private CI pipeline to be developed and its described step
by step into the resulting guidelines that will stand as important practical documentation
of the project, specifically in Appendix C.

Therefore, each job will execute in a new environment inside the private runner
when triggered. The configuration of what will be performed in each job can have
multiple details inside the YAML file, but they were implemented in this project starting
with the definition of the images and services that will be used and consequently must
be downloaded inside the environment. Then, the stage that the job belongs to is
defined and a special tag can be attributed to specify in each runner the job must be
executed. Other trigger rules were configured for some jobs in a separate section, such
as waiting for other tasks’ conclusion or only executing in specific types of commits.

Finally, the core part of the job is described in the script section. That part will
contain a set of bash commands to be executed in sequence after all the configurations
previously described were ensured inside the environment, representing the actions
that will properly improve the integration between development and operations. These
commands do not need to be described entirely inside the YAML file but a bash script
can be called alternatively.

Furthermore, there are two other sections inside the YAML file that describe
important configurations for this project. The first one declares global variables to be
imported inside each job’s environment, the other one lists bash commands similar
to the script sections with the difference that these commands will be executed at the
beginning of each job, avoiding the necessity to describe them inside all script sections.

Taking into account this description of how the actions are programmed inside
the CI pipeline, it is important to define the stages that will compound it. The first
stage will be responsible to build the application. In other words, it will transform the
repository’s source code into something compact and ready to run. For instance, this
stage is the one responsible for the code compilation in other programming languages.
Although this is not necessary for Python, the application stills have to be embedded
inside an accessible container with an environment including an interpreter configured
with all the needed libraries and other dependencies.

The second stage was defined as the testing one. Its task is to find and execute
programmed software tests to validate the application’s features and ensure code main-
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tainability. This process usually needs to make some integration actions and must also
return the tests’ results as understandable as possible to make the errors correction
easier for the developers. After having the application built and verified, the last stage
must make it available to define the release strategy.

Another stage common to find in CI/CD pipelines is responsible for directly de-
ploying the application inside the environments where it will run. This is a really helpful
step easy to be implemented when the team has total control of the production environ-
ment. In the ML uses cases carried by the institute, the application is developed inside
their environment while the manufacturing is controlled entirely by the client company.
For that reason, the continuous delivery approach used by this solution limits itself
to releasing a ready-to-run instance of the software, which should be available to the
production environment but must be imported and started manually.

In a nutshell, the CI pipeline will be compounded by a series of integration
actions programmed in bash scripts and organized into stages. Instead of performing
these actions inside a developer’s machine from time to time, it is configured to run
automatically in an environment prepared and optimized for that, also ensuring no
biases. Additionally, the execution flow can change from situation to situation, which
is also automatically treated by the pipeline’s configuration together with the Docker
images and services that need to be downloaded for each action. The implementation
of the mentioned stages is explained separated in the next topics, describing the CI
pipeline development concretely.

5.1.1 Build stage

The GitLab repository stores code files and other documentation related to the
development of the application that can be downloaded by any user with access. How-
ever, having a folder containing all the Python scripts and packages is not the same
thing as being able to run the application anywhere. An environment with a Python
interpreter containing all the dependencies installed is necessary together with an op-
erational system that can execute them. For that reason, this stage aims to build a
ready-to-run application instance, therefore configuring itself as a crucial step inside
the pipeline.

Using a Docker container to achieve that is one of the widest used approaches
and it will also be the most important action performed on this stage, as mentioned
earlier. Thus, the container has to be constructed and published to be accessible. Even
though this stage is very important to solve the integration problems faced by the
applications, it can be entirely described in a single task so its division will contain only
one job named “build-docker”.

The GitLab runner will already be executing inside a Docker container, so to
run the build commands and create another Docker image it was necessary to use
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a docker-in-docker approach. This means that the Docker container of the runner will
also download and use an image of Docker to perform Docker commands. To achieve
that, some special configurations were performed inside the GitLab runner turning the
privilege mode on and setting Docker as the runner’s executor, just like it is described
in the commands used for the new project creation guidelines in Appendix C.

Hence, when the runner instance triggers the build job, the first action it has to do
is to download the latest image version of Docker and the service called dind (docker-
in-docker). Then, since the environment will have Docker imported, the job’s script
session can use it to build the new application image following the steps listed inside
the repository’s Dockerfile. This file was created using a series of Docker commands
that will serve as a receipt for the application build.

Similar to how the YAML file describes the CI pipeline, the Dockerfile starts by
listing the other images that will be imported together inside the image to be generated.
For this application, only a Python interpreter with version 3.6 is embedded. Then, a
working directory is defined inside the environment and the first file to be transferred
from the source code is the “requirements.txt”, a text file containing the name of gen-
eral standard libraries that will be necessary to run the application. The central idea
is that this file will be incremented during the application’s development adding new
libraries being used, in that form the CI pipeline will automatically consider these new
dependencies when running a new cycle.

Next, the build process runs a bash command to install the listed libraries using
pip, a package installer that comes together with the Python image, also ensuring that
no cache files are left by pip in order to have an image as small as possible. Then, the
configuration, database, and models packages are inserted inside the image in their
respective folders as well as the python files located in the repository’s root.

The last step in the Dockerfile is the definition of the image’s commands. These
bash lines will be performed whenever one container is executed inside a machine
using the built image. In this application, the first command changes the value of the
environment variable PYTHONPATH to the Docker root to enable a standard use of
relative paths inside the Python scripts and the second one executes the “main.py” file
which will initiate the program’s execution.

With the application transformed into a Docker image, it has to be published
so other environments can access it. GitLab automatically has a Docker container
registry integrated with the project’s repository, which provides a space to store and
access Docker images using the same GitLab credentials. Thus, the “docker-build” job
finishes by login into the registry using the protected CI predefined variables that make
temporary credentials, only valid while the job is running, and publishes the image with
the shortened branch name.

To acquire a specific image of an application’s version, the user can explore the
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container registry page and directly copy the download tag. Then, any computer with
Docker installed and access to the internet must be able to import and run the container
regardless of the machine’s configuration and operational system. Moreover, other jobs
of the CI pipeline can import the application to perform tests and any other necessary
action.

In resume, the build stage contains only one job that will download the docker-in-
docker service, consult a Dockerfile, generate an image of the application, and publish
it into the project’s registry. If this job succeeds, the stage will finish and the test one
will be triggered being available to be picked up by the GitLab runner.

5.1.2 Test stage

Making the application accessible and executable is not enough to ensure its
integration. It is normal to expect that at some point a method or a class will contain
some bug while the application grows, which can culminate in serious errors in produc-
tion. However, during software development, it is not feasible to manually execute and
test each feature whenever there is a new implementation. Alternatively, software tests
can be developed to ensure a fast verification from time to time.

The objective of this stage inside the CI pipeline is to automatically execute
and evaluate the software tests to be implemented for the ML applications, but before
elaborating its creation in the YAML file it is necessary to define which types of tests will
exist in these applications and how they should be developed. Intentionally, the tests
explained in section 3.3.4 were the ones considered relevant for the type of application
for which the project’s solution is intended.

Nonetheless, unit and integration tests build together a solid verification of soft-
ware applications and were chosen to be the base of the testing stage. This decision is
based on the principle that small and concise well-implemented tests directly indicate
what feature is broken in the application and where to find it inside the code, while tests
with a wide execution stack demand an interpretation of the problem from the beginning
making it harder to take value from failing tests (WACKER, 2015). Therefore, having an
application well covered by unit tests and complemented by integration tests should be
the highest priority when regarding verification of the solutions to be deployed.

Contract and end-to-end tests should also have their implementation considered.
The first one will secure that the program still communicates properly with the microser-
vices and third-party applications that it uses, whereas the other one makes a test
similar to the final usage of the product considering the whole execution stack. Even
though wide tests are not the best ones to clarify failures, it is recommended to write
the sequences to execute at least one end-to-end test that validates that the application
is correctly implemented in production. With these tests in mind, the test pyramid of this
project was formulated as shown in Figure 17, where the path from the top to the bottom
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increases the number of tests to be implemented, their desired running frequency, their
execution time, and their level of isolation.

Figure 17 – Test pyramid of the machine learning applications to be developed
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Taking the description of the software tests into account, it is possible to realize
that the integration of this stage does not rely only on the CI pipeline but also on the
continuous development of new tests while the project advances. The implementation
of bad tests or bad management of them can lead to a poor verification of the features
and ruin the entire test process. To avoid this situation, one of the guideline documents
is entirely dedicated to this topic, it clarifies the importance of each test type and
concretely shows how to implement the base tests in Python with code examples and
best practice explanations, as it can be seen in Appendix F.

Regarding the execution of the tests, the unit and integration ones are also ideal
to automate. Their implementation tends to be more isolated and test doubles are used
to replace real-world dependencies. On the other hand, the objective of the other test
types is to validate real dependencies, which makes it necessary to have access to
the production environment or a copy of it implemented with the same parameters. As
explained earlier, the projects carried within the institute will usually involve a production
entirely controlled by the client company, which implies that the contract and end-to-
end-tests can not be automatically performed by the CI pipeline, being recommended
to run them manually from time to time.

Considering these points, two jobs were initially defined inside the testing stage:
“unit-tests” and “integration-tests”. Instead of performing the tests using the branch
files inside the repository, these jobs download the application image generated in the
previous stage and validate the features directly in the instance that will be used in
production. In that way, the verification is as similar to testing inside the production
environment as possible, also helping to ensure that the build step was executed cor-
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rectly. To make that, it is also necessary to use the docker-in-docker service, login into
the project’s container registry, and then download the recently published application
image.

Next, the script section of both jobs calls a python command to search for unit
and integration tests inside the container’s tests folder using xmlrunner, an open-source
Python library that executes the tests and generates Extensible Markup Language
(XML) files reporting their results following the JUnit XML format. At the end of this
execution, the report file is extracted from the container to the job environment and
an artifact section is created to make it available inside the GitLab platform which, in
turn, understands the file’s format and exhibits its information on a user-friendly page.
Without this feature, the developer would need to search inside the job’s console the
failing tests together with many other secondary commands’ logs. Having this separated
reports section inside the pipeline’s page - shown in Figure 18 - is crucial to ensure the
application scalability to projects that can have thousands of tests.

Figure 18 – Tests report page inside the GitLab platform

Two other jobs - “build-contract-tests” and “build-end2end-tests” - were defined
inside the test stage to deal with the other test types. However, they are never exe-
cuted in the standard pipeline unless the GitLab variables “CONTRACT_TEST” and
“END2END_TESTS” have their values explicitly set to “TRUE”. As mentioned, these
test types need to be executed in the production environment, so their jobs does not
perform any test but export them inside a separated Docker image that can be used to
manually execute them, similar to the build job.

Besides performing software tests, an extra job was configured inside the stage
to validate the code quality. Each programming language and project usually have
their code standards and best practices principles which when not followed will not
represent syntax errors or make the program break, but will certainly affect the code
understanding and maintainability. The process to verify these undesired characteristics
is called linting and is common to be automated in CI pipelines.

The lint job starts by downloading the application image, just like in the other test
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jobs. Then, it uses the pycodestyle library to verify all code lines that break some of
the PEP-8 guidelines, which is a wide style guide that establishes coding conventions
focusing on the code readability for Python. Also, a configuration file is added to the
repository to personalize the lint verification, such as raising the maximum amount of
characters in one line and enabling the statistics option to count errors and warnings.

Even though the code should be as readable as possible, specific cases can
require the intentional break of some code best practices. Therefore, the objective of the
lint job is to identify and warn the development team about the code quality deprecation
but it should not prevent the release of the production application. As a result, this job is
the only one in the whole CI pipeline that is allowed to fail without breaking the pipeline
execution.

In sum, the standard execution of the testing stage executes three verification
jobs. Two of them perform the developed software tests and export their results to a
readable page inside the GitLab platform. The other one verifies bad code implementa-
tion but does not interrupt the pipeline execution. With the Docker image published and
tested, the last step to ensure better integration between development and operations
is to release it and establish a standard access approach.

5.1.3 Release stage

The goal of the CI pipeline is not to only verify a large batch of changes in the
application all in once, the idea is to execute its actions at each program’s increment
to be continuously integrating, as the name suggests. On the other hand, a new de-
ployment in production will usually be performed only when relevant new features were
added in a new stable version of the code, which occurs when the development branch
is merged into the master one in the git repository.

As explained in section 5.1.1, the build stage will always generate a Docker
image which is already possible to be accessed in production. However, this would
have to be done using the feature branch name which is not the ideal scenario. With
that in mind, the release stage aims to separate the versions to be deployed providing
control over which program state is running in production and the possibility to perform
rollbacks. Thus, the jobs of this stage will only be executed in CI pipelines running in
the master branch.

First, three project variables were created inside the GitLab platform named MA-
JOR, MINOR, and REVISION. Every application release must follow the pattern “{MA-
JOR}_{MINOR}_{REVISION}” in their names and the development team should always
update the variables’ values in the platform to the next release numbers. Nonetheless,
when there is a new release without a change on the variables, the CI pipeline should
consider that the new deployment only contains a revision from previous versions.

Then, the “release” job was created inside the stage where the first step per-
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formed is the download of the release client image, an API created by GitLab to facilitate
the management of releases inside the platform. The job’s main action is to receive
the release name and perform a command to the API generate it. As a result, it will
add an instance in the platform release page that can be accessed and managed by
the developers and create a tag in the git repository. This tag creation will trigger the
execution of a new CI pipeline that will build and publish an application’s image with
that name, enabling easy and standard access from the production.

However, since the update of the version name relies on the manual increment in
the platform, the pipeline must ensure that no releases will be generated with the same
name. To perform that, the “validate-tag” job was created and set to be run before the
“release” job. It aims to check the tags that were already created inside the git repository,
so it starts by importing a git image to perform this command. Then, the verification logic
was separated in a bash script which is called inside the job receiving the GitLab email
of the user who started the pipeline, the MAJOR, MINOR, and REVISION variables as
parameters.

The bash script starts by setting the user email in the git configuration. Then, it
begins a loop increasing the revision variable and verifying if a tag with these MAJOR,
MINOR, and REVISION values already exists in the repository. When the values do not
exist it is returned as the new tag name to be released. For example, in the scenario
where the variables inside the platform have the values MAJOR = 2, MINOR = 1, and
REVISION = 1, the script will keep the first two values and, if necessary, will increase
the revision until a satisfactory value. Supposing that the repository already has the
tags 2_1_1, 2_1_2, 2_1_3, and 2_1_4, the program will return the value 2_1_5.

This tag value is recorded in a text file and exported as an artifact to be accessible
on the platform. The “release” job imports this artifact and uses it as an input for the
tag and release name to be sent to the API. With all these jobs being successful, the
CI pipeline finishes its execution and new deployments can be performed inside the
production structure by running these simple Docker commands, the first one to import
the latest state of the application and the other one to import a specific version:

docker run --name <CONTAINER_NAME> registry.gitlab.com/<PROJECT_URL>:master

docker run --name <CONTAINER_NAME> \

registry.gitlab.com/<PROJECT_URL>:<MAJOR>-<MINOR>-<REVISION>

The releases pattern provided by the two jobs stage is not only important to
deploy the versions that should run in production, but also to have an easy way to
understand what are the changes in each version. With the git tags, the developers
can efficiently change the version of their local repositories and directly analyze the
differences in the code. Moreover, the GitLab releases page provides the ability to give
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a rich description to each version and download its entire content instead of only what
was embedded in the Docker image, as it is possible to see in Figure 19.

Figure 19 – Releases page inside GitLab platform generated by the CI pipeline

5.1.4 General aspects

The developed stages and jobs form the CI pipeline execution that will accelerate
the path of transforming data science models into deployable applications. It is worth
mentioning that the YAML file also has a section declaring bash commands to adjust
the runner environment into the correct repository folder that will be executed at the
beginning of each job. Nonetheless, variables such as the repository name and the
application Docker image name are defined separately and are available to all jobs.

Furthermore, the GitLab runner was defined here as being only one instance
for explanation purposes. The configuration steps described in Appendix C can be
executed more than once and in different machines providing a net of runners. It is also
possible to make advanced configurations inside their environments to optimize their
execution for some specific jobs that can carry the runner tag inside the YAML file.

To clarify the pipeline execution sequence, Figure 20 shows the resulting jobs
and the dependencies they have highlighting the path to the release. Also, the detailed
execution sequence of the CI pipeline can be observed in the elaborated flowchart
shown in Figure 21. It is important to note that, when executing in the master branch,
the release stage will generate a new code instance by creating the release tag, which
will start the execution from the beginning.
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Figure 20 – Resulting pipeline sequence to achieve the release stage

Figure 21 – Flowchart containing the CI pipeline execution logic
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5.2 Validation use case

To test and validate the DevOps solutions, an important stage of this project lies
in applying the CI pipeline and the solution design developed in a machine learning
project turned to manufacture that represents the institute’s needs.

The fact that the majority of projects carried by IPT with partner companies
were in different development phases during the elaboration of this study and that they
usually involve confidential information do not configure them as appropriate validation
cases. However, to be able to present the institute’s know-how in fairs and carry out
data science seminars, the Automated Machine Learning team developed a machine
learning project template providing a solution for the problem published in (SUN, 2017).
This project performed all the CRISP-DM phases until the deployment, which makes it
an ideal validation for this project’s purposes.

The problem takes place in the System-level Manufacturing and Automation
Research Testbed (SMART) at the University of Michigan where a series of 18 experi-
ments were run in their CNC milling machine to produce an “S” shape figure on 2" x 2"
x 1.5" wax blocks. One of the solutions proposed to be implemented is the detection of
the tool condition based on the data acquired during the machining process classifying
them as “worn” or “unworn”.

Two types of data sets are provided by (SUN, 2017), one with time series values
from 48 columns that come directly from the production and another one containing
general constant data about the 18 experiments, such as the material used and the
tool condition output. To illustrate the problem and the available data, Table 1 details
some of the input columns considered with the highest importance by the data science
project previously carried out by the institute.

As mentioned, the department’s team imported these data sets and made dif-
ferent data science analyses using Jupyter Notebooks. Firstly, the data is merged and
transformed into a data frame object that is used as input for different methods of
Python libraries such as sklearn 1, pandas 2, NumPy 3, matplotlib 4, and seaborn 5.
These analytical steps will result in the features distribution, the clusterized correlation
matrix, and other information that is crucial to understand the data and how its features
affect each other, which will guide the correct implementation of the best ML models.
However, the further explanation of these topics will be suppressed in this document
since the focus of the solution is to get the outputs provided by the research phase and
efficiently convert them into a deployable application with a high-quality degree.

After the first analysis, some operations were made inside the data frame to
1 Further information in (PEDREGOSA et al., 2011).
2 Further information in (The pandas development team, 2020).
3 Further information in (HARRIS et al., 2020).
4 Further information in (HUNTER, 2007).
5 Further information in (WASKOM, 2021).
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Table 1 – Most relevant available data for the tool condition prediction

Data set a Details

ActualPosition 1
Four input variables containing the actual

position of the tool divided in the axis
X, Y, Z, and the position of the spindle.

CommandPosition 1
Four input variables containing the reference

position of the tool divided in the axis
X, Y, Z, and the position of the spindle.

OutputCurrent 1 Four input variables containing the output
current values in parts X, Y, Z, and the spindle.

OutputVoltage 1 Four input variables containing the output
voltage values in parts X, Y, Z, and the spindle.

M1_Current_Feedrate 1 Input variable containing the
instantaneous feed rate of the spindle.

Machining_Process 1 Input variable containing the current
machining stage being performed.

clamp_pressure 2 Input variable containing the pressure
used to hold the workpiece in the vise.

a 1 = Time series experiments’ data set. 2 = Data set with experiments’ constant
values.

acquire new relevant features, such as subtracting the actual position of an axis from
the command position to result in a column with the positions’ difference. This process
is called feature engineering and it will result in the data frame that will be used in the
first model experiments.

Then, the drop of useless columns was performed and a series of experiments
were conducted using Random Forest Classifier and Logistic Regression. For the two
model types the hyperparameters were tuned using random search and considering
the model’s accuracy, F1 score 6, and MCC 7. Satisfactory values were reached and
with 0.994 of accuracy, 0.994 F1 Score, and 0.988 MCC the Random Forest constituted
the best model. It was serialized in a binary file to be used in the deployment.

In sum, the research solution was developed in a permissive environment with
static data and has the data transformation steps and a high-performing model as the
main outputs. To validate the project results a deployable application must be developed
using these outputs, the CI pipeline, and the solution design.
6 F1 score combines the precision and the recall of the predictions to result in a metric more reliable

than the accuracy for imbalanced data. It is calculated with the formula F1Score = 2 ∗ Precision∗Recall
Precision+Recall .

(KORSTANJE, 2021)
7 MCC stands for Matthews correlation coefficient and is given in the interval [-1, 1]. It has a high value

when the model can predict both the majority of positive data instances and the majority of negative
data instances. (CHICCO; JURMAN, 2020)
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5.2.1 Environment simulation

One of the main characteristics that leads to unexpected problems when deploy-
ing a machine learning project in the institute’s experience is dealing with a restricted
environment different from the one used to generate the models and other transforma-
tions. Therefore, it is important to properly simulate a manufacturing environment as
close to reality as possible in the validation case.

As previously mentioned, the selected machine learning project comes from a
motivation example published by Michigan University describing the behavior of one of
their milling machines. The environment specifications are not described, but since the
data available is in a table format it is reasonable to assume that it can be published in a
relational database. Thus, the first step to simulate the environment where it is possible
to deploy the application to be developed was the establishment of a database as a
central data source.

The resulting DB model contains only two relational tables, as it is possible to
see in Figure 22. The “Sample” table describes the manufacturing information to be
published by the machinery following a time-frequency, whereas the “Prediction” table
represents the predictions to be made by the application and published back into the
database indicating the tool condition. The relation between the tables is established
by a foreign key in the Prediction table containing the identifier of a Sample table which
means that all predictions are made based on only one sample, whereas a sample can
have many predictions.

The Sample table contains all the 48 columns of the time series data set that
will be published together in the simulation since they are presented in the same table
by (SUN, 2017). The data set with constant values about all the 18 experiments had
some of its columns manually filled, such as the output “Visual Inspect” that indicates
if the workpiece passed the visual inspection after the machining process. However,
the research phase concluded that the “ClampPressure” input column that indicates
the pressure used to hold the workpiece in each experiment is the only data relevant
for the machine learning models. Since this is a simple input and adding this value
repeatedly together with the other manufacturing data should not be a problem in a real
environment, it will be published in the same table here in this simulation.

In contrast, since the value to be predicted has a boolean characteristic that will
only classify the tool condition in “worn” or “unworn” during the machining process, the
“Prediction” table has few columns indicating the prediction value, the system time when
the prediction was made, the algorithm used, and the identifier of the sample for which
the prediction is referring.

After the modeling, the database was implemented using a container instance
of MySQL engine, which was selected for being one of the widest used relational
databases in the industry (DB-Engines, 2021). However, it is important to mention that
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Figure 22 – Relational database diagram of the simulated environment

the deployable solution must work regardless of the selected data source if it is possible
to guarantee that the application can access it. Furthermore, following the example of
other institute’s projects, the environment dependencies and the deployable application
were organized in Docker containers and Docker Compose was used to coordinate
them.

The first diagram in Figure 14 shows that the configured database and a script
simulating the data income are enough to represent the shared database architecture.
But, the solution design in Chapter 4 also implements the application class diagram for
a streaming architecture. Therefore, an extra environment has to be implemented in
this use case.

Apache Kafka was the selected streaming platform for this architecture approach
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since it is an open source application with great documentation support. Zookeeper is
another necessary instance to be implemented in this environment to ensure that Kafka
messages, partitions, and topics in the cluster are being tracked. Both services will also
be used in the form of Docker containers managed by the Docker Compose, which will
make it simple for the application containers to register as publishers or subscribers
and consume the data from Kafka providing high scalability.

Besides that, another main difference between the shared database and the
streaming environment is the service from which the applications should consume
the data. The shared database program can consume as much data as necessary
making SQL requests directly to MySQL, whereas in the streaming architecture the
arrival of new data from the manufacturing should generate an event that will trigger
the subscribers to consume it through Kafka. Hence, it is necessary to establish a
connection between the database engine and the Kafka cluster to stream the data
whenever a new row is written in one of the database tables.

To solve that problem, the Debezium Kafka MySQL Connector was implemented
in the environment. The service is designed around the continuous stream of event
messages and it monitors the database tables to generate a data change event when-
ever an INSERT, UPDATE or DELETE operation is performed (Debezium, 2021). When
integrated with the other services, the connector creates one topic for each database
table in the Kafka cluster. Therefore, two topics were created for the streaming environ-
ment of this project, one that will receive the streams from modifications in the “Sample”
table and another one that receives the modifications in the “Prediction” table. As a
result, all the applications that need to consume from the database can subscribe to
these Kafka topics and receive the data in event streams.

Another service necessary to form the environment is an application that simu-
lates the manufacturing publishing data using the MySQL engine. The data provided
by (SUN, 2017) separates the 18 experiments into different excel files. An SQL script
was created for each experiment where the excel file is imported and inserted into the
database in the table’s format. Then, different bash scripts were developed to execute
these SQL files providing the database credentials and designing different scenarios.
Since this environment will be used for validation purposes, the main bash script devel-
oped publishes all the 18 experiments, being possible to configure a time gap between
the writing commands. This will configure the maximum stress scenario, especially if
the time gap is small or null.

These services integrated can simulate the manufacturing environments nec-
essary to validate the creation of a deployable application for the selected machine
learning project using two different architectures. Figure 23 shows the shared database
environment structure and its data flow, whereas Figure 24 illustrates the same for the
streaming environment.
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Figure 23 – Shared database environment

Figure 24 – Streaming environment

5.2.2 Shared database application

After the environments’ configuration, the deployable application for the shared
database was developed using the integration solutions established by this project. The
outputs from the data science project were analyzed and embedded in the development
following the UML diagrams presented in Chapter 4. Moreover, a Gitlab repository was
used with the CI pipeline integrated and running at each new push or merge command.

The class diagram established itself as an important tool to speed up the devel-
opment of the Python application that successfully performed the predictions using the
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Random Forest serialized model. Its methods execution followed the sequence diagram
and was developed using the project guidelines, such as the implementation of unit and
integration tests that have quickly indicated errors in new code instances uploaded to
the repository.

As indicated in section 4.2.3, the configuration package has its attributes changed
in the development according to each projects’ needs. In this implementation, a JSON
file was created containing the information described in Table 2. A template file was
added in the Git repository, but the real configuration file must always be filled locally
and embedded into the application’s container directly since it contains sensible infor-
mation.

Table 2 – Configuration parameters of the shared database application

Parameter name Group Details

serialization_type Execution parameters Indicates the type of serialization
used, e.g. pickle.

prediction_models_path Execution parameters Indicates the path of the ML model
inside the application’s container.

last_sample_id Execution parameters Indicates from which sample id
the predictions should start.

db_type DB parameters Indicates the type of DB used,
e.g. MySQL.

name DB parameters Indicates the DB name inside the
engine.

address DB parameters Indicates the DB address in the
environment.

user DB parameters Indicates the user to be used in
the login credentials.

password DB parameters Indicates the password to be used
in the login credentials.

Finally, a YAML file similar to the one used to orchestrate the CI pipeline in the
Git repository was developed and used by Docker compose to manage the application.
The images used were an instance of the MySQL engine and the developed application
which uses the GitLab container registry with the version tag automatically generated
by the CI pipeline. An SQL file that initiates the manufacturing database according to
the modeling of Figure 22 is embedded in the DB container together with the SQL
scripts and the excel files necessary to simulate the gradual data addition. Also, the
serialized ML model and the JSON configuration file are embedded in the application’s
container to be used in its execution. Then, the instructions described in the README
file presented in Appendix G are used to run the application correctly deployed.
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5.2.3 Streaming application

Another deployable application was created using the research phase outputs
and the solution design. The streaming application followed the UML diagrams created
for this type of environment which culminated in the fast development of a robust Python
application.

In this scenario, two controller classes were initially developed. One is responsi-
ble to process the raw data making the necessary transformations and publish it back
in Kafka. With the prepared data available, the other stream feeds the random forest
ML model and writes the prediction results into the database. Using that approach,
which is also presented in the general streaming class diagram, any delay in getting the
results from the model will not prevent the preparation of new raw data that arrives in
the DB, since the processes configure two different streams being executed in different
containers.

This implementation satisfies the same tasks implemented in the shared database
application. However, it is possible to add other features to illustrate the scalability of the
CI pipeline and UML diagrams developed to deal with the streaming scenario. Then, the
usage of the logistic regression model was added to provide different predictions. The
application packages remained the same and another controller class was developed
to also consume from the prepared data topic. Therefore, the data transformations are
performed in the same way but it is consumed by different streams. If any other model
or application wants to consume the processed data in the future, it can subscribe to
the desired topic without causing any impact on the running application.

Nevertheless, during the development, it was necessary to adapt some of the
CI pipeline stages to the streaming approach. The job that builds the Docker images
and publishes them into the container registry was divided into four jobs. Each stream
is transformed in a separate application image that shares some of its packages and is
built using different Dockerfiles. Furthermore, an extra image containing all packages
is generated for testing purposes and it is imported only in the test stage. Hence, this
last image is not released at the end of the pipeline.

Figure 25 illustrates the final topics distribution and their usage by the streams
containers. A YAML file was again developed and used by Docker compose. A different
configuration file is embedded in each stream container including the information de-
scribed in JSON files that use some of the fields described in Table 2 together with new
parameters from Table 3. The remaining environment containers indicated in Figure 24
also have important initialization configurations described in the YAML file, such as the
creation of the “prepared_data” topic which contains two partitions so it can have two
subscribers consuming the duplicated data.
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Figure 25 – Kafka topics distribution

It is worth mentioning that processing each new input using streams can lead
to unnecessary SQL commands to write predictions that could be published together.
For that reason, it is possible to configure how many predictions the stream must
perform before writing them back into the database. This feature is important to have
fast prediction streams when dealing with new data arriving too frequently in the DB.

Table 3 – New configuration parameters used in the streaming application

Parameter name Group Streams Details

kafka_address Execution
parameters All Indicates the Kafka address

in the environment.

predictions_buffer Execution
parameters

Random forest and
logistic regression
streams

Indicates the option to define
how many predictions will be
made by the stream before
performing an SQL command
to write them back into the
database.
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6 Results

In this chapter, the project’s main results are exhibited and evaluated. Firstly, the
CI pipeline outcomes and the tasks automated are analyzed. Then, the execution tests
performed in the applications developed for the motivational use case are evaluated
considering the benefits brought by the software architecture modeled in Chapter 4. For
both cases, the fulfillment of the solutions’ requirements and the project’s objectives
are verified. Finally, a summarized overview of the project results is made.

6.1 CI pipeline

The main objective of this project establishes the creation of a general CI pipeline
that can bring agility for the deployment of ML applications turned to manufacture and
enhance its software quality. The validation test explained in section 5.2 used the
pipeline in the development of two different applications that converted the know-how
of a data science project into deployed Python systems.

The actions performed by the pipeline were crucial to ensure its fast development
and correct operation. Together with the guidelines for the software tests elaboration, the
pipeline’s test stage secured that every new code instance that arrived in the repository
did not have broken any past feature and prevented the release of undesired behaviors.
Furthermore, the lint job indicated the use of code sentences that were not following
the recommended standards and what the developer should do to fix it.

With the tests ensuring the software’s correct performance, the build and release
stage created a controlled environment for the application in the form of Docker images.
Although the pipeline stages are designed to be useful when executed in the configured
order, having the image automatically built at each release containing all the necessary
dependencies was the main advantage in terms of enhancing the path to deployment.
Whenever a new release was performed, the only necessary step to deploy it was
to change its tag in the docker-compose file following the instructions of Appendix G.
Therefore, the problem identified in precedent projects of having a development environ-
ment with different characteristics from the one where the application will be deployed
will not happen again, which stands as a valuable improvement for the institute’s future
partnerships.

Besides the qualitative analysis of the CI pipeline main objectives, it is possible
to evaluate its benefits by analyzing the fulfillment of its functional and non-functional
requirements listed in section 4.1:

• The pipeline was created and successfully configured inside the institute’s Git-
Lab platform. It is activated whenever there is a new code instance inside the
repository (commits, merge requests, and tag creations).
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• Regarding the software verification, unit and integration tests are automatically
executed in each CI cycle. The guidelines on how to develop and maintain the
software tests are also output from the CI pipeline creation. Their results are
automatically transformed into artifact objects inside the platform and exported in
the form of reports where is possible to visualize the failures and which commands
generated them. Furthermore, the code best practices are verified in the lint job
using the PEP8 standards.

• As mentioned, every cycle builds and publishes a Docker image containing the ap-
plication and every dependency necessary for its execution. Moreover, when the
cycle results from a merge request in the main branch, a release is performed and
the image name follows a pattern with three numbers indicating major features,
minor features, and revisions. These images are available inside the project’s
container registry which made the deployment as easy as adding the image name
inside the tool used to orchestrate the environment (e.g. Docker compose).

• Different cycles are executed depending on the branch where the merge request
is being performed as indicated in Figure 21. Other execution rules can be easily
added in future projects following the same pattern in the YAML file. The CI
structure also proved to be very scalable, since it was possible to adapt it for the
development of two applications for completely different environment structures.

• Finally, it is also possible to select the machine where the CI pipeline will be ex-
ecuted. Since it was configured using the docker in docker approach to run in
private GitLab Runners, the platform allows the connection with different Run-
ners that can be configured in any machine following the guidelines presented in
Appendix C.

Another method to evaluate the CI pipeline results is to observe the cycles
performed during the applications development. As previously mentioned, it was used
during the whole development for both the shared DB and streaming applications.
Table 4 shows the number of pipelines executed and their results. Each failure or
warning was useful to avoid bad behaviors in the releases and to promptly correct them,
whereas each approved cycle culminated in the Docker image being published and
becoming available to simplify the deployment.

Table 4 – Pipelines executed during the applications development

Application Passed Passed
with warnings Failed Total

Shared DB 30 1 17 48
Streaming 28 5 18 51
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Since it is necessary to correct the cycle failures before merging the repository
branches, every deployable release of the applications has to correctly execute the
software tests and embed the necessary dependencies. Figures 26 and 27 show the
pipeline executed in each tagged release created automatically by the CI pipeline
with merge requests in the master branch. There is no failed job and, therefore, no
adjustment is needed after the tag is released, which also proves the benefits that the
pipeline brings to the application development.

Figure 26 – Pipelines executed in the released tags of the shared database application

Figure 27 – Pipelines executed in the released tags of the streaming application
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6.2 Deployment applications tests

The results acquired with the applications deployed are also an important project
evaluation. Their correct operation validates not only the CI pipeline but also the general
UML diagrams and development guidelines elaborated.

The requirements of the applications were also listed in section 4.1 and it guided
the modeling of the solution design. The majority of the requirements were accom-
plished in the applications’ execution, which illustrates the benefits that the general
software modeling can bring to future projects. Because the fast deployment of the solu-
tions is one of the main objectives, it is worth mentioning that the functional requirement
number six and the non-functional requirement number four were accomplished with
the applications being deployed following simple steps in both environments.

On the other hand, functional requirement number five states that is necessary
to have an adequate monitoring system to observe the prediction results. In both ap-
plications the results are published back in the relational database and, although other
monitoring tools can access the data through SQL requests, this does not configure a
scalable monitoring method. For the streaming application, the predictions can be easily
published in a new Kafka topic from which other tools can consume, but, especially
for the shared database solution, the structure to share the models’ results could be
improved in the general UML diagrams.

Besides the requirements evaluation and other qualitative analysis, it is impor-
tant to evaluate if all the adequate samples published by the manufacturing in the data
source have generated a prediction value made by the application. Being able to de-
velop and deploy the solutions fast and with high maintainability is only a good indicator
if the system’s main task is accomplished.

Hence, after performing tests with the worst scenario possible - all available
data published at the same time in the database - for both deployed applications,
two SQL queries were performed. The first one requested the count “SampleId” in
the Samples table where the “MachiningProcess” column has values for which the
predictions should be performed. The other one selected the count of distinct “SampleId”
values in the Prediction table. Both queries returned the value of 17520, which indicates
that all sample published by the script that simulates the manufacturing was read by
the applications, transformed, feed into the machine learning models, and got the result
published back into the DB.

Furthermore, a Docker image of the Confluent control center was used to monitor
Kafka during the execution of the streaming environment. In this tool, it is possible to
check all the consumers of the cluster topics and how many event messages were
published but not consumed. Figure 28 shows an image of this data taken after the
worst scenario simulation. It is possible to observe that there was no message left
behind in any topic, which also contributes to the understanding that the deployable



Chapter 6. Results 78

solution for this environment performed as expected in each execution step.

Figure 28 – Messages left behind in each consumer according to the Confluent control
center after the execution of the worst case scenario

6.3 Solution overview

In a nutshell, the solution provided the needed structure to convert procedures
and machine learning models acquired in research projects into solid deployable appli-
cations. The CI pipeline developed provided automation to important operational steps,
whereas the tests performed using the applications validated the benefits of the general
software modeling.

The guideline documents elaborated configure themselves as important and
practical instructions on how to use the project’s solutions in future ML applications
inside the institute. Moreover, managers from another ML project inside the department
have demonstrated interest in using the study outcomes and meetings to adapt the
solution have been made.
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7 Conclusion

With the results presented in the previous chapter in mind, it is possible to state
that the project’s goals were achieved. The objectives were fulfilled and the solution will
provide integration skills to the development and deployment of future ML applications
on the institute. The CI pipeline and the configuration files can be imported directly from
a template repository, whereas the UML diagrams together with the guideline docu-
ments provide direct instructions on how to build a robust and maintainable application
for the use cases range.

Regarding the relation of the Final Project Work (FPW) with the Control and
Automation Engineering course, the mandatory subjects Introduction to Computer Sci-
ence for Automation (DAS5334), Information Structure Fundamentals (DAS5102), and
Systems Development Methodology (DAS5312) provided to the student the needed
basis of the software field that was crucial to enable the development of the general
UML diagrams and the YAML file that describes the CI pipeline.

Although the project’s outputs focus on the operations field, it was important to
have a solid knowledge of how artificial intelligence applications operate to provide
DevOps solutions. Hence, the Artificial Intelligence Applied to Control and Automation
(DAS5341) subject also relates to the implementations performed.

Furthermore, it was crucial to understand how operating systems work to prop-
erly configure some of the GitLab platform features, such as the usage of the GitLab
Runner in a docker-in-docker approach, and to model the streaming environment. In
this regard, the student considers that the Concurrent Programming and Real-Time
Systems (DAS5306) subject provides important knowledge on the course’s path.

The worldwide health crisis and the global measures taken against it imposed
additional challenges to the FPW elaboration. Since it was conceived in a partnership
with a German organization, the necessary travel restrictions established for the second
semester of 2021 due to the COVID-19 cases raise in Brazil implied considerable delay
in some of the scheduled tasks. The support provided by IPT and UFSC was essential
to overcome this hurdle.

It is worth mentioning that the student acquired different knowledge about the
challenges for the production quality enhancement in modern industrial facilities and
how to overcome them during the project development. The opportunity to explore rele-
vant software operation fields such as DevOps and continuous integration at an institute
that is at the forefront of applied research was a unique experience that contributed to
the student’s formation.
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7.1 Future projects

Finally, having in mind the ideas that came up during the project evolution and
the fields that were not covered considering the whole life cycle of machine learning
models in production, the following topics are suggested as future projects that can
aggregate value to the elaborated solution:

• Implement and automate monitoring tasks for the machine learning models after
they are deployed. This can provide the ability to perform continuous training
tasks that evaluate when the models inside the application are decaying and
automatically retrain them with new data.

• Provide general continuous deployment guidelines. As mentioned in section 5.1,
the implemented solution automates continuous integration and continuous de-
livery tasks releasing a new version of the application when there is a merge in
the master branch. However, the Docker container must be started in the pro-
duction environment manually. Therefore, defining how to link the environments
and adapt the CI pipeline to automatically deploy the releases without any human
intervention would be an interesting improvement of the solution.

• The guidelines of Appendix D propose the automation of some tasks in the re-
search phase where the ML model is acquired through a series of experiments.
Test and validating these suggestions in a project that does not have the research
phase finalized could bring more useful insights to speed up data science actions.

• Add jobs in the CI pipeline that make security tests in the application and the re-
lease of the containers, since the use cases can deal with sensible manufacturing
data. The DevSecOps is the field that incorporates security actions in the devel-
opment cycle following some agile framework and has great potential to extend
the elaborated solution (MATTHEWS, 2018).

• Test the solution in a real use case scenario in one of the institute’s partnerships
to validate the deployment in a non-simulated environment.

• As mentioned in section 6.2, the requirement to easily monitor the prediction
results was not completely fulfilled. Therefore, an adaptation of the UML diagram
to provide a standard package that deals better with the predictions monitoring
could represent an important improvement.
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APPENDIX A – Complete general class diagram

Figure 29 – General class diagram for production applications
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APPENDIX B – Complete class diagram for streaming architecture

Figure 30 – General class diagram for production applications with streaming architec-
ture

Source: Personal Archive



New project creation guidelines

This document describes in guidelines the first steps to be done when creating a new machine learning project in order to have a Continuous Integration cycle correct
configured running on your GitLab repository.

Create a new project on GitLab

Following the CRISP-DM methodology, the project will usually include some development stages turned to experimentation and another stage turned to a deployable
application. It is recommended to divide this development in two different GitLab repositories (called here as research application and production application),
especially because of the different recommended approaches of branches management. However, it is also possible to keep both stages on the same repository.

The research application does not involves many CI details, so there are no especial guidelines for its creation. The next steps described on this document are
regarding the production application. There is a pre-configured repository from which the production application must start.

Copy repository from pre-configured template

1. Go to your main GitLab page and select 'New Project' on the right-top corner.
2. Chose the 'Import Project' option and select 'GitLab export' on the next page.
3. Download the exported project template file. Add your new project's information and upload the template file.

Clone repository on your local machine

To edit and start developing on the project in your local machine you must clone the repository using git, for windows you can download the Git Bash from Git for
Windows. It is also recommended that you configure a ssh key for your user on the current project following GitLab SSH key tutorial.

CI Cycle files

On the pre-configured template that are two main files that will ensure the correct operation of the CI cycle. The .gitlab-ci.yaml contains the description of the whole
pipeline with its stages and jobs, while the Dockerfile contains the instructions for the application image generation that will be executed by one of the jobs described
on the pipeline. It is probably not necessary to make any changes on these files, but it might be interesting to do if you want to customize its stages or the project's
development workflow.

Configure GitLab Runner

After clonning the template repository a CI cycle will be configured to automatically run all the CI stages. When the cycle is trigerred, these jobs will be picked by a
GitLab Runner instance that will effectively execute it. GitLab has some sharred Runner instances, but they have a monthly usage time limit, that is why we need to
configure a private GitLab Runner on a local machine. You can find detailed information about this installation on the GitLab Runner page, but the following step by
step already contains the installation guidelines specific to our projects.

1. We will install an instance of GitLab Runner in a docker container, so you need to have Docker installed on your machine.
2. Mount the docker volume with the runner configuration: bash docker volume create gitlab-runner-config
3. Start GitLab Runner container with the mounted volume: bash docker run -d --name gitlab-runner --restart always \ -v

/var/run/docker.sock:/var/run/docker.sock \ -v gitlab-runner-config:/etc/gitlab-runner \ gitlab/gitlab-runner:latest  Obs.: Now
the container is running with a downloaded gitlab-runner image. You can execute any GitLab Runner command following this syntax:

docker run <chosen docker options...> gitlab/gitlab-runner <runner command and options...>

4. Go to your project's GitLab page on 'Settings > CI/CD > Runners', on the 'Specific Runners' section copy the registration URL and token. Obs.: You can also
disable the option 'Enable shared runners for this project' on this same page.

5. Since we want to have a docker-in-docker service enabled to generate a docker image of our application on the CI pipeline, we will register a runner linked with
our project with some extra configurations:

docker run --rm -it -v gitlab-runner-config:/etc/gitlab-runner gitlab/gitlab-runner:latest register -n \
  --tag-list docker-runner \
  --url REGISTRATION_URL \
  --registration-token REGISTRATION_TOKEN \
  --executor docker \
  --description "Runner set on IPT's local machine number X to run the CI pipeline of projects Y and Z" \
  --docker-image "docker:19.03.12" \
  --docker-privileged \
  --docker-volumes "/certs/client" 

Note that the 'REGISTRATION_URL' and 'REGISTRATION_TOKEN' must be replaced with the data from step 4.

6. [OPTIONAL] You can make advanced configuration changes on your runner instance by changing its config.toml file (Runner Configs). To do that, you can
follow these steps:

1. Enter the runner container bash:

docker exec -t -i gitlab-runner /bin/bash
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2. Navigate to your config.toml folder and check the current configurations:

cat config.toml

3. Use sed to add/edit configurations. Check the changes that will be implemented on the file and add the flag -i to effectively make it, always check and
confirm the changes before implementing it.

sed 's/old-text/new-text/g' config.toml
sed -i 's/old-text/new-text/g' config.toml

For example, a useful configuration is to allow the runner to run jobs concurrently. This can be done changing concurrent field:

sed 's/concurrent = 0/concurrent = 2/g' config.toml
sed -i 's/concurrent = 0/concurrent = 2/g' config.toml

7. To leave the container bash just press 'ctrl + p' followed by 'ctrl + q'.

Finishing this steps you will have the template CI cycle configured for your repository. You can then start developing your deployable application, check the
Development Guidelines for references on that.
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Development guidelines
This document describes in guidelines the development structures to be used when creating a new machine learning application turned to production. To know more
about how to create a new project refer to the new project creation guidelines.

Different applications

The first thing to consider when developing such an application is that, following the CRISP-DM steps, there is one stage of development that deals mostly with data
science procedures and models experimentation. This will compound a research application that later will be productionized to result in the final deployable
application.

Research application

On the early stages the application will try to define the data preparation steps and make several experiments with different machine learning models. Therefore, the
development should have the workflow preferred by data scientist on a very flexible environment.

Data and model versioning

In most programming projects the code versioning is a crucial step to make possible to keep track of the changes and enable parallel work between the members of
the team. To perform that, a Git repository is used and here this is not different.

However, on machine learning projects we will also have different versions of datasets and models among all the several experiments being led. To keep track of
them we could also use the git repository having different instances of these files on the different branches. On the other hand, these files can be really big and may
take an undesired huge space of our repository, since Git is essenteally projected to keep code files.

With that in mind, we can use a tool called Data Version Control ( DVC) to keep the content of all our data and model files inside a shared storage but making only the
track of them being available at the Git repository. Following you can check the main additional commands you have to use to develop with DVC. DVC runs on top of
Git, so make sure you have both installed.

Connecting the remote storage

The first step is always to connect the git repository with a sharing storage using DVC. There are several types of storage that can be used and you can refer to the
DVC remote add documentation for a detailed explanation. On the following step by step is explained how to configure DVC with the Fraunhofer OwnCloud service
using WebDAV protocol.

1. Go to your OwnCloud page and get the WebDAV address of your files clicking on 'Settings' in the bottom left corner.
2. Navigate to your git repository on your local machine and execute the following command replacing the address with the one you got on step 1 and adding the

path to the folder you want to use on the end of it:

dvc remote add -d remote_storage_name \

      webdavs://example.com/owncloud/remote.php/dav/files/myuser/projetc_Y_data_dvc_folder

3. Add the user and password of your access to the remote storage so DVC can upload and download files from there. WARNING: Do not forget to use the --local
flag on these commands, in that way your user and password will be saved on a configuration file only on your machine.

dvc remote modify --local remote_storage_name user myuser

dvc remote modify --local remote_storage_name password mypassword

Alternatively, you can set DVC to ask your password when needed instead of configuring one:

dvc remote modify remote_storage_name ask_password true

Adding data/model files

After connecting the repository we are now able to send and get files from the remote storage using the track files stored on git. This files management and tracking
happens automatically using git and dvc commands.

To add files or folders we can follow these simple commands: 1. Add the file to DVC, which will automatically create a tracking file:

dvc add data/data_example.xml

2. Add the generated tracking file on git running the command suggested after running the command on step 1. It will be similar to:

git add data/data_example.xml.dvc data/.gitignore

3. Now you can make a commit on your git branch indicating the change:

git commit -m "Add new data file"
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4. Push the changed data files to the remote repository:

dvc push

If instead of pushing a new data file to the remote repository you want to download files that you could have accidentally deleted you can use the dvc pull command,
which will update your data files to match the tracking state that is on your current branch.

dvc pull

Checkout to another branch

One of the main reasons to track your code project using git is that you can easily change from one branch to another visiting different states of the code. This
tracking of data and model files that we just implemented with DVC uses git to give the same benefits also for these types of files. Then, whenever you change
branches on your repository ( git checkout branch_name ) you should also run a dvc checkout  command to update your local dvc tracked files.

Experiments tracking

On the research application we are expecting to have a code development focused in make experiments to check the result of different data preparations and
machine learning models. So, as mentioned before, the idea is to have a flexible structure that allows the data scientists to go deep into these different experiments.

However, it is also important to keep track of these experiments to have a central place that allows the visualization of its results. With that in mind, it is
recommended to use the open source MLflow Tracking tool. You can refer to the complete documentation of MLflow, but here there are some steps that can be
useful for our projects:

You can install the mlflow running pip install mlflow  and import it with import mlflow
Then, we can use MLflow Tracking importing the library inside our Python scripts and running some commands. However, it is important to know that the tool
will, by default, save the experiments tracking inside a new folder it will create on the same folder of your running script called mlruns. If you want to change it
you can set a new tracking uri inside your python file using the following library method: python
mlflow.set_tracking_uri("file:///tmp/my_tracking")
The MLflow Tracking consider the following division:

Experiment: A label to track an experiment being made, can contain several runs.
Run: A label inside an experiment which represents one of the tests made. A run can log parameters, metrics and artifacts.
Parameter: A key-value input that will not change, e.g. ("Model type": "Decission Tree Best Estimator")
Metric: A key-value input that will result from the tests, value has to be numeric.
Artifact: Output files in any format, e.g. the model file serialized.

Then, when starting an experiment you can create one on your Python file with the command: python try:
mlflow.create_experiment("Hiperparameter Tunning") except mlflow.exceptions.MlflowException as e: print("Exception:
{}".format(e))

Then, you can start a run in which you will set your experiment actions and, at the end, log the relevant information. Here is an example:

with mlflow.start_run(run_name="Test nº 1", 
                  experiment_id=mlflow.get_experiment_by_name("Hiperparameter Tunning").experiment_id):

# Train the model with the parameters here

mlflow.log_param("Model type", "Decission Tree Best Estimator")
mlflow.log_param("Search", "RandomizedSearchCV")
mlflow.log_param("n_iter", 1000)
mlflow.log_param("cv", 4)
mlflow.log_param("random_sate", 0)
mlflow.log_param("n_job", -1)
mlflow.log_metric("Accuracy", round(accuracy_score(Y_test, Y_pred), ndigits=4))
mlflow.log_metric("F1 Score", round(f1_score(Y_test, Y_pred), ndigits=4))
mlflow.log_metric("MCC", round(matthews_corrcoef(Y_test, Y_pred), ndigits=4))

The library also have other log methods to track different objects that can be useful. For example, there is a specific package to deal with sklearn models.

After logging the desired information, you can visualize all the experiments and runs on the mlflow tracking UI running mlflow ui  on the command line being
on the directory that your tracking folder is located. It will than host the interface on http://localhost:5000/.

Production application

After achieving a model and a data preparation pipeline suitable for the project requirements, the project must build a more robust application that can be deployed in
production. Following the new project creation guidelines, a CI pipeline will be already configured to help on this development, which should not start from zero but
should take the research application core as a strong reference.

To help with the transition from research to production, some simple UML diagrams were made with the idea to guide the deployment plan and development. The
team should not be limited to these diagrams but should initiate with them and make the needed changes during the deployment planning.

Sequence diagram
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The sequence diagram tries to illustrate the different execution cycles that the program will have and how is the relation between the packages. It is divided into three
straightforward stages that the greatest part of our ML applications will have to have: firstly it gets the data from the data source, then it makes the needed
transformations on this data (based on the data preparation pipeline that came from research) and makes the predictions (using the model that came from
production), and the last stage writes back the predicted values inside the data source.

There is also an optional interaction outside the main loop where the main package reads some run configurations. This step can be used to set on a file some
information that the program may need to run, such as users and passwords, path to the model, etc.

Then, the central loop of the program starts with the main package communicating with the DB one to request a new set of data. It can also use the serialized file to
load and save the data in case of future error or to know which was the last value of the database to be read by the program.

Proceeding, there should be one package to deal with the data transformations and another one to deal with the models, which can be constructed on each iteration
or imported from a serialized model. Finally, the main package should communicate again with the DB one to write back the values.

Sequence Diagram

Class diagram

The class diagram aims to go further on the architecture definition and provide to the development team an initial proposal on how to organize the modules, classes,
and methods. Again, it should be used as a reference guide and not as a diagram to be strictly followed.

As described on the sequence diagram, the idea is to have the main script that will contain an instance of the other packages and will coordinate the execution
workflow. The model package will have a central script that will be responsible to manage all the use of the models, which will vary according to the models' approach
to be used (e.g. stacked models, cascades models). The whole architecture is taking the SOLID principles as a design base and this can be observed in the abstract
classes created for the models' serialization where the structure does not rely on concretions and is also open for extension but closed for modification.

Another important package is the one responsible to communicate with the database, which will have two main methods accessible for the main class. If using the
SQLAlchemy, the ORM feature can be explored and the creation of classes that represent database tables can be really helpful. The correct exploration and definition
of which data will be acquired from which database table and how the predictions will be written back on it is a step to be done in the planning stage.

Also, the research application considerations will form a data preparation pipeline that will compose a script and will have its methods called by the main according
to the sequence diagram. Finally, the execution configuration can be described on an optional but useful package where the information can be represented on
structural classes.

Class Diagram

General python libraries

In addition to the UML diagrams, some considerations of useful Python libraries can be helpful while developing the production application.

Dask

Regarding machine learning, NumPy, pandas, and scikit-learn are the most commonly used libraries for Python projects. Dask is a Python library that uses parallel
computing to perform most of the actions usually performed by the other mentioned libraries. Its usage can improve the performance of our application, especially
when we have to deal with Big Data techniques. Dask also abstract these computational improvements and is as easy to use as the other libraries, proving to be a
powerful tool to program the data preparation pipeline and the models' acquirement inside the production application.

Model serialization

In the cases where the machine learning model will be built outside the production application, a serialization library can be used to save the model in a file and import
it when needed inside the program. Pickle is maybe the most known library for this action and its usage is pretty straightforward. Joblib is another library that also
deals with files' serializations, but using some computational techniques that can improve the performance when dealing with really long files, especially containing
huge numpy arrays.

The reading of binary files using pickle is usually really fast far away from being an execution bottleneck. However, for some specific cases, joblib can provide a nice
improvement. Since the deserialization can be performed with few commands, it is stimulated that both libraries are implemented inside the application relying on
abstractions, as shown on the general class diagram. The user can set which library to use on the configuration file.

SQLAlchemy

Also, our program needs a framework to help with reading and writing information on the production database's tables. SQLAlchemy is a SQL toolkit that can help to
efficiently make flexible SQL requests and it differentiates itself by its object-relational mapping feature, which allows the developer to map the program's classes
with tables inside the database facilitating the actions to be executed. Therefore, this Python library can be really useful when planning and developing the database
package.

Configuration file

If it is useful for the application to have a configuration package, the most common approach is to use a JSON file that maps the config parameters in a key-value
format. Python has a built-in data structure called dictionary which is a representation very similar to the JSON format and very easy to work with. To translate the
configuration file in one or many dictionaries we can use the native json library.
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Project management guidelines

This document focus to clarify the most important project management questions for machine learning applications turned to production.

Different projects

As described in the development guidelines, this type of application will usually be developed with two different projects, one to make data science experiments in
order to get the best model and data preparation steps and another one to properly integrate the program with the production environment. Thus, each project will
have its management characteristics.

Git branches management

Branches are one of the main features provided by Git and an important point is to define how to manage them. Creating a branch will allow the developers to have
different tagged working lines inside the same project, which can then be integrated later.

Single trunk-based

Since the production application will have its features developed integrated in the same program, the approach to carry the project with a single main branch that
accumulates all the versions that go to production works very well. Its development is based on three types of branches:

The master branch: This is the main branch that will generate the version to be deployed. There is only one master branch, and it will only accept merge
requests from the development one.
The development branch: This is an integration branch used to merge the different features already completed on the feature branches. It should be used to
test if all the functionalities are working fine together before sending it to the master. There is only one development branch.
The feature branches: Whenever a new feature will be developed, a feature branch should be created having the last version of the development branch as its
source. The developer will then have a separated version of the code to work in parallel to other tasks. When the feature is completed, this branch should be
merged with the development one, always solving the possible merge conflicts manually.

With this approach, it is possible to have a well-versioned program making it easier to track bugs and harder to send undesired code to production. The workflow
feature branches → development → master should always be respected, and it is important to have the awareness of the whole team when merging to master since it
will represent a new version to be deployed. The master version should then be tagged, to make it even easier to track which version is running on production and to
perform rollbacks in case of any problem.

To tag a version of the code, the following commands can be used:

1. Create the tag with its tag number and message: bash git tag -a 1.0.0 -m "First completed version"
2. Send the tag to the remote repository: bash git push origin 1.0.0

Each project can have its standard to define the version tag number. A simple approach is to do one of the changes: * Increase the first number from left to right
when the merge makes changes incompatible with the previous version. * Increase the middle number when the merge adds a functionality compatible with the
previous version. * Increase the last number from left to right when the merge makes bug fixes compatible with the previous version.

Experiments based

In contrast to the production application, the research one will have its development guided by experiments and, many of them will implement code that will not be
used on the final solution. For that reason, it does not make sense to have a strict branch creations methodology for this repository. In this case, it is recommended
that each new experiment creates a new branch, which can be merged among each other to result in new experiments. To make a proper tracking of data and model
files at this stage it is very important to use the DVC and MLFlor tracking tools described in the development guidelines.

Sprints

Some of the most common agile methodologies are based on sprints, where a set of activities are planned to be done iteratively on the time-boxed sprint period. The
implementation of these methods can be integrated together with Gitlab

First, the planned activities and new features ideas can be set on the issues board where it will stay as "open", working as a product backlog. It is a good practice to
briefly explain in the issues-description for which user it will be useful, what is the functionality to be implemented, and what are its benefits.

Then, in the sprint planning phase, the team can create a milestone with the correct start and planned end date. Back on the issues board, the team must decide which
issues will be implemented on that sprint and assign them to the milestone and to the developer that will be responsible for it. A new board will appear on the
milestone page with the lists "Open", "In progress", and "Closed" that should help on the sprint's management. When a developer is free, it should take one of the
issues and create a feature branch for its implementation putting the issue tag number on the name of the branch (e.g. 54-awesome-feature), which will automatically
close the issue when the feature is merged into the development.
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Testing guidelines
To achieve a well-integrated and easily deployable solution, we must establish a good testing pipeline. This stage represents an important part of the CI cycle and can
usually have most of its steps automated. This document describes in guidelines the best practices to build advantageous tests on machine learning projects turned
to production.

Test pyramid

There are several types of software tests and their application can be analyzed for each specific project. The following tests explained in this document are the ones
considered most relevant for our kind of application. The simplified test pyramid exhibits these tests where the way top -> bottom increases the number of tests to be
implemented, their running frequency, their execution time, and their level of isolation.

Test pyramid

Unit tests

The base of our test pipeline should always rely on unit tests. These simple and automated tests are very powerful when well-structured, having the objective to
check if each one of the program's units of work is performing the expected actions when isolated.

In practice, whenever a developer implements a new feature, several unit tests can be developed concurrently. Then, in any other future change on the code the CI
cycle will automatically run the tests and ensure that the old features still have the same expected behaviour.

Unit tests are usually developed using some testing framework, for the Python applications we can use the unittests library. Also, they tend to have a structure similar
to: 1. Create needed test double objects. 2. Perform the action of the unit of work under test. 3. Assert against something to check the result.

An example can illustrate it better. Let's suppose that our program has a method that receives a list of unordered integers and organizes it in crescent order. It could
result in the following unit tests:

# Imports unittest library

import unittest

# Imports production code to be tested

from array_manager import ArrayManager

class ArrayManagerTests(unittest.TestCase):

    # Declare test doubles to be used on more than one test

    stub_array_manager = ArrayManager()

    def test_array_crescent_order_organizer_receives_disordered_array_reorders_it(self):

        # Declare specific test doubles

        fake_array = [0, 1, 9, 3, 5, 6, 99, 8]

        reordered_array = [0, 1, 3, 5, 6, 8, 9, 99]

        # Perform action under test

        new_array = self.stub_array_manager.array_order_organizer(fake_array)

        # Make asserts to ensure expected result

        self.assertTrue(len(fake_array) == len(new_array))

        self.assertEqual(new_array, reordered_array)

    def test_array_crescent_order_organizer_receives_array_with_non_integer_item_throw_error(self):

        fake_array = [0, 2, 1, 'non-integer value']

        with self.assertRaises(ValueError):

            self.stub_array_manager.array_order_organizer(fake_array)

Notice on the example that the same unit of work can generate several unit tests and not only the normal workflow is tested. Check how the method deals with errors
and other situations is also something important to ensure the function's right execution.

Nonetheless, the name given to the unit tests is also important. In contrast to some production code development best practices, unit tests should have a really
explicit name easy to identify the method that is being tested (e.g. 'array_crescent_order_organizer'), the scenario of the test (e.g. 'receives_disordered_array'), and the
expected outcome (e.g. 'reorders_it').

Test doubles

As we have seen in the example above, software tests usually have to make use of test doubles to achieve the desired degree of isolation and to specifically test what
they are designed for. Test doubles are any replacement of production objects made inside a test.

There are several definitions and sub-classes of test doubles. One of the most simple and practical definitions is given by Roy Osherove in (The art of unit testing,
2013) where these test fake objects are divided into stubs and mocks:
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Stubs: Controllable object that replaces an existing dependency in the system.

Mocks: Also a replacement for an existing dependency, but the test asserts against this fake object.

One of the most difficult steps when developing software tests, specially unit tests, is to create and inject the test doubles. The tests frameworks are a great ally that
tends to have features to help in this stage. In the case of the unittest Python library, the replacement of other methods that are not under test using the 'mock'
decorator is one of the most useful tools, which are exemplified below.

import unittest

from unittest import mock

from src.data_preparation import DataPreparationManager

class DataPreparationTests(unittest.TestCase):

    # Declare class test doubles

    raw_data = []

    data_prep_manager = DataPreparationManager(raw_data)

    data_frame_missing_only_drop_columns_preparation = # Build a fake data frame that has already passed through all 

                                                       # data preparation steps except drop useless columns

    # Unit test that checks if the correct methods are called when the function "executed_pipeline()" is called.

    # Since the methods are being mocked, their call inside the pipeline will not execute the production code, but it

    # will be possible to verify if they were called. In that way, the "executed_pipeline()" method can be tested isolated 

    @mock.patch("src.data_preparation.DataPreparationManager._temporary_build")

    @mock.patch("src.data_preparation.DataPreparationManager._select_machining_processes")

    @mock.patch("src.data_preparation.DataPreparationManager._feature_engineering")

    @mock.patch("src.data_preparation.DataPreparationManager._drop_useless_columns")

    def test_execute_pipeline_standard_situation_all_necessary_methods_are_called(self, mock_drop, mock_feature,

                                                                                  mock_select, mock_temp):

        self.data_prep_manager.execute_pipeline()

        self.assertTrue(mock_drop.called)

        self.assertTrue(mock_feature.called)

        self.assertTrue(mock_select.called)

        self.assertTrue(mock_temp.called)

    # In this unit test we want to test the drop useless columns method. However, this method is protected and can only

    # be called using the execute pipeline method. Then, we will use the mock.patch decorator again to only execute the 

    # production code of the method we want to test and to set one of the mocked methods to return a fake object that 

    # will be the input of the method under test.

    @mock.patch("src.data_preparation.DataPreparationManager._temporary_build")

    @mock.patch("src.data_preparation.DataPreparationManager._select_machining_processes")

    @mock.patch("src.data_preparation.DataPreparationManager._feature_engineering")

    def test_drop_useless_columns_receive_prepared_dataframe_drop_all_useless_columns(self, stub_feature, stub_select,

                                                                                      stub_temp):

        # Set return value of feature engineering method that will be the input of the drop useless columns method 

        # inside the pipeline execution.

        stub_feature.return_value = self.data_frame_missing_only_drop_columns_preparation

        columns_to_be_dropped = ["Useless_1", "Useless_2"]

        data = self.data_prep_manager.execute_pipeline()

        self.assertNotIn("Useless_1", data.columns)

        self.assertNotIn("Useless_2", data.columns)

Integration tests

Another layer of our test pyramid is the integration tests. This type of test has many common points with the unit tests, it is written similarly, and it generally uses the
same test framework. However, its scope is not limited to test a specific method isolated, integration tests can be used to check the behaviour of the program when
performing a wider action such as the integration between different modules and the use of real dependencies.

Therefore, integration tests can break some important unit test principles. Since it relies on multiple real dependencies, this type of test will not always be consistent
and can also take a considerable amount of time to be executed. Nevertheless, they represent an important set of software tests that can cover complex interactions
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that are not verified on the unit tests, with the decision to run them on the main CI cycle at each merge request or not being from the development team.

To better exemplify its usage, a possible integration test inside a machine learning project would be to feed the data package with a stub in a format of raw data and
execute the whole program's steps until acquiring the prediction for these values using the real model and test if it was according to the expectations. This would be
not only testing the interaction between different modules but also the serialized ML model.

Contract tests

With the program's units of work and package integration covered by software tests, it is also relevant to test the usage of outside services on the project. Considering
the example given in the last section, that integration test is already verifying a considerable part of the machine learning pipeline, however, it is still being fed with fake
data object built to have the same format as a raw data coming from the data source.

Supposing that our data source is a standard local database, some of its characteristics can change and prevent the execution of our program, such as changes on
the tables design, communication protocols, or login credentials. If one of these things happens, it will not be signalized by any unit or integration test, since they use
test doubles to represent the raw data.

Contract tests are designed to cover these scenarios, making a real request to the external service and comparing its response with the fake object that represents
what the program is expecting to get. In the previously described situation, the test could use the production code to make a request to the database to get raw data
from the real environment, compare it with the test doubles used in other tests, and certify that the communication between the program and the database still work
as planned.

This type of test can be designed for several third-party software and microservices being used on the project.

E2E tests

Creating different unit, integration, and contract tests our program will be widely verified and will result in a robust software easy to maintain. However, some
integrations can still be out of the tests' range due to the use of test doubles and their isolation from other parts of the application.

Thus, it is important to perform some E2E tests where the whole program stack is executed and verified. Since this type of test is harder to maintain and slower to
run, it is recommended to not rely the project development on them, but perform them manually when a new version is going to production.
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Figure 31 – README file of the shared database application for the use case validation

Source: Personal Archive
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Figure 32 – README file of the streaming application for the use case validation

Source: Personal Archive
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