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A UM AUSENTE

Tenho razão de sentir saudade,

tenho razão de te acusar.

Houve um pacto implícito que rompeste

e sem te despedires foste embora.

Detonaste o pacto.

Detonaste a vida geral, a comum aquiescência

de viver e explorar os rumos de obscuridade

sem prazo sem consulta sem provocação

até o limite das folhas caídas na hora de cair.

Antecipaste a hora.

Teu ponteiro enlouqueceu, enlouquecendo nossas horas.

Que poderias ter feito de mais grave

do que o ato sem continuação, o ato em si,

o ato que não ousamos nem sabemos ousar

porque depois dele não há nada?

Tenho razão para sentir saudade de ti,

de nossa convivência em falas camaradas,

simples apertar de mãos, nem isso, voz

modulando sílabas conhecidas e banais

que eram sempre certeza e segurança.

Sim, tenho saudades.

Sim, acuso-te porque fizeste

o não previsto nas leis da amizade e da natureza

nem nos deixaste sequer o direito de indagar

porque o fizeste, porque te foste.

Carlos Drummond de Andrade , "Farewell".

À Thaís dos Santos Chiappetta Nogueira Salgado e Filozinha.

(in memorian)
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Measuring programming progress by
lines of code is like measuring aircraft

building progress by weight.
(Bill Gates)
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RESUMO

O enriquecimento semântico dos dados de mobilidade com diversas fontes de informação levou
a um novo tipo de dado móvel, conhecido como trajetória de múltiplos aspectos. Comparar
trajetórias é crucial para diversas tarefas de análise como consultas, clusterização, similaridade,
classificação etc. Medir a similaridade de trajetórias de múltiplos aspectos é uma tarefa com-
plexa e computacionalmente custosa, pois o grande número de aspectos e a heterogeneidade das
dimensões espaço, tempo, e semânticas requerem diferentes tratamentos. Apenas alguns traba-
lhos na literatura focam na otimização de todas essas dimensões em uma solução, e, ao melhor
do nosso conhecimento, nenhum propõe uma comparação ponto-a-ponto otimizada. Nesta pes-
quisa, é proposto o Multiple Aspect Trajectory Index (MAT-Index), uma estrutura de dados
indexada para otimização de comparações ponto-a-ponto de trajetórias de múltiplos aspectos,
considerando suas três dimensões básicas de espaço, tempo e semânticas em uma estrutura
integrada. Avaliações quantitativas mostraram a redução do tempo de execução em até 98.1%.

Palavras-chave: Indexação. Medida de Similaridade. Trajetória de Múltiplos Aspectos.
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RESUMO ESTENDIDO

Introdução

Dados de trajetórias têm sido objeto de estudo por décadas. A primeira classe de trajetória es-
tudada foi a trajetória bruta. Coletada por GPS, esse tipo de trajetória é composto apenas por
dados espaço-temporais. Os avanços tecnológicos possibilitaram integrar a Internet a vários
tipos de dispositivos, permitindo assim a coleta e enriquecimento de seus dados com conteúdo
semântico que deu nome a uma nova classe, a trajetória semântica. Recentemente, Mello et
al. (2019) introduziu o conceito de trajetórias de múltiplos aspectos. As trajetórias de múlti-
plos aspectos podem ser associadas a aspectos semânticos heterogêneos, de acordo com seu
significado. Resumidamente, diferentes atributos compõem cada aspecto. Uma vez que esse
tipo de trajetória pode conter uma infinidade de atributos, compará-los ponto a ponto degrada a
performance em problemas maiores.
Ao longo do tempo, houve diversos trabalhos de método de acesso com diferentes propósitos,
incluindo trajetórias. Apesar disso, apenas poucos focavam na otimização simultânea das três
dimensões (espaço, tempo, e semântica) em questão. Até onde pudemos apurar, nenhum deles
considera a complexidade que uma trajetória de múltiplos aspectos tem, restringindo-se à inde-
xação de apenas poucas palavras-chave (geralmente uma). Em muitos casos, a indexação foca
em combinações exatas. Assim, mesmo pequenas diferenças entre dois pontos comparados não
retornariam o conteúdo a ser processado, sendo portanto inapropriado para esse fim.
Os trabalhos pesquisados caracterizam-se por requerer uma grande quantidade de dados redun-
dantes a fim de viabilizar uma construção mais eficiente do método. Por vezes, essas soluções
requerem alocações híbridas, que acabam por necessitar de mais acessos para alcançar o con-
teúdo requisitado. Ainda assim, os trabalhos encontrados não focam em problemas de com-
paração ponto a ponto. De fato, no estado da arte, não foi possível encontrar abordagens que
indexem todos os aspectos juntos com o objetivo específico de processamento da similaridade.
Assim, a seguinte pergunta de pesquisa define o objetivo principal deste trabalho: É possí-
vel construir um índice eficiente para comparação ponto a ponto de trajetórias de múltiplos
aspectos que acelere o cálculo da similaridade?
Este trabalho apresenta uma solução para esta pergunta, propondo o Multiple Aspect Trajectory
Index (MAT-Index), um índice para otimização da comparação entre trajetórias de múltiplos
aspectos. O índice proposto é formado da combinação de índices invertidos, onde as chaves
são nomes de atributos e os valores são os atributos de seus aspectos. A principal caracterís-
tica do MAT-Index é agrupar pontos de trajetórias contendo atributos iguais, a fim de evitar
comparações redundantes e reduzir o montante de dados armazenados. Para determinar a efici-
ência do índice proposto foram realizados um exemplo de cálculo de similaridade utilizando o
índice proposto e avaliações quantitativas das medidas de similaridade do estado da arte Multi-
dimensional Similarity Measure (MSM) ± um método popular para trajetórias semânticas que
se aplica a trajetórias de múltiplos aspectos ±, e MUltIple aspect Trajectory Similarity (MUI-
TAS) Ð o primeiro trabalho originalmente desenhado para esse tipo de trajetória. O exemplo
de cálculo de similaridade utilizando o MAT-Index mostrou como as medidas de similaridade
indexadas podem se beneficiar da aplicação do MAT-Index, reduzindo drasticamente o número
de comparações necessárias. Na avaliação quantitativa foram comparados os tempos de exe-
cução e performance de escalabilidade usando os datasets públicos Foursquare e BerlinMOD
previamente enriquecidos com conteúdo semântico. Os resultados quantitivos das medidas de
similaridade testadas apontaram ganhos significativos em todos os cenários, com até 98.1% de
redução do tempo de processamento e até 87.2% nas avaliações de escalabilidade.
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Objetivos

O objetivo principal desta pesquisa é construir um índice que dê suporte a medidas de similari-
dade para trajetórias semânticas e de múltiplos aspectos. Para tal, foram definidos os seguintes
objetivos específicos:

• Compreender o estado-da-arte de trajetórias semânticas e índices de múltiplos aspectos,
atentando às suas limitações e pontos fortes;

• Criar um algoritmo extensível capaz de indexar a comparação entre pontos de trajetórias,
considerando sua dimensão semântica;

• Estender o algoritmo desenvolvido para a dimensão semântica a fim de indexar as dimen-
sões espacial e temporal juntas;

• Divulgar os resultados da pesquisa.

Metodologia

A metodologia adotada consiste na realização de uma revisão da literatura com foco em pu-
blicações de alto impacto/Qualis. Utilizando mecanismos de busca como o Google Scholar,
foram pesquisados tópicos relacionados a métodos de acesso a dados multidimensionais que
indexassem espaço, tempo e texto, simultaneamente.
Com base nos resultados encontrados, identificou-se que poucos trabalhos focavam na otimiza-
ção das três dimensões (espaço, tempo e semântica) concomitantemente. Constatou-se também
que nenhum deles considera a complexidade intrínseca a uma trajetória semântica ou de múlti-
plos aspectos, restringindo-se apenas à consulta por poucas palavras-chave que requerem com-
binações exatas, inviabilizando aplicar esse tipo de solução para fins de cálculo de similaridade.
Além disso, todos necessitavam manter grandes quantidades de dados redundantes para viabi-
lizar a construção de um índice mais rápido, demandando, em alguns casos, armazenamento
híbrido (usa as memórias principal e secundária), por sua vez, mais acessos para se alcançar
o conteúdo desejado. Também não localizamos no estado-da-arte abordagens que indexassem
todos os atributos conjuntamente com o objetivo específico de processamento da similaridade
de trajetórias com vários atributos semânticos. Com base nas limitações elencadas, foi de-
senvolvido um índice para otimização de trajetórias contendo múltiplos atributos. A principal
característica do índice proposto é agrupar pontos de trajetórias iguais, evitando comparações
ponto a ponto redundantes. O índice desenhado possui uma estrutura compacta, requerendo
menos espaço físico que o próprio arquivo original. A proposta foi idealizada de modo a aten-
der às medidas de similaridade MSM e MUITAS. No entanto, o MAT-Index é potencialmente
aplicável a outras medidas de similaridade do estado-da-arte que demandem comparação ponto
a ponto.

Resultados e Discussão

Para determinar a eficiência da proposta, foi apresentado um exemplo de cálculo de similari-
dade comum às duas medidas testadas a fim de evidenciar como o processo foi simplificado;
quantitativamente, foram comparados os tempos de execução do Multidimensional Similarity
Measure (MSM) e do MUITAS para o processamento dos datasets Foursquare e BerlinMOD
previamente enriquecidos, nas versões originais e com suportes do MAT-Index e do índice
FTSM (Fast Trajectory Similarity Measure), originalmente proposto para aceleração do proces-
samento da dimensão espacial de trajetórias semânticas.
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Quantitativamente, o método proposto mostrou-se eficiente no processamento de trajetórias
contendo as três dimensões, incluindo múltiplos atributos semânticos. Os resultados execu-
tados apontaram um ganho significativo no desempenho computacional em todos os cenários
testados, chegando a executar até cinquenta e duas vezes mais rápido do que a mesma medida
de similaridade sem o suporte do MAT-Index.

Considerações Finais

Os dados discutidos ao longo deste trabalho foram integralmente implementados e estão dispo-
níveis em https://github.com/anapbr/MasterDegree/tree/PaperVersion. O MAT-Index provou-se
um método muito eficiente no suporte ao processamento de medidas de similaridade que re-
alizem comparação ponto a ponto a fim de obter os maiores scores (best fit) em cada caso.
Contudo, o modo como o índice foi estruturado, permite que sejam obtidos os K pontos ou
K trajetórias mais semelhantes a um determinado ponto consultado, um clássico problema de
K-Nearest Neighbor. Também é possível aproveitar sua estrutura para propósitos de consultas,
como em problemas de range queries. Assim, há uma gama de trabalhos em potencial que
podem ser desenvolvidos a partir dessa pesquisa.

Palavras-chave: Indexação. Medida de Similaridade. Trajetória de Múltiplos Aspectos.
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ABSTRACT

The semantic enrichment of mobility data with several information sources has led to a new
type of movement data, the so-called multiple aspect trajectories. Comparing multiple aspect
trajectories is crucial for several analysis tasks like querying, clustering, similarity, classifica-
tion, etc. Multiple aspect trajectory similarity measuring is more complex and computationally
expensive, because of the large number and heterogeneous aspects of space, time, and seman-
tics that require a different treatment. Only a few works in the literature focus on optimizing all
these dimensions in a single solution, and, to the best of our knowledge, none of them propose
a fast point-to-point comparison. In this research, we propose the Multiple Aspect Trajectory
Index (MAT-Index), an index data structure for optimizing the point-to-point comparison of
multiple aspect trajectories, considering its three basic dimensions of space, time, and seman-
tics in an integrated data structure. Quantitative evaluations show a processing time reduction
of up to 98.1%.

Keywords: Indexing. Similarity Measure. Multiple Aspect Trajectory.
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and longitude, and they must be considered together in order to represent a position in space.

Latitude and Longitude cannot be considered as independent attributes.

In trajectory data analysis, comparing trajectories is crucial for several analysis tasks

like querying, clustering, similarity, and classification, all research topics that have received

large interest in recent years. Trajectory similarity measuring is the basics for querying and

clustering moving objects with similar characteristics. There are several similarity/distance

measures in the literature as DTW (Dynamic Time Warping), MDTW (Modified Dynamic Time

Warping), LCSS (Longest Common Subsequence), EDR (Edit Distance for Real Sequences),

Fréchet Distance, etc, but most of them were either developed for time series or do not support

all three dimensions of mobility data that are space, time, and semantics.

Similarity measures that were specifically developed for trajectories include UMS (Un-

certain Movement Similarity) (FURTADO et al., 2017), MSM (Multidimensional Similarity

Measure) (FURTADO et al., 2016) and MUITAS (MUltIple aspect TrAjectory Similarity)

(PETRY et al., 2019). UMS is very robust for spatial similarity, but it does not consider time

and semantic dimensions, what is fundamental for mobility data. On the other hand, MSM and

MUITAS have outperformed the well known older measures DTW (BERNDT; CLIFFORD,

1994), LCSS (VLACHOS; KOLLIOS; GUNOPULOS, 2002), and EDR (Chen; Özsu; Oria,

2005). EDR and LCSS force a matching in all dimensions of two points to consider them

as similar, while MSM and MUITAS do not. MSM and MUITAS are flexible measures that

consider similar two trajectories that do similar things but not necessarily in the same order,

thus not forcing a match in all dimensions. This flexibility is reasonable since it is rare that

two moving objects do precisely the same things, at the same place and time, in the same se-

quence. MUITAS is also flexible in considering the dimensions as independent or dependent in

the matching process, covering MSM and part of LCSS and EDR. Indeed, MSM and MUITAS

allow using a different distance function for measuring the similarity of each dimension, apart

from defining weights that give more or less importance to each dimension.

To better understand the similarity problem addressed in this work let us consider the

simple example of trajectories A and B in Figure 2. In the example, a trajectory A has three

points < a1;a2;a3 > and trajectory B has five points < b1;b2;b3;b4;b5 >. Both trajectories

visit the same places (same semantics) but in a different order. A and B visit Hotel, Bank, and

Mall but not necessarily in this order. As MUITAS and MSM consider any type of trajectory

dimension, so far they are the most robust for measuring the trajectory similarity, independently

of the dimensions present in the dataset.

In the example of Figure 2, MSM and MUITAS need to compare each point of the

trajectory A to all points of the trajectory B, and for all dimensions, to discover that semantically

the trajectory A is totally contained in B, i.e, they share the semantic similarity of three points.

In other words, MSM compares each dimension of point of a1 to all points of B, in order to

discover that A and B visit Hotel, Bank and Mall and that they move at similar times. Because

of the point to point comparison, MSM and MUITAS have a high complexity, and require a

smart indexing data structure that supports all three dimensions for fast similarity search in real
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Figure 2 ± Two Semantic Trajectories

Source: Furtado et al. (2016)

datasets.

In 2018, Furtado proposed FTSM (Fast Trajectory Similarity Measuring), an index for

fast similarity measuring of UMS and MSM (FURTADO et al., 2018). However, it indexes

only the spatial dimension, what is not sufficient to support large trajectory datasets that have

many semantic aspects. A survey about general indexing data structures is presented in (MAH-

MOOD; PUNNI; AREF, 2018), and shows that only a limited number of works propose indexes

considering all three dimensions (space, time, and semantics). To the best of our knowledge,

none of these indexes were developed for trajectory similarity purposes. In general, they fo-

cus on indexing only space, or space and time for range and top-K queries. Another common

limitation of the index data structures is the considerable storage cost due to the redundant data

structures when indexing the three dimensions.

In this work we aim to answer the following question: Can we build an efficient index

for point-to-point multiple aspect trajectory similarity measuring that takes into account all di-

mensions of space, time and semantics? In this research we propose an index data structure for

historical data, called MAT-INDEX, that significantly reduces the processing time for measur-

ing the multidimensional similarity of trajectories with MSM and MUITAS. The MAT-index

construction avoids the need for point-to-point comparison of MSM and MUITAS, and its main

advantage and difference from the state-of-the-art, is that apart from being able to consider all

different dimensions in a single data structure, the final index contains the matching scores. Our

proposal is for an index support for similarity measures of multiple aspect trajectories, and how

the similarity algorithm measures the similarity among different aspects depends on the defini-

tion of the measure itself. A similarity running example shows how both similarity algorithms

can benefit from this index and how MAT-Index can drastically reduce the number of compar-

isons. Indeed, a quantitative evaluation shows the running time and scalability performance over

publicly available datasets enriched with semantic aspects. Comparing the performance results

of the similarity algorithms with and without FTSM and MAT-Index supports, we show a gain

for all tested scenarios up to 98.1% processing time reduction and up to 87.2% in scalability

evaluations.
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1.1 OBJECTIVES

The main objective of this research is to build an index that accelerates the similarity

analysis of multiple aspect trajectories. To accomplish this purpose, the following specific

objectives are defined:

• To better understand the state-of-the-art semantic trajectories and multiple aspect indexes,

and well understand their limitations and strengths;

• Create an extensible index for accelerating the trajectory similarity analysis by reducing

the point to point comparison;

• Propose an efficient algorithm for indexing the spatial, temporal and semantic dimen-

sions, overcoming limitations of existing works;

• Disseminate research results by articles, presentations, reports, software, manuals, and

databases for validating and publicizing solutions.

1.2 METHODOLOGY AND DISSERTATION STRUCTURE

This work applies the following methodology to accomplish the objectives proposed:

1. Perform an extensive literature review in access methods, by considering the works that

index space, time, and semantic/textual data at once, and evaluate them under the follow-

ing metrics: execution time, allocation method, the space required, capability to perform

semantic trajectory similarity;

2. Implement the similarity measures that apply to multiple aspect trajectory: MSM, and

MUITAS;

3. Define the datasets for evaluating the similarity measures implemented;

4. Design and implement an index data structure for multiple aspect trajectory similarity

measuring for reducing the execution time in similarity measures, optimizing the alloca-

tion required;

5. Assess the scalability, allocation method and computational time spent of the proposed

methods using real and synthetic trajectory datasets;

6. Compare the results with the original similarity measures performances, evaluating their

behavior over the real trajectory datasets, under the main indexing metrics;

7. Write articles describing the method for reducing the problem;

8. Write the dissertation.
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The rest of this document is structured as follows: Chapter 2 describes the concepts re-

quired to understand this work; Chapter 3 discusses related works, highlighting their limitations;

Chapter 4 introduces the proposed index for multiple aspect trajectories; Chapter 5 discusses

the evaluation results that assess work efficiency; finally, Chapter 6 concludes the research and

suggests directions of future works.
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2 BASIC CONCEPTS

This section presents the main concepts to understand this work. Section 2.1 defines

the multiple aspect trajectories, Section 2.2 presents the basics about the similarity measures

developed for this type of data, focusing on the Multidimensional Similarity Measure (MSM)

(FURTADO et al., 2016) and the MUltIple aspect TrAjectory Similarity (PETRY et al., 2019),

and Section 2.3 presents the index basic definitions.

2.1 MULTIPLE ASPECT TRAJECTORIES

Multiple aspect trajectory is a sequence of points where each point has the dimensions

of space, time, and several semantic aspects.

Definition 2.1.1 Multiple Aspect Trajectory A Multiple Aspect Trajectory T = ⟨p1, p2, ..., pn⟩
is a sequence of points, such that pi = (x,y, t,A) is its i-th point composed of a location (x,y),

also called as spatial dimension, a timestamp t, also called temporal dimension, and a non-

empty set of aspects A = {a1,a2, ...,am}, representing the semantic dimension.

Definition 2.1.2 Aspect An Aspect a = (desc,atype) is a relevant real-world fact for mobility

data analysis. It is composed of a description (desc) and an aspect type.

Definition 2.1.3 Aspect Type An aspect type atype = {att1,att2, ...,attz} is a categorization of

a real-world fact composed of a set of attributes (att). In other words, an aspect type and its

attributes act as a metadata definition for an aspect.

An instance of an aspect type, thus the aspect instance, is represented as a non-empty

set of attribute-value pairs atypeK
= {att1 : v1,att2 : v2, ...,attz : vz}. Thus, each pair (atti : vi) is

an instantiation of a property atti of atypek
with a (atomic or multivalued) value vi. For the sake

of understanding, consider the following example adapted from (MELLO et al., 2019) where

an aspect type hotel is defined by the following attributes: geographic coordinates, address, and

stars. A possible aspect related to this type could be Il Campanario Resort with the follow-

ing attribute-values: geographic coordinates: -27.439771, -48.500802; address: Buzios Ave.,

Florianopolis; stars: 5.

2.2 SIMILARITY MEASURES

Similarity measures express on a numerical scale how similar two points are. Several

similarity measures have been developed either for sequential data as LCSS (VLACHOS; KOL-

LIOS; GUNOPULOS, 2002), EDR (Chen; Özsu; Oria, 2005), w-constrained Discrete Frechet

distance (wDF) (Ding; Trajcevski; Scheuermann, 2008), or for trajectories as CVTI (KANG;

KIM; LI, 2009), MSTP (YING et al., 2010), MTM (XIAO et al., 2012), MSM (FURTADO
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et al., 2016), UMS (FURTADO et al., 2017), SMSM (LEHMANN; ALVARES; BOGORNY,

2019), and MUITAS (PETRY et al., 2019). To the best of our knowledge, only MSM, SMSM,

and MUITAS were specifically developed for semantic or multiple aspect trajectories, support-

ing all their three dimensions: space, time, and semantics. Only MSM, and MUITAS deal with

independent attributes, and MUITAS is the only one that also considers semantically related

attributes. MSM and MUITAS compute the similarity of two trajectories considering a point-

to-point analysis, and are currently the most robust for similarity, therefore we focus on these

measures for our indexing proposal.

2.2.1 Multidimensional Similarity Measure (MSM)

The Multidimensional Similarity Measure (MSM) (FURTADO et al., 2016) computes

the similarity between two trajectories P= (p1, ...pn) and Q= (q1, ...,qm) comparing each point

p ∈ P to all points q ∈ Q. The method computes the parity of two trajectories, (P,Q) and (Q,P),

using the maximum matching score Equation 2.1.

parity(P,Q) =
|P|
∑
i=1

max score(pi,Q)|qi ∈ Q} (2.1)

The score is computed according to Equation 2.2, and provides a matching score of two

points p and q for each dimension. It consists of pairwise comparing the attributes A of p with

q, considering the user defined thresholds (τk), and scores the matches (Equation 2.3) according

to their respective weights (ω).

score(p,q) =
|A|
∑
k=1

(matchk(p,q)∗ωk) (2.2)

matchk(p,q) =

{

1, if distk(p,q)≤ τk

0, otherwise
(2.3)

The total similarity of two trajectories is given in Equation 2.4, by summing both parities

and dividing the result by the sum of both trajectory lengths (P and Q).

MSM(P,Q) =

{

0, if |P|= 0 or |Q|= 0
parity(P,Q)+parity(Q,P)

|P|+|Q| , otherwise
(2.4)

2.2.2 MUltIple aspect TrAjectory Similarity (MUITAS)

MUITAS (PETRY et al., 2019) is the first similarity measure natively developed to work

with multiple aspect trajectories. MUITAS introduced an essential concept of relationship be-

tween attributes, being the first to consider trajectory dimensions as totally independent, par-

tially independent or dependent. When a set of attributes is defined as dependent or partially

independent, this set is named feature. In the similarity analysis it means that the set of attributes
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defined as a feature have to match to be considered in the similarity score. For example, sup-

pose two trajectory points have the attributes (or dimensions) space, time, POI name, price, rate

and weather condition. The attributes price and rate refer to the POI, so the attributes space,

time and weather condition could be all independent and POI name, price and rate could be

considered as a feature. In this case, the POI name, price and rate must be exactly the same of

the other trajectory point to have a match. This property of feature makes MUITAS a flexible

measure that supports both MSM when attributes are independent and is similar to LCSS when

the attributes are defined as dependent, forcing a match of all attributes in the feature. It shares

with MSM and SMSM the support of different data types and the capability to assign different

distance functions to each attribute.

A feature f = {a1,a2, ...,az} is a nonempty set of attributes of a multiple aspect trajec-

tory. It is possible to aggregate attributes to work as independent and dependent by using this

concept. For instance, a feature fi = {place_category, price_tier,rating} represents informa-

tion about visited POIs. There are three associated attributes, this analysis unit is dependent.

However, the feature f j = {weather_condition} represents an independent analysis unit.

Suppose P and Q as two trajectories and p and q trajectory points, such that p ∈ P and

q ∈ Q, the Equation 2.5 computes the matching score between p and q. For each attribute A of

a feature F , the points will match if the distance between them is lower than a given threshold

(τ).

match fi(p,q) =

{

1, if ∀a j ∈ fi,dist j(p,q)≤ τ j

0, otherwise
(2.5)

For each feature, Equation 2.6 computes the score as the weighted sum (ω) of matching

points.

score(p,q) =
|F |
∑
i=1

(match fi(p,q))∗ωi (2.6)

After comparing all points, MUITAS calculates the parity(P,Q) as the sum of the best

scores of each attribute of each point p in P comparing to Q (Equation 2.7), and the parity(Q,P).

parity(P,Q) =
|P|
∑
k=1

max score(pk,Q)|∀q ∈ Q} (2.7)

The final similarity score between two trajectories is the sum of parities, divided by the

sum of the trajectory lengths (Equation 2.8).

MUITAS(P,Q) =

{

0, if |P|= 0 or |Q|= 0
parity(P,Q)+parity(Q,P)

|P|+|Q| , otherwise
(2.8)

Note that the flexibility of both point-to-point approaches outperformed the other previ-

ously mentioned methods. However, it also made them very expensive concerning processing

time.
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Despite of the various solutions for different data, indexing space, time, and semantic

data together is far more complex, especially concerning to point to point comparison pur-

poses. It is necessary to keep fast access to the entire dataset content for a problem that requires

quadratic computation and does not allow pruning strategies.
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3 RELATED WORKS

An extensive list of access methods for trajectories is organized in (MAHMOOD; PUNNI;

AREF, 2018) according to the temporal context of the data (past, present, and future) Ð we fo-

cus on the past Ð, with different indexing arrangements. We observe that only a few of these

works index text with space and/or time data.

However, no works index data focusing on similarity measuring purposes. Indexing

only part of the data like in both top-k and range queries solutions is unfeasible. In this case,

or it would lead to approximate solutions then possibly propagating errors, or it would require

getting original data when the content is not indexed. So, the multiple access and the naive

comparisons comprise the performance. The related state-of-the-art works found along with

the research are following briefly described:

The Grid index for Activity Trajectories (GAT) (Zheng et al., 2013) addresses the

Activity Trajectory Similarity Query (ATSQ). An activity trajectory is composed of semantic

keywords, analogous to a semantic trajectory. GAT hierarchically divides the entire spatial

region into quad cells, using a space-filling curve to assign the multidimensional cells into a 1-

dimensional domain. It implements four data structures: (i) The Hierarchical Inverted Cell List

(HICL) is a multi-level grid data structure that, for each activity, builds a tree using the spatial

references as nodes and leaves. Because of the high allocation demand of this structure, only

the upper levels of the tree are in the main memory, and lower levels are stored in the secondary

memory; (ii) The Inverted Trajectory List (ITL) stores each cell of the HICL in an inverted

index that stores the lists of activities belonging to them and the trajectories where they happen.

This structure does not keep detailed information about each trajectory individual point. Hence,

ITL can be stored within the main memory in most cases; (iii) The Trajectory Activity Sketch

(TAS) stores in the main memory, for each trajectory, the trajectory activities that are assigned

to continuous numerical IDs. Then, the activities are summarized, sorted by the frequency and

partitioned into intervals. The idea of this data structure is to quickly filter out trajectories that

do not match the query requirements, preventing retrieval from the disk unnecessary detailed

information for the query goal; (iv) Activity Posting List (APL) allocates, for each trajectory, the

activities belonging to them and the trajectory points that has the activity. This data structure is

stored on disk due to its high space requirement and will be retrieved only when the distance

with the query needs to be evaluated.

The Adaptive Frequent Item Aggregator (AFIA) (Skovsgaard; Sidlauskas; Jensen,

2014) identifies the top-k frequent terms (keywords), in a specific spatio-temporal range. This

index creates multiple spatial grids with different granularities to partite the space. For each

grid granularity and each cell into it, the method stores a summary of the most frequent terms in

that cell. For temporal support, it creates new instances of grid cells periodically. It also creates

temporal cells at multiple time-granularities. Each grid cell maintains frequencies of terms for

all supported temporal granularities, e.g., hour, day, week, and month. To process a query with

a specific Spatio-temporal range, it partitions the query range into several coarser regions. The
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aggregates from these regions are combined to get the final top-k result. Indeed, this index

changes the size of the summaries dynamically to adapt to changes in the number of frequent

terms within grid cells. The AFIA approach seeks a solution capable of supporting streams with

higher rates than Twitter currently sees (5,000 tweets/sec). It focuses on semantics, besides is

not ready to similarity measures as it is not the focus of this work.

Mercury (Magdy et al., 2014) uses a partial in-memory pyramid approach to support

top-k spatio-temporal and textual queries over microblogs. The pyramid structure is a multi-

level partitioning of the indexed space. In the spatial pyramid, each cell level is partitioned into

four equal cells in the subsequent level. Each pyramid cell maintains a list of the microblogs

that have arrived in the spatial range of the corresponding cell during the past time units. The

index orders the microblogs within a cell according to their arrival timestamps. Microblogs

are periodically bulk-inserted into Mercury using a main-memory buffer to reduce the inser-

tion overhead. It periodically checks the content spans of the pyramid cells to split or delete

levels according to the number of quadrants, avoiding an extremely deep data structure. The

microblogs score according to a ranking function of the spatial microblog spatial proximity of

the query and the time recency of the microblog. The index also uses a pyramid cell priority

queue to visit them according to a ranking function. It depends on the spatial proximity between

the cell and the query location, and the most recent microblog timestamp in every pyramid cell.

Also, during query processing, a list of the top-k microblogs is maintained. This list is sorted in

the order of the scores of the microblogs. It gets updated as the pyramid cells are being visited.

The Grid index Keyword index (GiKi) (Zheng et al., 2015) answers the Approximate

Keyword Query of Semantic Trajectories (AKQST). An AKQST is a set of keywords required

to retrieve the k most relevant semantic trajectories or sub-trajectories required to cover all the

query keywords (on approximate keyword-matching, e.g., to tolerate any misspelled keywords)

and have the shortest travel distance. GiKi consists of a Semantic Quad-tree (SQ-tree) and a

Keyword-Reference Index (K-Ref). It implements a two-step function to define the relevance of

the trajectories: in the first step, it aggregates the trajectory travel distances; And, in the second

step, it calculates the similarity between the trajectory keywords and the query keywords. The

SQ-Tree construction basis on a multi-level grid-partitioning of the indexed activity-trajectories.

To build the spatial quad-tree within an SQ-tree, it uses Grid cells that overlap the trajectories.

A non-leaf node in the SQ-tree that contains an identifier of the corresponding grid cell in

the multi-level grid, the pointers to children nodes of the quad-tree, and a signature of all the

keywords covered within the corresponding grid cell in the multi-level grid. The signature of

keywords is a MinHash of all the keywords covered by the Quad-Tree node. It is possible

to calculate MinHash keywords signatures by generating the multiple hash functions over all

the n-grams keywords covered by a Quad-Tree node. A leaf node in the SQ-Tree contains the

keyword signature and pointers to the indexed trajectories. K-Ref is a textual index maintained

per trajectory to speed up the string edit-distance computation. The K-Ref uses the K-Means

Clustering to identify the keyword clusters per trajectory. It chooses as keywords clusters, for

every cluster, a representative reference keyword. Then, keywords of a trajectory are indexed
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based on their distance to the reference keywords using a B+-Tree. AKQST uses the SQ-tree

and K-Ref to identify candidate trajectories that have keywords similar to the query keywords.

Then, to identify the k most-relevant trajectories, the relevance of the candidate trajectories is

calculated.

The Grid and KR*-Tree (GKR) has a hybrid structure that combines the SETI access

method to index the moving object trajectories and a KR*-Tree to index the spatial-textual

objects. It uses a grid to partition the space into disjointed cells of the same size. The partitions

store the trajectory segments contained into the corresponding space. One or more disk pages

store the resultant segments. Each page contains the sets of segment keywords of a trajectory.

Finally, the pages are indexed through a KR*-Tree, whose structure associates index nodes to

keywords and organizes the pages of the disk accordingly to their temporal proprieties. To

proceed to the query, suppose a spatio-temporal, and textual trajectory with a set of keywords.

First, it finds the candidate grid-cells that overlap the queried spatial interval. Then, for the

corresponding KR*-Trees of the candidate grid-cells traversed, it finds the nodes with timestamp

overlaps that contain a keyword from the queried set. The corresponding pages disk of these

nodes is further filtered in two steps to discard false-positive trajectory segments in the spatio-

temporal dimensions, and to remove trajectory segments that do not fully cover the set of query

keywords.

The Inverted OC-tree (IOC-tree) Han et al. (2015) answers Spatio-temporal and tex-

tual filter queries on trajectories. An inverted index basis the IOC-tree, where query processing

performs by filtering the indexed data using a keyword-first strategy. In the IOC-Tree, each

keyword has an Octree built by recursively dividing the Spatio-temporal space into eight nodes.

Leaf nodes are encoded using the 3D Morton code, where disk stores the non-empty leaf nodes

in a one-dimensional structure ordered by Morton codes. An octree node also maintains a sig-

nature that contains a summary of the trajectory information within that node. This signature

filters out the non-qualifying nodes and the signature gets updated during the insertion/dele-

tion of trajectories. The disk stores exact trajectory information per non-leaf nodes. Query

processing is performed by dividing the nodes into three types of Spatio-temporal constraint

return: Nodes that do not satisfy the constraint; Nodes that partially covered range constraint;

and Nodes that fully cover the query range. After the signature, a test is performed to filter out

the non-qualifying nodes. Candidate trajectories are loaded from disk and validated to get the

final result.

The IR-With-Identifiers (IRWI-Tree) (Issa; Damiani, 2016) is a hybrid index frame-

work for spatial-textual trajectories defined over continuous temporal domains. Similarly to

an IR-tree, the IRWI data structure consists of an R-tree augmented with inverted lists that

associate each label with a compressed representation of a corresponding trajectory identifier.

The IRWI-tree internal nodes contain summaries of the trajectory units in the leaf level, which

entries are represented as trajectory units u = [I, L, Seg], for I the interval, L the textual con-

tent, and Seg the segmented spatial location. The IRWI-Tree efficiently answers the sequenced

queries over trajectories by splitting the original ones into multiple simple queries processed in
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parallel. The result set contains only the trajectories that satisfy all simple queries in the proper

order. The indexing techniques were implemented in Secondo’s development environment.

The GeoTrend index (Magdy et al., 2016) applies for real-time microblogs to find out

the trends in arbitrary spatial regions with the support of trending measures. GeoTrend is an

access method for identifying the trending keywords within recent microblogs in a specific

spatial region. GeoTrend adopts a hybrid Spatio-temporal and textual data structure that builds

on the incomplete pyramid structure for spatial indexing. Every cell in the pyramid maintains

a textual index. The textual index is a hash table that stores keywords aggregate statistics in

the microblogs over the past time-period. The length of the time duration T depends on the

availability of the main memory. The keyword aggregate statistics k is a set of N counters.

Each counter stores the number of microblogs containing Keyword k for a partial time-interval

of length NT. GeoTrend uses an expiration technique to evict the obsolete aggregates. When the

index is under high workload, GeoTrend adopts a load-shedding technique that evicts the less-

important aggregates that are less likely to contribute to any query answer. The main difference

between GeoTrend and Mercury is that Mercury searches for individual microblogs. At the

same time, GeoTrend uses aggregates over microblogs to identify the trending keywords.

The Fast Trajectory Similarity Measuring (FTSM) (FURTADO et al., 2018) is a

branch and bound strategy that focus on indexing the spatial dimension for fast computing

the MSM. It consists of pruning out the trajectory points that exceed the similarity threshold

plus the length of the trajectory segment analyzed, preventing a point-to-point comparison of

trajectory segments most distant. FTSM starts considering the entire trajectory as a segment and

then the trajectory is continually divided by the middle, repeating the punning process until the

segment corresponds to a trajectory point. This method can reach a quadratic cost in the worst

cases where there are no points eliminated during the process. This method was used in Chap-

ter 5 in comparison to the MAT-Index. Although FTSM performed efficiently in (FURTADO et

al., 2018) for spatial indexing, the method requires a threshold to calculate and prevent compar-

isons. Since semantics in general does not admit a threshold as a match condition, the method

can not be adapted. Thus, we decided to execute the original FTSM proposal where the index

provided a list of matches to the similarity measures that only computed the semantic and tem-

poral dimensions to calculate the final score. However, MSM and MUITAS performances do

not improve when using FTSM for computing all trajectory dimensions. The reason is that first

the FTSM is executed, computing and storing the pairs of trajectory points that match. Then,

MSM computes semantics and time dimensions, besides always retrieve the list of matches for

all trajectory points, no matter it matches or not. In other words, FTSM computes the entire

dataset in until quadratic cost, storing the results in an array of matches, then MSM equally

computes the similarity in quadratic cost, only preventing the spatial comparison itself, but de-

manding to retrieve the FTSM list of matches. This overhead explains the results presented in

Subsection 5.2.1.

R-trees with STLs (AHMED et al., 2017) is a disk-based index that provides exact

answers to the top-k Frequent Spatio-Temporal query (the kFST query, for short). This query
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identifies the most frequent terms in a specific Spatio-temporal range. This index extends the

nodes of a multi-dimensional R-tree with sorted terms lists (STL, for short). An STL of an

R-tree node, say N, is a list that contains the frequencies of terms of the objects covered by

Node N. This list is sorted based on the frequencies of terms. The STLs are added to both leaf

and internal nodes of the underlying R-tree to improve the query performance. To reduce the

memory overhead of the index, STLs store the frequencies of the most frequent terms estimated

analytically.

Liu et al. (2017) proposed the ST-Tree answers semantic-aware similarity queries on

activity trajectories. Instead of adopting exact or approximate keyword matching, the semantic-

aware similarity query considers the semantic similarity between the keywords representing

the activities of the trajectories. This query attempts to identify the k most-relevant activity-

trajectories to a specific set of keywords and spatial locations. A function defines relevance as

the spatial proximity between the locations of the trajectories and the locations of the query;

and the semantic similarity between the keywords representing the trajectories’ activities and

the keywords of the query. To measure the semantic similarity of the keywords, Latent Dirichlet

Allocation (LDA) is used to map the keywords of activities into a high-dimensional vector that

represents the semantics of the keywords. The ST-tree integrates the quad-tree with Locality

Sensitive Hashing (LSH). LSH is used to reduce the dimensions of the LDA representation and

to ensure that relevant activity trajectories are assigned to the same bucket with high probability.

In the ST-tree, activity trajectories are first indexed using a quad-tree. Every leaf node in the

quad-tree points to an LSH structure for each trajectory point indexed by this leaf node. Query

processing in the ST-tree uses the quad-tree to find the candidate trajectories that are close to

the location of the query. Then, LSH is probed to identify the semantically similar activity-

trajectories.

Bubble Bucket Tree (BB-Tree) (Sprenger; Schäfer; Leser, 2019) is a spatial index

structure for processing multidimensional workloads in main memory. A BB-Tree consists

of two components: A k-ary search tree for pruning and searching and a set of Bubble Buckets.

Inner nodes of the IST recursively split the data space into k disjoint subsets according to a

delimiter dimension and k-1 values. Data are kept in regular BB, which hold up to a predefined

limit of m-dimensional data objects, and can dynamically expand to cope with a larger number

of objects. The idea is to linearize the inner search tree and manages it in a cache-optimized

array, with optimized re-organizations when data changes. When queried, inner nodes are used

to reduce the data space. Once, all irrelevant subtrees have been pruned, the remaining BB are

scanned to determine the results.

Chen et al. (2020) proposed the hybrid structure S2R-Tree, which integrates not only

spatial and semantic information in a transparently, but also represents semantic information by

coordinates based on low dimensions pivot. The existing indexing and search methods have a

limited removal effect due to the high dimensionality in the semantic space, making query effi-

ciency a severe problem. The spatial mechanism transforms high-dimensional semantic vectors

into a small-sized space. So, instead of indexing objects in the original semantic space, the di-
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mension reduction allowed a more effective pruning effect. The method uses pivot-based prin-

ciples for space transformation and partitioning. Hence, the high-dimensional semantic vectors

can be mapped to low-dimensional coordinates with high data variation. The S2R-Tree hybrid

indexing structure seamlessly integrates spatial and semantic information, but also represents

semantic information by pivot-based coordinates in low dimensions. That way, the pruning ef-

fect can be significantly improved. In addition, Chen et al. (2020) developed an efficient and

accurate SKQ (Spatial Keyword Queries) processing algorithm at the top of the S2R-tree. This

algorithm can significantly reduce the space for large-scale research. To calculate the distance

between an object and a query, euclidean distance, and normalization using a sigmoid function.

Time-weighted Term List (TwTL) (Dam et al., 2021) employs a spatial index us-

ing a quad-tree data structure to index posts augmented by top-k time-weighted term lists

(TwTL) and a bulk updating technique to support the fast digestion of social post streams. The

method adopts a location-based time-decaying query technique to retrieve recently frequent

terms within a user-specified region of interest. The decaying time-weighted frequency term is

based on an exponentially higher score to terms posted most recently. These top-k term lists

are employed in the aggregation step to produce the final results so the incoming queries can be

efficiently processed.

3.1 TYPES OF INDEX APPROACHES

Regarding the works that process space, time, and semantic data, we briefly discuss

their limitations, explaining why each one does not fit our goal to make point-to-point trajectory

similarity faster.

3.1.1 Retrieving Approaches

We can retrieve information by using exact and partial querying approaches according

to what we want to accomplish. The exact approaches (Skovsgaard; Sidlauskas; Jensen, 2014;

Han et al., 2015; Magdy et al., 2016) retrieve only information containing all queried data. This

condition allows us to apply pruning strategies that are very useful for speeding up the search.

However, pruning the content does not let us acquire cases that do not entirely coincide. In

other words, we can only determine the aspects that fully match, not being possible to weigh

how similar two elements not retrieved are. Instead, the partial match approaches (Zheng et al.,

2013; Magdy et al., 2014; Zheng et al., 2015; Mehta; Skoutas; Voisard, 2015; Issa; Damiani,

2016; LIU et al., 2017; Wang et al., 2017; AHMED et al., 2017; Chen et al., 2020) allow us to

distinguish two compared characteristics independently of having something in common, not

restricting access to the whole dataset, which can work for similarity purposes.
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3.1.2 Allocation Approaches

Indexes can keep different and redundant data structures connected in a try to optimize

the access method. However, depending on the amount of memory allocated, this approach

can force the operating system to excessively transfer data between memory levels, delaying

the access in a known problem named Thrashing. In the state-of-the-art, we observed three

allocation ways of how related works process the data: disk, memory or hybrid allocations.

Works that adopt disk solutions (Issa; Damiani, 2016; AHMED et al., 2017) avoid the system

collapse since the disk space is less limited than the memory. However, the transference be-

tween primary and secondary memory levels demands a slower device to access and transfer

data. This bottleneck can significantly impact the performance in cases that require constant

access. Point-to-point comparison is a quadratic problem with high access demand, thus highly

affected by disk solutions. Due to the mentioned issues related to the disk latency, some works

like (Zheng et al., 2013; Zheng et al., 2015; Han et al., 2015; LIU et al., 2017) adopts hybrid

strategies. Although this approach is less slower than the pure disk allocation methods, it still

requires multiple accesses to retrieve data from disk and thus locate it in the RAM memory

before to start the processing. Thus, disk and hybrid allocation are inefficient for large and

complex data, including trajectories datasets. Another approach to minimize the processing

and allocation workload is to develop approximate solutions like in Skovsgaard, Sidlauskas e

Jensen (2014), Zheng et al. (2015). For similarity search purposes, the approximation would

propagate a possible error to all other related comparisons, affecting the reliability of the score.

Finally, (Skovsgaard; Sidlauskas; Jensen, 2014; Magdy et al., 2014; Mehta; Skoutas; Voisard,

2015; Magdy et al., 2016; Wang et al., 2017; Chen et al., 2020; Dam et al., 2021) proposes

indexes using memory allocation solutions not comprising the performance.

3.1.3 Pruning Strategies

A common strategy to accelerate the processing is to reduce the set of elements to com-

pare. Problems that demand the k most similar elements (TOP-K) allow us to design access

methods (Zheng et al., 2013; Skovsgaard; Sidlauskas; Jensen, 2014; Magdy et al., 2014; Zheng

et al., 2015; Magdy et al., 2016; AHMED et al., 2017; Wang et al., 2017; LIU et al., 2017; Dam

et al., 2021) that adopt pruning strategies avoiding comparisons that never lead to a potential

response. Another pruning strategy is to design the index building focusing on spatial (Magdy

et al., 2016; Dam et al., 2021), temporal (Issa; Damiani, 2016; Sprenger; Schäfer; Leser, 2019;

Chen et al., 2020), or spatio-temporal (Skovsgaard; Sidlauskas; Jensen, 2014; Magdy et al.,

2014; Mehta; Skoutas; Voisard, 2015; Han et al., 2015; Dam et al., 2021) ranges, equally

avoiding comparisons in cases that never lead to a match. However, both pruning techniques

intend to accelerate only the targeted cases. Comparing elements that are not in the same range

equally demands brute force processing. The multiple aspect trajectory comprises three dimen-

sions, including heterogeneous data. Access methods that apply to space, time, and textual data
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are indexed using different linked data structures, never consolidating them as one. MSM and

MUITAS similarity measures pairwise compare each attribute counting the number of matches.

If the access method implements separated structures for each data type, retrieving each at-

tribute match does not prevent the quadratic point-to-point operation. Thus, it is necessary to

consolidate each point-to-point number of matches to effectively improve the performance.

3.2 COMPARISON AMONG STATE OF THE ART METHODS

The indexes discussed in previous sections can handle applications involving trajectories

that contain semantic data. However, they presented limitations that impacted their use for the

aims of this work. Table 1 summarizes their main characteristics as follows: Work contains the

index name and its authors; Application/Data summarizes the purpose that initially motivated

the work and the data types as processed, highlighting the core in bold; Allocation presents the

storage method adopted along with the index building; Retrieving concerns the search condition

implemented by the technique being Partial or Exact; Pruning presents if the work applies any

criteria to exclude a set of elements from comparison.

Queries, top-k, and range problems have a parameter to search for, while similarity re-

quires fully comparing the data (no matter how different they are) to return a score expressing

how similar the compared elements are. To the best of our knowledge, there are no works

in the literature that fully index the three multiple aspect trajectory dimensions for similarity

measuring. Indeed, existing indexing works do neither provide a data structure to avoid the

point-to-point matching nor the number of matches between points for each dimension, includ-

ing the partial matches. Therefore, a novel data structure is needed to accurately process an

entire trajectory dataset and return the top matching scores preventing redundant comparisons.
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Table 1 ± Comparative State-of-the-Art for Spatio-Temporal and Textual Access Methods

Approach
Work Application/Data

Allocation Retrieving Pruning

GAT Activity (Semantic) Trajectories
Search

Hybrid Partial Yes
(Zheng et al., 2013)

AFIA Real-time Keyword Search for Mi-
croblogs Trending Topics

Memory Exact Yes
(Skovsgaard; Sidlauskas; Jensen, 2014)

Mercury Real-time Keyword Search for Mi-
croblogs Trending Topics

Memory Partial Yes
(Magdy et al., 2014)

GiKi Approximate Spatio-Temporal Key-
word Search

Hybrid Partial Yes
(Zheng et al., 2015)

GKR*-Tree
Spatio-temporal Keyword Search Memory Partial Yes

(Mehta; Skoutas; Voisard, 2015)

IOC-Tree
Spatial Keyword Queries Memory Exact Yes

(Han et al., 2015)

IRWI-Tree Keyword Queries on Aligned

Spatio-Textual Trajectories
Disk Partial Yes

(Issa; Damiani, 2016)

GeoTrend Spatial Trending Queries on Real-

time Microblogs
Memory Exact Yes

(Magdy et al., 2016)

R-trees with STLs TOP-k Keywords on Spatio-
Temporal Range Queries

Disk Partial Yes
(AHMED et al., 2017)

ST-Tree Approximate Activity (Semantic)
Trajectory Search

Hybrid Partial Yes
(LIU et al., 2017)

FTSM Spatial Support for Similarity Mea-

suring
Memory Partial Yes

(FURTADO et al., 2018)

BB-Tree
Multidimensional Range Queries Memory Partial Yes

(Sprenger; Schäfer; Leser, 2019)

S2R-Tree
Spatial Keyword Queries Memory Partial Yes

(Chen et al., 2020)

TwTL Top-k Trending Topics on Spatial
Range Queries

Memory Exact Yes
(Dam et al., 2021)

MAT-Index Spatial, Temporal and Semantics Sup-
port for Similarity Measuring

Memory Partial No
(Souza et al., 2021)
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addToTemporalIndex (line 4) saves the temporal dimension in the TemporalIndex inverted list,

as shown in Figure 5 (c). Each entry < key,value > in the TemporalIndex holds a time and

a list of rIds with the same temporal information. The running example of Figure 5 (a) has a

temporal threshold of five minutes, which means that the key time of the TemporalIndex must

be saved in minutes. For instance, the rId=4 in Figure 5 (a) has a time in hours (2:35), which is

then saved in minutes (2x60+35=155 minutes), as shown in the first entry in Figure 5 (c).

Concerning the semantic dimension, MAT-Index preliminary saves the semantics into

two structures. The method addToSemDictionary (row 5) saves a semantic dictionary with

the distinct semantic composite keys in Figure 5 (d). The method addValueToTwoLevelIndex

(line 6) stores in the TwoLevelIndex the second level key ( dashed area named as 2nd level

key) in Figure 5 (e), associated to the trajectory point references with the same attribute name

and value in the corresponding List of rIds, as shown on the right of Figure 5 (e). It is worth

mentioning that the two level model preserves the context of the values, since each attribute

name will contain its particular distinct values as appeared in the dataset of Figure 5. For

instance, value 1 could represent a price, a rating, an age, or others. As previously mentioned,

line 1 of Algorithm 1 saves the first level of the two-level inverted index while line 6 populates

its second level. The combine step (Section 4.4) merges both data structures and the algorithm

finishes by returning all intermediate files.

4.2 SPATIAL COMPUTATION

For the spatial dimension, MAT-index uses a logical grid, storing only the cell addresses

that contain at least one trajectory point. The spatial dimension demand a pairwise comparison

of two trajectory points to check if the distance between them does not exceed the similarity

threshold (τ). Therefore, MAT-index uses the auxiliar data structure SpatialIndex generated in

the Load step to avoid the comparison among all trajectory points. The SpatialIndex presented

in Figure 5 (b) is an inverted list where each entry is a pair < key,value >, being each key a cell

address and the value a list of rIds (trajectory points) belonging to the same key (cell address).

Algorithm 2 explains how the Spatial Computation step works. First, it sequentially

reads each entry of the SpatialIndex (line 1) composed of the pair < cellAddress,rIds >. For

each rId (trajectory point) in the list of rIds (line 2), the OR operator in line 3 updates the list

of spatial matches with the rIds in the same cell address. In line 4, the method getCandidate-

Cells returns a list of point candidates (pCandidate), testing if the distance between the points

rId and pCandidate does not exceed the spatialThreshold. If not, the lists of spatialMatches

of both points are updated (lines 6 and 7). After the cell address processing, the entry is re-

moved from the SpatialIndex (line 11) to prevent the points from being double-checked, which

is unnecessary due to the symmetry of the spatial distance.

Going back to the running example, for the sake of understanding, suppose the spatial

threshold is 1.42, resulting in a cell size equal to 1. We use the Euclidean Distance to compute

the spatial distance, but any other distance measure could be used. In Figure 5 (b), the rIds
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Algorithm 2: computeSpatialMatches

input : SpatialIndex // Figure 5(b)

output: spatialMatches updated
1 foreach < cellAddress,rIds > ∈ SpatialIndex do // Entry <Key, Value>

2 foreach rId in rIds do

3 Points.get(rId).spatialMatches = Points.get(rId).spatialMatches OR
SpatialIndex.get(cellAddress)

4 foreach (pCandidate ∈ getCandidateCells(cellAddress)) do

5 if ( distance(Points.get(rId), Points.get(pCandidate) ≤ spatialThreshold) ) then

6 Points.get(rId).spatialMatches.set(pCandidate)
7 Points.get(pCandidate).spatialMatches.set(rId)
8 end

9 end

10 end

11 SpatialIndex.remove(cellAddress)
12 end

13 return spatialMatches

{8,11} automatically match as well as {1,2} because they are in the same cell. The pairs of

rIds {4,10} and {7,9} are in adjacent cells. Thus, it is necessary to check in both cases if the

Euclidean Distance does not exceed the threshold, as presented below:

d(4,10) =
√

(4.3−4.3)2 +(17.9−16.9)2 = 1 ≤ 1.42 ? TRUE

d(7,9) =
√

(4.3−5.2)2 +(1.9−0)2 =
√

4.42 ≤ 1.42 ? FALSE

Therefore, concerning the spatial indexing, only the pairs {1,2}, {8,11}, and {4,10}

match. These pairs of matches will be used to update the final MAT-index score, in the final

step, the index integration step (Section 4.6).

4.3 TEMPORAL COMPUTATION

For the time indexing, the strategy is to create, for each temporal index entry, as shown

in the example of Figure 5 (c), a list with all the matching rIds, that are the trajectory points

belonging to the cells in the interval admitted by the temporal threshold τ .

Algorithm 3 shows the pseudo-code that receives as input the TemporalIndex generated

in the Load step, and provides a list of temporal matches as output. It starts by sequentially read-

ing the entries in the TemporalIndex (line 1), and, for each entry composed of < time, rIds >,

it aggregates to the listO f Matches all the rIds belonging to the groups in the interval ± τ

(line 2). For every rId in the entry (line 3), i.e., rIds, the listO f Matches is associated to the

temporalMatches of the processed rId (line 4).

Figure 7 (a) shows the temporal data as stored in the Load phase, and (b) the corre-

sponding list of matches. All rIds in Figure 7 (a) shared the same list of matches. In the
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saves memory and mainly processing time because the idea is to process the matches in groups

(by cell), not by rId.

4.4 SEMANTIC COMBINE

The SemanticCombine step treats the semantic dimension. It creates the Composite

Index by taking the composite keys in the Semantic Dictionary from Figure 5 (d) and associating

each one to a match counter, which is created using the occurrences in the Two-Level Inverted

Index from Figure 5 (e). The match counter represents the number of matches by trajectory

point if compared to the composite key itself. It avoids the pairwise comparison of the attribute

values of each pair of points by exploring the transitive property (e.g., ∀P,Q,R, if P ∼ Q and

Q ∼ R, then P ∼ R) of this kind of data.

Algorithm 4 illustrates the combine pseudo-code, where each semantic composite key

in the dictionary (line 1) provides one valid combination of attribute values. The individual

attribute values of each combination is used to build its corresponding match counter (line

2, in Function getMatchCounter). The command SemCompositeIndex.put (line 2) saves the

semCompositeKey and its corresponding MatchCounter, returned by the getMatchCounter

function. After, the SemCompositeIndex is completed, then returned in line 4.

Algorithm 4: Semantic Combine

input : SemDictionary // Figure 5 (d)

output: SemCompositeIndex // Figure 9

1 foreach semCompositeKey ∈ SemDictionary do

2 SemCompositeIndex.put(semCompositeKey, getMatchCounter(semCompositeKey))
3 end

4 return SemCompositeIndex

input : semCompositeKey, TwoLevelIndex // Figures 5 (d) and (e)

output: MatchCounter
5 Function getMatchCounter(semCompositeKey):

6 foreach f ∈ F do // Being each feature f a set of attributes

// rIds where all feature attributes values in f match (Eq.2.5)

7 foreach rId ∈
| f |
⋂

i=1
TwoLevelIndex(attributeValue)i.rIds do

8 ++MatchCounter[rId]
9 end

10 end

11 return MatchCounter

Function getMatchCounter in Algorithm 4 shows how the match counter is obtained.

The semCompositeKey provides the valid combination of attribute values to be processed. For

each attribute value in the combination, the method retrieves the List of rIds of the corresponding

attribute values, as the example shown in Figure 5 (e). The feature f in F matches (row 6) if
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semantic attributes rId=1 has in common with rId=10, we just need to look at the correspond-

ing semantic combination of rId=1 in < $$,Home,Clear > at position rId=10.

4.5 SEMANTIC COMPRESS

The similarity algorithms for multiple aspect trajectories MSM (FURTADO et al., 2016)

and MUITAS (PETRY et al., 2019) retrieve the best semantic match of a point when compared

to a trajectory. In this case, we can further compress the index by keeping the maximum score.

Therefore, the Compress step stores only the top scores by trajectory, saving memory and avoid-

ing redundant comparisons that would degrade the performance.

Algorithm 5 shows the pseudo-code of the Compress step. For each semCompositeKey

in SemCompositeIndex (Figure 9) (Algorithm 5, row 1), the combine gets the top number of

semantic matches by trajectory using the function compressMatchCounter in line 2. The func-

tion return is associated to the semCompositeKey computed, saving the result as an entry in

CSemCompositeIndex (line 2, CSemCompositeIndex.put).

Algorithm 5: Semantic Compress

input : SemCompositeIndex // Figure 10(a)

output: CSemCompositeIndex // Figure 10(b)

1 foreach <semCompositeKey, matchCounter> ∈ SemCompositeIndex do

2 CSemCompositeIndex.put(semCompositeKey,compressMatchCounter(MatchCounter))
3 end

4 return CSemCompositeIndex

input : MatchCounter
output: CMatchCounter

5 Function compressMatchCounter(MatchCounter):

6 foreach p in Points do

7 CMatchCounter[p.cId] = max(CMatchCounter[p.cId], MatchCounter[p.rId])
8 end

9 return CMatchCounter;

The Function compressMatchCounter in Algorithm 5 (line 5) presents how to compress

a match counter with the trajectory top scores. For each trajectory point p (line 6), the com-

pressed match counter CMatchCounter at p.cId position (i.e., the corresponding trajectory id

position of p) is updated if the score of the trajectory point p is greater than the current score of

its trajectory p.cId (line 7).

Figure 10 presents the scores of the running example before and after the compression.

Figure 10 (a) presents the top scores by trajectory point, while Figure 10 (b) the top scores by

trajectory. We notice that the eleven trajectory points turned into only three points, correspond-

ing to the number of trajectories since we only keep the maximum score for each trajectory and

not all the points anymore. The first column of the MatchCounter in Figure 10 (a) corresponds

to the header position in the dataset (see Figure 5 (a) at rId=0), i.e., where the name of attributes
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multaneously. In line 11, the point p with its corresponding scores in auxCMatchCounter is

added to the MAT-Index. After all points p are processed, the Compresses Composite Index in

Figure 11 (a) and the Composite Index in Figure 11 (b) data structures are no longer required,

so they are discarded (lines 13 and 14). The Mat-Index (illustrated in Figure 11 (c)) is ready to

be used.

Algorithm 6: Dimensions Integration

input : SemCompositeIndex, CSemCompositeIndex // Fig 10

output: MATIndex // Figure 11(c)

1 foreach p in Points do

2 auxCMatchCounter = CSemCompositeIndex.get(p.semCompositeKey)
3 bothMatch = p.spatialMatches AND p.temporalMatches
4 foreach rId in bothMatch do

5 auxCMatchCounter[Points.get(rId).cId]=
max(auxCMatchCounter[Points.get(rId).cId],
SemCompositeIndex.get(p.semCompositeKey)[rId]+2)

6 end

7 oneMatch = p.spatialMatches XOR p.temporalMatches
8 foreach rId in oneMatch do

9 auxCMatchCounter[Points.get(rId).cId]=
max(auxCMatchCounter[Points.get(rId).cId],
SemCompositeIndex.get(p.semCompositeKey)[rId]+1)

10 end

11 MATIndex.put(p.rId, auxCMatchCounter)
12 end

13 CSemCompositeIndex.clear();
14 SemCompositeIndex.clear();
15 return MATIndex

Going back again to our example in Figure 5, each trajectory point has now a final

score for all dimensions. The points themselves are updated by 2, since now both spatial and

temporal dimensions are taken into account, resulting in Figure 11 (c) the value 5. By updating

the spatial and temporal matches, the pairs of trajectory points {1,2}, {8,11}, and {4,10} do

spatially match. The pairs of trajectory points {9,10}, {3,11}, and {3,6} do temporally match.

All matches are updated in the final MAT-Index in Figure 11 (c).

Note that the final score in Figure 11 (c) is the maximum between the result incre-

mented in Figure 11 (b) and the auxiliary top score preserved in Figure 11 (a), as explained

in Algorithm 6. For instance, updating the match between rIds 3 and 11, starting by rId=11

(<$$, University, Clouds>). The trajectory point rId=3 corresponds to the trajectory cId=0. In

Figure 11 (b), the composite key <$$, University, Clouds> at position rId=3 has score of 3. It is

higher than the old top score 2 in Figure 11 (a). So, the method updates the score of trajectory

point rId=11 at cId=0 to 3 in the MAT-Index Figure 11 (c). The method repeats this process for

all matches. The updates are highlighted in Figure 11 (c).

The final MAT-Index data structure, depicted in Figure 11 (c), considers the spatial,
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jectory by composite key. The best case is when all the composite keys are equal, resulting in a

linear cost O(N). In the worst case, all the composite keys are distinct, resulting in a complex-

ity of O(N2). Both extremes are unlikely. For instance, considering the assessed datasets, the

Foursquare has 7107 keys. The BerlinMOD has only 67 distinct semantic combinations, a very

tiny number compared to the number of trajectory points (227,403 and 346,657, respectively).

That is the reason why MAT-Index performance tended to a linear behavior, as discussed along

with Section 5.

Finally, the Dimensions Integration method depicted in Algorithm 6 updates only the

cases that match. Since it maintains BitSets for spatial and temporal matches, the logical oper-

ations prevent double retrieving the same content, which is done in linear time.

After analyzing all MAT-Index methods, we can conclude that the MAT-Index bottle-

neck lies in the compressing step complexity that can vary from linear to quadratic depending

on the number of semantic composite keys. Again, two unlikely situations, as demonstrated in

all the state-of-the-art assessed datasets.
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5 EVALUATING MAT-INDEX FOR TRAJECTORY SIMILARITY MEASURING

In this section we evaluate the performance of MSM and MUITAS using MAT-index.

We also compare MAT-index with FTSM (FURTADO et al., 2018), a spatial index proposed to

accelerate the comparison of the spatial dimension of MSM. MAT-Index is general and can be

potentially applied to other point-to-point similarity measures for multiple aspect trajectories.

We implemented both MSM and MUITAS with and without using the proposed index. The

source code of MAT-index and the datasets used in the experiments are available in the public

GitHub repository in https://github.com/anapbr/MasterDegree/tree/PaperVersion.

Before we detail the experimental evaluation it is important to remember that MSM

computes the similarity by pairwise comparing a set of attributes, while MUITAS compares

features, which are a non empty set F of attributes. MUITAS can also compute MSM simi-

larity by considering the particular case where each feature is composed of only one attribute.

For instance, suppose a dataset composed of three attributes att1, att2, and att3. MSM pair-

wise compare all three attributes separated, while MUITAS can process different feature con-

figurations like F = {{att1},{att2},{att3}} (where each feature has one attribute, leading to

MSM definition), F = {{att1},{att2,att3}}, or even all attributes together in the same feature

F = {{att1,att2,att3}}.

We evaluate MAT-index considering a similarity running example and the quantitative

aspects: Section 5.1 shows throughout an example how using our index simplifies the simi-

larity computation, thus drastically reducing the number of comparisons needed to compute

the similarity for both evaluated algorithms; Section 5.2 presents the quantitative evaluation of

MAT-Index, focusing on time and scalability metrics.

5.1 SIMILARITY RUNNING EXAMPLE

We start this section presenting a scenario where both MSM and MUITAS employ MAT-

Index to obtain the similarity score of two trajectories. By exploiting MAT-Index, the similarity

for both MSM and MUITAS no longer requires to compare each pair of attributes/features

to compute the point-to-point score as the methods without index support do. It means that

both similarity measures can start with the parity (MSM Equation 2.1, MUITAS Equation 2.7)

computation, thus skipping for MSM Equations 2.2 and 2.3, and for MUITAS Equations 2.5

and 2.6. Accessing MAT-Index data structure to get the top scores consolidated ± Figure 11 (c)

±, we compute the final score in linear time of |P|+ |Q| accesses whose contents are summed,

while the method without support would require quadratic cost by comparing all points of P

with all points of Q, for each dimension, i.e., |P|× |Q|× |A| comparisons, being A the number

of attributes processed (space, time, and semantic attributes).

Going back to the running example in Figure 5 with F = {{price},{poi},{weather}},

suppose we want to measure the the similarity between trajectory ids 126 and 128. For ref-

erence, the first column (tid) of the dataset in Figure 5 (a) identifies the trajectory ids and its
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points. The first step is to find the similarity score Similarity(126,128) is to compute the pari-

ties by querying the top scores of the points of both trajectories in MAT-Index (Figure 11 (c)).

Starting from the computation of parity(126,128), we recall that the trajectory 126 (cId = 0) is

composed of four points with rIds= {1,2,3,4}. It is necessary to retrieve the value in key= rId

at position cId = 2 (128) to get their top scores. Once MAT-Index indexes five features (space,

time, and the semantics price, poi, and weather), the sum of scores must be divided by 5.

Therefore,

parity(126,128) =
∑

4
rId=1 max(rId,cId)

|F | =
3+1+3+3

5
= 2

The process must be repeated by inverting the references for all points of 128 to get the parity(128,126),

thus summing the retrieved scores at position cId = 0.

parity(128,126) =
∑

11
rId=9 max(rId,cId)

|F | =
3+2+3

5
= 1.6

After calculating the parities, the final similarity score Similarity(126,128), i.e., MSM(126,128)

and MUITAS(126,128) are the sum of parities divided by the sum of each trajectory length

(number of points), such that

Similarity(126,128) =
parity(126,128)+ parity(128,126)

|126|+ |128| =
2+1.6
4+3

≈ 0.51

The presented process can be repeated for any pair of trajectories, using their rIds as key to find

the top scores of all trajectory points in the dataset.

5.2 QUANTITATIVE EVALUATION

The quantitative evaluation is organized into two parts: first, we employ two publicly

available datasets composed of spatial, temporal, and multiple semantic dimensions to compare

the running times of the similarity measures MSM and MUITAS with and without the MAT-

Index and FTSM supports. In the second part, we employ a synthetic dataset to evaluate the

index scalability to state the impact of the trajectory size in the processing times.

All quantitative experiments were performed in an Intel® Core™ i7-9750H Coffee Lake

CPU @ 2.60GHz (12MB cache), 32GB Crucial Dual-Channel @ 1330MHz (19-19-19-43),

500GB Samsung SSD 970 EVO Plus, and 4GB NVIDIA GeForce GTX 1650 in a Windows 10

Education 64-bit, using a command prompt boot option without graphical and network support

to avoid overlapping second plan processes.

5.2.1 Evaluating MAT-Index Processing Time for Similarity Measuring

We split this experiment in two parts: (i) how faster do both similarity measures process

the entire dataset when employing MAT-index and FTSM access methods and; (ii) how do the

number of attributes and the distinct semantic combinations affect the performance. We used
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two publicly available datasets that contain spatial, temporal, and multiple semantic dimen-

sions. The Foursquare NYC (YANG et al., 2015) dataset contains real data, while the other is

a benchmarck dataset generated by BerlinMOD (DüNTGEN; BEHR; GüTING, 2009). These

datasets have different characteristics, including the number of points and trajectory average

sizes that make them suitable for evaluating MAT-Index.

The Foursquare NYC contains semantically enriched check-ins of users collected from

April 2008 to October 2010. The Foursquare API1 provided the semantic information related

to the POI: category (root-type), subcategory (type), and price ± this last one is a numeric

classification; the Weather Wunderground API2 provided the weather conditions. The Berlin

Moving Object Dataset (BerlinMOD) is a public spatio-temporal dataset containing moving

point data, simulating workers commuting between their homes and workplaces on the real

street network of the German capital Berlin during two days. It holds two semantic attributes

regarding the type of the user and the transportation mode. In both datasets, the timestamp

provided the weekday (day).

Table 2 summarizes the main characteristics of the datasets. Traj Size refers to the

trajectory average length followed by the ± signal with its standard deviation; the # of Users

attribute indicates the number of distinct anonymous users tracked; the attribute # of Traj means

that there are one or more trajectories of each user; finally, Attributes are the spatial, temporal

and semantic attributes processed in the experiment.

Dataset Description

Foursquare
NYC

(YANG et al., 2015)

Traj Size: 209,97±188,36
# of Traj.: 3,079

# of Points: 227,403
# of Users: 1,083
Attributes: Latitude, longitude, time, weekday, price,

weather, POI type and root-type.

SECONDO
BerlinMOD

(DüNTGEN; BEHR;
GüTING, 2009)

Traj Size: 417,24±279,68
# of Traj.: 1,797

# of Points: 346,657
# of Users: 141
Attributes: Latitude, longitude, start time, weekday,

type of user, and transportation mode.

Table 2 ± Summary of the trajectory datasets used in the experiments.

Figure 12 shows the running times comparison for each dataset considering MSM and

MUITAS implementations without any support, using FTSM that indexes only the spatial di-

mension and MAT-Index, developed to consider all trajectory dimensions. To properly evaluate

both MSM and MUITAS fully exploiting their characteristics, the Foursquare dataset was eval-

uated considering two different sets of features given as follows:

1 https://developer.foursquare.com/
2 https://www.wunderground.com/weather/api/
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6 CONCLUSIONS AND FUTURE WORK

Measuring the similarity of multidimensional data as trajectories is a very costly task

used on clustering, nearest neighbor queries, and other crucial problems in the literature. Several

similarity measures can not deal with the high volume of real datasets because of point to point

comparisons, which is very time consuming and leads to the need of index data structures

capable of speeding up the computation.

Current indexes were not developed for efficiently manage all trajectory dimensions for

similarity analysis. They also process a limited number of keywords (in general, only one). The

limitations include intrinsically pruning techniques that are applied to speed up the processing.

However, these pruning techniques do not perform a point-to-point analysis. The pruning tech-

niques commonly involve top-k, range queries, and exact querying approaches. The top-k and

range queries problems allow solutions removing candidates (so data) that never will reach a

set at a certain point, or even discard information outside a spatial and/or temporal limit.

In this work we proposed MAT-Index to fill this gap by indexing the semantic content

with multiple attributes, having spatial and temporal dimensions into a compact data structure,

assuring efficiency in similarity computation while reducing data redundancy. The index is a

combination of a dictionary and inverted indexes. The MAT-Index evaluation used the state-

of-the-art trajectory similarity algorithms Multidimensional Similarity Measure (MSM) and

MUltIple aspect TrAjectory Similarity (MUITAS).

Regarding the index performance analysis, we show throughout a similarity running ex-

ample how MAT-Index supports both MSM and MUITAS and drastically reduces the number

of comparisons. On the other hand, we compute the index performance in running time ex-

ploiting two public datasets and scalability using one synthetic dataset. Experiments show an

improvement in all scenarios of up to 98.1% in running time and 87.2% in scalability.

It is worth recalling that the execution times on experiments include the indexing build-

ing and the similarity computation. The similarity is still a quadratic problem that, with MAT-

Index, depends on the number of trajectories (the method without index support depends on the

number of trajectory points). Still, most of the execution relates to the comparison itself. Re-

building the index does not significantly impact the performance, although threshold changes do

not require full index rebuilding since it is possible to process again only the affected dimension

and the final dimensions integration step. Datasets changes involving trajectory point inserting

or updating would demand a full index reconstruction. Therefore, it is still is a significant gain

compared to the original implementation, despite the re-execution..

Concerning future works, we would like to evaluate MAT-Index using more semanti-

cally enriched trajectory datasets. Currently, MAT-Index treats the three trajectory dimensions

individually before integrating their computation results. When we have spatial or temporal

threshold changes, we can compute only the dimension affected once more and then reintegrate

the result. However, another opportunity is to develop an efficient update when new trajectory

points are added to the dataset, although index building represents a tiny part of the elapsed
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time presented along with the experiments for the similarity processing. Finally, problems in-

volving range and top-k queries can benefit from MAT-Index intermediate data structures. For

instance, the match counter structure favors creating a ranking of trajectory points by the num-

ber of matching attributes, yet, simple queries can be resolved varying from a single access to

linear time.
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