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Abstract
The current CyXplus’s software, CyXPERT, is able to automatically detect, localize and

classify defect for in-line X-ray tire inspection. However, it depends on a configuration
that is the time-consuming and user-variant. This project proposes an automatic defect
recognition on X-ray manufactured tire inspection by deep learning algorithm, a robust
method with a smaller margin of error. It also proposes processing and augmentation of
the database, which are the prerequisites to carry out the learning of a neural network. A
computer vision approaches called classification was chosen to be developed. It presented
good results with high accuracy, however it has a significant number of false detection
and in addition the defect localization is done by large zone areas. Due to the complicated
nature of deep learning algorithms there is still a significant amount of work to be done
before applying this algorithm in the industry. But generally, the project had promising
results and a good evolution.

Keywords : Deep Learning; Image Processing; Non-Destructive Testing.

Résumé
Le logiciel actuel de CyXplus, CyXPERT, est capable de détecter, localiser et classer

automatiquement les défauts pour l’inspection des pneus par rayons X en ligne de produc-
tion. Cependant le taux de détection du logiciel est dépendant de la configuration faite par
l’utilisateur. La configuration des traitements automatiques est également chronophage
et demande des compétences poussées en pneumatique et logiciel. Ce projet propose une
reconnaissance automatique des défauts lors de l’inspection radiographique des pneus
par deep learning, une méthode robuste avec une marge d’erreur plus faible. Il propose
également le traitement et l’augmentation de la base de données, qui est la base pour
la phase d’apprentissage d’un réseau de neurones. Un type d’approche de vision par
ordinateur a été choisi pour être développés, la classification. Elle a présenté de bons
résultats avec une grande précision, mais elle comporte un nombre important de fausses
détections et, de plus, la localisation des défauts n’est pas précise. En raison de la nature
complexe des algorithmes d’apprentissage profond, il reste encore beaucoup de travail à
faire avant d’appliquer cet algorithme dans un logiciel industriel. De manière générale,
les résultats ont été prometteurs et le projet a eu une très bonne évolution.

Mots-clés : Deep Learning ; Traitement d’Images ; Essais non Destructifs.
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Introduction
Acknowledged to be a major player in the non-destructive testing (NDT) industry, CyX-

plus supplies the most efficient inspection equipment and software to demanding manu-
facturing industries. As a leading supplier of final finish equipment for the Tire Industry,
it has 90% of its income connected to tire X-ray inspection hardware and software.

The current software, CyXPERT, is able to automatically detect, localize and classify
defects for in-line X-ray tire inspection. However, its use has some limitations. Its base
configurations changes according to the tire reference as well as the type of defect that is
desired to detect. The client is the one in charge of the parameters adjustment, requiring
a trained technician and a significant amount of time. Therefore, there is no guarantee
consistency on the results and there is still some false detection.

Provided an automatic defect recognition by deep learning, it would be no longer
needed to spend man-hours on the time-consuming and user-variant task that is pa-
rameters configuration. The suggested approach would also replace the current image
processing, which takes a long time to perform. The results are expected to be robust
and have less errors.

This project has as main objective the development of deep learning algorithm able
automatically to detect, classify and localize defects on X-ray manufactured tire inspec-
tion. Within constraints of cycle time in an in-line production. As secondary objective is
the database processing and augmentation, which is the foundation of the deep learning
algorithms.

First, a context is given. The company is presented, its products developed and the
fields of activity. Also, the context of study, an important background to understand
about tires, their defects and image acquisition. Another point is the work environment,
the tools used throughout are announced. Then, some computer vision approaches are
discussed and, finally, the scientific approach is presented.

Next, the theory behind the deep learning algorithms is presented. Then, the database
are discussed along with how they were processed. Followed by the development of the
classification deep learning approach and its results are discussed. Finally, a global con-
clusion is explored over the project and a personal one over the internship is presented.

Ense3 - 2020 1
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1 Context

1.1 Company
CyXplus is a simplified joint stock company ( in french société anonyme par actions sim-

plifiée - SAS) that manufactures non-destructive testing (NDT) and measurement equip-
ment and software to the manufacturing industries.

The 35 employees are divided into two places. At Montbonnnot-Saint-Martin there are
the Research & Innovation in NDT technologies team and the X-ray micro-tomography
equipment. At Les Pennes Mirabeau is the operational headquarters, engineering and de-
velopment departments, X-ray and computed tomography equipment, workshop and the
teams of after-sales, purchasing, sales, administration/accountancy, human resources.

Figure 1: CyXplus logo.

CyXplus is part of TechnipFMC Company, a global leader in oil and gas projects, tech-
nologies, systems, and service. With more than 37 000 employees in 48 countries and a
turnover of US$12b in 2018.

The company’s markets are the tire industry, aerospace and defense, oil and gas in-
dustry and pharmaceutical industry. It’s activity is mainly focused on on inspection of
passenger, truck, bus and off the road tires. The company is present on the five conti-
nents and works with the most prestigious tire brands, like Michelin, Goodyear, Apollo
and others.

1.1.1 Activities & Technologies

CyXplus develops and sells complete non-destructive testing systems, from the ma-
chine to the associated software. The company offers solutions based on 2D digital X-ray,
computed tomography, laser and industrial vision. In its products ranges there are tire
X-ray inspection, in-house X-ray/CT inspection facilities and software.

CyXplus builds X-ray inspection machines for its customers and in particular for the
tire industry. Different types of machines are offered by the company to check tires
of several sizes, from 15” to 72”. Furthermore it builds custom applications such pipe
inspection and X-ray for pharmaceutical equipment.

The company also builds in-house X-ray/CT inspection machines, with focus on the
aerospace industry. They can X-ray or CT small to medium size objects. CyXplus’ role
is the development, troubleshooting, expertise and final inspection before assembly or
delivery.

The software for the machines is also developed. These include software for image
acquisition, visualization and automatic defect detection. Some software allow the control
of the machine, from the management of the X-ray chain (source, detector) to the robotics
of the machine (rotation of the axes for example). For its tomographs, CyXplus also
develops a 3D reconstruction and visualization with measurement tools.

Ense3 - 2020 2
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1.2 Context of the study
1.2.1 Tires

The materials under analyses are tires. They can be for motorcycle, passenger, light
truck, truck, bus and off-the-road (OTR) tires, with radial tires between 15” and 72”. A
tire has a lot of structures, layers and materials.

(a) Tire Structure. (b) Tire Zones.

Figure 2: Tire.

On Figure 2a and according to [10], the tire structure consists on: Inner liner: Layer
of synthetic rubber, where the air pressure is retained; Belts: they are made of steel,
providing stability to the tread, which affects wear, handling, and traction. Beads: They
clamp firmly against the tire’s rim to ensure an airtight fit and keep the tire properly
seated on the rim; Sidewall: It covers the body plies on the side of the tire and provides
abrasion, scuff, and weathering resistance. Important details about the tire are written
on the sidewall, such as tire size and speed rating; The sidewall is composed of rubber
compounds that. Body ply: it serve as the structural foundation of the tire, providing the
strength to contain the tire air pressure and carry the load. Most tires have one or two
body plies. Tread: Provides traction and turning grip for the tire and is designed to resist
wear, abrasion and heat. It is is constructed from different rubber compounds.

These structures and layers can be divided into four mirrored zones, described in the
Figure 2b.

1.2.2 Acquisition

In X-ray imaging a beam of high energy electrons, accelerated by a strong potential
difference, crashes into a target made of heavy metal and interact with it, producing x-
rays. After filtering, only the high energy rays pass through a sample toward the sensor.
X-ray can penetrate liquids, gas and solids. The penetration is based on the intensity,
quality and wavelength of the X-ray beams. The stronger the X-ray beam the more it can
penetrate the material.

The flow transmitted through each sub-element of homogeneous material of thickness
x obeys the Beer-Lambert law:

I = I0 · exp(−µ(ρ, λ, Z) · x) (1)

Ense3 - 2020 3
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where µ(ρ, λ, Z) is the linear absorption coefficient of the material under consideration,
depending on its density ρ, its atomic number Z and the energy of the radiation under
consideration (its wavelength λ)

This means the waves of X-ray can penetrate more easily through materials of light
atoms, such as air, plastic and rubber. Metals absorb the X-rays, not letting them arrive
at the sensor. Meaning the higher the density of the material the darker it will be imaged
on the result image.

In the this panoramic NDT the source is positioned in between the beads. The sensor
is wide but thin, to capture only a section at a time, and is positioned around the tire’s
outside part. The image formation is done by moving the object between source and
detector.

(a) Schematics. (b) Machine.

Figure 3: X-ray acquisition.

1.2.3 Defects

There are three types of defects that this project focused on: bubbles, free wires and
foreign bodies. Bubbles happen when the tire layers are not glued together properly and
air bubbles are trapped in between. This causes structural damage, degrading durability,
the bubble can expand with continuous use and in some rare, but dangerous, cases can
cause tire rupture.

Foreign bodies are metal pieces of any type or shape. They accidentally end up on the
tire layers during fabrication process. They can severely degrade durability and increasing
the risk of tread separation. Free wires is a special case of foreign bodies. They happen
when a single metal wire from the many wired layers gets lose.

1.3 Work Environment
All this project was done using Python as the programming language, through Jupyter

Notebook [7] environment. Which is an open-source web application for documents cre-
ation with interactive code, equations, visualizations and narrative text. It can be used
for data cleaning and transformation, numerical simulation, statistical modeling, data
visualization, machine learning, and more.

The main libraries used, the hardware and the platform of multi computing environ-
ment will be described in the following.

Ense3 - 2020 4
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(a) Foreing Body. (b) Free Wire. (c) Bubble.

Figure 4: Defect Types.

1.3.1 Keras

Keras [2] is one of the leading high-level neural networks APIs. Written in Python, it
supports multiple back-end neural network computation engines. It was “designed for
human beings, not machines”, new modules, such as new classes and functions, are
simple to add and all standalone modules that can be combined to create new models.

It allows easy and fast prototyping through user friendliness, modularity, and exten-
sibility. It supports convolutional networks, recurrent networks and the combinations of
both. It runs seamlessly on CPU and GPU.

Keras does not do its own low-level operations, like tensor products and convolutions.
It relies on a back-end engine for that. Which, in this project, is TensorFlow,

1.3.2 TensorFlow

TensorFlow is an open source software library, created by the Google Brain team, for
numerical computation and large-scale machine learning using data-flow graphs. It has
a comprehensive, flexible system of tools, libraries and community resources. It runs on
nearly GPUs and CPUs, including mobile and embedded platforms.

The most important benefit that TensorFlow provides for machine learning develop-
ment is abstraction. Instead of dealing with all the small details of implementing algo-
rithms, the developer can focus on the overall logic of the application, leaving TensorFlow
to take care of them. It uses Python to provide a front-end API for building applications,
while it executes them in high-performance C++.

1.3.3 Docker

Docker is an open source tool designed to make it easier for the user to create, deploy,
and run applications by using containers. Containers allow to package up an application
with all of its essentials parts, like libraries and other dependencies, and deploy it as
one package. Then, the application will run on any other Linux machine regardless of
different machines’ settings used for writing and testing the code.

Rather than creating a whole virtual operating system, Docker uses the same Linux
kernel as the system that they’re running on and only requires applications be shipped
with things not already running on the host computer. Giving a significant performance
boost and reducing the size of the application.

It is reproducible, it will run exactly the same on any device capable of running a
Docker container. The specifications of a container are stored in a Dockerfile, any Docker
image built from it will function identically. Dependencies or settings within a container
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are isolated, they will not affect any configurations on the user’s computer, or on any other
containers. However, Docker has performance costs, it does not run processes quite as
fast as those run on a native operating system.

1.3.4 GPU

Graphics processing unit (GPU)-accelerated techniques, as the ability to conduct com-
plex simulations faster, allows developers to explore more design choices, optimize their
designs for performance and cost, and consequently brings groundbreaking products to
market faster.

This project’s main computer has a NVIDIA Quadro P6000 GPU and the second com-
puter has three GeForce GTX 1080 Ti GPUs. Their specifications can be found in Table 1.
They are able to handle the most complex datasets and computationally intensive work-
loads. They maximize productivity and accelerate data access time, ensuring the highest
level of compatibility, functionality and reliability.

Quadro P6000 GeForce GTX 1080 Ti
GPU Memory 24 GB GDDR5X 11 GB GDDR5X
Memory Interface 384-bit 352-bit
Memory Bandwidth 432 GB/s 484 GB/s
NVIDIA CUDA Cores 3840 3584
Max Power Consumption 250 W 250 W
Thermal Solution Active Active
Form Factor 4.4”H x 10.5” L, 4.376”H x 10.5” L,

Dual Slot, Full Height Dual Slot
Display Connectors 4x DP 1.4 + DVI-D DP 1.43, HDMI 2.0b
Max Resolution 2560 x 1600 @ 60Hz 7680 x 4320 @ 60Hz

Table 1: NVIDIA Quadro P6000 and GeForce GTX 1080 Ti specifications.

1.4 Computer Vision Approaches
Actions such as recognizing an animal, describing a view, differentiating among visible

objects is on humans daily basis. Computer vision aims to imitate this functionality of
human eye and brain components that is responsible for your sense of sight.

It took decades of research to discover and impart the ability to detect an object to a
computer with reasonable accuracy. In the past decade the field of computer vision has
witnessed continual advancements. Today, deep CNNs form the crux of most sophisti-
cated fancy computer vision application, such as self-driving cars, gesture recognition,
automatic number plate recognition, auto-tagging of friends in Facebook pictures.

There are many types of implementation computer vision which uses CNNs, this project
is going to focus only on three: Classification (Figure 5a), Detection (Figure 5b) and Seg-
mentation (Figure 5c).

1.4.1 Classification

Image classification refers to a process of classify/label an image according to its visual
content. An image can be classified into a number of categories. Classification tries
to answer the question, “What is in this image?”. For example, an image classification
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(a) Classification. (b) Detection. (c) Segmentation.

Figure 5: Some types of Computer Vision

algorithm may be designed to tell if an image contains a human figure or not, or if it
contains a defect A or a defect B or even no defect.

Two main exemples are VGG [17] and ResNet [4], as they are commonly referred. VGG
is a concise approach and highly efficient in extracting features from images. ResNet is a
powerful backbone model that is used very frequently in many computer vision tasks. It
uses skip connection to add the output from an earlier layer to a later layer. This allows
the network to go ”deeper” than the others without damaging performance, a traditional
ResNet counts with 152 layers. Its architecture is displayed in Appendix A - Figure 37.

1.4.2 Detection

Object detection is a computer vision technique that deals with distinguishing between
objects in an image. It is more specific than classification in what it identifies in addition
it uses bounding boxes to show where each object is in an image. This technique is useful
to identify particular objects in a scene, such as the cars parked on a street, detect faces
and detect defects. The most common and powerful architectures are YOLO [12] and
R-CNN [3].

R-CNN divide the image in regions to localize and classify the objects. It does not
analyze at the complete image,only parts which have high probabilities of containing an
object. In YOLO a single convolutional network predicts the bounding boxes and their
class probabilities, being a much faster way to detect objects and it is able to be applied
in real time. Its architecture is displayed in Appendix A - Figure 38.

1.4.3 Segmentation

Segmentation is a type of labeling where each pixel in an image is labeled with given
concepts, creating a mask of objects. This technique gives a far more granular under-
standing of the objects in the image. It tries provide the exact outline of the object within
an image, as opposed to classification models, where the model identifies what is in an
image, and Detection models, which places a bounding box around specific objects.

It is often used in medical area for cellular separation, tumor identification and others.
A very effective structure is U-Net [13], as the name suggest it its u-shaped structure
allows the features to be extracted while maintaining their locations. Its architecture is
displayed in Appendix A - Figure 39.

1.5 Scientific approach
In order to face this project’s problem, which is the development of a deep learning

algorithm able to detect, classify and localize defects on manufactured tires, within con-
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straints of time cycle in an inline production, the first step was the study of deep learning
algorithms, presented on chapter 2.

Then, it was to collect the data from the clients. In deep learning application, the data
is the base of everything, it must be labeled and manipulated according to the project’s
needs. On chapter 3 is described the type of data, its characteristics and how it was
processed and handled.

Finally, the classification approach was developed. The network structure was im-
proved in order to be a good model, making good prediction on both database and, in
consequence, on the real life application. Each step’s results were analyzed regarding the
network performance. They were the basis to decide which changes were to be made on
the network structure and which modifications was necessary to make the data genera-
tion closer to the reality. After that, the network’s hyper parameters were tuned in order
to get a better performance. Every step is described in chapter 4.

Due the confidentiality the work is presented more generally and some information
were not presented. The clients’ names were hidden, being referred as Client X and Client
Y. The tire references from Client X were also hidden, referred as R1, R2, R3, R4 and R5.
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2 Theoretical Background on Deep Learning
Deep Learning is a machine learning technique inspired by the structure of the brain.

Machine learning is when a machine is able to learn through algorithms, with programs
that alter themselves.

2.1 Neural Networks
Artificial Neural Networks (ANN) are collections of a large number of simple processing

units called neurons, each of which makes simple decisions, calculations as shown in
Figure 6. Together, the neurons can provide accurate answers to complex problems,
such as natural language processing, computer vision, and artificial intelligence.

Figure 6: Neuron’s structure

A neural network can be “shallow”, meaning it has an input layer of neurons, only one
hidden layer that processes the inputs, and an output layer that provides the final output
of the model. A Deep Neural Network (DNN) commonly has between 2-8 additional layers
of neurons. Neural networks increase in accuracy with the number of hidden layers.

Figure 7: Simple Deep Neural Network scheme

Deep learning models are trained by using large sets of labeled data and neural net-
work architectures that learn features directly from the data without the need for manual
interference.

Neural networks learn by example. They receive the input data and make a guess.
Then, they compare their guess with the output’s true value. According with the error,
or loss (section 2.3.3), they updates their own internal weights through the use of an
optimizer (section 2.3.3). Then they make another guess and the loop continues. To stop
the loop the developer can analyze the models metrics (section 2.3.2) and decide that
the model is a good representation of the data and there is no overfitting or underfitting
(section 2.1.1). Or the decision to stop the training can be done after the network passed
through the whole dataset, also called epoch, a certain number of times.
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2.1.1 Overfitting vs Underfitting

In statistics, a fit refers to how well a target function is approximated. In supervised
machine learning the algorithms seek to approximate the unknown underlying model
for the output variables given the input variables. Its goal is to generalize well from the
training data to any data from the problem domain, edging overfitting.

Generalization is when the concepts learned by a machine learning model respond
well applied to specific examples not seen by the model during the learning. When it does
not occur there are two biggest causes for such poor performance of machine learning
algorithms: overfitting and underfitting.

Overfitting is when there is a good performance on the training data, but poor gener-
alization to other data. The model learns the noise or random fluctuations of the training
data, as seen in Figure 8c. However, these concepts do not apply to new data and nega-
tively impact the model’s ability to generalize.

Underfitting is when there is poor performance on the training data and poor gener-
alization to other data, Figure 8d. It is not a suitable model, is often not discussed as it
is easy to detect given a good performance metric.

(a) Data. (b) Adaquate model. (c) Overfitting. (d) Underfitting.

Figure 8: Model Fitting

2.1.2 Activation Functions

As seen in Figure 6, the neuron’s output is a linear transformation on the inputs using
the weights and biases followed by a non-linearity. This non-linearity in the network
is introduced by an activation function. This kind of strategy gives more power to the
network, which will be able to learn the complex patterns from the data. Also it have a
major effect on the neural network’s ability to converge and the convergence speed.

There is a significant amount of activation functions, this project is going to use only
two. Which are described in the following.

• Rectified Linear Unit (ReLU)
The main advantage of the ReLU function is that it does not activate all the neurons
at the same time. For the negative input values, the result is zero (2), that means the
neuron does not get activated. Since only a certain number of neurons are activated,
the ReLU function is computationally efficient when compared to other activation
functions. This allows the network to converge very quickly.

f(x) = max(0, x) (2)

• Softmax
This function is able to handle multiple classes, which others can only one. It nor-
malizes the outputs for each class between 0 and 1, and divides by their sum, giving
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the probability of the input value being in a specific class (3). Softmax is used only
for the output layer, for neural networks that need to classify inputs into multiple
mutually exclusive categories.

σ(x)j =
exj∑N
k=1 e

xk

, forj = 1, ..., N (3)

2.1.3 Dropout

Overfitting is a serious problem in deep neural networks, being slow to use makes
difficult to deal with it by combining the predictions of many different large neural nets
at test time. Dropout [19] is a technique for solving this problem. It to randomly drop
nodes and their connections from the neural network during training, given a chosen rate.
Preventing the nodes from co-adapting too much. This significantly reduces overfitting
and gives major improvements over other regularization methods.

2.1.4 Batch Normalization

When training Deep Neural Networks the distribution of each layer’s inputs changes as
the parameters of the previous layers change. Which slows down the training because it
requires lower learning rates and careful parameter initialization. This problem is solved
by normalizing the layer’s inputs.

Batch Normalization [5] performs the normalization for each training batch. By ap-
plying a transformation that maintains the mean activation close to 0 and the activation
standard deviation close to 1. Acting as a regularizer, in some cases eliminating the need
for Dropout. It also allows the use of much higher learning rates and to be less careful
about initialization.

2.2 Convolution Neural Networks
The Convolution Neural Networks (CNN) generally involves a sequence of one or more

convolutional layers followed by fully connected layer (section 2.1), as depicted in Figure
9. The transition between this two layers is usually a flatten function, which transforms
a three dimension element into an one dimension.

Figure 9: Typical structure of a sequential convolutional neural network [1]

These convolutional layers are responsible for performing feature extraction, they learn
which features from the data are relevant. The first convolutional layer input are the data
and the output will be its feature maps, which will then be introduced as the input for
the subsequent layer.
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In the convolutional layer’s core there are three main components, convolution, pooling
and activation functions, which the two firsts are going to be described in the following.
The last was already described in 2.1.2.

2.2.1 Convolution

A convolution operation is a linear application of a smaller filter to a larger input that
results in an output feature map. This operation consists in the sum of the element
wise product, which a single number. The systematic left-to-right and top-to-bottom
application of the filter to the input results in a two-dimensional feature map, Figure 10.
One filter creates one corresponding feature map. The the output’s number of channels
of one convolutional layer is defined by the number of parallel filters applied to the input.

It is important to point out that a filter must have the same number of channels as
the input.

Figure 10: Convolution of a volume.

• Padding : means to fill, in CNNs is used zero padding. There are two most commons
type, Same and Valid. In Valid there is no padding. It can be noticed in Figure
11a that the spatial dimensions decrease, when convolution is applied using this
type. As the convolutional layers keep being applied the size of the volume will
continuously decrease faster than desired.
In Same the output has the same length as the original input, then the input image
is padded in other to have this outcome, Figure 11b. It is very useful when dealing
with temporal data, where it shouldn’t be violated the temporal order.

(a) Valid Padding.
(b) Same Padding.

Figure 11: Types of Padding

• Stride : controls how the filter shifts around the input volume, how many cells the
filter is going to skip. This value is true for the width and the height, however it is
not for the channels. An example is depicted in Figure 12, where a convolution is
being applied with a stride of 2.

The equation of the convolution output’s size in the following, with n and f as the
source’s and filter’s two dimensional size, respectively, nc the number of channels, nf the
number of filters, p the padding and s the stride.
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Figure 12: Convolution 7× 7 ∗ 3× 3 with a stride of 2.

Figure 13: Visual exemple of max pooling Figure 14: Convolution 1×1

n× n× nc ∗ (f × f × nc)× nf =

⌊
n+ 2p− f + 1

s

⌋
×
⌊
n+ 2p− f + 1

s

⌋
× nf (4)

2.2.2 Pooling

There are two types of pooling typically used in CNN’s, max pooling and average pool-
ing. The second calculates the average value of the cells that the filter goes through,
however it lost its popularity and it is not commonly used anymore. The first, max pool-
ing, keeps the maximal value between the cells, a visual representation is available on
Figure 13.

It’s important to point out that the computation of max pooling is performed on each of
the channels independently. Furthermore, there are no parameters to learn and there’s
no padding. The formula of this operation output’s size in the following.

n× n× nc ∗ (f × f × nc)× nf =

⌊
n− f + 1

s

⌋
×
⌊
n− f + 1

s

⌋
× nf (5)

2.2.3 Special Case: 2D Convolution 1×1

In this special case the same rules of convolution are applied, as is verified in Figure
14. However, some interesting properties come to light. A 1×1 convolution can be used
to down sample the number of feature maps, it is equivalent to cross-channel parametric
pooling layer and it can be also used to replace a fully connected layer.

In the first cases, as the number of filters used in convolutional layers often increases
with the depth of the network, it results in an increase in the number of output feature
maps. A large number of feature maps in a CNN can cause computational problems, as
convolutional operation must be performed down through all the channels of the input.

A single 1×1 filter can summarize the input feature maps. With multiple 1×1 filters
it is possible to tune the number of summaries of the input feature maps to be created,
increased or decreased the depth of the feature maps as needed. This is often called
channel-wise pooling, as opposed to traditional feature-wise pooling on each channel.
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A 1×1 filter will have only one parameter for each channel, resulting in a single output
value. This structure acts like a single neuron with an input from the same position
across each of the feature maps. Then, adding more filters in parallel would be like
adding nodes to a fully connected layer.

In the superior part of Figure 15 is represented in the two dimensional space a CNN,
in which its fully connected part is not made by nodes, but by 1×1 convolutions. It is
important to highlight that the previous flatten function has become a convolution that
has the same shape of its input, with its output being a 1×1×nfilters.

Figure 15: Convolutional Implementation of Sliding Windows [16]

The main advantage of this property is that now the CNN can have a larger image as
input, without the need of preprocessing it or passing it through the network repetitive
times. It is called convolutional implementation of sliding windows, it is depicted in the
below part of Figure 15. When applying this network to larger images at test time, is sim-
ply applying each convolution over the extent of the full image. Extending the each layer’s
output to cover the new image size, producing at the end a map of output predictions,
with one spatial location for each field of view (or “window”) of input.

2.3 Classification Networks
Classification networks label an image according to its visual content. An image can be

classified into a number of categories. An image classification algorithm may be designed
to tell if an image contains a human figure or not, or if it contains a defect A or a defect
B or even no defect. A labeled database can be seen in Figure 16

2.3.1 Architecture

There are several classification structures, some of them do not even use convolution
operations, such as Support Vector Machine (SVM), Decision Tree, however they are not
part of the scope of this project. However, the most popular architecture used for im-
age classification is CNNs, among those architectures there are AlexNet, VGG, ResNet,
Inception and others.
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Figure 16: Examples from CIFAR-10 database.

2.3.2 Model Metrics

In order to analyze if the model’s performance is good, if the network is giving the
right predictions it can be used some quantitative metrics. The first one is the loss value,
discussed in 2.3.3, this value should decrease as network is trained. However it can be
misleading, masking the model’s overfit. Other criteria can give a more realistic overview
and they are described below.

a) Confusion Matrix

Confusion matrix is a visual way to analyze the obtained results. It charts the pre-
dicted versus the actual classification. Its representation for two classes is depicted in
Table 2, for multi-class models the representation increases in size accordingly, however
the over all idea remains. From these results the other quantitative metrics are calcu-
lated.

Predicted
Negative Positive

Actual Value Negative True Negative False Positive
Positive False Negative True Positive

Table 2: Confusion Matrix

b) Accuracy

To calculate the accuracy it is used the sum of the right diagonal of the confusion
matrix - which are the values that were predicted correctly - divided by the total amount
of samples. As it is shown in Equation 6

Accuracy =
TruePositive+ TrueNegatives

Totalsamples
(6)

Model accuracy may not be a reliable metric of performance, if the validation data set
is unbalance the results can be misleading. If a class represents 80% of the samples and
the model predicts all samples as being this one, the accuracy will be 80%.

Furthermore, in certain situations the costs of having a false negative is very high.
Using this project as example, having a defect piece produced in the industry predicted
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as a good one can cause malfunction and even accidents. Then, accuracy is not only
metrics to be analyzed.

c) Precision

Precision measures the rate over all predictions said to be true (right column of Table
2), which ones model got it right.

Precision =
TruePositive

TruePositive+ FalsePositive
(7)

This metrics is relevant to be analyzed when the costs of false positive is high.

d) Recall

Recall calculates the rate of true positives over all the actual positives (last row Table
2 that passed trough the model.

Recall =
TruePositive

TruePositive+ FalseNegatives
(8)

Recall shall be the model metric to analyzed when there is a high cost associated with
false negative.

e) F1 score

When a balance between Precision and Recall is needed, the best to use is F1 Score .

F1 = 2 · Precision ·Recall
Precision+Recall

(9)

That is, a high F1 score means there are few false positives and few false negatives, so
it is correctly identifying real threats and it is not disturbed by false alarms.

2.3.3 Loss and Optimization

a) Loss Function

A neural network is trained based on a set of input and outputs. It learns its weights
by verifying if its output guess is similar to the true output. The difference between the
guess and true value, called error, is the value that the neural network wants to minimize.

The loss function, also called the cost function, reduces all the various aspects, pos-
itives and negatives, of a complex system down to a single scalar value, which indicates
how well those weights accomplished in the intended task. This allows the comparison
and ranking of the solutions.

These functions often measure the squared or absolute error between the network’s
output and the desired output. Classification models have loss functions designed specif-
ically to minimize the distance between the network’s distribution over class labels and
the distribution from the dataset. Find the correct loss function can be a challenging
problem as it must capture the properties of the problem and be motivated by concerns
that are important to the project.

For regression models it can be used mean squared error loss, mean squared logarith-
mic error loss or mean absolute error loss. As for binary classification models it can be

Ense3 - 2020 16



Automatic Defect Recognition over X-ray tire images using deep learning

used binary cross-entropy, hinge loss or squared hinge loss. Then, for a multi-class clas-
sification model, as is the one of this project, there are sparse multi-class cross-entropy
loss, Kullback Leibler divergence loss and multi-class cross-entropy loss, which is the
loss function used in this project. Its formula is presented in equation 10, with N as the
number of samples, ŷi as the predicted output and yi as the real output.

J = − 1

N

(
N∑
i=1

yi · log(ŷi)

)
(10)

b) Optimizer

The weights of a neural network have a direct relationship with the error it produces.
Since, the goal is to minimize the error, also known as loss function or objective function,
it is needed to change the values of the weights. This can be done through the use of
optimization algorithms and back propagation.

A neural network receive the signal of the input data, propagates through its param-
eters and then give an output. It calculates the error between the output and the true
values, and then back propagates this information, in reverse through the network, so
that it can alter the wrong-headed weights accordingly to the optimizer.

Some of the most common optimization algorithms are Gradient Descent, Adam, Ada-
grad, Adadelta, RMS Prop and Momentum. A visual example of Gradient Descent is
depicted on Figure 17, where two paths are drawn, the one on the left leads to a local
minima while the one on the right leads to the global optima. This project is going to
focus on the second the Adam optimizer.

Figure 17: Gradient Descent example.

Adam [6] a method for efficient stochastic optimization that only requires first-order
gradients with little memory requirement, it combines the advantages of two other ex-
tensions of stochastic gradient descent, AdaGrad and RMSProp. It leverages the power
of adaptive learning rates methods to find individual learning rates for each parameter,
from estimates of first and second moments of the gradients. The name Adam is derived
from adaptive moment estimation.

It is straightforward to implement, computationally efficient, doesn’t require a lot of
memory, well suited for large data and/or parameters. It is also invariant to diagonal
rescale of the gradients, appropriate for non-stationary objectives and for problems with
very noisy or sparse gradients. Its hyper-parameters usually require little tuning and are
intuitive to interpret.
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3 Database
The database is the foundation of this project. The project is designed to learn its

characteristics and recognize them in unseen data. Poor sample data creates a system
that is unable to performed its task properly. In this section is described the data and
how it was manipulated to be applied in the work of chapters 4.

There are three types of defects to be identified : bubbles, free wires and foreign bodies.
Each one appears different on the X-ray image. Bubbles show themselves whiter than
the rest, since the air’s absorption rate (equation 1) is low. Foreign bodies are signaled as
dark shapes. Free wires, a special case of foreign body, are dark and very thin, its size
can vary.

3.1 Client X database
The Client X database is formed by five tire truck references: R1, R2, R3, R4 and R5.

The acquired images are about 3.072×17.000, the height can vary a little depending on
the acquisition, but the width is fixed. An horizontal cut of an example image of each
reference is depicted in Figure 18.

(a) R1. (b) R2. (c) R3.

(d) R4. (e) R5.

Figure 18: Horizontal cut from Client X database images.

The database is formed by 83 images, having approximately ten images without defect
per reference and an average of six images with defects per reference. In which the defects
are 90% foreign body, 10% free wire and 0% bubbles.

3.2 Client Y database
The Client Y database consists of acquired tire truck images of 3.455×8.593 pixels.

There are in total 65 images representing the four classes, in which 34% of all images are
bubble defect. 21% of the images have ”cord spacing”, which is a small gap between wires
on the sidewall, and 14% have ”shoulder stretch”, which is a stretch on the shoulder zone’s
rubber, as the name suggests it. Those configurations are not defects and the network
must be robust to them.

This type of tire differs from the ones of Client X on size and wire distance distance,
both smaller. The summit zone is also narrower and the returning-layer zone is wider,
resulting in a darker image.
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Figure 19: Horizontal cut from Client Y database images.

3.3 Artificial Generation of Defects
The database provided by Client X lacks representativity and quantity. A significant

amount of diverse samples is necessary to train a classification and a detection neural net-
work. Also, classification of big images takes longer to train and demands more memory
space. Therefore, it is needed to generate a dataset, with the image size, representativity
and quantity required to this project.

It was decided that the images containing the real defects would be kept to validate the
network’s performance. Then, thumbnails would be generated from the images without
defects and they would be used to train the network. The thumbnail’s size was defined
as 400×400.

The thumbnails are chosen in a random manner from the original images. 1,300,000
samples were generated from the images without defect, for each type of defect (even
for without defect). Some data augmentation techniques were used, such as brightness
change. This simulates real life situations, where the density of the source or the object
can change.

Machine learning techniques and signal processing operations were used to generate
the defects on the thumbnails. They create masks which when applied on the images
simulates a defect. In Figure 20 is depicted some results. This dataset is going to be
referred as D0.

(a) No defects. (b) Foreing Body. (c) Free Wire. (d) Bubble.

Figure 20: Articial Generated Thumbnails

This dataset has some generation problems which were proved to result in misleading
noise on the samples. For example, Figure 21a is an sample from the class free wire.
However, the defect was generated on the bead, making it impossible for a human or for
the network to see. This condition, found in many images of free wire and stain defect,
happens due to the randomization of the place selected to insert the defect. One way to
adjust that is by defining zones were the defect can be placed.

Other problem, found in Figure 21b, is a sample from the class stain. The generated
defect is so small, or maybe even nonexistent, that it cannot be seen by human or ma-
chine. This problem is also due to the randomization, this time on the size of the defect.
To best avoid that it was increased the base size of the defect.

The last significant problem is saturation. As it can be seen in Figure 21c, the bubble
on the image is of the same value as the background, both saturated. The generation
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of bubbles is done by brightening the original image in a specific zone, however, if the
original image is already saturated there’s not much to be done. It can be only soothed
by avoid brightening too much the original image before placing the defect.

(a) Dark defects on the bead. (b) Tiny defect. (c) Saturated image.

Figure 21: Problems on the dataset.

A new dataset was generated to mitigate those problems with four times the amount
of samples and with zoom in and out augmentation to simulate a possible change in the
source distance. This dataset is going to be referred as D1.

Using the same generation functions a dataset was created for Client Y, with 900,000
samples it is going to be referred as A0.

After further analyses other problems were found on the dataset. The bubble genera-
tion does not correspond with the reality, in Figure 22 there are the gray levels topology
of the defects same size cut, it can be seen that the original one is more long than wide,
also the transition between wire and defect is smoother. A new dataset was generated
attenuating this problem, it was also reduced the amount of samples to 20,800. This
adapted Client X’s dataset is going to be referred as D2.

(a) Gray levels topology for the generated bubble. (b) Gray levels topology for the original bubble.

Figure 22: Other problems on the dataset.

3.4 Classification dataset
In a classification algorithm the input is a image, however, on the output it has a

label/class. And as a supervised machine learning technique it must be fed the input
with the corresponding output so it is able to learn to classify them. Taking into account
those rules the dataset must be organized. A separation per class was made, as show
below, for both clients’ database.
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Figure 23: Classification dataset organization.

3.5 Dataset split
The database must go through a preprocessing phase before it is ready for the net-

work’s use. The first step is to split the generated data, randomly, in to three different
sets:

• Training set : The actual dataset that is used to train the model. The model sees
and learns from this data. It usually holds a significant amount of the database.

• Validation set : This dataset provides an unbiased evaluation of a model fit on
the training dataset. It is used by the developers to fine-tune the model hyperpa-
rameters. The model sporadically sees this dataset but never uses it to learn the
weights.

• Test set : This dataset provides an unbiased evaluation of a final model fit on the
training dataset. It is only used once a model is completely trained. This test set
can be only a random sample of the database or it can contain carefully sampled
data that spans the various classes present in the real world.

In this project was used the split 80%-10%-10%, respectively.
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4 Classification Workflow
The goal of this project is to develop a deep learning algorithm able to detect, classify

and localize defects on manufactured tires. Within constraints of time cycle in an in-
line production. The classification neural network method was chosen due the amount
of research and material available, its adaptability to the many industry sectors and its
performance.

In this section it is described how it was developed the network structure through the
use of Client X dataset and how it was modified to make predictions over the original
database images. Then, it is shown how the same structure can also be applied to Client
Y’s and keep the same level of performance. After that, the hyper parameters are tuned,
aiming to improve the network’s performance. Finally, a conclusion is done over the
approach, the performance and the results.

4.1 Network Structure
At the start of the project a convolutional was provided by the company. In its struc-

ture, depicted in Figure 24, the convolutions are followed either by a batch normalization
or a max pool layer. There are in total two ReLu activation, there are four blocs with 208
convolution 5×5 followed by a batch normalization in sequence and at the end a fully
connected layer for classification.

Figure 24: Network structure.

This network was first implemented in Matlab™for the Client X tires of reference R1,
R2, R3, R4, R5 on the D0 dataset. The results of each reference separately and for all
them together can be found in Appendix B - Table 6.

The work of this paper started by getting to know what was already done by translating
it to Python code. This first adaptation was made using the equivalent Matlab functions
in TensorFlow and Keras, there was no change on the network’s structure or parameters
(its architecture is depicted in more details on Appendix D - Figure 43). The results over
the same references and database can be found in Appendix B - Table 7. It can be seen
that in the training set there was not much of a change, however, in the validation set and
test set there were some significant degradation. Comparing the results, the translation
was validated.

This structure only allows as input images of the same size on which the network was
trained, 400×400. In order to make a prediction over the original database, even on the
acquired NDT images, it is needed to pass a observation window with the network input’s
shape over the entire image. Taking 200 pixels as the sliding window step and that it
takes approximately 0.02 seconds for the network to make a prediction, it would take
about 15 seconds to classify the entire image. Which is unfitted for an inline verification.
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To improve the total prediction time it was made a convolution implementation of
sliding window, as explained in Section 2.2.3. The fully connected layer was replaced
by a convolution layer with the same quantity of inputs and outputs, also the network
input height and width was not defined. With these modifications the network’s ability
to process income data changes, without changing its internal overall structure. This
configuration does not require the preprocessing of the acquitted image and the network
only has to make one prediction, taking about 2.4 seconds. However, it does not allow free
choice of the step between observation windows, since it is define by the multiplication
of the internal strides.

When this modification was added it was tested only for the reference R1, which had
the best results so far, in order to save time. The results are on Appendix B - Table 8,
they show that there was degradation on all datasets performances.

To improve the results, and to try to reverse all the degradation that occur, it began
the process to optimize the network structure. Analyzing the work in [17][13][4] and in
many more, some decisions were made. The first was that all the convolutions will have
an activation function and a batch normalization. The second was over the max pool
layers, they would not be in sequence, but evenly spread. The third, was that there were
too many convolutions that were exactly equal with no nonlinearity between them, so
they would be reduced in half.

The first decision left a dilemma, which was the best layer order. In the bibliography
the results were contradictory, each application had its own best. Then a specif test was
made, with the implementation of the other two decisions over the reference R1990, to
define the layers order. The results in Appendix B - Table 9 show that the best order is:
convolution followed by batch normalization, then by the activation function. The max
pool layer will enter directly after the convolution.

The new structure can be found in Figure 25 and in more details in Appendix D -
Figure 44.

Figure 25: Network structure V1.

This network was trained for the five references separately, the results (Appendix B -
Table 10) showed a significant improvement over the initial ones in Matlab, that were the
best until now.

All the analyses so far were done using the artificial generated images, however, to
truly validate the model it is needed to try it over the original database. The prediction
over these images were done by a fixed 400×400 window of observation and a fixed step
of 70. It was chosen that a defect prediction over the volume of predictions (output) would
be considered valid if its certitude is greater than 90%. Then, the resultant matrix made
of 0’s, 1’s, 2’s and 3’s, corresponding to each class, is compared with the ground truth
through the use of sklearn [11] functions.

From now, and on the following predictions, the reference used was R1 due its good
response on the model.The resultant confusion matrix over the evaluation of the original
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database can be seen in Figure 27a, more results detail can be seen in Appendix B - Table
11. The results show an elevated number of false positives (upper diagonal), even for a
median accuracy of 95.99%.

In order to reduce this problem, the network structure was analyzed. On the max pool
layers there were some inconsistencies, the very first division (due to the stride) did not
give an entire value, requiring it to be rounded. Then, a new architecture was made, it
was change the size and stride of some of the max pool layers, as it can be seen in Figure
26 and in better details in Appendix D - Figure 45, leaving a resulting observation window
step of 80.

Figure 26: Network structure V2.

The results over the datasets show a slight degradation on validation and test dataset
(Appendix B - Table 12) , however, when compared to the results on the original database
in Figure 27b (and on Appendix B - Table 13) the number of false positives is almost
reduced in half and the number of false negatives (lower diagonal) is reduced by 75%.

Making further analyzes and try-and-error tests a conclusion was reached, if the slid-
ing window step is bigger the accuracy is improved. It was decided then to add at the very
end an extra average pool layer of size 2 and stride also 2, exclusively to the evaluation
on the original. This addition does not require to re-train the network, since there is no
parameter to learn. Then, the resulting sliding window step is 160. The results on the
original database prove the assumption made, as it can be seen in Figure 27c (Appendix
B - Table 14). The amount of false positives was reduced by 20 times and the amount
of false negatives was reduced by 60%. The maximum accuracy reached 100% and the
median accuracy increased 2%.

(a) On network V1. (b) On network V2. (c) On network V2 with Average
Pool.

Figure 27: Resultant confusion matrix on the original R1 database.

Since ideally there will be only one model for all the references, the network V2 was
trained for the five Client X references and then it was evaluated on the whole original
database. Its results can be seen in Figure 28 and in Appendix B - Tables 15 and 16.
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Figure 28: Resultant confusion matrix on the whole original database.

The result over the 83 images from the database is promising. However, there still are
a significant amount of false positives and an amount not negligible of false negatives.

To improve the network performance, further architectures changes were made. Since
the network is entirely a convolutional networks it was added three fully connected layers
at the end, made of convolutions 1×1. Its schematics can be seen in Figure 29 and in
more details in Appendix D - Figure 46.

Figure 29: Network structure V3.

The trained network showed an improvement on the validation and test sets for all
references as it can be seen in Appendix B - Table 17. As for the results on the original
database, seen in Figure 30 and in Appendix B - Table 18, the amount of false negatives
had a significant reduction for all references except R5, which still has a high amount of
false free wire detection. The median accuracy also showed a significant improvement,
being 100% for R1.

The results related to the network structure are satisfying. From now on all the train-
ing is going to be made on Network V3.

On Figure 31 is depicted the process and some internal results of a thumbnail predic-
tion on Network V3. It is possible to see the feature maps for each convolution, as they
go deeper into the network, they stop making sense to the human eye and they start to
be understandable for the machine. On Appendix C it is possible to see the results for
the other types of defect.

4.1.1 Application on different datasets

The network structure was defined, however, there is still a significant amount of false
detection. One possibility is that the artificial generated dataset is not well representative.
When the images that were misclassified by the network were analyzed, some problems
were highlighted, as shown in Figure 21 in section 3.3. The new datasets A0 and D1 try
to mediate that.
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(a) R1. (b) R2. (c) R3.

(d) R4. (e) R5.

Figure 30: Resultant confusion matrix on the original database on Network V3.

Figure 31: Visual of Internal Network Results - Foreign Body.

Furthermore, it is needed to see if the network is robust, not only for different ref-
erences but also for different clients. And it is needed to verify if the bubble detection
works, since there was none in Client X’s database.

Then, tests were made with dataset A0, Client Y’s dataset, over the network V3, the
results can be seen in Figure 32 and in more details in Appendix B - Table 19 and 20. It
can be seen that even with a median accuracy of 99.71% over the database, there are a
significant amount of false negatives and false positives. The majority of them are bubble
defects.

This evidence shows that our bubble generation does not represent well the reality of
the defect, as explained in more details in section 3.3 and as it can be seen in Figure 22.
This is the reason why it was decided to revise and work more on the artificial generation
on the short therm. However, it can be concluded that the network architecture is robust
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Figure 32: Resultant confusion matrix on the Client Y database.

and works similarly for different clients.
Finally, the performance of D1 was analyzed (Figure 33 and in more details in Appendix

B - Table 21 and 22 ) and it was compared with the previous D0 results. It can be seen
that there is a reduction in the number of false positives, on the other hand, there is a
significant increase in false negatives. I can be concluded that the network overfitted,
further studies about the optimal size of the dataset must be made.

(a) R1. (b) R2. (c) R3.

(d) R4. (e) R5.

Figure 33: Resultant confusion matrix on original database for Network V3 in D1.

4.2 Hyper parameters Tuning
The goal of performing a hyper parameter tuning is to obtain a better performance

result, in other words, is to obtain a higher accuracy on the datasets and on the original
database. Each hyper parameter changes the way that the network learns in its own way,
as is described on the beginning of each section. The analyzes were done separately in
order to obtain a better visualization.
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4.2.1 Batch size

The batch size is a set of N samples. Each batch is processed independently, in parallel
and they result in only one update to the model. A study was done over the batch size
to verify which amount worked best. The use of small batch sizes lead to faster training
dynamics and good generalization, however it may never converge to the global optima.
The bigger the batch size the greater are the chances of arriving on the global optima,
but slower is the convergence.

At first the reference R2 was used with batch sizes equal to 16, 32, 64, 128, 256.
The dataset used was D0 and the network was trained over 30 epochs, with validation
frequency of 100. The results over the original database are displayed in Table 3.

When analyzed the minimal accuracy, the results from 128 and 16 are not satisfactory.
The others show similar performance through the three criteria. However, if looked to the
total amount of false positives, it is possible to see that 64 has a good low quantity.

Then, 64 and 256 were chosen to be evaluated more thoroughly. This time for the first
test, it was used Client Y tires over its own dataset A0 under the same configuration as
previous. For the second test it was used the same reference R2, trained on the reduced
dataset D2 over 100 epochs, with validation frequency of 10.

The results over the original database, Table 4, show a better performance with batch
size 256, which was the same used when developing the network structure.

Table 3: R2 Batch size from 256 to 16. Table 4: Batch size test follow up.

4.2.2 Number of epochs

The number of epochs defines how many times the entire dataset passes over the
network. A small number of epochs can lead to underfitting, because the network was
unable to learn main features, resulting in a weak accuracy on all datasets. On the other
hand a big number of epochs can lead to overfitting, the network learns too much, even
the noise specific to the training set, also resulting in a weak accuracy, but this time only
in the validation and test sets.

Throughout the many results, the accuracy and loss curves over the epochs were an-
alyzed for the training and the validation sets. Over the course of 30 epochs, for the
majority of the networks, the training accuracy was always rising, as expected, the vali-
dation accuracy was a little oscillatory, but it was also rising. On the other hand, as the
loss curve decreased for the training over the epoch, the validation one started to slowly
increase after the 15th-20th epoch. This behavior show that the network is overfitting on
the training set.

Other aspect present on most results is the non variance of the accuracy also starting
around the 15th-20th epoch, the value change so little that is worth to stop the training
to save time. A visual example of both behaviors can be seen in Appendix B - Figure 40.

In Keras library there are two functions to use in those cases: ModelCheckPoint and
EarlyStopping, respectively. The first was configured to monitor the validation loss and
save the network weights when the loss is smaller than its previous value, allowing to
always have the best fitting result. The latter also monitors the validation loss, stopping
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the learning when its value has increased over the last five epochs, saving processing
time.

4.2.3 Learning Rate

Learning rate is a hyper-parameter that controls how much the network weights are
going to be adjusted in respect to the loss gradient. The lower the value, the slower, higher
are the chances to not miss any local minima, however it could take a longer converge.

So far it was used the optimizer Adam with the automatic initial value 10−3. To verify
if those choices were the best some tests were made. The evaluations were made with
network V3 over the A0 dataset.

• Learning Rate Finder : Trough the use of a function developed by in [9], that is
based on the work from [18], it was analyzed the resulting graph of the loss per
LR, Figure 34. The optimal LR can be found were the curve is the steepest, in this
case 10−4 is the value where this happens. Upper and lower values are also defined,
avoiding the parts where the curve is ascending, as 10−3 and 10−4.

Figure 34: Result LR finder.

• Scheduler : The identified values were used to create a learning schedule over the
epochs, where it would be constant on the first ten epochs with value 10−4 and then
it would decrease exponentially as shown in Figure 35a.

• Reduce Learning Rate On Plateau : This is a built-in function from Keras that
changes the learning rate by a desired factor when the monitored value, usually the
loss, does not improve after a certain amount of epochs. An example is depicted in
Figure 35b

• Cyclic Learning Rate : The work done in [18] proposes a change on the LR over the
iterations in a epoch. It is defined a lower bound and an upper bound that changes
exponentially. They were chosen as said above, its behavior can be seen in Figure
35c.

Other two tests were made, one with the LR fixed in 10−4 and the other with the initial
value for Adam as 10−4. The result over the database can be seen in Table 5, there is also
previous method result displayed on the far right.

As it can be seen none of the results showed any improvement. It can be concluded
that Adam is already very well adapted to change the LR as is convenient on the situation,
as explained on section 2.3.3.
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(a) Scheduler. (b) Reduce LR On Plateau. (c) CLR - exponential.

Figure 35: Learning rate curves.

Table 5: LR test result on database.

4.3 Grad-CAM
CNN is a like black-box, the input is controlled and the output is observable, however it

is not know exactly whats going on inside. Sometimes the network can learn unexpected
and undesired features and base its predictions on it, working well on the development
database but poorly in real life application. Understanding the reasons of this behavior
is not a simple task, since as the network goes deeper, the features maps become more
abstract for the human comprehension.

One way to open a little this black-box is by using Gradient-weighted Class Activation
Mapping (Grad - CAM) [15]. It allows to understand each neuron through the gradient
information flowing into the last convolutional layer of the CNN. In this project’s case,
all layers are convolutional layers, then it would be the last convolutional layer before
the convolutions 1×1. This tool also provides better localization which guides to the
demystification of the complexity behind CNNs.

In this project Grad - CAM was developed and used throughout the many steps de-
scribed in section 4.1. It was verified if the network was identifying the right features and
it was especially used for understanding why a false prediction was made. Some results
are displayed in Figure 36.

It can be seen that when the network succeeded in classify the images, Figures 36a
and 36c, the right features were the ones identified. In addition, on the case of a false
positive, Figure 36b, it is clear that the network misinterpreted a discontinuity on the
image section generated on the acquisition phase.

However, on the case of a false negative, Figure 36d, the conclusion is not that straight
forward. The network classified it as ”No defects”, then all the zones highlighted by Grad-
CAM are the parts of the image that lead the network to this result. The defect on the
image was not identified, it can be speculated that the training dataset is not representa-
tive enough, or maybe that the artificial generation of free wires does not correspond to
the reality. Both ideas were taken into consideration during the network development.
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(a) True positive. (b) False Positive.

(c) True Positive. (d) False Negative.

Figure 36: Grad - CAM Results.

5 Conclusion
This project focused on the development of a deep learning algorithm able to detect,

classify and localize defects on a manufactured tires. Within constraints of time cycle in
an in-line production. In order to solve this problematic two computer vision approaches
were developed over a processed database.

The database was not representative enough nor has it enough samples for a neural
network to learn on. An artificial generation was implemented to meet this need, however
it was evidenced that there were some flaws. Some of them were corrected over this
project and the changes affected positively the results, nevertheless there is still room for
improvement. The work will be carried on with a high priority. It will focus on fixing the
gray levels topology and not only enhancing the overall shapes to be more like the defects
found in the industry, but also augmenting the variety of those shapes.

This project developed a classification network structure for identifying and localizing
defects on tire trucks x-rays. The results over the whole x-ray images showed an accuracy
of around 98% and a prediction time of just a few seconds. However, this metrics can be
misleading. The prediction is made over a image of around 3.000×17.000 pixels, with the
observation window of 400×400 and a stride of 160, which means that in reality about
1100 predictions are made. Which means for an accuracy of 99% there are more than
20 false positives and/or false negatives per image.

This prediction method allows the localization of defects, however it is not precise given
the size and stride of the observation window. A defect of height and width of 60 pixels
can have a localization of 560×560 or even more, representing only 1% of the detected
area.

The hyper parameter tuning was an important step, even if most of the results were
confirmations that what was used before was already adequate. This can be explained by
the fact that the network and its hyper parameters were provided by the company, where
they were tuned for other use.

One analysis that still needs to be done is the optimal dataset size. When was briefly
discuss in section 4.1.1 it was seen that this is a very relevant question to be made,
however due the time constraints and it was decided to give preference to other topics.

Overall the project had promising results and a good evolution. Due to the compli-
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cated nature of deep learning algorithms there is still a significant amount of work to be
done before applying this algorithm in the industry. The work will be continued by the
company.

This internship was an opportunity to put into practice the dynamic training promoted
by Grenoble INP - Ense3. As a personal learning experience, this project has given me
autonomy. I was able to propose, discuss and develop ideas that I found worthy. The
weekly follow-up with my supervisors was a very enriching environment, results were
discussed, ideas were exchanged and propositions were made. Allowing me to grow as a
professional and to improve my communication, given that French is my third language.
I have also developed my presentation skills through monthly exposition to coworkers on
the research and development area.

In addition, I had the opportunity to work with different people in the company in
an open-space. This was not only an enriching experience but it also gave me a better
perception of the professional environment. As a result of the coronavirus pandemic I
also had the experience of working remotely, which has taught me the importance of a
clear and effective communication, record keeping and time management.

On top of that, it has allowed me to acquire a very enriching experience in machine
learning and image processing. An area of study that I had already worked with, both
together and separate. However, this time I was able to go deeper in the field with hands-
on experience and autonomy on a work of an exciting complexity. I hope on the future to
keep studying and working on those subjects.
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Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain
Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. Jupyter note-
books. In F. Loizides and B. Schmidt, editors, Positioning and Power in Academic
Publishing: Players, Agents and Agendas, pages 87 – 90. IOS Press, 2016.

[8] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network, 2013.

[9] Arun S. Maiya. ktrain: A low-code library for augmented machine learning, 2020.

[10] Milestar. Tire construction. https://www.milestartires.com/help/tires-101/

tire-construction/, 2020.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[12] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection, 2015.

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation, 2015.

[14] Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, and Ali Gholipour. Tversky loss
function for image segmentation using 3d fully convolutional deep networks, 2017.

[15] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. International Journal of Computer Vision,
128(2):336–359, Oct 2019.

[16] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann
LeCun. Overfeat: Integrated recognition, localization and detection using convolu-
tional networks, 2013.

Ense3 - 2020 I



Automatic Defect Recognition over X-ray tire images using deep learning

[17] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015.

[18] Leslie N. Smith. Cyclical learning rates for training neural networks, 2015.

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958, 2014.

[20] Kentaro Wada. labelme: Image Polygonal Annotation with Python. https://github.

com/wkentaro/labelme, 2016.

[21] Pavel Yakubovskiy. Segmentation models. https://github.com/qubvel/

segmentation_models, 2019.

Ense3 - 2020 II



Automatic Defect Recognition over X-ray tire images using deep learning

APPENDIX

A Network architectures from bibliography

Figure 37: ResNet’s architecture [4]

Figure 38: YOLO’s architecture [12]

Figure 39: U-Net’s architecture [13]
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B Results

Table 6: Results Matlab.

Table 7: First network’s adaptation to Python.

Table 8: Network with convolutional sliding window.

Table 9: Layer order test on R1.
Table 10: Results Network V1.

Table 11: Network V1 on original R1
database.

Table 12: Results Network V2.
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Table 13: Network V2 on original R1
database.

Table 14: Network V2 with average pool on
original R1 database.

Table 15: Results Network V2 for all Client X references.

Table 16: Network V2 on original database.

Table 17: Results Network V3.

Table 18: Network V3 on original database.

Table 19: Results V3 on A0. Table 20: V3 trained over A0 on Client Y
database.

Table 21: Results V3 on D1.
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Table 22: V3 trained over D1 on the original database.

(a) Accuracy.

(b) Loss.

Figure 40: Training and validation over the epochs for A0.
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C Network Internal Scheme

Figure 41: Visual of Internal Network Results - Bubble.

Figure 42: Visual of Internal Network Results - Free Wire.
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D Networks architecture

Figure 43: First network structure.
Figure 44: Network V1 structure.
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Figure 45: Network V2 structure.
Figure 46: Network V3 structure.
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