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RESUMO 

 

O objetivo desta tese de doutorado é melhorar a precisão de posicionamento de sistemas 

robóticos que usam uma câmera e IMU (sistema visual-inercial) para se localizar em um 

ambiente interno. Para este fim, ORB-SLAM2 é escolhido como a solução mais confiável e 

completa para Visual SLAM monocular, e como o mais representativo SLAM visual de última 

geração que é usado para se fundir as informações IMU. Desta forma, decidimos aumentar a 

precisão na estimativa dos estados iniciais, tendo um impacto muito importante no resultado 

final. Uma vez que a estratégia é usar a otimização fortemente acoplada no sistema SLAM 

visual-inercial, dois parâmetros ajustáveis L e P são incorporados na equação de estimativa de 

estados. Esses dois parâmetros são utilizados como coeficientes do primeiro termo e do termo 

de gravidade da fórmula proposta, respectivamente. A razão para empregar esses parâmetros é 

de obter graus de liberdades adicionais para regular o sistema com base no nível de dificuldade 

do ambiente para obter o melhor desempenho na busca dos melhores valores de inicialização, 

levando à melhor precisão na saída final. Para avaliar o desempenho do algoritmo proposto, um 

teste de benchmark usando o conjunto de dados EuRoC é executado e seus resultados 

comprovam o papel eficiente de parâmetros ajustáveis adicionais para melhorar a precisão. 

Além disso, a análise de Hardware - uso da CPU durante a implementação - por dois hardwares 

diferentes é outra prática realizada nesta tese que mostra como o tipo de ambiente afeta o uso 

da CPU. Finalmente, os parâmetros ajustáveis obtidos no benchmark são aplicados em um 

experimento do mundo real. Este experimento foi realizado com realizada com sucesso, sem 

falhar e perder os recursos durante o experimento. Além disso, a redução do tempo de 

inicialização é outra conquista deste estudo que, em comparação com o V-SLAM / VI-SLAM 

de última geração. 

     

Palavras-chave: Visual-inercial. SLAM. Inicialização de estado. Dados de EuRoC. Parâmetros 

ajustáveis. 

 

 

 

 

 

 

 

 

 

 

 



 

 

RESUMO EXPANDIDO 

Introdução 

À medida que dispositivos artificiais - carros autônomos, quadricópteros, robôs em tamanho 

real ou mesmo sistemas de realidade virtual e aumentada - começam a interagir ou se adaptar 

ao mundo 3D ao nosso redor, eles precisam da capacidade de perceber, reconstruir e, 

finalmente, entendê-lo de forma semelhante. Tome o Veículo Aéreo Não Tripulado (UAV) 

como exemplo, cujo interesse em controlá-lo e convertê-lo em um robô inteligente está 

aumentando significativamente entre os pesquisadores. As aplicações desses robôs foram 

amplamente definidas em tarefas como monitoramento de tráfego, operações de resgate, 

vigilância, transporte e hobistas. Os robôs que podem operar autonomamente em ambientes 

internos / externos são concebidos para serem úteis para várias aplicações que foram 

mencionadas acima. Além de todas essas aplicações, um imperativo para um robô autônomo é 

a capacidade de auto-localização no ambiente. Devido à auséncie do Sensor de Posicionamento 

Global (GPS) no ambiente interno e à falta de auto-localização, a manobra autônoma do 

Quadrotor enfrenta mais desafios do que ao ar livre. Assim, é necessário empregar estratégias 

alternativas de localização para cumprir a função do GPS em ambientes internos. A forma mais 

simples é utilizar técnicas de Odometria adequadas para estimativa de movimento de curto 

prazo, mas se o objetivo for a localização no mesmo ambiente para longo prazo, seria desejável 

ter um mapa, permitindo uma localização sem deriva. Mapeamento é o processo de criação do 

mapa usando sensores integrados, resultando em localização conhecida. É importante que este 

mapa seja obtido simultaneamente ao mesmo tempo que o robô navega. Esse problema é 

conhecido como Localização e Mapeamento Simultâneo (SLAM) ou Estrutura e Movimento 

(SaM). Por exemplo, suponha que a informação anterior de um ambiente interno seja 

considerada como um mapa que foi usado na localização visual e navegação. Considerando 

essa suposição em termos de mapeamento, às vezes, por causa de restrições ambientais (por 

exemplo, caso de relevo), é difícil navegar por um mapa preciso do ambiente pré-existente que 

já foi adquirido. Assim, em tal situação, uma solução mais eficiente poderia ser construir o 

mapa ao mesmo tempo que o robô se move, liderando o SLAM. O processo SLAM é realizado 

por medições de dados de sensores disponíveis que constroem o mapa do ambiente, e essas 

medições são utilizadas simultaneamente para re-estimar a posição do robô. Comparado ao 

GPS, Unidade de Medição Inercial (IMU), raio laser, sensores ultrassônicos e outros sensores 

tradicionais, os sensores visuais como câmeras podem adquirir informações valiosas dos 

arredores, envolvendo cor, textura e outras informações visuais. SLAM usando câmeras é 

referido como SLAM visual (VSLAM), porque é baseado apenas em informações visuais. Este 

tipo de SLAM é uma tecnologia fundamental para uma ampla diversidade de aplicações e tem 

sido amplamente discutido em visão computacional, Realidade Aumentada (AR) e robótica na 

literatura. 

 

Objetivos 

Nesta tese, nosso foco é resolver alguns problemas na área de Visual SLAM monocular 

incorporando informações de câmeras com medidas de IMU. Especificamente, esses problemas 

são falha de recurso contra movimento rápido e rotação pura em cenas, onde há pouca textura 

ou desfoque na imagem. Uma vez que nossa aplicação pretendida é superar esses desafios em 

robótica, nosso foco também será principalmente restrito a algoritmos e abordagens que são em 

tempo real e, portanto, podem ser estendidos para sincronização de câmera IMU. Além disso, 

uma nova formulação são empregada na estimativa de inicialização do estado do sistema SLAM 

visual-inercial, auxiliando na melhoria da precisão de localização. Os principais objetivos desta 

tese são:  



 

• Inicializar com precisão os estados na etapa de inicialização no sistema SLAM visual-

inercial usando a otimização não linear de IMU visual fortemente acoplado e pré-

integrado. Neste processo, para obter mais precisão, as informações antigas e os 

resultados das estimativas são marginalizados juntos. Esta prática será executada 

empregando uma nova formulação na qual dois parâmetros ajustáveis são usados para 

alcançar a melhor precisão de estimativa de estado inicial.  

• Mostrar a superioridade do algoritmo proposto em comparação com os sistemas de 

Odometria Visual-Inercial de última geração e SLAM Visual-Inercial no conhecido 

conjunto de dados de benchmark EuRoC.  

• Mostrar a menor tendência do algoritmo proposto ao acúmulo de erros na trajetória de 

longo prazo em comparação com os algoritmos Visual-Inercial de última geração.  

• Investigação do desempenho do algoritmo proposto do ponto de vista do hardware, 

como o uso da CPU.  

• Experimentar o algoritmo proposto em um ambiente interno real e apresentar o bom 

desempenho do algoritmo proposto no mundo real.  

• Redução no tempo de inicialização antes de capturar os recursos ORB. 

 

Metodologia 

Nesta tese, a metodologia proposta é utilizar o ORB-SLAM2 como sistema Visual SLAM base 

devido à sua robustez e capacidade de trabalhar em tempo real indoor ou outdoor, bem como 

sua capacidade de fechar loops. Este método é robusto contra cenários difíceis, inserindo 

quadros-chave o mais rápido possível e removendo depois os redundantes, para evitar o custo 

extra. No entanto, acreditamos que ele sofre de vários problemas, como a inconsistência na 

inicialização e, às vezes, devido ao movimento rápido e rotação pura, os recursos tomados pelo 

ORB-SLAM são perdidos no loop de rastreamento e, posteriormente, resulta em falha na 

estimativa da pose da câmera, particularmente em um ambiente sem textura ou ambiente com 

menos textura. Para resolver esses problemas, propomos um SLAM visual-inercial no âmbito 

da fusão de sensores, combinando as medições IMU e as informações da câmera. de fato, em 

nossa metodologia, fornecemos um novo método de inicialização, no qual o usuário pode 

regular os dois parâmetros ajustáveis com base na dificuldade do ambiente.  

De fato, essa melhoria é aplicada na etapa de inicialização que para não subestimá-la, leva a 

uma baixa precisão na estimativa dos valores iniciais após o mapa 3D e sua posição de saída 

não serem confiáveis. Para tanto, apresentamos uma nova técnica na qual, primeiramente, na 

etapa de inicialização, é utilizado o método de otimização gradiente descendente em vez de 

SVD e, em segundo lugar, para estimar a velocidade, o vetor de gravidade e a escala métrica, 

uma nova formulação é apresentada. em que o usuário pode ajustar os pesos dos parâmetros 

para obter o melhor desempenho para encontrar os melhores valores de inicialização. No 

próximo capítulo, a abordagem proposta é implementada por dois métodos: benchmark e 

usando uma câmera IMU real. 

 

Resultados e Discussão 

Neste seção, detalhamos a implementação completa da inicialização visual-inercial para avaliar 

qualitativa e quantitativamente o desempenho do algoritmo proposto. No geral, a 

implementação pode ser dividida em duas seções: Benchmark e Experiment. Com base na seção 

de metodologia apresentada do algoritmo projetado, nosso algoritmo precisa ser regulado por 

meio de dois parâmetros ajustáveis L e P na faixa de 0 e 1. Esse processo é realizado por 

tentativa e erro até que o melhor desempenho e o erro mínimo de perda sejam alcançados. 

Embora essa estratégia possa consumir um pouco de tempo devido à execução e avaliação do 

desempenho muitas vezes, seus resultados são valiosos, pois esses parâmetros podem ser 

utilizados no ambiente categorizado, como textura e sem textura com base nas relações entre L 



 

 

e P. No benchmark, observa-se que o uso de parâmetros ajustáveis adicionais L e P pode 

desempenhar um papel eficiente em alguns cenários com base no nível de dificuldade do 

ambiente. Além disso, o algoritmo proposto mostrou que tem uma tendência menor de acúmulo 

de erros na trajetória de longo prazo em comparação com algoritmos de inércia visual de última 

geração. Embora esse menor acúmulo de erros não tenha sido observado em todas as 

sequências, pode ser um caminho inicial para posterior estudo e aprimoramento do mesmo. 

Além disso, o algoritmo proposto no processo de implementação do benchmark é investigado 

a partir de uma perspectiva de hardware. A quantidade de CPU usada durante o benchmark é 

medida em dois tipos de computadores: Laptop e um hardware chamado Raspberry-Pi 3 single-

board. Os resultados mostraram que o Raspberry-Pi 3 às vezes tende a ficar sobrecarregado, 

parando na captura de recursos e falha devido à menor capacidade da CPU. Neste experimento 

interno real, um dos principais objetivos era empregar os parâmetros ajustáveis obtidos no 

benchmark e aplicá-los em um experimento do mundo real. Esta prática é realizada com 

sucesso, sem falhar e perder os recursos durante o experimento. Outra conquista neste 

experimento foi mostrar o tempo de inicialização reduzido para 3 segundos antes da captura do 

recurso, o que comparado ao método de inicialização proposto no VO / VIO / SLAM de última 

geração, como um tempo de inicialização aceitável. De fato, ao contrário do ORB-SLAM 

original, cujo tempo de inicialização é em torno de 10 segundos, nosso algoritmo proposto leva 

um tempo menor para inicializar os estados. 

 

Considerações Finais 

A tese trata do desenvolvimento de métodos de inicialização para sistemas baseados em 

otimização Visual-Inertial Simultaneous Localization and Mapping (SLAM), visando melhorar 

a acurácia e precisão de tais sistemas. Uma revisão da literatura sobre SLAM e métodos 

relacionados, tais como Visual SLAM, Visual Odometry, Visual-Inertial SLAM usando 

métodos baseados em filtragem e otimização, é apresentada a fim de contextualizar os desafios 

a serem resolvidos neste projeto de pesquisa. Portanto, uma abordagem baseada em otimização 

para inicializar com precisão os estados no método ORB-SLAM2 é proposta, na qual 

parâmetros de peso são incluídos para atingir o desempenho desejado. Para corroborar o método 

proposto, uma análise de comparação com alguns métodos VSLAM é realizada utilizando o 

conjunto de dados EuRoC. Além disso, uma análise da carga computacional foi realizada com 

duas plataformas: o sistema computacional embarcado Raspberry Pi 3 e um laptop. Além disso, 

resultados experimentais foram obtidos em ambiente interno, validando o bom desempenho do 

método proposto. Foi demonstrado empiricamente que o método proposto reduz em três vezes 

o tempo de inicialização em comparação ao algoritmo ORB-SLAM padrão. Nossa sugestão 

para trabalhos futuros é encontrar uma gama apropriada de parâmetros ajustáveis para usar no 

algoritmo proposto em qualquer ambiente. Essa estratégia facilitará o uso desse algoritmo no 

posicionamento de qualquer ambiente interno, incluindo escuro / claro, bagunçado e escadas 

(usando uma câmera para baixo). Além disso, é possível combinar o algoritmo proposto com 

abordagens de Inteligência Artificial (IA), como aprendizado de máquina e aprendizado 

profundo, de forma que as posições obtidas por SLAM visual-inercial pudessem ser treinadas 

por meio de redes neurais artificiais, levando a predizer a posição em um ambiente interno 

invisível. 

 

Palavras-chave: Visual-inercial. SLAM. Inicialização de estado. Dados de EuRoC. Parâmetros 

ajustáveis. 

 



 

ABSTRACT 

 

The fusion of monocular visual and IMU has gained a lot of attention from robotic systems. 

Recent results have shown that optimization-based fusion approaches outperform filtering 

approaches. However, poor initialization can lead to inaccurate state estimation in optimization-

based visual-inertial Simultaneous Localization and Mapping (SLAM) systems. Therefore, due 

to the nonlinearity of visual-inertial systems, initial values (visual scale, gravity, velocity, and 

Inertial Measurement Unit (IMU) biases) play a crucial role. For this reason, this thesis aims to 

improve the initial states estimation using two adjustable parameters L and P. In fact, these 

additional parameters are employed as coefficients of first term and gravity term of the proposed 

formula, respectively. Based on the difficulty level of the environment (texture, mid-texture, 

and texture-less), the indoor room is categorized into easy, medium, and difficult, and then two 

adjustable parameters are regulated based on this difficulty level. This strategy has been tested 

in two types of implementation; Benchmark with the public EuRoC dataset and real-world 

experiment. In benchmark, by employing the right adjustable parameters, in some scenarios, 

we could attain satisfactory results compared to state-of-the-arts visual-inertial Odometery and 

SLAM in terms of positioning accuracy and reduction of accumulative error. In this part, also, 

from point of hardware’s view, some measurements are performed. While the proposed 

algorithm is being executed, the maximum CPU usage in each sequence is measured on a 

Raspberry-Pi single-board and a Laptop. The results proved that the Raspberry-Pi 3 - because 

of poor hardware configuration - is under more pressure in terms of CPU usage. The second 

part is concerned with a real-world experiment in which a monocular-inertial RealSense ZR300 

sensor is utilized. The outcomes were satisfactory so that the initialization time was very short 

and the proposed algorithm could quickly obtain the ORB features. 
 

Keywords: Visual-Inertial. SLAM. State Initialization. EuRoC dataset. Adjustable Parameters. 
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1  INTRODUCTION 

 

  As artificial devices – autonomous cars, quadcopters, full-sized robots or even virtual 

and augmented reality systems – start to interact with, or adapt to, the 3D world around us, they 

need the ability to perceive, reconstruct and ultimately understand it similarly. A car that drives 

itself needs to know where it is, and it needs to recognize and avoid obstacles, both dynamic 

and static. The best example is to convincingly display a virtual object standing on a table in 

which both the pose of the observer, as well as the shape of the table need to be known. 

   An impressive interest in controlling Unmanned Aerial Vehicles (UAVs) is 

increasing among researchers significantly. Applications of these robots have been widely 

defined in tasks such as traffic monitoring, rescue operations, surveillance, transportation, and 

hobbyist. For a hobbyist, they may be high-tech toys for flying around and recording videos 

while for researchers, they are a low-cost platform for the fulfillment of software design such 

as positioning, navigation, control, etc. 

   Robots that can autonomously operate in outdoor/indoor environments are 

envisioned to be useful for various applications that have been mentioned above. In addition to 

all these applications, an imperative for an autonomous robot is the ability of self-localization 

in the environment. Indeed, a robust accurate localization is crucial to achieve high-

performance flight and to interact with the environment. Also due to denying the Global 

Positioning Sensor (GPS) in the indoor environment and lack of self-localization, the 

autonomous maneuver of Quadrotor faces more challenges (J. Pestana, 2012). Thus, it is 

necessary to employ alternative localization strategies to perform the duty of GPS in indoor 

environments. The simplest way is called Odometry which is a method to localize a robot by 

processing the sensor information to compute incremental motion. This allows us to retrieve 

the trajectory of the robot, which will inevitably accumulate error making the estimated 

trajectory to drift from the real trajectory performed by the robot. Odometry techniques are 

appropriate for short-term motion estimation, but if the aim is the localization in the same 

environment for the long-term, having a map would be desirable, allowing drift-free 

localization. Mapping is the creation process of the map using onboard sensors, resulting in 

known localization. It is important that this map is obtained simultaneously at the same time 

that the robot navigates. This problem is known as Simultaneous Localization and Mapping 

(SLAM) or Structure and Motion (SaM). For instance, suppose that the prior information of an 

indoor environment is considered as a map that has been used in visual localization and 
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navigation. Considering this assumption in terms of mapping, sometimes, because of 

environmental constraints (for instance, relief case), it is demanding to navigate by a pre-

existent accurate map of the environment which has already been acquired. Thereby, in such a 

situation, a more efficient solution could be to build the map at the same time that the robot 

moves (Y. Lu et al., 2018), leading SLAM. 

  The SLAM process is performed by available sensors data measurements that build 

the map of the environment, and these measurements are simultaneously utilized for re-

estimating the position of the robot. Compared to GPS, Inertial Measurement Unit (IMU), laser 

lightning, ultrasonic sensors, and other traditional sensors, visual sensors like cameras can 

acquire rich information of surroundings, involving color, texture, and other visual information. 

Meanwhile, they are cheaper and easier to deploy and also able to obtain environmental 

perception as a map. SLAM using cameras is referred to as visual SLAM (VSLAM), because 

it is based on only visual information. This type of SLAM can be exerted as a fundamental 

technology for a wide diversity of applications and has been comprehensively discussed in 

computer vision, Augmented Reality (AR), and robotics in the literature. 

 

1.1 SLAM AND ITS HISTORY 

 

   As it has been explained in the previous section, SLAM is the problem of navigating 

a vehicle in an unknown environment, by building a map of the area and using this map to 

deduce its location without the need of a priori knowledge of the location. The solution to this 

problem is of great importance to the field of autonomous robots operating in GPS denied 

environments, and therefore, since its introduction in the scientific community, SLAM has been 

the subject of many research efforts. In other words, SLAM is the problem of building a map 

of an unknown environment from onboard sensor data while simultaneously using the data to 

estimate the robot position (C. Cadena et al., 2016).  

  A typical SLAM system is constituted of two modules; Front-end and Back-end. The 

front-end is in charge of fulfilling the data association for the back-end module, and the Back-

end in SLAM is in charge of state inference after data association. From a probabilistic 

framework perspective, the purpose of the back-end is to generate the output of MAP 

(Maximum a Posterior) estimates given the measurements from the front-end (Y. Liu et al., 

2018). For this purpose, the back-end solutions have evolved from filter-based approaches to 

graph optimization methods that we will represent in the future. 
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   Figure 1 shows the schematic diagram of SLAM. In this figure, as it is observable, 

the SLAM system consists of three levels including robust localization, dense mapping, and 

semantic understanding in which, level 1 is a prerequisite for level 2, and level 2 is a prerequisite 

for level 3. Here, 3 and level 2 are placed into the front-end module, and level 1 is included in 

the back-end module.  

 

Figure 1 - schematic diagram of SLAM 

 
 

       

                  In the following, looking back, and discussing the history of SLAM, - its foundation 

and origin - the important stages of SLAM evolution are summarized from the last decades until 

recently. However, a more comprehensive description of the most recent state of the art will be 

provided in chapter 2. 

                 Approaches for computing 3D structure from 2D images date back more than 100 

years, long before the advent of digital photography or even computers. Very early work 

includes that of (Kruppa, 1913), where he proposed an analytic approach to compute the relative 

pose between images from five manually labeled point-correspondences. In the following 

decades, both the number of points and the number of images rose, and practical methods for 

solving the resulting mathematical systems were developed. The general term “Bundle 

Adjustment” (D. C. Brown, 1976), is still operating on manually labeled point correspondences 

in analog images. Bundle adjustment is the problem of refining a visual reconstruction to 

produce jointly optimal 3D structure and estimating the parameters such as camera pose and/or 

calibration. Here, optimal refers to the estimated parameters that are found by minimizing some 

cost function that quantifies the model fitting error and, jointly, that the solution is 
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simultaneously optimal concerning both structure and camera variations (B. Triggs et al., 

2000). 

    Formally, SLAM was introduced by (Smith et al., 1986) and then, with the 

emergence of the digital revolution in image processing and the appearance of Visual SLAM 

(in which the input of SLAM is visual information only), feature-less (direct) 

method formulations for structure and motion have been proposed. In feature-less methods, the 

process is performed based on the optimization of 3D geometry on the raw intensity images 

without any abstraction, using handcrafted feature detectors and descriptors. In this way, (K.J. 

Hanna, 1991) proposes a direct formulation for estimating dense depth as well as the camera 

motion from a monocular image sequence, minimizing a photometric error. An early example 

for direct and dense geometry estimation is the work of (Matthies et al, 1988), which proposes 

a method to estimate dense depth from a (calibrated) sequence of images, using pixel-wise 

filtering interleaved with spatial smoothing. A sparse and direct monocular SLAM system 

capable of running in real-time was presented by (H. Jin et al., 2003), which optimizes sparse 

patch positions, as well as camera, poses for a sequence of images, using a photometric 

consistency as an error measurement formulation. 

                  Simultaneously to the appearance of feature-less methods, feature-based (indirect) 

methods – another type of Visual SLAMs - has been introduced. Compared to the feature-less 

method, the feature-based method separates correspondence estimation from geometric 

optimization, and the initial step of manually selecting and matching suitable points (key-

points) was replaced by automatic feature detection. In general, in feature-based methods, 

geometric consistency such as positions of feature points in an image is used.  

                   The first approaches to find key-points were presented by (M.A. Fostner et al., 

1987) and (C. Harris et al., 1988). Consequently, in the following years, other algorithms such 

as FAST corners, provided by (E. Rosten et al., 2010), have been performed, which are 

considerably faster in computation. Investigating in earlier researches, it is explicitly observed 

that the initial method to track the selected key points was to minimize the photometric error 

between small patches around them. This is commonly known as the Kanade-Lucas-Tomasi 

feature tracker (KLT), which was first proposed by (C. Tomasi et al., 1991). After this, a global 

research in the field of descriptor spaces is carried out instead of the local optimization 

approach. These descriptors were SIFT (D.G. Lowe et al., 1999), SURF (H. Bay et al., 2006), 

and ORB (E. Rublee et al., 2011). These effectively allow us to solve the matching problem 



19 

 

globally by approximating it with a nearest-neighbor search, replacing gradient-based local 

optimization (J. Engel, 2016).  

                  After key-points detection and matching them in the first step, 3D geometry 

estimation – camera motion and key-point positions – is executed from 2D correspondences 

that have already been found. In this way, real-time is an important issue that has to be 

considered. The earliest real-time capable, incremental methods were proposed based on the 

Kalman filter, which accumulates information about the world as joint Gaussian distribution on 

all involved parameters. (H. Jin et al., 2000 & A.J. Davison et al., 2007) are examples of such 

filtering-based algorithms. Parallel Tracking and Mapping (PTAM) provided by (G. Klein et 

al., 2007) is the most well-known SLAM algorithm in which the tracking estimates camera 

motion in real-time, and the mapping estimates accurate 3D positions of feature points with a 

computational cost. PTAM is the first method that incorporates non-linear optimization (Bundle 

Adjustment) into the real-time SLAM algorithms. Then ORB-SLAM (R. Mur-Artal et al., 2015) 

takes advantage of PTAM, improving it. 

                   Although monocular Visual SLAM has made great achievements in localization 

and mapping, it is a partially observable problem, in which sensors do not offer the depth of 

landmarks, resulting in lack of accurate initial estimation of the process, inability to recover the 

metric scale and drift of scale, all of which take their toll on the camera pose estimation 

accuracy. The main reason that caused the vision-only systems to be incapable of observing the 

metric scale, is due to the theoretical constraints in the camera’s projective nature. As well as 

these issues, Visual SLAM algorithms are vulnerable to some circumstances such as motion 

blur from fast motions and the lack of scene texture. Therefore, these conditions can make 

Visual SLAM methods to fail or present very poorly performance. To address these problems, 

one of the most effective strategies to boost localization accuracy is visual-inertial fusion, which 

has been taken from a combination of IMU and visual measurements (M. Quan et al., 2019). In 

this way, one of the most important challenges is how to fuse the measurement information 

from the camera and IMU together so that the best initialization accuracy could be obtained. 

The importance of this issue shows itself when the IMU measures acceleration and angular 

velocity to obtain a position and orientation, in which measurements include the noise inherent 

and will lead to estimates of position and orientation drift away of true values. Also, though the 

camera can estimate the pose (position and orientation) accurately during a long time under 

slow-motion, it suffers heavily from motion blur. Another challenge is due to different 
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measurement rates of camera and IMU, respectively, in which the low frequency of camera 

may cause the problem in synchronization between the camera and IMU). 

 

1.2  PROBLEM STATEMENT  

 

    In this thesis, our focus is on solving some problems in the area of monocular Visual 

SLAM incorporating camera information with IMU measurements. Specifically, these 

problems are feature failure against fast movement and pure rotation in scenes, where there is 

little texture or blur on the image. Since our intended application is to overcome these 

challenges in robotics, our focus will also be mainly narrowed to algorithms and approaches 

which are real-time, and therefore, can be extended to IMU-camera synchronization. Besides, 

a new formulation would be employed in the state initialization estimation of the visual-inertial 

SLAM system, aiding to improve the localization accuracy. 

   In the next chapter, Visual SLAM (VSLAM) algorithms and challenges ahead have 

been explained in detail. 

 

1.3  MAIN OBJECTIVES   

 

                The main objectives of this thesis are:  

• To accurately initialize the states in the initialization step in the visual-inertial SLAM 

system using non-linear optimization of tightly-coupled visual and pre-integrated IMU. 

In this process, to get more accuracy, the old information and estimation results are 

marginalized together. This practice will be executed by employing a new formulation 

in which two adjustable parameters are used to reach the best initial state estimation 

accuracy.   

• To show the superiority of the proposed algorithm compared to the state-of-the-art 

Visual-Inertial Odometry and Visual-Inertial SLAM systems on the well-known EuRoC 

benchmark dataset. 

• To show the lower tendency of the proposed algorithm to error accumulation in long-

term trajectory compared to the state-of-the-art Visual-Inertial algorithms.  

• Investigation of the performance of the proposed algorithm from a point of hardware’s 

view such as CPU usage.  
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• To experiment with the proposed algorithm in a real indoor environment, and present 

the good performance of the proposed algorithm in the real world. 

• Reduction in the initialization time before capturing the ORB features.       

 

1.4  CONTRIBUTIONS 

   

                 The contributions of this thesis are given in the following ways: 

 

• Obtaining the best adjustable parameters based on the difficulty level of the 

environment. 

• Accuracy improvement during implementation of the proposed method in some 

scenarios of the EuRoC benchmark dataset.    

•  To reduce the accumulative error during benchmark, leading to improve accuracy. 

• Finding the hardware limitations in using a single-board processor during benchmark 

• Performing the successful experiment in an indoor real-world environment without 

feature failure in low-texture sense during the trajectory.   

• Reduction in the initialization time before capturing the ORB features. 

 

1.5  THESIS ORGANIZATION  

 

                  This thesis is organized into several chapters: 

• Chapter 2 discusses the structure of SLAM in detail, the introduction of Visual SLAM, 

visual sensors, and several forms of Visual SLAM algorithm: RGB-D SLAM, stereo 

SLAM, and Monocular SLAM. This chapter also deals with the classification of Visual 

SLAM methods and their limitations. The advantage and disadvantages of each system 

are described by an explanation of the most representative Visual SLAM of each 

category.   

• Chapter 3 introduces visual-inertial SLAM algorithms incorporating IMU 

measurements with visual information. The main subject in this chapter is to increase 

the accuracy in state initialization, highly affecting the pose estimation obtained by 

visual-inertial SLAM.  

• Chapter 4 explains how to implement the proposed algorithm in the real world and its 

results. 
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• Chapter 5 includes the conclusion in which the obtained results are analyzed and some 

recommendations to improve the visual-inertial SLAM are provided.   
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b) Seyed Jamal Haddadi, Eugênio de Bona Castelan Neto, “Evaluation of Monocular 

Visual-Inertial SLAM: Benchmark and Experiment”, IEEE 7th RSI International 

Conference on Robotics and Mechatronics (ICROM), Iran, November 2019. 
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2 VISUAL SLAM (VSLAM) 

 

2.1 INTRODUCTION 

 

                  As mentioned in the previous chapter, visual SLAM is the branch where a SLAM 

system uses a camera as the only extrinsic sensor. Employing the camera is highly practical due 

to its low power consumption and lightweight. VSLAM also provides a rich representation of 

the environment. Visual SLAM incorporates the SLAM research in robotics with the 

investigation of computer vision, and it is being used widely. Besides, these algorithms use the 

visual-based perception devices to execute the SLAM research, and it aims to construct a map 

and a full trajectory for the camera (or the robot). Also, they are suitable for camera pose 

estimation in AR systems due to their simple configuration which allows it to be relatively easy 

such as camera-mounted tablets or smart-phones. Indeed, the field of VSLAM has become fast 

developed because the computing power of CPUs has been improving and many novel solutions 

have been proposed.  

                  In this chapter, VSLAM algorithms, classification of VSLAMs, and their limitations 

are discussed in detail. This chapter aims to figure out the challenges of the state-of-the-art of 

VSLAM algorithms. 

 

2.2  ELEMENTS OF VISUAL SLAM 

 

                 Based on (T. Taketomi, et al., 2017), the framework of VSLAM algorithms is 

composed of five modules including three basic modules and two additional complimentary 

ones. Note that these basic modules are largely related to figure 1 where there have been robust 

localization, dense mapping, and semantic understanding.  

 

2.2.1 Basic Modules 

 

   These modules are main cores of VSLAM: 
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2.2.1.1 Initialization  

 

                One of the most essential issues to initialize the VSLAM is to define a certain 

coordinate system for camera pose estimation and 3D reconstruction in an unknown 

environment. An unknown environment is an environment where a robot that is moving in that, 

doesn’t have any prior knowledge of it. In such an environment, the robot has to make a 3D 

reconstruction from the objects such as their color, shape, etc. Therefore, the determination of 

the global coordinate system is the first stage in initialization that should be defined to acquire 

an initial map with respect to the global coordinate system and reconstruct part of the 

environment.  

 

2.2.1.2 Tracking  

 

                After the initialization, tracking and mapping are performed to continuously estimate 

the camera pose. In the tracking module, the reconstructed map is tracked to estimate the camera 

pose of the image according to the global map. To perform this, firstly, 2D-3D correspondences 

between the image and map are obtained through feature tracking or feature matching in the 

image. Next, by solving the perspective-n-point (PnP) problem (R. Klette et al., 1998 & D. 

Nister, 2004), the camera pose is computed from the correspondences. There is an assumption 

among most VSLAM methods implying that intrinsic camera parameters have already been 

calibrated. As a result, a camera pose is normally equivalent to extrinsic camera parameters 

with translation and rotation of the camera in the global coordinate system. 

 

2.2.1.3 Mapping  

 

                 The mapping is the third module in which, by computing the 3D structure of an 

environment, the map is expanded while the camera observes unknown regions where the 

mapping was not performed before. 

 

  Figure 2 shows a simple schematic of elements of SLAM. 
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Figure 2 – a simple schematic diagram of SLAM 

 

 

2.2.2 Complementary Modules 

 

These modules are exerted for stable and accurate VSLAM: 

 

2.2.2.1 Relocalization 

 

                 Sometimes, due to the existence of some disturbances or fast camera motion, the 

tracking of camera pose is subjected to failure. In such cases, an alternative method to continue 

computing the camera pose is to use relocalization concerning the map again. Incorporating 

relocalization into VSLAM would guarantee that the system works even after the tracking is 

lost, and such a strategy makes VSLAM systems practically advantageous.  

 

2.2.2.2 Global Map Optimization  

 

                 When the VSLAM system starts moving in the environment while estimating the 

camera pose, the accumulative estimation error during localization is inevitable according to 

the camera movements, leading to gross error in pose estimation which often takes place in 

long-term camera movement. In such a circumstance, performing the global map optimization 

could be a reasonable technique to suppress the error. In this process, the map is rectified by 

optimizing the pose estimation with the consistency of whole map information to reduce 

accumulative error.  

                 In continuation of the suspension of accumulative error in camera pose estimation in 

VSLAM, Pose graph optimization is one of the most commonly-used approaches (G. Grisetti, 

et al., 2010 & R. Kümmerle, et al., 2011), and it is a way solve the loop closure in Visual SLAM.  

In this method, a pose graph is considered as a graph with nodes representing robot poses and 

edges linking the nodes, among which odometry measurements are available, and then the 
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consistent graph is build to suppress the error in the optimization (K. Li, et al., 2019). One 

demerit of global-pose optimization is a strong dependence on the accuracy of the initialization 

point for the graph. Besides, there are several instances when poor initialization led to arising 

the pose estimation error (J. Jackson, et al., 2019). 

 

2.3  OTHER RELATED TECHNIQUES  

 

2.3.1 Visual Odometry (VO)  

 

    Besides Visual SLAM, there exists another approach similar to SLAM, which is 

Visual Odometry (VO). A prerequisite for understanding VO is to perceive the Odometery (see 

chapter 1).  

    To be more accurate, VSLAM has been constituted of global map optimization and 

Visual Odometry (T. Taketomi, et al., 2017).  The idea of VO was first introduced in the 1980s 

for the Mars Rover project, and the term was not popularized in the engineering context until 

around 2004 (D. Nister, et al., 2004). The goal of VO is to estimate the motion of the camera 

in real-time using sequential images. Figure 3 shows the VO process in a pipeline. 

 

                                         Figure 3 - VO process in a pipeline 

 

 

                   Generally, VO can be performed by passive cameras (monocular, stereo, and 

omnidirectional) and active sensors (Light Detection and Ranging(LIDAR), time-of-flight – 
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Active optical Time-of-Flight, is a remote-sensing method to estimate range between a 

sensor and a targeted object by measuring the travel time from the emitter to the object and 

back to the receiver.) and Red-Green-Blue-Depth (RGB-D).  Since our focus is on a monocular 

camera, hence, it is essential to mention that the most critical problem in such cameras is that 

the motion scale is unobservable, which must be synthesized. In other words, the scale of 

trajectory cannot be directly estimated as the depth is unobservable from monocular cameras 

(although for in hybrid methods such as visual Inertial Odometry, integrating raw IMUs 

measurements can provide noisy, short-term estimates of scale) (E. Jared, et al., 2018). 

 

2.3.2 Structure from Motion  

 

 Structure from Motion (SfM) employs a set of 2D images acquired by a moving 

camera to estimate the 3D geometry of a scene and the camera motion is a technique to estimate 

the pose of camera motion and 3D structure of the environment in a batch manner (S. Agarwal, 

et al., 2011). SfM approaches often have to work on an unordered set of images without time 

constraints and might employ different cameras, whereas VSLAM is supposed to work in real-

time on an ordered sequence of images acquired from a fixed set-up. In SfM, the focus is on 

the accuracy of the 3D reconstruction; however, it offers an off-line solution with high 

reconstruction quality and uses an accurate feature detector and descriptor to obtain higher 

quality features. Besides, SfM can exhaustively use all input images to find feature 

correspondences and perform global reconstruction optimization applying bundle adjustment. 

From a technical point of view, VSLAM, Visual-Inertial Odometry (VIO), and SfM are similar 

and share many common components. 

 

2.4  VSLAM VERSUS VO 

 

   VO and VSLAM are fundamentally the same in the sense that both methods attempt 

to estimate the camera pose and reconstruct the scene structure. VO aims at recovering the 

camera pose incrementally, and potentially, it may build a local map and trajectory using local 

optimization. SLAM, on the other hand, tries to produce a globally consistent map and 

trajectory, such that the system can detect when the camera returns to a previously explored 

position and correct the drift accordingly. Global consistency is achieved by realizing that a 
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previously mapped area has been re-visited (loop closure) and this information is exerted to 

decline the drift in the estimates.  

  So far, the main components of Visual SLAM are introduced and it turned out that 

the SLAM can be comprised of five modules (mentioned in 2.2). Now, knowing the VSLAM 

and VO, the structure of VSLAM can be generally divided into two main components: front-

end and back-end; the front-end is comprised of VO (D. Nistér, et al., 2004) module and the 

mapping module, and the back-end is responsible for performing the optimization module. 

There may also be an additional loop-closure detection module (A. Angeli, et al., 2008).  

 

                               Figure 4 - The structure of visual SLAM 

 

 

                 According to Figure 4, in the front-end module, the VO module estimates the 

approximate 3D camera pose and structure from adjacent images to provide better optimization 

of the initial value for the back-end. Then the optimization module in the back-end estimates 

the trajectory and map state from noisy data. This can be viewed as a maximum a posteriori 

problem (D.M Greig, et al., 1989 ). Finally, the mapping module creates a map that will be used 

mainly in SLAM and can be used for navigation, visualization, and interaction. Also, as it was 

explained in section 2.2, the loop-closure detection module determines whether the camera 

arrives at a scene that has been previously captured, so that loop-closure solves the problem of 

drifting of the estimated positions over time. 

                 The downside of VSLAM is that the computing cost is high and advanced algorithms 

are needed. Also, the technical difficulty of VSLAM is higher than that of other sensor-based 

SLAMs because the view range of the camera is smaller than the laser (360) for example, and 

as a result, the camera can acquire less visual input. From such input, camera poses need to be 

continuously estimated, and the 3D structure of an unknown environment is simultaneously 

reconstructed. In this way, “feature-based (indirect) method” has been introduced in 2000, 

which is the early work (G. Klein et al., 2007) of  VSLAM using a monocular camera, and is 
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based on tracking and mapping feature points. On the flip side, there is another approach which 

is called the “direct method ”. This method can be exerted to tackle the texture or feature-less 

environment where VSLAM has been proposed to tracking and mapping without the need to 

feature detection of points, and it deals with a whole image for its process. 

 

2.5  SENSORS FOR VISUAL SLAM  

 

  As we described at the Introduction Section, SLAM is a way for a robot to localize 

itself in an unknown environment, while incrementally constructs a map of its surroundings. 

SLAM has been extensively studied in the past couple of decades resulting in many different 

solutions using different sensors, including non-visual types such as an ultrasonic sensor or a 

LIDAR, or visual ones such as a monocular camera, a stereo camera, or a RGB-D camera, 

which can provide not only the color but also the depth of every pixel. On the other hand, if 

sensors are categorized based on data output, then the mathematical problem behind SLAM is 

not so different in using various types of sensors. For instance, the data output of the ultrasonic 

sensor which could be considered as non-visual is based on the meter. Also, a monocular 

camera, which is a visual sensor, can provide data output according to the meter. Therefore, the 

emplyment of a different kind of measurement unit of sensors does not greatly modify the 

mathematical formulation of SLAM. The visual SLAM sensors are explained further in the next 

section.  

 

2.5.1 Visual SLAM Sensors 

 

                Nowadays, with technological development, robots are getting much smaller before, 

which restricts their payload capacity to certain scopes. Hence, in the visual SLAM area, using 

simple (single and multiple) cameras has been shown more interest rather than the traditional 

complex laser radar and sonar, etc among researchers. RGB-D cameras (T. Schops et al., 2019), 

stereo cameras (S. Se et al., 2002), time-of-flight camera (S. May et al., 2009), and Monocular 

cameras (S. Weiss et al., 2013), are four main approaches in the literature differing in the 

number or type of cameras, that among them, Mono, Stereo, and RGB-D are the most likely 

applied in SLAM techniques. A list of advantages and drawbacks of the most common types of 

cameras including Monocular, Stereo, and RGB-D, for visual SLAM, is shown in Table 1.    

 



30 

 

Table 1 - The most common types of cameras for Visual SLAM 

 

 

                 Recently, (L. Han., et al., 2019) presented Real-time globally consistent camera 

localization for visual SLAM using a RGB-D camera in which each observation (three-

dimensional point feature) has to be linearized based on its local coordinate (camera poses), 

which is nonlinear and dynamically changing, resulting in extensive computation during 

optimization. However such nonlinearity is decoupled into a linear (feature position) and 

nonlinear components (camera poses).  

                  Also, recently, structured light-based RGB-D cameras (J. Geng, 2013) such as 

Microsoft Kinect (Z. Zhang, 2012) have become cheap and small. Since such cameras provide 

3D information in real-time, these cameras are also used in VSLAM algorithms. 

                  By using RGB-D cameras, the 3D structure of the environment with its texture 

information can be obtained directly. Also, in contrast to monocular VSLAM algorithms, the 

scale of the coordinate system is known because the 3D structure can be acquired in the metric 

space. The basic framework of depth (D)-based VSLAM is as follows. An Iterative Closest 

Point (ICP) algorithm (P. J. Besl., et al., 1992) has widely been used to estimate camera motion. 

Then, the 3D structure of the environment is reconstructed by combining multiple depth maps. 

To incorporate RGB into depth-based VSLAM, many approaches have been proposed as 

explained below. However since these approaches project IR (Infrared) patterns into an 

environment to measure the depth information, they are reliable and developed for indoor 

applications only, and it is difficult to detect emitted IR patterns in outdoor environments. Note 

that the Note that IR emitters are small wired transmitters for repeating an infrared signal from 

your remote to an isolated piece of A/V equipment. Furthermore, there is a limitation in the 

range of the depth measurement such that the RGB-D sensors can capture the environment. 
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                 Stereo cameras are other types of cameras that provide a passive 3D depth estimation 

that typically involves the use of stereo calibration procedure to compute projection matrix that 

will transform a 2D point(generally observed in left camera) into a 3D point in the left camera 

coordinate system. (R. Gomez-Ojeda., et al., 2019) propose PL-SLAM, a stereo visual SLAM 

system that combines both points and line segments to work robustly in low-textured 

environments. Although stereo camera setups perform better than RGB-D in the case of outdoor 

applications, the amount of data that they provide is high and requires large amounts of 

computational capacity.  

                  As a result, the advantage of measuring the depth by using stereo or RGB-D cameras 

is to eliminate the several challenges encountered when relying only on a monocular camera. 

One particular drawback of all depth-measuring devices is the very limited range and the light 

problem at which they can operate accurately - to navigate in large, open spaces (e.g. a factory 

building, or outside of GPS-denied environments such as narrow streets). On the other hand, 

monocular cameras are especially suited for applications where compactness and minimum 

weight are critical. In addition to that, lower prices and flexible deployment make them a 

suitable option for robots and unmanned vehicles. For the reasons above, the remaining of this 

section focuses on the monocular Visual SLAM algorithms, where the only information is 

coming from a monocular camera. 

 

2.6  MONOCULAR VISUAL SLAM  

 

                There are two approaches to solve the monocular visual SLAM: Feature-based 

methods and Direct methods. 

 

2.6.1 Direct (feature-less) methods 

 

                Direct methods use directly all the pixel intensity information in the image. These 

methods can exploit visual information without relying on key-point detectors, and therefore, 

they are expected to be more accurate and robust when there is little texture in the scene or blur 

on the image (R. Mur-Artal 2017). Direct SLAM construction is based on the computation of 

depth associated with each pixel on selected cameras by minimizing an error measure such as 

brightness or brightness-based cross-correlation (M. Irani et al., 1999). DTAM (R. A. 

Newcombe et al., 2011) is an example of a direct visual SLAM algorithm, which constructs a 
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dense map of the scene. Defining the photometric error function, which combines the errors for 

each pixel along with the camera motion and the projection function, leads to: 

 

               𝐸𝑝ℎ𝑜𝑡𝑜 = ∑ ‖𝐼𝑖(𝑝𝑖) − 𝐼𝑖+1( 𝜋 (𝜉, 𝑃))‖𝑝𝜖Ω  ,                                                 (1) 

 

where 𝐼𝑖(𝑝𝑖) = 𝐼𝑖+1(𝑝𝑖+1), and 𝐼𝑖, 𝐼𝑖+1 are consecutive frames. Meanwhile, 𝑝𝑖 and 𝑝𝑖+1 denote 

the projections of a world point 𝑃𝑊 = (𝑋 𝑌 𝑍)𝑇  in those frames. Also, camera motion 𝜉 

represents elements of SE(3) - quaternation and position - and the projection function is 

introduced as π (𝜉, P). 

                 Since the DTAM restores the dense map for each pixel and applies global 

optimization, the computational burden is very high. Engel et al. proposed Large-Scale Direct 

SLAM (LSD-SLAM) (J. Engle, et al., 2014) and Direct Sparse Odometry (DSO) (J. Engle, et 

al., 2016) based on the direct method. 

  LSD-SLAM is the most popular algorithm in visual SLAM based on direct methods. 

This algorithm describes a direct monocular visual SLAM algorithm that allows us to build 

large-scale, consistent maps of the environment. Along with highly accurate pose estimation 

based on direct image alignment, the 3D environment is reconstructed in real-time as a pose-

graph of keyframes with associated semi-dense depth maps. Compared to approaches that 

parameter optimization is performed without scale, LSD-SLAM uses pose graph optimization 

which explicitly considers the scale factor, allowing for correction of scale drift and loop 

closure detection in real-time. In contrast to DTAM, LSD-SLAM and DSO use fewer pixels, 

and, since each pixel depth is calculated independently, they are more efficient than DTAM. 

LSD-SLAM employs three parallel threads after initialization takes place: i) tracking; ii) depth 

map; iii) map optimization.  

                The direct-method-based SLAM has the following advantages: it does not extract 

feature points, it can be used even in the case of a small number of feature points or a blurred 

image, and it can generate a depth map. However, it is ineffective for fast motion and changes 

in grayscale values, depends on higher hardware requirements for the camera, and also it is 

slower than the feature-based method. 
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2.6.2  Feature-based Method 

 

                  Unlike the direct (feature-less) methods using images directly, feature-based 

methods firstly detect and extract distinctive interest points (keypoints) from images. A 

descriptor, typically a vector of binary or real values of a certain length, is computed for each 

keypoint by operating on a patch of pixels around the key point. This allows us to match 

keypoints across images just by comparing their descriptors. The incorporation of a keypoint 

and its descriptor is called a feature. Indeed, once features are extracted, the image can be 

discarded so that only the feature-based method can operate on these features (R. Mur-Artal et 

al., 2015), since these features are considered as inputs for motion estimation and localization 

procedures. Normally, it is expected that features be invariant to rotation and viewpoint 

changes, as well as robust to motion blur and noise. The feature correspondences are stored in 

a map, ready to be used for localizing newly tracked frames. For monocular systems, the 

features can be stored either in 2D, as detected, or in estimated 3D, after back projection; this 

results are obtained from two approaches, for expressing the motion between the previous 

feature vector 𝑓𝑖−1 and the current one 𝑓𝑖: 

 

• 2D-to-2D: when both 𝑓𝑖−1 and 𝑓𝑖 are specified as 2D image frames; the transformation, 

accomplished by Bundle Adjustment (Section 1.1) is an iterative refinement to obtain a 

more accurate map of the local trajectory, and also, it is a windowed algorithm as it tries 

to minimize an error function over the last frames. This is calculated as the image re-

projection error as: 

 

                      argmin
𝑋𝑘,𝐶𝑖

∑ ‖𝑝𝑖
𝑘 − 𝑔(𝑋𝑘, 𝐶𝑖)‖

2
,𝑘,𝑖                                                         (2) 

where 𝑝𝑖
𝑘 is the point corresponding to the landmark 𝑋𝑘 in image 𝑖, and 𝑔(𝑋𝑘, 𝐶𝑖) is the re 

projection of the same landmark according to the current camera pose 𝐶𝑖. The choice of window 

size depends on the computational capabilities of the system, since the re-projection error is a 

nonlinear function requiring an expensive algorithm such as Levenberg Marquardt  (H. Gavin 

2013). A small window limits the number of parameters, making bundle-adjustment tractable 

in real-time. 

 

• 3D-to-2D: when 𝑓𝑖−1 is specified as 3D frames and 𝑓𝑖 is in 2D. Similarly, to the previous 

case, the transformation corresponds to the minimal reprojection error, but it also needs 
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a preparation step to triangulate 𝑝𝑖−1from two adjacent camera views, 𝐼𝑖−2 and 𝐼𝑖−1. The 

error function for the transformation 𝑇𝑖 then becomes: 

 

                        𝑇𝑖 = argmin
𝑇𝑖

∑ ‖𝑝𝑖
𝑘 − 𝑝𝑖−1

𝑘 ‖
2
,𝑘                                                         (3) 

 

                  Eventually, the algorithms should accomplish optimizations and corrections. PTAM 

(G. Klein et al., 2007) is a feature-based algorithm that most monocular visual SLAM 

algorithms for MAVs rely on it. This algorithm has been the standard of modern feature-based 

visual SLAM that divides the SLAM system into two parallel independent threads: i) tracking; 

ii) mapping. For tracking, it uses fast, every-frame visual odometry with a robust estimator and 

coarse-to-fine optimizations. For mapping, it uses the batch technique of bundle adjustment, 

which is more accurate than incremental approaches but also more expensive computationally. 

However, it is tractable in real-time since it is decoupled from tracking and can be run only at 

key-frames when there is sufficient motion to update the map.  

                   Three of the most popular monocular VSLAM algorithms, two feature-based 

including PTAM (G. Klein et al., 2007), ORB-SLAM (R. Mur-Artal et al., 2015) and one Direct 

method (LSD-SLAM (J. Engel et al., 2014)) with features taken indoor can be seen in Figure 

5. 

 

Figure 5 - The most popular monocular VSLAM algorithms. 

 

a) PTAM                         b) LSD-SLAM                         c) ORB-SLAM 

 

                   The newest feature-based VSLAM algorithm is the ORB_SLAM in which Oriented 

FAST and rotated BRIEF (ORB) features are used. This algorithm, that is shown in Figure 5.c, 

can estimate the 6-DoF of the robot and reconstruct a sparse environment model. The main 

achievements of ORB_SLAM is to use ORB features in real-time, re-localization with 

invariability to the viewpoint, and a place recognition module that uses a Bag of Words (BoW) 

for loop detection. The Bag-of-Words (BoW) approach  (N. Kejrival et al., 2016) is one of the 
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most popular methods in this category. In this method, an image is represented as a histogram 

of words present in a dictionary 

                   Since, most of the feature-based methods extract only distinct feature points from 

images, which can at most reconstruct a specific set of points (traditionally, corners), and then 

it can only reconstruct a sparse scene map. Thus, this kind of method can be called sparse 

indirect methods. One of the differences between direct and indirect methods is that the direct 

methods normally find dense correspondences, so it can reconstruct a dense map at an extra 

cost of computation. It is one of the reasons that, currently, researchers have been looking 

forward to the dense indirect methods that can reconstruct dense maps (Y. Lu et al., 2018). The 

difference between feature-based and direct methods is shown as a block diagram in Figure 6. 

 

                      Figure 6 - Difference to key-point-based methods 

 

Source: https://vision.in.tum.de/research/vslam/lsdslam 

 

               According to the discussions above and disadvantages of direct-based methods, which 

the most noticeable ones are the slow execution and high computational cost, we continue our 

study with feature-based methods. Note that two of the most important advantages that 

motivated use to use feature-based methods are lower computation cost and faster run speed 

than direct-based methods. 

                There exist two types of feature-based methods in the literature: The Filter-based and 

Keyframe-based approaches. 

 

https://vision.in.tum.de/research/vslam/lsdslam
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2.6.2.1 Filter-based Methods 

 

                 In this kind of method, the information is summarized at each step in a probability 

distribution, and the camera pose is estimated using the information of all features of the map. 

This method requires fewer computational resources due to the marginalization of past state 

and can achieve high accuracy in a short time. However, due to the missing loop closure 

mechanism, linearization error, and lack of place recognition, it will slowly drift during long 

term SLAM. It is noteacible that to address problems caused by linearization, the use of an 

Unscented Kalman Filter (UKF), appearsto be an appealing option (Julier., et al., 2000). Also, 

it includes uncertainties owing to computational complexity and the linearization process. 

Based on the measurement process of information, filter-based methods can be categorized into 

two classes: i) Kalman Filter (EKF, UKF and CKF) and Particle filter methods (M. Kleinert., 

et al., 2010 & J. A Hesch., et al., 2013); ii) sliding window filtering approaches (A. Joel., et al., 

2017 & M. Li., et al., 2013). Since in EKF-based SLAM, the state vector contains both poses 

of robot/camera and a set of positions, and as long as these features are continuously observed 

and contained in the state vector, there is no drift in the estimated pose relative to these features.  

However, due to the quadratic calculation in the number of features in the state vector, it has 

high computational complexity. On the contrary, sliding window filtering methods keep a 

sliding window of the previous camera poses in the state vector, and use the feature 

measurements to impose probabilistic constraints on these poses  (M. Quan et al., 2019). 

  

2.6.2.2 Keyframe-Based Methods 

 

                 This method estimates states by using the entire data, and with a loop closure 

mechanism, it can achieve high accuracy drift by leveraging the estimated 3D map; however, 

the demand for much more computational resources limits the efficiency in computation. Also, 

the keyframe method retains the optimization approach of global Bundle Adjustment (BA) (R. 

Mur-Artal, 2015), but unlike the filter-based method (relying on all the features in the map 

marginalize out past poses and summarize the information gained over time with a probability 

distribution), keyframe method computationally must select only a small number of past frames 

(Key-frames) to calculate the current pose (H. Strasdat, et al., 2015). Although this method is 

computationally expensive, it exploits the sparse structure, and thus, it enables fast computation 

by using sparse linear solvers.   
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                  Figure 7 shows the difference between two types of feature-based methods including 

keyframe-based and filter-based approaches, where we can notice the interactions among the 

pose in time and features. 

 

Figure 7 - Keyframe BA (left) vs filter-based (right): T is a pose in time, x is the 

feature/landmark 

 

                

                 There also exist various approaches to combine the front-end and back-end in visual-

SLAM such as a parallel real-time system that has been presented by G. Keilin, et al., in 2019, 

in which the system consists of the tracking and the mapping threads. The following, (R. Mure, 

2015) inspired by the parallel process provided an improved system with the concept of a co-

visibility graph for local mapping to keep the consistency for the large-scale environment. 

Furthermore, (C. Forster., et al., 2014) provided a parallel solution by fusing direct tracking for 

pose estimation and depth filter for feature estimation. Besides these strategies, (E. Hong., et 

al., 2018) have shown that the sliding window method keeps the computational time bounded 

by marginalizing out old states.  

                  As a consequence of these differences, Strasdat et al. in 2010 showed that keyframe-

based methods outperform filter-based ones, and it is therefore not surprising to note that most 

new releases of monocular SLAM systems are keyframe-based. 

 

2.6.3 Related Works 

 

                 Monocular Visual SLAM, a system that uses a camera as its data input sensor is 

widely used in platforms moving in indoor environments. Compared to radar and other range-

finding instruments, a visual sensor has the advantages of low power consumption and small 

volume, and it can provide more abundant environmental texture information for a moving 

platform. In general, all monocular SLAM systems aim to construct a globally consistent 
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representation of the environment. It has drawn the attention of researchers due to its low cost 

and small size. The solution way of Monocular visual SLAM had been presented by some 

researchers. (A. Chiuso, et al., 2003) proved the stability of an algorithm for reconstructing 

three-dimensional structure and motion causally in real-time from monocular sequences of 

images. Then, (E. Eade, et al., 2006) addressed the cost of maintaining estimates, which rises 

rapidly with the number of landmarks mapped. Their strategy was to apply a monocular Fast-

SLAM algorithm to a single camera that employs a particle filter and top-down search to allow 

real-time performance while mapping large numbers of landmarks. 

                 In 2007, Davison et al introduced the most considerable improvement to tackle the 

Visual-SLAM problems. They were the pioneer in this area, who proposed the Mono-SLAM - 

a method of capturing the path of a freely moving camera while generating a sparse map - for 

the first time to implement a monocular real-time SLAM system. In this kind of visual SLAM, 

which is on Extended Kalman Filter (EKF)-based method, the produced map is sparse and 

consists of image patches as features.  

                   One of the most significant achievements to solve monocular Visual SLAM is the 

Parallel Tracking and Mapping (PTAM) that is presented by Klein et al., in 2007. This robust 

SLAM solution mainly focused on accurate and fast mapping in a similar environment to Mono-

SLAM. PTAM is the first optimization-based solution to split tracking and mapping into 

separate tasks processed in two parallel threads. So that, the front-end thread only performs 

pose estimation and feature tracking, while the back-end thread performs mapping and 

everything else, such as feature initialization and removing unnecessary keyframes. These 

features enable the algorithm to perform the expensive batch optimization routine of Bundle 

Adjustment (BA) in real-time. However, similarly to many earlier works, it works only in small 

scenes and easily suffers from tracking loss. PTAM is the first method incorporating BA into 

the real-time VSLAM algorithms. 

                 (R. A. Newcombe, et al., 2010) proposed a hybrid monocular SLAM system that 

relied on PTAM to fit a dense surface estimate of the environment that is refined using direct 

methods. In this system, to estimate a dense refinement over the base mesh, a parallel process 

selects a batch of frames that have a potentially overlapping surface visibility using a GPU 

accelerated implementation of variational optical flow. Then, this algorithm was updated to 

DTAM that removed the need for PTAM as a front-end to the system and generalized the dense 

reconstruction to fully solve the monocular SLAM pipeline. 

https://dl.acm.org/author_page.cfm?id=81100613427&coll=DL&dl=ACM&trk=0&cfid=1007246723&cftoken=66282921
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                   (K. Pirker, et al., 2011) proposed the Continuous localization and mapping in a 

dynamic world (CD SLAM) in 2011, with the objectives to handle short- and long-term 

environmental changes and mixed indoor/outdoor environments. To limit the map size and gain 

robustness against significant rotational changes, CD SLAM suggests the use of a modified 

Histogram of Oriented Cameras descriptor (HOC) (K. Pirker, et al., 2011), with a GPU, 

accelerated descriptor update, and a probabilistic weighting scheme to handle outliers. 

Furthermore, to update the feature descriptors after loop closure, it provided a geometric 

adaptation and also the use of large-scale nested loop closures with scale drift correction. 

                In 2013, Robust monocular SLAM in Dynamic environments (RD SLAM) was 

released by (C. Pirchheim, et al., 2013), and it aimed to cope with dynamic objects and slowly 

varying scenes. It employs a heavily parallelized GPU accelerated SIFT and stores them in a 

KD-Tree (C. Silpa-Anan, er al., 2008), that further accelerates feature matching based on the 

nearest neighbor of the queried feature in the tree. While the KD-tree is meant to accelerate 

SIFT feature matching, updating it with new features is computationally costly. Also, it 

performs landmark and keyframe culling using histograms of colors to detect and update 

changed image locations, while sparing temporarily occluded landmarks. 

                     After one year, in 2014, (C. Forster et al., 2014) proposed a fast Semi-direct 

monocular Visual Odometry (SVO), which combines the feature point and direct tracking 

optical flow method. SVO generates a five-level pyramid representation of the incoming frame; 

data association is first established through iterative direct image alignment, starting from the 

highest pyramid level up until the third level. Preliminary data association from this step is used 

as a prior FAST feature matching procedure, similar to PTAM’s warping technique, with a 

Zero-Mean SSD score. However, different from PTAM, to achieve real-time performance, 

SVO needs to run with a high frame rate camera. It was designed mainly for onboard 

applications that have limited computation resources. 

                      In LSD SLAM proposed by (J. Engle, et al., 2014), and later in DSO (J. Engle, et 

al., 2016), a randomly initialized scene’s depth from the first viewpoint, use an initialization 

method that does not require two view geometry; it takes place on a single frame: pixels of 

interest (i.e., image locations that have high-intensity gradients) are given a random depth value 

with an associated large variance in the first keyframe. This results in an initially erroneous 3D 

map. The pose estimation methods are then invoked to estimate the pose of newly incoming 

frames using the erroneous map, which in return results in erroneous pose estimates. However, 
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as the system process more frames of the same scene, the originally erroneous depth map 

converges to a stable solution. The initialization is considered complete when the depth variance 

of the initial scene converges to a minimum. According to a report of (R. Mur-Artal et al., 

2015), they still need features for loop detection, and their camera localization accuracy is 

significantly lower than PTAM. 

                    DPPTAM, which stands for Dense Piecewise Parallel Tracking and Mapping, was 

proposed by (A. Concha, et al., 2015), and it borrows from LSD SLAM’s initialization 

procedure and, therefore, also suffers from the problem of random depth initialization, where 

several keyframes must be added to the system before a stable configuration is reached. 

                    ORB-SLAM (R. Mure, 2015) and ORB-SLAM2 (R. Mure, 2017), as a successful 

application of SLAM based on feature tracking and one of the most complete keyframe-based 

monocular SLAM algorithms, can overcome all the limitations and shortcomings which were 

observed in above methods. The basic architecture of ORB-SLAM2 is based on PTAM, in 

which in addition to the tracking and mapping threads, a loop-closure detection thread is added. 

It is an oriented FAST and rotated BRIEF (ORB) (E. Rublee, et al., 2011) feature-based 

monocular SLAM, leveraging three main parallel threads: tracking thread is responsible for 

tracking feature points in real-time, local mapping thread to perform g local Bundle 

Adjustments (BA) map, and loop closing thread is considered to suspend the accumulated drift 

in-camera trajectory and performing a pose graph optimization. It is noteworthy that, at the 

time, ORB-SLAM2 including map reuse, loop closing, and re-localization capabilities, is one 

of the best Visual SLAM frameworks in which its superiorities are visible to all researchers in 

the computer vision field. ORB-SLAM is relatively stable and accurate, and it can be adapted 

to various environments, such as indoor/outdoor and large/small scale, and can be executed in 

real-time on a PC. Also, it is a good reference for learning and studying SLAM methods, 

supporting automatic map initialization, and the keyframe and map point management 

mechanisms are relatively comprehensive. However, like other Visual SLAM algorithms, it 

still has many shortcomings, and it is vulnerable to some circumstances such as motion blur 

from fast motions, the lack of scene texture, which can make Visual SLAM methods fail or 

perform very poorly.  

 

2.7  WELL-KNOWN CHALLENGES 
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   In general, Visual SLAM algorithms confront some challenges, which are listed in 

the followings subsections: 

 

2.7.1  Pure Rotation  

 

     Pure rotational is the most prevalent problem in Visual SLAM methods, as it would 

occur when the user moves a device in handheld augmented reality applications. This problem 

explicitly can be observed in monocular cameras owing to a lack of ability in observation of 

disparities during purely rotational motion. It is necessary to mention that purely rotational 

motion cannot be considered as a problem in RGB-D Visual SLAM, and this is due to fact that 

the tracking and mapping processes can be executed by using the depth obtained in maps. 

 

2.7.2  Initialization  

           

                     Since SLAM aims to solve localization and mapping at the same time, this is a 

challenge of robot localization during the first moments when no map is available. This problem 

can be straightforward solved using stereo cameras and lasers or could be a serious challenge 

when a monocular camera is used. 

 

2.7.3 Real-time 

 

                     The goal of SLAM is to provide localization and map information to the robot, so 

that it can be used to accomplish its mission. Therefore, all algorithms have real-time constraints 

and should be scaled well both in long-term and large-scale operation. 

 

2.7.4 Intrinsic Camera Parameters Estimation  

 

       In most of VSLAM algorithms, intrinsic camera parameters have been considered 

known. This implies that camera calibration should be carried out before the use of VSLAM 

applications, and intrinsic camera parameters have to be regulated during the estimation 

process. 
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2.7.5  Scale Ambiguity   

          

                   Absolute scale information is a requirement in some VSLAM applications, using a 

monocular camera. Indeed, in monocular vision systems, lack of knowledge about metric 

distances caused by the inherent scale ambiguity could be a major limitation in some 

applications. In other words, when a 3-D scene is captured by the camera and projected into a 

2-D frame, depth information is lost. To tackle this problem, one method is to fuse inertial 

measurements with monocular odometry or tracking thread to estimate metric distance. Having 

an acceptable estimation of metric distance results in an increase of pose estimation accuracy. 

 

2.8  SUMMARY  

        

                      In this chapter, a general view of monocular Visual SLAM was presented. We 

discussed some important Visual SLAM approaches such as PTAM, LSD-SLAM, SVO, 

DTAM, DDTAM, CD-SLAM, Mono-SLAM, RD-SLAM and Fast-SLAM. The advantages and 

disadvantages of each of these methods have been identified. For instance, the drawback of the 

PTAM algorithm was that the re-localization is based on the correlation of low-resolution 

thumbnails of the key-frames and yields a low invariance to a viewpoint, and it did not detect 

large loops. Another approach was related to LSD-SLAM that had been reported that this 

method still needed features for loop detection, and camera localization accuracy is significantly 

lower than PTAM. Also, ORB-SLAM and ORB-SLAM2 algorithms have comprehensively 

been explained. 

                     So far, from the literature, we realized that the ORB-SLAM2 is the most reliable 

and complete solution for monocular Visual SLAM, and it can be considered as the most 

representative state-of-the-art visual SLAM in feature-based methods. The significant merit of 

this algorithm is that it supports monocular cameras, stereo cameras, and RGB-D cameras, and 

can produce high-precision results in real-time. 

                    In this thesis, ORB-SLAM2 (Raul mure, 2017) is chosen as a base Visual SLAM 

system due to its robustness and ability to work in real-time indoor or outdoor, as well as its 

ability to close loops. This method is robust against difficult scenarios by inserting key-frames 

as quickly as possible, and removing later the redundant ones, to avoid the extra cost. However, 

we believe that it suffers from several problems such as the inconsistency in initialization, and 

sometimes, owing to fast movement and pure rotation, the features took by ORB-SLAM are 
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lost in the tracking loop and subsequently results in failure camera pose estimation, particularly 

in a textureless environment or less texture environment. To tackle these problems, in the next 

chapter, we propose a visual-inertial SLAM in the framework of sensor fusion, combining the 

IMU measurements and the camera information.   
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3 VISUAL-INERTIAL SLAM 

 

       In the previous chapter, we explained the Visual-SLAM (V-SLAM) algorithm 

specifications. In this chapter, to tackle the challenges in V-SLAM and improvement of its 

accuracy in the indoor environment, Visual-Inertial SLAM (VI-SLAM) is introduced. In the 

following, this chapter aims to focus on how to fuse the monocular Visual-SLAM with IMU, 

and to tackle the challenges in state initialization in VI-SLAM, heavily affecting the 

performance of the system. 

       In this way, the aim is to provide a tightly coupled and optimization-based VI-

SLAM system, leveraging an accurate initial states estimation in which a novel formulation 

using adjustable hyperparameter which considers the gravity norm. Besides, the refinement of 

scale and gyroscope bias is another approach that would boost the accuracy and robustness of 

initialization states and the overall system. To this end, in this thesis, ORB-SLAM2 is 

considered as the base SLAM system due to its robustness and its ability to work in real-time, 

in a GPS-denied environment, besides its ability to close loops treatment. 

 

3.1  INTRODUCTION  

 

       In a dynamic system, such as robotics, the states change over time. As an example; 

the states of the quadrotor might consist of the current position, orientation, and velocity. To 

achieve the accurate control of such a system, specific sensors are utilized to gather information 

and derive the current state as accurately as possible. Generally, the challenge of visual-sensor-

based SLAMs is higher than non-visual-sensor-based SLAMs. It is because of less visual input 

can be acquired by cameras (such as monocular), providing a limited field of views compared 

to laser scanner measuring up to 360°, for instance. In this kind of inputs, the camera poses 

need to be accurate and also can be continuously estimated. For this reason, to increase 

accuracy, one possibility is to combine visual sensors with other sensors. In general, combining 

the multi-sensors is performed to acquire high accuracy and, finally, to get a robust state 

estimation.  

      On one hand, V-SLAM algorithms can provide good tracking and rich map 

information in visually distinguishable environments. However, these algorithms are vulnerable 

to some circumstances such as motion blur from fast motions, the lack of scene texture, scale 

ambiguity in a monocular setup, occlusions, illumination changes, and these conditions can 
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make V-SLAM methods to fail or perform very poorly. On the other hand, to be more accurate, 

inertial sensors, such as IMU as a complementary sensor, can provide self-motion estimation at 

high frequency, robust to aggressive motion, allow to recovery of the global roll, pitch, angles 

provide absolute scale in motion, and estimate gravity direction. Indeed, fusing the inertial 

sensors with V-SLAM systems can provide accurate and robust state estimation in different 

situations, which results in an appropriate solution to mitigate all these problems above, 

originated from the complementary nature of these two types of sensors. Because IMU can 

temporarily track the motion, of the sensor even when there are no enough features or texture 

for visual tracking, consistent visual observations assist in rectifying the biases in the inertial 

measurements (M. Hsiao, at al., 2018).  

       All the explanations mentioned above lead to a hot topic in the sensor fusion field 

that is known as visual-inertial SLAM (VI-SLAM), fusing camera and IMU data for 

localization, which has gained much attention for various reasons. Firstly, in the fast-paced 

world of technology, the robotic systems are being increasingly used, particularly in a wide 

variety of intelligent systems and applications involving autonomous exploration and 

navigation of Micro Aerial Vehicles (MAVs). Secondly, Augmented Reality (AR) and Virtual 

Reality (VR) systems have become much popular among AR developers.  

      To carry out the improved comparison and identify the pros and cons of VI-SLAM 

algorithms, the literature has been divided into filtering-based methods and optimization-based 

methods.    

 

3.2  ESSENTIALS ON VI-SLAM 

 

       VI-SLAM algorithms have been categorized into two approaches: filtering-based 

and optimization-based. Maplab (T. Schneider, at al., 2018 & S. Lynen, at al., 2015) and VINS-

mono (T. Qin, et al., 2017, Y. Lin, et al., 2017 & P. Li, et al., 2017) are typical examples of 

these two approaches which both of them are open source. Filtering-based methods are 

frequently used for Visual-Inertial Navigation (VIN), in which marginalization is performed to 

all the previous IMU states, including poses, velocities, and biases, to achieve fast computation. 

Compared to the filter-based methods, optimization-based methods with bundle adjustment 

exceed with high accuracy estimation than the filters, whereas, there is no doubt that the filtering 

method has the superiority of robustness and high response frequency.  
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3.2.1  Filtering-Based Methods 

 

      According to the type of sensor fusion, VI-SLAM approaches can be grouped into 

either loosely or tightly coupled based on. 

 

3.2.1.1 Filtering-based and loosely-coupled  

       

       The Loosely-coupled approach (S. Weiss et al., 2013) considers the Visual-

Odometry (VO) module (explained in Chapter 2) as a 'black box' which yields the 6-DoF pose 

as output and integrates this result with IMU measurements using filtering-based methods (for 

instance, EKF) to estimate the states, including IMU biases and absolute scale. In simple terms, 

the loosely coupled systems take the visual sensor and IMU as two separate modules and 

calculate the orientation and possible the change in position (but not full pose), using the 

filtering-based methods for fusion. The main advantages of loosely coupled approaches are 

their relative simplicity and high scalability which can join a variety of sensor information to 

combine. However, the most important drawback of them is low fusion accuracy.  

       In filtering-based and loosely coupled methods, EKF plays a key role so that in 

2011, S. Weiss et al., added an IMU to monocular Visual SLAM, and presented a metric state 

estimation based on an Extended Kalman Filter, in which their proposed strategy decouples the 

two frameworks, visual pose estimate and metric scaled state estimation.  

       (M. Achtelik, et al., 2011) presented a solution to address the issue of having a 

low frequency onboard visual pose update versus the high agility of a MAV. This problem is 

solved by filtering visual information with inputs from inertial sensors. Indeed, since the 

proposed system is based on monocular Visual SLAM, they performed a separated monocular 

visual SLAM framework, which estimates the absolute scale with the assist of an air pressure 

sensor and IMU from the Flight Control Unit (FCU).  

       Multi-Sensor-Fusion Extended Kalman Filter (MSF-EKF) is provided by (S. 

Lynen, et al., 2013) in a general EKF framework for fusing the data from different sensors in a 

state estimate, being able to process delayed measurements, both relative and absolute, from a 

theoretically unlimited number of different sensors and sensor types with online self‐

calibration. 

        In 2016, R. Munguía, et al proposed a visual-aided inertial navigation and 

mapping system, in which a filtering-based algorithm is employed to solve the full state of 
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autonomous robots. The system, which relies on Kalman filtering, is designed to fuse the 

measurements obtained from a monocular camera, an IMU, and a loosely coupled strategy is 

used for incorporating data provided by the GPS, whenever it is possible. 

      Since real-time 6-DoF motion tracking is essential for the registration between 

virtual scenes and the real world, visual-inertial fusion has been employed in AR/VR systems. 

Hence, (W. Fang, et al., 2017) presented a visual-inertial-based real-time motion tracking for 

mobile AR/VR in which, by combining a monocular camera and an IMU, 6-DoF motion 

tracking is estimated by sensor-fusion in real-time. Moreover, to able real-time and smooth 6-

DoF motion tracking, an adaptive filter framework is proposed to balance the jitter and latency 

phenomenon.  

      The metric distance originated from the scale ambiguity severely affects the 

accuracy of vision systems and is a strong limitation for some applications. In this way, (A. 

Spaenlehauer, et al., 2017) addressed this problem by fusing inertial measurements with 

monocular odometry (ORB-SLAM algorithm for monocular tracking input) to estimate the 

metric distance in a loosely coupled manner. 

 

3.2.1.2 Filtering-based and tightly-coupled  

        

      Compared with the loosely coupled method which optimizes the 6-DoF output 

from the VO methods instead of the raw visual measurements together with the inertial 

measurements, the tightly coupled approach is a method that jointly optimizes the state of the 

camera and IMU together into a motion and observation equation in each iteration of the 

nonlinear optimization and then performs state estimation. Although the tightly-coupled 

method is more costly than the loosely-coupled, thanks to advances in computer technology, it 

can achieve more accurate results. Tightly-coupled methods constitute the main focus of the 

research area in sensor fusion.  

       Multi-State Constrained Kalman Filter (MSCKF) (A.I. Mourikis, et al., 2007) is 

an early method and popular EKF-based Visual-Inertial Odometry (VIO) approach which is a 

tightly coupled algorithm. In this system, the visual information and IMU data are combined 

into a filter and the body poses are updated by a 3D key-point processing with high accuracy. 

The MSCKF extracts and matches the SIFT feature, and maintains 30 camera poses in the filter 

state, and uses visual measurements of the same feature across multiple camera views to form 
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a multi constraint update. In this way, another primarily filter-based method for visual-inertial 

fusion was proposed by (E. S. Jones, et al., 2011), which focuses on the integration of visual 

and inertial sensors and their use in the ego-motion estimation, localization, and mapping. 

       In 2013, M. Li, et al proved that, compared to standard methods (such as EKF-

SLAM), the MSCKF algorithm outperforms in terms of accuracy, consistency, and 

computational efficiency. However, they believe that the MSCKF makes no Gaussianity 

assumptions on the features’ positions, which is required in EKF-SLAM. Then, they 

concentrated on improving the consistency of the MSCKF which could be the main core for 

boosting the estimation states’ accuracy. To this end, a closed-form expression for the IMU’s 

error-state transition matrix is derived that could be employed in any case in which an IMU is 

used for estimation.   

       (J. A. Hesch, et al., 2013) developed an Observability Constrained MonoSLAM 

(OC-MonoSLAM), which explicitly enforces the unobservable directions of the system, hence 

preventing spurious information gain and decrease inconsistency. This framework can be 

exerted to several variants of the VINS problem such as Visual SLAM and VIO systems using 

the MSCKF. 

      Apart from robotic systems, AR systems such as mobile phones are other platforms 

that have been used in visual-inertial algorithms. As an example, (X. Chao, et al., 2014) 

introduced an interpolation-based camera measurement model, targeting visual-inertial 

navigation using cell phones containing low-grade rolling-shutter cameras. From the 

perspective of the type of sensor fusion, an Observability-Constrained Extended Kalman filter 

(OC-EKF) has been employed to improve the VINS consistency and accuracy of the system. 

Besides, an interpolation model is proposed to express the camera pose of each visual 

measurement, as a function of adjacent IMU poses, that are included in the estimator’s 

optimization window.  

                     The square root inverse sliding window filter (SR-ISWF) for Visual-inertial 

navigation systems (VINS) is another filtering-based and tightly coupled approach that has been 

implemented on a mobile phone (L. Wu, et al., 2015). This algorithm maintains the upper 

triangular Cholesky factor of the Hessian matrix of a sliding window of recent states, and 

achieved more than double the speed, with comparable accuracy, of the MSCKF provided by 

(A.I. Mourikis, et al., 2007). (P. Tanskanen, et al., 2015) presented a combination of advantages 

of EKF-based approaches with those of direct photometric error minimization methods, in 

which inertial data and vision-based surface measurements are used simultaneously during 
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camera pose estimation. In this algorithm, IMU information is tightly integrated with direct 

surface measurements, allowing to track image regions that are difficult to tackle with 

approaches that rely on feature trackers. Whereas, their approach starts tracking without a 

special initialization sequence such as IMU biases estimation.  

                      (M. Bloesch, et al., 2015) proposed the Robust Visual Inertial Odometry 

(ROVIO) which is an EKF-based monocular system that updates the pose state using multi-

level patches around feature points with the propagated IMU motion and minimization of 

photometric errors. This system, which is open source1, is used to directly detect luminosity 

error to obtain accurate, robust tracking from image matching. A significant disadvantage of 

ROVIO is the lack of loop closure to attenuate the accumulated errors.  

                  (I. Sa, et al., 2017) built a visual-inertial vertical takeoff and landing (VTOL) 

platform to practically combine the ROVIO (M. Bloesch, et al., 2015) as a robust visual 

odometry and a state-of-the-art controller (MPC) with traditional dynamic. In their 

implementation, the IMU biases and camera–IMU extrinsic is also included in the filter state 

and, final states are co-estimated online for higher accuracy. Even though they considered the 

scale estimation initialization, the effect of the gravity vector is neglected, which could improve 

the accuracy of the system.  

                      Robust and accurate state estimation has always been a challenge in robotics. If 

the system can obtain accurate pose estimation based on a prior map, then system adaptability 

will improve. To this end, (T. Schneider, at al., 2018) proposed a VI-SLAM system called 

Maplab, an open-source algorithm2, in which pre-integrated IMU measurements are inserted 

into the optimization, and the algorithm includes a map merging, loop closure, and visual-

inertial optimization. The system extensibility is suitable for research and provided the 

evaluation method for the selection of system mining components.  

Although Maplab attained acceptable results in benchmark, the gravity and accelerometer bias 

are not distinguished from each other in initialization.  

                       Recently, a novel filter-based and a tightly coupled monocular VI-SLAM has 

been introduced by (M. Quan, et al., 2019), combining the advantages of filtering-based and 

optimization-based approaches, which ensures the fast response of the system to the highly 

dynamic motion of robots and tracking the motion through the visual-inertial EKF (as an 

assistant). Since the filter becomes inconsistent due to linearization errors, the globally 

 
1 https://github.com/ethz-asl/rovio 
2 https://github.com/ethz-asl/maplab 

https://github/
https://github/
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consistent map is constructed and then it feeds back the map to the EKF state vector. 

Simultaneously, in a parallel thread, a global map is performed and a keyframe-based visual-

inertial bundle adjustment are executed to optimize the map. Furthermore, a loop closure 

detection and correction module are also employed in a parallel thread to eliminate the 

accumulated drift when revisiting an area. The main drawback of this algorithm is that the 

gravity vector is neither refined nor constrained.     

                  In tightly integrated filters, the prediction step typically propagates the current 

camera state estimate using the IMU measurements. The state is recursively corrected based on 

the camera images. V. Usenko, et al. (2019) did a research in which, the significant drawback 

of filters is that the linearization point for the non-linear measurement and state transition 

models cannot be changed, once a measurement is integrated.  

   

3.2.2  Optimization-Based Methods 

       

        In the fast-paced world and with the advancement of computers, the use of 

optimization-based VI-SLAM has steeply increased. In optimization-based methods, the entire 

SLAM frame is divided into a front-end and back-end according to the image processing; the 

front-end is responsible for map construction, whereas the back-end is responsible for pose 

optimization. Compared to filter-based methods, optimization techniques enable fast 

computation by using sparse linear solvers such as g2o (R. Kümmerle, et al., 2011), Ceres (S. 

Agarwal, et al., 2017), iSAM (M. Kaess, et al., 2008), and GTSAM (F. Dellaert, 2012), which 

can solve the optimization problems with tens thousands of variables near-realtime in terms of 

calculation speed.   

      OKVIS (Leutenegger, et al., 2014, 2015) is a classic tightly-coupled - 

optimization-based V-I SLAM - an open-source algorithm that is available in a ROS-

compatible package3, and utilizes non-linear optimization on a sliding window of keyframe 

poses. In this algorithm, the inertial measurements are tightly integrated into the keyframe-

based visual SLAM system, in which the cost function comprising the IMU error term and the 

reprojection error term was jointly optimized. Furthermore, to maintain a bounded sized 

optimization window, the old states are marginalized. Therefore, OKVIS could enhance 

accuracy and robustness in real-time operation. However, since as a first step to initialization 

 
3 https://github.com/ethz-asl/okvis 

https://github.com/ethz-asl/okvis
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and matching, the last pose is propagated using acquired IMU measurements to obtain a 

preliminary uncertain estimate of the states in this system. IMU integration is needed to be 

repeatedly computed when the linearization point changes. 

       One of the main important issues in visual-inertial mapping is to perform the 

global consistent optimization, which receives less attention in the computer vision community. 

While in principle, the optimization can be formulated as Bundle Adjustment (BA) along with 

additional IMU information, this approach would rapidly become computationally infeasible 

owing to the large number of frames which would lead to a high number of optimization 

parameters in a naive formulation. To tackle this problem and keep the computational burden 

in bounds, BA makes the high-frame-rate images of the camera to a smaller set of keyframes. 

Therefore, the common strategy in VIO is to pre-integrate IMU measurements between two 

consecutive frames (V. Usenko, et al., 2019).  

      To reduce the computation and avoid the repeated constraints caused by the 

parameterization of relative motion integration, pre-integration was the first time proposed by 

(T. Lupton, et al., 2012). In their system, IMU data were changed between two frames by pre-

integrating the constraints, which could significantly decline the computation. This theory was 

further developed by (C. Forster, et al., 2015) and applied to the VI-SLAM framework to reduce 

bias. In fact, by using IMU pre-integration, it is not needed to reintegrate all IMU measurements 

each time that bias changes, and this practice can be performed by updating the bias changes 

using Jacobians w.r.t. bias. However, using a formulation from (C. Forster, et al., 2015), 

reintegration can be avoided integrating IMU measures only once, and updating the pre-

integrated terms through a linear approximation.  

       The first direct tightly coupled algorithm for the VI-SLAM system was proposed 

by (A. Concha, et al., 2016) that could run in real-time under a standard CPU. The processing 

is split into three threads. The first thread, which runs at frame rate, is responsible for the 

estimation of camera motion by a joint non-linear optimization from visual and inertial data 

given a semi-dense map. The second one creates a semi-dense map of high-gradient areas only 

for camera tracking purposes. Eventually, a fully dense reconstruction of the scene at a lower 

frame rate is estimated in the last thread. However, the initialization was not introduced in this 

strategy. 

       VI-ORB-SLAM (R. Mur-Artal, et al., 2017) can be considered the most reparative 

of tightly coupled and nonlinear optimization approach, which contains an ORB sparse front-

end, graph optimization back-end, loop closure, and relocation. This system can close the loop 
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and reuse the previously constructed 3D map. This system leverages a specific initialization 

that can estimate the initial states such as scale, gravity direction, velocity, and accelerometer 

and gyroscope biases. The local map module uses local BA to optimize the latest N keyframes 

and all points observed on these N keyframes after a new keyframe is inserted. Local maps are 

then retrieved based on the time series of the keyframe. The fixed window connects the N+1st 

keyframe and the co-visibility graph. Although the gravity and bias acceleration is estimated 

together, it is necessary to wait up to 10 seconds to observe all the values, and it uses much 

CPU time. Besides, sometimes, it suffers from feature loss in extreme environments which leads 

to failure in pose estimation.   

     (T. Qin, et al., 2017) proposed a versatile monocular visual-inertial odometry 

system VINS-Mono, a novel real-time, non-linear optimization-based sliding window 

estimator, which performs local BA in one thread to estimate the state of the platform, and 

closes loops in a lightweight manner in a parallel thread. In this system, a loosely-coupled 

sensor fusion initialization procedure is provided to bootstrap the estimator from arbitrary initial 

states. A tightly coupled approach is employed to combine the pre-integrated IMU 

measurements and feature observations. Besides, to improve the accuracy, a tightly-coupled 

procedure for re-localization is proposed. VINS-Mono is a real-time and open-source 

algorithm4 that is available. Although VINS-Mono is an appropriate initialization state 

estimator, (M. Quan, et al., 2019) have proved that in VI-SLAM, due to having the additional 

unobservable directions (i.e. the scale of the environment and the direction of local gravity) in 

the special motion VINS-Mono become unable to provide a good initial value for the dataset, 

resulting in the drift of the estimated trajectory. 

       An adaptive monocular visual-inertial SLAM for AR applications in mobile 

devices is introduced by (J. Piao, et al., 2017) which combines data from a mobile device 

camera and inertial measurement unit sensor. Besides this VI-SLAM, an optical-flow-based 

fast visual odometry is proposed that can estimate the pose in real-time. The main goal of this 

strategy is to provide an adaptive execution module that dynamically selects visual-inertial 

odometry or optical-flow-based fast visual odometry.  

       (Y. Liu, et al., 2017) presented a tightly coupled visual-inertial SLAM system that 

can run with real-time performance in an unknown environment. To this end, authors employed 

a parallel framework with a novel IMU initialization method, which benefits from the novel 

IMU factor, the continuous pre-integration method, the vision factor of directional error, the 

 
4 https://github.com/HKUST-Aerial-Robotics/VINS-Mono 
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separability trick, and the robust initialization criterion which reliable estimation of states can 

be performed on Central Processing Unit (CPU). However, in one of their implementations 

which was in a difficult scenario (texture-less) environment, their strategy could not work well 

and obtain the result.   

      A robust initialization and online scale estimation in VIO is an algorithm that 

recently has been introduced by (E. Hong, et al., 2018). The main contribution of their work is 

to stabilize the initialization of scale and gravity using relative pose constraints. To attain this, 

a local scale parameter is adopted in the online initialization process which is responsible for 

taking into account the ambiguity and uncertainty of VIO initialization. However, at the 

beginning of their algorithm, gyroscope bias has not been estimated, and also, the gravity vector 

is not rectified.  

      To increase the accuracy of visual-inertial SLAM algorithms, (C. Campos, et al., 

2019) have concentrated on the estimation of the initial state and proposed a fast joint 

monocular-inertial initialization method, based on the work of (A. Martinelli, 2014) and (J. 

Kaiser, et al., 2017).  

                   Their outcomes showed that the original Martinelli-Kaiser technique is not good 

enough in initialization in most practical scenarios. Hence, they have proposed two visual-

inertial BA steps to improve the solution and two novel tests to detect bad initializations. Even 

though their strategy declined the scale error down and rejected bad initializations, due to the 

use of two visual-inertial BA steps, it rises the computational cost.   

    (W. Huang, et al., 2018) considered the camera-IMU extrinsic parameters in the 

initialization stage of monocular visual-inertial SLAM techniques. In this way, since the 

repeating, the calibration of extrinsic parameters can be challenging while the sensor changes 

slightly, the authors propose an online initialization method to automatically estimate the initial 

values and the extrinsic parameters without knowing the mechanical configuration. Their 

method automatically estimates the visual scale, velocity, gravity, biases of gyroscope and 

accelerometer, and calibrates the camera-IMU extrinsic parameters while the system is 

performing free motion in environments. Besides, it can automatically identify the convergence 

of the calibration parameters so that the initialization stage can be terminated.  

     Recently, (B. Nisar, et al., 2019) provided a visual-inertial model-based odometry 

system in which a relative motion constraint combining the robot's dynamics and the external 

force in a pre-integrated residual has been taken into account, resulting in a tightly coupled, 

sliding-window estimator exploiting all correlations among all variables. The comparison of 
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their system with the original pipeline (VINS-Mono) without motion constraints proved that 

the estimator not only improves odometry accuracy on real-world data, but also estimates time-

varying external forces without increasing the computation time. Since datasets, such as EuRoC 

MAV, does not provide rotor speed measurements or commanded thrust, the proposed 

algorithm has not been evaluated on them.   

     The poor performance of initialization in Visual-Inertial SLAM algorithms heavily 

affects the accuracy of initial values. For this reason, (X. Mu, et al., 2018) addressed this 

problem so that they refine the estimated gravity vector by optimizing the two-dimensional 

(2D) error state on its tangent space. Then, the accelerometer bias is separately estimated, which 

is difficult to be distinguished under small rotation. Although their approach to initialize the 

states is robust, they used the Singular Value Decomposition (SVD) in a separate step to refine 

the gravity, which computationally is expensive and slower than optimization methods. 

    With a more accurate comparison, it can be concluded that in a tightly coupled 

method, IMU pre-integration is used to predict the 2D feature locations in the next frame, 

leading to facilitate feature tracking. In contrast, loosely-coupled approaches do not consider 

the visual and inertial information coupling, making them incapable of eliminating the 

accumulated drift from the usability of inertial measurements, which leads the resulted estimate 

to be sub-optimal.     

     The difference between these two approaches is explicitly illustrated in Figure 8.  

 

Figure 8 - Comparison of loosely (left) and tightly coupled (right) paradigms for VIO     

 

 

    In terms of comparison of filtering-based and optimization-based methods, the 

filtering approaches suffer from drift and exhibit only a limited representation of the global 

environment. Although they are able to close loops topologically and reuse its map, the global 

metric consistency is not enforced in real-time. In addition, the maintaining of the dense 

covariance matrix in EKF is very expensive so that the size of features has to be very limited. 

In contrast, optimization-based methods jointly perform the nonlinear optimization overall 
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coupled sensor states, which can also perform loop closures to compensate for drifting behavior 

and provide globally consistent maps. However, they often demand costly computations for 

platforms that are small, and they demonstrate the state estimations without feedback control. 

      In optimization-based methods, full smoothing is an approach for estimating the 

entire history of the states by solving a large nonlinear optimization problem (Jung and Taylor, 

2001; Sterlow and Singh, 2004; Bryson et al., 2009; Indelman et al., 2013; Patron-Perez et al., 

2015). Even though full smoothing guarantees the highest accuracy, since it can update the 

linearization point of the complete state history as the estimate evolves, it suffers from the 

complexity of the optimization problem which is approximately cubic concerning the 

dimension of the states. Then, the real-time operation quickly becomes infeasible as the 

trajectory and the map grow over time (D. Scaramuzza, et al., 2019).  

     As a result of related works, it can be explicitly observed that by integrating the 

advantages of various branches of SLAM techniques (such as filtering and optimization-based 

approaches and loosely and tightly coupled methods), the robustness and accuracy of the system 

would greatly be improved. Besides, the initial state estimation of VI-SLAM systems plays a 

key role in boosting the accuracy of the system, which its weakness results in incorrect estimates 

and subsequently drift in the estimated trajectory.    

 

3.3 VI-SLAM THEORETICAL BACKGROUND 

 

     To start off and dealing with the proposed VI-SLAM system, some preliminaries 

are required as the basis of our contribution. In fact, to a large extent, these preliminary 

discussions are common beginning among most of the VI-SLAM literature.          

     To estimate the real-time state in visual-inertial odometry, the monocular camera 

and IMU which form a sensing device should be correctly aligned with each other. Therefore, 

the first step to start working with VI-SLAM system is to model the camera integrated with 

inertial sensors.  

      Having both camera and IMU causes that features are observed at different poses. 

For this reason, camera and IMU should be correctly aligned to each other which states of the 

sensing system to be concurrently estimated.  

      Looking at the Figure 9, it can be observed that the several keyframes and IMU 

measurements are maintained in a sliding window. In this process, to jointly optimize the 
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camera and IMU states, as well as feature location, a local bundle adjustment (BA) would be 

implemented when a new keyframe is inserted into the sliding window.  

       In this figure, the basic ideas are: i) to make the well-aligned transformation 

between different coordinate frames and multiple states of the camera–IMU, ii) to match the 

up-to-scale visual structure with IMU pre-integration. In this way, Vision-Only measurement 

and IMU pre-integration are two key issues that are explained in this section. However, before 

it, some notations concerning camera-IMU alignment need to be described. 

       In this study,  (∙)𝐶 is considered as the camera frame, which is an arbitrarily fixed 

frame in a visual structure. (∙)𝑊 denotes the world reference frame where gravity vector is along 

with z-axis, in which 𝐠W = [0; 0; g]𝑇 is the gravity vector in the world frame. and (∙)𝐵 

represents body frame. Besides, we treat the IMU frame as the body frame, which means the 

IMU frame is aligned with the body frame. In this step, we perform vision-only structure from 

motion (SfM), then loosely align IMU measurements with SfM results to get metric initial 

states.    

      Figure 9 demonstrates how to align the up-to-scale visual SfM with IMU 

measurement.  

 

Figure 9 - Camera-IMU alignment strategy in visual-inertial fusion.  

 

 

     Besides, there is a camera calibration which estimates the parameters of a lens and 

image sensor and can be utilized to correct for lens distortion, size measurement of an object in 

world frame or determine the position of the camera in the scene. In camera calibration, there 

are two types of calibrations; i) extrinsic calibration, and ii) intrinsic calibration. Extrinsic 

parameters specify the translation and rotation vectors of the camera in the world coordinate 

system, while intrinsic parameter can be considered as a diagonal matrix including the focal 
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length, the number of pixels per x and y unit of image coordinates and principal points (R. J. 

Radke, 2009). In this study, we assume that the intrinsic calibration of the camera and extrinsic 

calibration between the camera and IMU is known in the initialization step. We do not need a 

very precise extrinsic calibration, since we will continuously refine it in the nonlinear 

optimization. 

 

3.3.1 Visual Measurement 

 

      The initialization procedure starts with a vision-only structure, which estimates a 

graph of up-to-scale camera poses and feature positions. In order to model the visual 

measurement, a re-projection function 𝜋(∙) : ℜ3 → ℜ2 has been considered, which maps a 3D 

landmark 𝑔𝑙
𝑐 = [𝑥𝑙

𝑐 , 𝑦𝑙
𝑐, 𝑓𝑙

𝑐]𝑇 in the camera frame to a 2D points 𝑓𝑙 = [𝑢𝑙 , 𝜈𝑙]
𝑇  ∈ ℜ2 in image 

coordinate frame. Note that the 𝑙 and 𝑐 stand for camera and landmark respectively.  By 

considering the 2 × 1 measurement noise with covariance ∑𝜎𝑙 in conventional pinhole-

camera model (R. Hartley, et al., 2003), the reprojection function is expressed as 𝑧̃𝑙 = 𝑓𝑙 + 𝜎𝑙 . 

Please notice that the formulation of the pinhole model without considering noise (∑ = 0𝜎𝑙 ) 

becomes: 

 

𝑧̃𝑙 = 𝜋(𝑔𝑙
𝑐) = [

𝑓𝑢
𝑥𝑙
𝑐

𝑧𝑙
𝑐 + 𝑐𝑢

𝑓𝑣
𝑦𝑙
𝑐

𝑧𝑙
𝑐 + 𝑐𝑣

],      (4) 

 

where [𝑓𝑢 𝑓𝑣]
𝑇 and [𝑐𝑢 𝑐𝑣]𝑇  denote the focal length and principal points, respectively, 

which are obtained during the camera calibration. Leveraging the visual measurement model in 

(4), the re-projection error function 𝒓∁(𝑔𝑙, 𝜒𝑘) ∈ ℜ2 is given by: 

 

                   𝒓∁(𝑔𝑙, 𝜒𝑘) = 𝜋 (𝐑𝐶
𝐵 (𝐑B

W (𝒈𝑙 − 𝐩𝐵
𝑊) − 𝐩𝐶

𝐵)) − 𝐳̃𝑙,                             (5) 

 

where 𝐑𝐁
𝐖 and 𝐩B

W are the orientation from frame {B} to {W} and 3D position of {B} with 

respect to {W}, respectively. Moreover, 𝐑𝐶
𝐵 and 𝐩𝐶

𝐵 denotes the rotation and translation between 

the mounted camera-IMU sensor that is computed from the calibration. 
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3.3.2  IMU pre-integration 

     

       In practice, the IMU frequency is much higher than the camera. For instance, when 

the IMU frequency is 200 Hz, the camera frequency maybe 20 Hz. Therefore, the IMU Pre-

Integration is a common strategy in tightly-coupled approaches to fuse the IMU and camera 

information. 

       In general, an IMU measures the angular rate and the acceleration of the sensor in 

the body frame {B}, combining the force for countering gravity dynamics of the system. These 

measurements are exposed to acceleration and gyroscope noises, such as white noises 𝜼a and 

𝜼g, respectively. As well as noises, measurements are affected by gyroscope bias, 𝐛g, and 

acceleration bias, 𝐛𝑎, which should be considered in the IMU pre-Integration model. The raw 

gyroscope and accelerometer measurements, 𝝎̂ and 𝐚̂ at time t, are given by: 

 

𝐚̂𝑡 = 𝐚𝑡 + 𝐛a𝑡 + 𝐑w
𝑡 𝐠W + 𝜼a, 

𝝎̂𝑡 = 𝝎𝑡 + 𝐛𝑎𝑡 + 𝜼g, 
        (6) 

       

       As it is explained earlier,  the IMU pre-integration was extended by Forster et al.  

(2015) on the manifold space. Based on this concept, given two sequence keyframes at the time 

i, j, the IMU orientation 𝐑WB, 𝐯BW  and translation 𝐩BW  (between world frame {W} and body 

frame {B}) can be estimated by using measurement equation as follows 

 

𝐑WB
j

= 𝐑WB
i ∏ Exp

𝑗−1
𝑘=𝑖 ((𝝎B

𝑘 − 𝐛g
𝑘 − 𝜼g

𝑘)Δt), 

𝐯B
𝑗

W = 𝐯B
𝑖

W + 𝐠Δt𝑖𝑗W ∑ 𝐑WB
𝑘 (𝐚B

𝑘 − 𝐛a
𝑘 − 𝜼a

𝑘)Δt
𝑗−1
𝑘=𝑖 , 

𝐩B
𝑗

W = 𝐩B
𝑖

W + 𝐠Δt𝑖𝑗W ∑ 𝐯B
𝑘

W
𝑗−1
𝑘=𝑖 Δt +

1

2
ΔtW

2 +
1

2
𝐑WB
𝑘 (𝐚B

𝑘 − 𝐛a
𝑘 −

𝜼a
𝑘)Δt2,  

(7) 

 

where  Exp (.) denotes the exponential map operator, and Δt represents the IMU sampling 

interval, and Δt𝑖𝑗 ≐ (𝑖 − 𝑗)Δt. 

     Figure 10 illustrates the diagram of the IMU pre-integration procedure integrating 

all the information measured by IMU between two consecutive frames i and j.  
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Figure 10 - The diagram IMU pre-integration. 

 

 

     By neglecting the effect of IMU measurements noise, and considering a constant 

noise during the pre-integration process, a small bias correction δ𝐛(,)
𝑖  could be taken into 

account to refine the obtained results from IMU pre-integration. Thus, equations (7) can be 

rewritten as 

 

 𝐑WB
𝑗

= 𝐑WB
i Δ𝐑̅𝑖𝑗Exp(𝐉Δ𝐑̅𝑖𝑗

𝑔
δ𝐛𝑗

𝑖), 

 𝐯B
𝑗

W = 𝐯B
𝑖

W + 𝐠Δt𝑖𝑗W + 𝐑WB
i (Δ𝐯̅𝑖𝑗 + 𝐉Δ𝐯̅𝑖𝑗

𝑔
δ𝐛𝑔

𝑖 + 𝐉Δ𝐯̅𝑖𝑗
𝑎 δ𝐛𝑎

𝑖 ), 

𝐩B
𝑗

W = 𝐩B
𝑖

W + 𝐯B
𝑖 Δt𝑖𝑗 +

1

2w 𝐠w Δ𝑡𝑖𝑗
2 + 𝐑WB

i (Δ𝐩̅𝑖𝑗 + 𝐉Δ𝐩̅𝑖𝑗
g

δ𝐛𝑔
𝑖 + 𝐉Δ𝐩̅𝑖𝑗

𝑎 δ𝐛𝑎
𝑖 ), 

      (8) 

 

where 𝐉(,)
𝑔

 and 𝐉(,)
𝑎  are exerted to indicate how the Δ(, ) change with a bias change in bias 

estimation. The terms of Δ𝐑̅𝑖𝑗, Δ𝐯̅𝑖𝑗 and Δ𝐩̅𝑖𝑗 are independent of the states a time i and the 

gravity, and to be more accurate, they can be computed directly from the IMU sensor between 

to keyframes, as follows 

 

Δ𝐑̅𝑖𝑗 = ∏ Exp
𝑗−1
𝑘=𝑖 ((𝝎B

𝑘 − 𝐛̅g
𝑖 )Δt), 

Δ𝐯̅𝑖𝑗 = ∑ Δ𝐑̅𝑖𝑘
𝑗−1
𝑘=𝑖 (𝐚B

𝑘 − 𝐛̅a
𝑖 )Δt, 

Δ𝐩̅𝑖𝑗 = ∑ (Δ𝐯̅𝑖𝑘
𝑗−1
𝑘=𝑖 Δt + Δ𝐑̅𝑖𝑘((𝐚B

𝑘 − 𝐛̅a
𝑖 )Δ𝑡2), 

 

                (9) 

 

  

where  𝐛̅g
𝑖  and 𝐛̅a

𝑖  remain constant during the pre-integration and can be recomputed at the time 

i.   

       Note that the sliding window is a strategy that keeps the computational time 

bounded by marginalizing out past states. As depicted in Figure 11, the sliding-window-based 
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nonlinear optimization framework would process visual and inertial measurements in a tightly-

coupled way. The nonlinear optimization parts of this process would be explained in the next 

sections. 

        Figure 11 - An illustration of sliding-window based monocular VIO. The local 

window keeps several keyframes and IMU measurements between consecutive keyframes. A 

local bundle adjustment (BA) jointly optimizes keyframes poses, velocity, IMU bias as well as 

feature depths. 

 

 

 

3.4  VI INITIALIZATION  

                         

                   In this section, the idea is to align the up-to-scale camera pose with metric 

information of IMU pre-integration. In the first step of the proposed approach, ORB-SLAM2 

provides visual measurements for a few keyframes. At the same time and according to the 

explanation detailed in section 3.3.2, the IMU pre-integration between these keyframes are 

computed. Indeed, the procedure is that, when a new keyframe is generated, the proposed 

visual-inertial initialization algorithm is executed to initialize and iteratively update the states 

including gyroscope bias, velocity, gravity vector, accelerometer bias and metric scale 

(including scale refinement). This procedure continues until the termination criterion is 

achieved. Firstly, the gyroscope bias is approximately estimated between two keyframes. 

Secondly, the initialization of velocity, gravity vector, and metric scale should be performed. 

Note that the metric scale estimated here is a rough scale that needs to be refined, and the gravity 

vector has been estimated without bias consideration. Then, by refining the gravity vector, 

constraining the magnitude to refine the estimated gravity vector through forming a relatively 

new non-linear linear least-square problem, the velocities, the gravity vector, and scale 
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parameter are initialized. After that, in order to estimate the acceleration bias and rectify the 

scale, we estimate the scale acquired in the previous stage with acceleration bias together. 

Finally, the gyroscope bias is recomputed which would improve the overall initialization 

accuracy.  

                      It is noticeable that the technical contribution of this thesis, which is to consider 

the adjustable parameters to estimate the initial states, is explained in this section.  

 

3.4.1  Gyroscope Bias Initialization 

        

        Possessing the orientation data 𝐑wB
i  and 𝐑wB

j
 from Visual ORB-SLAM2, and 

rotation changes Δ𝐑̅𝑖𝑗 from IMU pre-integration in (9), the gyroscope bias estimation between 

two consecutive keyframes i, j can be described by minimization of errors between relative 

rotation from camera gyroscope integration as (W. Huang, et al., 2018) 

 

        δ𝐛g
∗ = argmin

δ𝐛g

∑ ‖𝐿𝑜𝑔(Δ𝐑̅𝑖𝑗𝐸𝑥𝑝(𝐉Δ𝐑̅𝑖𝑗
𝑔

δ𝐛g))
𝑇𝐑WB

i 𝐑BW
j
‖
2

𝑘=𝑖  ,                         (10) 

 

where k denotes the number of keyframes, ‖∙‖ is the L2-norm, and  𝐑WB
(∙)

= 𝐑WC
(∙)
𝐑CB can be 

computed by transforming the pose of the IMU to the world coordinate system. Then, the 

optimal value of gyroscope bias  δ𝐛g
∗

3×1
 can be obtained by solving (10) through the Gauss-

Newton algorithm (R. Kummerle, et al., 2011). The numerical solution of the equation (10) is 

described in Algorithm 1. 

 

Algorithm 1: Solving Equation (10) by Using the Gauss-Newton Algorithm 

     Input: Orientation data 𝐑wB
i  and 𝐑wB

j
 from Visual ORB-SLAM2, and rotation 

changes   

     Δ𝐑̅𝑖𝑗 from IMU pre-integration in (5) ; 

     Output: gyroscope bias estimation between two consecutive keyframes i, j; 

     Process: 

              solving the normal equation:  

      𝐇𝛅𝐛𝐠
∗ = −𝐅 

               where F ∶=
ℎ(𝛅𝐛𝐠

∗)

𝛅𝐱
, and 𝐇 = 𝐅𝐓𝐅, Hessian of the cost function ; 

               Update: 𝛅𝐛𝐠
∗ ← 𝛅𝐛𝐠 ; 
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3.4.2  Velocity, Gravity Vector, and Metric Scale Initialization 

    

       Once the gyroscope bias is estimated, then, we should initialize velocity, gravity 

vector, and metric scale. To this end, the state vector for optimization can be defined  

 

               𝑿𝐯,  𝑠,  𝐠0 = [ 𝐯B
0

w   𝐯B
1  … , 𝐯B

𝑛
WW  𝐠W   𝑠]

𝑇
,                                        (11) 

 

where 𝐯B
𝑖  , 𝑖 = 1, , , , 𝑛,w   is the velocity in body frame while taking the kth image, with 𝑖, 𝑗 ∈ 𝑘 

image, 𝐠W  indicates gravity vector in the camera frame, and 𝑠 denotes global scale. Note that, if 

the acceleration bias is incorporated in (11), the chance of having ill-conditioned system will 

increase since the gravity and accelerometer bias are hard to be distinguished. For this reason, 

in this stage, the gravity is estimated without consideration of acceleration bias. 

                       Due to the small rotation in initialization, separation of accelerometer bias from 

gravity is very challenging. Therefore, we estimate the gravity and global scale without bias 

consideration. Then, by using 𝐩B
𝑗

W  from (8), applying zero bias accelerometer and substituting 

𝐩BW = 𝑠 𝐩CW + 𝐑WC 𝐩BC  as the inclusion of scale 𝑠 when transforming the camera frame C 

to body frame B, we can obtain the equation of two consecutive keyframes i, j in the window as 

 

𝑠 𝐩C
𝑖+1 = 𝑠 𝐩C

𝑖
W + 𝐯B

𝑖
wW Δt𝑖,𝑗 +

1

2
𝐠W Δ𝑡𝑖,𝑗

2 + 𝐑WB
i Δ𝐩̅𝑖𝑗 + (𝐑WC

i − 𝐑WC
j
) 𝐩BC  ,       (12) 

 

where it can be denoted as 

 

𝒛̂𝑖,𝑗 = 𝐇𝑖,𝑗𝑿𝐯𝑖,𝑠,𝐠0 ,                                                                                          (13) 

and 

              𝒛̂𝑖,𝑗 = [−𝐑WB
i 𝑇

Δt𝑖,𝑗 𝐑WB
i 𝑇

( 𝐩C
𝑗

W − 𝐩C
𝑖

W )
1

2
𝐑WB
i Δ𝑡𝑖,𝑗

2 ] [
𝐯B
𝑖

W

𝑠

𝐠W

] ,              (14) 

 

                    The angular rate 𝐩C
(∙)

W  and 𝐑WB
(∙)

 are being supplied by ORB-SLAM2, and Δt𝑖,𝑗 is 

the time interval between two consecutive keyframes. Note that in (Xufu Mu, et al., 2018), 
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firstly, the velocity estimation has not been considered in this step, and then, the gravity and 

scale are estimated between three consecutive keyframes, and finally, (14) is solved by Singular 

Value Decomposition (SVD). But, in this thesis, we take into account the velocity in this step 

and estimate it between two keyframes to improve the accuracy of 𝑿𝐯𝑖,𝑠,𝐠0, and then, solve it by 

the Gradient descent optimization method. The reason to use optimization is due to the fact that 

the SVD is slow and computationally expensive and requires care dealing with missing data. 

Conversely, since our problem is a convex optimization, the Gradient approach - an iterative 

optimization algorithm for finding the minimum of a function - is used which is faster and deals 

well with missing data. Also, SVD is used to perform PCA that aims to decompose a matrix 

(usually a set of observations) in order to find the directions in which the observations have the 

largest variance. 

   Therefore, we form (14) to a least-square problem, and the optimization problem can 

be described as 

 

𝑿𝐯,𝑠,𝐠̂0 = argmin
𝑿𝐯,𝑠,𝐠0

∑ ‖𝒛̂𝑖,𝑗 − 𝐇𝑖,𝑗𝑿𝐯𝑖,𝑠,𝐠0‖
2

𝑖,𝑗∈𝐾 ,                                            (15)                  

                 By solving the least square problem (15), we can estimate the rough gravity, scale 

and velocity. However, it is noticeable that from output of (15), we only deal with the scale. 

Also, note that in the above formula, the accelerometer bias is not considered during the 

computation of scale, gravity, and velocity (as it cannot be observed in (14)). This is done in 

order to increase the chance of having an ill-conditioned system since the gravity and 

accelerometer bias are hard to be distinguished (C. Campos, et al., 2019). Therefore, at the next 

step, it would be explained how the gravity magnitude is considered in our system. 

 

 

 

 

 

 



64 

 

                  Algorithm 2 shows the solution process of equation (15). 

Algorithm 2: Solving Equation (15) by Using the Gradient Decent Algorithm  

     Input: 𝐩C
(∙)

W  and 𝐑WB
(∙)

 that are supplied by visual ORB-SLAM2, Δt𝑖,𝑗 is time 

interval  between two consecutive keyframes; 

     Output: velocity 𝐯B
𝑖

w , gravity vector 𝐠W  and scale 𝑠; 

     Process: 

              solving the linear least square problem:  

                      𝑿𝐯,𝑠,𝐠̂0 = 𝑿𝐯,𝑠,𝐠0 − 𝛼∇𝑓(𝑿𝐯,𝑠,𝐠0) 

              where 𝛼 and ∇ denote learning rate and gradient at current position, 

respectively ; 

              Update: 𝑿𝐯,𝑠,𝐠̂0 ← 𝑿𝐯,𝑠,𝐠0  ; 

 

 

     After obtaining the rough scale, we need to acquire the final gravity 𝐠̂ without 

considering the accelerometer bias, which is rectified by considering gravity magnitude 

information 𝐠𝑇𝐠 = 9,82 2 (Y. Liu, et al., 2017), where 𝐠 = [0 0 𝐺]𝑇, 𝐺 = 9,82. 

                      In general, there are two common ways to consider gravity magnitude in (15): i) to 

model the gravity, substituting in 𝐠𝐖  in (9) and it is re-optimized the (15) as done in (Y. Liu, et 

al., 2017, W. Huang, et al., 2018), ii) to directly add the gravity magnitude as a constraint (J. 

Kaiser, et al., 2017, A. Martinelli, 2014). 

                   To rectify the states in the initialization section of this thesis, the second way which 

is to directly add the gravity magnitude to optimization problem has been selected, in which 

two adjustable parameters L and P are employed into the equation. As a part of this process, a 

Closed-Form (CF) method is employed that is provided by (J. Kaiser, et al., 2017, A. Martinelli, 

2014). In fact, we used the basic equations that characterized the closed-form solution to obtain 

local gravity and velocity. To perform this strategy, a short interval of time should be 

determined that in our case by using trial and error, it is chosen 1 seconds. The reason to use of 

this value of interval time is that we realized that in our case, and by trial and error, for any 

short time less than 1 second, local convexity of the states leads failing.  
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At any short interval, the camera would observe N point-features in which the camera displays 

an image of these points. In this way, the times of this interval are denoted by 𝒕𝟏, 𝒕𝟐, … , 𝒕𝒏 ,and 

the following equation is derived from (A. Martinelli, 2014): 

                                      𝑺𝒋 = 𝝀𝟏
𝒊 𝝁𝟏

𝒊 − 𝑽𝒕𝒋 − 𝑮
𝒕𝒋
𝟐

𝟐
− 𝝀𝒋

𝒊𝝁𝒋
𝒊 ,                              (16) 

where vectors 𝑺𝒋 denotes the camera-IMU integration in the interval [𝒕𝟏, 𝒕𝒋] that is determined 

by accelerometer and gyroscope. Also, vector 𝝀𝟏
𝒊  represents the distance to the point features i 

at time 𝒕𝒋. Besides, vectors 𝝁𝒋
𝒊 denotes fully determined by visual and gyroscope measurements 

in the interval [𝒕𝟏, 𝒕𝒋] that are required to express the bearing at time 𝒕𝒋 in the frame at time 𝒕𝟏,  

                 Given that the scale is not considered in (16), we kept rough scale obtained from 

(15), and continue the process from (16) onwards. Also, equation (16) provides three scalar 

equations for each point feature i = 1,…, N, and it can be written in the following compact form: 

                                                      𝚵𝑿 = 𝑺 ,                                                  (17) 

where for simplicity, 𝑿 is the same 𝑿𝐯,𝐠̂,𝝀 = [𝐠̂𝑻, 𝐯𝑻, 𝝀𝟏
𝟏, … , 𝝀𝟏

𝑵, … , 𝝀𝒏
𝟏 , … , 𝝀𝒏

𝑵]
𝑻
, vector 𝑺 is fully 

determined by the measurements, and 𝚵 is provided by (A. Martinelli, 2014). Then by making 

an optimization problem, equation (17) is described as the follows 

                                 𝑿 = 𝐚𝐫𝐠𝐦𝐢𝐧
              𝑿𝐯,𝐠𝟎,𝝀

∑ ‖𝚵𝑿𝐯,𝐠𝟎,𝝀 − 𝑺‖
𝟐

𝒊,𝒋∈𝑲                            (18) 

                    Furthermore, as an important part, the gravitational magnitude g is considered as an 

extra constraint 𝐠𝑻𝐠 that it can be expressed in matrix form 

                                                𝑳|𝚪𝑿|𝟐 = 𝐠𝑻𝐠  ,                                            (19) 

where 𝚪 ≡ [𝑰𝟑, 𝟎𝟑, … , 𝟎𝟑]. 

                 Finally, we have an optimization problem as follows   

    

                       

{
 

 𝑿 = 𝐚𝐫𝐠𝐦𝐢𝐧
         𝑿𝐯,𝐠𝟎,𝝀

 ∑ 𝑷‖𝚵𝑿𝐯,𝐠𝟎,𝝀 − 𝑺‖
𝟐

𝒊,𝒋∈𝑲

𝐬, 𝐭: 𝑳|𝚪𝑿|𝟐 = 𝐠𝑻𝐠

  ,                             (20) 
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where P and L are the adjustable parameters considered as the weights for objective and 

constraint terms, respectively. Also, to solve this equation, it has been converted into problem 

form that is solvable for Fmincon (https://uk.mathworks.com/help/optim/ug/fmincon.html) 

being a nonlinear package programming solver to find a minimum of a constrained nonlinear 

multivariable function, and it turns out that the Interior Point method would find the nearest 

results to minimum values. 

 

                  It is noticeable that to the best of our knowledge, it is the first time the formulation 

above is represented in visual-inertial fusion, where P and L have been considered as adjustable 

parameters for each term. Indeed, by this strategy, we can to do a trial-and-error method to 

attain the best value of 𝑿𝐯,𝐠̂,𝝀. 

                  Algorithm 3 describes the approach used to solve (20) by Interior Point method. 

Algorithm 3: Solving Equation (20) by Using the Fmincon Algorithm 

     

                    Input: vector 𝑺 is fully determined by the measurements of accelerometer and  

    Gyroscope in the interval [𝑡1, 𝑡𝑗], and Ξ is provided by (A. Martinelli, 2014). 

    Output: the rectified gravity vector 𝐠̂, velocity v at time j, and 𝜆𝑛
𝑁  distance to the 

keyframe i at time 𝑡𝑗; 

     Process: 

                 solving the constrained least square problem using fmincon solver 

                      𝑚𝑖𝑛 𝑓(𝑿𝐯,,𝐠,𝝀) 

                         s.t: |𝚪𝑿𝐯,,𝐠,𝝀|
𝟐
= 𝐠𝑇𝐠 

                  where 𝚪 ≡ [𝑰𝟑, 𝟎𝟑, … , 𝟎𝟑]; 

                  Update: 𝑿𝐯,,𝐠̂,𝝀 ← 𝑿𝐯,,𝐠,𝝀 ; 

 

 

3.4.3  Accelerometer Bias Estimation and Scale Refinement  

       

                      To compute the accelerometer bias and scale refinement, we have to consider 𝐠0 that 

has already been obtained from (20) as a fixed vector. Assuming that the estimated scale has an 

approximation value, then, to rectify the scale, the accelerometer bias and scale can be estimated 

together. The considered variables to be estimated are 
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                                                     𝑿𝑠,𝐛𝑎 = [𝑠, 𝐛𝑎]
𝑇  ,                                                    (21) 

 

                   By adding 𝐛𝑎 as the accelerometer bias to (14), and making a new optimization 

problem similar to (15), we have  

                      𝒛̂𝑖,𝑗 = [−𝐑WB
i 𝑇

Δt𝑖,𝑗 𝐑WB
i 𝑇

( 𝐩C
𝑗

W − 𝐩C
𝑖

W ) −𝐉(,)
𝑎 ] [

𝐯B
𝑖

W

𝑠
𝐛𝑎

]                 (22) 

                  Since the velocities are estimated in Section 3.4.2, the updated 𝒛̂𝑖,𝑗 would be as 

follows  

                       𝒛̂𝑖,𝑗 = [𝐈3×3(𝐑WB
i 𝑇

( 𝐩C
𝑗

W − 𝐩C
𝑖

W )Δt𝑖,𝑗) −𝐉(,)
𝑎 ] [

𝑠
𝐛𝑎
]                          (23) 

 

where optimization solution is used to find the 𝑿𝑠,𝐛𝑎, the refined scale and the estimated bias 

are obtained. 

 

3.4.4  Gyroscope Bias Refinement  

      

       In the final step, after initializing all the states, to increase the accuracy of 

initialization, we reinitialize gyroscope biases by using the updated values obtained in the 

initialization process and recompute (15) to improve the accuracy of initialization states as 

much as possible. 

 

3.5  TERMINATION CRITERION 

 

      Before the end of the visual-inertial initialization process, this question may come 

up that that when the initialization should be terminated. Unfortunately, in many works, this 

problem and its solution have been ignored. However, in our strategy, the visual-inertial 

initialization process is automatically terminated when all the estimated states are convergent. 

For instance, one of the convergence indicators is to leverage the norm of the nominal gravity 

which is a constant 9.806 𝑚/𝑠2. Once the termination criterion is performed, the initialization 

process will be automatically finished. Then, to feed the nonlinear tightly coupled visual-inertial 

SLAM system, the estimated initial state values can be used. 
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3.6 SUMMARY 

       

         In this chapter, to overcome the challenges in VSLAM and improve its accuracy 

in the indoor environment, a new states initialization estimation method is introduced to 

improve the position accuracy. Indeed, this improvement is applied in the initialization step 

which not to underestimate it, leads to having a low accuracy in the estimate of initial values 

following that the 3D map and its output position be unreliable. To this end, we presented a 

new technique in which, firstly, in the initialization step, the Gradient descent optimization 

method is used instead of SVD, and secondly, to estimate the velocity, gravity vector, and 

metric scale, a new formulation is presented in which the user can tune the parameter weights 

to attain the best performance in finding the best initialization values. In the next chapter, the 

proposed approach is implemented by two methods: benchmark and using a real IMU-camera. 
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4 PERFORMANCE EVALUATION   

 

      In this chapter, we detail the complete implementation of visual-inertial 

initialization to qualitatively and quantitatively evaluate the performance of the proposed 

algorithm. Overall, implementation can be divided into two sections: Benchmark and 

Experiment. 

     Based on the designed algorithm presented in the previous chapter, our algorithm 

requires to be regulated via two adjustable parameters 𝐿 and 𝑃 in the range of 0 and 1. This 

process is performed using trial and error until the best performance and minimum loss error 

are reached. Although this strategy might be a little time-consuming due to run and evaluate 

the performance many times, its results would be valuable since these parameters can be utilized 

in the categorized environment such as texture and texture-less based on the relations between 

𝐿 and 𝑃. 

     In benchmark, the EuRoC dataset (M. Burri, at al., 2016) is utilized. This dataset 

contains 11 sequences of 2 scenes including six “Vicon Room” and five industrial “Machine 

Hall” sequences, which was synchronously recorded from the firefly micro-aerial vehicle 

equipped with a global shutter WVGA camera at 2fps and an IMU at 200Hz at high flying 

speed in two different environments. The first environment is a 30 𝑚2 indoor room which 

contains objects including the chair, table, chess-board, and any others. Second environment is 

300 𝑚2 in which industrial machines can be observed. Both datasets contain ground-truth 

positions measured by the Leica MS50 laser tracker and Vicon motion capture system, which 

are well-calibrated systems to be employed as the benchmark dataset to evaluate the efficiency 

of various state-of-the-art VO/VIO/SLAM approaches. Also, depending on illumination, 

texture, and motion dynamic, the dataset is categorized into three classes including easy, 

medium, and difficult. 

    It is necessary to mention that the EuRoC dataset does not provide an explicit 

ground-truth scale, so we require to compute the true scale according to the trajectory generated 

from visual ORB-SLAM2 and the ground-truth data. In fact, in this process, firstly, the 

initialization of the ORB-SLAM2 system is completed, and then an initial translation between 

two keyframes is generated. At this stage, the true translation on basis of corresponding ground 

truth states can be calculated. After this, the benchmark scale, which is the same true scale, can 

be considered as the ratio of the true translation to the initial translation.     
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    Then, to corroborate the superiority of our algorithm, the proposed system has been 

compared with the state-of-the-art methods: Monocular Visual-Inertial System (VINS-MONO) 

(Y. Lin, at al., 2016), Monocular visual-inertial System with loop closure (VINS-Loop), VI 

ORB-SLAM (R. Mur-Artal, at al., 2017), and Multi-State Constrained Kalman Filter (MSCKF) 

(A.I. Mourikis, et al., 2007). In the following, some explanation is presented for each of these 

state-of-the-art. 

a) VINS-MONO: a non-linear optimization-based sliding window estimator, tracking 

robust corner features.  

b) VINS-Loop: the VINS-MONO with closure loop. 

c) VI ORB-SLAM: a tightly coupled and nonlinear optimization approach that contains an 

ORB sparse front-end, graph optimization back-end, loop closure, and relocation. This 

system is able to close the loop and reuse the previously constructed 3D map. 

 

      We also evaluated the proposed algorithm from a point of hardware’s view in 

which a different hardware configuration - embedded single-board hardware called Raspberry-

Pi - is employed. This experiment is carried out to measure the performance of the proposed 

algorithm such as pose estimation accuracy and CPU usage while processing the EuRoC 

dataset. 

      Finally, we validate the performance of our algorithm by performing an indoor 

real-world experiment using the sensor of Intel RealSense ZR300 which contains an IMU and 

a global shutter camera. Both tests are performed on a laptop with Intel Core i7 3.0 GHz CPU 

and a 16GB RAM configuration, which has been equipped with Robot Operation System (ROS) 

– Kinetic version - and implemented in C++ and Python. 

                    In this context, the objectives in benchmark are: 

 

• To validate the efficient role of additional adjustable parameters to improve accuracy. 

• To show the lower tendency of the proposed algorithm to accumulate error in long-term 

trajectory compared to state-of-the-art visual-inertial algorithms.  

• Investigation of the proposed algorithm performance from a point of hardware’s view 

such as CPU usage.  

• Investigation of limitations of employing the Raspberry-Pi 3 in the benchmark.  

 

                 Besides, the objectives of indoor real-world experiment are: 

• Employing the adjustable parameters obtained in benchmark and applying them in real-

world experiment. 

• Reduction in the initialization time before capturing the ORB features.       
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4.1  BENCHMARK 

 

4.1.1 Implementation 

 

     As presented in the previous chapter, our strategy is to adjust the parameter L and 

gravity coefficient P, so that the best performance and minimum error could be achieved. For 

this reason, by using trial and error, we can attain the appropriate parameters of the formula 

provided for three types of environments in the EuRoC dataset. Note that we opted for three 

different sequences as the representative of the EuRoC dataset based-off on their difficulty level 

(easy, medium, and difficult), and then, the parameters obtained in this step will apply to the 

entire sequences of the dataset. These parameters are constrained to the range between 0 and 1. 

Thus, by increasing and declining each of them, the best performance and accuracy can be 

achieved. To do this, we use 

• Operating system of Ubuntu 16.0 LTS 

• ROS – kinetic version5 

 

  In terms of the benchmark process and measuring the approach, it is noticeable that, 

first of all, the data is immediately recorded using ROSBAG command in ROS framework 

before running algorithm, and then after finishing the path traveled, this data is converted to a 

CSV file to exploit in error computation and visualization. 

       Table 2 shows the parameters used in our algorithm in the EuRoC dataset. 

 

 Table 2 - Adjustable parameters obtained in this study 

  Difficulty 

       Level 
𝑃   L 

    Easy 0.852 0.987 

 Medium 0.813 0.935 

 Difficult 0.962 0.897 

       It is clear that, by increasing the difficulty of the environment from medium to 

difficult, the amount of P-value should increases. Simultaneously, by decreasing the difficulty 

level of the environment, the amount of L value should increase. By knowing the relation 

 
5 http://wiki.ros.org/kinetic 
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between L and P in different environments in terms of texture, lightness, or any others, leads to 

reduce the drifting away from the ground-truth. 

       Now, we can apply our new formulation with additional parameters L and P to the 

EuRoC dataset and evaluate its accuracy. To this end, the accuracy of our algorithm, which has 

been evaluated in 11 sequences of the EuRoC dataset, shows that it has a successful 

performance compared to some sequences in other algorithms. The results of the use of selected 

parameters can be observed in Figure 12, in which the trajectory traveled by MAV, programmed 

via the proposed algorithm, has been compared to ground-truth. Note that in this figure, MH 

and V are the names of scenarios based on the difficulty of the environment.   

 

Figure 12 - Trajectory of the proposed system in EuRoC dataset 
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                  Fortunately, in all the sequences except V1-01-Difficult, the path travelled by our 

algorithm followed the ground truth, implying the proposed system had an appropriate 

performance.  

                    Also, to have a deeper insight in the obtained results, a numerical comparison table 

(Table 3) has been created, in which by using absolute translation root-mean-square error 

(RSME) criteria, the performance of the proposed method has been compared to VINS-MONO, 

VINS-Loop, and VI ORB-SLAM algorithms for all the 11 sequences.  

        We choose the RSME criterion, since it is a commonly-used index to assess the 

error between the predicted and observed values. To calculate the RMSE, the following 

equation is used: 

 

                 𝑅𝑆𝑀𝐸 =  √
1

𝑛
∑ (𝑓𝑖 − 𝑜𝑖)2
𝑛
𝑖=1     ,                                               (20) 
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where n is the number of samples, and f and o denote the predicted and observed values, 

respectively. 

       Note that the RSME is the standard deviation of the residuals (prediction errors). 

Residuals are a measure of how far from the regression line data points are. In other 

words, RMSE is a measure of how to spread out these residuals are. 

                     To a certain extent, one of the most critical problems in this study is to attempt to 

reduce RSME intensity by adjusting the parameters considered as weights in the proposed 

approach presented in Chapter 3. 

       In this table, scale error is calculated as |𝑠∗ − 𝑠̂|/|𝑠̂| × 100%, where 𝑠∗ denotes 

the optimum scale and 𝑠̂ corresponds to the ground-truth scale. 

 

      Proposed  VI ORBSLAM2       VINS-MONO VINS-LOOP 

Sequences 
Scale 

Error (%) 

RSME 

(m) 

Scale 

Error (%) 

RSME 

(m) 
RSME (m) RSME (m) 

V1-01 (easy) 1.32 0.065 0.9 0.027 0.088 0.081 

V1-02 (medium) 1.16 0.088 0.8 0.028 0.068 0.042 

V1-01 (difficult) x x   x    x 0.160 0.156 

V2-01 (easy) 2.05 0.059 0.2 0.032 0.068 0.063 

V2-02 (medium) 2.04 0.067 1.4 0.041 0.084 0.066 

V2-03 (difficult) 2.1 0.072 0.7 0.074 0.159 0.157 

MH-01 (easy) 0.64 0.064 0.5 0.075 0.301 0.098 

MH-02 (easy) 0.81 0.069 0.8 0.084 0.249 0.152 

MH-03 (medium) 1.25 0.090 1.5 0.087 0.173 0.080 

MH-04 (difficult) 1.14 0.091 3.4 0.217 0.323 0.129 

MH-05 (difficult) 0.8 0.078 0.5 0.082 0.257 0.077 

              

                    It can explicitly be observed that the worse result is related to sequences V1-02-

Medium because its RSME is higher than VINS-MONO, VINS-LOOP and VI ORB-SLAM 

over the alignment trajectory to the ground-truth pose via SE (3). Whereas in contrast, the 

proposed algorithm experienced the lower RSME in sequences MH-01-Easy, MH-02-Easy, V2-

03-Difficult and MH-04-Difficult achieved acceptable results and outperforms the VINS-

Table 3 -  Comparison of translation RMSE (m) 

https://www.statisticshowto.com/probability-and-statistics/standard-deviation/
https://www.statisticshowto.com/residual/
https://www.statisticshowto.com/prediction-error-definition/
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MONO, VINS-Loop, and VI ORB-SLAM. Note that in our comparison, no full BA results of 

VI ORB-SLAM are considered. 

                   Although our algorithm obtained high accurate results in benchmark, it fails to 

perform the V1-01-Difficult sequence. This is because, in this sequence, the MAV has extreme 

movements at the beginning, resulting in initialization failure in the algorithm. About other data 

sequences, our visual-inertial SLAM algorithm can be executed in real-time without any lost-

tracking. However, in comparison, OKVIS, which employed a stereo camera, can run without 

performing initialization leading the algorithm to handle this data sequence easily. However, in 

contrast, OKVIS obtained the lowest accuracy during to process V2-03-Medium. 

                   On the other hand, VINS-MONO utilizes the sparse optical flow tracking as an 

independent front-end module to retrieve data association. In videos, optical flow can be 

considered as a robust approach for tracking features, leading to successful initialization and let 

the algorithm run all the data sequence in the EuRoC dataset.  

                    In addition, in terms of consistency, the proposed algorithm is evaluated. In the 

obtained results, it is noticeable that our algorithm in some sequences has a lower tendency to 

error accumulation in long-term trajectory compared to other algorithms as it does not leverage 

the full Bundle Adjustment, because it increases the computational cost of the system. For 

instance, in the sequence MH-01-easy, and VIMS_MONO system, by increasing the trajectory, 

the accumulated error increases from about 3 m to 5.5 m in terms of Root Mean Square Error 

(RSME). Figure 13 shows the trajectory traveled by the proposed method compared with 

OKVIS, and VINS-MONO, VINS with loop closure (VINS-LOOP) in terms of consistency. 
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Figure 13 - Comparison of the proposed method versus OKVIS, VINS-MONO, and 

VINS with loop closure (VINS-LOOP)  

 

 

  

         Furthermore, compared with the method proposed as VI ORB-SLAM (R. Mur-

Artal, et al., 2017), our method requires initialization time of 1 or 2 seconds instead of 15 

seconds.Also, our algorithm uses less CPU time, and can successfully initialize in sequence 

MH-05-Difficult, where the previous method (S. J. Haddadi, et al., 2019) had high RSME. 

         Figure 14 illustrates the features and global map obtained by the proposed 

algorithm.   
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Figure 14 - Features and the map obtained by proposed algorithm. 

 

 

4.1.2 CPU Usage Measurement In Benchmark 

    

                      From a hardware perspective, it is crucial how the Central Processing Unit (CPU) 

is used during the visual-inertial SLAM process. Suppose that this algorithm tends to be 

employed for indoor positioning of a Quadrotor. In this case, single-board computers come up.  

                  In this section, in point of hardware’s view, the CPU used in this benchmark is 

evaluated via two types of computer: Raspberry-Pi single-board and Laptop. The Raspberry-Pi 

is the right choice since it is much cheaper than the existing commercial single-board 

processors. Also, relative to its price, in terms of power, Raspberry-Pi is appropriate to execute 

processor-heavy tasks such as image processing and sensor fusion. The Raspberry-Pi 3 Model 

B single-board used in this study, has the following configuration: 

 

• 1.4GHz 64-bit quad-core CPU 

• Dual-band wireless LAN 

• Bluetooth 4.2/BLE 

• Power-over-Ethernet support (with separate PoE HAT)   

• 1 GB SDRAM 

• Video Core 250-400MHZ GPU 

      

         In this way, the scenarios are categorized into three levels: easy, medium, and 

difficult. The reason for this practice is to assess the CPU usage while the difficulty of the 
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environment is increasing and the rooms are darker and more unrecognizable. Since in the 

dataset, there are four easy environments, three medium and four difficult scenarios, we decided 

to compute an average percentage of CPU usage for each category, which is illustrated in Figure 

15. 

 

Figure 15 - CPU usage during executing the proposed algorithm for each category in 

EuRoC dataset 

 

     
To monitor the CPU usage, htop tool is used which is an interactive process viewer, 

and allows user to scroll vertically and horizontally so that all the processes running on the 

system, along with their full command lines could be observable. As well as this, users can 

view them as a process tree, selecting multiple processes, and acting on them all at once. Also, 

htop can be used to determine percentage CPU usage along with memory and swap usage 

statistics. 

 

      Table 4 - CPU usage Comparison between Laptop and Raspberry-pi 

       Sequences  Level   Hardware 

            

Average CPU Usage 

(percent)  

 Easy Laptop 41.57 

Medium Laptop 52.69 

Difficult Laptop 68.45 

 Easy Raspberry-Pi 81.39 

Medium Raspberry-Pi 89.24 

Difficult Raspberry-Pi 94.47 

               

       Also, Table 4 shows the percent of average CPU usage in each class and computer. 

From this table, it can be noticed that as much as the difficulty of environments increases, the 
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CPU used to process the algorithm raises. Also, it shows the Raspberry-pi is attempting to use 

a major amount of its capacity to handle the computing process.         

        From Table 4, it can be concluded that since the CPU capacity of Raspberry-Pi is 

lower than Laptop, hence, its capacity is quickly filled which means this single-board is 

sometimes prone to be overloaded and fail. To overcome this problem, the suggestion is to 

employ the Raspberry-Pi 4 which includes a faster CPU (1.5 GHz), GPU (500 MHZ), and RAM 

(4GB). We think that in a newer version of Raspberry-Pi, the CPU, GPU, and memory speeds 

are higher which means it could be a robust system to perform projects that need more 

processing power and are challenging for Raspberry-Pi 3. However, due to the inaccessibility 

of this computer in this study, the experiment has been executed via Raspberry-Pi 3.   

  

4.1.3 Benchmark Conclusion  

               

                      In this section, it is observed that the use of additional adjustable parameters L 

and P can play a relatively efficient role in some scenarios based on the difficulty level of the 

environment. Also, the proposed algorithm showed that has a lower tendency to error 

accumulation in long-term trajectory compared to state-of-the-art visual-inertial algorithms. 

Although this lower error accumulation has not been observed in all the sequences, it could be 

an initial way for further study and improvement of it. Besides, the proposed algorithm in the 

benchmark implementation process is investigated from a hardware perspective. The CPU 

amount used during the benchmark is measured by two types of computers: Laptop and a 

hardware called Raspberry-Pi 3 single-board. The results showed that the Raspberry-Pi 3 is 

sometimes prone to be overloaded, stopping in feature capturing and failure due to its lower 

CPU capacity. 

 

4.2  INDOOR REAL-WORLD EXPERIMENT 

 

      The second experiment is to perform the proposed visual-inertial SLAM algorithm 

in the real indoor environment (with random texture) using a hand-held monocular-inertial 

RealSense ZR300, which is a ready-to-market sensor that provides 20-HZ image and 200-HZ 

IMU measurements.  
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                     Based on hardware components, the most important points about this sensor is that 

it consists of one fisheye camera with a lens's angular Field of View (FoV) of 133° and 100° 

in the horizontal and vertical directions, respectively, and streams a 640×480 image at 60 frames 

per second. Also, there is an onboard IMU which provides 3-axis accelerations and angular 

velocities in a body frame with timestamps at 20 kHz. It is noticeable that in this experiment, 

the depth measurement has not been used, and the two IR cameras, the projector, and the RGB 

camera are disabled for reduced-power operation. 

 

4.2.1  Camera-IMU time-synchronization 

 

       Since there are different clock sources in ZR300 for the IMU and image 

timestamps, direct use of the timestamps from the RealSense library leads to poor estimator 

performance. To tackle this challenge, the used strategy generates a synchronization message 

every time the sensor captures an image, including the timestamp and a sequence number of 

the corresponding image. Then, two ring buffers (for images and synchronization messages) 

are used to look up the correct timestamp of the image concerning the IMU before publishing 

it over ROS. Different sampling rates of IMU is another important issue that should be 

considered in synchronization. Suppose that the IMU works on different sampling rates of 

gyroscopes (∼200 Hz) and accelerometers (∼250 Hz). Therefore, it is obvious that poor state 

estimation would be accrued. To mitigate this problem, an IMU message is published 

containing both sensors at the rate of the gyroscopes, and by buffering the messages, linearly 

incorporates the accelerometer messages. This process is performed using a technique provided 

by (J. Rehder, at al., 2016). 

        In summary, when two sensors are running at different sampling rates with their 

time sources, the faster update rate is used as the master time (I. Sa, at al., 2018).  

        Also, about estimating the camera exposure time, it is noticeable to mention that 

a constant offset between the IMU and camera is employed using Kalibr (P. Furgale, at al., 

2013). 

       Looking back to the experiment, since the knowledge about the difficulty level of 

the environment is extensively decisive, the selected indoor environment has a size of 4 by 4 m 

and it is considered as a medium in terms of having texture. For this reason, we chose L and P 

based on Table 4, such that P and L are 0.813 and 0.913, respectively.   
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       To achieve the best performance, the intrinsic parameters of the camera, including 

focal length and principal points are calibrated as: 𝑓𝑢 = 535,4 , 𝑓𝑣 = 539,2 and 𝑐𝑢 = 320,1, 

𝑐𝑣 = 247,6 respectively. 

 

       Figure 16 - A screen shot of the proposed visual-inertial ORB-SLAM algorithm 

during experiment. 

 

        

       Figure 16 depicts a screenshot of features taken by visual-inertial ORB-SLAM 

and the trajectory traveled by the monocular-inertial sensor during the experiment. Even though 

the environment lacks the chessboard or any special visual tag, the features are well-distributed 

in the current image.  

       In our implementation procedure, we kept the sensor in our hands, and after 

initialization and finding the features by the sensor, we started to make a square trajectory 

(16𝑚2) by walking at a normal pace. In Figure 21, which depicts the trajectory traveled by the 

monocular-inertial sensor, it is explicitly observed that there are no significant drifts occurred 

when we move around the room. The total amount of path traveled is 16 m, which is an 

appropriate distance to perform this test. 

 

 

 

 

 

Figure 17 - Path travelled using IMU-Camera in real indoor environment. 
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 Another positive achievement in this experiment is to decrease the initialization time. 

Before this, we had to wait at least 10 seconds to initialize the system and obtaining ORB 

features. However, with this new algorithm, we need just around 3 seconds to obtain ORB 

features after the beginning of the video capturing. Figure 18 shows the initialization step during 

this experiment in the real-world some seconds before obtaining ORB features.  As it can been 

observed in this Figure, while green lines are appeared, it means that the algorithm is trying to 

initialize the states.  

 

Figure 18 - Initialization step during this experiment in real world. 
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4.2.2  Real-World Experiment Conclusion 

 

       In this section, the process of the indoor real-world experiment test is explained. 

One of the main objectives of this section was to employ the adjustable parameters obtained in 

the benchmark and apply them in a real-world experiment. Fortunately, this practice is 

successfully performed without failure and losing the features during the experiment. Another 

achievement in this experiment is to show the reduced initialization time to 3 seconds before 

feature capturing, which compared to the initialization method proposed in state-of-the-art 

VO/VIO/SLAM, such as (R. Mur, et al., 2017)  is an acceptable initialization time. Indeed, in 

contrast to the original ORB-SLAM, which its initialization time is around 10 seconds, our 

proposed algorithm takes a lower time to initialize the states.  
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5 CONCLUSION 

 

                     In this study, the evaluation of the proposed visual-inertial SLAM with a new 

formulation is presented. As it is mentioned at the beginning of this study, the main 

objectives of this thesis are: i) To accurately initialize the states in the initialization step of 

the visual-inertial SLAM, ii) To reduce the tendency of the proposed algorithm to error 

accumulation in long-term trajectory, iii) Investigation of the performance of the proposed 

algorithm from a point of hardware’s view, such as CPU usage, iv) To evalute the proposed 

algorithm using a benchmark and in a real indoor environment. 

                   To attain these objectives, a new formulation is proposed in framework of a 

visual-inertial SLAM system, in which a camera and IMU are employed to localize the 

robot in a GPS-denied environment. To this end, this study explains how to attain this 

achievement step by step. 

                         Chapter 1 describes how robots can autonomously operate in outdoor/indoor 

environments. The major section of this chapter is dedicated to Simultaneous Localization and 

Mapping (SLAM) and its structure as one of the most popular positioning methods in the 

robotic system. In fact, this chapter is an introduction to identify the SLAM elements and 

entering the world of positioning using localization and mapping.  

         Then, in chapter 2, the visual SLAM, which contains how to take the advantages 

of the camera is described. The goal of this chapter is to show the usage and advantage of a 

single camera as the main sensor to generate the visual information input of the visual SLAM 

system. To better understanding, visual SLAM, some of the most important visual SLAM 

(VSLAM) approaches, and their pros and cons are reviewed. In the following of this chapter, it 

is concluded that the ORB-SLAM2 could be the most reliable and complete solution for 

monocular visual SLAM, and is the most representative state-of-the-art visual SLAM.  

        Every visual SLAM system has some challenges, leading to inaccurate 

positioning in an indoor environment. Chapter 3 explains how to leverage the fusion of camera 

and IMU in a SLAM system under the title visual- inertial SLAM (VI-SLAM) to reduce the 

inaccuracy or tackle the challenges in a V-SLAM system. In this chapter, the importance of 

state initialization accuracy is introduced as one of the most challenging steps, heavily affecting 

the performance of the system. To the best of our knowledge, this chapter presents a new 

formulation, in which the user can regulate the adjustable weights to attain the best performance 

in finding the best initialization values.  
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      To assess the performance of our presented algorithm, the best values for 

adjustable parameters are obtained based on the difficulty level of the indoor environment. In 

other words, by using this strategy, the user can use the obtained adjustable parameters in every 

environment based on being texture or textureless. To this end, two types of test, including a 

benchmark and experimental, are executed. In the benchmark test, the proposed algorithm is 

applied to the EuRoC dataset. Fortunately, the difficulty level of this dataset has already been 

determined  based on the existence of objects, light, being texture or textureless. By employing 

the right parameters L and P, in some scenarios, we could attain satisfactory results compared 

to state-of-the-arts visual-inertial Odometery and SLAM. Since the P parameter is the 

coefficient of gravity term, it can be concluded that the value of gravity plays a key role in 

improving the state estimation accuracy based on the difficulty of the environment. Also, from 

point of hardware’s view, while the proposed algorithm is being executed, the maximum CPU 

usage in each sequence is measured on a Raspberry-Pi single-board and a Laptop. Results 

demonstrated that the Raspberry-Pi 3 - because of a worse hardware configuration - is under 

more pressure in terms of CPU usage. Indeed, the CPU capacity of Raspberry-Pi is lower than 

Laptop, hence, its capacity is quickly filled, which means this single-board is sometimes prone 

to be overloaded and fail. Therefore, Raspberry-Pi 4 is suggested to overcome this problem, 

which includes faster CPU, GPU, and RAM. Besides, to illustrate the goodness of our algorithm 

in the real world, an experimental test is performed. In this way, a monocular-inertial RealSense 

ZR300 sensor is employed. The outcomes were satisfactory, so that the initialization time was 

very short and the proposed algorithm could quickly obtain the ORB features. Also, for the 

betterment of accuracy in the real-world experiment, a good suggestion is to find a limited range 

for adjustable parameters to be adapted in every environment in terms of having or not the 

texture. 

     Unfortunately, due to the existence of the Covid-19 Virus, it was not possible to 

fulfill the experimental test at the laboratory.  To this end, we carried out this test in a residential 

indoor room with a dimension of 5 × 5 meter. As well as this, since the Vicon cameras to 

measure the ground truth was not available, the comparison with ground truth measurement 

was impossible, and we were content with just our RealSense ZR300 sensor. 

      Our suggestion for future work is to find an appropriate range of adjustable 

parameters to use in the proposed algorithm in any environment. This strategy will facilitate the 

usage of this algorithm in the positioning of any indoor environment including dark/light, 

messy, and stairs (using a down camera). Also, it is possible to combine the proposed algorithm 
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with Artificial Intelligence (AI) approaches, such as machine learning and deep learning, so 

that the positions obtained by visual-inertial SLAM could be trained using artificial neural 

networks, leading to predict the position in an unseen indoor environment.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

Acknowledgment  

 

       This experiment is performed under the financial coverage of Coordination for the 

Improvement of Higher Education Personal (CAPES) including providing the registration fee 

and participating in the Brazilian Symposium on Robotics (SBR) symposium and purchasing 

some hardware such as battery and camera.   

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

REFERENCES 

 

P. Puerta, “On-board control algorithms for autonomous indoors navigation of Multirotor Micro 

Air Vehicles”. A Final Master Project submitted for the degree of Master in Robotics and 

Automation, 2012. 

 

Y. Lu, Z. Xue, G. S. Xia, L. Zhang, “A survey on vision-based UAV navigation.” Taylor & 

Francis Group, ISSN: 1009-5020 (Print) 1993-5153 (Online) Journal, Published online: 12 Jan 

2018. 

 

Cadena, C. Carlone, L. Carrillo, H. Latif, Y. Scaramuzza, D. Neira, J. Reid, I. Leonard J.J. 

“Past, Present, and Future of Simultaneous Localization and Mapping: Towards the Robust-

Perception Age”. IEEE Trans. Robot. 2016, 32, 1309–1332. 

 

Yi Liu , Zhong Chen, Wenjuan Zheng, Hao Wang and Jianguo Liu, “Monocular Visual-Inertial 

SLAM: Continuous Preintegration and Reliable Initialization”, Sensors 2017, 17, 2613; 

doi:10.3390/s17112613. 

 

E. Kruppa. “Zur Ermittlung eines Objekts aus zwei Perspektiven mit innerer Orientierung”. In: 

Sitzungsberichte der math.-naturw. Kl. der kaiserlichen Akademie der Wissenschaften, Abt. IIa 

122 (1913), pp. 1939–1948. 

 

D.C. Brown. “The bundle adjustment – progress and prospects”. In: International Archives 

Photogrammetry 21.3 (1976), pp. 1–1. 

 

M.A. Fostner ¨ and E. Gulch ¨ , “A Fast Operator for Detection and Precise Location of Distinct 

Points, Corners and Centers of Circular Features”. In: Proceedings of the ISPRS 

Intercommission Workshop. 1987 

 

C. Harris and M. Stephens. “A combined corner and edge detector”. In: Proceedings of the 

Fourth Alvey Vision Conference. 1988, pp. 147–151. 

 

E. Rosten, R. Porter, and T. Drummond. “FASTER and better: A machine learning approach to 

corner detection”. In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 32.1 

(2010), pp. 105–119, 

 

C. Tomasi and T. Kanade. “Detection and Tracking of Point Features”. Tech. rep. Carnegie 

Mellon University, 1991. 

 

H. Bay, T. Tuytelaars, and L.V. Gool. “SURF: Speeded up robust features”. In: European 

Conference on Computer Vision (ECCV). 2006. 

 

D.G. Lowe. “Object Recognition from Local Scale-Invariant Features”. In: International 

Conference on Computer Vision (ICCV). 1999. 

 

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. “ORB: an efficient alternative to SIFT or 

SURF”. In: International Conference on Computer Vision (ICCV). 2011. 

 



89 

 

H. Jin, P. Favaro, and S. Soatto. “Real-time 3-d motion and structure of point features: Front-

end system for vision-based control and interaction”. In: International Conference on Computer 

Vision and Pattern Recognition (CVPR). 2000. 

 

A.J. Davison, I. Reid, N. Molton, and O. Stasse. “MonoSLAM: Realtime single camera 

SLAM”. In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 29.6 (2007), 

pp. 1052–1067. 

 

L. Matthies, R. Szeliski, and T. Kanade, “Incremental estimation of dense depth maps from 

image Image Sequences”. In: International Conference on Computer Vision and Pattern 

Recognition (CVPR). 1988 

 

H. Jin, P. Favaro, and S. Soatto, “A semi-direct approach to structure from motion”. In: The 

Visual Computer 19.6 (2003), pp. 377–394 

 

K.J. Hanna. “Direct multi-resolution estimation of ego-motion and structure from motion”. In: 

Proceedings of the IEEE Workshop on Visual Motion. 1991. 

 

Jakob-Julian Engel, “Large-Scale Direct SLAM and 3D Reconstruction in Real-Time”, PhD 

thesis, 2016. 

 

H. Jin, P. Favaro, and S. Soatto, “Real-time 3-d motion and structure of point features: Front-

end system for vision-based control and interaction”. In: International Conference on Computer 

Vision and Pattern Recognition (CVPR), 2000. 

 

A.J. Davison, I. Reid, N. Molton, and O. Stasse, “MonoSLAM: Realtime single camera 

SLAM”. In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 29.6 (2007), 

pp. 1052–1067. 

 

K.J. Hanna. “Direct multi-resolution estimation of ego-motion and structure from motion”. In: 

Proceedings of the IEEE Workshop on Visual Motion. 1991 

 

H. Jin, P. Favaro, and S. Soatto, “A semi-direct approach to structure from motion”. In: The 

Visual Computer 19.6 (2003), pp. 377–394. 

 

R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty”, 

International Journal of Robotics Research, 5(4):56–68, 1986. 

 

R. Mur-Artal, J. M. M. Montiel, “ORB-SLAM: a Versatile and Accurate Monocular SLAM 

System” IEEE TransactionsonRobotics, vol. 31, pp. 1147 – 1163, October 2015. 

 

D. Nist´er, O. Naroditsky, and J. Bergen, “Visual odometry,” in CVPR, vol. 1. Ieee, 2004, pp. 

I–I. 

 

Takafumi Taketomi, Hideaki Uchiyama and Sei Ikeda, “Visual SLAM algorithms: a survey 

from 2010 to 2016”, ISPJ Transaction on Computer Vision and Applications, DOI 

10.1186/s41074-0027-2, 2017. 

 



90 

 

Mur-Artal, R.; Tardós, J.D, “ORB-SLAM2: An open-source SLAM system for monocular, 

stereo, and RGB-D cameras”. IEEE Trans. Robot., 33, 1255–1262, 2017. 

 

E. Jared Shamwell, Sarah Leung, William D. Nothwang, “Vision-Aided Absolute Trajectory 

Estimation Using an Unsupervised Deep Network with Online Error Correction”, International 

Conference on Intelligent Robots (IROS), Spain, 2018. 

 

James Jackson , Kevin Brink, Brendon Forsgren, David Wheeler, and Timothy McLain, “Direct 

Relative Edge Optimization, A Robust Alternative for Pose Graph Optimization”, 2019. 

 

H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I”, Robotics & 

Automation Magazine, IEEE, 13(2):99–110, 2006. 

 

S. Yang, S. A. Scherer, S.A, A. Zell, “An onboard monocular vision system for autonomous 

takeoff, hovering and landing of a micro aerial vehicle”, Journal of Intelligent & Robotic 

Systems 69 (1–4) (January 2013) 499–515. 

 

Klette R, Koschan A, Schluns K, (1998) Computer vision “three-dimensional data from 

images”. 1st edn 11. 

 

Nister. D, “A minimal solution to the generalised 3-point pose problem”, In: Proceedings of 

IEEE Conference on Computer Vision and Pattern Recognition Vol. 1. pp 560–5671. 

 

Brian Williams, MarkCummins, JoséNeira, PaulNewman, IanReid, JuanTardós, “A comparison 

of loop closing techniques in monocular SLAM”, Volume 57, Issue 12, 31 December 2009, 

Pages 1188-1197. 

 

Grisetti G, Kümmerle R, Stachniss C, Burgard W, “Atutorialon graph-based SLAM”. Intell 

Transp Syst Mag IEEE 2(4):31–43 13, 2010. 

 

Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W, “g2o:A general framework for 

graph optimization”, In: Proceedings of International Conference on Robotics and Automation. 

Pp 3607–3613, 2011. 

 

Kailai Li, Johannes Cox, Benjamin Noack, and Uwe D. Hanebeck “Improved Pose Graph 

Optimization for Planar Motions Using Riemannian Geometry on the Manifold of Dual 

Quaternions”, 2019. 

 

D. Nistér, O. Naroditsky, J. Bergen, “Visual odometry”, In Proceedings of the 2004 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, 

USA, 27 June–2 July 2004. 

 

 A, Angeli, D. Filliat, S. Doncieux, J-A. Meyer, “Fast and incremental method for loop-closure 

detection using bags of visual words”. IEEE Trans. Robot. 2008, 24, 1027–1037. 

 

Thomas Schops, Torsten Sattler, Marc Pollefeys, “BAD SLAM: Bundle Adjusted Direct RGB-

D SLAM” The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, 

pp. 134-144. 

 

https://www.sciencedirect.com/science/article/pii/S0921889009000876#!
https://www.sciencedirect.com/science/article/pii/S0921889009000876#!
https://www.sciencedirect.com/science/article/pii/S0921889009000876#!
https://www.sciencedirect.com/science/article/pii/S0921889009000876#!
https://www.sciencedirect.com/science/article/pii/S0921889009000876#!
https://www.sciencedirect.com/science/article/pii/S0921889009000876#!
https://www.sciencedirect.com/science/journal/09218890/57/12


91 

 

Lei Han  ; Lan Xu  ; Dmytro Bobkov  ; Eckehard Steinbach  ; , “Real-Time Global Registration 

for Globally Consistent RGB-D SLAM”, IEEE Transactions on Robotics, Volume: 35 , Issue: 

2 , April 2019. 

 

Z. Zhang, “Microsoft kinect sensor and its effect”, Multi Media IEEE 19(2):4–10, 2012. 

 

J. Geng, “Structured-light 3d surface imaging: a tutorial”, Adv Opt Photon3(2):128–160. 

 

P. J. Besl, ND. McKay, “A method for registration of 3-D shapes”. IEEE Trans Pattern Anal 

Mach Intell14(2):239–256, 1992. 

 

Ruben Gomez-Ojeda, Francisco-Angel Moreno, David Zuñiga-Noël , “PL-SLAM: A Stereo 

SLAM System Through the Combination of Points and Line Segments”, IEEE Transactions on 

Robotics, Volume: 35 , Issue: 3 , June 2019. 

 

Markus Kleinert and Sebastian Schleith. “Inertial aided monocular SLAM for GPS-denied 

navigation”, In 2010 IEEE International Conference on Multi sensor Fusion and Integration for 

Intelligent Systems, pages 20–25, Sep 2010. 

 

Joel A. Hesch, Dimitrios G. Kottas, Sean L. Bowman, and Stergios I. Roumeliotis, 

“Consistency analysis and improvement of vision-aided inertial navigation”, IEEE 

Transactions on Robotics, 30(1):158–176, 2017. 

 

J. A Hesch and S. I Roumeliotis, “Consistency analysis and improvement for single-camera 

localization”, In Computer Vision and Pattern Recognition Workshops, pages 15–22, 2013. 

 

Mingyang Li and A. I. Mourikis, “High-precision, consistent EKF-based visual-inertial 

odometry”, 32(6):690–711, 2013. 

 

Meixiang Quan, Songhao Piao, Minglang Tan, Shi-Sheng Huang, “Accurate Monocular 

Visual-inertial SLAM using a Map-assisted EKF Approach”, IEEE, 2019. 

 

R. Mur-Artal, J. D. Tardós, “Visual-Inertial Monocular SLAM With Map Reuse”, IEEE Robot. 

Autom. Lett., 2, 796–803, 2017. 

 

M. Irani and P. Anandan, “About direct methods. In Vision Algorithms: Theory and Practice” 

pages 267–277. Springer, 1999. 

 

Newcombe R A, Lovegrove S J, Davison A J, “DTAM: dense tracking and mapping in real 

time”, In: Proceedings of International Conference on Computer Vision .pp 2320–2327, 2011. 

 

J. Engel, V. Koltun, D. Cremers, “Direct Sparse Odometry”, CoRR. abs/1607.02565, 2016. 

 

J. Engel, T. Schöps, D. Cremers, “LSD-SLAM: large-scale direct monocular SLAM”, In: 

Proceedings of European Conference on Computer Vision.pp834–849, 2014. 

 

G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces, Mixed and 

Augmented Reality”, 6th IEEE and ACM International Symposium on, pp. 225-234, 2007. 

 

https://ieeexplore.ieee.org/author/37086153822
https://orcid.org/0000-0001-8686-8940
https://ieeexplore.ieee.org/author/37086313209
https://orcid.org/0000-0002-8807-7787
https://ieeexplore.ieee.org/author/37085625867
https://orcid.org/0000-0002-5096-8891
https://ieeexplore.ieee.org/author/37273225600
https://orcid.org/0000-0001-8853-2703
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8681206
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8681206
https://ieeexplore.ieee.org/author/37086853705
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8731790
http://ieeexplore.ieee.org/abstract/document/4538852/


92 

 

R. Mur-Artal, “Real-Time Accurate Visual SLAM with Place Recognition” PhD thesis, 

university of Zaragoza, 2017. 

 

Hauke Strasdat, J. M. M. Montiel and Andrew J. Davison, “Real-time Monocular SLAM: Why 

Filter”, 2015. 

 

S. Agarwal, K. Mierle, “Others. Ceres Solver”, Available online: http://ceres-solver.org 

accessed on 14 November 2017.  

 

C. Forster, M. Pizzoli, D. Scaramuzza, “SVO: Fast semi-direct monocular visual odometry”,  

In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 15–22 

Hong Kong, China, 2014. 

 

G. Sibley, L. Matthies, G. Sukhatme, “A sliding window filter for incremental SLAM”, In 

Unifying Perspectives in Computational and Robot Vision; Springer: Berlin, Germany, pp. 

103–112, 2008. 

 

G. Sibley, L. Matthies, G. Sukhatme, “Sliding window filter with application to planetary 

landing”. J.Field Robot, 27, 587–608, 2010.  

 

T. Qin, S. Shen, “Robust initialization of monocula rvisual-inertial estimation on aerial robots”. 

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 

Vancouver, BC, Canada, 24–28 September 2017. 

 

H. Strasdat, J. Montiel, A. Davison, “Scale drift-aware large scale monocular SLAM”, The MIT 

Press, URL: http://www.roboticsproceedings.org/rss06/., 2010.  

 

A. Davison, I. Reid, N. Molton, O. Stasse, “MonoSLAM: Real-time 47 single camera SLAM”, 

Pattern Analysis and Machine Intelligence, IEEE Transactions, 29(6):1052–1067. 

doi:10.1109/TPAMI.2007. 49 1049, 2007. 

 

R. A. Newcombe, A. J. Davison, “Live dense reconstruction with a single moving camera”, in: 

Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, IEEE, 2010, pp. 

1498–1505, 2010. 

 

K. Pirker, M. R ¨uther, H. Bischof, “CD SLAM - Continuous localization and mapping in a 

dynamic world”, in: IEEE International Conference on Intelligent Robots Systems (IROS), 

IEEE, pp. 3990–3997, 2011. 

 

K. Pirker, “Histogram of oriented cameras - a new descriptor for visual slam in dynamic 

environments”, in: Proceedings of the British Machine Vision Conference, BMVA Press, pp. 

76.1–76.12. Doi:10.5244/C.24.76, 2010. 

 

C. Pirchheim, D. Schmalstieg, G. Reitmayr, “Handling pure camera rotation in keyframe-based 

SLAM”, in: Mixed and Augmented Reality (ISMAR), IEEE International Symposium on, 

2013, pp. 229–238. doi:10.1109/ISMAR.2013.6671783, 2013.  

 

C. Forster, M. Pizzoli, D. Scaramuzza, “SVO: Fast semi-direct monocular visual odometry”, 

in: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22, 2014. 

http://www.roboticsproceedings.org/rss06/


93 

 

C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scaramuzza, “SVO: Semidirect visual 

odometry for monocular and multicamera systems”, IEEE Trans. Robot. 33 (2) 249–265, 2017. 

 

A. Concha, J. Civera, “DPPTAM: Dense piecewise planar tracking and mapping from a 

monocular sequence”, in: Intelligent Robots and Systems (IROS), IEEE/RSJ International 

Conference on, 2015, pp. 5686–5693. doi:10.1109/IROS.2015.7354184, 2015.  

 

E. Rublee, V. Rabaud, K. Konolige, G. Bradski, “ORB: An efficient alternative to SIFT or 

SURF”, in: 2011 International Conference on Computer Vision, pp. 2564–2571, 2011. 

 

S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, R. Szeliski, “Building 

Rome in a day”. Common ACM 54 (10): 105–112. 2011.  

 

G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, W. Burgard, “Efficient estimation of accurate 

maximum likelihood maps in 3D”. In: IEEE/RSJ International Conference on Intelligent 

Robots and Systems, IROS, pp. 3472–3478, 2007. 

 

M. Kaess, A. Ranganathan, F. Dellaert, “ISAM: incremental smoothing and mapping”, IEEE 

Trans. Robot. 24(6), 1365–1378, 2008.  

 

E. Olson, J. Leonard, S. Teller, “Fast iterative alignment of pose graphs with poor initial 

estimates”. In: Proceedings of IEEE International Conference on Robotics and Automation 

(ICRA), pp. 2262–2269, 2006. 

 

Hong. E., Lim. J.: “Visual-Inertial Odometry with Robust Initialization and Online Scale 

Estimation, Sensors”, 18 (12), 4287, 2018. 

 

Ming Hsiao, Eric Westman, and Michael Kaess, “Dense Planar-Inertial SLAM with Structural 

Constraints”, 2018 IEEE International Conference on Robotics and Automation (ICRA) May 

21-25, Brisbane, Australia, 2018. 

 

Schneider, T.; Dymczyk, M.; Fehr, M.; Egger, K.; Lynen, S.; Gilitschenski, I.; Siegwart, R. 

“maplab: An Open Framework for Research in Visual-inertial Mapping and Localization”, 

IEEE Robot. Autom. Lett, 3, 1418–1425, 2018. 

 

Lynen, S.; Sattler, T.; Bosse, M.; Hesch, J.; Pollefeys, M.; Siegwart, R. Get Out of My Lab: 

“Large-scale, Real-Time Visual-Inertial Localization”, In Proceedings of the Robotics: Science 

and Systems, Rome, Italy, 13–17 July 2015. 

 

Qin, T.; Li, P.; Shen, S. “VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State 

Estimator”, arXiv, arXiv:1708.03852, 2017. 

 

Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S, “Autonomous aerial 

navigation using monocular visual-inertial fusion”, J. Field Robot, 35, 23–51, 2017. 

 

Li, P.; Qin, T.; Hu, B.; Zhu, F.; Shen, S, “Monocular Visual-Inertial State Estimation for Mobile 

Augmented Reality”, In Proceedings of the IEEE International Symposium on Mixed and 

Augmented Reality, Natnes, France, 9–13, pp. 11–21, October 2017. 

 



94 

 

S. Weiss, M. W. Achtelik, S, Lynen, M, C. Achtelik, L. Kneip, M. Chli, and R. Siegwart. 

“Monocular vision for long-term micro aerial vehicle state estimation: A compendium”, Journal 

of Field Robotics, 30(5):803–831, 2013. 

 

Weiss, S.; Siegwart, R. “Real-time metric state estimation for modular vision-inertial systems”, 

In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, 

China, 9–13, pp. 4531–4537, May 2011. 

 

Achtelik, M.; Achtelik, M.; Weiss, S.; Siegwart, R. “Onboard IMU and monocular vision based 

control for MAVs in unknown in- and outdoor environments”, In Proceedings of the IEEE 

International Conference on Robotics and Automation, Shanghai, pp. 3056–3063, China, 9–13 

May 2011. 

 

Lynen, S.; Achtelik, M.W.; Weiss, S.; Chli, M. “A robust and modular multi-sensor fusion 

approach applied to MAV navigation”, In Proceedings of the IEEE/RSJ International 

Conference on Intelligent Robots and Systems, pp. 3923–3929, Tokyo, Japan, 3–7 November 

2013. 

 

Munguía, R.; Nuño, E.; Aldana, C.I.; Urzua, S, “A Visual-aided Inertial Navigation and 

Mapping System”, Int. J. Adv. Robot. Syst, 13, 94, 2016. 

 

Fang, W.; Zheng, L.; Deng, H.; Zhang, H. “Real-Time Motion Tracking for Mobile 

Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion”, Sensors, 17, 1037, 2017. 

 

Spaenlehauer, A.; Fremont, V, “Sekercioglu, Y.A.; Fantoni, I. A Loosely-Coupled Approach 

for Metric Scale Estimation in Monocular Vision-Inertial Systems”, Cornell University arXiv 

Institution: Ithaca, NY, USA, 2017. 

 

Forster, C.; Carlone, L.; Dellaert, F.; “Scaramuzza, D. IMU Preintegration on Manifold for 

Efficient Visual-Inertial Maximum-a-Posteriori Estimation”, In Proceedings of the Robotics: 

Science and Systems, Rome, Italy, 13–17 July 2015. 

 

Mourikis, A.I.; Roumeliotis, S.I. “A Multi-State Constraint Kalman Filter for Vision-aided 

Inertial Navigation”, In Proceedings of the IEEE International Conference on Robotics and 

Automation, Roma, Italy, 10–14, pp. 3565–3572, April 2007. 

 

Jones, E.S.; Soatto, S. “Visual-inertial navigation, mapping and localization: A scalable real-

time causal approach”, Int. J. Robot. Res, 30, 407–430. 2011. 

 

Li, M.; Mourikis, A.I. “High-precision, consistent EKF-based visual-inertial odometry”, Int. J. 

Robot. Res, 32, 690–711, 2013. 

 

Guo, C.; Kottas, D.; Dutoit, R.; Ahmed, A.; Li, R.; Roumeliotis, S. “Efficient Visual-Inertial 

Navigation using a Rolling-Shutter Camera with Inaccurate Timestamps”, In Proceedings of 

the Robotics: Science and Systems, Berkeley, CA, USA, 12–16 July 2014. 

 

Wu, K.; Ahmed, A.; Georgiou, G.; Roumeliotis, S. “A Square Root Inverse Filter for Efficient 

Vision-aided Inertial Navigation on Mobile Devices”, In Proceedings of the Robotics: Science 

and Systems, Rome, Italy, 13–17 July 2015. 



95 

 

Tanskanen, P.; Naegeli, T.; Pollefeys, M.; Hilliges, O. “Semi-direct EKF-based monocular 

visual-inertial odometry”. In Proceedings of the IEEE/RSJ International Conference on 

Intelligent Robots and Systems, pp. 6073–6078, Hamburg, Germany, 28 September–2 October 

2015. 

 

Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct 

EKF-based approach. In Proceedings of the IEEE/RSJ International Conference on Intelligent 

Robots and Systems, pp. 298–304, Hamburg, Germany, 28 September–2 October 2015. 

 

Sa, I.; Kamel, M.; Burri, M.; Bloesch, M.; Khanna, R.; Popovic, M.; Nieto, J.; Siegwart, R. 

“Build Your Own Visual-Inertial Drone: A Cost-Effective and Open-Source Autonomous 

Drone”, IEEE Robot. Autom. Mag, 25, 89–103, 2017. 

 

Hesch, J.A.; Kottas, D.G.; Bowman, S.L.; Roumeliotis, S.I, “Consistency Analysis and 

Improvement of Vision-aided Inertial Navigation”, IEEE Trans. Robot, 30, 158–176, 2013. 

 

Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W, “g2o: A general framework 

for graph optimization”, In Proceedings of the IEEE International Conference on Robotics and 

Automation, pp. 3607–3613, Shanghai, China, 9–13 May 2011. 

 

Kaess, M.; Ranganathan, A.; Dellaert, F, “iSAM: Incremental Smoothing and Mapping”, IEEE 

Trans. Robot, 24, 1365–1378, 2008. 

 

Dellaert, F, “Factor graphs and GTSAM: A Hands-on Introduction”, Technical Report; Georgia 

Institute of Technology: Atlanta, GA, USA, 2012. 

 

Leutenegger, S.; Furgale, P.; Rabaud, V.; Chli, M.; Konolige, K.; Siegwart, R, “Keyframe-

Based Visual-Inertial SLAM using Nonlinear Optimization”, In Proceedings of the Robotics: 

Science and Systems, pp. 789–795, Berkeley, CA, USA, 12–16 July 2014. 

 

Lupton, T.; Sukkarieh, S. “Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built 

Environments without Initial Conditions”, IEEE Trans. Robot, 28, 61–76, 2012. 

 

Concha, A.; Loianno, G.; Kumar, V.; Civera, J. Visual-inertial direct SLAM. In Proceedings of 

the IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21; 

pp. 1331–1338, May 2016. 

 

Vladyslav Usenko, Nikolaus Demmel, David Schubert, Jorg St, uckler, Daniel Cremers, 

“Visual-Inertial Mapping with Non-Linear Factor Recovery”, 2019. 

 

Mur-Artal, R.; Tardós, J.D, “Visual-Inertial Monocular SLAM with Map Reuse”, IEEE Robot. 

Autom. Lett, 2, 796–803, 2017. 

 

Piao, J.; Kim, S, “Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented 

Reality Applications in Mobile Devices”, Sensors, 17, 2567, 2017. 

 

Y. Liu, Z. Chen, W. Zheng, H. Wang, J. Liu, “Monocular Visual-Inertial SLAM: Continuous 

Preintegration and Reliable Initialization”, Sensors, 17, 2613, 2017. 

 



96 

 

Xufu Mu, Jing Chen, Zixiang Zhou, Zhen Leng and Lei Fan, “Accurate Initial State Estimation 

in a Monocular Visual–Inertial SLAM System”, Sensor 2018. 

 

Euntae Hong and Jongwoo Lim, “Visual-Inertial Odometry with Robust Initialization and 

Online Scale Estimation”, Sensors 2018. 

 

Carlos Campos, Jose M.M. Montiel and Juan D. Tardos, “Fast and Robust Initialization for 

Visual-Inertial SLAM”, 2019 International Conference on Robotics and Automation (ICRA) 

Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019. 

 

Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza, “VIMO: Simultaneous 

Visual Inertial Model-Based Odometry and Force Estimation”, IEEE ROBOTICS AND 

AUTOMATION LETTERS, VOL. 4, NO. 3, JULY 2019. 

 

A. Martinelli, “Closed-form solution of visual-inertial structure from motion,” International 

Journal of Computer Vision, vol. 106, no. 2, pp. 138–152, 2014. 

 

 J. Kaiser, A. Martinelli, F. Fontana, and D. Scaramuzza, “Simultaneous state initialization and 

gyroscope bias calibration in visual inertial aided navigation,” IEEE Robotics and Automation 

Letters, vol. 2, no. 1, pp. 18–25, 2017. 

 

SH. Jung, C. Taylor, “Camera trajectory estimation using inertial sensor measurements and 

structure fom motion results”, In: IEEE Int. Conf. Comput. Vis. Pattern Recog. (CVPR), 2001. 

 

D. Sterlow, S. Singh, “Motion estimation from image and inertial measurements”. Int J Robot 

Research, 2004. 

 

M. Bryson, M. Johnson-Roberson, S. Sukkarieh, “Airborne smoothing and mapping using 

vision and inertial sensors”. In: IEEE Int. Conf. Robot. Autom. (ICRA), pp 3143–3148, 2009. 

 

V. Indelman, S. Wiliams, M. Kaess, F. Dellaert, “Information fusion in navigation systems via 

factor graph based incremental smoothing”. J Robot and Auton Syst 61(8):721–738, 2013. 

 

Patron-Perez A, Lovegrove S, Sibley G, “A spline-based trajectory representation for sensor 

fusion and rolling shutter cameras”. Int J Comput Vis 113(3):208–219, DOI 10.1007/ s11263-

015-0811-3, 2015. 

 

Davide Scaramuzza and Zichao Zhang, “Visual-Inertial Odometry of Aerial Robots”, Springer 

Encyclopedia of Robotics, 2019. 

 

Weibo Huang, Hong Liu, “Online Initialization and Automatic Camera-IMU Extrinsic 

Calibration for Monocular Visual-Inertial SLAM”, in Proc. IEEE International Conference on 

Robotics and Automation (ICRA), Brisbane, Australia, May 21-25, 2018. 

 

R. K¨ummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A general 

framework for graph optimization,” in Proc. IEEE Int. Conf. Robot, pp. 3607–3613, Autom., 

2011. 

 



97 

 

Hartley, R.; Zisserman, A. “Multiple View Geometry in Computer Vision”, Cambridge 

University Press: Cambridge, pp. 1865–1872, UK, 2003. 

 

R. J. Radke. “CHAPTER 1 – Multi-View Geometry for Camera Networks”, Multi-Camera 

Networks, Principles and Applications. Pages: 3-27, 2009. 

 

J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr: 

Calibrating the extrinsics of multiple IMUs and of individual axes,” in IEEE International 

Conference on Robotics and Automation (ICRA), pp. 4304–4311, IEEE, 2016. 

 

 P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibration for multi-

sensor systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS), pp. 1280– 1286, IEEE, 2013. 

 

S. J. Haddadi and E. B. Castelan, “Accuracy Improvement of Monocular Visual-Inertial SLAM: 

Benchmark and Experiment”. IEEE International Conference of Robotic, Tehran, 2019. 

 

M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, R. Siegwart. 

“The EuRoC micro aerial vehicle datasets”. Int. J. Robot. Res, 35, 1157–1163, 2016. 

 

Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen, “Autonomous aerial 

navigation using monocular visual-inertial fusion,” J. Field Robot., 2017. 

 

R. Mur-Artal, J. D. Tardós. “Visual-Inertial Monocular SLAM with Map Reuse”,  IEEE 

Robotics and Automation Letters, Volume: 2, Issue: 2,. 2017, 796–803. 

 

Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. 

“Keyframe-based visual-inertial odometry using nonlinear optimization”, International Journal 

of Robotics Research, 34(3):314– 334, 2015. 

 

S. Umeyama, “Least-Square estimation of transformation parameters between two-point 

patterns”, IEEE Trans. Pattern Anal. Mach. Intell. 1991, 4, 376-380. 

 

Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon, “Bundle 

Adjustment —A Modern Synthesis”, Springer, LNCS 1883, pp. 298–372, Verlag Berlin 

Heidelberg, 2000. 

 

Henry Gavin, “The Levenberg-Marquardt method for nonlinear least squares curve-fitting 

problems”, Computer Scienc, Corpus ID: 5708656, 2013. 

 

Nishant Kejriwal, Swagat Kumar and Tomohiro Shibata, “High Performance Loop Clouser 

Detection using Bag of Words Pairs”, Robotics and Autonomous Systems, volume 77, pages 

55- 65, March 2016.  

 

S. Julier, and J. Uhlmann, “A new method of the nonlinear transformation of means and 

covariances in filters and estimators”, IEEE Transactions on Automatic Control, 2000. 

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7083369
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7083369
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7797562
https://www.sciencedirect.com/science/article/pii/S0921889015300889#!
https://www.sciencedirect.com/science/article/pii/S0921889015300889#!
https://www.sciencedirect.com/science/article/pii/S0921889015300889#!


98 

 

I. Arasaratnam and S. Haykin, “Cubature kalman filters”, IEEE Transactions on Automatic 

Control, 54(6), 1254–1269, 2009. 

 

C. Silpa-Anan, and R. Hartley, “Optimised KD-trees for fast image descriptor matching”. In 

CVPR, 2008. 

 


		2021-08-23T08:26:06-0300


		2021-08-23T08:58:41-0300




