

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DE JOINVILLE PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E CIÊNCIAS MECÂNICAS SEMESTRE 2018/2

I. IDENTIFICAÇÃO DA DISCIPLINA

Nome: Termodinâmica

Carga horária: 45 horas Créditos: 3

Professores: Fabiano G. Wolf e Rafael C. Catapan

II. PRÉ-REQUISITO(S) SUGERIDO(S)

Não há.

III. EMENTA

Objetivos da termodinâmica. Pontos de vista micro e macroscópicos. Sistemas abertos e fechados. Trabalho mecânico e trabalho de um sistema. Primeira lei da termodinâmica e energia interna. Segunda Lei da termodinâmica e entropia. Identidades termodinâmicas. Princípio do máximo da entropia. Potenciais termodinâmicos e aplicações. Cálculo de propriedades termodinâmicas. Termoquímica de combustão. Aplicações em ciclos de potência e refrigeração. Teoria elementar de soluções.

IV. METODOLOGIA DE ENSINO

O conteúdo programático detalhado acima será abordado em aulas expositivas, baseadas na apresentação de aspectos teóricos e solução de problemas

V. METODOLOGIA DE AVALIAÇÃO

A média final será composta da média aritmética simples de 3 (três) avaliações aplicadas em sala de aula.

VI. AVALIAÇÃO FINAL

Para análise da **avaliação do aproveitamento escolar e frequência** será empregado o **Capítulo III, do Título IV, da Resolução Nº 095/CUn/2017**, que dispõe sobre a pós-graduação *stricto sensu* na Universidade Federal de Santa Catarina.

VII. CRONOGRAMA

Data[*]	Conteúdo
02 e 03/08	Objetivos da termodinâmica. Pontos de vista micro e macroscópicos
09 e 10/08	Sistemas abertos e fechados
16 e 17/08	Trabalho mecânico e trabalho de um sistema
23 e 24/08	Primeira Lei da Termodinâmica e energia interna
30, 31/08 e 06/09	Segunda Lei da Termodinâmica e Entropia
13/09	Primeira avaliação
14, 20 e 21/09	Identidades termodinâmicas
27 e 28/09	Princípio do máximo da entropia
04, 05, 11 e 12/10	Potenciais termodinâmicos e aplicações
18/10	Segunda avaliação
19 e 25/10	Cálculo de propriedades termodinâmicas
26/10 e 01/11	Termoquímica de combustão
08, 09 e 22/11	Aplicações em ciclos de potência e refrigeração
23/11 e 29/11	Teoria elementar de soluções
30/11	Terceira avaliação

^{*}Cronograma pode sofrer alterações.

VIII. BIBLIOGRAFIA

TESTER, Jefferson W.; Modell, Michael. **Thermodynamics and Its Applications**. 3ª edição. Prentice Hall, September, 1996, ISBN 0-13-915356-X.

BEJAN, Adrian. **Advanced Engineering Thermodynamics.** 3a. edição. Wiley-Interscience, August, 2006. ISBN 0-471-67763-9.

KONDEPUDI, Dilip K.; PRIGOGINE, Ilya. **Modern Thermodynamics: From Heat Engines to Dissipative Structures.** 1^a edição. Chichester: J. Wiley, 1998. ISBN 0-471-97394-7.

WINTERBONE, Desmond. **Advanced Thermodynamics for Engineers.** Butterworth-Heinemann, November, 1996. ISBN 0-34-067699-X.

WARK, Kenneth Jr. **Advanced Thermodynamics for Engineers.** McGraw Hill Science/Engineering/Math, September, 1994. ISBN 0-070-68292-5.

CALLEN, Hebert B. **Thermodynamics and Termostatistics**. 1ª edição. New York: J. Wiley, 1985. ISBN 0-471-86256-8.

ÇENGEL, Yunus A.; BOLES, Michael A. **Termodinâmica.** 5ª edição. São Paulo: Mcgraw Hill, 2006. ISBN 85-86804-66-5.

SONNTAG, Richard E.; BORGNAKKE, Claus. **Fundamentos da Termodinâmica.** 7ª edição. São Paulo: Edgar Blücher, 2009. ISBN 978-85-212-0490-9.

Atualizado em: 10/07/2018