

ESTUDO DE CONCRETO LEVE COM ADIÇÃO DA SÍLICA DA CINZA DA CASCA DE ARROZ

STUDY OF LIGHTWEIGHT CONCRETE WITH ADDITION OF SILICA OF RICE HUSK ASH

Eric Renã Zavitzki Schimanowski, Graduando em Engenharia Civil e bolsista do Programa de Educação Tutorial, Discente da UNIJUÍ

eric.schimanowski@sou.unijui.edu.br

Gabrielli Tápia de Oliveira, Graduanda em Engenharia Civil e bolsista do Programa de Educação Tutorial, Discente da UNIJUÍ

gabrielli.oliveira@sou.unijui.edu.br

Diorges Carlos Lopes, Mestre em Engenharia Civil, Docente da UNIJUÍ diorges.lopes@unijui.edu.br

Resumo

Visando a análise de materiais alternativos no concreto foram moldados corpos de prova cilíndricos de concreto leve com substituições parciais, em massa, de 30% e 70% do agregado graúdo por argila expandida (AE) realizando, também, adições de 20% de sílica da cinza da casca de arroz (SCCA) em relação à massa do aglomerante. A partir disso, tem-se como objetivo avaliar a viabilidade técnica de concretos leves com AE com e sem adições de SCCA a partir da obtenção da massa específica e resistência à compressão através de ensaios laboratoriais. Quanto à compressão os concretos leves que utilizaram SCCA obtiveram melhores resultados, entretanto, ainda inferiores ao referência.

Palavras-chave: Sílica da cinza da casca de arroz; Sustentabilidade; Argila expandida.

Abstract

In order to analyze alternative materials in concrete, cylindrical specimens of lightweight concrete were molded with partial substitutions, in mass, of 30% and 70% of the coarse aggregate by expanded clay (AE), also making additions of 20% of silica from rice husk ash (SCCA) in relation to the mass of the binder. From this, the objective is to evaluate the technical viability of lightweight concrete with AE with and without SCCA additions obtaining the specific mass and compressive strength through laboratory tests. As for compression, lightweight concretes that used SCCA obtained better results, however, still lower than the reference.

Keywords: Silica of rice husk ash; Sustainability; Expanded clay.

IX ENSUS – Encontro de Sustentabilidade em Projeto – UFSC – Florianópolis – 19 a 21 de maio de 2021.

1. Introdução

Apesar do concreto de cimento Portland ser o segundo material mais empregado no mundo, ficando atrás da água, tem-se que essa mistura não apresentou grandes inovações até os anos 1980 (HELENE e ANDRADE, 2010). Rossignolo (2009) explica que isso se deu devido à ausência de métodos e equipamentos que proporcionassem um melhor entendimento do comportamento do concreto quando incorporados novos materiais.

Com o desenvolvimento tecnológico atual, tornou-se possível realizar ensaios e análises que permitem a fabricação, com segurança, de concretos especiais, ou seja, que possuem constituintes alternativos. Ressalta-se, ainda, que algumas dessas misturas surgiram com o intuito de aprimorar características que limitam as aplicações do concreto como, por exemplo, a elevada massa específica desse material que tende a gerar elevados esforços de peso próprio sobre as estruturas. Nesse cenário, Rossignolo (2009) sugere o concreto leve como uma alternativa a ser considerada objetivando reduções de peso, bem como facilitar o transporte e manuseio de peças pré-fabricadas.

Ademais, dentre as formas existentes para fabricação do concreto leve, tem-se que a mais utilizada refere-se à implementação de vazios na mistura por meio da substituição dos agregados convencionais por agregados leves como, por exemplo, a argila expandida (ROSSIGNOLO, 2009). Esse material apresenta elevada porosidade e formato arredondado, impactando diretamente nas propriedades do concreto como a trabalhabilidade, desempenho mecânico e durabilidade (MEHTA e MONTEIRO, 2006). Assim, a porosidade desse material requer um consumo de água superior para manter uma trabalhabilidade adequada, portanto, gera um fator água/cimento elevado que impacta nas propriedades da pasta. Mehta e Monteiro (2006) sugerem, para atenuar essa situação, o uso de uma quantidade superior de cimento.

Entretanto, do ponto de vista ambiental, essa medida não é recomendada, visto que o cimento Portland gera altas quantidades de gases poluentes na sua produção. Ademais, do ponto de vista econômico, o maior consumo de cimento torna o valor do concreto mais elevado, uma vez que esse é o componente mais caro da mistura. Nesse cenário, Neville (2016) aponta a possibilidade de incorporação de outro material com características cimentícias como a sílica a fim de promover a melhora do desempenho mecânico de concretos com agregados leves.

Outrossim, entendendo a responsabilidade da construção civil para com o meio ambiente, o concreto surge como uma alternativa para promover a sustentabilidade através da incorporação de resíduos no mesmo. Nesse sentido, pode-se mencionar a casca de arroz, um subproduto que, quando adequadamente processado, pode se tornar uma fonte de sílica (FOLLETO et al. 2005). Esse material, quando empregado no concreto, pode auxiliar na formação de compostos cimentícios, visto que apresenta características pozolânicas.

A partir disso, a presente pesquisa visa contribuir para a melhor compreensão de concretos especiais, mais especificamente o concreto leve, através da análise do impacto da argila expandida, bem como do uso da cinza de casca de arroz (SCCA) na mistura. O estudo se deu por meio da substituição parcial em massa de 30% e 70% do agregado graúdo por argila expandida e da adição de 20% de SCCA em relação à massa de cimento. Posteriormente, foram realizados ensaios laboratoriais nos estados fresco e endurecido do concreto objetivando definir sua massa específica e consistência e, também, seu desempenho mecânico frente à compressão axial simples.

2 Referencial Teórico

2.1 Concreto

O concreto conhecido como convencional é aquele constituído por uma pasta de cimento Portland que envolve agregados de diferentes dimensões (HELENE e ANDRADE, 2010). Para Mehta e Monteiro (2006), a ampla aplicação do concreto ocorre devido à fácil moldagem de estruturas em diversas formas e tamanhos, à trabalhabilidade e à durabilidade do material. Entretanto, embora apresente inúmeras vantagens que justifiquem o seu uso, a massa específica do concreto de cimento Portland acaba limitando o seu uso. Para Neville (2016) essa propriedade impacta no peso próprio dos elementos de concreto, resultando no aumento dos custos da edificação.

A partir disso, o concreto leve surge como uma alternativa ao convencional, visto que diminui o peso específico das edificações gerando economia com fôrmas e cimbramento além da diminuição de custos para montagem e transporte de peças pré-fabricadas (ROSSIGNOLO, 2009). Ademais, Neville (2016) também salienta que a redução dos esforços solicitantes tende a diminuir as dimensões das fundações, gerando economia. Isso porque, como indica Rossignolo (2009), a característica primordial dos concretos leves é a redução da massa específica, sendo necessário valor inferior a 2000 Kg/m³.

Nesse sentido, cabe salientar que não há um consenso sobre os valores de massa específica que caracterizam um concreto como leve. Para Mehta e Monteiro (2006) e Neville (2016), o concreto leve é aquele que possui massa específica inferior a 1850 Kg/m³. Já para a ABNT NBR NM 35 (1995) o valor obtido não deve ultrapassar 1840 Kg/m³ sendo necessário, também, observar a resistência à compressão do concreto para garantir a segurança da estrutura. Ademais, embora existam várias classificações, todos os autores supracitados concordam que o concreto leve consiste na inserção de ar na mistura.

Neville (2016) salienta que existem três formas de inserir ar na mistura e, assim, fabricar concretos leves, porém apenas uma será tratada na presente pesquisa. Essa ocorre pela substituição, total ou parcial, dos agregados convencionais (brita e areia) por agregados leves e porosos. Isso porque, concretos leves estruturais só podem ser fabricados dessa maneira devido, principalmente, à resistência à compressão oferecida pelo agregado. (ROSSIGNOLO, 2009). Para Neville (2016) a principal característica desse é a massa específica baixa, resultante da alta porosidade em seu interior sendo que o mesmo recomenda a utilização de argila expandida quando o objetivo é aplicá-lo em concretos.

2.1.1 Cimento Portland

O aglutinante mais utilizado no mundo para a fabricação de concreto é o cimento Portland, definido por Mehta e Monteiro (2006) como um material seco com partículas de pequeno diâmetro que, quando reagem quimicamente com a água, geram um composto aglutinante. Dessa forma, o cimento Portland é formado principalmente de silicatos hidráulicos de cálcio, contendo sulfato de cálcio natural, podendo conter substâncias que modificam suas propriedades ou que facilitam sua utilização (BAUER, 2008).

2.1.2 Sílica da Cinza da Casca de Arroz

Para Folleto et al. (2005), a geração de energia através da queima da casca de arroz é uma alternativa aplicável do ponto de vista tecnológico, economicamente viável e ecologicamente correta. Assim, para os autores, a utilização da SCCA faz com que exista um total aproveitamento no ciclo de industrialização do arroz, gerando resíduo zero.

Ademais, a necessidade de encontrar aplicações para esse material, se justifica na medida em que, quando descartada no meio ambiente, a SCCA provoca poluição devido ao carbono residual presente (FOLLETO et al. 2005).

A partir disso, é importante mencionar que a cinza possui alto teor de sílica e, ao ser produzida com controle, gera um resíduo nobre, conhecido como sílica da cinza da casca de arroz. Na construção civil, esse material pode ser empregado na fabricação do concreto, como adição cimentícia, visto que o mesmo pode ser considerado altamente pozolânico (ZHANG e MALHOTRA, 1996). Nessa perspectiva, além de reduzir indiretamente as emissões de CO2 devida à menor utilização de cimento Portland, a sílica da cinza da casca de arroz pode ser agregar vantagens ao concreto produzido.

Em um estudo realizado por Schimanowski et al. (2019), em que o cimento Portland foi substituído pela sílica da cinza da casca de arroz, observou-se que pequenas quantidades do material, como substituições de 10%, auxiliam no ganho de resistência à compressão em idades avançadas. Ademais, Mehta e Monteiro (2006), salientam que a superfície específica desse aglomerante alternativo é significativamente maior que a superfície do cimento Portland, implicando em maiores adições de água na mistura.

Por fim, Zhang et al. (1996), após realizarem estudo comparativo entre concretos com e sem substituição de cimento Portland por SCCA, concluíram que a mesma reduziu a porosidade na zona interfacial entre matriz e agregado e, também, sua largura. Isso afetou a resistência à compressão, gerando aumentos nos resultados obtidos.

2.1.3 Agregados convencionais

Agregado são materiais particulados com atividade química quase nula, compostos por partículas que possuem diferentes tamanhos (BAUER, 2008). Sabendo disso, Neville (2016) salienta que as características dos agregados devem ser determinadas, já que esses materiais ocupam grande parte do volume final do concreto e podem influenciar em diversas propriedades da mistura como trabalhabilidade, massa específica, resistência mecânica, durabilidade, entre outras.

Entre as muitas classificações possíveis para os agregados, que levam em consideração origem, massa específica e dimensões, Neville (2016) aponta que a propriedade de maior interesse é a granulometria. Segundo a ABNT NBR 7211 (2009) os agregados podem ser classificados em miúdos ou graúdos. A normativa técnica salienta, também, que, durante o ensaio de granulometria, os agregados miúdos são aqueles que passam na peneira com abertura de malha de 4,75 mm, e os graúdos são aqueles que ficam retidos.

2.1.4 Argila Expandida

A argila expandida é um agregado artificial produzido através da exposição de argilas piroexpansivas a fontes de calor em altas temperaturas (AMBROZEWICZ, 2012). Assim, conforme Rossignolo (2009), no tratamento térmico as matérias primas sofrem fusão incipiente e, dessa forma, ocorre a expansão do material devido a geração de gases que ficam aprisionados no interior da estrutura, mantendo-a porosa após seu resfriamento.

Rossignolo (2009) salienta, também, que a argila expandida é o único agregado leve produzido no Brasil. Essa pode ser obtida através de dois processos de fabricação denominados forno rotativo e sinterização. Ademais, são fabricadas em diversas granulometrias e, para aplicação na construção civil, podem ser encontradas

comercialmente nas numerações 2215, 1506 e 0500, sendo as dimensões dos materiais equivalentes, respectivamente, à brita 1, brita 0 e areia grossa.

Para Moncada et al. (2019) a utilização da argila expandida 1506 apresenta vantagens como, por exemplo, a densidade até 2,5 vezes inferior à brita e, também, sua inércia química, evitando reações adversas sobre a armadura e a pasta de cimento. Ademais, o uso desse agregado pode influenciar outras propriedades do concreto como estabilidade dimensional, isolamento termoacústico, resistência mecânica, trabalhabilidade e módulo de deformação (ROSSIGNOLO, 2009).

2.2 Propriedades do Concreto

É possível conceituar a palavra "propriedade" como as características, sejam essas físicas ou químicas, existentes e que devem ser observadas de modo a entender o comportamento e diferenciar os materiais existentes. Quanto ao concreto, Sobral (2000) ressalta que as características do concreto fresco e do endurecido estão intimamente relacionadas.

2.2.1 Estado Fresco

A normativa ABNT NBR 12655 (2015, p. 03) define que o concreto no estado fresco é aquele "concreto que está completamente misturado e que ainda se encontra em estado plástico, capaz de ser adensado por um método escolhido". Entender as características da mistura nesse estado permite que sejam analisadas as possibilidades para transporte, lançamento, adensamento e acabamento em obra (NEVILLE, 2016). A partir disso, para a presente pesquisa foram observadas a massa específica e a consistência dos traços definidos.

Em relação à massa específica, buscou-se entender o impacto gerado pelo agregado leve incorporado nas misturas a partir da comparação entre os resultados obtidos para essas e para o concreto convencional. Mehta e Monteiro (2006) ressaltam que o objetivo principal do concreto leve mistura é a diminuição de peso, mesmo que os valores para desempenho mecânico fiquem prejudicados. Os mesmos autores evidenciam que a resistência à compressão do concreto é diretamente influenciada pelo emprego de agregados leves ao concreto, geralmente reduzindo-a, entretanto, ainda é possível fabricar concretos leves seguros o suficiente para emprego em fins estruturais.

Para Sobral (2000) a trabalhabilidade é a propriedade mais importante do concreto quando no estado fresco, visto que essa envolve a adequação da mistura ao tipo de obra a que se destina, aos métodos de lançamento, adensamento e acabamento, à ausência de segregação ou exsudação e à adequada compactação. Rossignolo (2009) sugere que a argila expandida tende a absorver altas quantidades de água devido à sua porosidade interna, logo, a fim de evitar que a trabalhabilidade de concretos com esse material fique comprometida, deve ser realizada sua pré-saturação. Essa medida promove um aumento da relação água/cimento, logo, também impacta no desempenho mecânico dos elementos.

2.2.2 Estado Endurecido

A normativa ABNT NBR 12655 (2015, p. 03) define que o concreto no estado endurecido é aquele "concreto que se encontra no estado sólido e que desenvolveu resistência mecânica". Frente ao desempenho mecânico, Helene e Andrade (2010) salientam que, em estruturas de concreto armado, a resistência à compressão deve ser meticulosamente avaliada a fim de identificar se os elementos cumprem os requisitos de

segurança. Nessa perspectiva, o presente estudo visa à obtenção de valores referentes à resistência à compressão axial comparando os dados obtidos para os traços com argila expandida com e sem adição de SCCA ao traço referência.

Mehta e Monteiro (2006) ressaltam que a porosidade é inversamente proporcional à resistência obtida e, para concretos convencionais, tem-se que a zona de transição e a porosidade da matriz cimentícia são fatores limitadores quanto ao desempenho das misturas. Ademais, os mesmos autores sugerem que, dentre os diversos fatores que impactam na resistência, um dos parâmetros mais importantes diz respeito à relação água/cimento que, por sua vez, determina a porosidade da pasta e limita sua resistência.

No caso da utilização de cinza de casca de arroz, Mehta (1992) conclui que é possível substituir mais de 70% do cimento por esse material pozolânico, entretanto, adições de 10% a 20% já são suficientes para que haja redução de permeabilidade e ganhos de resistência mecânica. Ademais, esse aumento no desempenho se dá em idades avançadas.

3 Metodologia

Para calcular o traço de dosagem foi necessário encontrar as propriedades dos materiais constituintes. Assim, a seguir serão os ensaios realizados para o cimento Portland, areia, brita e argila expandida, bem como o traço definido a partir do método da Associação Brasileira de Cimento Portland (ABCP) serão apresentados. Por fim, também os ensaios realizados no concreto no estado fresco e no estado endurecido também serão discutidos

3.1 Caracterização dos materiais

O aglomerante utilizado foi o Cimento Portland CP-V-ARI, caracterizado pelo alto ganho de resistência nas idades iniciais. Ademais, para a dosagem foi determinada a massa específica do material pela norma ABNT NBR 16605 (2017). Quanto à SCCA utilizada nesse estudo foram retirados dados de bibliografias que utilizaram o mesmo material.

Para os agregados foi utilizada a brita 0 e a areia grossa disponibilizados pelo Laboratório de Engenharia Civil da universidade. Assim, foi determinado a massa unitária dos agregados e a granulometria pelas normas ABNT NBR NM 45 (2006) e ABNT NBR 248 (2003), respectivamente. Ademais, também foi determinada a massa específica do agregado graúdo através da norma ABNT NBR NM 53 (2009) e do agregado miúdo pela norma ABNT NBR NM 52 (2009). Quanto à argila expandida, utilizou-se nesse estudo a 1506, por possuir dimensões parecidas à brita 0, o material que a mesma substituiu.

3.2 Dosagem do Concreto

Quanto à dosagem do concreto, ou seja, a quantidade de cada material da mistura, utilizou-se o método de dosagem da ABCP, visto que o mesmo pode ser aplicado para concretos de consistência plástica à fluida (AMBROZEWICZ, 2012). Assim, para a aplicação do método foi determinado, inicialmente, que a resistência esperada para o concreto aos 28 dias seria 25 MPa e o abatimento em tronco de cone seria 100 milímetros.

Assim, foram utilizados os resultados dos ensaios de caracterização e realizado o cálculo do traço do concreto referência. A partir da proporção encontrada, foram moldados outros traços com substituição do agregado graúdo convencional por argila expandida e acréscimos de SCCA. Optou-se por substituir os agregados em massa nas porcentagens de 30% e 70% e adicionar SCCA ao cimento na porcentagem de 20% gerando, assim, 5 traços para a análise dos resultados: Traço Referência (REF), traço com 30% de substituição (AG30%), traço com 70 % de substituição (AG70%), traço com 30% de substituição e

acréscimo de 20% de SCCA (AG30% + SCCA) e traço com 70 % de substituição e acréscimo de 20% de SCCA (AG70% + SCCA).

3.3 Ensaios do Concreto

A produção do concreto foi mecanizada, utilizando betoneira, já a moldagem e o adensamento do concreto foram realizados manualmente em corpos de prova cilíndricos, com diâmetro de 10 cm e altura de 20 cm, seguindo as recomendações da norma ABNT NBR 5738 (2015). Anteriormente à produção, os materiais foram devidamente pesados, e a argila expandida foi saturada. Ainda no estado fresco foi determinada a massa específica do concreto através da norma ABNT NBR 9833 (2009).

Ademais, também foi realizado o ensaio de abatimento em tronco de cone seguindo as orientações da norma ABNT NBR NM 67 (1998), objetivando aproximadamente 100 mm, como determinado no cálculo de dosagem. Assim, com o intuito de obter o abatimento determinado, foi adicionado água sempre que necessário. Dessa forma, a relação água/cimento se alterou e, possivelmente, impactou a resistência mecânica. Por fim, os corpos de prova foram desmoldados e postos em câmara úmida, para dar prosseguimento à cura, onde permaneceram até a idade de rompimento.

No estado endurecido, foram realizados os ensaios de compressão axial simples seguindo a norma ABNT NBR 5739 (2018). Para a determinação dos resultados foram ensaiados 3 corpos de prova para cada traço em cada idade e, então, uma média entre os valores foi determinada. A compressão foi realizada aos 7, 28 e 91 dias.

4 Resultados e Discussões

A fim de realizar o cálculo de dosagem pelo método da ABCP, a caracterização dos materiais foi executada. Os valores obtidos para os agregados convencionais são apresentados na Tabela 1.

Propriedade	Areia Grossa	Brita 0
Massa específica (Kg/m³)	2580	2860
Massa unitária solta (Kg/m³)	1610	-
Massa unitária compactada (Kg/m³)	-	1510
Absorção de água (%)	-	1,85
Módulo de finura (mm)	2,75	5,86
Diâmetro máximo (mm)	4,8	9,5

Tabela 1 - Valores obtidos para a caracterização dos agregados

Para o cimento Portland, foi determinada a massa específica e o valor obtido foi de 3,02 g/cm³ e, conforme fornecido pelo fabricante, tem-se que a superfície específica desse material é, em média, igual a 4,08 cm²/g. Já para a SCCA, em um estudo efetuado por Marangon et al. (2013), tem-se que a massa específica do material é de aproximadamente 2,16 g/cm³ e sua área específica igual a 2,11 cm²/g. A partir de uma comparação entre os valores obtidos para a superfície específica dos aglomerantes, fica evidente que o valor reduzido de SCCA tende a consumir mais água que o cimento.

Ademais, visando à um melhor entendimento sobre o concreto leve e o impacto causado pela argila expandida em suas propriedades, tem-se, na Tabela 2, valores referentes à caracterização desse material.

Propriedade	Argila Expandida 1506	
Massa específica (Kg/m³)	1111	
Densidade aparente (Kg/m³)	600 ± 10%	
Capacidade de retenção de água e ar (%)	18	
Classe granulométrica (mm)	6 - 15	
Porosidade (%)	80	

Tabela 2 - Valores de caracterização da argila expandida fornecidos (Dados do fabricante (2020))

A partir disso, tem-se que a porosidade da argila expandida é de 80%, logo, a absorção de água desse material tende a ser elevada. Ainda, esse valor está ligado à capacidade de retenção de água e ar que, em comparação à absorção de água da brita, apresenta valor cerca de 10 vezes maior. Essa diferença impacta na relação água/cimento, visto que o uso do agregado leve implica em adições de água além da calculada na dosagem a fim de manter a trabalhabilidade da mistura. Nesse contexto, para atenuar a absorção de água do novo agregado quando implementado no concreto, optou-se por pré-saturar o mesmo através de sua submersão em água durante 24 horas.

Já para a massa específica, o valor para a brita 0 é de 2860 Kg/m³, ou seja, maior que o dobro do valor referente à argila expandida, 1111 Kg/m³. Outrossim, evidencia-se que o agregado alternativo diminuirá a massa específica do concreto, conforme indicam as bibliografias estudadas.

Com base nos dados de caracterização apresentados, o traço obtido foi de 1:2,23:2,04:0,57 para cimento:areia:brita:água, respectivamente. Com base nisso, a substituição da brita por argila expandida ocorreu nas porcentagens de 30% e 70%, e a adição de cinza de casca de arroz em 20%, ambas em massa. Ainda, como a utilização do agregado poroso ocorreu em porcentagens significativas e em dois traços houve adição de um material com partículas finas, houveram evidentes modificações na relação água/cimento (a/c), bem como na relação água/aglomerante (a/ag), conforme a Tabela 3.

Traço	Fator a/c calculado	Fator a/c obtido	Fator a/ag	Abatimento (cm)
REF	0,57	0,55	0,55	9,7
AG30%	0,57	0,59	0,59	9,4
AG70%	0,57	0,69	0,69	9,8
AG30% + SCCA	0,57	0,59	0,49	10
AG70% + SCCA	0,57	0,70	0,59	9,1

Tabela 3 – Fatores a/c e a/ag obtidos durante o abatimento em tronco de cone

Ressalta-se, ainda, que foram considerados dois parâmetros diferentes para avaliação dos concretos estudados. O primeiro, fator a/c, considera a quantidade de água da mistura medida em relação à massa de cimento. Já o segundo, fator a/ag, considera a quantidade de água da mistura em relação à massa de aglomerante, portanto, leva em conta as parcelas de cimento e SCCA em conjunto.

A partir disso, no caso dos traços com uso de SCCA as misturas necessitaram de mais água em comparação ao concreto leve sem esse aglomerante, gerando um fator a/ag inferior ao a/c. Isso pode ser explicado pelo fato da quantidade de cimento e de aglomerante serem os denominadores das relações explicadas anteriormente, desse modo, como a SCCA foi uma adição à mistura, a quantidade de aglomerante fica superior à quantidade de cimento isolada, fazendo com que o resultado da divisão fique diferente para os parâmetros.

Quanto à moldagem, o traço referência apresentou valor de a/c ligeiramente inferior ao estimado no cálculo, pois o abatimento requerido foi obtido antes da adição total da água determinada. Isso ocorreu devido à tolerância de 01 cm permitida para o resultado do abatimento. Já para os traços AG30% e AG70%, conforme esperado, houve aumento no fator a/c, sendo a segunda situação a mais crítica. Por fim, para os traços AG30%+SCCA e AG70%+SCCA a mesma situação é verificada. Ainda no estado fresco, quanto ao ensaio de massa específica, os resultados podem ser observados na Tabela 4.

Propriedade	REF	AG30%	AG70%	AG30%+SCCA	AG70%+SCCA
Massa específica (Kg/m³)	2340	1950	1640	1994	1701

Tabela 4 - Valores obtidos para a massa específica do concreto

De fato, a substituição do agregado fez com que a massa específica do concreto diminuísse consideravelmente, sendo essa redução diretamente proporcional à quantidade de agregado leve na mistura. As massas específicas dos traços AG30%+SCCA e AG70%+SCCA ficaram ligeiramente superiores à AG30% e AG70%, respectivamente, pelo fato da adição de SCCA ter promovido um aumento na quantidade de pasta entre os grãos. Nesse contexto, de acordo com a definição de concreto leve de Rossignolo (2009), todos os concretos alternativos fabricados nessa pesquisa se enquadram como leves, já que o valor da massa específica é inferior a 2000 Kg/m³. Nas Figuras 1, 2 e 3 estão dispostos os dados obtidos de resistência a compressão dos traços estudados na forma de gráfico.

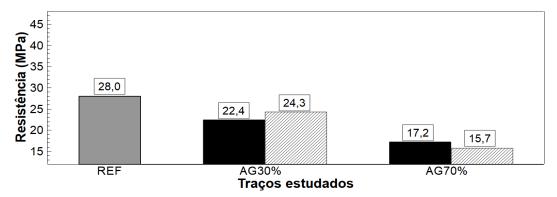


Figura 1 – Resultados do ensaio de compressão axial simples aos 7 dias. Na qual

Referência Sem adição de SCCA Com adição de SCCA

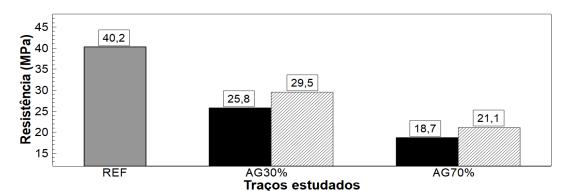


Figura 2 – Resultados do ensaio de compressão axial simples aos 28 dias. Na qual

Referência Sem adição de SCCA Com adição de SCCA

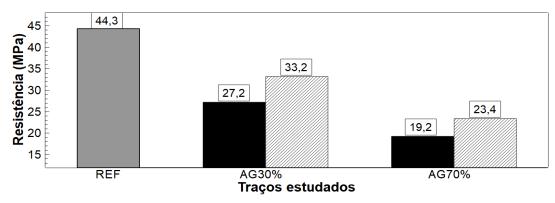


Figura 3 – Resultados do ensaio de compressão axial simples aos 91 dias. Na qual

Referência Sem adição de SCCA Com adição de SCCA

O traço referência apresentou comportamento típico de concretos que fazem uso do cimento utilizado nessa pesquisa, ou seja, obteve resistência significativa nas primeiras idades, e manteve crescimento menor, mas ainda sim considerável, até a última idade de rompimento. Quanto aos concretos com argila expandida sem adição de SCCA, aos 7 dias foram encontrados resultados inferiores ao concreto referência, sendo que o traço AG70% apresentou baixo desempenho. Ainda nessa idade, quando a SCCA foi adicionada, houve aumento de 2 MPa no traço AG30% + SCCA e diminuição de resistência no traço AG70% + SCCA. Essa ocorrência pode ser explicada pela cinza que, por ser uma pozolana, tem reações mais lentas, sendo necessário avaliar sua influência em idades mais avançadas.

Já aos 28 dias, foi observado crescimento significativo de resistência para o concreto referência, chegando próximo de 12 MPa se comparado à idade de análise anterior, diferentemente do que ocorreu para os traços que utilizaram argila expandida. Para AG30% e AG70%, o crescimento foi de apenas 3,4 MPa e 1,5 MPa, respectivamente, ou seja, muito inferior ao concreto referência. Ademais, quanto à utilização de SCCA, foi observado que esse material contribuiu no aumento da resistência, incrementando cerca de 5,2 MPa e 5,4 MPa aos traços AG30% + SCCA e AG70% + SCCA, quando comparado à idade de 7 dias. Assim, fica clara a contribuição da cinza já aos 28 dias, em que os traços de concreto leve que a utilizaram obtiveram melhor desempenho.

Nesse contexto, aos 28 dias o traço com 30% de argila expandida atingiu a resistência de cálculo, 25 MPa, utilizando ou não a SCCA como adição ao cimento. Já para AG70% e AG70% + SCCA, é perceptível que, embora a cinza tenha contribuído no ganho de resistência para o último, esses concretos não atingiram o determinado pelo cálculo. Entretanto, de acordo com Mehta e Monteiro (2006), as substituições de 70% podem ser consideradas concretos estruturais leves, uma vez que os valores de massa específica estão abaixo de 1850 Kg/m³ e a resistência à compressão é maior que 17 MPa. O mesmo não pode ser observado para as misturas de 30%, já que as mesmas não obtiveram redução de peso tão significativa.

Por fim, aos 91 dias foi possível verificar o impacto da utilização de SCCA no concreto, sendo que os traços que utilizaram esse material apresentaram melhor desempenho, mas, ainda sim, resultados inferiores e distantes ao referência. Nesse sentido, ao analisar os concretos com SCCA e aqueles sem a adição desse material, foi observado aumento maior que 20% na resistência final aos 91 dias.

A partir disso, foi verificado que todos os traços com substituição do agregado pela argila expandida apresentaram valores inferiores se comparados ao concreto referência, possivelmente pela menor resistência do agregado leve e, também, pela porosidade da matriz de cimento devido aos altos fatores água/cimento encontrados. Já quanto ao uso de SCCA, sua utilização como acréscimo ao cimento auxiliou nas resistências finais, devido às características pozolânicas do material, sendo possível, ainda, um crescimento de resistência diferenciado em idades mais avançadas.

5 Considerações Finais

O presente trabalho expôs uma análise acerca do concreto leve com argila expandida, bem como com adições de cinza de casca de arroz, avaliando o desempenho mecânico quanto à compressão e determinando a massa específica e consistência. Em relação ao estado fresco, houve uma redução do peso, se comparado ao traço referência, de 17% e 30% para os traços AG30% e AG70%, respectivamente. Sendo que as adições de SCCA não influenciaram de forma significativa nessa propriedade.

Além disso, a trabalhabilidade das misturas foi assegurada por acréscimos de água, impactando na relação água/cimento. Isso ocorreu devido à grande porosidade do agregado alternativo utilizado e, também, pela maior superfície específica da pozolana incorporada. Nessa perspectiva, essa situação aumentou a quantidade de vazios na pasta de cimento, impactando diretamente na resistência mecânica dos concretos produzidos.

Em relação ao ensaio de compressão os valores para os concretos leves foram inferiores. No que tange o emprego de argila expandida, verificou-se que essa redução é proporcional à porcentagem de substituição analisada e limita a resistência obtida em todas as idades de rompimento. Já para a SCCA ficou evidente a contribuição dessa à mistura, principalmente em idades avançadas. Nesse sentido, para o aumento de resistência de concretos leves a SCCA surge como uma possibilidade viável do ponto de vista técnico e ambiental.

Por fim, os resultados permitem o uso dessas misturas para a confecção de peças com funções estruturais, desde que tomados os devidos cuidados. A partir dessas informações, conclui-se que o uso da argila expandida em conjunto com a SCCA pode trazer benefícios ao setor da construção civil ao passo que reduz os esforços nas estruturas, através da redução da massa específica do concreto.

Referências

AMBROZEWICZ, P. H. L. **Materiais de construção**: normas, especificações, aplicação e ensaios de laboratório. São Paulo: PINI, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR NM 35**. Agregados leves para concreto estrutural – Especificação. Rio de Janeiro, 1995. 8p

__.NBR NM 45. Agregados — Determinação da massa unitária e do volume de vazios. Rio de Janeiro, 2006. 8p.

- __.NBR NM 52. Agregado miúdo Determinação de massa específica e massa específica aparente. Rio de Janeiro, 2009. 6p.
- __.NBR NM 53. Agregado graúdo Determinação de massa específica, massa específica aparente e absorção de água. Rio de Janeiro, 2009. 8p.
- __.NBR NM 67. Concreto Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro, 1998. 8p.

- __.NBR NM 248. Agregados Determinação da composição granulométrica. Rio de Janeiro, 2003. 3p.
- __.NBR 5738. Concreto Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro, 2016. 9p.
- __.NBR 5739. Concreto Ensaio de compressão de corpos-de-prova cilíndricos. Rio de Janeiro, 2018. 9p.
- __.NBR 7211. Agregados para concreto Especificação. Rio de Janeiro, 2009. 9p.
- __.NBR 9833. Concreto fresco Determinação da massa específica, do rendimento e do teor de ar pelo método gravimétrico. Rio de Janeiro, 2009. 7p.
- __.NBR 12655. Concreto de cimento Portland Preparo, controle, recebimento e aceitação Procedimento. Rio de Janeiro, 2015. 23p.
- __.NBR 16605. Cimento Portland e outros materiais em pó Determinação da massa específica. Rio de Janeiro, 2017. 4p.
- BAUER, L. A. F. **Materiais de construção**. 5. ed. rev. Rio de Janeiro: LTC Editora S.A, 2008.
- FOLLETO, L.E. et al. **Aplicabilidade das cinzas da casca de arroz**. Santa Maria, RS: Química Nova, 2005. p. 1055-1060.
- HELENE, P.; ANDRADE, T. Concreto de Cimento Portland. In: Geraldo Cechella Isaia (org.). Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais, cap.29. São Paulo: Ibracon, 2010.
- MEHTA, P. K. **Rice Husk ash** A unique suplementary cementing material. In: Advances in Concrete Technology. CANMET. Ottawa, 1992, p. 407 431.
- MEHTA, P. K.; MONTEIRO, P. J. M. Concreto: microestrutura, propriedades e materiais. São Paulo: IBRACON, 2008. 3.ed., 674p
- MONCADA, J. E. C. M. et al. Estudo da adição de argila expandida e EPS como agregados na elaboração de concreto leve. Revista Teccen. 2019. 12 (1): 02-07.
- NEVILLE, A. M. Propriedades do Concreto. 5.ed. Porto Alegre: Bookman, 2016.
- ROSSIGNOLO, J. A. **Concreto Leve Estrutural**: produção, propriedades, microestrutura e aplicações. Editora PINI, São Paulo, 2009.
- SCHIMANOWSKI, E. R. Z. et al. Concreto com substituição de cimento por cinza da casca de arroz. Anais do Salão do Conhecimento. Unijuí, 2019.
- SOBRAL, H. S. **Propriedades do concreto fresco**. 5.ed. São Paulo, Associação Brasileira de Cimento Portland, 2000. 32p. (ET-15)
- ZHANG, M. H.; MALHOTRA, V.M. **High-Performance Concrete Incorporating Rice Husk Ash as a Supplementary Cementing Material**. ACI Materials Journal, 1996. P. 629-636.
- ZHANG, M. H. et al. **Rice-husk ash paste and concrete:** Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. Cem. Concr. Res. 1996, 26, 963.