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“Son of man,

You cannot say, or guess, for you know only

A heap of broken images”

(T.S. Eliot, The Waste Land, 1922)



ABSTRACT

The spectral signatures of the materials contained in hyperspectral images, also called end-
members (EMs), can be significantly affected by variations in atmospheric, illumination or
environmental conditions typically occurring within an image. Traditional spectral unmix-
ing (SU) algorithms neglect the spectral variability of the endmembers, what propagates
significant mismodeling errors throughout the whole unmixing process and compromises
the quality of the estimated abundances. Therefore, significant effort have been recently
dedicated to mitigate the effects of spectral variability in SU. However, many challenges
still remain in how to best explore a priori information about the problem in order to
improve the quality, the robustness and the efficiency of SU algorithms that account
for spectral variability. In this thesis, new strategies are developed to address spectral
variability in SU. First, an (over)-segmentation-based multiscale regularization strategy
is proposed to explore spatial information about the abundance maps more effectively.
New algorithms are then proposed for both semi-supervised and blind SU, leading to
improved abundance reconstruction performance at a small computational complexity.
Afterwards, three new models are proposed to represent spectral variability of the EMs in
SU, using parametric, tensor, and neural network-based representations for EM spectra
at each image pixel. The parametric model introduces pixel-dependent scaling factors
over a reference EM matrix to model arbitrary spectral variability, while the tensor-based
representation allows one to exploit the high-dimensional nature of the data by means of
its underlying low-rank structure. Generative neural networks (such as variational autoen-
coders or generative adversarial networks) finally allow one to model the low-dimensional
manifold of the spectral signatures of the materials more effectively. The proposed models
are used to devise three new blind SU algorithms, and to perform data augmentation in
library-based SU. Finally, we provide a brief overview of work which extends the proposed
strategies to new problems in SU and in hyperspectral image analysis. This includes
the use of the multiscale abundance regularization in nonlinear SU, modeling spectral
variability and accounting for sudden changes when performing SU and change detection
of multitemporal hyperspectral images, and also accounting for spectral variability and
changes in the multimodal (i.e., hyperspectral and multispectral) image fusion problem.

Keywords: Hyperspectral images. Endmember variability. Spectral unmixing. Multiscale.
Tensors. Neural networks.



RESUMO

As assinaturas espectrais dos materiais contidos em imagens hiperespectrais, também
chamadas de endmembers (EMs), podem ser consideravelmente afetadas por variações
nas condições atmosféricas, de iluminação, ou ambientais que podem ocorrer dentro de
uma imagem. Métodos tradicionais de separação espectral não consideram a variabili-
dade espectral dos endmembers, o que acaba propagando erros por todo o processo de
separação espectral e compromete a qualidade das abundâncias estimadas. Consequente-
mente, muitos trabalhos têm se dedicado à mitigar os efeitos adversos da variabilidade
dos endmembers na separação espectral. Não obstante, ainda existem muitos desafios
relacionados a exploração de informação a priori referente à este problema para melhorar
a qualidade, a robustez e a eficiência de algoritmos de separação espectral que consideram
a variabilidade dos EMs. Nesta tese, novas estratégias são desenvolvidas para mitigar a
variabilidade espectral na separação espectral. Primeiramente uma estratégia de regular-
ização espacial multiescala baseada em algoritmos de segmentação e sobre-segmentação
de imagens é proposta para separação espectral semi-supervisionada e não-supervisionada.
Posteriormente, novos modelos são propostos para representar as assinaturas espectrais
dos endmembers em cada pixel da imagem no problema de separação espectral, utilizando
representações paramétricas, tensoriais, e baseadas em redes neurais. Por fim, as abor-
dagens propostas são estendidas para resolver outros desafios relacionados à separação
espectral e, de maneira mais geral, à análise de imagens hiperespectrais. Primeiro, a regu-
larização espacial multiescalas é utilizada para resolver o problema de separação espectral
não-linear usando kernels. Posteriormente, modelos paramétricos e estratégias baseadas
em bibliotecas espectrais são adaptados para representar a variabilidade espectral encon-
trada em imagens adquiridas em diferentes instantes de tempo. Finalmente, a variabilidade
espectral e espacial é abordada dentro do problema de fusão de imagens hiperespectrais e
multiespectrais, a qual visa obter imagens de alta resolução espacial e espectral.

Palavras-chave: Imagens hiperespectrais. Variabilidade dos endmembers. Separação es-
pectral. Multiescala. Tensores. Redes neurais.



RESUMO ESTENDIDO

As assinaturas espectrais dos materiais contidos em imagens hiperespectrais, também
chamadas de endmembers (EMs), podem ser consideravelmente afetadas por variações
nas condições atmosféricas, de iluminação, ou ambientais que podem ocorrer dentro de
uma imagem. Métodos tradicionais de separação espectral (SU – spectral unmixing) não
consideram a variabilidade espectral dos endmembers, o que acaba propagando erros por
todo o processo de SU e compromete a qualidade das abundâncias estimadas. Consequente-
mente, muitos trabalhos têm se dedicado à mitigar os efeitos adversos da variabilidade
dos endmembers na separação espectral. Não obstante, ainda existem muitos desafios
relacionados à exploração de informação a priori referente à este problema para melhorar
a qualidade, a robustez e a eficiência de algoritmos de SU que consideram a variabilidade
dos EMs. Nesta tese, novas estratégias são desenvolvidas para mitigar a variabilidade
espectral na separação espectral.

Primeiramente uma estratégia de regularização espacial multiescala baseada em
algoritmos de segmentação e sobre-segmentação de imagens é proposta no Capítulo 3
para separação espectral semi-supervisionada esparsa. O problema de unmixing é dividido
em dois problemas distintos, em escalas espaciais diferentes, os quais são resolvidos em
sequência. A primeira das escalas espaciais contém apenas uma versão aproximada da
imagem hiperespectral, enquanto a segunda escala representa a imagem em seu domínio
original. Realizando a separação espectral primeiramente no domínio aproximado, obtém-
se uma versão aproximada dos mapas de abundância que caracterizam a relação espacial
entre os pixels vizinhos. Essa informação pode ser então utilizada na forma de uma
regularização eficiente em um segundo problema de separação espectral no domínio original.
Ao contrário de outras técnicas de regularização espacial costumeiramente empregadas na
literatura (tomo o Total Variation, por exemplo), a regularização multiescala proposta
conduz a problemas de otimização que não introduzem uma dependência explícita entre
as abundâncias em diferentes pixels da imagem, o que permite uma solução muito mais
eficiente.

A estratégia de regularização multiescala do Capítulo 3 é então estendida no Capítulo 4
para considerar o problema de SU não-supervisionado, usando um modelo paramétrico
para representar variabilidade espectral dos endmembers ao longo da imagem. Ao invés
de dividir o problema de separação espectral em dois problemas distintos (em domínios
espaciais diferentes), propõe-se a solução de um problema único. Em particular, uma de-
composição multiescala diferente é utilizada para representar a imagem em dois domínios
espaciais, um sendo a escala de aproximação mencionada anteriormente, e outro contendo
apenas os detalhes da imagem hiperespectral e dos mapas de abundância. A regularidade
espacial dos mapas de abundância é então favorecida controlando-se sua energia na escala
de aproximação e na escala de detalhes individualmente no processo de separação espec-
tral, o qual é formulado como um problema de otimização não-convexo. Utilizando uma
abordagem de Least Squares alternados e algumas hipóteses simplificadoras, uma solução
computacionalmente eficiente é apresentada, levando a uma melhor estimação dos mapas
de abundância com um custo computacional inferior.

Posteriormente, nos Capítulos 5–8, novos modelos são propostos para representar
as assinaturas espectrais dos endmembers em cada pixel da imagem no problema de
separação espectral, utilizando representações paramétricas, tensoriais, e baseadas em
redes neurais. Primeiro, um modelo paramétrico é proposto no Capítulo 5 para representar
as assinaturas espectrais dos endmembers como uma versão escalada (para cada pixel,



material e comprimento de onda) de um conjunto de assinaturas espectrais de referência. O
modelo proposto generaliza o modelo de misturas linear, permitindo variações arbitrárias
no espectro e conectando a quantidade de variabilidade à amplitude do espectro de
referência. As abundâncias e os fatores de escalamento para cada pixel são estimados
através da solução de um problema de otimização, o qual incorpora regularizações que
promovem a suavidade espacial dessas variáveis para introduzir informação a priori ao
problema. Simulações mostram que o modelo proposto pode melhorar o desempenho de
separação espectral.

Já no Capítulo 6, a propriedade multidimensional dos mapas de abundância e das
assinaturas espectrais dos endmembers para cada pixel da imagem é explorada no desen-
volvimento de um método de separação espectral que não necessita de um modelo explícito
para a assinatura espectral dos endmembers. Para tal, é explorada a representação natural
dos dados na forma de tensores, bem como suas estruturas de rank baixo subjacentes,
as quais são frequentemente observadas na prática. O problema de separação espectral é
formulado como uma decomposição de tensores aproximada, onde os mapas de abundân-
cia e endmembers são restringidos à vizinhança de tensores de rank baixo. Uma solução
aproximada e eficiente para este problema é proposta utilizando o algoritmo dos Least

Squares alternados. Uma estratégia simples para a seleção dos ranks dos tensores também
foi desenvolvida, reduzindo assim a quantidade de parâmetros a serem ajustados pelo
usuário. Resultados indicam que a estratégia proposta conduz a bons resultados de sepa-
ração espectral com imagens tanto sintéticas quanto reais, com um custo computacional
competitivo para imagens de dimensões pequenas.

A despeito de um bom desempenho prático, estratégias baseadas em modelos
paramétricos e tensoriais não exploram uma propriedade muito importante da variabili-
dade espectral dos endmembers: as assinaturas espectrais são geralmente confinadas a
um manifold de dimensão baixa. O Capítulo 7 propõe explorar esse fato utilizando uma
representação baseada em redes neurais generativas (como autoencoders variacionais e
redes generativas adversárias), as quais representam o manifold onde reside o espectro
dos endmembers como a imagem de uma função sobre um espaço Euclideano de baixa
dimensão. Baseado nessa representação, uma abordagem de separação espectral é
proposta. Primeiramente, pixels ditos puros, os quais representam instâncias da assinatura
espectral de cada endmember, são extraídos da imagem e utilizados para treinar as
redes neurais generativas, uma para cada material na cena. Posteriormente, os mapas
de abundância e as representações latentes dos endmembers para cada pixel são obtidas
através da solução de um problema de otimização inspirado por métodos de fatoração
de matrizes. Resultados experimentais mostraram um excelente desempenho do método
para cenas contendo pixels puros. O Capitulo 8 estende essa abordagem para o problema
de separação espectral semi-supervisionado com bibliotecas espectrais contendo uma
quantidade limitada de assinaturas espectrais. Neste caso, os modelos generativos para
cada endmember são aprendidos diretamente a partir da biblioteca espectral disponível,
e são posteriormente utilizados para gerar novas assinaturas sintéticas usando uma
estratégia de data augmentation. Resultados experimentais mostraram uma performance
comparável com aquela obtida utilizando assinaturas geradas a partir de modelos físicos
adequados à cena, mas sem a necessidade do conhecimento a priori de tais processos.

Por fim, o Capítulo 9 apresenta um breve olhar sobre outras contribuições realizadas
durante a duração desta tese que estendem os métodos propostos nos Capítulos 3–8 para
resolver outros desafios relacionados à separação espectral e, de maneira mais geral, à
análise de imagens hiperespectrais. Primeiramente, o método de regularização espacial
multiescalas proposto no Capítulo 3 é estendido para resolver o problema de separação



espectral não-linear usando kernels. Além de estender a formulação anterior para um
modelo de mistura não-paramétrico, uma metodologia também é proposta para determinar
os parâmetros do algoritmo automaticamente. Além disso, uma solução eficiente para os
problemas de otimização resultantes é desenvolvida fazendo-se uso de sua dualidade forte
e do método da bisseção.

Posteriormente, o modelo paramétrico desenvolvido no Capítulo 5 para representar os
endmembers dentro de uma mesma imagem é estendido para representar a variabilidade
espectral encontrada em imagens adquiridas em diferentes instantes de tempo. Utilizando
uma estratégia de filtragem Bayesiana e o algoritmo Expectation Maximization, um método
de separação espectral é proposto para sequencias de imagens sem variações abruptas nos
mapas de abundâncias em instantes de tempo adjacentes. Para mitigar esta última limi-
tação, um método baseado em bibliotecas espectrais é proposto para realizar unmixing e
detecção de mudanças em sequências de imagens hiperespectrais baseado em um problema
de otimização combinatório. De modo a reduzir a complexidade computacional do método,
uma solução aproximada é proposta, e garantias teóricas de desempenho são derivadas.

Finalmente, a variabilidade espectral e espacial é abordada dentro do problema de
fusão de imagens hiperespectrais e multiespectrais, a qual visa obter imagens de alta res-
olução espacial e espectral. Considerando que as assinaturas espectrais subjacentes a cada
uma das imagens podem ser diferentes, primeiramente estendemos o modelo paramétrico
do Capítulo 5 para representar a variabilidade entre as imagens de diferentes modalidades.
Isso levou a uma melhora de desempenho considerável, especialmente em pares de imagens
onde a variabilidade espectral espacialmente invariante. Para abordar o problema onde
a variabilidade pode ocorrer tanto espectral quanto espacialmente, o problema de fusão
de imagens é formulado como a fatoração de tensores acoplada, sujeito a presença de
variabilidade aditiva arbitrária entre as imagens. Assumindo que tanto as imagens quanto
o termo representando a variabilidade podem ser representados como tensores de rank
baixo, dois novos algoritmos são propostos (um puramente algébrico e outro baseado em
uma estratégia de otimização), levando a uma melhora no desempenho prático. Resultados
teóricos garantem a recuperação exata da imagem de interesse quando certas condições
sobre os ranks são atendidas.

Palavras-chave: Imagens hiperespectrais. Variabilidade dos endmembers. Separação es-
pectral. Multiescala. Tensores. Redes neurais.



RÉSUMÉ

Les signatures spectrales des composants constitutifs présents dans les images hyper-
spectrales peuvent être significativement affectées par les variations des conditions atmo-
sphériques, d’illumination ou d’environnement se produisant typiquement dans une image.
Les algorithmes traditionnels de démélange spectral (Spectral Unmixing – SU) négligent
la variabilité spectrale des composants constitutifs, ce qui propage des erreurs importantes
tout au long du processus de démélange et compromet la qualité des abondances estimées.
Par conséquent, des efforts importants ont été récemment consacrés à atténuer les effets de
la variabilité spectrale dans les procédures de démélange. Cependant, de nombreux défis
restent à relever pour savoir comment exploiter au mieux les informations a priori sur le
problème afin d’améliorer à la fois la qualité et la robustesse des algorithmes de SU qui
tiennent compte de la variabilité spectrale des composants. Dans cette thèse, de nouvelles
stratégies sont développées pour aborder cette variabilité spectrale. Premièrement, une
stratégie de régularisation multi-échelles basée sur la (sur)-segmentation des images est
proposée pour explorer plus efficacement les informations spatiales sur les abondances. De
nouveaux algorithmes sont ensuite proposés pour le démélange spéctral semi-supervisé et
non-supervisé, ce qui se traduit par une amélioration des performances de reconstruction
des abondances avec une complexité de calcul réduite. Ensuite, trois nouveaux modèles
sont proposés pour représenter la variabilité spectrale des composants constitutifs, en util-
isant des représentations paramétriques, tensorielles et basées sur des réseaux neuronaux
pour les spectres de ces composants en chaque pixel de l’image. Le modèle paramétrique
introduit des facteurs multiplicatifs dépendant des pixels dans une matrice des composants
de référence pour modéliser une variabilité spectrale arbitraire, tandis que la représentation
basée sur un tenseur permet d’exploiter la grande dimension des données en exploitant
sa structure de rang faible sous-jacente. Les réseaux de neurones génératifs (tels que les
variational autoencoders ou les generative adversarial networks) permettent enfin de mod-
éliser la variété de faible dimension des signatures spectrales des matériaux, directement
à partir des données observées. Les modèles proposés sont utilisés dans la conception de
quatre nouveaux algorithmes de démélange non-supervisés et semi-supervisés. Enfin, nous
donnons un bref aperçu des travaux qui étendent les stratégies proposées dans la thèse
à de nouveaux problèmes en démélange et en dans l’analyse d’images hyperspectrales.
Cela comprend l’utilisation de la régularisation d’abondance multi-échelles en démélange
spectral non-linéaire, la modélisation de la variabilité spectrale, la prise en compte des
changements soudains lors du démélange et la détection des changements dans les images
hyperspectrales multitemporelles, ainsi que la prise en compte de la variabilité spectrale et
des changements dans le problème de fusion d’images hyperspectrales et multispectrales.

Mots clés: Images hyperspectrales. Variabilité des composants constitutifs. Démélange
spectral. Multi-échelle. Tenseurs. Réseaux de neurones.
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endmembers. These can be defined as:

P1 : To mitigate the adverse effects of spectral variability in the abundance estimation;

P2 : To estimate the spectral signatures of the endmembers present in each pixel of the

image.

Substantial interest has been recently raised by both of these problems. While all SU

methods must deal with P1 while accounting for spectral variability, not all of them take

P2 into consideration due to the additional difficulty it entails.

Several review papers exist on the topic and provide an extensive discussion of

the algorithms devised to solve these problems [11, 10, 13, 14]. In particular, the recent

review [15] (which was written as part of this thesis work) provides a comprehensive

categorization of existing methods.

1.2 CHALLENGES AND MOTIVATION

Although many works proposed to address the SU problem with spectral variability,

the challenging nature of this problem, both from a theoretical as well as from a practical

standpoint, still make it a very active research topic. In particular, devising improved

models to represent the endmembers and the abundances is critical to obtain high-quality

unmixing results. Moreover, the need to process large amounts of information also calls

for computationally efficient solutions.

1.2.1 Modeling the endmembers and the abundances

Due to the ill-posedness of the SU problem when spectral variability is considered

in (2), incorporating adequate a priori information is critical to obtain good results.

Therefore, a considerable amount of work has been dedicated to devise appropriate models

to represent variability of EM spectra.

Early approaches considered modeling EMs as sets of spectral signatures called

spectral libraries, whose elements encompass several variants of the spectrum of the material

in question [16]. SU then involves finding which spectral signatures from the library are

present in each pixel. Despite achieving significant popularity in, e.g., remote sensing

applications [11], these approaches carry a significant downside in that the spectral libraries

must be known a priori. This usually entails resource-consuming laboratory or in situ

measurements to obtain spectra that are good representatives of the materials in the

scene. Moreover, the computational complexity of many spectral library-based SU method

increases very quickly with the number of spectra in the library.

A different line of work proposed to model the EMs using statistical distributions,

with the spectral signatures of each element in each pixel being realizations of vector ran-

dom variables [17, 18]. A significant advantage of this approach is that spectral libraries
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are no longer required in order to perform SU, what allows for fully unsupervised ap-

proaches [10]. Moreover, the statistical formalism allows one to adopt principled methods

to estimate the abundances and the parameters of the EM distributions from the data.

However, the lack of mathematical tractability in these approaches imposes the use of

simple distributions to represent the EMs in the scene (such as, e.g., a Gaussian), which

may not be physically accurate. Moreover, the computational cost associated with these

techniques can be very high.

Recently, physically motivated parametric models have been employed to represent

EM spectra [19, 20]. The SU problem then consists of recovering both the abundances and

a set of parameters which are low-dimensional representatives of the spectral signatures

in the scene. This approach has demonstrated a good trade-off between the accuracy of

SU results and the computation times of the algorithms. Moreover, there exists significant

freedom in the definition of the parametric models. However, great care is necessary when

constructing both the parametric model and the SU algorithm in order to obtain good

results.

Besides modeling endmember spectra, another important step lies in choosing an

appropriate model to represent the spatial arrangement of the abundances. The use of

spatial contextual information has proven very successful in SU. One popular way to exploit

this kind of information is to promote abundances of spatially close pixels to be similar

to each other, which is the subject of, e.g., the Total Variation (TV) regularization [21].

More elaborate approaches also considered non-local redundancy in the images, exploring

information that similar small patterns and shapes might occur at different locations of an

HI [22]. Despite their success at improving abundance estimation results, such approaches

usually lead to SU algorithms having a substantially higher computational complexity.

1.2.2 Computational Efficiency

The use of improved models can naturally increase the performance of SU methods.

However, this also results in complex algorithms with typically much higher computational

complexity when compared to traditional methods. This happens, for instance, when

considering both nonlinearity [23] and endmember variability [16] in the mixing process.

Nevertheless, most works are not concerned with massive increases in the computational

cost when proposing new solutions.

This is an important issue for HI analysis since a basic characteristic of multiband

images is that the volume of data increases linearly with the amount of spectral bands.

Therefore, processing or even storing HIs can become challenging very quickly when the

amount of data is large. What makes this problem specially prominent nowadays is the

vast volumes of data being generated in remote sensing applications, putting this problem

into the big data framework [24, 25]. Thus, it is of great interest to devise algorithms

which can efficiently process large volumes of data without sacrificing the accuracy of the
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results.

1.3 RELATED CHALLENGES IN NONLINEAR AND MULTITEMPORAL SU, AND

MULTIMODAL IMAGE FUSION

An important aspect of the challenges mentioned in Section 1.2 is that they also

appear in other problems in hyperspectral image analysis. This can open new possibilities

to extend approaches aimed at overcoming such challenges to tackle different problems.

For instance, while most SU algorithms are based on the LMM, the interaction between

light and the different materials in a pixel often happens nonlinearly. This makes the

LMM unable to adequately represent the mixing process [23]. Although several nonlinear

mixing models have been proposed for SU [26], these usually contain a large amount of

parameters, which can also make the SU problem ill-posed. Thus, the use of abundance

spatial information can be important to improve the quality of the unmixing results.

Moreover, spectral variability of the EM signatures occurs not only within a single

HI, but also among HIs acquired over multiple time instants [11, 10]. Thus, addressing

spectral variability is also important when dealing with multitemporal SU, where sea-

sonality can make changes in EM spectra very pronounced. Moreover, properly handling

multitemporal data also entails handling additional challenges, such as dealing with abrupt

changes in the image sequence [27].

Another popular approach to overcome the low spatial resolution of HIs is to

combine them with multispectral images (MIs), which have higher spatial resolution but

a small number of spectral bands, to obtain images with higher spatial and spectral

resolutions [28]. Most works formulate this so-called image fusion problem considering

that both the HI and the MI are acquired under the same conditions. However, in practice,

many applications require the continuous monitoring of a given region over multiple time

instants (e.g. vegetation monitoring), which can be performed by combining HIs and MIs

acquired at different time instants (i.e., on board of different instruments) [29, 30, 31].

This, however, introduces a new challenge to the image fusion problem, since the materials

in the scenes may be affected by spectral variability due to the different acquisition or

seasonal conditions. Thus, addressing spectral variability can also have a positive impact

on the image fusion problem.

1.4 OBJECTIVES, CONTRIBUTIONS AND ORGANIZATION

The objective of this work is to devise novel methods that advance the state of the

art by addressing the limitations of current SU methods which consider spectral variability

in terms of their modeling accuracy and computational complexity.

The particular objectives can be described as follows:
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a) Propose new models which can better represent the abundances and the endmembers

in SU when spectral variability is considered;

b) Devise efficient algorithms to solve the SU problem considering endmember variabil-

ity.

An additional objective is to extend the proposed approaches to address multitem-

poral data, nonlinear mixtures, and multimodal image fusion.

1.4.1 Organization

We start by presenting an overview of the origins of spectral variability and their

effects on SU in Chapter 2. Since a significant portion of this work is concerned with

parametric approaches to represent EM spectra in SU, an in-depth overview about how

spectral variability behaves in real scenes gives valuable insight for devising or adjusting

models later on. Chapters 3–8 concern specific methodological contributions to SU with

spectral variability, which are described in the remainder of this section.

Moreover, we note that the contributions generated during the thesis work were not

limited to the SU problem, or to considering spectral variability. However, for conciseness

and to avoid detracting from the main theme of the document, we present only a brief

overview of such contributions in Chapter 9. Finally, Chapter 10 concludes this document.

In the following, we describe the main contributions and the content of each chapter.

1.4.2 Multiscale spatial regularizations for fast SU

Using spatial regularization approaches such as the TV [21] or non-local meth-

ods [22] often leads to a considerable increase in the computational cost of SU. Moreover,

signal-agnostic regularizations such as the TV have limited capability to represent the

spatial content of complex HIs. This sets forward two (often conflicting) goals in the design

of spatial regularization strategies: better explore spatial information (i.e., improve SU

performance) and reduce the computational complexity of SU.

In Chapters 3 and 4, we explore a different idea to design spatially regularized

SU methods in both supervised (library aided) and blind SU based on a signal-adaptive,

multiscale spatial representation of the HI. Using the superpixels decomposition as a sup-

port tool, we divide the image in two spatial scales, one containing only the coarse image

content and another one which also contains the fine-scale image details. Based on this

representation, we introduce spatial regularity information into the reconstructed abun-

dance maps by using either a two-step unmixing method with an inter-scale regularization

(in Chapter 3), or in a single step by controlling the energy of the estimated abundances in

each of the two scales (in Chapter 4). Both algorithms are able to improve the abundance

reconstruction results at a reduced computational complexity. These chapters are related

to the publications [32, 33].
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1.4.3 New models for EM spectra: Parametric, tensor, and neural-network-based strate-

gies

Chapters 5, 6, 7 and 8 present new models to represent the variability of EM

spectral signatures in both supervised and blind SU. Despite the success achieved by

recently proposed parametric EM models in this problem (see, e.g., [20, 19]), there is

still need for models which are flexible enough to properly represent the variability seen

in many practical applications while also being physically interpretable. Considering the

limitations of current models, we propose three new models to represent EM spectra, using

parametric, tensor, and neural network-based representations.

In Chapter 5, we propose a new parametric model to represent EM variability

at each pixel using a band-dependent scaling of a fixed, reference spectral signature of

each endmember. This extends the model previously proposed in [19], which considers

spectrally invariant scaling factors. The new model can account for complex spectral

distortions where different wavelength intervals can be affected unevenly. Moreover, it

also relates the amount of the spectral variability per wavelength with the amplitude

of the reference spectral signatures of the endmembers. This chapter is related to the

publication [34].

In Chapter 6 we propose to explore the high-order (multidimensional) structure

of the pixel dependent EMs in the HI, when organized as a tensor, in order to regularize

the resulting SU problem. The endmember tensor is assumed to be of approximately low

rank, which greatly reduces the number of degrees of freedom and makes the SU problem

well posed. A similar low-rank assumption is considered for the abundance maps, and

SU is performed by solving an optimization problem using a block coordinate descent

approach. The proposed model was able to effectively reduce the amount of unknowns

to be estimated in the problem and explore the spatial-spectral structure of the data, as

opposed to adding strict constraints to the problem a priori. This chapter is related to

the publication [35].

In Chapter 7 and Chapter 8, we represent the spectral signatures of the endmembers

using the perspective of deep generative modeling. Although material spectra reside in

a high-dimensional space, an important characteristic of spectral variability is that the

variation of spectral signatures of a material usually depends on a very small number of

parameters [36, 37]. This behavior can be seen in many practical applications, and supplies

important information to the design of new models: the spectra of a material is confined to

a low-dimensional manifold. This makes the task of learning spectral variability much more

tractable. Based on this information, in Chapter 7 we represent the manifold of spectral

signatures of each EM as the image of an unknown function acting on a low-dimensional

latent domain. This representation of the EM signatures is then used to parametrize the

SU problem in a matrix factorization-inspired framework. Functions mapping from the

latent domain to the EM signatures are learned from the observed HI using deep generative
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models (DGMs) such as variational autoencoders (VAEs) or generative neural networks

(GANs), which allows for unsupervised SU (i.e., without the need for spectral libraries).

This chapter is related to publication [38].

In Chapter 8, we extend the approach of Chapter 7 to improve supervised (library

aided) SU. One of the main downsides of library-based SU is that the quality of the

unmixing results depends directly on how well spectra in the library is able to represent

the EM signatures that are actually present in the HI. To address this issue, we propose to

use DGMs to augment existing spectral libraries with synthetic spectra. Using a statistical

interpretation of DGMs, the statistical distribution of EM spectra is first learned from

the signatures in the library. Afterwards, new spectra are then sampled and added to

the existing library before SU. This allows for the augmentation of existing libraries

without requiring a precise physical modeling of EM spectra. This chapter is related to

the publication [39].

1.4.4 Extending the contributions to new problems

In Section 9, we detail research performed during the course of this thesis work

which extends the methods from Chapters 3–8 to related problems in SU and in image

fusion.

1.4.4.1 Multiscale spatial regularization for nonlinear SU

The multiscale regularization strategy proposed in Chapter 3 was also extended

to address nonlinear SU with kernels. Although this was based on the same underlying

concept of decomposing SU in two different spatial domains (containing the coarse and the

original image content, respectively), some important challenges were addressed in this

work. After applying the multiscale decomposition to a non-parametric nonlinear mixture

model, the SU problem was formulated as non-convex quadratically constrained optimiza-

tion problems. This allowed for the development of a theoretically founded methodology

to select the regularization parameters of the algorithm automatically. Moreover, after

showing that strong duality holds for the proposed optimization problems, efficient solu-

tions were devised by exploring their dual formulations and a root finding strategy. This

work is related to the publication [40].

1.4.4.2 Multitemporal spectral unmixing and change detection

Recently, significant interest has been dedicated to the problem of SU of mul-

titemporal HI sequences (MTSU – multitemporal SU). Besides the difficulties already

experienced in traditional (i.e., single image) SU, this problem poses the additional chal-

lenges of handling EM variability in time (which can be more pronounced than within each

HI) and abrupt changes between temporally adjacent images. However, MTSU also allows
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one to improve SU results by exploring non-redundant information contained in multiple

HIs, and can provide more complete information to the practitioner by tracking the time

evolution of the EMs and their corresponding abundances. In this context, we proposed a

new approach to estimate the EMs in multitemporal HIs by coupling a temporal extension

of parametric models to represent spectral variability with a Bayesian filtering method-

ology. Most of the parameters of the model were estimated from the observed HIs using

the Expectation Maximization algorithm. However, this approach needs the abundances

to vary slowly over time (during short time intervals) to work satisfactorily. To better

deal with abrupt changes between adjacent HIs, we later considered to perform MTSU

and change detection jointly using spectral libraries. To this end, we extended a popular

combinatorial algorithm that searches for the spectral signatures that best represent each

pixel [16] to the multitemporal setting. Since this algorithm has a very high computational

cost, a fast approximate solution was proposed to make it scalable. Theoretical results

were supplied showing that under certain conditions, the approximate algorithm is able

to operate well both with constant abundances and under the presence of sudden changes.

This work is related to the publications [41, 42].

1.4.4.3 Addressing spatial and spectral variability in image fusion

Although spectral variability has been addressed mostly from a SU viewpoint,

it can also significantly impact the performance of multimodal (i.e., hyperspectral and

multispectral) image fusion algorithms. Despite the significant interest raised by this

problem, previous algorithms addressed it by considering that the images from both

modalities are acquired under the same conditions (e.g., by sensors on-board of the same

instrument). However, this is not always verified in practice, what makes the performance

of state-of-the-art algorithms degrade considerably when processing images acquired by

different sensors or at different time instants. To address this problem, we proposed

to incorporate spectral variability in a matrix factorization-based image fusion problem

by allowing the image from each modality to have a unique set of spectral signatures

or spectral basis vectors, which successfully accounted for spatially invariant changes.

This work was later extended in order to also account for spatially localized changes

using a tensor-based representation. The image fusion problem with (spatial-spectral)

variability was formulated as a coupled tensor factorization problem, and two image fusion

algorithms were devised (one purely algebraic, and another based on an optimization

algorithm). Moreover, theoretical results were also obtained concerning the identifiability

of the model and exact recovery conditions for each of the algorithms. This work is related

to the publications [43, 44].
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Table 1 – Subjects treated in each paper published or submitted during the duration of
this doctorate.

Paper

Subject
SU

Spectral
variability

Spectral
libraries

Non-
linear

Image
fusion

Multi-
scale

Multi-
temporal

Tensors
Neural
nets

Change
detection

C1 X X

C2 X X

C3 X X X

C4 X X

J1 X X X

J2 X X X

J3 X X X

J4 X X X

J5 X X X

J6 X X X

J7 X X X X

J8 X X X

J9 X X X X X

J10 X X

PP1 X X X X X
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2 ORIGINS OF SPECTRAL VARIABILITY IN HYPERSPECTRAL IM-

AGES

The variability in the spectral signatures occurs mainly due to (a) atmospheric

effects, (b) illumination and topographic changes, and (c) intrinsic variation of the spectral

signatures of the materials (i.e., due to physico-chemical variations). Understanding how

these conditions affect the spectral signatures of the materials and the unmixing results is

important in order to develop informed models and methods to deal with EM variability.

In the following, we review each of these effects and comment on their influence on the

endmembers in the mixing model.

2.1 ATMOSPHERIC EFFECTS

One of the main sources of spectral variability is the interference by the atmosphere

when measuring ground reflectance. Atmospheric gases (such as O3, O2, CH4, CO2, etc.),

aerosols and, most prominently water vapor, absorb significant amounts of radiation, while

other molecules and aerosols scatter incoming light [48]. These effects have an impact on

the radiance measured at the sensor, which can become significantly different than that

corresponding to the desired ground reflectance. Atmospheric absorption from gases is

also heavily wavelength dependent, whereas aerosol absorption varies smoothly in spectra.

These effects must be compensated to achieve an accurate characterization of surface

reflectance.

Atmospheric compensation models can be roughly divided into statistical (empiri-

cal) and physics-based models [48]. Statistical models are based on additional information

about the atmospheric influence, usually obtained by means of reference objects or cali-

bration panels in the scene. This information is used to find a relationship (e.g., linear)

between the radiances observed at the sensor and at the surface of the scene [48]. This

results in a gain and an offset factor for each spectral band, which are then uniformly ap-

plied to every image pixel to compensate for the atmospheric effects [48]. Sometimes, when

a reference object is not present in the scene, naturally occurring objects can be employed

as reference spectra, most commonly consisting of smooth bodies of water, which exhibit

low reflectance and can be considered as dark objects [6]. The downsides of this approach

are that the true reflectance of a reference object must be accurately known, and that it

does not account for the spatial variability of the distribution of gases and aerosols. This

variability can be very significant, and thus can introduce spatially-dependent residual

atmospheric effects. A classical example of statistical methods is the empirical line method

(ELM) [6].

Physics-based models, on the other hand, are robust alternatives to empirical

methods which do not assume additional information about the scene to be known. These

methods are currently mature and widely used, addressing the limitations of empirical
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Figure 4 – Illustration of the effects of the atmosphere on the acquired hyperspectral image.
The sources of radiation are represented by (a) light directly reflected by the
atmosphere to the sensor, (b) light scattered by the atmosphere and reflected
by the ground, (c) light directly reflected by the ground and (d) light reflected
by surrounding regions on the ground and then scattered to the sensor.

methods by employing a rigorous model that explicitly describes the absorption and

scattering effects due to atmospheric gases and aerosols [49]. Popular examples include

the Atmospheric Removal (ATREM) and the Fast Line-of-Sight Atmospheric Analysis of

Spectral Hypercubes (FLAASH) algorithms [48].

Assuming a ground terrain illuminated by the sun, the light incident on a pixel in

the sensor can be roughly characterized by four sources: solar radiation directly reflected

off the ground, light directly reflected off the atmosphere into the sensor, light scattered

by the atmosphere and reflected off the ground, and light that is reflected off surrounding

regions on the ground and then scattered before reaching the sensor (constituting the

adjacency effect) [50, 51]. These effects are illustrated in Fig. 4. A model for the reflectance

at the sensor ysensor is given by [48]:

ysensor “ yatmTg `
ysTgTÓTÒ ` pyavg ´ ysqTgTÓTÒr

1 ´ yavgs
(3)

where ys is the surface reflectance, Tg is the gaseous transmittance, yatm the reflectance of

the atmosphere, TÓ and TÒ are the upward and downward scattering transmittances, r is

the ratio between diffuse and total transmittance for the ground-to-sensor path, s is the

spherical albedo of the atmosphere, and yavg is the average surface reflectance in a region

around a pixel, which is used to account for scattering (adjacency) effects [48].

Physics-based atmospheric correction algorithms then try to obtain the ground

reflectance ys from the at-sensor reflectance ysensor by solving (3). In the overall working

of these algorithms the first step for atmospheric compensation consists of retrieving the

atmospheric parameters necessary to represent the quantities in (3), mainly consisting of
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aerosol description (visibility and type of aerosol) and amount of water vapor for each

pixel [52]. They are typically based on variations of the so-called three-band ratio technique,

which is an important step used to quantify the amount of water vapor for each pixel.

The three-band ratio technique basically compares ratios of radiances measured near the

edges of a number of spectral wavelengths which are known to present heavy water-vapor

absorption (e.g., at around 0.91 µm, 0.94 µm and 1.14 µm), using this information to derive

the column water vapor information for each pixel [6, 53]. After the necessary parameters

have been estimated, (3) can be solved for the ground reflectance and an optional post-

processing step can be employed (called spectral polishing) to remove artifacts from the

correction process [52].

Physics-based models can represent and account for the interaction between solar

radiation and the atmosphere very accurately. However, for this accuracy to translate into

meaningful surface reflectance estimates, these models require precise information about

atmospheric properties, which are very difficult to obtain in practice. This is specially true

for scattering and absorption by aerosols, which are hard to characterize accurately due to

their spatial and temporal variability [54]. Inaccuracies in the estimation of these param-

eters (which include the atmospheric visibility, aerosol model type and an atmospheric

model) introduce errors in the retrieved surface reflectance spectra that can be significant

and spectrally non-uniform [55].

Furthermore, unlike water vapor compensation, which is performed on a pixel-

by-pixel basis, most methods assume that individual aerosol and gas concentrations are

uniform across the scene (resulting in a single transmittance spectrum being computed

for each gas) [55, 52]. While this is true for some gases (such as NH4, O2, CH4, CO2,

etc.) that are fairly constant in the atmosphere [53], it is far from true for aerosols, which

may show significant variation in space [56, 57]. Aerosol concentration can vary depending

on the environment (e.g., in large cities and rural areas), and thus must be informed by

the user to the existing algorithms [53]. Moreover, standard aerosol types often do not

adequately represent the scene being processed, leading to inaccuracies in the retrieved

spectra [58]. Furthermore, experimental studies have found that aerosol optical thickness

has a significant spatial variability within a single scene [56, 59] and is often correlated

with cloud concentrations [59].

Some works attempted to estimate aerosol optical thickness for smaller patches of

the image individually using shadow detection results [60], which depends on the presence

of a large number of shadowed pixels. However, acquiring precise data for an accurate and

possibly spatially variable atmospheric correction is generally difficult, which means that

the results of common atmospheric compensation methods can be subject to significant

errors [56]. For instance, a number of studies have investigated the residual errors in

surface reflectance data after the application of atmospheric compensation methods by

comparing the processed results with in situ data or using simulations. These studies
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found that generally there is still an appreciable error in the retrieved reflectances. As

an example, errors in the retrieved reflectance by atmospheric corrections due to the

spatial variability of aerosol optical thickness over southern England were found to be

of up to 1.7%, with 5% errors in the normalized difference vegetation index (NDVI) [56].

This can be significant for practical applications, as it corresponds to errors of up to 30%

in biomass production estimates [61, 56]. Furthermore, standard methods for column

water vapor retrieval loose accuracy when the aerosol optical thickness is high, leading

to errors of up to 10% if aerosol effects are not properly compensated [62]. Note that

experimental measurements in a water quality management application found significant

differences between the true and retrieved spectral responses. Errors of up to 15% in

reflectance spectra were found, more prominently concentrated in short (ă450 nm) and

long (ą750 nm) wavelength intervals [63]. Another study evaluated a number of physics-

based atmospheric correction methods in an experiment for a playa and canola target and

found that although the average relative differences were moderate, ranging between 0.023

and 0.042, larger deviations of up to 0.12 occurred in the near-infrared region [64]. A study

with simulated data found that incorrectly supplying input parameters to the model used

in the FLAASH algorithm can lead to considerable errors in the retrieved reflectance, with

an absolute difference of up to 0.11, and a strong sensitivity to moisture/optical depth

(visibility) errors [55]. Also, very large errors can be introduced by a bad specification of

the aerosol model type, with higher errors generally present in short wavelengths where

scattering processes are most significant [55].

The influence of uncertainties in column water vapor and aerosol optical depth

specification on SU was investigated in [57] (given their influence in the retrieved re-

flectances). The performance degradation was found to be more severe in abundance than

in reflectance estimation, with degradation of up to 30% in high scattering conditions.

The results were more severely affected due to uncertainties in water vapor amount than

in aerosol optical thickness, although the latter showed a strong influence on the quality

of the reconstructed abundance maps when the endmembers were spectrally similar.

Finally, it is interesting to highlight that two characteristics were noticed from these

studies. First, the errors in the retrieved reflectances are fairly non-uniform in spectral

bands, with large spikes often concentrated near bands where there is significant gas/water

absorption [55, 57]. Second, errors due to bad aerosol specification are quite significant

in short wavelengths (450 nm-750 nm), where they are concentrated [55, 63]. All these

effects are illustrated in Fig. 5.

2.2 ILLUMINATION AND TOPOGRAPHIC EFFECTS

“There is a shadow under this red rock”

T.S. Elliot, The Wasteland
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Figure 6 – Examples of 30 pixel instances classified as red roof in the Pavia image (in
gray), which are primarily affected by illumination, and their spectral average
(in red). The average Pearson correlation coefficient between each signature
and the scaled version of the mean spectra that is closest to it is about 0.993,
indicating a good agreement between illumination-based spectral variability
and the constant scaling model.

small illumination variations).

This makes the detection, correction or quantification of shadow a challenging task,

since physical-based inversion of these atmospheric effects turns out to be a hard problem.

However, this task is still necessary since linear SU with a single dark endmember usually

does not successfully quantifies the presence of shadow in the scene [77].

Although the presence of shadows is common in hyperspectral images, a more

prominent source of variability comes from the varying topography of the scene, which

introduces complex fluctuations of the relative angles between the incoming light source

and the sensor for each pixel of the scene. Topographic variations have been shown to

significantly affect spectral reflectance values of soil and green vegetation [78] as well

as rocks in lithologic mapping [79], expanding endmember clusters and causing overlap

between classes, hindering the endmember identification and unmixing processes.

Considering that only the amplitude of the incident radiation changes along the

scene, the reflectance spectra of the observed pixels in the LMM becomes scaled by

a constant positive factor. This model agrees with the observation that most of the

variability in a hyperspectral image can be represented by a constant scaling of reference

endmembers [6]. As a simple empirical verification, we plot a random subset of 30 pixels

of red roofs from the Pavia image, which are pure pixels mostly affected by illumination

effects. The results, which are depicted in Fig. 6, indicate that these pixels differ mostly

by a scaling factor.

Although a constant scaling model is intuitive and simple, a more rigorous conclu-

sion can be achieved by analyzing the dependence of radiative transfer models with the

topography of the scene. To this end, one could resort to the model developed by Hapke [37,
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Figure 7 – Hapke’s model relates the reflectance to the incidence angles of the light source
and observer/viewer shown in this figure, given the material’s single scattering
albedo and photometric parameters [26].

80], which describes the bidirectional reflectance (i.e., the reflectance as a function of the

incidence angles of the light source and observer/viewer depicted in Fig. 7) as a function

of the single scattering albedo and of photometric parameters of the material [26].

Hapke’s model suggests a more complex relationship between the endmember signa-

tures and the topography. In this context, the mixture of materials is assumed to happen

at the macroscopic level, allowing for the consideration of the LMM in the albedo domain,

where Hapke’s model acts separately on each endmember. Besides the dependency on

the spectral signature with photometric parameters, which shall be discussed in the next

section, the dependence on the single scattering albedo1 indicates that changes in incident

angles can affect each material in a pixel differently from the others, since the behavior

of the reflectance as a function of the angle is different for each material. This indicates

that each endmember/material in a pixel can be differently affected by topographic effects.

Furthermore, the nontrivial relationship between geometry and the spectral signatures

leads to a more complex variation than single scaling for each endmember for high albedo

materials [19, 81]. Besides, even small topographic variations can significantly affect the

ground reflectance. For instance, in [82] experimental studies found that even small slopes

(of less than 10 degrees) originating from irregularities in tree canopy can lead to ap-

preciable (enough to influence the results of subsequent tasks) changes in the measured

reflectance of vegetation spectra.

2.3 INTRINSIC SPECTRAL VARIABILITY

Another important source of spectral variability is the intrinsic variation pertaining

the definition of a material, which is also called intrinsic variability. The characteriza-
1 i.e. the ratio between reflected and received radiation, as a function of the viewing angle.





Chapter 2. Origins of spectral variability in hyperspectral images 51

variation of vegetation reflectance, which shows significant dependency on the wavelength

and behaves very differently in visible, near-IR, and short-wave-IR ranges [90]. This means

that a simple scaling of a reference spectral signature is usually not sufficient to account

for variations within tree species [83]. Extensive experimental studies support this claim.

In [83] the author found that the variation of spectral reflectance in the visible and near-

infrared regions can occur independently when measuring tropical forest canopy in Brazil.

Similar inhomogeneity in spectral variation was also observed in other studies with tropical

tree species [91] and also in many distinctive environments, including conifer [92] and boreal

tree species [93]. Similar non-uniform variation trends are also consistently observed in

seasonal changes as indicated by many experiments, including in salt marshes [94], semi-

arid environments [95] and boreal tree species [96]. Furthermore, nonuniform spectral

variations have also been observed in samples from mineral, soil and rock spectra [89].

Numerous works model the spectral signature of materials as a function of pho-

tometric or chemical properties of the medium, being based on either radiative transfer

modelling or in empirical approaches. A well known example is Hapke’s model, which

describes the spectra of a surface composed of particles as a function of parameters such

as surface roughness and density and size of the particles [37, 80].

Another prominent line of work models the spectral characteristics of vegetation

and soil samples as a function of biophysical parameters [97]. Models of this kind have

been applied for the estimation of leaf biochemistry from the observed spectra. An im-

portant example consists of the characterization of leaf reflectance spectra as a function

of leaf biophysical parameters [97], for which a wide variety of models have been used,

ranging from a simple description of leaf scattering and absorption properties to complex

models which perform a detailed description of the plant cells’ shape, size, position, and

biochemical content [97]. Some instances of those models include the characterization of

the spectra of broadleaf vegetation as a function of leaf mesophyll structure, pigment and

water concentration [98] or as a function of leaf angular profiles [99], and of pine needles as

a function of cellulose, lignin and water content [100]. Other works model soil reflectance

spectra as functions of moisture conditions [101, 102, 103], and snow albedo as a function

of snow grain sizes and liquid equivalent depth [104].

As an illustrative example, we generated spectral signatures of vegetation spectra

using the PROSPECT-D model [36] as a function of varying degrees of chlorophyll content,

equivalent water thickness and dry matter content. The resulting signatures, depicted in

Fig. 9, show that intrinsic spectral variability can present complex patterns and non-

uniformity, as it is often concentrated in specific regions of the spectrum.

Through their analytical characterization of EM spectra, these kinds of models

confine spectral variability to lie on a low-dimensional manifold. This constitutes impor-

tant information that can be leveraged to alleviate/reduce the severe ill-posedness of

unsupervised SU problems accounting for spectral variability.
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Figure 9 – Reflectance spectra for vegetation generated with the PROSTECT-D
model [36] for varying degrees of (a) chlorophyll content, (b) equivalent water
thickness, and (c) dry matter content.

Another important characteristic is that endmembers affected by intrinsic spec-

tral variability usually display significant spatial correlation [105]. For instance, many

experimental geostatistical works evaluating the spatial distribution and variability of

the physico-chemical properties of the soil (e.g., sand and clay concentration, electrical

conductivity, pH, compaction and available elements such as nitrogen, phosphorus and

potassium) have reported significant spatial correlation/smoothness in these properties.

Reports include measurements performed in Rhodes grass crop terrain [106], calcareous

soils [107], rice fields [108] and tobacco plantations [109]. Besides directly impacting the

spectral signature of the soil, these characteristics have been widely acknowledged to

directly influence vegetation growth (e.g., they show strong correlation with crop produc-

tivity [106]), and hence their spectral signature [90, 106]. Therefore, spatial correlation

in the variability is expected both in soil/terrain and in vegetation signatures. A similar

behavior has also been observed in mineral spectra in the presence of spatially correlated

grain size distributions and impurity concentrations [86, 87]. This implies that the vari-

ability tends to be small in small spatial neighborhoods, even though it may be large

across a large scene. This fact can be leveraged to design SU algorithms since it supplies

information that can be used to reduce the severe ill-posedness of the problem.

To illustrate this effect, we performed an experiment by measuring the spectral

variability in a homogeneous region (composed by mostly pure pixels) of soil in the Samson

image, depicted in Fig. 10-(a). We then computed the Euclidean2 distance and the spectral

angle between each soil pixel and the average spectra of all pixels in the subregion, which

was used as a reference material signature. The results are depicted in Figs. 10-(b) and 10-

(c), where it can be seen that the variability shows strong spatial correlation, as observed

both in the Euclidean distance and spectral angle.

2 The Euclidean distance between x and y is computed as
b

1

N

ř
N

i“1
pxi ´ y

i
q2.





54

INTERMEZZO: USING SPATIAL INFORMATION TO ADDRESS

SPECTRAL VARIABILITY IN UNMIXING – A MULTISCALE

APPROACH

As mentioned in the introduction, the SU problem becomes extremely ill-posed

when spectral variability is taken into account. This makes it very important to explore

what prior information is available in order to solve this problem effectively. One of the

most important types of prior information used in unmixing is related to the (piecewise)

spatial smoothness of the abundance maps. Smooth abundance maps are observed in

a wide range of practical settings, and the pervasiveness of this hypothesis contributed

make regularization approaches such as Tikhonov [110] and Total Variation [21] become

a common tool in the design of SU algorithms.

These regularization strategies, however, are not the most effective in exploring

information contained in observed images. Subsequent works attempted to improve perfor-

mance even further by considering, e.g., non-local spatial redundancy [22]. Such strategies

improve the SU results at the expense of a considerable increase in computational complex-

ity. This sets forward two (often conflicting) goals in the design of spatial regularization

strategies: better explore spatial information (i.e., improve abundance estimation perfor-

mance) and reduce the computational complexity.

In the following two chapters, we explore a novel idea to design spatially regularized

SU methods in both supervised (library aided) and blind SU based on a multiscale

representation of the HI. Using the superpixels decomposition as a support tool, we divide

the image in two spatial scales, one containing only the coarse image content, and another

one which also contains the fine-scale image details. Based on this representation, we

introduce spatial regularity information into the reconstructed abundance maps by using

either a two-step unmixing method with an inter-scale regularization (in Chapter 3), or

in a single step by controlling the energy of the estimated abundances in each of the two

scales (in Chapter 4). Both algorithms are able to improve the abundance reconstruction

results at a reduced computational complexity.
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3 A MULTISCALE SPATIAL REGULARIZATION FOR FAST UNMIX-

ING WITH SPECTRAL LIBRARIES

“All this time the Guard was looking at her, first

through a telescope, then through a microscope,

and then through an opera-glass.”

Lewis Carroll, Through the Looking Glass

3.1 INTRODUCTION

Solving the SU problem without supervision requires estimating the EMs in (1) or

in (2) directly from the observed HI Y . This is not always trivial, even when no spectral

variability is present in the scene. Traditional endmember extraction algorithms rely on

the existence of pure pixels or on the data not being heavily mixed to obtain satisfactory

results [9, 111]. An interesting strategy to circumvent such issues is to model the observed

pixel as a linear combination of a large library of endmembers estimated a priori [112]. In

this case, the number of endmembers in a given scene is usually much smaller than the size

of the spectral library. Hence, the unmixing problem becomes a sparse regression problem

that consists of finding a small subset of the library endmembers which best represent all

the pixels in the image. This problem is often efficiently solved through the use of sparsity

promoting regularizations, resulting in the so-called sparse unmixing techniques [113].

Sparse unmixing methods achieved great success in dealing with spectral variabil-

ity using spectral libraries [113]. However, the use of large spectral libraries leads to

the unmixing problem being ill-posed, which makes the solution very sensitive to noise.

Regularization techniques have been shown to significantly improve the performance of

both non-sparse [114, 45] and sparse unmixing methods [21] by exploiting the correlation

between different pixels in the HI. The Total Variation (TV) regularization, for instance,

promotes solutions that are spatially piecewise homogeneous without compromising sharp

discontinuities between neighboring pixels [21].

Most effective spatial regularization techniques, however, require a massive increase

in computational cost. For instance, TV [21] leads to a large non-smooth convex optimiza-

tion problem, which needs to be solved using variable splitting techniques. More recently,

regularization strategies exploiting nonlocal redundancy in images were also considered,

leading to even larger optimization problems [22]. This is incompatible with recent de-

mands to timely process the vast amounts of remotely sensed data required by many real

world applications [24]. Such demands recently sparked significant interest on efficient

unmixing strategies with online processing capability [115]. This evidences the need for

fast low complexity unmixing strategies that yield state of the art performance.

In this chapter, we introduce a novel multiscale spatial regularization approach for

sparse unmixing. We propose a fast Multiscale sparse Unmixing Algorithm (MUA) that
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promotes piecewise homogeneous abundances without compromising sharp discontinuities

among neighboring pixels. The proposed method uses a signal-adaptive spatial multiscale

decomposition of the linear mixture model. The unmixing problem is decomposed into

two different problems in distinct domains: one in an approximation scale representation

constructed using segmentation or over-segmentation algorithms, and another in the

original image domain. Spatial contextual information of fractional abundances is initially

obtained by solving an unregularized sparse unmixing problem in the approximation

scale. This information is then mapped back to the original image domain by means of

an appropriately defined conjugate transformation of the multiscale decomposition. The

spatial contextual information is then enforced on the solution of the original unmixing

problem through a novel and computationally efficient regularization penalty. Simulation

results using both synthetic and real data indicate that the proposed method outperforms

TV-regularized solutions [21], while requiring a computational time comparable to that

of the unregularized algorithm [113].

This chapter is organized as follows. In Section 3.2, we briefly introduce the sparse

unmixing problem and present the proposed multiscale formulation. Simulation results

using synthetic and real data are presented in Section 3.3. Section 3.4 presents the con-

clusions.

3.2 SPARSE LINEAR UNMIXING WITH A MULTISCALE SPATIAL REGULARIZA-

TION

Let Y P R
LˆN denote the observed hyperspectral image with L bands and N

pixels, and MLib P R
Lˆ rP denote a spectral library having rP spectral signatures. Unlike

a common EM matrix with P spectral signatures, MLib can have many more signatures

than EM classes in the scene, leading to rP " P . Instead of extracting the endmembers

directly from the HI Y , sparse linear unmixing attempts to find an optimal subset of

samples from the spectral library MLib that best represents all the mixed pixels in the

image, namely,

Y “ MLibA
Lib ` E , (4)

where ALib P R
rPˆN is the (enlarged) fractional abundance matrix, each column of which

determines the composition of one image pixel as a linear combination of spectral samples

from MLib, and E P R
LˆN denotes the joint contribution of modeling errors and noise.

The fractional abundance matrix ALib is frequently subject to physical constraints imposed

to the model, such as the non-negativity (i.e., ALib ě 0) and the sum-to-one constraints

(i.e., 1JALib “ 1
J). Since only few of the spectral signatures of the library MLib are likely

to contribute to the observed spectra of each pixel, the abundance matrix ALib is usually

sparse. A common approach to solve the unmixing problem is to represent it as a spatially

regularized sparse regression problem [21]. These techniques, however, are computationally
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very expensive. In this section, we propose a multiscale regularization procedure which

introduces spatial regularity into the abundance maps at a very low computational cost.

The proposed spatially regularized unmixing scheme consists of two steps. First,

we transform the original image from the original domain to an approximation (coarse)

scale (denoted by C) to extract the most relevant inter-pixel contextual information. Then,

pixels at the coarse scale are unmixed independently from each other. Next, we apply

a conjugate transformation to the abundance estimates obtained at the coarse scale to

convert the coarse estimate back to the original image domain. This procedure yields

an accurate estimate of the low-level image structures, which is then used to regularize

the unmixing process applied to the original image to promote the spatial dependency

between neighboring pixels.

Consider a linear operator W P R
NˆS, S ă N that implements a spatial trans-

formation of both the HI and the abundance map to the approximation domain. Then,

Y C “ Y W ; ALib
C “ ALibW , (5)

where Y C P R
LˆS and ALib

C P R
rPˆS are the coarse approximations of the original image Y

and of the abundance matrix ALib, respectively. A possible choice for W might be a wavelet

transform employing the first approximation scales of the wavelet decomposition of Y .

However, the wavelet transform is feature-agnostic. It does not distinguish between pixels

in perceptually different image regions. Its application may result in blurred image edges.

Instead, we shall consider a signal-dependent transformation, that is, W ” W pY q, which

groups pixels into perceptually meaningful regions (not necessarily uniform), preserving

image contours and leading to sharp transitions.

Multiplying (4) by W from the right, the unmixing problem can be re-cast into

the approximation domain. The resulting unmixing problem is as follows:

pALib

C “ argmin
ALib

C
ě0

1

2
}Y C ´ MLibA

Lib
C }2F ` λC}ALib

C }1,1 . (6)

where } ¨ }1,1 is the matrix L1 norm, defined as }X}1,1 “
ř
i,j

ˇ̌
rXsi,j

ˇ̌
.

We shall now use pALib

C to regularize the original unmixing problem. To this end, we

define a conjugate transform W ˚ P R
SˆN that converts images from the approximation

domain C back to the original image domain as:

pALib

C˚ “ pALib

C W ˚ , (7)

where pALib

C˚ P R
rPˆN is the low-resolution approximation of the abundances in the orig-

inal image domain, which captures correlations between neighboring pixels. Note that

transformation W is generally not invertible, that is, WW ˚ ‰ I.
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Finally, we use the coarse abundance matrix pALib

C˚ to regularize a sparse unmixing

problem in the original image domain, where pALib
is obtained as the solution to the

following optimization problem:

min
ALibě0

1

2
}Y ´ MLibA

Lib}2F ` λ}ALib}1,1 `
β

2
} pALib

C˚ ´ ALib}2F , (8)

where β ě 0 is a regularization parameter. This formulation requires no explicit consider-

ation of dependencies between pairs of pixels as required by TV. This leads to a simpler

optimization problem, reducing both the computational complexity and the convergence

time, as will be verified in Section 3.3.

Note that both optimization problems (6) and (8) are particular cases of the

following problem

min
x

g1pxq ` g2pxq , (9)

where g1, g2 : RNx Ñ R`

Ť
t8u are closed, proper and convex functions. For instance,

problem (8) can be written in the equivalent form (9) by selecting functions g1 and g2 as

g1 ”
1

2
}Y ´ MLibA

Lib}2F `
β

2
} pALib

C˚ ´ ALib}2F

g2 ” λ}ALib}1,1 ` ι`pALibq ,
(10)

where ι`p¨q is the indicator function of the set R rPˆN
` , that is, ι`pALibq “ 0 if ALib ě 0 and

ι`pALibq “ 8 otherwise.

The Alternating Direction Method of Multipliers (ADMM) method decomposes

a problem in the form (9) into a sequence of simpler problems, which can be solved

efficiently [116]. The ADMM method can then be used to solve (8), with the resulting

procedure detailed in Algorithm 1 [116, 113], where soft denotes the component-wise soft

thresholding operator softpx, τq “ signpxqmaxt|x| ´ τ, 0u. Note that problem (6) can be

solved in the same way by setting β “ 0 and substituting Y ” Y C, ALib ” ALib
C , and

λ ” λC in Algorithm 1. The global algorithm of the proposed method, called Multiscale

sparse Unmixing Algorithm (MUA), is displayed in Algorithm 2.

3.2.1 Designing the multiscale transformation

An appropriate choice of transformation W is of paramount importance for the

proposed method to achieve a good reconstruction accuracy. The objectives of this trans-

form can be summarized as 1) grouping image pixels that are spatially adjacent and

semantically similar, that is, that belong to homogeneous regions, and 2) preserving image

contours by not grouping pixels that belong to different image structures or features.

Additionally, it must be computationally efficient.

Techniques such as the K-means have been explored for introducing regularity

into the solution of inverse problems [114]. However, K-means fails to effectively explore
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Algorithme 1 : ADMM method for solving (8)

Input :Y , MLib, parameters λ, β, and µ ą 0 and matrices U p0q,V p0q P R
rPˆN .

Output :The estimated abundance matrix pALib
.

1 Set i “ 0 ;
2 while stopping criterion is not satisfied do

3 B “ MJ
LibY ` µpU piq ` V piqq ` β pALib

C˚ ;

4 ALib “
`
MJ

LibMLib ` pµ ` βqI
˘´1

B ;

5 U pi`1q “ maxt0, softpALib ´ V piq, λ{µqu ;

6 V pi`1q “ V piq ´ pALib ´ U pi`1qq ;
7 i “ i ` 1 ;

8 end

9 return pALib
“ ALib;

Algorithme 2 : MUA
Input :Y , MLib, W , parameters λC , λ, and β.

Output :The estimated abundance matrix pALib
.

1 Compute Y C “ Y W ;

2 Find pALib

C by solving (6) using Algorithm 1 with β “ 0, λ ” λC , Y ” Y C and

ALib ” ALib
C ;

3 Compute pALib

C˚ using (7);

4 Find pALib
by solving (8) using Algorithm 1;

5 return pALib
;

local spatial regularity of the image, which is an important contextual information of

HIs. Moreover, spectrally similar pixels might share different abundance attributes. Hence,

spectral-only methods such as the K-means tend to group pixels that are semantically

distinct, especially in noisy scenarios. Therefore, both spatial and spectral information

should be explored to obtain good results.

To explore spatial information while grouping semantically similar pixels accounting

for image discontinuities, we propose to construct W using image segmentation or over-

segmentation algorithms [117, 118]. Image segmentation methods decompose the observed

image into a set of contiguous homogeneous regions with contextually similar spatial

information, typically consisting of objects which are separated by image borders [117].

Image segmentation often creates groups of pixels of heterogeneous sizes, corresponding

to both small and large objects in the same image. Although this allows one to represent

large regions with homogeneous abundance characteristics without compromising smaller

objects, it can lead to grouping pixels that share different abundance characteristics

(even if spectrally similar). As an alternative to circumvent this issue, we also explore

over-segmentation techniques, which attempt to divide the observed image into a larger

number of regions with relatively homogeneous sizes [118]. Although over-segmentation

methods partition large objects into many smaller segments, they provide an increased
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ability to adequately represent image borders and reduce the chance of grouping pixels

with different contextual information. Superpixel algorithms are a popular and efficient

technique for image over-segmentation [118].

We choose the transformation W to be an (over)-segmentation of the image. More

precisely, Y W computes an (over)-segmentation of the image Y , and returns the average

of all pixels inside each segmented region or superpixel. Note that the resulting pixels

do not lie on a uniform sampling grid. The conjugate transform, Y CW
˚, takes each

segment in Y C and attributes its value to all pixels of the uniform image sampling grid

that lie inside the corresponding region. The successive application of both transforms,

WW ˚ effectively consists in averaging all pixels inside each segment of the input image.

The decomposition of the Cuprite image using a segmentation and an over-segmentation

algorithm is illustrated in Fig. 11.

HS Image Segmentation Over-Segmentation

Figure 11 – Coarse-scale decomposition of a section of the Cuprite image for bands 50, 80
and 100 using the segmentation algorithm in [117] and the over-segmentation
algorithm in [118], with 950 and 2000 segments, respectively.

3.3 RESULTS

We compare the performances of the proposed MUA, the Total Variation (SUnSAL-

TV), the spatially unregularized (SUnSAL) and the S2WSU algorithms [113, 21, 119],

both in terms of reconstruction error and computational complexity. The selection of

these algorithms comes naturally since MUA, SUnSAL and SUnSAL-TV share the same

sparse regression formulation, and S2WSU is considered a state-of-the-art algorithm for

library-based sparse unmixing. For the proposed method, we compare two choices for the

transformation W : 1) a binary partition tree based segmentation algorithm (BPT) [117],

and 2) the simple linear iterative clustering (SLIC) over-segmentation method [118]. Finally,

we consider also the solution using the K-means algorithm, which is not effective at taking

local spatial information into account1.
1 SLIC and K-means were implemented using the Euclidean distance between reflectance vectors (HI

pixels).



Chapter 3. A multiscale spatial regularization for fast unmixing with spectral libraries 61

We considered a synthetic library M 1
Lib P R

224ˆ240 generated by selecting a subset

of 240 materials from the USGS library such that the angle between any pair of spectral

signatures was at least 4.44 degrees.

Table 2 – SRE results for unmixing data cubes DC1 and DC2.

DC1 data cube

SNR SUnSAL SUnSAL-TV S2WSU MUAK-means MUABPT MUASLIC

20 dB 4.54 dB 9.42 dB 7.70 dB 9.96 dB 13.39 dB 11.35 dB

30 dB 8.91 dB 14.44 dB 15.49 dB 14.02 dB 18.26 dB 15.73 dB

DC2 data cube

SNR SUnSAL SUnSAL-TV S2WSU MUAK-means MUABPT MUASLIC

20 dB 4.27 dB 11.61 dB 9.39 dB 12.69 dB 14.08 dB 14.88dB

30 dB 10.48 dB 17.97 dB 21.72dB 17.42 dB 16.92 dB 18.46 dB

3.3.1 Simulation results using synthetic data sets

For the simulations presented in this section two spatially correlated synthetic

data cubes DC1 and DC2 were built using 5 and 9 endmembers, respectively, selected

from library M 1
Lib. DC1 has 75ˆ75 pixels and its abundance map is composed of square

regions distributed uniformly over a background in five rows. Data cube DC2 has 100ˆ100

pixels and its abundance maps were sampled according to a Dirichlet distribution centered

at a Gaussian random field, leading to piecewise smooth maps that also have steep

transitions. For both datacubes, the generated HIs were contaminated by white Gaussian

noise, with signal-to-noise ratios (SNR) of 20 and 30 dB. The quality of the reconstruction

of the spectral mixtures was evaluated using the signal to reconstruction error, defined as

SRE “ 10 log10pEt}ALib}2F u{Et}ALib ´ pALib
}2F uq [21].

To find the optimal parameters for the selected algorithms we performed a grid

search for each dataset, and the parameters leading to the best SRE results for each

method were selected. For the MUA method, the parameter search occurred in the intervals

λC P r0.0001, 0.05s, λ P r0.001, 0.1s and β P r0.007, 30s, while the cluster sizes were selected

among the integer values
a
N{S P t3, . . . , 15u. For the SUnSAL, SUnSAL-TV and S2WSU

algorithms, the parameter ranges were selected according to those reported in the original

work in [21]. The SRE achieved by the SUnSAL, SUnSAL-TV, S2WSU, K-means and MUA

are shown in Table 2 for both SNR values. Samples of the reconstructed abundance maps

for both data cubes and SNRs are shown in Figs. 12 and 13 for a qualitative comparison.

The computational complexity of the algorithms was evaluated through their ex-

ecution times. SUnSAL, SUnSAL-TV, S2WSU, BPT and SLIC were implemented using

the codes made available by the authors. The algorithms were implemented in Matlab
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on a desktop computer equipped with an Intel Core I7 processor with 4.2Ghz and 16Gb

RAM. The results are shown in Table 3.

Table 3 – Average Execution time (in seconds) of each algorithm

SUnSAL SUnSAL-TV S2WSU MUAK-means MUABPT MUASLIC

DC1 2.57 58.24 24.21 2.88 4.19 2.66

DC2 4.24 92.1 42.41 3.69 4.94 4.04

Real
Image 184.8 1145.8 469.5 84.9 77.1 101.5

0

0.5

1

0

0.5

1

True SUnSAL-TV S2WSU MUA (BPT) MUA (SLIC)

Figure 12 – Abundance maps estimated by the different unmixing methods for the 2nd
endmember of data cube DC1. From top to bottom: SNR of 20 and 30 dB.

0
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1

0

0.5

1

True SUnSAL-TV S2WSU MUA (BPT) MUA (SLIC)

Figure 13 – Abundance maps estimated by the different unmixing methods for the 1st
endmember of data cube DC2. From top to bottom: SNR of 20 and 30 dB.

3.3.1.1 Discussion

It can be seen from Table 2 that the proposed algorithm can provide signifi-

cantly better performance than the SUnSAL-TV algorithm for both data cubes. The
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BPT segmentation-based transformation provided a variable performance, yielding very

good results for DC1, but a performance closer to SUnSAL-TV for DC2, especially for

SNR=30 dB. This indicates a considerable sensitivity to the image content. The results

obtained using SLIC, on the other hand, indicate a more regular performance, with sig-

nificantly better results than SunSAL-TV for both data cubes. Although the S2WSU

presented the best SRE result for DC2 with SNR of 30 dB, the method is very sensitive to

variations of the noise level, as can be seen for both datasets. Finally, we note that a reg-

ularization based on the K-means algorithm performed only similarly to the SUnSAL-TV

method, and significantly worse than the proposed transformations.

Figs. 12 and 13 show samples of the abundance maps of data cubes DC1 and DC2

estimated by the SUnSAL-TV, S2WSU and MUA algorithms using BPT and SLIC trans-

formation, which provided the best quantitative performance, except for the DC2 at 30 dB

where the S2WSU produced a comparable map. However, the performance degradation

of the S2WSU is clear when the SNR is decreased. The results of the MUA algorithm

were significantly better than those of the SUnSAL-TV algorithm. This difference is most

noticeable for an SNR of 20 dB, where the resulting abundance maps are much closer to

the ground truth than those estimated by the SUnSAL-TV.

In terms of computational cost, MUA performed significantly better than SUnSAL-

TV, with execution times comparable to those of SUnSAL algorithm, and, on average, 19

and 10 times smaller than those of SUnSAL-TV and S2WSU respectively. These results

illustrate the effectiveness of the proposed regularization method both in terms of quality

and computational cost.

3.3.2 Simulation results using real image

In this experiment, we consider a well-known region of the Cuprite data set with

250ˆ191 pixels. The spectral library MLib P R
188ˆ498 was built using the spectral signatures

in the USGS library after removing water absorption and low SNR spectral bands, resulting

in 188 bands. The parameters of the algorithms were selected empirically for MUA,

and set identically to those reported in [21] for SUnSAL and SUnSAL-TV, and for the

S2WSU we used λswsp “ 7 ˆ 10´5. Since the true abundance maps are unavailable for

this HI, we compare the fractional abundance maps of three dominant materials (Alunite,

Buddingtonite, and Chalcedony) estimated using the three algorithms. The results are

shown in Fig. 14.

Although the unmixing results for SUnSAL-TV, S2WSU, and MUA were similar, it

can be observed that the TV regularization tends to yield an over-smooth visual effect. This

is not observed in the results using S2WSU and MUA (especially for the over-segmentation

transformation) which produce spatially consistent abundance maps without compromising

the fine variability and the intricate structures in the image. These results again indicate

the effectiveness of the proposed spatial regularization. The computational times are shown
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Figure 14 – Fractional abundance maps estimated for the Cuprite image. From top to
bottom: Alunite, Buddingtonite, and Chalcedony.

in Table 3, and illustrate again the considerably lower complexity of MUA when compared

to SUnSAL-TV and S2WSU. It also runs significantly faster than the SUnSAL algorithm

due to the faster convergence rate achieved with the use of proposed regularization.

3.4 CONCLUSIONS

In this chapter, we presented a novel multiscale methodology to introduce spatial

information in sparse SU problems. It decomposes the spatially regularized unmixing

problem into two simple, low-cost problems in different image domains. Two multiscale

domain transformations were proposed based on segmentation and over-segmentation

methods, which allow an effective capture of spatial and spectral contextual information

at a reasonable computational cost. Simulation results using both synthetic and real

data showed that the proposed method outperforms state-of-the-art TV-based sparse SU

algorithms. Moreover, it requires execution times that are an order of magnitude lower

than the TV-based solution, and comparable to or even smaller than those of unregularized

methods.
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4 A DATA DEPENDENT MULTISCALE MODEL FOR SPECTRAL UN-

MIXING WITH SPECTRAL VARIABILITY

4.1 INTRODUCTION

Using parametric models to represent EM spectra is one of the main approaches

to deal with spectral variability in SU, due to good trade-off they offer between flexibility,

performance and computational complexity. The Perturbed LMM model (PLMM) [20]

introduces an additive perturbation to a reference endmember matrix. Such perturbation

matrix then needs to be estimated jointly with the abundances. Though the perturba-

tion matrix can model arbitrary endmember variations, it lacks physical motivation. The

Extended Linear Mixing Model (ELMM) proposed in [19] increased the flexibility of the

LMM by associating a pixel-dependent multiplicative term to each endmember. This gen-

eralization can efficiently model changes in the observed reflectances due to illumination,

an important effect [19]. This model is physically motivated, with the advantage of esti-

mating a variability parameter vector of much lower dimension when compared with the

additive perturbation matrix in PLMM. Although the ELMM performs well in situations

where spectral variability is mainly caused by illumination variations, it lacks flexibility

when the endmembers are subject to more complex spectral distortions. This motivates

the development of more flexible EM models, a topic that will be addressed in detail in

Chapters 5, 6 and 7.

Though the above described models were shown to be capable of modeling end-

member variability effects with good accuracy, their use in SU leads to severely ill-posed

inverse problems, which require sound regularization strategies to yield meaningful solu-

tions. One way to mitigate this ill-posedness is to explore spatial correlations found in

typical abundance [120] and EM variability [19] maps. For instance, spatial information

has been employed both for endmember extraction [121, 122] and for regularization in

linear [123], nonlinear [124], Bayesian [120, 125, 126] and sparse [21] unmixing strategies.

Total variation (TV) deserves special mention as a spatial regularization approach that

promotes spatially piecewise homogeneous solutions without compromising sharp discon-

tinuities between neighboring pixels. This property is important to handle the type of

spatial correlation found in many hyperspectral unmixing applications [110, 127].

Although important to mitigate the ill-posedness of the inverse problem, the use

of spatial regularization in spectral-variability-aware SU introduces interdependencies

among abundance solutions for different image pixels. This in turn leads to intricate,

large scale and computationally demanding optimization problems. Even though some

approaches have been investigated to accelerate the minimization of convex TV-regularized

functionals [128, 129], this is still a computationally demanding operation which, in

the context of SU, have been primarily addressed using variable splitting (e.g. ADMM)

techniques [20, 19, 34]. Such complexity is usually incompatible with recent demands for
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timely processing of vast amounts of remotely sensed data required by many modern real

world applications [25, 24]. Thus, it is desirable to search for faster and lower complexity

strategies that yield comparable unmixing performances.

In Chapter 3 (related to the publication [32]) a multiscale spatial regularization

approach was proposed for sparse unmixing. The method uses a signal-adaptive spatial

multiscale decomposition to break the unmixing problem down into two simpler prob-

lems, one in an approximation domain and another in the original domain. The spatial

contextual information is obtained by solving an unregularized unmixing problem in the

approximation domain. This information is then mapped back to the original image do-

main and used to regularize the original unmixing problem. The multiscale approach

resulted in a fast algorithm that outperformed competing methods, both in accuracy and

in execution time, and promoted piecewise homogeneity in the estimated abundances

without compromising sharp discontinuities among neighboring pixels.

Motivated by the good results obtained in Chapter 3, we propose in this paper

a novel data dependent multiscale mixture model for use in hyperspectral unmixing

accounting for spectral variability of the endmembers. The new model uses a multiscale

transform to incorporate spatial contextual information into the abundances of a generic

mixing model considering spectral variability. The unmixing problem is then formulated as

the minimization of a cost function in which a parametric endmember model (e.g. ELMM

or PLMM) is used to constraint and reduce the ill-posedness of the endmember estimation

problem. However, the dimensionality of this problem is still very high since the spatial

regularization ties the abundance solutions of all pixels together. Nevertheless, under a

few mild assumptions we are able to devise a computationally efficient solution to the

abundance estimation problem that can also be computed separately in the two domains.

The contributions in this chapter include:

1. The proposal of a new regularization strategy based on a multiscale representation

of the hyperspectral images and abundance maps. This regularization is significantly

different from and improves the one in Chapter 3. While in Chapter 3 the static/fixed

endmember matrix for all pixels allowed the easy separation of the abundance

estimation process in different domains, the same approach is not applicable to the

present case since the variability of the endmember matrix ties the abundances in

the approximation and original image domains.

2. A new approximate multiscale decomposition of the generic mixing model consid-

ering spectral variability. The new decomposition leads to a separable abundance

estimation problem that allows a simple and efficient solution without significantly

sacrificing accuracy. Moreover, the solution can be determined in parallel for all

image pixels.

When compared with approaches that rely on standard spatial regularization strate-
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gies and on variable splitting techniques such as ADMM, the proposed strategy leads to a

faster iterative algorithm that at each iteration solves the abundance problem only once

in each domain. The new algorithm is named Multiscale Unmixing Algorithm Accounting

for Spectral Variability (MUA-SV). Simulation results clearly show the advantage of the

proposed algorithm, both in accuracy and in execution time, over the competing methods.

The chapter is organized as follows. Section 4.2 briefly reviews the linear mixing

models and its variants accounting for spectral variability. In Section 4.3, we present the

proposed multiscale formulation for the mixture model. In Section 4.4 we formulate the

unmixing problem using the multiscale approach. The optimization of the resulting cost

function is presented in Section 4.5. In Section 4.6, we propose an approximate formulation

of the abundance estimation problem that leads to a simple and efficient solution. The

resulting MUA-SV algorithm is detailed in Section 4.7. Simulation results with synthetic

and real data are presented in Section 4.8. Section 4.9 presents the conclusions.

4.2 LINEAR MIXING MODELS CONSIDERING SPECTRAL VARIABILITY

In the Introduction, the most general form of the LMM considering spectral vari-

ability was defined by generalizing the LMM to allow a different EM matrix for each pixel.

Recalling equation (2), this model represents the n-th pixel as

yn “ Mnan ` en , n “ 1, . . . , N (11)

where Mn P R
LˆP is the n-th pixel endmember matrix. This model can also be written

for all pixels as

Y “
“
M 1a1, . . . ,MNaN

‰
` E . (12)

Different models have been recently proposed to represent endmember variability

as a parametric function of some reference endmember spectral signatures [20, 19, 34, 38].

These models are generically denoted by

Mn “ fpM 0,θnq , (13)

where f is a parametric function, M 0 P R
LˆP is a fixed reference endmember matrix

and θn is a vector of parameters used to describe the endmember signatures for the n-th

pixel. Although different forms have been proposed for f , two notable examples are given

by the Perturbed Linear Mixing Model (PLMM) [20] and the Extended Linear Mixing

Model (ELMM) [19].

The PLMM proposed in [20] models Mn as a fixed matrix M 0 plus a pixel-

dependent variation matrix that can accommodate generic spatial variations. Mathemati-

cally,

yn “
`
M 0 ` dMn

˘
an ` en , (14)
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where the parameters of this model are related to those of (13) by θn ” vecpdMnq, where

vecp¨q is the vectorization operator. This model is not physically motivated. Hence, in most

cases all elements of dMn must be included as independent variables in the solution of

the ill-posed unmixing problem, making the inverse problem hard to solve. This limitation

motivated the development of simpler, physically motivated variability models.

The ELMM is a simpler model proposed in [19]. It incorporates a multiplicative

diagonal matrix to LMM, which maintains the directional information of the reference

endmembers, but allows them to be independently scaled. The ELMM is expressed as

yn “ M 0 diagpφnqan ` en , (15)

where φn P R
P is a vector containing a (positive) scaling factor for each endmember, which

is related to the parameters of (13) by θn ” φn, and diagpxq denotes a diagonal matrix

whose diagonal elements are given by the elements of vector x. This model is a particular

case of (11) that can model typical endmember variations, such as those caused by

illumination variability due to the topography of the scene [19]. The optimization problem

that needs to be solved using model (15) is much less ill-posed than that generated using

model (14) due to the reduced number of parameters to be estimated. This simplicity is

obtained at the price of reduced generality.

For both the PLMM and ELMM, the problem of estimating the fractional abun-

dances and the spectral signatures of the endmembers was cast as a large scale, non-convex

inverse problem, which was solved using variable splitting procedures [20, 19]. The com-

putational cost of these solutions is very high, making them unsuited for processing large

amounts of data. Furthermore, the introduction of a priori information about the spatial

regularity of the abundance maps, which is essential to reduce the ill-posedness of the

inverse problem, results in a optimization problem that is not separable per pixel. This

significantly increases the computational cost of the solution. Considering this limitation

of the models described above, it is of interest to develop new mixture models that com-

bine the generality of the endmember variability patterns that can be considered with

the possibility of an efficient solution of the associated inverse problem. In the next sec-

tion, we introduce a new mixture model that represents separately the image components

at different scales using a data-dependent transformation learned from the observed hy-

perspectral image Y . This new multiscale representation can be employed to solve the

unmixing problem with any parametric model to represent spectral variability that fits

the form (13). The use of this new model results in a method that is able to provide more

accurate solutions at a much lower computational cost than the existing methods.

4.3 A MULTISCALE SPATIAL MIXTURE MODEL

To constrain the set of possible solutions, we propose to separately represent the

mixture process in two distinct image scales, namely, the coarse scale containing rough
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spatial structures, and the fine spatial scale containing small structures and details. By

doing so, the conditions for spatial smoothness can be imposed on the relevant parameters

in the much simpler coarse scale, and then be translated into the fine scale for further

processing.

Note that the decomposition applied in this chapter have an important difference

from the one used in Chapter 3. The decomposition in Chapter 3 represented the HI and

the abundance maps using a coarse spatial scale and the original image domain, the latter

of which contains both coarse and fine image structures. Here, on the other hand, we

decompose the image into a coarse and a detail spatial scales, the latter containing only

small structures and details.

As in Chapter 3, we consider a transformation W P R
NˆS based on relevant

contextual inter-pixel information present in the observed image Y to be applied to both

Y and A to unveil the coarse image structures. Recalling (5), the transformed matrices

are given by

Y C “ Y W ; AC “ AW , (16)

where Y C “ ryC1
, . . . ,yCS

s P R
LˆS and AC “ raC1 , . . . ,aCS s P R

PˆS with S ! N are, re-

spectively, the hyperspectral image and the abundance matrix in the coarse approximation

scale, denoted by C.

The spatial details of the image are represented in the detail scale, denoted by D,

which is obtained by computing the complement to the transformation W . Mathematically,

YD “ Y pI ´ WW ˚q ; AD “ ApI ´ WW ˚q , (17)

where YD “ ryD1
, . . . ,yDN

s P R
LˆN and AD “ raD1

, . . . ,aDN
s P R

PˆN are the input

image and the abundance matrix in the detail scale. Matrix W ˚ P R
SˆN is a conjugate

transformation to W , and takes the images from the coarse domain C back to the original

image domain. YD and AD contain the fine scale details of Y and A in the original image

domain. The transformation W captures the spatial correlation of the input image, whereas

its complement pI´WW ˚q captures existing fine spatial variations. This way it is possible

to introduce spatial correlation into the abundance map solutions by separately controlling

the regularization strength in each of the scales C and D. This is computationally much

simpler than to use more complex penalties. By imposing a smaller penalty in the coarse

scale C and a larger penalty in the details scale D, we effectively favor smooth solutions

to the optimization problem.

We can define a composite transformation as

ĂW “ rW I ´ WW ˚s , (18)

which decomposes the input image into the coarse approximation C and its complement

D. Note that the transformation is invertible, with a right inverse given by

ĂW :
“ rW ˚ IsJ . (19)
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Multiplying Y from the right by ĂW and considering the generic mixing model for

all pixels given in (12) yields Y ĂW “
“
Y C YD

‰
, with

Y C “
“
M 1a1 . . .MNaN

‰
W ` EC

YD “
“
M 1a1 . . .MNaN

‰
pI ´ WW ˚q ` ED

(20)

where EC “ EW and ED “ EpI ´WW ˚q represent the additive noise in the coarse and

detail scales, respectively.

The choice of the multiscale transformation W is important for the proposed

methodology to achieve a good reconstruction accuracy. Based on the results obtained

in Chapter 3, we consider the superpixel decomposition of the image for the transfor-

mation W , due to its ability to capture fine spatial details. We now recapitulate a few

important characteristics of the transformation W and of its conjugate W ˚ which will be

useful in the remainder of this chapter.

The decomposition Y W of the image Y returns a set of superpixels. The value of

each superpixel is equal to the average of all original pixel values inside that superpixel

region. The conjugate transform, Y CW
˚, takes each superpixel in Y C and attributes its

value to all pixels of the uniform image sampling grid that lie inside its corresponding

superpixel region. The successive application of both transforms, WW ˚ effectively consists

in averaging all pixels inside each superpixel of the input image.

4.4 THE UNMIXING PROBLEM

The spectral unmixing problem with spectral variability can be formulated as the

minimization of the cost function

J pM,Θ,Aq “
1

2

››Y ´
“
M 1a1 . . .MNaN s

››2
F

` λARpAq

`
λM

2

Nÿ

n“1

}Mn ´ fpM 0,θnq}2F ` λΘRpΘq (21)

subject to A ě 0, 1JA “ 1
J,

Mn ě 0, n “ 1, . . . , N.

where M is an L ˆ P ˆ N tensor containing the endmember matrices, with entries given

by rMs:,:,n “ Mn and Θ “ rθ1, . . . ,θN s is a matrix containing the parameter vectors of

the variability model for all pixels. Note that the generic parametric endmember model

Mn “ fpM 0,θnq of (13) was included in the cost function (21) in the form of an

additive constraint. This decouples the problem of estimating the abundances from that

of estimating the parametric endmember model, allowing the application of the multiscale

formulation to other endmember models without loss of generality. Furthermore, this also

gives more flexibility to the unmixing solution since the parameter λM can be adjusted
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to either allow matrices Mn to vary more freely or to strictly enforce the endmember

variability model (13).

The regularization functionals RpAq and RpΘq incorporate prior information about

the spatial smoothness of the abundance and about the parameters of the spectral variabil-

ity model. The abundance maps constraint introduces spatial regularity indirectly through

the transformation W . The constraint is given by

RpAq “
ρ

2
}AW }2F `

1

2
}ApI ´ WW ˚q}2F

“
ρ

2
}AC}2F `

1

2
}AD}2F (22)

and consists of a quadratic penalization of the multiscale representation of the abundance

maps, applied separately to the coarse and detail scales C and D. Parameter ρ allows

the control of the relative weights of each scale in the abundance penalty. For instance,

piecewise smooth abundance solutions to the optimization problem can be promoted by

imposing a smaller penalty in the coarse scale C and a larger penalty in the details scale D.

The constraint RpΘq is selected according to the endmember variability model

that is used, and might encode information such as the amount of spectral variability in

a scene or spatial correlation in the variables θn. The parameters λA and λΘ control the

balance between the different terms in the cost function.

In the following, we employ the ELMM model due to its parsimony and underlying

physical motivation [19]. This results in the following concrete forms for f and Θ:

fpM 0,θnq ” M 0 diagpφnq

Θ ” Φ ,
(23)

where Φ “ rφ1, . . . ,φN s is a matrix whose n-th column contains scaling factors φn of the

ELMM model (15). The scaling maps constraint RpΘq is selected to introduce spatial

smoothness to the endmember scaling factors, and is given by

RpΘq ” RpΦq

“ }HhpΦq}2F ` }HvpΦq}2F , (24)

where Hh and Hv are linear operators that compute the vertical and horizontal gradients

of a bi-dimensional signal, acting separately for each material. In the following, we make

the variable substitutions outlined in (23) and (24), which turns the cost function in (21)

into J pM,Φ,Aq.

The estimated abundance maps, endmember matrices and scaling factors can be

obtained by minimizing (21) with respect to (w.r.t.) these variables, resulting in the

following optimization problem

xM, pΦ, pA “ argmin
M,Φ,A

J pM,Φ,Aq . (25)
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This problem is non-convex and hard to solve directly due to the interdependence between

M, Φ and A. Nevertheless, a local stationary point can be found using an Alternating

Least Squares (ALS) strategy, which minimizes (21) successively with respect to one

variable at a time [130].

The ALS approach allows us to break (25) into three simpler problems which are

solved sequentially, consisting of:

aq minimize J pM|A,Φq w.r.t. M with A and Φ fixed

bq minimize J pΦ|A,Mq w.r.t. Φ with A and M fixed

cq minimize J pA|M,Φq w.r.t. A with M and Φ fixed

(26)

where J pB1|B2,B3q denotes a cost function J in which B1 is considered a variable and

B2, B3 are fixed and thus constants.

Although this strategy yields a local minimum of the non-convex problem (25) by

solving a sequence of convex optimization problems, it is still computationally intensive,

specially due to the abundance estimation problem. This is because the spatial regulariza-

tion term RpAq in (21) imposes interdependency among the different pixels of A, what

also happens when the TV regularization is employed [19, 110].

Each of the optimization subproblems of the ALS strategy in (26) will be treated

in detail in the next section. Furthermore, in Section 4.6 we will present a multiscale

formulation that eliminates the interdependency of the abundance estimation problem

between the different image pixels, allowing the solution to be computed faster and in

parallel.

4.5 FORMULATION AND SOLUTIONS TO THE OPTIMIZATION PROBLEMS

IN (26)

We now detail the solution to each of the optimization problems in the ALS

strategy outlined in (26). Although the solutions to the minimization problems w.r.t.

M and Φ are relatively straightforward and directly amenable to paralel or efficient

implementations, optimizing (21) w.r.t. A proves to be significantly more challenging

due to the multiscale spatial regularization term RpAq. Nevertheless, by making some

approximations in Section 4.6, we will reformulate this optimization problem as a function

of the multiscale representations AC and AD of the abundances. This will allow the

extension of the ALS strategy to consider separate minimization steps w.r.t. AC and

AD, leading to a simple and parallelizable solution. The complete algorithm including all

optimization steps will be detailed in Section 4.7.
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4.5.1 Optimizing with respect to M at the i-th iteration

The cost function in this case is J pM|A,Φq, where M is a variable and A and Φ

are fixed at the solutions obtained in the previous iteration. Then,

J pM|A,Φq “
1

2

Nÿ

n“1

´
}yn ´ Mnan}2

2
` λM}Mn ´ M 0 diagpφnq}2F

¯

subject to Mn ě 0, n “ 1, . . . , N (27)

Similarly to [19], we compute an approximate solution to minimize (27) for each image

pixel as

xMn “ P`

´`
yna

J
n ` λMM 0 diagpφnq

˘`
ana

J
n ` λMI

˘´1
¯

(28)

where P`p¨q is an operator that projects each element of a matrix onto the nonnegative

orthant by thresholding any negative element to zero.

4.5.2 Optimizing with respect to Φ at the i-th iteration

The cost function in this case is J pΦ |M,Aq, where Φ is a variable and A and M

are fixed at the solutions obtained in the previous iteration. Then,

J pΦ|M,Aq “
λM

2

Nÿ

n“1

}Mn ´ M 0 diagpφnq}2F ` λΘRpΦq. (29)

We follow the approach detailed in [19, Eqs. (20)-(23)] to minimize (29).

4.5.3 Optimizing with respect to A at the i-th iteration

The cost function in this case is J pA |M,Φq, where A is a variable and Φ and M

are fixed at the solutions obtained in the previous iteration. Then,

J pA |M,Φq “
1

2

››Y ´
“
M 1a1 . . .MNaN s

››2
F

`
ρλA

2
}AC}2F `

λA

2
}AD}2F (30)

subject to A ě 0, 1JA “ 1
J

AC “ AW , AD “ ApI ´ WW ˚q
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Using the multiscale transformation ĂW to write (30) as a function of the observed hyper-

spectral images Y C and YD represented at the coarse and detail scales yields

J pA |M,Φq “
1

2

››Y CW
˚ ´

“
M 1a1 . . .MNaN sWW ˚

››2
F

`
1

2

››YD ´
“
M 1a1 . . .MNaN spI ´ WW ˚q

››2
F

` tr
!`

Y CW
˚ ´

“
M 1a1 . . .MNaN sWW ˚

˘J

¨
`
YD ´

“
M 1a1 . . .MNaN spI ´ WW ˚q

˘)

`
ρλA

2
}AC}2F `

λA

2
}AD}2F (31)

subject to A ě 0, 1
JA “ 1

J

AC “ AW , AD “ ApI ´ WW ˚q

where trp¨q is the matrix trace operator.

Cost function (31) is neither separable with respect to the abundance matrices AC

and AD in the coarse and detail scales, nor with respect to the image pixels. This can

severely impact the required computational load and the convergence time to a meaningful

result. To mitigate this issue, in the following section we propose to use few reasonable

approximations to turn the minimization of (31) into an optimization problem separable

in AC and AD. This will remove the interdependency between the different image pixels,

and allow the extension of the ALS strategy to consider the optimization w.r.t. AC and

AD successively, instead of w.r.t. A.

4.6 MODIFICATION AND SOLUTION TO THE OPTIMIZATION PROB-

LEM W.R.T. A

Initially, we note that the cost function (31) does not depend on the endmember

variability model fpM 0,θnq. Hence, the derivations presented in this section are not

limited to the ELMM, and can be equally applied to other models without loss of generality.

4.6.1 Residuals inner product

To proceed, we first denote by REC and RED the residuals/reconstruction errors

in each image scale C and D, where REC and RED are given by

REC “ Y CW
˚ ´

“
M 1a1 . . .MNaN

‰
WW ˚ ,

RED “ YD ´
“
M 1a1 . . .MNaN

‰
pI ´ WW ˚q .

(32)

It follows from the above definition that the third term in the cost function (31) consists of

the inner product xREC, REDy between the residuals/reconstruction errors at the coarse

and detail scales. This inner product, however, usually contributes a small value to the

cost function, and can be neglected under the following assumption:
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A1 - Zero-mean, uncorrelated residuals: We assume that for A a critical point of (31),

REC and RED are spatially zero-mean and uncorrelated across scales. This is reasonable

if the observation/mixing model given by the ELMM in (15) represents the data with

reasonable accuracy, in which case the main contribution towards the residual error comes

from the observation noise en, which is white and spatially uncorrelated. If A1 is satisfied,

then the term xREC, REDy can be neglected when compared to the first two terms without

significantly altering the critical point.

Although neglecting the third term of (31) simplifies the optimization problem,

the first two terms still encompass intricate relationships between the abundances at

different pixels due to the action of the multiscale transformation W . Furthermore, the

optimization problem still involves terms depending on both A and the pair pAC, ADq,

which are related through ĂW , and thus cannot be easily solved in this form.

In order to proceed, we make the following assumption:

A2 - Spatially smooth endmember signatures: We assume that the pixel-by-pixel

endmember signatures Mn are similar in small, compact spatial neighborhoods. More

precisely, if N is a set of pixels comprising a compact spatial neighborhood, we assume

that the endmember signature of any pixel in N does not deviate significantly from the

average signature, so that the quantity
››››M j ´

1

|N |

ÿ

nPN

Mn

››››
F

(33)

is small for all j P N , where |N | is the cardinality of N .

We show in the following that this assumption leads to the separation of the

optimization w.r.t. A in (26) into two optimization steps, one w.r.t. AC, and the other

w.r.t. AD. For numerical verification of the reasonability of A1 and A2, see Section 4.11

at the end of this chapter.

4.6.2 Approximate Mixture Model

Consider (31) after neglecting its third term. Both W (in the first term) and

I ´WW ˚ (in the second term) act upon all the products Mnan, instead of just upon an,

for n “ 1, . . . , N . This precludes the separation of (31) in a sum of non-negative functions

exclusively dependent on AC or AD, which could be independently minimized. However,

combining A2 and the fact that the transformation W groups pixels that are in spatially

adjacent regions, we now propose an approximate separable mixing model.

We initially express each pixel yCi
and yDi

of (20) as

yCi
“

Nÿ

j“1

Wj,iM jaj ` eCi (34)
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and

yDi
“ M iai ´

Sÿ

j“1

Nÿ

`“1

W ˚
j,iW`,j M `a` ` eDi

, (35)

where Wj,i and W ˚
j,i are the pj, iq-th elements of W and W ˚, respectively, and eCi and

eDi
denote the i-th columns of EC and ED. Then, using A2 and the fact that W is a

localized decomposition, we approximate every endmember matrix M j in (34) by

M j « MCi “
Nÿ

`“1

1W`,i

| supp`pW`,iq|
M ` , (36)

where 1Wj,i
is the indicator function of Wj,i (i.e. 1Wj,i

“ 1 if Wj,i ‰ 0 and 1Wj,i
“ 0

otherwise), and | supp`pgq| denotes the cardinality of the support of g as a function of `.

Equivalently, we approximate every matrix M ` in (35) by

M ` « MC˚
i

“
Sÿ

n“1

Nÿ

m“1

1W˚
n,i
1Wm,n

| suppn,mpW ˚
n,iWm,nq|

Mm , (37)

where | suppm,npgq| denotes the cardinality of the support of g as a function of both m

and n. Thus, (34) and (35) can be approximated as (details in Appendix 4.10)

yCi
« MCiaCi ` eCi (38)

and

yDi
« M iaDi

` MDi

“
ACW

˚
‰
i

` eDi
, (39)

where r¨si denotes the i´th column of a matrix, and MDi
“ M i ´ MC˚

i
reflects the

variability of M i with respect to MC˚
i
, the average endmember matrix of its neighborhood.

According to A2, MDi
« 0. Note that, since the transformation W only groups together

pixels that lie inside a single superpixel, we average an and Mn only in small spatial

neighborhoods where their variability is small.

Selecting W and W ˚ according to the superpixels decomposition, we have that:

• MCi is the average of all M j inside the i-th superpixel.

• MC˚
i

is the average of all M j inside the superpixel that contains the i-th pixel. Thus,

if pixel i belongs to the k-th superpixel, MC˚
i

is the average of all M j inside the

k-th superpixel.

Note that W ˚ is also a localized transform, as it attributes the superpixel value to all

pixels in the original domain that lie inside that superpixel, which encompasses a compact

spatial neighborhood.
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Writting (38) and (39) for all pixels, we write (34) and (35) in the matrix form as:

Y C “
“
M C1aC1 , . . . ,M CSaCS

‰
` rEC

YD “
“
MD1

“
ACW

˚
‰
1
, . . . ,MDN

“
ACW

˚
‰
N

‰

`
“
M 1aD1

, . . . ,MNaDN

‰
` rED

(40)

where rEC and rED include additive noise and modeling errors.

4.6.2.1 Abundance constraints

The two constraints in (31) are functions of A, and thus must be considered in the

optimization with respect to AC and AD. Assuming ĂW in (18) to be of full row rank, the

sum-to-one constraint can be expressed as

1
JAĂW “ 1

JĂW
ðñ 1

JAC “ 1
JW , 1

JAD “ 1
JpI ´ WW ˚q. (41)

Considering the positivity constraint we have

A ě 0 ñ AĂW ĂW :
ě 0

ðñ rAC ADsĂW :
ě 0 ðñ ACW

˚ ` AD ě 0 . (42)

If W ˚ ě 0, which is true if W is selected as the superpixel decomposition, we can

further state that

ACW
˚ ě 0 ðñ AC ě 0 , (43)

which simplifies the constraint by removing possible interdependencies between different

pixels, and makes the problem separable for all pixels in the coarse scale C.

4.6.2.2 The updated optimization problem

Using the results obtained in Sections 4.6.1 to 4.6.2.1, minimizing (31) with respect

to A can be restated as determining AC and AD that minimize

rJ pAC,AD|M,Φq “
1

2

›››Y CW
˚ ´

“
M C1aC1 , . . . ,M CSaCS

‰
W ˚

›››
2

F

`
1

2

›››YD ´
“
M 1aD1

, . . . ,MNaDN

‰
´
“
MD1

“
ACW

˚
‰
1
, . . . ,MDN

“
ACW

˚
‰
N

‰›››
2

F

`
ρλA

2
}AC}2F `

λA

2
}AD}2F

subject to ACW
˚ ` AD ě 0, 1

JAC “ 1
JW ,

1
JAD “ 1

JpI ´ WW ˚q. (44)

Optimization problem (44) is amenable to an efficient solution, as detailed in the following

section.
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4.6.3 Solution to the optimization problem (44)

This section details the proposed solution of the optimization problem (44) w.r.t.

AC and AD.

4.6.3.1 Optimizing with respect to AC at the i-th iteration

The cost function in this case is rJ pAC|AD,M,Φq, where AC is a variable and AD,

M and Φ are fixed at the solutions obtained in the previous iteration. Note that this

problem is still not separable with respect to each pixel in AC since the second term of (44)

includes products between AC and W ˚. However, this cost function can be simplified to

yield a separable problem by making the following considerations using assumption A2:

1. A2 implies that the entries of MDi
are small when compared to those of Mn;

2. A2 also implies that the entries of Y CW
˚ are usually much larger than the entries

of YD.

These considerations imply that the contribution of the terms MDi

“
ACW

˚
‰

in the sec-

ond term of (44) can be neglected when compared to Y CW
˚. Using this approximation

and (43), the optimization with respect to AC can be stated as the minimization of

J pAC|AD,M,Φq

“
1

2

››Y CW
˚ ´

“
M C1aC1 , . . . ,M CSaCS

‰
W ˚

››2
F

`
ρλA

2
}AC}2F

subject to AC ě 0, 1
JAC “ 1

JW . (45)

For W based on the superpixel decomposition, W ˚ assigns to each pixel in the

original image domain the value of the superpixel to which it belongs. Using this property,

the cost function (45) simplifies to

J pAC|AD,M,Φq “
1

2

Sÿ

n“1

Ω2

spnq
´

}yCn
´ MCnaCn}2

2
`

rρpnqλA
2

}aCn}2
2

¯
(46)

subject to aCn ě 0, 1JaCn “ 1
JrW sn, n “ 1, . . . , S

where rW sn is the n-th column of W , Ωspnq is the number of pixels contained in the n-th

superpixel and rρpnq “ ρΩ´2
s pnq, n “ 1, . . . , S is a superpixel-dependent regularization

parameter that controls the balance between both terms in the cost function for each

superpixel.

For simplicity, in the following we replace rρpnq by a weighting term rρ0 “ ρS2{N2

that is constant for all superpixels. This further simplifies the optimization problem since S

is specified a priori by the user. Furthermore, since the optimization is independent for

each pixel, we can also move the Ω2
spnq factor outside the summation in (46) without

changing the critical point of the cost function.
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Doing this results in the following cost function that can be minimized individually

for each pixel:

pJ pAC|AD,M,Φq “
N2

2S2

Sÿ

n“1

´
}yCn

´ MCnaCn}2
2

`
rρ0λA
2

}aCn}2
2

¯
(47)

subject to aCn ě 0, 1JaCn “ 1
JrW sn, n “ 1, . . . , S.

Note that (47) is equivalent to a a standard fully constrained least squares (FCLS) problem,

which can be solved efficiently.

4.6.3.2 Optimizing with respect to AD at the i-th iteration

The cost function in this case is rJ pAD|AC,M,Φq, where AD is a variable and AC,

M and Φ are fixed at the solutions obtained in the previous iteration. Then, considering

only the terms and constraints in (44) that depend on AD yields

rJ pAD|AC,M,Φq

“
1

2

›››YD ´
“
M 1aD1

, . . . ,MNaDN

‰
´
“
MD1

“
ACW

˚
‰
1
, . . . ,MDN

“
ACW

˚
‰
N

‰›››
2

F

`
λA

2
}AD}2F (48)

subject to ACW
˚ ` AD ě 0,

1
JAD “ 1

JpI ´ WW ˚q.

Since matrix AC is fixed, this problem can be decomposed for each pixel. This

results in the minimization of the following cost function:

rJ pAD|AC,M,Φq

“
1

2

Nÿ

n“1

´››yDn
´ MnaDn

´ MDn

“
ACW

˚
‰
n

››2
2

` λA}aDn
}2
2

¯
(49)

subject to
“
ACW

˚
‰
n

` aDn
ě 0

1
JaDn

“ 1
J
“
I ´ WW ˚

‰
n

n “ 1, . . . , N

where matrices MDn
are given in (38) and (39). Note that this cost function is again

equivalent to a standard FCLS problem, which can be solved efficiently.

4.7 THE MUA-SV UNMIXING ALGORITHM

Considering the solutions to the optimization subproblems derived in the previous

sections, the global unmixing procedure can be directly derived by setting the fixed

variables of each subproblem with the estimates obtained from the previous iteration. The

MUA-SV algorithm is presented in Algorithm 3.
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Algorithme 3 : Global MUA-SV algorithm
Input : Image Y , parameters λM , λA, λΘ, ρ and matrices Ap0q, Φp0q and M0.
Output :Estimated matrices pA, pΦ and tensor xM.

1 Compute the superpixel decomposition of the hyperspectral image Y and the

corresponding transformation matrices W , W ˚, ĂW and ĂW :
using the SLIC

algorithm [118];
2 Compute the decomposition of Y into approximation and detail domains Y C , and

YD using (16) and (17) ;

3 Set A
p0q
D “ Ap0qpI ´ WW ˚q ;

4 Set i “ 1 ;
5 while stopping criterion is not satisfied do

6 Mpiq “ argmin
M

J pM|Api´1q,Φpi´1qq ;

7 A
piq
C “ argmin

AC

pJ pAC |A
pi´1q
D ,Mpiq,Φpi´1qq ;

8 A
piq
D “ argmin

AD

rJ pAD|A
piq
C ,Mpiq,Φpi´1qq ;

9 Apiq “
“
A

piq
C A

piq
D

‰ĂW :
;

10 Φ
piq “ argmin

Φ

J pΦ |Mpiq,Apiqq ;

11 i “ i ` 1 ;

12 end

13 return pA “ Api´1q, xM “ Mpi´1q, pΦ “ Φ
pi´1q ;

4.8 RESULTS

In this section, we compare the unmixing performances achieved using the proposed

MUA-SV algorithm, the Fully Constrained Least Squares (FCLS), the Scaled Constrained

Least Squares (SCLS), the PLMM-based solution [20] and the ELMM-based solution [19],

the latter two designed to tackle spectral variability. The SCLS algorithm is a particular

case of the ELMM model that employs the same scaling factors φn for all endmembers in

each pixel (i.e. Mn “ φnM 0, where φn P R`) [51]. It is a low complexity algorithm that

can be used as a baseline method to account for spectral variability.

For all simulations, the reference endmember signatures M 0 were extracted from

the observed image using the Vertex Component Analysis (VCA) algorithm [131]. The

abundance maps were initialized with the SCLS result for all algorithms. The scaling

factors Φ for ELMM and MUA-SV were initialized with ones. The matrix M for the

PLMM was initialized with the results from the VCA. The alternating least squares loop

in Algorithm 3 is terminated when the norm of the relative variation of the three variables

between two successive iterations is smaller than εA “ εΦ “ εM “ 2 ˆ 10´3.

Experiments were performed for three synthetic and two real data sets.

For the synthetic data, the regularization parameters were selected for each al-

gorithm to provide the best abundance estimation performance. The complete

set of parameters, comprising the SLIC (S and γ) and the regularization param-
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eters (ρ, λM , λA, and λΘ), were searched in appropriate intervals. For instance,

γ P t0.001, 0.0025, 0.005, 0.01, 0.025, 0.05u, S assumed an integer value in the in-

terval r2, 9s, ρ was selected so that ρS2{N2 P t0.001, 0.01, 0.025, 0.05, 0.1, 0.15,

0.2, 0.25, 0.35, 0.5u, while λM , λA, and λΘ were searched in the range r5 ˆ 10´4, 100s,

with 12 points sampled uniformly.

The algorithms were implemented on a desktop computer equipped with an In-

tel I7 4.2 Ghz processor with 4 cores and 16 Gb RAM. ELMM, PLMM and SLIC were

implemented using the codes made available by the respective authors. We did not employ

parallelism when implementing the MUA-SV algorithm, so as to reduce the influence of the

hardware platform when evaluating the performance gains achieved through the proposed

simplifications. If parallelism is employed, the execution times can be even smaller.

4.8.1 Synthetic data sets

Three synthetic data sets were built. The first data cube (DC1) was built from

the ELMM model to verify how MUA-SV performs when the actual endmembers closely

follows the adopted model. The second data cube (DC2) was built using the more chal-

lenging additive perturbation model of [20]. The third data cube (DC3) was based on a

realistic simulation of endmember variability caused by illumination conditions following

the Hapke’s model [37].

The data cube DC1 contains 50 ˆ 50 pixels and three materials selected randomly

from the USGS library and used as the reference endmember matrix M 0, with 224 spectral

bands. The abundance maps are piecewise smooth images generated by sampling from

a Gaussian Random field 1 [132], and are depicted in Fig. 15a. Spectral variability was

added to the reference endmembers using the same model as in [19], where the endmember

instances for each pixel were generated by applying a constant scaling factor to the reference

endmembers with amplitude limited to the interval r0.75, 1.25s. Finally, a white Gaussian

noise with a 25 dB SNR was added to the already scaled endmembers. The true scaling

factors applied to each endmember were generated using a Gaussian Random field, and

thus exhibit spatial correlation.

The data cube DC2 contains 70 ˆ 70 pixels and three materials, also randomly

selected from the USGS spectral library to compose matrix M 0 with 224 spectral bands.

The abundance maps (shown in Fig. 15b) are composed by square regions distributed

uniformly over a background, containing pure pixels (first row) and mixtures of two and

three endmembers (second and third rows). The background pixels are mixtures of the

same three endmembers, with abundances 0.2744, 0.1055 and 0.62. Spectral variability

was added following the model proposed in [20], which considered a per-pixel variability

given by random piecewise linear functions to scale individually the spectrum of each
1 Generated using the code in http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_

Synthesis_tools_for_MATLAB
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(a) DC1. (b) DC2.

(c) DC3.

Figure 15 – True and reconstructed abundance maps for the synthetic data cubes for
SNR=30 dB.
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Figure 16 – Discrete terrain model used with the Hapke model in the data cube DC3,
provided by [19].

endmember by a factor in the interval r0.8, 1.2s. Such a variability model does not match

the ELMM, as it yields different variabilities across the spectral bands, and is not designed

to produce spatial correlation. Nevertheless, it provides a good ground for comparison

with more flexible models such as the PLMM.

The data cube DC3 contains 50 ˆ 50 pixels and three materials, and is based on a

simulation originally presented in [19]2. This data cube is devised to realistically represent

the spectral variability introduced due to changes in the illumination conditions caused by

the topography of the scene, and is generated according to a physical model proposed by

Hapke [37]. Hapke’s model is able to represent the reflectance of a material as a function

of its single scattering albedo, photometric parameters and geometric characteristics of

the scene, namely, the incidence, emergence and azimuth angles during acquisition [19,

37]. Thus, pixel dependent reflectance signatures for each endmember can be obtained

given its single scattering albedo and the scene topography.

In this example, the scene was composed of three materials, namely, basalt, palag-

onite and tephra, which are frequently present on small bodies of the Solar System, and

contained 16 spectral bands. Afterwards, a digital terrain model simulating a hilly region

was generated, which is shown in Fig. 16, and from this model the acquisition angles asso-

ciated with each pixel were derived (as a function of the scene topography) by considering

the angle between the sun and the horizontal plane as 18˝, and the sensor to be placed

vertically downward. Finally, the pixel dependent endmember signatures for the scene

were generated from the single scattering albedo of the materials, and from the geometric

characteristics of the scene using Hapke’s model. The abundance maps used for DC2 were

the same used for DC1, as shown in Fig. 15c.

The resulting hyperspectral images for all data cubes were generated from the

pixel-dependent endmember signatures and abundance maps following the LMM, and

were later contaminated by white Gaussian noise, with SNRs of 20, 30, and 40 dB. The

regularization parameters for all algorithms and all examples were selected using a grid

search procedure in order to provide best abundance estimation performance.

The unmixing accuracy metrics used are the abundances mean squared error (MSE)
2 Most of the data for this simulation was generously provided by Lucas Drumetz and his collaborators.
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MSEA “
1

NP
}A ´ pA}2F , (50)

the mean squared error of the estimated spectra

MSEM “
1

NLP

Nÿ

n“1

}Mn ´ xMn}2F , (51)

and the mean squared reconstruction error

MSEY “
1

NL

Nÿ

n“1

}yn ´ xMnpan}2 . (52)

We also evaluate the estimates of the endmember signatures using the average

Spectral Angle Mapper (SAM), defined by

SAMM “
1

N

Nÿ

n“1

Pÿ

k“1

arccos

˜
mJ

k,nxmk,n

}mk,n}}xmk,n}

¸
. (53)

where mk,n and xmk,n are the k-th columns of Mn and xMn, respectively.

The quantitative results achieved by all algorithms are displayed in Table 4 for

all tested SNR values. The reconstructed abundance maps for the three data cubes and

an SNR of 30 dB are shown in Figs. 15a, 15b and 15c for a qualitative comparison. The

computational complexity of the algorithms was evaluated through their execution times,

which are shown in Table 5.

Table 4 – Quantitative results of all algorithms for data cubes DC1, DC2 and DC3 (with
parameters selected to yield best abundance estimates). All values are multiplied
by 103.

DC1 data cube DC2 data cube DC3 data cube

SNR Method MSEA MSEM SAMM MSEY MSEA MSEM SAMM MSEY MSEA MSEM SAMM MSEY

20 dB

FCLS 21.97 – – 6.91 66.47 – – 6.45 74.14 – – 2.63
SCLS 28.79 6.87 190.5 6.86 73.35 4.07 171.0 6.20 73.18 3.02 214.6 0.50

PLMM 24.64 5.42 188.8 3.50 85.65 3.19 174.4 3.33 39.07 1.44 122.7 0.39
ELMM 17.81 5.34 186.7 5.59 65.11 3.09 170.9 6.69 59.54 2.80 317.4 0.0001

MUA-SV 12.90 5.24 212.2 1.56 29.80 3.36 185.7 3.28 28.11 1.84 308.6 0.0002

30 dB

FCLS 28.10 – – 1.76 60.28 – – 0.93 172.3 – ˆ 1.41
SCLS 12.37 4.53 187.6 1.63 62.23 3.84 161.2 0.71 21.41 2.42 68.73 0.05

PLMM 19.61 4.88 173.0 0.86 49.38 3.95 162.5 0.41 38.00 1.53 68.53 0.10
ELMM 10.71 3.70 170.2 0.59 40.16 3.05 177.9 0.001 18.47 1.73 101.5 0.00002

MUA-SV 7.07 3.46 166.9 0.35 24.30 2.83 161.5 0.33 14.70 1.75 68.62 0.07

40 dB

FCLS 20.04 – – 1.23 71.37 – – 0.44 256.2 – – 1.39
SCLS 7.38 3.88 186.3 1.10 69.48 3.52 160.1 0.17 8.98 2.40 30.90 0.01

PLMM 13.44 3.64 170.3 0.56 44.73 3.02 140.7 0.11 34.38 1.47 74.15 0.08
ELMM 5.36 2.51 149.7 0.02 46.83 2.63 159.2 0.0002 8.12 1.28 43.14 0.01

MUA-SV 3.98 2.52 149.9 0.02 26.01 2.97 156.0 0.31 7.94 1.81 30.66 0.02
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Table 5 – Execution time (in seconds) of the unmixing algorithms, averaged for all SNR
values considered

FCLS SCLS ELMM PLMM MUA-SV

DC1 0.14 0.42 14.76 16.17 2.57

DC2 0.27 0.83 37.52 149.91 18.29

DC3 0.17 0.35 15.82 63.07 9.59

Houston 0.82 2.31 174.53 484.02 36.29

Cuprite 6.63 15.61 527.89 7998.02 95.54

Table 6 – Reconstruction errors (MSEY ) for the Houston and Cuprite data sets (all values
are multiplied by 103).

FCLS SCLS ELMM PLMM MUA-SV

Houston 2.283 0.037 0.010 0.190 0.014

Cuprite 0.050 0.044 0.040 0.079 0.050

4.8.1.1 Discussion

Table 4 shows a significantly better MSEA performance of MUA-SV for all three

data cubes and SNR values when compared with the other algorithms. This indicates that

MUA-SV effectively exploits the spatial properties of the abundance maps, even when the

actual spectral variability does not follow exactly the model in (15).

Figs. 15a, 15b and 15c show the true and reconstructed abundance maps for all

algorithms and 30 dB SNR. As expected, models accounting for spectral variability tend

to yield better reconstruction quality than FCLS, with ELMM yielding piecewise smooth

solutions. In general, the solution provided by MUA-SV approaches better the ground-

truth, in that it estimates the intensity of the abundance maps with better accuracy than

the other algorithms. This can be most clearly seen for the results for DC2 (Fig. 15b),

where the regions with pure pixels are better represented by MUA-SV.

Regarding the spectral performances, as measured by the MSEM and SAMM, the

results varied among the algorithms, with no method performing uniformly better than

the others. There is also a significant discrepancy between the Euclidean metric and the

spectral angle in many examples, highlighting the different characteristics of the two

metrics.

The ELMM model yielded the smallest reconstruction error MSEY in most cases

(6), followed by MUA-SV (4 cases). However, the connection between the reconstruction

error MSEY and the abundance estimation performance MSEA of the unmixing methods

that address spectral variability is not clear, as can be attested from Table 4.

The execution times shown in Table 5 indicate that MUA-SV is 2.2 times faster than

ELMM and 7.5 times faster than PLMM, a significant gain in computational efficiency.

This difference is more accentuated when processing larger datasets, as will be verified in

the following.
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Figure 18 – Reconstructed fractional abundance maps for the Houston data set.

and low SNR were removed from both images. The parameters of the algorithms were

selected empirically for the proposed method, and set identically to those reported in [19]

for the ELMM and PLMM. The number of endmemebrs was selected as P “ 4 for the

Houston data set, and as P “ 14 for the Cuprite data set, following the observations

in [19]. The endmembers were extracted using the VCA algorithm [131].

Since the true abundance maps are unavailable for those hyperspectral images, we

make a qualitative assessment of the recovered abundance maps based on knowledge of

materials present in prominent fashion in those scenes. The reconstructed abundance maps

for the Houston data set are depicted in Fig. 18. The four materials which are prominently

present in this dataset are vegetation, red metallic roofs, concrete stands, and asphalt. It

can be seen that ELMM and MUA-SV yield the best results for the overall abundances

of all materials, with smaller proportion indeterminacy in regions known to have mostly

pure materials such as the football field, the square metallic roofs and the concrete stands

in the stadium. However, MUA-SV provides better results, more clearly observed in the

purer areas such as the concrete stands of the stadium, which appear to be more mixed

with the asphalt abundances in the ELMM results. This evidences the better performance

of the MUA-SV algorithm.

The reconstructed abundance maps for the Alunite, Sphene, Buddingtonite and

Muscovite materials of the Cuprite data set are depicted in Fig. 19. Although all methods
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4.9 CONCLUSIONS

In this chapter we proposed a new data-dependent multiscale model for spectral

unmixing accounting for spectral variability of the endmembers. Using a multiscale trans-

formation based on the superpixel decomposition, spatial contextual information was

incorporated into the unmixing problem through the decomposition of the observation

model into two models in different domains, one capturing coarse image structures and

another representing fine scale details. This facilitated the characterization of spatial

regularity. Under reasonable assumptions, the proposed method yields a fast iterative

algorithm, in which the abundance estimation problem is solved only once in each scale.

Simulation results with both synthetic and real data show that the proposed MUA-SV

algorithm outperforms other methods addressing spectral variability, both in accuracy of

the reconstructed abundance maps and in computational complexity.

4.10 APPENDIX FROM CHAPTER 4: DERIVATION OF THE APPROXIMATED

MIXING MODEL

Given the coarse pixel model in (34) can be approximated using hypothesis A2 as

yCi
«

Nÿ

`“1

1W`,i

| supp`pW`,iq|
M `

Nÿ

j“1

Wj,i ai ` eCi

“
Nÿ

`“1

1W`,i

| supp`pW`,iq|
M ` aCi ` eCi

“ MCiaCi ` eCi (54)

where aCi “
řN

j“1
Wj,iai. The detail model in (35) can be approximated as

yDi
“ M iai ´

Sÿ

j“1

Nÿ

`“1

W ˚
j,iW`,j M ` a` ` eDi

« M iai ´

ˆ Sÿ

n“1

Nÿ

m“1

1W˚
n,i
1Wm,n

| suppn,mpW ˚
n,iWm,nq|

Mm

˙ Sÿ

j“1

Nÿ

`“1

W ˚
j,iW`,j a` ` eDi

“ M iai ´ MC˚
i

Sÿ

j“1

Nÿ

`“1

W ˚
j,iW`,j a` ` eDi

(55)
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and straightforward computations leads to

yDi
« M iai ´ MC˚

i

Sÿ

j“1

Nÿ

`“1

W ˚
j,iW`,j a` ` eDi

“ M ipaDi
`

Sÿ

j“1

W ˚
j,i aCjq ´ MC˚

i

Sÿ

j“1

Nÿ

`“1

W ˚
j,iW`,j a` ` eDi

“ M i

ˆ
aDi

`
Sÿ

j“1

W ˚
j,i aCj

˙
´ MC˚

i

Sÿ

j“1

W ˚
j,i aCj ` eDi

“ M iaDi
`

ˆ
M i ´ MC˚

i

˙ Sÿ

j“1

W ˚
j,i aCj ` eDi

“ M iaDi
`

ˆ
M i ´ MC˚

i

˙“
ACW

˚
‰
i

` eDi

“ M iaDi
` MDi

“
ACW

˚
‰
i

` eDi
. (56)

where aDi
“ ai ´

řS

j“1
W ˚
j,iaCj .

4.11 APPENDIX FROM CHAPTER 4: NUMERICAL VERIFICATION OF THE SIM-

PLIFYING HYPOTHESIS

Although hypotheses A1 and A2 impose some limitation to the MUA-SV algorithm,

they are reasonable and are satisfied in many practical circumstances. Below, we present

a more thorough analysis of each of these hypotheses.

Hypothesis A1 consists of assuming that the inner product xREC, REDy between

the residuals/reconstruction errors REC and RED in the coarse and detail image scales

is comparatively small, when compared to the first two terms of the cost function (31).

To illustrate the validity of this claim, we compare here the values of xREC, REDy with

those of the first two terms of the cost function, given by }REC}2F and }RED}2F , for some

practical examples. We considered the result of unmixing DC1, DC2 and DC3 with an

SNR of 30 dB presented in Section 4.8 using the ELMM model. The results are presented

below in Table 7. It can be seen that the quadratic norms exceed this inner product in

value by several orders of magnitude. Thus, the latter can be reasonably neglected, i.e.,

xREC, REDy « 0.

Table 7 – Comparison between the residuals inner product and the first two terms of the
cost function

}REC}2F ` }RED}2F xREC, REDy

DC1 328.35 ´1.316 ˆ 10´15

DC2 0.5605 2.845 ˆ 10´16

DC3 7.105 ˆ 10´4 1.948 ˆ 10´19
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Hypothesis A2 basically states that the endmember signatures for each pixel Mn

do not deviate much from the average endmember signature in its neighborhood, i.e. Mn

is similar to 1

|Nn|

ř
jPNn

M j where Nn contains indexes of pixels that are spatially close

to pixel n. This is an assumption about the underlying physical model that is reasonable

in practical scenarios. To illustrate this, we consider two experiments, one based on the

Hapke model and another based on real data, based on the discussion of Chapter 2.

For instance, using synthetic data generated using the Hapke model [37] we can

represent spectral variability due to topographic variations of the scene. Consider the

discrete terrain model and reference endmember signatures presented in Figure 20 below,

extracted from [19]. From this data and using the Hapke model, one can generate a

set of pixel dependent endmember signatures which can be used to evaluate the spatial

characteristics of spectral variability. For simplicity, we measure the similarity between

the reference and the pixel dependent endmember signatures using both the Euclidean

distance and the spectral angle, for all materials. The results are shown in Figure 21 below,

where it can be seen that there these deviations show significant spatial correlation.
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Figure 20 – Reference endmember signatures (left) and discrete terrain model (right) used
with the Hapke model in the data cube DC3 to generate the pixel-dependent
endmember signatures (data provided by [19]).

Spectral variability occurring due to intrinsic variations of the material spectra

(e.g. soil or vegetation) can also show significant spatial correlation (see [105]), since

endmember spectra usually depends on physical quantities that are correlated in space.

Many experimental studies support this claim, including geostatistical works evaluating

the spatial distribution and variability of soil’s physico-chemical properties (e.g. for grass

crop terrain (see [106]), calcareous soils (see [107]), rice fields (see [108]) and tobacco

plantations (see [109]), and also measurements of mineral spectra due to the presence of

spatially correlated grain sizes and impurity concentrations (see [86, 87]).

To illustrate this effect, we performed an experiment considering real data using

the Samsom image. We considered a subregion containing pure pixels of the soil material,

shown in Figure 22-(a) below. We considered these pixels as pixel dependent endmember

signatures and evaluated the similarity between them and the average endmember spectra
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Figure 21 – Measures of endmember spatial variability in the Hapke model. Top row:
Euclidean distance between the soil spectral signature of each pixel and the
reference signature. Bottom row: Spectral angle between the soil spectral
signature of each pixel and the reference signature.

for all these pixels. The results, shown in Figures 22-(b) and 22-(c), are similar to the

Hapke data, and illustrate that the variability shows considerable spatial correlation.
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Figure 22 – (a) Samson hyperspectral image with a subimage containing soil highlighted.
(b) Euclidean distance between the soil spectral signature of each pixel and
their average value. (c) Spectral angle between the soil spectral signature of
each pixel and their average value.
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INTERMEZZO: NEW MODELS FOR ENDMEMBER SPECTRA: FROM

TENSOR TO NEURAL-NETWORK-BASED REPRESENTATIONS

In Chapters 3 and 4, spatial information about the abundances was considered in

order to improve the SU results with spectral variability, both in blind and in library-aided

scenarios. A complementary approach consists of devising appropriate, low-dimensional

models to represent the variability of the endmember spectral signatures. Devising appro-

priate models for the EMs (or, alternatively, regularizations for the optimization problems)

is critical in order to effectively address spectral variability in SU, since the spatially vary-

ing EM matrices in model (2) make the problem severely ill-posed in general.

Although statistical and library-based models were the predominant approaches to

represent the endmembers in SU [10], parametric EM models attracted significant interest

more recently (see, e.g., [19, 20]). Such models can be physically motivated and yield

good abundance estimation performance. Moreover, SU can often be performed using

computationally efficient algorithms. However, parametric models also pose a significant

challenge, as they must be carefully designed for their potential to be fully explored.

The following chapters are dedicated to devising new parametric EM models and

applying them to the SU problem. We begin by extending the ELMM model [19] to consider

band dependent scaling factors in Chapter 5, giving it more flexibility to represent complex

spectral variability. In Chapter 6 we propose to explore the high-order (multidimensional)

structure of the endmembers in the HI, when organized as tensor. The endmember tensor

is assumed to be of approximately low rank, which greatly reduces the number of degrees

of freedom and regularizes the SU problem.

In Chapter 7, we represent the spectral signatures of the endmembers using the

perspective of deep generative modeling. We represent the manifold of spectral signatures

of each EM as the image of an unknown function (learned from the observed HI) acting on

a low-dimensional latent domain. This representation of the EM signatures is then used to

parametrize the SU problem in a matrix factorization-inspired framework. This approach

is later extended in Chapter 8 to augment spectral libraries known a priori, blending deep

learning with library-based SU approaches.
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5 GENERALIZED LINEAR MIXING MODEL ACCOUNTING FOR

ENDMEMBER VARIABILITY

5.1 INTRODUCTION

Using parametric representations for the endmember spectra is becoming a pop-

ular approach to address spectral variability since this approach does not require spec-

tral libraries and can provide computationally efficient solutions. The Perturbed LMM

(PLMM) [20] introduced an additive perturbation to the endmember matrix for each pixel

that needs to be estimated jointly with the abundances. Though the perturbation matrix

can model arbitrary endmember variations, it lacks physical motivation. The Extended

LMM (ELMM) [19] uses one pixel-dependent multiplicative term for each endmember, a

generalization that can efficiently model changes in the observed reflectances due to illu-

mination, an important effect [19]. This model addresses a physically motivated problem,

with the advantage of estimating a variability parameter vector of much lower dimension

when compared with the additive perturbation matrix in the PLMM.

Although the ELMM performs well in situations where spectral variability is mainly

caused by illumination variations, it lacks a necessary flexibility when the endmembers are

subject to more complex spectral distortions. For instance, experimental measurements

on vegetation spectra under different conditions have shown a significant dependence of

the spectral variation on wavelength intervals [94, 95, 93]. This type of variability is not

supported by the ELMM model [19], which assumes a fixed scaling across all wavelengths.

In this chapter we introduce a generalization of the ELMM model proposed in [19]

to account for endmember variability in arbitrary regions of the measured spectrum. We

call the resulting model the Generalized Linear Mixing Model (GLMM). The estimation of

the required parameters is realized by generalizing the methodology used in [19] through

the use of three-dimensional tensors to accommodate the new model without significantly

effecting the simplicity of the proposed solution or its computational complexity. Simu-

lation results using synthetic and real data indicate that the extra flexibility introduced

by the GLMM model can improve the results of existing methods for different types of

endmember variability.

This chapter is organized as follows. In Section 5.2 we briefly revisit the ELMM

model. Section 5.3 introduces the proposed GLMM. In Section 5.4 we define new tensor

variables and extend the solution in [19] to the GLMM. The performance of the proposed

method is compared with competing algorithms in Section 5.5. Finally, the conclusions

are presented in Section 5.6.

5.2 EXTENDED LINEAR MIXING MODEL REVISITED

The LMM assumes that the endmember spectra are fixed for all pixels yn, n “

1, . . . , N , in the HI. This assumption can jeopardize the accuracy of estimated abundances
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in many circumstances due to the spectral variability existing in a typical scene. The

ELMM [19] partially mitigates such limitation by including a vector of multiplicative

weights φn “
“
φ1,n, . . . , φP,n

‰J in the LMM such that

yn “ M 0 diagpφnqan ` en , (57)

with φk,n P R`, k “ 1, . . . , P . Each coefficient φk,n scales the whole spectrum of endmember

m0,k in pixel n, leading to a simple strategy to model variability resulting from illumination

effects.

5.3 GENERALIZED LINEAR MIXING MODEL (GLMM)

As explained in Section 5.1, we propose a generalization of the ELMM model to

allow for spectral variabilities per wavelength intervals. To this end, we propose to employ

a band-dependent scaling factor, enabling the new model to adapt to arbitrary variations

of the endmember spectra. In the new GLMM model each pixel yn is written as

yn “
`
M 0 d Ψn

˘
an ` en , (58)

where Ψn P R
LˆP is a scaling matrix with nonnegative entries, and d is the Hadamard

(elementwise) product. This model is a generalization of the ELMM where the scaling

matrix Ψn acts on each wavelength of each endmember individually. Such feature leads

to a more flexible model that allows to consider variabilities that are not uniform along

each endmember spectrum. ELMM is clearly a particular case of GLMM, and the new

model can be employed for any level of granularity of variability per wavelength ranges,

to the limit of an independent scaling of each wavelength component of each endmember

in each pixel. Moreover, model (58) directly relates the amount of spectral variability at

each wavelength of each EM to the corresponding amplitude of its spectrum, which agrees

with experimental observations in many applications [94, 93].

5.4 THE UNIMIXING PROBLEM

Assuming the availability of a reference endmember matrix M 0 (which can be

obtained using any endmember extraction method), the SU problem reduces to estimating

the free parameters minimizing a given risk functional defined for the whole HI Y “

ry1, . . . ,yN s. For this purpose the methodology presented in [19] can be extended for the

GLMM by defining three-dimensional tensors. For the interested reader, a more in-depth

overview of tensors and multilinear albegra will be presented in Section 6.2. Thus, we
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propose to minimize the following regularized cost functional:

J pA,M,Ψq “
1

2

Nÿ

n“1

´
}yn ´ Mnan}2

` λM}Mn ´ M 0 d Ψn}2F

¯

` λARpAq ` λΨRpΨq.

(59)

where M and Ψ are L ˆ P ˆ N tensors with entries rMs:,:,n “ Mn, and rΨs:,:,n “ Ψn

respectively, A “ ra1, . . . ,aN s is the abundance matrix, RpAq and RpΨq are spatial

regularizations over A and Ψ, and the parameters λM , λA and λΨ control the contribution

of each term in the cost function. Thus, the optimization problem becomes

` pA, xM, pΨ
˘

“ argmin
A,M,Ψ

J pA,M,Ψq

subject to A ě 0, 1
JA “ 1

J, M ě 0 .

(60)

The problem defined in (60) is non-smooth and non-convex with respect to all variables

A, M, and Ψ, but is convex with respect to each one of them. Thus, we follow the same

approach used in [19] and find a local stationary point minimizing (60) iteratively with

respect to each variable, leading to the strategy presented in Algorithm 4.

Algorithme 4 : Global algorithm for solving (59)

Input :Y , λM , λA, λΨ, Ap0q, Ψ
p0q and M 0.

Output : pA, xM and pΨ.
1 Set i “ 0 ;
2 while stopping criterion is not satisfied do
3 i “ i ` 1 ;
4 Mpiq “ argmin

M

J pApi´1q,M,Ψpi´1qq ;

5 Apiq “ argmin
A

J pA,Mpiq,Ψpi´1qq ;

6 Ψ
piq “ argmin

Ψ

J pApiq,Mpiq,Ψq ;

7 end

8 return pA “ Apiq, xM “ Mpiq, pΨ “ Ψ
piq ;

The regularization functionals RpAq and RpΨq in (59) are selected in order to

provide spatial smoothness to the abundances and scaling factors. They are selected as

RpAq “ }HhpAq}2,1 ` }HvpAq}2,1 (61)

and

RpΨq “
1

2

Lÿ

`“1

Pÿ

k“1

`
}HhprΨs`,k,:q}2F ` }HvprΨs`,k,:q}2F

˘
, (62)
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where r¨s`,k,: is a slice of a tensor for band `, endmember k and all N pixels. The linear opera-

tors Hh and Hv compute the first-order horizontal and vertical gradients of a bidimensional

signal, acting separately for each material of A. The spatial regularization in the abun-

dances is promoted by a mixed L2,1 norm of their gradient, where }X}2,1 “
řN

n“1
}xn}2.

This norm is used to promote sparsity of the gradient across different materials (i.e. to

force neighboring pixels to be homogeneous in all constituent endmembers). The L1 norm

can also be used, leading to the Total Variation regularization [133].

5.4.1 Optimization with respect to M

Rewriting the problem (60) using only the terms in (59) that depend on M, the

problem becomes

xM “ argmin
Mě0

1

2

Nÿ

n“1

`
}yn ´ Mnan}2 ´ λM}Mn ´ M 0 d Ψn}2F

˘
. (63)

The problem in (63) can be solved individually for each pixel yn. Thus, relaxing the

positivity constraint on the elements of M, the solution can be found as

xMn “
`
yna

J ` λMM 0 d Ψn

˘`
ana

J
n ` λMIP

˘´1
, (64)

where IP is the P ˆ P identity matrix. Then, an approximate solution to the constrained

problem can be obtained by projecting xMn onto the nonnegative orthant RLˆP
` by thresh-

olding the negative entries to zero [19].

5.4.2 Optimization with respect to A

By restating the problem (60) only considering the terms in (59) that depend on

A and introducing the non-negativity and sum-to-one constraints as additive penalties in

the cost function, the abundance estimation problem can be written as follows

pA “ argmin
A

max
µ

1

2

Nÿ

n“1

}yn ´ Mnan}2

` λA
`
}HhpAq}2,1 ` }HvpAq}2,1

˘

` ι`pAq ` µJpAJ
1Pˆ1 ´ 1Nˆ1q ,

(65)

where ι`p¨q is the indicator function of R` (i.e. ι`paq “ 0 if a ě 0 and ι`paq “ 8 if a ă 0)

acting component-wise on its input, and enforces the abundances nonnegativity constraint,

and µ P R
N is a vector of Lagrange multipliers associated with the sum-to-one constraint.

This problem is clearly not separable with respect to the pixels in the image.

However, problem (65) can be efficiently solved using the ADMM [134]. The procedure is

well described in [19] and will be suppressed here for conciseness.
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5.4.3 Optimization with respect to Ψ

Rewriting the optimization problem (60) considering only the terms in (59) that

depend on Ψ leads to

pΨ “ argmin
Ψ

λM

2

Nÿ

n“1

}Mn ´ M 0 d Ψn}2F

`
λΨ

2
p}HhpΨq}2F ` }HvpΨq}2F q ,

(66)

which can be rewritten as

pΨ “ argmin
Ψ

λM

2

Lÿ

`“1

Pÿ

k“1

`
}rMs`,k,: ´ rM 0s`,krΨs`,k,:}

2
˘

`
λΨ

2

`
}HhprΨs`,k,:q}2F ` }HvprΨs`,k,:q}2F

˘
,

(67)

where r¨s`,k,: is a slice of a tensor for band `, endmember k and all N pixels. The problem

can be solved for each endmember k and band ` individually, and its solution is given by

rpΨs`,k,: “ B´1
`
λM rM 0s`,krMs`,k,:

˘
, (68)

where B “ λM
`
rM 0s`,k

˘2
IN ` λΨpHJ

hHh ` HJ
vHvq and Hh and Hv are matrix-based

representations of the operators Hh and Hv, respectively. The solution in (68) involves

the inverse of the N ˆN matrix B which can be computationally intensive or intractable.

However, if we assume periodic boundary conditions for the differential operators Hh and

Hv, the corresponding matrices Hv, Hh and consequently B will have the structure of

a block circulant matrix with circulant blocks (BCCB). Since BCCB matrices can be

diagonalized using the bi-dimensional Discrete Fourier Transform, problem (68) can be

solved efficiently as follows [135]

rpΨs`,k,: “ F´1

˜
FpλM rM 0s`,krMs`,k,:q

λM
`
rM 0s`,k

˘2
1N1ˆN2

` λΨp|Fphhq|2 ` |Fphvq|2q

¸
, (69)

where F and F´1 represents the bi-dimensional discrete Fourier transform and its inverse

respectively, 1N1ˆN2
is an N1 ˆ N2 matrix of ones, where N1 and N2 are the number of

rows and columns of the HI cube, and hh and hv are convolution masks corresponding to

operators Hv and Hh, represented as N1 ˆ N2 matrices.

5.5 SIMULATIONS

In this section, the performance of the proposed methodology is illustrated through

simulations with both synthetic and real data. We compare the proposed method based

on the GLMM with the the FCLS, the SCLS, the ELMM [19], and the PLMM [20], which
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Table 8 – Simulations with synthetic data.

Data Cube 0 – DC0 Data Cube 1 – DC1 Houston Data

RMSEA RMSEM SAMM RMSEY RMSEA RMSEM SAMM RMSEY RMSEY

FCLS 0.0968 – – 0.0420 0.0243 – – 0.0385 0.006082
SCLS 0.0642 0.0673 0.0625 0.0403 0.0509 0.0457 0.0617 0.0383 0.006082
PLMM 0.0641 0.0689 0.0566 0.0250 0.0476 0.0401 0.0578 0.0257 0.002918
ELMM 0.0540 0.0608 0.0568 0.0254 0.0209 0.0425 0.0609 0.0367 0.003217
GLMM 0.0512 0.0587 0.0601 0.0011 0.0193 0.0391 0.0564 0.0202 0.000313

is based on an NMF approach. To measure the accuracy of the unmixing methods we

consider the Root Mean Squared Error (RMSE)

RMSEX “

c
1

NX

} vecpXq ´ vecp pXq}2 (70)

where vecp¨q is the vectorization operator X Ñ x, Raˆbˆc ÞÑ R
abc, NX “ abc. In this

work we apply the RMSE to evaluate the estimates of the abundances (RMSEA), of

the endmembers tensor (RMSEM) and of the reconstructed images (RMSEY ). We also

consider the Spectral Angle Mapper for the endmembers tensor

SAMM “
1

N

Nÿ

n“1

Pÿ

k“1

arccos

˜
mJ

k,nxmk,n

}mk,n}}xmk,n}

¸
. (71)

Figure 23 – Synthetic data cubes DC0, left, and DC1, right.

5.5.1 Synthetic data

For a comprehensive comparison among the different methods we created two

synthetic datasets, namely Data Cube 0 (DC0) and Data Cube 1 (DC1), represented in

Fig. 23. These datasets were built using endmembers extracted from the USGS Spectral

Library [136], and different strategies were used to generate the abundance maps, which

exhibit spatial correlation between neighboring pixels. For DC0, we adopted the variability

model used in [19] (a multiplicative factor acting in each endmember), while for DC1 we

considered the variability following the GLMM where correlation was imposed over Ψn
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using a 3-D Gaussian filter. White Gaussian noise was added to both datasets resulting

in a SNR of 30 dB.

To find the optimal parameters for the selected algorithms we performed a grid

search for each dataset. The parameter ranges were chosen based on the ranges tested and

discussed by the authors in the original publication of each algorithm. For the PLMM we

used γ “ 1, since the authors fixed this parameter in all simulations, and searched for α and

β in the range r0.35, 0.7, 1.4, 25s and r10´9, 10´5, 10´4, 10´3s, respectively. For both the

ELMM and the GLMM, the parameters were selected among the following values: λS, λM P

r0.01, 0.1, 1, 5, 10, 15s, λA P r0.001, 0.01, 0.05s, and λψ, λΨ P r10´6, 10´3, 10´1s.

The results are presented in Table 8. In terms of RMSE for the abundance vec-

tors, RMSEA, the proposed strategy clearly outperformed the competing algorithms for

both datasets. This behavior can be verified for almost all metrics considered. The only

exception is the SAMM for DC0 where PLMM and ELMM presented smaller spectral

angles. Regarding the increase of computational complexity introduced by the GLMM

when compared with the ELMM, the simulations point out that the GLMM approach

demanded 3.62 ˆ TimeELMM for DC0 and 1.92 ˆ TimeELMM for DC1, where TimeELMM is

the CPU time elapsed during the ELMM unmixing process. The results show that the

extra flexibility of the GLMM can be beneficial for the SU problem at the expense of a

reasonable increase in the computational complexity.

5.5.2 Real data

For simulations with real data we considered the Houston dataset discussed in [19].

This dataset is known to have four endmembers which were extracted using the VCA

algorithm [131]. Fig. 24 shows the reconstructed abundance maps for all tested methods

while Table 8 presents the results in terms of RMSEY and SAMY . Fig. 24 shows that the

proposed GLMM method provided smooth and accurate abundance estimation, compara-

ble with the results obtained using the ELMM. In fact, for the Concrete endmember, the

GLMM abundance map shows stronger components in the stadium stands when compared

with the other methods considering spectral variability. Although the results presented in

Table 8 indicate better fitting for the GLMM method, these results should be taken with

the proper care, since the connection of reconstruction error and abundance estimation is

not straightforward. The GLMM demanded a computational time of 0.92 ˆ TimeELMM.

5.6 CONCLUSIONS

In this chapter, we proposed a new Generalized Linear Mixing Model (GLMM) that

accounts for endmember spectral variability. The new model generalizes the ELMM to

allow for the consideration of band dependent scaling factors for the endmember signatures.

This way the GLMM model can represent a larger variety of realistic spectral variations
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Figure 24 – Abundance maps of the Houston dataset for all tested algorithms where the
abundance values are represented by colors ranging from blue (ak “ 0) to red
(ak “ 1).

of the endmembers, generalizing the representation capability of the ELMM. To solve

the resulting optimization problem, we extended the variable splitting methodology used

in [19] by including new tensor variables. Simulation results with both synthetic and real

data suggest that the extra flexibility introduced by the GLMM can be beneficial for the

unmixing process, resulting in improvements in both the abundance estimation and the

reconstruction error.
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6 LOW-RANK TENSOR MODELING FOR SPECTRAL UNMIXING AC-

COUNTING FOR SPECTRAL VARIABILITY

“Wintermute was a simple cube of white light, that

very simplicity suggesting extreme complexity.”

William Gibson, Neuromancer

6.1 INTRODUCTION

SU algorithms that use parametric EM models (such as, e.g., [20, 19, 34]) or

additive residual terms (such as, e.g., [137, 138]) to address endmember variability resort

to different strategies to regularize the ill-posed optimization problem which leads to the

estimation of abundances and endmembers. The regularization is achieved by introducing

into the unmixing problem additional information based on common knowledge about the

low-dimensionality of structures embedded in hyperspectral images.

Possible ways to recover lower-dimensional structures from noisy and corrupted

data include the imposition of low-rank matrix constraints on the estimation process [139],

or the low-rank decomposition of the observed data [140, 141]. The facts that HIs are

naturally represented and treated as tensors, and that low-rank decompositions of higher-

order (ą2) tensors tend to capture homogeneities within the tensor structure make such

strategies even more attractive for SU. Low-rank tensor models have been successfully

employed in various tasks involving HIs, such as recovery of missing pixels [142], anomaly

detection [143], classification [144], compression [145], dimensionality reduction [146] and

analysis of multi-angle images [147]. More recently, [148] and [147] considered low-rank

tensor decompositions applied to standard and multitemporal SU, respectively.

In [148] the HI is treated as three-dimensional tensor, and spatial regularity is

enforced through a nonnegative tensor factorization (NTF) strategy that imposes a low-

rank tensor structure. In [147], nonnegative canonical polyadic decomposition were used

to unmix multitemporal HIs represented as three-dimensional tensors built by stacking

multiple temporal matricized HIs. Though a low-rank tensor representation may naturally

describe the regularity of HIs and abundance maps, the forceful introduction of stringent

rank constraints may prevent an adequate representation of some image structures that

are important for accurate unmixing. Another limitation of the approach proposed in [148]

is the lack of guarantee that endmembers and abundances will be correctly factorized into

their respective tensors. In [45], we proposed a new low-rank SU method called Unmixing

with Low-rank Tensor Regularization Algorithm (ULTRA), which accounts for highly

correlated endmembers. The SU problem was formulated using tensors and a low-rank

abundance tensor regularization term was introduced. Differently, from the strict tensor

decomposition considered in [148, 147], ULTRA allowed important flexibility to the rank
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of the estimated abundance tensor to adequately represent fine scale structure and details

that lie beyond a low-rank structure, but without compromising the regularity of the

solution.

In this work we extend the strategy proposed in [45] to account for the important

effect of endmember variability as well as a novel method to estimate the sufficient rank

of a tensor for accurately solving the unmixing problem. Instead of introducing a rigid

parametric model for the endmembers, we employ a more general tensor model which

exploits the high dimensional structure of the problem, using a well-devised low-rank

constraint to introduce regularity to the estimated endmember tensor. The main novel

contributions of this chapter are:

a) We extend the strategy proposed in [45] by imposing a new low-rank regularization

on the four-dimensional endmember tensor, which contains one endmember matrix

for each pixel, to account for endmember variability. The new cost function results

in an iterative algorithm, named Unmixing with Low-rank Tensor Regularization

Algorithm accounting for endmember Variability (ULTRA-V). At each iteration,

ULTRA-V updates the estimations of the abundance and endmember tensors as

well as their low-rank approximations.

b) We propose a novel non-trivial strategy to determine the smallest rank representation

that contains most of the variation of multilinear singular values [149].

Simulation results using synthetic and real data illustrate the performance improvement

obtained using ULTRA-V when compared to competing methods, as well as its competitive

computational complexity for relatively small images.

The chapter is organized as follows. Section 6.2 briefly reviews important back-

ground, definitions and notation used for tensors. Section 6.3 presents the proposed solution

and the strategy to estimate tensor ranks. Section 6.4 presents the simulation results and

comparisons. Finally, Section 6.5 presents the conclusions.

6.2 TENSORS BACKGROUND AND NOTATION

6.2.1 Notation

An order-R tensor TP R
N1ˆ¨¨¨ˆNR (R ą 2) is an N1 ˆ ¨ ¨ ¨ ˆNR array with elements

indexed by Tn1,n2,...,nR
. The R dimensions of a tensor are called modes. A mode-` fiber of

tensor T is the one-dimensional subset of T obtained by fixing all but the `-th dimension,

and is indexed by Tn1,...,n`´1,:,n``1,...,nR
. A slab or slice of tensor T is a two-dimensional

subset of T obtained by fixing all but two of its modes. An HI is often conceived as

a three dimensional data cube, and can be naturally represented by an order-3 tensor

Y P R
N1ˆN2ˆL, containing N1 ˆ N2 pixels represented by the tensor fibers Yn1,n2,: P R

L.

Analogously, the abundances can also be collected in an order-3 tensor A P R
N1ˆN2ˆP .
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involves exactly K terms, it is called the canonical polyadic decomposition (CPD) [150]

of a rank-K tensor T, and is given by

T“
Kÿ

i“1

δib
p1q
i ˝ b

p2q
i ˝ ¨ ¨ ¨ ˝ b

pRq
i . (72)

It has been shown that this decomposition is essentially unique under mild conditions [141].

The CPD can be written alternatively using mode-k products as

T“ Dδ ˆ1 B
p1q ˆ2 B

p2q ¨ ¨ ¨ R̂ BpRq , (73)

or using the full multilinear product as

T“
0
Dδ;B

p1q,Bp2q, . . . ,BpRq
8
, (74)

where Dδ “ TDiagR
`
δ1, . . . , δK

˘
is the R-dimensional diagonal tensor and Bprq “

rb
prq
1
, . . . , b

prq
K s, for r “ 1, . . . , R. Given a tensor T P R

N1ˆN2ˆ¨¨¨ˆNR , the CPD can be

obtained as the solution to the following optimization problem [141]

min
Dδ,B

p1q,...,BpKq

1

2

›››T´
Kÿ

i“1

δib
p1q
i ˝ ¨ ¨ ¨ ˝ b

pRq
i

›››
2

F
. (75)

A widely used strategy to compute an approximate solution to (75) is to use an

alternating least-squares technique [141], which optimizes the cost function with respect

to one term at a time, while keeping the others fixed, until convergence. Although opti-

mization problem (75) is generally non-convex, its solution is unique under relatively mild

conditions, which is an important advantage of tensor-based methods [141].

6.2.4 Tensor rank bounds

Finding the rank of an arbitrary tensor T is NP-hard [151]. In [141], upper and

lower bounds on tensor ranks are presented for arbitrary tensors. Let T be an order-3

tensor and

F1 ” dim spantT:,j,ku@j,k

F2 ” dim spantTi,:,ku@i,k (76)

F3 ” dim spantTi,j,:u@i,j

be the mode-1 (column), mode-2 (row) and mode-3 (fiber) ranks, respectively, of T. Thus,

the K ” rankpTq which is able to represent an arbitrary tensor is limited in the interval

maxpF1, F2, F3q ď K ď minpF1F2, F1F3, F2F3q. (77)

The reader can note that the bounds presented above often lead to very large tensor ranks.

In many practical applications, however, the “useful signal” rank is often much less than
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the actual tensor rank [141]. Hence, when low-rank decompositions are employed to extract

low-dimensional structures from the signal, the ranks that lead to meaningful results are

usually much smaller than maxpF1, F2, F3q. In Section 6.3.6, we propose a strategy to

estimate the rank of tensor CPDs based on the variation of the multilinear singular values

of T.

6.3 LOW-RANK UNMIXING PROBLEM

An effective strategy to capture the low-dimensional structures of HIs for solving

the SU problem is to impose a low-rank structure to the abundance tensor [148]. The same

strategy can also be applied to the endmember tensor if one considers the endmember

variabilities to be small or highly correlated in low-dimensional structures within the

HI. The low-rank property of HI tensors has been an important tool in the design of

hyperspectral image completion [152] and restoration algorithms [153], consisting in one of

the main low-dimensional structures that are currently being considered in hyperspectral

imaging applications. Thus, assuming that A has a low-rank KA, and that M has a

low-rank KM the global cost functional for the unmixing problem can be written as

J pA,Mq “
1

2

N1ÿ

n1“1

N2ÿ

n2“1

}Yn1,n2,: ´ Mn1,n2,:,:An1,n2,:}
2

F

subject to rankpMq “ KM, M ě 0 (78)

rankpAq “ KA, Aě 0, Aˆ3
1P “ 1N1ˆN2

.

Defining the SU problem as in (78) with fixed data independent ranks KM and KA

limits its flexibility to adequately represent the desired abundance maps and endmember

variability. Though fixing low ranks for A and M tends to capture the most significant

part of the tensors energy [154], one may incur in a loss of fine and small scale details that

may be relevant for specific data. On the other hand, using large values for KA and KM

makes the solution sensitive to noise, undermining the purpose of regularization. Thus, an

important issue is how to effectively impose the low-rank constraint to achieve regularity

in the solution without undermining its flexibility to adequately model small variations

and details.

We propose to modify (78) by introducing new regularization terms, controlled

by two low-rank tensors Q P R
N1ˆN2ˆP and P P R

N1ˆN2ˆLˆP , to impose non-strict

constraints on KA and KM. Doing that, tensors Q and P work as a priori information,

and the strictness of the low-rank constraint is controlled by two additional parameters
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λA, λM P R`. The proposed cost function is given by

J pA,M,P,Qq “
1

2

N1ÿ

n1“1

N2ÿ

n2“1

}Yn1,n2,: ´ Mn1,n2,:,:An1,n2,:}
2

F

`
λM

2
}M´ P}2F `

λA

2
}A´ Q}2F

subject to M ě 0, Aě 0, Aˆ3
1P “ 1N1ˆN2

(79)

with rankpPq “ KM and rankpQq “ KA. The optimization problem becomes

p pA, pM, pP, pQq “ argmin
A,M,P,Q

J pA,M,P,Qq . (80)

To solve (80), we propose to find a local stationary point by minimizing (79) iteratively

with respect to each variable. The resulting algorithm is termed the Unmixing with Low-

rank Tensor Regularization Algorithm accounting for spectral Variability (ULTRA-V), and

is presented in Algorithm 1. The intermediate steps are detailed in the following.

Algorithme 5 : Global algorithm for solving (79)
Input : Y, λM, λA, Ap0q, and Mp0q.
Output : pA and pM.

1 KQ = estimateTensorRank(Ap0q);

2 KP = estimateTensorRank(Mp0q);
3 Set i “ 0 ;
4 while stopping criterion is not satisfied do

5 i “ i ` 1 ;

6 Ppiq “ argmin
P

J pApi´1q,Mpi´1q,Pq ;

7 Qpiq “ argmin
P

J pApi´1q,Mpi´1q,Qq ;

8 Mpiq “ argmin
M

J pApi´1q,M,Ppiq,Qpiqq ;

9 Apiq “ argmin
A

J pA,Mpiq,Ppiq,Qpiqq ;

10 end

11 return pA“ Apiq, pM “ Mpiq;

6.3.1 Solving with respect to A

To solve problem (80) with respect to Awe use only the terms in (79) that depend

on A, leading to the cost function

J pAq “
1

2

N1ÿ

n1“1

N2ÿ

n2“1

}Yn1,n2,: ´ Mn1,n2,:,:An1,n2,:}
2

F `
λA

2
}A´ Q}2F

subject to Aě 0, Aˆ3
1P “ 1N1ˆN2

,

(81)

which results in a standard regularized fully constrained least-squares problem that can

be solved efficiently.
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6.3.2 Solving with respect to M

Analogously to the previous section, to solve problem (80) with respect to M, we

use only the terms in (79) that depend on M, leading to

J pMq “
1

2

N1ÿ

n1“1

N2ÿ

n2“1

}Yn1,n2,: ´ Mn1,n2,:,:An1,n2,:}
2

F `
λM

2
}M´ P}2F

subject to M ě 0.

(82)

which results in a regularized nonnegative least-squares problem. An approximate solu-

tion can be obtained ignoring the positivity constraint over the endmember tensor and

projecting the least-squares result onto the positive orthant as [34]

pMn1,n2,:,: “ P`

ˆ´
Yn1,n2,:A

J
n1,n2,: ` λMPn1,n2,:,:

¯

´
An1,n2,:A

J
n1,n2,: ` λMI

¯´1
˙ (83)

where P` : RN1ˆN1ˆL Ñ R
N1ˆN1ˆL
` is the projection operator that maps every negative

element to zero. Although this solution is approximate, it is significantly faster than

directly solving (82) and the algorithm still demonstrated good empirical convergence in

our experiments.

6.3.3 Solving with respect to P

Rewriting the terms in (79) that depend on P leads to

J pPq “
λM

2
}M´ P}2F . (84)

Assuming that most of the energy of M lies in a low-rank structure, we write the

tensor P as a sum of a small number KP of rank-1 components, such that

P “
KPÿ

i“1

δix
p1q
i ˝ x

p2q
i ˝ x

p3q
i ˝ x

p4q
i . (85)

This introduces a low-rank a priori condition on P whose strictness can be controlled by

the regularization constant λM. Using (85) in (84) leads to the optimization problem
´
p∆,xXp1q

,xXp2q
,xXp3q

,xXp4q
¯

“ (86)

argmin
∆,Xp1q,Xp2q,Xp3q,Xp4q

λM

2

›››››M´
KPÿ

i“1

δix
p1q
i ˝ x

p2q
i ˝ x

p3q
i ˝ x

p4q
i

›››››

2

F

,

where ∆ “ TDiag4 pδ1, . . . , δKP
q is a 4-dimensional diagonal tensor with ∆i,i,i,i “ δi.

Problem (86) can be solved using an alternating least-squares strategy [141].

Finally, the solution pP is obtained from p∆,xXp1q
,xXp2q

, xXp3q
, and xXp4q

using the

full multilinear product as

pP “
0 p∆;xXp1q

,xXp2q
,xXp3q

,xXp4q8
. (87)
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6.3.4 Solving with respect to Q

Analogous to the previous section, the cost function to be optimized for Q can be

written as

J pQq “
λA

2
}A´ Q}2F . (88)

Assuming that most of the energy of A lies in a low-rank structure, we write tensor

Q as a sum of a small number KQ of rank-1 components, such that

Q “
KQÿ

i“1

ξiu
p1q
i ˝ u

p2q
i ˝ u

p3q
i . (89)

This introduces a low-rank a priori condition on A, which will be more or less enforced

depending on the regularization constant λA. Using (89) in (88) leads to the optimization

problem

´
pΞ , pU p1q

, pU p2q
, pU p3q

¯
“ argmin

Ξ,U p1q,U p2q,U p3q

λA

2

››››A´
KQÿ

i“1

ξiu
p1q
i ˝ u

p2q
i ˝ u

p3q
i

››››
2

F

(90)

where Ξ “ TDiag3
`
ξ1, . . . , ξKQ

˘
is an order-3 diagonal tensor with Ξi,i,i “ ξi. Problem (90)

can be solved using an alternating least-squares strategy [141]. Finally, the solution pQ is

obtained from pΞ, pU p1q
, pU p2q

and pU p3q
using the full multilinear product as

pQ “
0pΞ ; pU p1q

; pU p2q
; pU p3q8

. (91)

6.3.5 Computational complexity of Algorithm 5

The computational complexity of each iteration of Algorithm 5 can be measured

as follows. The optimizations w.r.t. A and M both consist of regularized constrained least

squares problems with N1N2P and N1N2LP variables respectively. Thus, these problems

can be solved with a complexity of O
`
pN1N2P q3

˘
and O

`
pN1N2LP q3

˘
, respectively. The

optimizations w.r.t. variables P and Q consist of CPDs of these tensors with ranks KP and

KQ, respectively. Considering an alternating least squares approach for the CPD, these

optimization problems will have computational complexities of O
`
KiterKPN1N2LP

˘
and

O
`
KiterKQN1N2P

˘
, respectively, where Kiter is the number of ALS iterations [155]. Thus,

the overall complexity of the algorithm scales linearly with the number of ALS iterations

and with the tensor ranks, and cubically in the problem dimensions. When processing large

datasets, the extra complexity could be partially mitigated by applying image segmentation

or band selection [156] strategies. This analysis is beyond the scope of the present work

and will be addressed in the future.

6.3.6 Estimating tensor ranks

In Section 6.2.4 we have recalled important results relating bounds for order-3

tensor ranks to the span of the matricized versions of tensors. We have also noted, from
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our own experience, that those bounds tend to indicate tensor ranks that are larger than

the rank associated with the information relevant for SU. Our interest in SU is to model

low-dimensional structures of the HI using low-rank tensors. At the same time, this low-

rank representation should be rich enough to include relevant information of the original

HI tensor. Therefore, although the literature presents many rank estimation strategies

(see [157] and references therein), in this work we exploit the rank bounds discussed in

Section 6.2.4 to approximate the “useful rank” of a tensor by the number of the largest

singular values of their matricized versions required to represent most of the tensor energy.

Let T i “ matipTq P R
NiˆpN1...Ni´1Ni`1,...NRq be the matricization of an arbitrary

tensor T P R
N1ˆN2...ˆNR obtained by stacking all tensor fibers along the i-th tensor

dimension. Let si “ SVDpT iq be the set of singular values of T i, sorted descending in

value. Also, let di “ diffpsiq be the vector of first order differences of the elements of

si, such that, dpiq
j “ s

piq
j ´ s

piq
j`1

. Then, we define the i-th candidate for rank of T as the

smallest index j such that |d
piq
j | sufficiently small, namely,

pFi “ min j, subject to , |d
piq
j | ă ε , (92)

where ε is a parameter limiting the singular value variation. In all experiments reported

here we used ε “ 0.15. We have experimentally verified that the resulting abundance MSE

has very low sensitivity to the choice of ε. Finally, we approximate the rank of tensor T

as

K “ maxt pF1, . . . , pFRu. (93)

For the experiments reported in this paper, we have used definition (93) to estimate KP

and KQ in (85) and (89) from the abundance and endmember tensors estimated using

simple unmixing strategies such as the SCLS [19].

6.4 SIMULATIONS

In this section, the performance of the proposed methodology is illustrated through

simulations with both synthetic and real data. We compare the proposed ULTRA-V

method with the the FCLS, the SCLS [19], the PLMM [20], the ELMM [19], and the

GLMM [34]. To highlight the differences between ULTRA-V and ULTRA [45], we also

consider ULTRA for simulations with synthetic data.

To measure the accuracy of the unmixing methods we consider the Mean Squared

Error

MSEX “
1

NX

} vecpXq ´ vecp pXq}2 (94)

where vecp¨q is the vectorization operator X Ñ x, Raˆbˆc ÞÑ R
abc, NX “ abc, and the

Spectral Angle Mapper for the endmembers tensor

SAMM “
1

N

Nÿ

n“1

Pÿ

k“1

arccos

˜
mJ

k,nxmk,n

}mk,n}}xmk,n}

¸
. (95)
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Table 9 – Simulation results using synthetic data.

Data Cube 0 – DC0

MSEA MSEM SAMM MSEY Time

FCLS 1.81 - - 16.11 0.42
SCLS 0.68 175.79 6.19 59.38 0.38
PLMM 0.76 94.57 5.58 4.89 81.89
ELMM 0.35 106.17 5.63 4.78 17.15
GLMM 0.34 101.51 5.87 5.7e-3 20.23
ULTRA-V 0.23 92.39 5.56 0.73 14.46
ULTRA 1.81 - - 16.11 1.42

Data Cube 1 – DC1

FCLS 2.01 - - 6.93 0.74
SCLS 2.07 92.16 5.37 24.78 0.76
PLMM 1.58 157.00 8.49 2.75 120.48
ELMM 1.29 69.15 5.95 0.01 23.18
GLMM 1.20 68.11 6.09 0.01 29.81
ULTRA-V 1.12 60.12 5.21 4.26 29.47
ULTRA 1.17 - - 10.93 4.44

Data Cube 2 – DC2

FCLS 1.90 - - 2.03 0.30
SCLS 0.71 1.66 2.29 1.07 0.30
PLMM 1.27 2.45 2.28 2.12 61.13
ELMM 0.63 2.84 3.32 2.31 11.15
GLMM 0.59 1.84 2.79 2.04 11.60
ULTRA-V 0.46 2.91 2.94 9e-5 5.19
ULTRA 0.83 - - 1.02 0.36

All the algorithms were implemented in Matlab on a desktop computer equipped

with an Intel Core I7 processor with 4.2Ghz and 16Gb of RAM. In all cases, we used

endmembers extracted using the VCA [131] either to build the reference endmember

matrix or to initialize the different methods, with the number of endmembers P assumed

to be known a priori. The abundance maps were initialized using the maps estimated by

the SCLS.

6.4.1 Synthetic data

For a comprehensive comparison among the different methods we created three

synthetic datasets, namely Data Cube 0 (DC0), Data Cube 1 (DC1) and Data Cube 2
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Figure 26 – Abundance maps of (top–down) DC0, DC1, and DC2 for all tested algorithms.
Abundance values represented by colors ranging from blue (ak “ 0) to red
(ak “ 1).

(DC2), with 50ˆ50 pixels (DC0 and DC2) and 70x70 pixels (DC1). DC0 and DC1 were

built using three 224-band endmembers extracted from the USGS Spectral Library [136],

while DC2 was built using three 16-band minerals often found in bodies of the Solar

System [19]. For the three datasets, spatially correlated abundance maps were used, as

depicted in the first column of Fig. 26. For DC0, we adopted the variability model used

in [19] (a multiplicative factor acting on each endmember). For DC1, we used the variability

model according to the PLMM [20]. For DC2, we used the Hapke model [37] devised to

realistically represent the spectral variability introduced due to changes in the illumination
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of the ULTRA-V performance to variations of the parameters within the parameter search

intervals presented in the previous section. Fig. 27 shows the values of MSEA resulting from

unmixing the data using each combination of the parameter values. The sensitivity clearly

tends to increase when values less than 1 are used for both parameters. Our practical

experience indicates that good MSEA results can be obtained using λM in r0, 1s, and large

values about 100 for λA. Moreover, some insensitivity is verified for small changes in λA

about large values. Thus, searching λA in r0.001, 100s with values spaced by decades as

done for the examples in the previous section seems reasonable.

6.4.1.2 Discussion

A close look at Fig. 26 reveals the abundance maps estimated using ULTRA-V

look noisier than those obtained using ELMM and GLMM. This is because the proposed

approach does not impose the local smoothness imposed by total variation, but emphasizes

abundance regularity by enforcing a low-rank property. We note, however, that the spacial

smoothness imposed by total variation is not necessarily mandatory for a good abundance

estimation, as can be verified from the results in Table 9.

6.4.2 Real data

For the simulations with real data, we considered three datasets, consisting of the

Houston, Samson and Jasper Ridge images. All datasets were captured by the AVIRIS,

which originally has 224 spectral bands. For all images, the water absorption bands were

removed resulting in 188 bands for the Houston image, 156 bands for the Samson image

and 198 bands for the Jasper Ridge image. The Houston data set is known to have four

predominant endmembers [19, 46]. The Samson and Jasper Ridge images are known to

have three and four endmembers, respectively [32]. For all images the endmembers were

extracted using the VCA [131]. Fig. 28 shows the reconstructed abundance maps for all

images and for all tested methods. The quantitative results are shown in Table 10. Note

that since the ground truth (correct) abundance values are not available for these images,

only the reconstruction error MSEY has been used as a sort of quality verification.

The last column in Fig. 28 shows that the proposed ULTRA-V method provided

an accurate abundance estimation, clearly outperforming the competing algorithms1. In

fact, for the Concrete and Metallic Roofs endmembers, the ULTRA-V abundance map

presents stronger Concrete and Metallic Roofs components in the stadium stands and

stadium towers, respectively, when compared with the other methods equipped for dealing

with spectral variability. The performance improvement provided by ULTRA-V is clearer

for the Samson and Jasper Ridge images. For instance, there is significantly less confusion

between the Water, Tree and Soil endmembers in the ULTRA-V results for the Samson
1 The differences between the ELMM and ULTRA-V results are less significant for the Houston image.
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Figure 28 – Abundance maps of the Houston (upper panel), Samson (middle painel), and
Jasper Ridge (bottom painel) data sets for all tested algorithms. Abundance
values represented by colors ranging from blue (ak “ 0) to red (ak “ 1).
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image when compared to those of the PLMM, ELMM, and GLMM methods. Similarly,

the ULTRA-V reconstructed abundance maps of the Jasper Ridge image show a much

stronger Water component in the river and less confusion between the Tree, Soil and Road

endmembers.

The objective metrics presented in Table 10 indicate that ULTRA-V yields compet-

itive reconstruction errors in terms of MSE. These results, however, should be interpreted

with proper care, as the connection of reconstruction error and abundance estimation is

not straightforward.

The execution times in Table 10 indicate that, as discussed in Section 6.3.5, ULTRA-

V did not scale well with the larger image sizes and higher number of endmembers, which

directly impacted the CPD stage of ULTRA-V. Moreover, the more complex images

resulted in higher rank estimates using the strategy discussed in Section 6.3.6. This

indicates that there is still room for improving the proposed method by either providing

a segmentation strategy or using faster CPD methods. This, however, is an open problem

that will be addressed in future works.

To assess the estimated endmember variabilities, we analyzed the results for the

Samson data set. We considered two approaches. The first approach consisted in averaging

the projection of the estimated endmembers on the three eigenvectors associated to the

three largest eigenvalues for each endmember. The results are shown in Fig. 31. These

plots illustrate the endmember variances for each pixel, with red implying a large variance

and blue a small variance. The second approach consisted in directly comparing the

endmembers estimated with ULTRA-V and VCA. The results are shown in Fig. 32. These

figures illustrate the ability of the proposed method to characterize the spectral variability

while enforcing a spatial structure for the estimated endmembers.

To illustrate the role of the low-rank tensors P and Q, we compare them to the

abundances Aand endmembers M in Figs. 29 and 30, for the Jasper Ridge dataset. Fig. 29

shows the estimated abundances A and their low-rank counterpart Q. One can verify that

Q (bottom row) has a very coarse spatial distribution when compared with A (top row).

This shows that imposing the low-rank structure through a regularization constraint

gives the resulting abundances enough flexibility to model fine-scale spatial details while

maintaining most of its spatial distribution. Fig. 30 leads to similar conclusions for the

endmembers. One can note that the low-rank tensor P has a coarser structure when

compared with the estimated endmembers M. This distinction can be seen very clearly

for the Water and Road endmembers.

6.5 CONCLUSIONS

In this chapter, we proposed a new low-rank regularization strategy for introducing

low-dimensional spatial-spectral structure into the abundance and endmember tensors for

hyperspectral unmixing considering spectral variability. The resulting iterative algorithm,
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Figure 29 – Comparison of tensors A and Q after ULTRA-V convergence for the Jasper
Ridge data set.

Figure 30 – Comparison of tensors M and P after ULTRA-V convergence for the Jasper
Ridge data set.

Water Tree Soil

Figure 31 – Average of the ULTRA-V endmembers tensor projection over the 3 principal
components for the Samson data set.

called ULTRA-V, imposes low-rank structure by means of regularizations that force

most of the energy of the estimated abundances and endmembers to lay within a low-

dimensional structure. The proposed approach does not confine the estimated abundances

and endmembers to a strict low-rank structure, which would not adequately account for

the complexity experienced in real-world scenarios. It includes also a strategy to estimate

the rank of the regularization tensors P and Q, leaving only two parameters to be adjusted

within a relatively reduced search space. Simulation results using both synthetic and real

data showed that the ULTRA-V can outperform state-of-the-art unmixing algorithms

accounting for spectral variability.
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Figure 32 – VCA result (black) and ULTRA-V (gray) endmembers for each pixel of the
Samson data set.

Table 10 – Simulation results with real data.

Algorithm Houston Data Samson Jasper Ridge

MSEY Time MSEY Time MSEY Time

FCLS 0.2283 1.90 0.0177 1.38 0.3567 1.59
SCLS 0.0037 2.04 0.0041 1.29 0.0271 1.79
PLMM 0.0190 454.90 0.0034 105.36 0.0257 72.86
ELMM 0.0010 474.45 7.82e-4 40.50 0.0058 100.49
GLMM 1.0e-5 1326.85 0.2e-5 50.62 2.5e-5 214.07
ULTRA-V 0.0018 264.71 6.4e-5 148.46 15.0e-5 120.91
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7 DEEP GENERATIVE ENDMEMBER MODELING: AN APPLICA-

TION TO UNSUPERVISED SPECTRAL UNMIXING

7.1 INTRODUCTION

Although SU methods based on extended parametric models offer different trade-

offs between representation capacity and model complexity, they still fail to achieve a

desirable balance between a low-dimensional representation and enough flexibility to

represent complex EM variability. Specifically, they fail to properly explore the fact that,

although being complex and spectrally non-homogeneous, spectral variability in real scenes

is often confined to low-dimensional manifolds [37, 97, 101]. This property is due to the

fact that the spectral signature of many materials is a function of only a few photometric

or chemical properties of the medium. Prominent examples include packed particle spectra

as a function of its roughness, size and density [37], leaf reflectance spectra as a function

of various biophysical parameters [97], and soil reflectance as a function of moisture

conditions [101]. Thus, existing models tend to be either too restrictive in their modeling

capability or to lead to severely ill-posed estimation problems.

SU considering EM variability has also been formulated as a supervised learning

problem, which is then solved without the need for an accurate physical model using neural

networks (NNs) or support vector machines (SVMs) [158, 159, 160, 161]. However, these

strategies depend on the availability of vast amounts of training data to adequately capture

the spectral diversity of real scenes. This makes the training process computationally

intensive and often intractable for large EM libraries, which must also be known a priori.

Some works attempt to reduce the computational cost of these solutions by modifying

learning algorithms to use hybrid soft-hard classification [162, 163, 164]. However, the

resulting reconstructed abundance fractions do not have a clear physical interpretation

due to the lack of a direct relationship to a physically motivated mixing model.

More recently, unsupervised SU approaches have also emerged by using autoen-

coders (AEC), which consist of encoder-decoder structured NNs originally devised for

nonlinear dimensionality reduction [165]. These methods attempt to associate the decoder

structure of the network with the LMM and the low-dimension representation of the

input spectral vectors to the fractional abundances [166]. Different variations have been

proposed, using pre-processing steps to reduce noise and outliers [167, 168], untiying the

decoder from the encoder weights [169], using spectral angle distances to address nonlinear

SU [170], or using denoising autoencoders to generate a robust initialization to matrix

factorization-based SU strategies [171].

Despite their popularity, supervised learning-based SU algorithms are still not able

to properly address the spectral variability problem, as they depend on extremely large

amounts of labeled training data, leading to a computationally unfeasible learning process.

Furthermore, the lack of a clear connection between AEC-based strategies and the physical
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mixing process makes one skeptic when concerning the robustness of AEC-based SU in

face of more complex phenomena such as spectral variability.

In this work, we propose a novel SU formulation that leverages the advantages of

deep learning methods to address EM variability while still maintaining a strong connection

to the physical mixing process, and using limited amounts of training data. Specifically,

we adopt a deep generative NN to represent the manifold of EM spectra, which is then

incorporated within the LMM. Generative models such as variational autoencoders (VAE)

[172] and generative adversarial networks (GAN) [173] have recently obtained excellent

performance at learning the probability distribution of complex data sets in very high

dimensional spaces (e.g. natural images) from relatively small amounts of training data.

The structure of generative models allow one to find a low-dimensional latent representation

that parsimonously describes the variability of complex high-dimensional data sets. This

leads to a low-dimensional parametrization of the training data distribution.

We formulate a novel unmixing strategy that can be cast as the problem of estimat-

ing the latent representations of the generative endmember models and the corresponding

fractional abundances for each pixel in the HI. Specifically, we break down the SU problem

in two steps. In the first step, we learn the latent EM variability manifold for each mate-

rial in the scene using a deep generative EM model. The learning process uses pure pixel

information directly extracted from the observed HI, which makes the proposed strategy

suitable for unsupervised SU. In the second step, an alternating least-squares strategy is

employed to estimate the parameters of an extended version of the LMM parametrized

using the generative EM models obtained in the first step. The corresponding optimization

problem is solved iteratively with respect to the abundances and to the low-dimensional

representations of the EMs in the latent space of the deep generative models.

As a result, the proposed approach benefits from the reduced dimension of the

latent space. Moreover, unlike current approaches, the new method does not depend

on the careful selection of regularization parameters to yield a good performance. The

resulting algorithm is named Deep Generative Unmixing algorithm (DeepGUn). The

proposed method is strongly related to parametric models and leverages the learning and

generalization capability of deep neural networks to properly represent the manifold of EM

variability. Hence, DeepGUn leads to a model that is both low-dimensional and physically

accurate, better describing the variability actually present in the scene.

Experimental results performed with both synthetic and real data indicate that

the proposed strategy leads to more accurate abundance estimations than standard state-

of-art SU methods accounting for EM variability. Qualitative analysis of the estimated

abundance maps confirms these results. The improved accuracy comes at the expense of a

small increase in the computational cost when compared to the best competing strategies.

This chapter is organized as follows. Section 7.2 briefly reviews the LMM and

its parametric extended versions. Section 7.3 discusses the basic properties of generative
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models in the context of VAE and GAN. Section 7.4 introduces the proposed generative

EM model and its learning strategy. In Section 7.5 we formulate the resulting SU problem,

present the DeepGUn algorithm, and discuss aspects of the proposed optimization strategy.

The neural network architecture is discussed in Section 7.6. The performance of the

proposed method is compared with that of competing algorithms in Section 7.7. Finally,

the conclusions are presented in Section 7.8.

7.2 LINEAR MIXING MODELS WITH SPECTRAL VARIABILITY, REVISITED

The LMM (1) assumes that the EM spectra are fixed for all HI pixels yn, n “

1, . . . , N . This assumption jeopardizes the accuracy of estimated abundances in many

circumstances due to the presence of spectral variability. Thus, different parametric models

have been recently proposed to account for variable EM spectra within a given scene [19,

20, 34]. These models can be generically described as

yn “ fpM 0,θnqan ` en , (96)

where f is a parametric function, M 0 P R
LˆP is a reference EM matrix, and θn is a vector

of parameters describing the manifold of EM variability.

Different functional forms have been proposed for fpM 0,θnq to account for EM

variability in this framework, such as additive [20] or multiplicative [19, 34] variability

factors acting upon the reference EM matrix M 0. However, these models fail to achieve

a desirable balance between a low-dimensional representation and enough flexibility to

represent complex variability patterns. They tend to be either too restrictive in their

modeling capability, or to lead to ill-posed optimization problems [46]. Instead of using a

pre-defined parametric model, we propose to address this issue by learning a parametric

function fpM 0,θnq using a generative model.

7.3 GENERATIVE MODELS

Generative models attempt to estimate the probability distribution ppXq of a

random variable X P R
L based on a set of observations xi, i “ 1, . . . ,Mx in such a way

that allows one to generate new samples that look similar to new realizations of X. The

main characteristic of this problem, which sets it apart of other unsupervised learning

methods such as density estimation, is the fact that we must to be able to sample from

the estimated model p̂pXq.

In many practical applications of interest, the dimensionality L of the variable of

interest X is very high. This makes the general problem very difficult, as it amounts to esti-

mating and sampling from an arbitrary high-dimensional probability density function [174,

175]. Nonetheless, the distributions of interest are often supported at a low-dimensional

manifold of a set of so-called latent variables, and this fact can be explored to make the
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problem more tractable. A convenient way to address this problem is to define a new

random variable R
H Q Z „ ppZq with a known distribution in a low-dimensional space

(e.g. an isotropic Gaussian distribution with H ! L), and a parametric function (e.g. a

neural network) Gη mapping Z ÞÑ pX P R
L such that the image of Z by Gη is a random

variable whose distribution is very close to ppXq. In other words, the goal becomes to

learn the parameters η of Gη such that the distribution of pX “ GηpZq is as close to ppXq

as possible. Then, samples of pX can be generated by sampling from Z „ ppZq and using

the mapping GηpZq.

Although estimating η may still seem difficult at first, recent advances in machine

learning such as VAEs [172] and GANs [173] have shown formidable performance at

learning complex distributions such as those of natural images.

VAEs address this problem by assuming that the distribution of the observed data

X follows a directed graphical model ppX|Zq, which is represented by the function Gη.

The parameters of Gη are learned by maximizing a lower bound on the log-likelihood of

ppXq [172]:

log ppXq ě Eqτ pZ|Xq

 
log ppX|Zq

(
´ KL

`
qτ pZ|Xq}ppZq

˘
, (97)

where KLp¨}¨q is the Kullback-Leibler divergence between two distributions, Eςt¨u is the

expected value operator with respect to the distribution ς and qτ pZ|Xq is a variational

approximation to the intractable posterior ppZ|Xq, which is modeled by a function Dτ (e.g.

another neural network) parameterized in τ . Note that qτ pZ|Xq must be a high-capacity

distribution1, so that it can provide a good approximation of the posterior ppZ|Xq, which

then allows the lower bound in (97) to be close to the true value of log ppXq [176].

GANs, on the other hand, attempt to learn the distribution ppXq by searching

for the Nash equilibrium of a two-player adversarial game [173]. A generator network Gη

tries map the distribution of the latent variables Z into the data distribution of X, and a

discriminator network Cτ tries to predict the probability of a random sample xi coming

from the true distribution ppXq instead of being generated through Gη. The generator Gη
is trained by maximizing the probability of the discriminator making a mistake. This is

formulated as the minimax optimization problem

min
Gη

max
Cτ

EppXq

 
log Cτ pXq

(
` EppZq

 
p1 ´ Cτ pGηpZqqq

(
. (98)

GANs are more flexible and have shown better performance at approximating complex dis-

tributions such as natural images (leading to sharper results) when compared to VAEs [173].

However, GANs are also much harder to train [175]. Moreover, VAEs naturally offer a

way to obtain the latent representations corresponding to samples xi „ ppXq by mapping

X ÞÑ Z using the function Dτ , which is also called an encoder model. This property and

their stable training have motivated us to use VAEs in this work.
1 Capacity of a distribution is a generic term to describe how complex a relationship it can model.
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in the form of, e.g., spectral libraries of laboratory measurements [181]. Nevertheless, we

propose a more practical and effective approach to train the generators Gηp by exploring

information contained in multiple pure pixels extracted from the observed HI. The presence

of multiple pure pixels in an observed HI is a characteristic of many real scenes, and can

be leveraged to help in estimating the EM models, thus, reducing the ill-posedness of the

SU problem2.

Therefore, we propose to break the unmixing problem into a sequence of two

problems:

i) Using pure pixel information extracted from the HI by standard EM extraction

methods, learn the generative and encoder models, Gηp and Dτp , for all EMs in the

scene (p “ 1, . . . , P ).

ii) Using the learned generative models, solve the SU problem by estimating the latent

EM representations Zn “ rz1,n, . . . , zP,ns and the fractional abundance vectors an

that can best represent the observed hyperspectral data, for all pixels in the scene

(n “ 1, . . . , N).

7.4.2 Learning the generative and encoder models Gηp and Dτp

The objective of this first problem is to estimate the generative and encoding models

Gηp and Dτp , for p “ 1, . . . , P . We assume the knowledge of a set ΥP,p of pure pixels for

the p-th EM, for all p “ 1, . . . , P . Multiple pure pixels exist in many scenes, and can be

directly extracted from the observed HI using automated EM extraction techniques [182,

183]. The sets of pure pixels ΥP,p, which can be seen as observations from the statistical

distribution of each EM, are then used in the form of training data to learn the models

Gηp and Dτp using a VAE [172]. If the set ΥP,p is representative of the variability of the

p-th material, the learned generative model Gηp will be able to accurately describe the

manifold of the p-th EM variability. Doing the same for all p “ 1, . . . , P yields a set of

variability models for all the EM spectra.

Although the extraction of multiple pure pixels from observed HIs is a well-

established technique used to produce EM libraries [182], mixed pixels can sometimes be

mistakenly identified as a pure pixel of some of the EMs. This constitutes a problem for

library-based SU applications (e.g. sparse SU) since some of the library spectra may end

up not being representative of their EM class (material).

The smooth nature of the latent representation of VAEs allows the mitigation of

this problem in the proposed approach. Assuming the availability of a reference EM matrix

M 0 of correctly identified signatures (which can be obtained using any EM extraction

method) and of a set of encoder models Dτp , we can compute the latent representation of
2 Pure pixels are defined here as a set of pixels whose spectral distance relative to the reference EMs in

M0 is less than a specified threshold.
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these reference signatures of each EM as

Z0 “
“
z1,0, . . . , zP,0

‰

“
“
Dτ1pm1,0q, . . . ,DτP pmP,0q

‰
, (100)

where mp,0 is the p-th column of M 0. The latent representation zp,0 can be used as a

reference latent code for the p-th material. Thus, we can measure how close an estimated

EM latent representation zp is to the latent representation of a pure pixel by evaluating

its Euclidean distance to zp,0. This can be performed since the output of VAEs have been

shown to vary smoothly with changes of the latent variable [172]. Thus, we can use Z0

to regularize the SU problem to prevent Gηppzpq from representing mixed pixels. This

increases the robustness of the proposed approach.

7.4.3 Extracting sets of pure pixels from the observed HI

An important part of the proposed methodology consists in the extraction of the

sets of pure pixels ΥP,p, p “ 1, . . . , P from the observed hyperspectral image Y . Although

different strategies have been proposed for image-based library construction (see e.g. [184,

185]), these techniques depend on multiple parameters that must be carefully adjusted in

order to obtain good results. Instead of these approaches, we adopt a very simple strategy

to select pure pixels from an HI that makes use of the reference matrix M 0 extracted from

the image using a pure-pixel-based endmember extraction algorithm (e.g. VCA [131]),

which will also later be used to construct Z0 in (100). We simply select as the elements

of ΥP,p the Up image pixels that have the smallest spectral angle to the reference signature

in the p-th column of M 0, where Up is the cardinality of ΥP,p for p “ 1, . . . , P . Although

the success of this strategy depends on having a reasonably accurate estimation of M 0,

we experimentally found it to be more robust and easier to adjust than, for instance, the

one in [182].

7.5 THE UNMIXING ALGORITHM

Given a set of generative models Gηp : RH Ñ R
L, p “ 1, . . . , P for each EM in

the scene, a latent space representation Z0 of a reference EM matrix M 0, and an HI

Y “ ry1, . . . ,yN s, the SU problem can be cast as the minimization of a risk functional of

the form

J pA,Zq “
1

2

Nÿ

n“1

}yn ´ rGpZnqan}2F ` RpAq ` RpZq , (101)

where A “ ra1, . . . ,aN s P R
PˆN is the abundance matrix, Z P R

NˆPˆH is a 3-D tensor

obtained by stacking all pixel-dependent latent EM representations Zn, such that rZsn,:,: “

Zn, RpAq and RpZq are regularization terms to improve the problem conditioning, and
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the matrix-valued function rGpZnq defined as

rGpZnq “
“
Gη1pz1,nq, . . . ,GηP pzP,nq

‰
, n “ 1, . . . , N , (102)

is the concatenation of the generative functions for each EM.

The term RpAq is a regularization functional that aims to provide spatial smooth-

ness and to enforce positivity and sum-to-one constraints to the abundances. It is given

by [34]

RpAq “ λA
`
}HhpAq}2,1 ` }HvpAq}2,1

˘
` ιS1pAq , (103)

where parameter λA controls the contribution of this term to the cost function. The first two

terms are a spatial regularizers over A, where Hh and Hv are linear operators that compute

the first-order horizontal and vertical gradients of a bidimensional signal, acting separately

for each material of A, and } ¨ }2,1 is the L2,1 norm, defined as }X}2,1 “
řN

n“1
}xn}2. The

term ιS1pAq is the indicator function of the unity simplex, i.e. ιS1pAq “ 0 if A P S1 and

ιS1pAq “ 8 otherwise, where

S1 “
 
A P R

PˆN : A ě 0, 1JA “ 1
J
(
. (104)

The term RpZq constrains the EM latent representations Z to be close to the latent

representation Z0 of the reference EM matrix M 0. It is given by

RpZq “
λZ

2

Nÿ

n“1

}Zn ´ Z0}
2

F , (105)

where parameter λZ controls the contribution of this term to the cost function. This

regularization makes the estimation problem more robust to the selection of the training

data ΥP,p by assuring the closeness of the estimated latent codes Zand the representations

of pure pixels of each class. However, it relies indirectly on the reference EM signatures M 0

(which are extracted from the observed HI with endmember extraction algorithms) being

adequate representatives of their material classes in order to provide a good performance.

The optimization problem then becomes

p pA, pZq “ argmin
A,Z

J pA,Zq . (106)

The problem defined in (106) is non-smooth and non-convex if solved simultaneously with

respect to both variables A, and Z. However, an approximate solution can be found by

minimizing (106) iteratively with respect to each variable, leading to the Deep Generative

Unmixing (DeepGUn) method described in Algorithm 6. The DeepGUn algorithm consists

of two distinctive steps. First, the generative endmember models generative and encoder

models Gηp , Dτp , p “ 1, . . . , P are trained based on the pure pixels ΥP,p, p “ 1, . . . , P

extracted from the observed HI and Z0 is computed. Afterwards, the alternating minimiza-

tion approach is applied to compute the abundance maps and the latent representations

of the endmembers for each pixel. We next describe the details of each optimization step.

Implementation details are described in Sections 7.6 and 7.7.
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Algorithme 6 : DeepGUn algorithm for solving (106)
Input :Y , λZ , and λA.
Output : pA and xM.

1 Estimate the reference EM signatures M 0 using an EM extraction method
(e.g. VCA);

2 Estimate Ap0q using a standard LMM-based SU method;
3 Extract sets of pure pixels ΥP,p, p “ 1, . . . , P from the HI using a bundle

extraction strategy;
4 Train the generative and encoder models Gηp , Dτp , p “ 1, . . . , P ;
5 Compute the latent representation of M 0 as Z0 “ rDτ1pm1,0q, . . . ,DτP pmP,0qs

;
6 Set i “ 0 ;
7 while stopping criterion is not satisfied do
8 i “ i ` 1 ;
9 Zpiq “ argmin

Z

J pApi´1q,Zq ;

10 Apiq “ argmin
A

J pA,Zpiqq ;

11 end

12 for n “ 1, . . . , N , do, rxMs:,:,n “ rGprZs:,:,nq, end;
13 return pA “ Apiq, xM ;

7.5.1 Optimization with respect to Z

Rewriting (106) considering only the terms in (101) that depend on Z, the problem

becomes

min
Z

1

2

Nÿ

n“1

´
}yn ´ rGpZnqan}2F ` λZ}Zn ´ Z0}2F

¯
. (107)

This is a regularized nonlinear least squares problem, which can be solved individually for

each pixel yn. Thus, (107) can be decomposed into N non-convex, nonlinear optimization

problems with dimensionality H ˆ P by denoting each summand in (107) by rJ pnq, n “

1, . . . , N . We solve each of those problems rJ pnq using a quasi-Newton algorithm, described

in Algorithm 7, which provides an efficient solution for high-dimensional functions rG [186].

Although problem (107) is generally non-convex, recent research [187] has proven

that, under suitable assumptions on the generator network rG, the problem of recovering the

latent variable Zn does not have any stationary point (e.g. local minima or saddle points)

outside a small neighborhood of the desired solution and its negative scalar multiple. This

indicates the existence of a favorable global geometry of (107).

Note that rG is not necessarily differentiable with respect to the latent represen-

tations Zn, which can make the optimization problem more challenging. Nonetheless,

quasi-Newton algorithms show excellent performance at non-smooth problems [188], where

convergence is generally observed as long as the line search procedure does not return

a point at which the objective function is non-differentiable. This allows quasi-Newton
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algorithms to be directly applied to obtain approximate solutions to non-smooth problems

with good computational efficiency [188, 189].

Algorithme 7 : Quasi-Newton algorithm for solving (107)

Input :an, yn, λZ , Z0 and rJ pnq.
Output :Zn.

1 Set i “ 0 and B1 “ I ;
2 while stopping criterion is not satisfied do
3 i “ i ` 1 ;
4 Compute search direction pi “ ´Bi∇ rJ pnq

i ;
5 Set zi`1 “ µipi, where µi is computed using a line search procedure to

satisfy the Wolfe conditions;
6 Define si “ zi`1 ´ zi and ui “ ∇ rJ pnq

i`1
´ ∇ rJ pnq

i ;

7 Bi`1 “ Bi ´
Bisis

J
i Bi

sJ
i Bisi

`
uiu

J
i

uJ
i si

;

8 end
9 Reorder zi`1 as a matrix Zn ;

10 return pZn “ Zn ;

7.5.2 Optimization with respect to the abundances

Restating (106) considering only the terms in (101) that depend on A leads to

min
A

1

2

Nÿ

n“1

}yn ´ rGpZnqan}2F ` ιS1pAq

` λAp}HhpAq}2,1 ` }HvpAq}2,1q .

(108)

Since the latent variables Zn are fixed, (108) consists of a SU problem with a pixel-

dependent EM matrix and an edge-preserving spatial regularization. Although this problem

is not separable with respect to each pixel in the image, the ADMM can be used to obtain

an efficient solution [134]. The solution of (108) using the ADMM is well described

elsewhere (e.g. [19]) and will thus be omitted here for conciseness.

7.6 NEURAL NETWORK ARCHITECTURE

As discussed before, we used a VAE [172] to learn the generative and encoder

models Gηp and Dτp from the sets of pure pixels ΥP,p. Compared to GANs, the training

of VAEs is much simpler and more stable [175]. Moreover, VAEs naturally return the

encoder model Dτp as an approximation to the posterior distribution when learning Gηp .

We have selected a dimension H “ 2 for the latent space, as it was experimentally verified

to be sufficient to adequately capture the variability of each single material in a scene.
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Table 11 – Encoder network architecture.

Layer Activation Function Number of units

Input — L

Hidden # 1 ReLU r1.2 ˆ Ls ` 5

Hidden # 2 ReLU max
 

rL{4s, H ` 2
(

` 3

Hidden # 3 ReLU max
 

rL{10s, H ` 1
(

For the network architectures, we selected the number of layers and neurons accord-

ing to the autoencoder implementation in [190, 165], with three hidden layers using ReLU

activations (defined as ReLUpxq “ maxpx, 0q) in the hidden layers, which are described

in more detail in Tables 11 and 12.

We found that this configuration led to spectrally smooth generated signatures, and

was effective at generalizing well with small training sample sizes. We trained the network

for 50 epochs with the Adam optimizer [191] in TensorFlow, using a batch optimization

with mini-batch size equal to one third of the total amount of training data for each EM.

Table 12 – Decoder network architecture.

Layer Activation Function Number of units

Hidden # 1 ReLU max
 

rL{10s, H ` 1
(

Hidden # 2 ReLU max
 

rL{4s, H ` 2
(

` 3

Hidden # 3 ReLU r1.2 ˆ Ls ` 5

Output Sigmoid L

7.7 EXPERIMENTAL RESULTS

In this section, simulation results using both synthetic and real data illustrate the

performance of the proposed method. We compare the proposed DeepGUn method with

the FCLS, the PLMM [20], the ELMM [19], and the GLMM [34]. In all experiments,

the VCA algorithm [131] was used to extract the reference EM matrix M 0 from the

observed HI and to initialize the different methods. The abundance maps of all methods

were initialized using the results obtained by the FCLS algorithm. The sets ΥP,p of pure

pixels were constructed by selecting the 100 image pixels yn with the smallest spectral

angles relative to the reference EMs in M 0. We ran the alternating optimization process

in Algorithm 6 for at most 10 iterations or until the relative change of A and Z was less

than 10´3. The iterative procedure in Algorithm 7 was run until the relative change of zi
was less than 10´3. The performances were evaluated using the Normalized Root Means

Squared Error (NRMSE) between the estimated abundance maps (NRMSEA), between

the EM matrices (NRMSEM) and between the reconstructed images (NRMSEY ). The
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Table 13 – Simulation results using synthetic data.

Data Cube 1 – DC1

NRMSEA NRMSEM SAMM NRMSEY Time [s]

FCLS 0.2854 — — 0.0350 0.71

PLMM 0.2604 0.1075 0.0440 0.0007 122.09

ELMM 0.2554 0.1032 0.0398 0.0321 8.82

GLMM 0.2480 0.1036 0.0355 0.0235 23.74

DeepGUn 0.0566 0.0944 0.0233 0.0448 75.20

Data Cube 2 – DC2

FCLS 0.1294 — — 0.0393 0.38

PLMM 0.1197 0.0481 0.0378 0.0336 41.31

ELMM 0.1110 0.0566 0.0382 0.0231 20.25

GLMM 0.1146 0.0534 0.0367 0.0226 17.03

DeepGUn 0.0969 0.0463 0.0323 0.0384 36.40

Data Cube 3 – DC3

FCLS 0.2606 — — 0.0542 0.34

PLMM 0.2028 0.0928 0.0385 0.0302 59.88

ELMM 0.1997 0.0640 0.0188 0.0238 17.99

GLMM 0.1841 0.0638 0.0185 0.0226 25.74

DeepGUn 0.1613 0.0600 0.0172 0.0457 48.96

Data Cube 4 – DC4

FCLS 0.5109 — — 0.1712 0.50

PLMM 0.5066 0.6245 0.4874 0.0320 269.48

ELMM 0.4385 0.4712 0.1451 0.0106 18.36

GLMM 0.4371 0.4855 0.1972 0.0108 21.15

DeepGUn 0.2550 0.2918 0.0873 0.1403 99.94

NRMSE between a true, generic tensor X and its estimate pX is defined as

NRMSEX “

d
}X´ pX}2F

}X}2F
. (109)

Note that for the case of NRMSEY , the reconstructed image pY is given by r pY s:,n “

rxMs:,:,nr pAs:,n, n “ 1, . . . , N .

We consider also the Spectral Angle Mapper to evaluate the estimated EMs

SAMM “
1

N

Nÿ

n“1

Pÿ

p“1

arccos

ˆ
mJ

p,nxmp,n

}mp,n}}xmp,n}

˙
. (110)

where mp,n and xmp,n are the true and the estimated signatures of the p-th endmember

in the n-th pixel, respectively.
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Figure 34 – Abundance maps of DC1 (top left), DC2 (top right), DC3 (bottom left) and
DC4 (bottom right) for all tested algorithms. Abundance values represented
by colors ranging from blue (ak “ 0) to red (ak “ 1).

7.7.1 Synthetic data

To quantitatively compare the different algorithms, four synthetic datasets were

created, namely Data Cubes 1–4 (DC1–DC4), with 70ˆ70 pixels (DC1) and 50ˆ50 pixels
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(DC2, DC3 and DC4). These datasets were built using three (DC1, DC2 and DC3) and

five (DC4) 224-band EMs extracted from the USGS Spectral Library [136] and spatially

correlated abundance maps, as depicted in Fig. 34.

Spectral variability of the EMs was imposed using four different models. For the

DC1 datacube, we adopted the variability model used in [20], consisting of pixelwise

multiplicative spectral factors given by random piecewise-linear functions. For DC2, the

variability model of [34] was used, consisting of band dependent scaling factors that varied

smoothly in both the spatial and spectral dimensions. For DC3, we considered a simple

model introduced in [184, Section IV-A-1] to emulate errors in atmospheric compensation

as a function of the viewing geometry given the direct and diffuse light on the scene, and

the solar path transmittance. For datacube DC4, we used as endmembers pure pixels of

five materials (asphalt, tree, roof, metal and dirt) which were manually extracted from

a real hyperspectral image, thus depicting realistic spectral variability. White Gaussian

noise was finally added to all datasets to yield a 30 dB SNR.

The optimal parameters for each algorithm were selected by performing grid

searches for each dataset. The ranges in which the parameters were searched were selected

according to those discussed by the authors in the original publications. For the PLMM we

searched for α, β and γ in the ranges r0.01, 0.1, 0.35, 0.7, 1.4, 25s, r10´9, 10´5, 10´4, 10´3s

and r10´2, 0.1, 1, 10, 102s, respectively. For both ELMM and GLMM, the param-

eters were selected among the following values: λS, λM P r0.01, 0.1, 1, 5, 10, 50s,

λA P r0.001, 0.01, 0.05s, and λψ, λΨ P r10´6, 10´3, 1, 103s. For the proposed DeepGUn

algorithm, we fixed λZ “ 0.1 and selected λA among the values r0.005, 0.01, 0.05s. For the

proposed method, the sets of pure pixels for each EM ΥP,p were constructed by selecting

the 100 pixels closest to the reference materials M 0.

The quantitative results are shown in Table 13, with the best results for each metric

marked in bold. The proposed method clearly outperformed the competing algorithms

in terms of NRMSEA for all four datasets. Qualitatively, the abundance maps provided

by DeepGUn, displayed in Fig. 34, are clearly much closer to the true abundance maps

than those provided by the other methods. These are important results, as accuracy in

abundance estimation is the main objective of SU.

For the EM reconstruction metrics NRMSEM and SAMM, DeepGUn gave the best

results for all data cubes. This indicates that the proposed endmember model used by

DeepGUn allows for precise material identification from the observed hyperspectral scenes.

The reconstruction error NRMSEY of the DeepGUn algorithm was comparable

to the FCLS and significantly larger than that of the GLMM. This is natural since the

GLMM has more degrees of freedom. However, the connection between NRMSEY and the

abundance reconstruction error is far from being direct, as can be seen in Table 13.

The execution times, at the rightmost column of Table 13, indicate that the com-

putational complexity of DeepGUn is somewhere between the complexities of GLMM and
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Table 14 – Simulation results using real data.

Houston HI Samson HI Jasper Ridge HI

NRMSEY Time [s] NRMSEY Time [s] NRMSEY Time [s]

FCLS 0.2470 2.56 0.0545 1.38 0.2057 1.52
PLMM 0.0713 663.25 0.0239 103.84 0.0553 220.84
ELMM 0.0171 38.30 0.0119 14.76 0.0278 27.08
GLMM 0.0016 48.53 0.0006 46.69 0.0019 86.33
DeepGUn 0.2355 259.61 0.0862 121.88 0.1094 209.64
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Figure 36 – Abundance maps of the Houston dataset for all tested algorithms. Abundance
values represented by colors ranging from blue (ak “ 0) to red (ak “ 1).

SNR regions were removed, resulting in 188 bands for the Houston image, 156 bands for

the Samson image and 198 bands for the Jasper Ridge image. Previous studies indicate

that the Houston HI has four predominant EMs [19], while the Samson and Jasper Ridge

HIs are known to have three and four EMs, respectively [32].

The reconstructed abundance maps for both datasets and all algorithms are shown

in Figs. 36, 37 and 38. For the Houston dataset, the last row of Fig. 36 shows that the

abundance maps provided by the DeepGUn method better evidence the strong vegetation

and concrete abundances at the stadium field and stands, respectively, as well as the

stronger asphalt abundances in the parking lot. For the Samson and Jasper Ridge images, a

clear performance improvement can be seen for the DeepGUn algorithm. Note, for instance,



Chapter 7. Deep Generative Endmember Modeling: An Application to Unsupervised SU 136

Figure 37 – Abundance maps of the Samson dataset for all tested algorithms. Abundance
values represented by colors ranging from blue (ak “ 0) to red (ak “ 1).

a smaller confusion between the Water and Soil EMs in the Samson HI when compared

to the other methods. Similarly, for the Jasper Ridge HI, the DeepGUn method leads

to considerably stronger Water abundances in the region containing the river. Moreover,

although the ELMM provided a better estimation of the road in the scene when compared

to the remaining methods, it also resulted in a greater confusion between the Vegetation

and Soil EMs, especially in the right part of the scene.

The quantitative results for all algorithms and datasets are shown in Table 14. Since

the correct abundance values (the ground truth) are not available for most real images,

the reconstruction error NRMSEY has been used as a sort of quality verification. As was

the case for the synthetic data, the DeepGUn reconstruction errors are higher than those

yielded by other methods that address spectral variability. However, the reconstruction

error is definitely not a good performance measure for abundance estimation in real images,

which is the main objective of unmixing algorithms. The higher reconstruction errors of

DeepGUn in this case are just due the fact that DeepGUn has much fewer degrees of

freedom than the ELMM, PLMM and GLMM algorithms. In fact, the DeepGUn has

only H ˆ P degrees of freedom for each pixel, which is comparable to the FCLS (P )
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Figure 38 – Abundance maps of the Jasper Ridge dataset for all tested algorithms. Abun-
dance values represented by colors ranging from blue (ak “ 0) to red (ak “ 1).

much smaller than the ELMM, GLMM and PLMM methods (ą L ˆ P ). Although this

means that the ELMM, GLMM and PLMM can achieve arbitrarily small reconstruction

errors NRMSEY , this is not necessarily reflected as good abundance estimation results.

The execution times of the proposed DeepGUn method were again comparable to those

of the other algorithms addressing spectral variability, which indicates that it scales well

with larger image sizes.

7.8 CONCLUSIONS

In this chapter, a deep generative EM model was proposed to address spectral

variability in SU of HIs. Instead of relying on user-defined parametric EM models which

have shown to be very hard to estimate in practical scenes, the proposed methodology

leveraged the generalization capability of deep neural networks to accurately model EM

spectra while still maintaining a strong connection to the physical mixing process. A

deep generative model for each EM was trained prior to unmixing by using pure pixel

information extracted directly from the observed HI, which allowed for an unsupervised

formulation. The proposed EM model was then applied to solve the SU problem, which
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was cast as the estimation of the low-dimensional representations of the EMs in the latent

space of the deep generative models and their corresponding fractional abundances, for

each pixel. The resulting DeepGUn algorithm presented excellent performance despite

the simple strategy used for selecting the training data for learning the generative model.

Simulations using synthetic and real data indicate that the proposed method can lead to

significant improvements in abundance estimation accuracy.
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8 DEEP GENERATIVE MODELS FOR LIBRARY AUGMENTATION IN

MULTIPLE ENDMEMBER SPECTRAL MIXTURE ANALYSIS

8.1 INTRODUCTION

Despite the good performance of parametric EM models discussed in previous

chapters, the most prominent approach to deal with EM variability in SU still considers

spectral libraries acquired a priori through laboratory or in situ measurements [11]. Within

this framework, The SU problem then becomes equivalent to selecting a subset of signatures

in the libraries that can best represent the observed HI under the LMM. The methods

that attempt to solve this problem can be roughly divided between sparse SU [21, 32]

(which was discussed in Chapter 3) and Multiple Endmember Spectral Mixture Analysis

(MESMA) [16] algorithms. Although sparse SU is computationally more efficient, MESMA

has been widely employed in practice due to its greater simplicity and interpretability [11].

However, the quality of the MESMA results is strongly dependent on how well

the spectral libraries represent the EM signatures actually present in the scene. This is a

problem since spectral libraries are often small, are usually not acquired under the same

conditions as the observed HI, and in situ measurements can be costly or impractical.

One approach to alleviate this problem consists of generating multiple synthetic

samples of an endmember using a physical model (radiative transfer function – RTF)

describing the variability of the spectra as a function of atmospheric or biophysical pa-

rameters [11], such as e.g. the PROSPECT of Hapke models [98, 37] for vegetation or

mineral spectra. These additional signatures are then included in the library to augment

it before performing SU. The use of RTFs to generate spectral libraries has great potential

since it can represent spectral variability caused by different effects which are unlike to

be captured by laboratory or field measurements [192, 193, 102]. However, physics-based

models require accurate knowledge of the physical process governing the observation of

the materials spectra by the sensor, which is hard to obtain in practice. This limits the

practical interest of these methods.

Recently, deep generative models (DGMs) have seen remarkable advances in the

form of variational autoencoders (VAEs) and generative adversarial networks (GANs) [172,

173]. This have made it possible to learn the distribution of complex data (e.g., natural

images) efficiently, and from a limited amount of samples [194]. DGMs have been considered

for data augmentation in few-sample settings for image classification problems [194]. In

Chapter 7, we proposed to use DGMs learned from observed HIs in order to parametrize

the variable EM spectra in the optimization step of a matrix factorization-based blind SU

problem, where the EMs are estimated from the HI. This showed that using generative

neural networks is a promising approach to represent the EMs in SU.

In this chapter, we propose a spectral library augmentation method for MESMA-

based algorithms by leveraging the power of DGMs to represent the EMs. The main
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contribution of the proposed method is that it works blindly, what allows for augmentation

of the spectral libraries used with MESMA even when RTFs or physical models are

unknown. The overall strategy can be divided in three steps. First we learn the statistical

distribution of each EM in the scene using the spectral signatures contained in the existing

spectral library and a DGM. Then, we sample new spectral signatures using the DGMs

and augment their respective spectral libraries. Finally, we unmix the observed HI using

MESMA and the augmented library. Simulations with synthetic and real data show a

substantial accuracy gain in abundance estimation when comparing the proposed method

with competing strategies.

This chapter is organized as follows. The MESMA algorithm is briefly revisited

in Section 8.2. The proposed library augmentation strategy is presented in Section 8.3.

Simulations with synthetic and real data are presented in Section 8.4. Finally, concluding

remarks are presented in Section 8.5.

8.2 REVISITING SPECTRAL UNMIXING WITH MESMA

SU with MESMA considers multiple spectra libraries, or bundles, one for each

endmember, and performs a search for the best fitting model within all possible combina-

tions of endmembers. Thus, assuming prior knowledge of spectral bundles for each EM in

the scene, the set M of endmember matrices that can be drawn from the library can be

defined as

M “
!“

m1, . . . ,mP

‰
: mi P Mi , i “ 1, . . . , P

)
, (111)

where Mi “ tmi,1, . . . ,mi,Ci
u, mi,j P R

L is a set of Ci spectral signatures of the i-th

material. The MESMA SU problem can be formulated as

min
MPM,an

››yn ´ Man
››2
2

subject to an ě 0, 1Jan “ 1 . (112)

Although the MESMA algorithm has shown excellent performance when dealing with

spectral variability in many practical scenarios, its performance is strongly effected by the

quality of the spectral library M [11]. In order for MESMA to perform well, the library

must be representative of the spectral library observed in a given scene. Previous works

tried to address this issue by augmenting the spectral libraries using physics-based models

that describe well the variability of the endmembers. See, e.g., the PROSPECT or Hapke

models [98, 37].

However, a major drawback of physics-based models is the requirement of accurate

knowledge of the physical process governing the observation of the materials spectra

by the sensor. This detailed information is rarely available in practice, which limits the

applicability of these methods. In the following, we will present a new approach for spectral

library augmentation that is based on deep generative models such as VAEs and GANs.
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Algorithme 8 : MESMA with spectral library augmentation
Input :Y , Mi, i “ 1, . . . , P and Qs.

1 for i “ 1, . . . , P do
2 Set ĂMi “ Mi and train a DGM Gηi using the samples in Mi ;
3 for j “ 1, . . . , Qs do
4 Sample z „ N p0, Iq and compute xm “ Gηipzq;
5

ĂMi Ð ĂMi

Ť 
xm
(

;
6 end
7 end

8 Set ĂM “
 

rm1, . . . ,mP s : mi P ĂMi , i “ 1, . . . , P
(

;
9 Run MESMA with the augmented library ĂM to compute pA ;

10 return pA, ĂM ;

tractable. This framework has shown success in capturing the distribution of complex

data such as natural images from very few training samples [194], which illustrates its

appropriateness for our application.

8.3.1 Library augmentation

Consider a small spectral library M known a priori containing a set of spectral

signatures Mi for each material i “ 1, . . . , P . Each signature mi,j P Mi, j “ 1, . . . , Ci,

can be viewed as a sample drawn from the statistical distribution of the i-th EM spectra.

Thus, these libraries can be employed as training data to learn a set of generative models

Gηi that represents the probability distribution function pipMq of each EM i “ 1, . . . , P

using a VAE [172].

Given the learned generative models Gηi , we can then generate new spectral signa-

tures from each EM class by sampling from the distribution of GηipZq, where Z „ N p0, IHq.

These new signatures can then be used to augment into the original library M, yielding

a new spectral library ĂM which is more comprehensive and better accounts for different

spectral variations of each material. Finally, the MESMA algorithm can be applied to

unmix each image pixel yn using the augmented library ĂM. This procedure is described

in detail in Algorithm 8, where the spectral library is augmented by adding Qs samples

to each EM set. Note that although this increases the complexity of SU with MESMA,

approximate strategies can be used to obtain an efficient solution when the augmented

library has many signatures [195].

8.3.2 Network architecture

To learn the generative models Gηp , we used a VAE [172] due to its stable train-

ing [175] and because it behaved well with small spectral libraries. The network architec-

tures for Gηp and Dτp and the dimension of the latent spaces were selected as the same
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Table 15 – Encoder and Decoder network architectures.

Layer Activation Number of units

Dτ

Input — L

Hidden # 1 ReLU r1.2 ˆ Ls ` 5

Hidden # 2 ReLU max
 

rL{4s, H ` 2
(

` 3

Hidden # 3 ReLU max
 

rL{10s, H ` 1
(

Gη

Hidden # 1 ReLU max
 

rL{10s, H ` 1
(

Hidden # 2 ReLU max
 

rL{4s, H ` 2
(

` 3

Hidden # 3 ReLU r1.2 ˆ Ls ` 5

Output Sigmoid L

Table 16 – Simulations with synthetic and real data (values ˆ103).

Synthetic HI Alunite Hill Gulfport

RMSEA RMSEY RMSEY RMSEY

FCLS 50.0 ˘ 32.2 0.73 ˘ 0.87 0.47 ˘ 0.60 1.00 ˘ 2.06

GLMM 45.3 ˘ 31.2 0.30 ˘ 0.22 0.001 ˘ 0.002 0.002 ˘ 0.003

MESMA 18.2 ˘ 13.7 0.41 ˘ 0.45 19.2 ˘ 14.0 1.31 ˘ 2.02

Proposed 15.3 ˘ 11.0 0.26 ˘ 0.25 18.4 ˘ 12.8 1.16 ˘ 1.86

RMSEA of Algorithm 8 as a function of Qs

Qs 0 1 2 3 4 5 6

RMSEA 18.18 16.23 15.65 15.34 15.21 15.09 15.01

ones used in Chapter 7 and in [38], since they resulted in a good experimental performance

and showed sufficient capacity to capture the spectral variability of a given library. For

convenience, the network architectures are also shown in Table 15 and the latent spaces

dimension was set to H “ 2. Finally, the network training was performed with the Adam

optimizer [191] in TensorFlow for 50 epochs.

8.4 EXPERIMENTAL RESULTS

In this section, simulation results using both synthetic and real data illustrate the

performance of the proposed method. We compare the performance of MESMA using the

augmented library with that of the traditional MESMA algorithm. We also present results

obtained with the FCLS and the the GLMM [34], which estimate the endmembers from

the observed HI (without using a spectral library). The VCA algorithm [131] was used to

extract EMs used by the FCLS and GLMM methods. The performances were evaluated

using the RMSE between the estimated abundance maps (RMSEA) and between the

reconstructed images (RMSEY ). The RMSE between two matrices is defined as RMSEX “b
}X ´ xX}2F {NX , where NX denotes the number of elements in X.
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Alunite Hill and L “ 192 for Gulfport. These images were selected since the unmixing

results can be evaluated using high-resolution classification maps available a priori, shown

in Fig. 40. The libraries M were built by selecting two signatures of each endmember from

the USGS library and from field surveys (for the Alunite Hill and Gulfport HIs, resp.)

such that the MESMA results closely approached (visually) the ground truth. Qs “ 2

additional signatures per EM were generated.

The abundance maps reconstructed by all algorithms are provided in Figs. 41 and 43.

It can be seen that the abundance maps of the MESMA-based methods are significantly

closer to the ground truth when compared to the GLMM and FCLS results. Furthermore,

the proposed library augmentation strategy led to a much better representation of the

alunite and kaolinite endmembers when compared to the competing approaches in the

Alunite Hill HI. Similar results were obtained for the Gulfport HI, where the abundances

obtained by the proposed method for the sidewalk and asphalt EMs approach the ground

truth more closely when compared to those estimated by FCLS, GLMM and by MESMA

with the original library. The spectral signatures generated using the DGMs, also seen

in Figs. 41 and 43, show that the proposed strategy is able to generate signatures that

accommodate variability seen in typical scenes from its representation in the original

library. Specifically, a generally agreeable shape but different scaling variations that act

nonuniformly over the spectral space can be seen in all cases except for the ground/dirt

EM in the Gulfport HI, whose original field surveyed spectra (contained in M) did not

contain a meaningful amount of spectral variability.

The quantitative RMSEY results in Table 16 show that the FCLS achieves smaller

reconstruction errors in the real datasets when compared to the synthetic one, which

contains more heavily mixed pixels and thus results in a worse data fitting for the FCLS

(which is based on the VCA). However, we note that RMSEY is not a good measure of

unmixing performance, as an infinite number of combinations (endmembers, abundances)

often leads to the same reconstructed HI.

To compare the proposed method with physics-based library augmentation, we con-

sidered a Lambertian scattering approximation of the Hapke model to augment the library

used with the Alunite Hill HI. Given prior knowledge about the laboratory acquisition

conditions of the spectra in the USGS library, we can generate different variations of these

mineral spectra by considering different viewing geometries as detailed in [26]. The abun-

dances estimated by MESMA using the augmented library are shown in Fig. 42. Although

a clear improvement can be seen in the alunite and muscovite EMs when compared to the

original library, the kaolinite abundances were completely absorbed into the muscovite

abundance map. Moreover, the alunite region is smaller than what is indicated in the

ground truth, which is more closely matched by the results obtained using the proposed

method. This shows that the proposed strategy can be competitive with physics-based

models in practice.
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INTERMEZZO: SPECTRAL VARIABILITY, REDUX: IMAGE FUSION,

MULTITEMPORAL SU AND CHANGE DETECTION

The challenges associated with spectral variability are also present in other appli-

cations such as multimodal image fusion and target detection. Moreover, the difficulties

which underlie SU in practice also go beyond spectral variability, and include nonlinearity

in the mixing process as well as the presence of outliers. In the next chapter, we propose to

address a different challenge of the SU problem, and a different problem to which spectral

variability applies, by extending the methods proposed in Chapters 3–8. For the sake of

brevity and to avoid deviating from the main scope of this thesis, we only provide brief

overviews of these works; complete versions can be found in the related publications.

We begin by extending the multiscale regularization of Chapter 3 to address non-

linear SU with kernels in Section 9.1. The HI is decomposed in two spatial domains (con-

taining the coarse and the original image content). SU is then formulated as non-convex

quadratically constrained optimization problems to allow for an automated parameter

design strategy. An efficient solution to these problems is then devised by exploring their

strong duality property. This section is related to the publication [40].

Section 9.2 moves on to introduce the time variable into SU. Unmixing in the

multitmeporal setting introduces both challenges as well as opportunities: while spectral

variability between different HIs can be very pronounced and abrupt changes can be

present, the availability of multiple HIs also allows unmixing results to be improved.

In this context, two new multitemporal SU approaches are proposed. First, we extend

parametric EM models to the multitemporal setting and use a Bayesian filter framework to

perform SU under slowly varying abundances. Afterwards, we consider a spectral library-

based multitemporal SU approach which is well adapted to abrupt abundance changes.

This section is related to references [41, 42].

Finally, in Section 9.3 we address spectral variability in the hyperspectral and

multispectral image fusion problem, where the images in both modalities can be subjected

to spectral variations and changes. To solve this problem, we first propose to address

spatially invariant variability between the images in a matrix factorization framework.

Spectrally and spatially localized changes are later accounted for by using a tensor-based

representation, in which image fusion is formulated as a coupled tensor factorization

problem. This section is related to publications [43, 44].
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9 AND NOW FOR SOMETHING DIFFERENT...

“And now for something completely different.”

Monty Python

Besides the content presented in Chapters 3–8, several other works have been

conducted in the duration of the thesis, which we do not include in full form for the sake

of brevity. In the following, we briefly detail the main contributions of these works.

9.1 MULTISCALE NONLINEAR UNMIXING WITH KERNELS

The LMM is effective in accurately modeling mixtures occurring in scenes where

the materials of interest cover a large portion of the pixel area [23]. However, it disregards

non-linearity in the mixing process, which often results in estimation errors being propa-

gated to the abundance maps [23, 111]. Nonlinear interactions between materials occur in

many scenes where there is complex radiation scattering among several endmembers, such

as in some vegetation areas [196]. In such situations, nonlinear mixing models must be con-

sidered [23, 26]. Several nonlinear SU strategies have been proposed in the literature, which

can be roughly divided between model-based and model-free methods. Most model-based

nonlinear SU algorithms assume that the mixing process that occurs in the scene is known

a priori [197, 198, 199, 26, 23]. However, real mixing mechanisms can be very complex and

prior knowledge about them is seldom available in practice. This led to the consideration of

more flexible model-free nonlinear SU, which employ more flexible nonlinear mixing models

that are able to represent generic functions. Prominent model-free strategies include the

estimation of abundances as posterior class probabilities of a nonlinear classifier [200], the

use of graph-based approximate geodesic distances [201], and kernel-based algorithms [202,

203, 204, 205]. Kernel-based methods provide non-parametric representations of functional

spaces that are able to model arbitrary nonlinear mixtures [202, 26, 23, 203, 204, 156].

This flexibility, allied to a good experimental performance has led to the wide application

of kernel methods.

In [203] the authors considered a semi-parametric kernel-based model consisting of a

linear trend parameterized by the abundance vector plus an additive nonlinear fluctuation.

The model, which allows the quantification of the abundance vectors during the unmixing

process, is given by

yn “ M 0an ` ζnpM 0q ` en , (113)

where ζnpM 0q “ rζnprM 0s1,:q, . . . , ζnprM 0sL,:qsJ, ζn : RP Ñ R is an arbitrary smooth

function belonging to a reproducing kernel Hilbert space, and yn, an and M 0 are as

defined in (1).

In [203] the authors proposed to solve the unmixing problem accounting for the

model in (113) by considering a multi-kernel generalization of standard least-squares
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support vector regression (LS-SVR) methods [206]. Such methods, however, significantly

increase the amount of parameters to be estimated from the data, rendering the SU problem

more ill-posed. Thus, the total variation regularization has been considered in [204] to

devise a regularized LS-SVR-based SU algorithm. However, using the TV regularization

introduces the same challenges in terms of computational complexity and limitations

concerning the quality of the SU results as discussed in Chapter 3. Moreover, it also

introduces an additional regularization parameter which must be adjusted by the user to

provide good results.

Motivated by the results in Chapter 3, we propose to introduce spatial information

into SU by representing this problem separately in two spatial scales, which significantly

reduces the computational complexity of SU. Moreover, this also makes the inter-scale

interaction between the abundances explicit in the resulting optimization problem, which

is essential for devising a theoretically principled automatic parameter determination

strategy.

9.1.1 Imaging model

We consider the multiscale transformation W P R
NˆS, S ă N as defined in

Chapter 3, that maps both the HI and the abundance maps to the approximation domain

based on the superpixel decomposition. We recall that the transformed matrices in the

coarse spatial domain are given by

Y C “ Y W , AC “ AW . (114)

Considering the nonlinear observation model (113), the transformed image in (114)

leads to an equivalent mixing model in the coarse spatial domain, which is given by

yCi
“ M 0aCi ` ζCi

pM 0q ` eCi , (115)

with

ζCi
pM 0q “

Nÿ

n“1

Wn,i ζnpM 0q (116)

denoting the nonlinear contributions at the coarse spatial scale, for i “ 1, . . . , S.

9.1.2 Optimization problem and parameter selection strategy

Given models (113) and (115), we can formulate optimization problems whose

solutions will be the estimated abundance maps in the coarse and original spatial scales.

However, an important challenge associated with the framework proposed in Chapter 3 is

the need for adjusting multiple regularization parameters to obtain a good performance.

One principled way to select regularization parameters in inverse problems consists

on the Chi-squared method [207, 208, 209] and the closely related discrepancy princi-

ple [210]. The underlying idea behind these methods is to evaluate the statistical properties
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of the data reconstruction term in a cost function when the estimated solution is equal

to the desired one. The regularization constant is then selected so that the estimated

solution yields a residual with the same statistical properties of the observation noise,

which are assumed to be known [207, 208, 209]. Thus, we formulate the optimization

problems using equality constraints, which allows us to characterize their corresponding

statistical properties to provide a principled choice of the regularization constants.

Following the observation model (115) and using the Chi-squared principle, the SU

problem at the coarse spatial scale can be formulated using the LS-SVR framework [203]

as:

tpaCi ,
pζCiu “ argmin

taCi
,ζCi ,ξCi

u

1

2

Sÿ

i“1

´
}ζCi}

2

H ` }aCi}
2

2

¯
(117)

subject to aCi ě 0 , 1JaCi “ 1 , i “ 1, . . . , S ,

ξCi “ yCi
´ M 0aCi ´ ζCi

pM 0q, i “ 1, . . . , S ,

1

S

Sÿ

i“1

}ξCi}
2

2
“ V0 ,

where V0 is a constant related to the coarse scale reconstruction error, which can be

approximated by (see [40] for more details):

V0 «
1

S
trtΣeu ` ν2

err , (118)

with Σe “ Etene
J
n u P R

LˆL being the noise covariance matrix (which is assumed to be

the same for all pixels) and ν2
err denoting modeling errors.

The abundance maps estimated at the coarse spatial scale, denoted by pAC “

rpaC1 , . . . , paCS s, can be used to regularize the original unmixing problem. To this end, we

convert the abundance map from the coarse approximation domain C back to the original

image domain as

pAC˚ “ pACW
˚ . (119)

Applying the Chi-squared principle to determine the relationship between the

abundances at two spatial scales is, however, not direct. We need to describe the desired

properties of the inter-scale regularization term
››A ´ pAC˚

››
F
. To do so, we explore the

statistical properties of the following term:

E

"
1

N

Nÿ

n“1

}M :
0
pyn ´ yC˚

n
q}2

*
, (120)

where : denotes the pseudoinverse operator. Using some simplifying assumptions and

approximations (see [40] for more details), we obtain the following constraint:

1

N

Nÿ

n“1

}an ´ paC˚
n

}2 «
1

N

Nÿ

n“1

}M :
0
pyn ´ yC˚

n
q}2 ´

1

N

Nÿ

n“1

}M :
0

`
ζnpM 0q ´ pζC˚

n
pMq

˘
}2

´ }M :
0
Σ

1{2
e }2F

S ´ 1

S
. (121)
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where pζC˚
n

is the function obtained as the solution to (117) for the superpixel which

contains pixel n.

Using relation (121) to regularize the abundances, the SU problem at the original

spatial scale can be written as:

argmin
tan,ζn,ξn,ξζ,nu

1

2

Nÿ

n“1

}ζn}2H (122)

subject to an ě 0 , 1
Jan “ 1 , n “ 1, . . . , N ,

ξn “ yn ´ M 0an ´ ζnpM 0q , n “ 1, . . . , N ,

ξζ,n “ M
:
0

`
ζnpM 0q ´ pζC˚

n
pM 0q

˘
, n “ 1, . . . , N ,

1

2

Nÿ

n“1

}ξn}2
2

“
N

2
V1 ,

1

2

Nÿ

n“1

`
}an ´ paDn

}2
2

` }ξζ,n}2
˘

“
N

2

´ 1

N

Nÿ

n“1

}M :
0
pyn ´ yDn

q}2 ´ }M :
0
Σ

1{2
e }2F

S ´ 1

S

¯
,

where constant V1 « trtΣeu ` ν2
err is related to the fine scale reconstruction error. Prob-

lem (122) can now be used to perform unmixing in the original spatial scale.

The quadratic equality constraints in (117) and (122) make these optimization prob-

lems non-convex. To provide an efficient solution, we resorted to a Lagrangian relaxation

and solved the dual optimization problem, which is concave and finite-dimensional [211,

212]. Although the non-convexity of the constraints implies the possibility of a non-zero

duality gap, by building upon results from non-convex optimization [213] we showed

that strong duality holds under mild conditions for problems (117) and (122). Thus, this

approach incurs no loss of performance.

Although the Lagrangian duals of (117) and (122) are concave, they are nonlinear

and costly to solve due to the high-dimensional nature of the problem. To obtain an

efficient solution, we rewrote the dual problems as low-dimensional root finding problems,

which can be solved in very few iterations using a multidimensional bisection algorithm.

For more details, please see the original publication [40].

9.1.3 Conclusions

In this section, we presented an overview of a new multiscale spatial regularization

approach for kernel-based nonlinear unmixing. Building upon the MUA algorithm of

Chapter 3, we employed a multiscale representation to divide the unmixing problem into

two simpler problems in different scales. Besides dealing with a non-parametric nonlinear

mixing model, we also addressed the parameter adjustment problem to reduce the required

amount of user supervision. The SU problem was reformulated at multiple scales by
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statistically characterizing not only the algorithm reconstruction error in both scales,

but also the inter-scale interaction between the abundances and the nonlinear mixing

contributions across the coarse and fine image domains. This formulation led to physically

motivated constraints which were leveraged to devise a method in which all the parameters

were determined automatically from the observed data. Thus, the proposed strategy

benefits from an improved quality without the need for ad hoc parameter adjustment

such as in TV-based works. The unmixing problem was then cast using quadratically

constrained optimization problems, for which efficient solutions were obtained by exploring

their strong duality and a reformulation of their dual representations as root-finding

problems. Simulation results with both synthetic and real data indicate that the proposed

strategy leads to a consistent performance improvement when compared to the classical

Total Variation regularization, even though no parameter adjustment is necessary.

9.2 MULTITEMPORAL UNMIXING AND CHANGE DETECTION

Multitemporal SU (MTSU) has recently become a subject of great interest due to

the possibility of leveraging time information in HI sequences, allowing for monitoring the

dynamical evolution of the materials and their distributions [214, 215, 216]. However, the

influence of spectral variability in multitemporal scenarios can be significantly stronger

than in the case of a single HI. This introduces a challenge to multitemporal SU since EM

variability must be carefully modeled to achieve a good performance. Previous works have

considered different strategies to incorporate dynamical information about the EMs. One

popular strategy is based on parametric models originally devised to account for variations

within a single HI, such as the ones discussed in Chapters 4, 5 and 7. These include

constraining the EMs at adjacent time instants to be scaled versions of each other [217],

or to be represented as a mean EM matrix with small, additive perturbations [218, 219,

220]. However, these works disregard important information as they do not account for

the low-dimensional structure that often underlies the changes observed in EM spectra

when representing their evolution.

Another line of work makes use of spectral libraries to constrain EM spectra by

applying the MESMA algorithm (discussed in Section 8.2) to MTSU. This approach was

successfully applied to the monitoring of rainforests [214, 216] and shrublands [215]. Al-

though MESMA can give good results if the spectral libraries are representative of the

observed scenes, it has a very high computational complexity due to its combinatorial na-

ture. Moreover, existing algorithms do not explicitly explore temporal correlation between

the abundance maps at adjacent time instants.

To address the issues with existing multitemporal SU based on parametric EM

models and spectral libraries, two new MTSU methods are proposed. First, we propose

an algorithm for multitemporal SU which is based on a dynamical parametric model for

the EM time variability. Specifically, we couple the representation power of parametric
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EM models originally devised to operate within a single HI, such as the GLMM, with a

Bayesian filtering methodology to estimate the EMs in HI sequences. Instead of operating

directly on the EM spectral space, we make use of a parametric EM model to represent

EM dynamics indirectly through vectors of parameters that capture the time variations of

each material. Bayesian filtering and smoothing are combined with the Expectation Max-

imization algorithm to estimate the required parameters given a window of observations

in time. The initialization of the resulting Kalman filter is also estimated in the process,

which improves convergence for short image sequences. Under some approximations and

for small temporal variation of the abundances, the proposed algorithm is able to blindly

estimate the EMs, the average abundances, and the remaining model parameters from

the observed HI data.

Afterwards, we consider an approach based on MESMA in order to benefit from

the information available in the form of spectral libraries and to address abrupt abundance

changes. Contrary to previous works, we formulate the multitemporal unmixing problem

by explicitly characterizing the temporal correlation and abrupt changes in the abundances.

Then, we propose to disjoin the EM selection problem from the abundance estimation

problem, what significantly reduces the computational complexity of the algorithm without

sacrificing the accuracy of the results. We also introduce a simple strategy to detect

pixels characterized by abrupt abundance changes. Theoretical guarantees are provided

on how our strategy compares to MESMA in terms of solution quality, that is, when

it recovers the correct endmembers, and also in terms of robustness, that is, when it

correctly detects abrupt abundance changes. This provides important insight into the

practical performance of the method. The proposed algorithm provides robust, high-quality

abundances reconstruction over time at a low computational cost.

9.2.1 Multitemporal Spectral Unmixing Using a Dynamic EM Model

The LMM (1) can be easily extended to the multitemporal setting to represent an

HI with L bands and N pixels at time t as:

Y ptq “ M ptqAptq ` Eptq, subject to 1
JAptq “ 1

J, Aptq ě 0 , (123)

where Y ptq P R
LˆN is the observed HI, the columns of M ptq P R

LˆP are the P endmem-

ber spectral signatures, Aptq P R
PˆN contains the abundances for each pixel, and Eptq

represents additive noise, all indexed at time t P t1, . . . , T u.

An important challenge related to the use of model (123) regards the consideration

of spectral variability, which causes the signatures of the endmembers to change both in

space (within the same HI) and in time. Since we have addressed spatial domain spectral

variability in Chapters 3–8, for simplicity in this section we assume only variations of the

EMs in time. EM variation within the same HI can be later incorporated to the proposed

model.
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Different SU algorithms accounting for EM time variability have been recently

proposed, most of them inspired by models designed to account for spectral variability

within a single image. For instance, in [217] the authors constrain the EM matrices at

each time instant to be scaled versions of a reference EM matrix. In [218], the authors

model the EMs at each time instant by a mean EM matrix plus small perturbations,

which are assumed to be temporally smooth. All variables are then estimated using a

stochastic approach. This latter model was later extended for distributed unmixing with

additional sparsity constraints in [219], and to include sparse additive residual terms to

represent abrupt spectral variations in the HI using a hierarchical Bayesian framework

in [220]. However, these works operate directly in the input spectral space, ignoring the

fact that spectral variability can often be represented more accurately using physically

meaningful parametrizations of EM spectra.

As discussed in Chapters 4, 5, and 7, parametric models have become widely used

to represent spatial domain spectral variability as:

M “ fpM 0,θq , (124)

where f is a parametric function, M 0 P R
LˆP contains reference spectral signatures of

the EMs and θ is a vector of parameters of the variability model. Such parametric models

are specially interesting for building a dynamical model to consider EM time variability.

We propose a multitemporal extension of the parametric EM model (124). We

assume a fixed reference EM matrix M 0, and model the time variations in M ptq through a

time varying θptq, t “ 1, . . . , T . Assuming that temporally adjacent images are acquired at

reasonably short time intervals, we model the difference θptq ´ θpt´1q as a small zero-mean

vector. Thus, we assume the following model for θptq:

θptq “ θpt´1q ` cptq , (125)

where cptq „ N p0,Cq contains the innovations which describe its dynamical evolution.

Note that the Gaussian assumption is only made in the model parameters θptq and not

on the EM signatures themselves, which allows for the use of complex EM distributions

through the pushforward measure obtained using the function f , as done in Chapter 7.

This generalizes parametric EM model (124) to the multitemporal setting as M ptq “

fpM 0,θ
ptqq, where the parametric function f now relates the EM matrices and the vectors

of parameters at each time instant. Considering this model, the multitemporal LMM can

be represented as

Y ptq “ fpM 0,θ
ptqqAptq ` Eptq . (126)

Next, one must choose a function f for (126) that establishes a good compromise

between mathematical tractability and performance. The GLMM from Chapter 5 is able

to represent arbitrary spectral variability by considering spectrally varying multiplicative
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scaling factors, introducing a connection between the amount of spectral variability and

the amplitude of endmember reflectance spectra at each band. By considering the GLMM

model and using the vectorization property, (123) can be expressed as

vec
`
Y ptq

˘
“
”`
Aptq

˘J
b I

ı
diag

`
vecpM 0q

˘
vec

`
Ψ

ptq
˘

` vec
`
Eptq

˘
. (127)

with Ψ
ptq P R

LˆP containing the scaling factors at instant t.

We write the abundance matrix Aptq as Aptq “ Aavg`∆Aptq, where ∆Aptq represents

small random fluctuations over the average abundance matrix Aavg. Considering ∆Aptq to

be small for a time window t P tt0, . . . , t1u, these variations can be incorporated into the

observation noise, leading to the following model:

vec
`
Y ptq

˘
“
“
AJ

avg b I
‰
diag

`
vecpM 0q

˘
vec

`
Ψ

ptq
˘

` rptq , (128)

where rptq “ vecpEptqq `
“`
∆Aptq

˘J
b IL

‰
diagpvecpM 0qq vecpΨptqq. Note that the obser-

vation noise rptq in (128) is correlated with the state Ψ
ptq. In the following, we will use

a signal-independent noise approximation, which provides competitive performance at a

modest computational cost. Further discussion on the impact of such an approximation

can be found in the original publication [41].

By considering θptq ” vecpΨptqq to be the state vector, vecpY ptqq the output vector,

and assuming rptq to be independent of cptq, zero-mean and Gaussian, equations (125)

and (128) form a linear state space model conditioned on M 0 and Aavg. Thus, by ad-

ditionally considering the abundances fixed over a time window t P tt0, . . . , t0 ` T u, we

proposed to use the Kalman smoother to estimate the state vector vecpΨptqq, coupled

with the Expectation Maximization algorithm to estimate the model parameters Aavg,

the covariance matrices of cptq and rptq, and the model initialization vecpΨp0qq [221]. A

regularized Least Squares problem was finally used to estimate the abundances Aptq for

each time instant. For more details, please see the complete publication [41].

9.2.2 Library-based multitemporal SU and change detection

Although requiring little supervision, the approach described in the previous section

does not account for spatial EM variability and relies on the abundances varying slowly in

time. A simple way which have been used to address spectral variability in multitemporal

SU is to apply the MESMA algorithm described in Section 8.2, separately to each HI as:

min
M ptqPM

min
a

ptq
n

››yptq
n ´ M ptqaptq

n

››2

subject to aptq
n ě 0, 1Japtq

n “ 1.

(129)

for each n “ 1, . . . , N and t P t1, . . . , T u, where M is a spectral library as defined in

Section 8.2. This strategy is widely used in practical applications [214, 215, 216], and can

naturally address both the spatial and temporal variations of EM spectra.
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Despite its widespread use and good performance in practical scenarios, the com-

putational cost of the MESMA algorithm is extremely high due to the combinatorial

nature of (129). Recent strategies attempt to provide low-complexity alternatives to the

MESMA problem with without negatively impacting the unmixing results. For instance,

an alternative approach to MESMA in [195] employs an angle minimization strategy. This

lead to a significant reduction of the computational complexity for cases where P is small

and Ck (the size of the libraries) is possibly very large. Another approach formulates

problem (129) as a mixed-integer optimization problem in order to benefit from advanced

software packages [222]. However, these works do not consider multitemporal information

which can help reduce the computational complexity for larger values of P .

To leverage time information, we propose to model the evolution of the abundance

maps by considering its changes to be composed of a small additive signal, and of large

sparse changes. That is, the observation model represents the pixels at time t and t ` 1

(for all t P t1, . . . , T ´ 1u) as follows:

yptq
n “ M ptq

n aptq
n ` eptq

n , (130a)

ypt`1q
n “ M pt`1q

n

`
at,n ` δ

ptq
small,n ` δ

ptq
large,n

˘
` ept`1q

n (130b)

“ M pt`1q
n apt`1q

n ` ept`1q
n ,

where M ptq
n is the (true) endmember matrix for pixel n at time instant t. Changes taking

place in the abundances between time t and time t ` 1 are modeled as a combination of a

small magnitude term δ
ptq
small,n and a spatially sparse, high magnitude term δ

ptq
large,n, which

represents abrupt variations taking place in a small number of image pixels.

The structure outlined in the model (130) can be explored in order to devise an

efficient MESMA-based MTSU algorithm. We propose to use an online strategy to estimate

the abundances and the EM matrices at time instant t ` 1 based on an estimate pat,n of

the abundances at time instant t. The procedure is a two-step one:

• Considering a
ptq
n ” paptq

n , estimate M pt`1q
n , δptq

small,n and δ
ptq
large,n that best represent

pixel ypt`1q
n in the model (130);

• Set papt`1q
n “ paptq

n ` δ
ptq
small,n ` δ

ptq
large,n and repeat for the next image.

The prior information stated about the properties of δptq
small,n and δ

ptq
large,n, and the

knowledge of the spectral library M could then be used to formulate an optimization

problem based on (129) to solve the multitemporal SU problem. Unfortunately, this

problem would still be computationally very expensive when compared to MESMA.

Rather than estimating the abundances, the endmembers and the changes jointly

at the same time, we adopt an alternative strategy to obtain an efficient solution. First,

let us assume that δ
ptq
large,n “ 0. If δptq

small,n is sufficiently small and paptq
n is a good estimate
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of the true abundance a
ptq
n , we have:

aptq
n ` δ

ptq
small,n « aptq

n

« paptq
n .

(131)

In that case, we can isolate the problem of estimating M P M from the full SU problem

at time t ` 1 in order to solve it separately in a much simpler manner. We formulate the

optimization problem as follows:

RE
pt`1q
M,n “ min

MPM

››ypt`1q
n ´ M paptq

n

›› . (132)

The endmember matrix xM pt`1q

n obtained by solving problem (132) can then be used to

compute abundance vector papt`1q
n with a single run of the FCLS algorithm.

However, this strategy relies on a strong hypothesis, namely, δ
ptq
large,n “ 0 and

paptq
n « a

ptq
n , in order for the approximation in (131) to hold. This hypothesis may not be

satisfied for all pixels. Fortunately, it turns out that we can devise a simple strategy to

address those cases without significantly compromising the performance of the algorithm.

Specifically, by evaluating the magnitude of the reconstruction error RE
pt`1q
M,n in (132),

we can indirectly identify if there were any significant changes in the abundance vector

by testing whether RE
pt`1q
M,n is larger than a given threshold RE0 and, if so, estimate the

corresponding abundance vector from scratch using MESMA. The threshold RE0 offers

a trade-off between accuracy (when small) and computational performance (when large),

and can be set based on the typical reconstruction error achieved by MESMA.

Intuitively, the reason this works is that, if the spectral library M is not too large,

and if apt`1q
n « paptq

n is not satisfied, then we cannot accurately reconstruct pixel ypt`1q
n

from problem (132). This notion was formalized mathematically, which provided a deeper

theoretical analysis of this method. This led to abundance reconstructions matching that

of MESMA, which a much smaller computational cost. For more details, please see the

original publication [42].

9.2.3 Conclusions

In this section, we presented an overview of two new multitemporal spectral unmix-

ing methods, one based on a parametric model for the EMs, and another using a spectral

library (for more details, see [41, 42]). In the first method, we used a parametric EM model

to represent EM dynamics indirectly through parameters that capture the time variations

of each material, instead of operating directly in the spectral space. Bayesian filtering and

smoothing was then used to estimate the parameters of the endmembers. Assuming small

abundance variations in short time intervals, the Expectation Maximization algorithm

was employed to blindly estimate the remaining parameters, including the average frac-

tional abundances, directly from the observed HI data. Simulation results indicate that
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the proposed method can outperform state-of-the-art multitemporal spectral unmixing

algorithms for slowly varying abundances.

To address the case of abrupt abundance variations and to benefit from a priori

knowledge in spectral libraries, we proposed a second multitemporal SU method based

on an efficient dynamical extension of the MESMA algorithm. The proposed strategy

exploits the high temporal correlation of the abundance maps in order to improve both

the accuracy and the computational complexity of the algorithm, which is one of the main

drawbacks of MESMA. Specifically, we approximated the solution to the multitemporal

unmixing problem by separating it into two sub-problems, namely, endmember selection

and abundance estimation, which are much easier to solve individually. A simple strategy

was proposed to detect abrupt abundance changes by analyzing residuals of the endmember

selection problem. Theoretical results demonstrated how the proposed method compares

to MESMA in terms of quality, and effectiveness in detecting abrupt abundance changes.

Besides, these results also provide valuable insight into the conditions under which the

approximate algorithm succeeds. Simulation results showed that the proposed method

gives results with quality similar to, or better than, both MESMA and parametric models

at a reduced computational complexity when an accurate spectral library is available.

9.3 IMAGE FUSION WITH SPECTRAL VARIABILITY

The low spatial resolution of HIs arises due to the delicate trade-off on which hyper-

spectral sensors operate in terms of pixel size and SNR. Since the radiated light observed

at the sensor must be divided into a large number of spectral bands, the size of each HI

pixel must be large enough to attain a minimum signal to noise ratio [6]. Multispectral

sensors, on the other hand, provide images with much higher spatial resolution, albeit with

a small number of spectral bands. One approach to obtain images with high spatial and

spectral resolutions consists in combining hyperspectral and multispectral images (MI) of

the same scene, resulting in the so-called HI-MI image fusion problem [28].

A large number of algorithms have been proposed to solve this problem (see,

e.g., [28] and references therein). Most existing algorithms, however, share a common

limitation: they assume that the HI and the MI are acquired under the same conditions.

However, despite the short revisit cycles provided by the increasing number of optical

satellites orbiting the Earth (e.g. Sentinel, Orbview, Landsat and Quickbird missions),

the number of platforms carrying both hyperspectral and multispectral sensors is still

considerably limited [223, 224]. This makes combining hyperspectral and multispectral ob-

servations acquired on board of different satellites of great interest to obtain high-resolution

(HR) images [29, 225]. Images acquired at different time instants can be impacted by, e.g.,

illumination, atmospheric or seasonal changes. This may result in significant variations

between the HI and the MI [15], negatively impacting traditional image fusion algorithms.

To address this issue, we propose two new image fusion methods accounting for
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spectral and spatial variability between the images, which can be caused by, e.g., acquisition

(atmospheric, illumination) or seasonal changes. Differently from previous approaches, we

allow the high-resolution images underlying the observed HI and MI to be different from one

another. In the first algorithm, we allow the spectral signatures of the materials in the HI

and in the MI to be different, which accounts for spatially uniform variability. Afterwards,

to account for spatially localized variations, we propose a tensor-based formulation using

an additive variability term, which accounts for arbitrary changes between the images.

By assuming that the images and variability tensors have low rank, two algorithms are

then proposed. Theoretical results were also derived to demonstrate the exact recovery

capability of the method.

9.3.1 The imaging model

Let Y P R
LˆN be an observed low spatial resolution HI with L bands and N pixels,

and Ym P R
Lmˆ rN an observed low spectral resolution MI with Lm bands and rN pixels,

with Lm ă L and N ă rN . The image fusion problem consists of estimating an underlying

image S P R
Lˆ rN with high spatial and spectral resolutions, given Y and Ym. Traditional

methods assume that the observed HI and MI are generated according to [28]

Y “ SDspat ` E

Ym “ DspecS ` Em

(133)

where Dspat P R
rNˆN accounts for optical blurring due to the sensor point spread function

and for spatial downsampling, Dspec P R
LmˆL is a matrix containing the spectral response

functions of each band of the multispectral instrument. E P R
LˆN and Em P R

Lmˆ rN

represent additive noise.

However, this model does not account for any type of variability between the images,

what can propagate estimation errors throughout the fusion process when the images are

acquired under different conditions. We propose to consider distinct HR images Sh and Sm,

both with L bands and rN pixels, corresponding to the observed HI and MI, respectively.

These HR images can be different due to variability effects. This leads to the following

observation model:

Y “ ShDspat ` E ,

Ym “ DspecSm ` Em .
(134)

In the following, we propose two formulations for image fusion accounting for

spectral, and for spectral and spatial variability.

9.3.2 A matrix factorization formulation for spatially invariant variability

A common approach to solve this problem is based on a low-rank assumption, which

is directly connected to the LMM [28, 226]. Traditionally, this amounts to considering
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that the HR image S can be represented S “ M 0AHR, where M 0 P R
LˆP contain the

spectral signatures of the image, and AHR P R
Pˆ rN are the HR abundance maps. In our

case, we allow the HR images to be different due to seasonal variability effects. We then

decompose Sh and Sm as

Sh “ M 0AHR (135)

Sm “ MmAHR , (136)

where the abundances AHR are assumed to be the same for both images, and M 0,Mm P

R
LˆP are the endmember matrices of the HI and for the MI, respectively. M 0 and Mm

can be different to account for spectral variability.

Matrix M 0 can be estimated from the observed HI Y using endmember extraction

or subspace decomposition. However, the same is not true for the estimation of Mm since

the MI Ym has low spectral resolution. To address this issue, we propose to write Mm as

a function of M 0 using a specific model for spectral variability.

Considering the GLMM proposed in Chapter 5, we propose to model the multi-

spectral endmember matrix Mm as a function of the endmembers extracted from the HI

as

Mm “ Ψ d M 0 , (137)

where Ψ P R
LˆP is a matrix of positive scaling factors and d denotes the Hadamard

product. Then, using models in (137), (135) and (134), the image fusion problem can

finally be formulated as the problem of recovering the matrices M 0, Ψ and AHR from

the observed HI Y and MI Ym. This was formulated as a coupled matrix factorization-

inspired problem, which also considered different regularizations to control the amount of

variability between the images, the spectral smoothness of Ψ, and the spatial smoothness

of AHR. Its solution was obtained by using an ALS strategy and the ADMM algorithm.

For more details, please see the complete publication [43].

9.3.3 A tensor formulation

The natural representation of HIs and MIs as 3-dimensional tensors has been

successfully exploited for HI-MI image fusion by formulating this problem as a coupled

tensor approximation problem [227, 228]. Algorithms based on, e.g., the CPD [227] or

Tucker decomposition [228] were proposed. The use of tensor-based strategies provided

advantages including a superior experimental performance and theoretical recoverability

guarantees. In order to extend the strategy outlined in Section 9.3.2 to account for spatially

localized changes and to provide theoretical recovery guarantees, in this section we consider

a tensor-based image fusion strategy, considering a more general, additive variability term.

Let us represent the HI as the order-3 tensor Y P R
N1ˆN2ˆL, where N1 and N2

are the spatial and L the spectral dimensions, and the MI as the order-3 tensor Ym P
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R
rN1ˆ rN2ˆLm , where rN1 ą N1 and rN2 ą N2 are the spatial and Lm ă L the spectral

dimensions. Previous tensor-based works also assume a single HR image to underlie the

observed HI and MI. We extend this approach by considering two different HR images

Sh P R
rN1ˆ rN2ˆL

` and Sm P R
rN1ˆ rN2ˆL

` , both with high spectral and spatial resolutions,

corresponding to a tensor representation of Sh and Sm in (134).

By assuming that the spatial degradation (blurring and downsampling) operator

Dspat is separable for each spatial dimension (see e.g., [227, 228] for more details), this

leads to the following representation of model (134):

Y“ Sh ˆ1 D1,spat ˆ2 D2,spat ` E, (138)

Ym “ Sm ˆ3 Dspec ` Em . (139)

where ˆk is the mode-k product between a tensor and a matrix (defined in detail in

Section 6.2), tensors Em P R
rN1ˆ rN2ˆLm and E P R

N1ˆN2ˆL represent additive noise and

matrices D1,spat P R
N1ˆ rN1 and D2,spat P R

N2ˆ rN2 represent the spatial blurring and down-

sampling in the hyperspectral sensor for each spatial dimension.

Without loss of generality, we assume that both HR images Sh and Sm are related

to each other as follows:

Sm “ Sh ` ∆ , (140)

where ∆ P R
rN1ˆ rN2ˆL is an additive variability tensor representing changes between the

scenes. Considering the variability model (140) along with (138)–(139), we obtain the

following observation model for the acquired HI and MI:

Y“ Sh ˆ1 D1,spat ˆ2 D2,spat ` E, (141)

Ym “
`
Sh ` ∆

˘
ˆ3 Dspec ` Em . (142)

The image fusion problem in this case consists in recovering ∆ and Sh from the

observed images Y and Ym. More precisely,
#

find Sh P ΩS and ∆ P Ω∆

such that equations (141)–(142) are satisfied.
(143)

where the sets ΩS Ď R
M1ˆM2ˆL and Ω∆ Ď R

M1ˆM2ˆL denote prior information about the

HR image and the variability factor, respectively.

Since the number of unknowns is significantly greater than the number of available

data, problem (143) is severely ill-posed and additional a priori information about the

structure of Sh and ∆ must be introduced through the sets ΩS and Ω∆ in order to obtain

a stable recovery. We considered a Tucker-based low-rank tensor model for both Sh and

∆. This structure made it possible to obtain exact recovery guarantees for problem (143),

where spatial and spectral variabilities are present. Moreover, it also makes the problem
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well-posed and easier to solve since the number of unknowns becomes smaller than the

amount of available data. Two algorithms were proposed, one being algebraic (i.e., non

iterative) and another based on a coupled tensor approximation optimization problem.

For more details, see the related reference [44].

9.3.4 Conclusions

In this section, we presented an overview of two image fusion methods accounting

for spectral and spatial-spectral variability between the images (for more details, see [43,

44]). In the first method, which employs a subspace/unmixing-based formulation, we used

a unique set of endmembers for each image, with a parametric model to represent the

variability of the spectral signatures occurring between them. The proposed algorithm

estimated the subspace components (endmembers and abundance maps) of the HR images

using an alternating optimization approach, making use of the ADMM to solve each

subproblem. Simulation results with synthetic and real data showed that the proposed

approach performed similarly or better than state-of-the-art methods for images acquired

under the same conditions, and much better when there was spatially uniform seasonal

or acquisition variations between them.

To address the case of spatially varying variability (i.e., both spatial and spectral

variability) and to offer theoretical guarantees for the recovery of the HR image, we used

a tensor based formulation for the second method. A more general observation model

was considered, in which the HR image underlying the MI admits an additive variability

term to account for changes between the scenes. Studying the general identifiability of

this model, we showed that this variability term can only be identified in general up to its

smooth structure (which is defined according to the degradation operators). To introduce

additional prior information and mitigate the ambiguity associated with the proposed

model, both the HR image and the additive perturbations were assumed to have low mul-

tilinear rank (i.e., to admit a Tucker decomposition). Two algorithms were then proposed,

one algebraic and another based on an optimization procedure. Theoretical guarantees

for the exact recovery of the HR image were provided for both. Simulation results showed

that the proposed optimization-based algorithm yielded superior performance at a con-

siderably lower computational cost when compared to the previous algorithm, especially

when spatially localized variability was considered.

“where Saint Mary Woolnoth kept the hours,

With a dead sound on the final stroke of nine.”

T.S. Elliot, The Wasteland
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10 CONCLUSIONS

In this thesis, new models and algorithms were proposed to address spectral vari-

ability in spectral unmixing. To this end, we approached the unmixing problem from two

perspectives, one in which we focused at modeling the abundances, and another in which

we focused at modeling the endmembers.

In Chapter 3, we presented a multiscale model based on (over)-segmentation algo-

rithms to represent the hyperspectral image and the abundance maps for sparse spectral

unmixing using spectral libraries. The unmixing problem was divided into two separate

problems: one in a coarse spatial scale, and another in the original image domain. The

solution to SU at the coarse scale was able to characterize the relationship between the

abundances at neighboring pixels, and was then used to regularize the SU problem at the

original spatial scale. Differently from traditional spatial regularization techniques such as

the Total Variation, the proposed multiscale regularization led to optimization problems

without explicit dependency between the solutions at different pixels. This resulted in

better abundance estimation performance at a much reduced computational complexity.

This multiscale regularization strategy was then extended in Chapter 4 to consider

the SU problem with a parametric model to represent spatial endmember variability.

Instead of separating SU into two distinct problems, we proposed a solution based on

a single optimization problem. In particular, a different multiscale transformation was

employed to decompose the image into two domains; one containing the coarse spatial

information, and another containing only the fine spatial details. Spatial regularity of

the abundance maps was then controlled by penalizing the energy of the abundances

separately in each scale during SU, which was formulated as a non-convex optimization

problem. Using an alternating least squares approach and a few simplifying hypotheses,

an efficient solution was obtained, leading to improved abundance estimation at a lower

computational complexity.

After that, in Chapters 5–8, we developed new SU methods by modeling the

spectral signatures of the endmembers using parametric, tensor, and neural network-based

representations. First, a parametric model was proposed in Chapter 5 to represent the

spectral signatures of the endmembers in the scene as wavelength and pixel-dependent

scalings of a set of reference spectral signatures. The abundance maps and scaling tensor

were obtained as the solution to a non-convex optimization problem, which was performed

using an alternating least squares approach. Simulations indicated that the proposed

model can improve the quality of SU.

In Chapter 6, the multidimensional nature of the abundance maps and endmember

matrices for each pixel was explored to address spectral variability in SU. Specifically, no

direct model for the endmember signatures was employed. Instead, the natural represen-

tation of the data as high-order tensors and their underlying low-rank structure were used
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to regularize the SU problem, which was formulated as a low-rank tensor approximation

method. A simple strategy was also proposed to select the approximate ranks of the abun-

dance and endmember tensors. Simulations with synthetic and real images showed that the

proposed strategy can lead to good SU results, while offering a competitive computational

cost for small hyperspectral images.

Despite obtaining a good practical performance, strategies based on parametric or

tensor-based models do not exploit the fact that the spectral signatures of the endmembers

are confined to a low-dimensional manifold. To make use of this property, in Chapter 7

we proposed to model the endmembers using generative neural networks, such as varia-

tional autoencoders and generative adversarial networks. This allowed us to represent the

endmember manifold as the image of a function on a low-dimensional Euclidean space.

A two-step SU procedure was then proposed. First, pure pixels were extracted from the

observed image and used to train the generative networks, one for each material in the

scene. Then, the abundances and the latent representations of the endmembers were esti-

mated by means of a matrix factorization-inspired optimization problem. Experimental

results showed excellent performance on scenes containing pure pixels. Chapter 8 extended

this approach to aid library-based SU for cases where the library has a small quantity of

spectral signatures. In this case, generative models for each material were first learned

using the spectral signatures contained in the original library as training data. Afterwards,

the learned models were used to generate additional synthetic signatures of each material

which were then included in the library before SU, following a data augmentation frame-

work. Experimental results showed the method’s performance to be comparable to that

of data augmentation approaches based on physics models specified a priori.

Finally, Chapter 9 presented a brief overview of work that extended the contribu-

tions of Chapters 3–8 to address other challenges related to spectral unmixing and to

hyperspectral image analysis. First, the multiscale spatial regularization method proposed

in Chapter 3 was extended to address nonlinear unmixing with kernels. Besides extending

the multiscale decomposition to a non-parametric mixing model, a framework was also

developed to automatically adjust the regularization parameters of the algorithm. SU

was performed by using a computationally efficient solution to a non-convex optimization

problem.

The parametric model developed in Chapter 5 was later extended to address spectral

variability found in images acquired at different time instants. Using a Bayesian filtering

strategy and the Expectation Maximization algorithm, a method was proposed to perform

SU in multitemporal image sequences with slowly varying abundances. To mitigate this

latter limitation and address image sequences containing sudden changes, a library-based

method was also proposed to perform SU and change detection jointly based on an

approximate solution to a combinatorial optimization problem.

Finally, spectral and spatial variability were addressed in the multimodal (i.e.,
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hyperspectral and multispectral) image fusion problem. By considering that the spectral

signatures of the materials can be different for each of the images, the parametric model

of Chapter 5 was first extended to represent the spectral variability present between the

images in the different modalities. This led to a considerable performance improvement

for image pairs in which the variability is spatially invariant. To address spatially and

spectrally varying variability, image fusion was latter cast as a coupled tensor factorization

problem, subject to an arbitrary additive variability term between the images. Assuming

that the high-resolution images have low rank, two algorithms are proposed, each of which

with theoretical performance guarantees. Simulations with synthetic and real data showed

a considerable performance improvement when spatially localized variability is present.

Several possibilities remain to further extend the work in this thesis, among which:

• Develop new multiscale decompositions to represent the spatial information con-

tained within each HI more effectively, which could improve the performance of the

methods presented in Chapters 3 and 4;

• Improve the computational complexity of the ULTRA-V algorithm of Chapter 6 by

using a patch-based spatial decomposition, making this method scalable and more

amenable to processing large datasets;

• Develop strategies to automatically adjust the regularization parameters of SU

algorithms that account for spectral variability, allowing a more widespread use of

these techniques in practice;

• Provide theoretical guarantees for the recoverability of the endmembers and of the

abundances in SU when spectral variability is considered;

• Further investigate the use of deep learning tools to aid in solving the SU problem

with spectral variability.

“Well now that’s done”

T.S. Elliot, The Wasteland
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