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RESUMO

O advento dos satélites padronizados tipo CubeSat tem possibilitado que um crescente
número de universidades e empresas ao redor do mundo adentrem em projetos no segmento
espacial. Entre os diversos sub-sistemas que compõem um CubeSat existe o controle tér-
mico, responsável por manter todos os outros sub-sistemas dentro de limites aceitáveis de
temperatura. Um método amplamente empregado na avaliação desse sistema é a simulação
numérica, tema central desta tese. Para compor a simulação da transferência de calor, dois
modelos foram desenvolvidos: irradiância e térmico. Neste trabalho, a irradiância considera
que as fontes de calor, dadas pela radiação solar, albedo e emissão da terra no infra-vermelho,
dependem da dinâmica orbital, além da orientação e apontamento do satélite (atitude), o
que permite avaliar os diversos cenários térmicos a serem enfrentados pelo satélite ao longo
do seu ciclo de operação em órbita. O modelo térmico baseia-se no Método dos Volumes
Finitos (Finite Volume Method - FVM) e utiliza a irradiância como condição de contorno
nas superfícies externas do domínio. Para realizar o balanço de energia nas superfícies
internas utiliza-se o método de Gebhart, assim como um modelo para determinação de
superfícies obstrutoras acoplado ao cálculo dos fatores de forma entre as faces. Entre os
casos simulados está a avaliação do impacto da transferência interna de calor por radiação,
que em alguns exemplos disponíveis na literatura é desconsiderada. Três casos de troca
interna são verificados por meio da emissividade (ε) das superfícies, e incluem o caso em
que a emissividade é máxima de superfície negra (ε = 1.0), o caso sem radiação (ε = 0.0) e
um caso intermediário (ε = 0.5). Os resultados, válidos para uma geometria de CubeSat
1U (10x10x10 cm), indicam que as perturbações orbitais são essenciais para a simulação da
posição do satélite e, consequentemente, o campo de radiação atuando sobre ele. Em termos
de temperatura, a inclusão da transferência de calor interna modifica o campo de temperatura
e deve ser considerada nas simulações. Um comparativo entre os resultados obtidos por meio
do FVM e uma formulação mais simples obtida pelo método dos nós (Lumped Paramether
Method - LPM) é realizada, onde verifica-se que os níveis de temperatura entre eles pode ser
compatível ao se controlar a resistência térmica do LPM, ainda que este último não forneça
campos tridimensionais. Ao final da tese, duas outras aplicações são demonstradas com o
uso dos modelos de irradiância e térmico propostos, o que inclui a integração de tubos de
calor e gerador termoelétricos em missões CubeSat.

Palavras-chaves: CubeSat, Simulação Numérica, Método dos Volumes Finitos, Irradiância,
Temperatura, Radiação Térmica, Método de Gebhart.



RESUMO EXPANDIDO

Introdução

Os custos e prazos reduzidos, quando comparado à missões de grande porte tradicionais,
são características atrativas que impulsionam o setor espacial com estimativas de aproxi-
madamente 2500 novos lançamentos até 2025, incluindo missões do tipo CubeSat. Entre
os diversos sub-sistemas que compõem o CubeSat existe o controle térmico, responsável
por manter todos os outros sub-sistemas dentro de limites aceitáveis de temperatura. O
satélite em órbita sofre variações de temperatura ao longo do seu ciclo de vida de operação,
que se relacionam com a sua dinâmica orbital, além da orientação e rotação do satélite
(atitude). Estes parâmetros impactam a irradiância que atinge as superfícies do satélite e, por
consequência, também influenciam a temperatura. Este trabalho se propõe a desenvolver
uma simulação numérica baseada no Método dos Volumes Finitos para a transferência de
calor em CubeSats, além do acoplamento de um modelo de irradiância que é regido pela
mecânica orbital, perturbações de órbita e atitude do satélite. As condições de contorno nas
superfícies externas do satélite são descritas por este modelo de irradiância, enquanto que
nas superfícies internas é utilizado o Método de Gebhart para a transferência de calor por
radiação.

Objetivos

O objetivo principal deste trabalho é projetar uma estrutura de simulação — integrando
irradiância e modelos térmicos — para avaliar o comportamento térmico de CubeSats e
apoiar missões futuras. Seguindo este objetivo principal, os objetivos específicos são: (a)
Implementar e analisar um modelo de fluxo de irradiância considerando órbita, atitude e
parâmetros de radiação ao longo do ciclo de vida do CubeSat; (b) Projetar e avaliar um
modelo térmico de CubeSats - empregando o método de volumes finitos - com transferência
interna de calor por radiação; (c) Integrar os modelos de irradiância e térmicos apresentados
anteriormente, a fim de obter uma estrutura de simulação totalmente funcional para CubeSats
e analisar o resultado resultante em cenários representativos.

Metodologia

O trabalho aqui desenvolvido busca resolver a transferência de calor em um CubeSat por
meio da integração de um modelo de irradiância e um modelo térmico. A irradiância fornece
as condições de contorno para as superfícies externas do problema, sendo que aspectos
como mecânica orbital, perturbação de órbita e atitude do satélite fazem parte deste modelo,
permitindo uma avaliação dos fluxos de calor ao longo de todo o ciclo de operação do satélite.
O arrasto atmosférico e o gradiente de gravidade compõem o conjunto de perturbações
de órbita, cujas influências são mais expressivas na variação da altitude e do ângulo β,
respectivamente. Este ângulo é medido entre o plano orbital e o vetor sol, sendo uma métrica
que rege a duração da passagem do satélite sob a sombra terrestre, ocasião em que o fluxo
solar, principal fonte de calor, deixa de atingi-lo. A atitude rege as projeções das superfícies
externas do satélite em relação as fontes de calor, reconhecidas como o fluxo solar, o albedo
e a emissão da terra no infravermelho. O modelo térmico transiente e tridimensional é
desenvolvido com base no Método dos Volumes Finitos, tendo o modelo de irradiância como
condição de contorno nas superfícies externas do domínio e o Método de Gebhart como
formulação para a troca de calor por radiação nas superfícies internas. O sombreamento
entre os componentes no interior do satélite é estimado por meio de um algoritmo, cujas
obstruções auxiliam no cálculo dos fatores de forma entre as superfícies. As condições de
troca de calor por radiação no interior do satélite são avaliados em função da emissividade



(ε) dessas paredes, sendo verificado o caso sem radiação (ε = 0.0), o caso com máxima
emissividade - superfícies negras (ε = 1.0) e um caso intermediário (ε = 0.5).

Resultados e Discussão

A dinâmica orbital e do satélite são parâmetros que permitem uma avaliação preliminar
da radiação térmica sobre o CubeSat e seu respectivo comportamento térmico ao longo do
ciclo de vida. O campo de temperatura sofre uma variação significativa ao longo de uma
órbita, atingindo os menores níveis de temperatura sob a sombra terrestre e os maiores no
último instante antes de adentrar no eclipse da terra. O gradiente espacial no satélite não é
desprezível, sendo que para a geometria avaliada os pontos mais quentes e frios ocorrem no
centro dos painéis solares. Os componentes internos também apresentam campos transientes
e tridimensionais, mas com uma variação de menor magnitude. A inclusão da transferência
interna de calor por radiação impacta na temperatura dos partes internas e externas do
satélite, sendo que uma condição sem radiação (ε = 0.0) no interior do satélite eleva a sua
temperatura máxima e reduz ainda mais a temperatura mínima. No outro extremo, a máxima
troca de calor interno por radiação ocorre com ε = 1.0, e reduz os picos de temperatura nas
partes externas em virtude de que nesta condição estes componentes conseguem trocar calor
nas suas duas faces opostas externa e interna. Com o objetivo de estender a aplicabilidade do
modelo proposto nesta tese, também são apresentados breves resultados acerca da integração
de um tubo de calor entre dois painéis do CubeSat, além de um gerador termoelétrico na
simulação. No caso do tubo de calor, o impacto na temperatura dos painéis em contato com
ele é evidente, sendo um meio eficaz de transferir calor entre duas partes. Por outro lado, a
análise do gerador termoelétrico mostrou ser inviável a obtenção de energia extra por meio
deste dispositivo.

Considerações Finais

A inclusão de aspectos como dinâmica orbital e atitude do satélite compõem o modelo de
irradiância que está integrado ao modelo térmico desta tese, e consiste numa ferramenta
para avaliar aspectos relacionados à temperatura de um CubeSat ao longo do seu ciclo de
vida em órbita. Com o objetivo de avaliar o comportamento térmico de uma típica missão
CubeSat 1U, diferentes cenários de órbita, atitude e emissividade das superfícies interna
do satélite são avaliados nesta tese por meio de um único modelo integrado. Em virtude
do desenvolvimento obtido até aqui, os trabalhos futuros são no sentido de: (a) Reduzir o
erro no cálculo de sombreamento das partes internas do satélite através do refinamento das
superfícies parcialmente sombreadas; (b) Incluir na estrutura da simulação o calor dissipado
pelos diversos componentes eletrônicos do CubeSat com base no seu perfil de execução de
tarefas; (c) Utilizar a estrutura da simulação em conjunto com técnicas de controle térmico
ativo e passivo compatíveis com missões CubeSat, a fim de avaliar o desempenho destas
tecnologias.

Palavras-chaves: CubeSat, Simulação Numérica, Volumes Finitos, Irradiância, Temperatura,
Radiação Térmica, Método de Gebhart.



ABSTRACT

The advent of standardized CubeSat satellites has enabled an increasing number of universi-
ties and companies worldwide to enter projects in the space segment. Among the various
sub-systems that make up a CubeSat, thermal control is responsible for keeping all other
sub-systems within acceptable temperature limits. A method widely used in evaluating this
system is a numerical simulation, the central theme of this thesis. To compose the heat
transfer’s simulation, two models were developed: irradiance and thermal. In this work,
irradiance considers that the heat sources, given by solar radiation, albedo, and infrared Earth
emission, dependent on the orbital dynamics, in addition to the orientation and pointing of
the satellite (attitude), which allows evaluating the different scenarios thermal elements to
be faced by the satellite throughout its orbit operating cycle. The thermal model is based
on the Finite Volume Method (FVM) and uses irradiance as a boundary condition on the
domain’s external surfaces. To perform the energy balance on the internal surfaces, the
Gebhart method is used, and a model for determining obstructive surfaces coupled with
the calculation of the view factors between the faces. Among the simulated cases is the
evaluation of the impact of the internal heat transfer by radiation, which in some examples
available in the literature is disregarded. Three cases of internal exchange are verified by
means of the emissivity (ε) of the surfaces, and include the case in which the emissivity is
the maximum black-body surface (ε = 1.0), the case without radiation (ε = 0.0) and an
intermediate case (ε = 0.5). The results, valid for a geometry of CubeSat 1U (10x10x10
cm), indicate that the orbital disturbances are essential for the simulation of the satellite’s
position and, consequently, the radiation field acting on it. In terms of temperature, the
inclusion of internal heat transfer changes the temperature field and must be considered in
the simulations. A comparison between the results obtained using the FVM and a simpler
formulation obtained by the method of nodes (Lumped Parameter Method - LPM) is carried
out, where it is verified that the temperature levels between them can be compatible when
controlling the thermal resistance of the LPM, even though the latter does not provide
three-dimensional fields. At the end of the thesis, two other applications are demonstrated
using the proposed irradiance and thermal models, including the integration of heat pipes
and thermoelectric generators in CubeSat missions.

Key-words: CubeSat, Finite Volume Method, Irradiance, Temperature, Thermal Radiation,
Gebhart Method.
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r̂, ŝ, ŵ Components of the LVLH frame of reference [-]

S Source term [W/m3]

Su Constant coefficient of the source term [W/m3]

SP Linear coefficient of the source term [W/m3K]

t Time [s]

∆t Timestep [s]

T Temperature [K]

Tave Average temperature [K]



Tp Point temperature [K]

Trange Range of temeprature [K]

T∞ Temperature of outer space [K]

TC Temperature at cold side of TEG [K]

TH Temperature at hot side of TEG [K]

UT Universal time [hour]
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Figure 3 – Brazilian nanosatellites - CubeSats and CanSat

(a) NanosatC-Br1 (1U) (b) ASP-14 (1U) (c) SERPENS-I (3U)

(d) UbatubaSat (CanSat) (e) ITASAT-1 (6U) (f) FloripaSat-I (1U)

on time. Because the CubeSat is a technology that needs to survive in the space environment

(vacuum, microgravity, radiation), difficult to reproduce in the laboratory, numerical modeling is

an essential tool for predicting the performance of the subsystems of an orbiting spacecraft and,

consequently, to support the decisions taken along the architecture’s definition of the satellite.

Besides that, CubeSats have limited power source, small heat capacity, limited radiator area,

high-density packing of electronics, mass and volume limitations, which not necessarily results

in similar scenarios of traditional medium and large satellites (SEBASTIAN; BABY, 2018). A

CubeSat mission’s fundamental challenge is to estimate the temperature range it will be exposed

to correctly. The following section will discuss the thermal control of satellites, the main focus

of this thesis.

1.2 THE THERMAL CONTROL SUBSYSTEM

A whole space mission system includes the space segment (satellite), the terrestrial

segment, and the launch segment. The objective of the space segment is the operation in orbit

and generation of data. The launch segment is responsible for placing the satellite in its proper

orbit, while the ground station interacts with the space segment by receiving telemetry or sending

telecommands (FORTESCUE; SWINERD; STARK, 2011).

The space segment can be divided into two parts: service module and payload. The

payload is the mission motivation, such as a camera to take photos of the Earth’s surface, a radar
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Figure 5 – Temperature data from CubeSats in orbit
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(a) External parts of CP3: June 2007.
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(b) External parts of CP3: June 2008.
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(c) External parts of SwissCube: December 2009.
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(d) External parts of SwissCube: March 2011.
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(e) Internal parts of SwissCube.
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(f) Internal parts of Zacube.

Source: Adapted from Firedel (2011), Kramer (2019a), Kramer (2019b)

permanently damage the satellite, but even deviations from optimum point results in an inefficient

operation (DEHBONEI; LEE; NEHRIR, 2009; CHIN et al., 2018; QIAO; RIZOS; DEMPSTER,

2013). Following a trend observed in other projects, the battery is the component that has the

most restrictive range and may require thermal intervention to avoid excessively low or high
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temperatures.

Table 1 – Range of temperature for the main parts of FloripaSat-I

Component Temperature range [K]

Antenna 233 to 358
Structure 233 to 353

On-Board Computer 233 to 358
Payload 233 to 358

Battery (charge) 268 to 318
Battery (discharge) 253 to 333

Electric Power System 233 to 358
Solar panel 233 to 358

Source: SpaceLab (2017)

Therefore, even before a satellite leaves the ground, scenarios should be tested to under-

stand the satellite’s behavior in orbit and minimize failures or an inadequate operation of the

satellite (LANGER; BOUWMEESTER, 2016). These acceptable practices are mostly valid for

CubeSat projects, which are satellites of small physical dimensions, generally of low cost, with

extensive use of COTS elements, short schedule, short operational lifetime, limited redundancy,

and extensive testing focused on system-level (ESA/ESTEC, 2013). In addition to the safe opera-

tion obtained through the thermal control, it can also be used to maximize the energy generation

of orbiting spacecraft mounted with photovoltaic cells (PV) due to a phenomenon of better solar

cell efficiency under low temperature (DEHBONEI; LEE; NEHRIR, 2009; CHIN et al., 2018). In

this case, both temperature and radiation levels are essential in numerical simulations to predict

the orbit conditions and obtain more reliable outputs.

This thesis aims to contribute to CubeSat projects’ thermal evaluation through a frame-

work composed of radiation and heat transfer models.

1.3 MOTIVATION

In LEO, the main external heat sources over spacecraft have origin in the direct emission

of radiation by the Sun near the visible wavelength, the reflection of sunlight by Earth, and

radiation emission by Earth in the infrared wavelength. For practical applications dealing with

heat transfer on satellites, these sources may be assumed constant throughout the orbit. However,

the satellites’ position and orientation may not be, and both orbital parameters and attitude

will define the amount of irradiance reaching surfaces, duration of the eclipse, which sides are

shadowed by nearby neighborhood and, consequently, the temperature field.

A good irradiance estimation is helpful for hardware in the loop simulators like the

“Sun simulator” presented in Marcelino et al. (2020), where the authors connected LEDs to

LabView in order to emulate the orbit conditions in their experiments or the procedures to
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emulate solar panels and batteries described in Slongo et al. (2018), both focusing on FloripaSat-

I. As stated in Corpino and Stesina (2014), through the case study of the e-st@r-I CubeSat, the

hardware in the loop is an essential process for verifying the functional requirements of CubeSats.

Another example of the hardware in the loop approach was implemented in the development

of the CubeSat MOVE-II to simulate the space environment in real-time during on-ground

tests (KIESBYE et al., 2019). Their work emulated a solar array’s electrical behavior through

a voltage-current characteristic curve, a function of illumination level and temperature of the

array’s photovoltaic cells.

In the work of Knap, Vestergaard and Stroe (2020), the authors dedicate to review the

environmental conditions and their impact on typical batteries used in CubeSat missions. For

low values of temperature, usually below -20◦C and 0◦C for discharge and charge conditions,

respectively, there is a rapid degradation of its performance. The same tendency of low efficiency

exists for high values of temperature. The levels of irradiation and its accumulation through the

orbit lifetime reduce the battery’s performance, especially when shielding is absent. Aung et al.

(2020) developed and conducted experimental tests regarding the state-of-charge estimation for

the battery of satellites, totally dependent on the power generation capacity of the photovoltaic

cells. However, the authors did not assess it considering typical transient irradiance and tempera-

ture profiles found in orbit. Thermal simulations of CubeSats are found in Corpino et al. (2015),

Claricoats and Dakka (2018), Kovács and Józsa (2018), Bonnici et al. (2019), Filho et al. (2020),

where the authors solve the transient temperature of critical components of the satellite, like

the battery or some electronic component of a payload, to understand if the thermal operational

limits of the satellite are satisfied. Other examples of temperature critic areas in CubeSats include

power harvesting with active thermal control (POSIELEK, 2018), thermo-mechanical structural

failure (BEDNOVA; YUMASHEV, 2018), thermoelectric generators (OSTRUFKA et al., 2019),

and biological experiments in orbit (PADGEN et al., 2020). Therefore, thermal simulation is a

crucial tool to project reliable and efficient CubeSat missions.

Wherefore, this research is justified by these initial observations that reveal a gap for

thermal simulation of CubeSats, which includes the simulation itself based on the solution of

the energy equation, but also the modeling of the boundary conditions, namely the irradiance

sources that are functions of orbit mechanics and attitude of the satellite, or that related to the

internal heat transfer by radiation. Therefore, this research intends to develop and integrate both

irradiation and thermal models dedicated to solving CubeSats’ temperature field.

1.4 OBJECTIVES

This work’s main objective is to design a simulation framework — integrating irradiance

and thermal models — to evaluate the thermal behavior of CubeSats and support future missions.

Following this primary goal, the specific objectives are:
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• Specific Objective 1:

To implement and analyze an irradiance flux model considering orbit, attitude, and radiation

parameters along the CubeSat life-cycle;

• Specific Objective 2:

To design and evaluate a thermal model of CubeSats – employing finite volume method –

with internal heat transfer by radiation;

• Specific Objective 3:

To integrate the previously presented irradiance and thermal models in order to obtain a

fully-working simulation framework for CubeSats, and analyze the resulting outcome in

representative scenarios.

1.5 MAIN CONTRIBUTION AND STRUCTURE OF THE

THESIS

The main contributions of this thesis are divided in three chapters:

• Chapter 2: An irradiance model to estimate the radiation over each side of CubeSats in

LEO. Three main models are integrated to estimate the irradiation flux, namely an orbit, an

attitude, and a radiation source model, including solar, albedo, and infrared emitted by the

Earth. The orbit model has an atmospheric drag and gravitational gradient as perturbations;

therefore, the user can perform analysis for the satellite’s entire operational life-cycle

until its reentry in the atmosphere. The attitude formulation mimics the satellite’s spin

for typical missions, linking the rotation of the satellite and the area projection to the

irradiation sources.

• Chapter 3: A transient thermal simulation of a typical CubeSat 1U mission is deisgned

considering the Finite Volume Method (FVM). The boundary conditions include the

external and internal heat transfer by radiation. The external ones come from the irradiation

model, while the Gebhart method computes the internal heat exchange through successive

reflections, and an obstruction model supports the estimation of surface view factors.

Three boundary conditions inside of CubeSat are tested through the control of the surface

emissivity (ε): without internal heat transfer by radiation (ε = 0.0), with intermediate

internal heat transfer by radiation (ε = 0.5), and maximum internal heat transfer by

radiation (ε = 1.0). A simpler Lumped Parameter Method is introduced to compare its

results and those from the FVM.

• Chapter 4: The results from the integrated irradiance and thermal models start by assessing

the impact of the internal heat transfer by radiation, which evidences its importance in the

temperature field of both inner and outer parts of the satellite. Therefore the internal heat
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transfer by radiation should not be ignored in numerical simulations regarding CubeSats.

Good agreement of transient temperature is found between the FVM and LPM when a

single point on each side of the satellite is monitored. However, three-dimensional effects

are significant and highlight the necessity of numerical models to predict the transient

and spatial temperature gradient appropriately. Further possibilities of these models are

illustrated and include the integration of a heat pipe connecting two opposite solar panels

and the electrical performance of a thermoelectric generator (TEG).

These chapters result from a collection of scientific journals (published or submitted for

publication) developed along the doctoral studies of this author, which in totality they are:

• A. Ostrufka, E. Filho, A. Borba, A. Spengler, T. Possamai, K. Paiva, Experimental evalu-

ation of thermoelectric generators for nanosatellites application, Acta Astronautica 162

(2019) 32 – 40. URL: <https://doi.org/10.1016/j.actaastro.2019.05.053>;

• E. M. Filho, L. O. Seman, C. A. Rigo, V. P. Nicolau, R. G. Ovejero, V. R. Q. Leithardt,

Irradiation flux modelling for thermal–electrical simulation of CubeSats: Orbit, attitude

and radiation integration, Energies 13 (2020). URL: <https://www.mdpi.com/1996-1073/

13/24/6691>;

• E. Morsch Filho, V. P. Nicolau, K. V. Paiva, T. S. Possamai, A comprehensive attitude

formulation with spin for numerical model of irradiance for cubesats and picosats, Applied

Thermal Engineering 168 (2020) 114859. URL: <https://doi.org/10.1016/j.applthermaleng.

2019.114859>;

• C. A. Rigo, L. O. Seman, E. Camponogara, E. Morsch Filho, E. A. Bezerra, Task scheduling

for optimal power management and quality-of-service assurance in CubeSats, Acta Astro-

nautica 179 (2021) 550 – 560. URL: <https://doi.org/10.1016/j.actaastro.2020.11.016>;

• S. Vega Martinez, E. M. Filho, L. O. Seman, E. A. Bezerra, V. P. Nicolau, R. G. Ovejero, V.

R. Q. Leithardt, An integrated thermal-electrical model for simulations of battery behavior

in cubesats, Applied Sciences 11(2021). URL:<https://doi.org/10.3390/app11041554>;

• Rigo, C. A.; Seman, L. O.; Camponogara, E.; Morsch Filho, E.; Bezerra, E. A.. A nanosatel-

lite task scheduling framework to improve mission value using fuzzy constraints. Expert

Systems with Applications (2021), doi:<https://doi.org/10.1016/j.eswa.2021.114784>;

• E. Morsch Filho, L. O. Seman, V. P. Nicolau, Numerical simulation of a CubeSat based
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2 IRRADIATION FLUX MODELING

A numerical tool to explore typical irradiation scenarios for CubeSat missions is the

main goal of this chapter. Such a tool can provide the input estimation for software and hardware

in the loop analysis for a given initial condition and predict it along with the satellite’s lifespan.

Three main models will be developed to estimate the irradiation flux over a CubeSat, namely an

orbit, an attitude, and a radiation source model.

2.1 LITERATURE REVIEW OF IRRADIANCE SOURCES

A spacecraft design’s dynamic performance should include kinetic, attitude, electrical,

thermal, and communication performances. However, not all real effects can be included in the

system model, and simplifications are introduced (RAIF; WALTER; BOUWMEESTER, 2010).

Two areas of great concern in CubeSat applications are power generation and temperature, both

closely related to irradiance input. Figure 6 shows the primary irradiation sources for a satellite

in LEO.

Figure 6 – The irradiance sources for satellites in LEO

Source: The author

For the two cases of power generation and temperature field, solar radiation is the main

source. Due to the distance between the Earth and the Sun, the solar rays are practically parallel

when they reach the CubeSat. The recommended value for the flux of radiation by the Sun at the

distance of 1 AU (astronomical unit) is Gsun = 1367 W/m2, equivalent to a black-body at the

effective average temperature of 5500◦C, although there are slight variations due to the cyclic

activity of the Sun every 11 years and the elliptic orbit of the Earth (1322 W/m2-1414 W/m2)

(GILMORE; DONABEDIAN, 2002). The solar spectral distribution has a peak around 0.5 µm,

whose energy distribution is 7% in the ultraviolet, 46% in the visible, and 47% near the infrared.

A second important source of irradiation for photovoltaic and thermal problems of

CubeSats in LEO is a consequence of the reflection of solar rays by the Earth, called albedo
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(GILMORE; DONABEDIAN, 2002). There is not a unique and accurate model valid for satellite

applications because it is a function of a great diversity of parameters, as atmospheric conditions,

clouds, and the ground surfaces (BERG et al., 2020; CUI; MITOMI; TAKAMURA, 2009).

Continental areas have a higher albedo coefficient than the ocean, so do lands covered by snow

and sand. The global annual average, widely accepted for satellites in LEO, is b = 0.3 (LYLE;

LEACH; SHUBIN, 1971; RODRIGUEZ-SOLANO; HUGENTOBLER; STEIGENBERGER,

2012). The Earth’s surface and atmosphere behave like a Lambertian surface; therefore, the

reflected radiation can be represented by a phase function (RODRIGUEZ-SOLANO; HUGEN-

TOBLER; STEIGENBERGER, 2012), whose reflectance increases with a reduction in the solar

elevation angle. In other words, the albedo is maximum below the subsolar point, which is the

point on the surface whose Sun is upright, and vanishes at the line between the shined and

shadowed sides of the Earth (GILMORE; DONABEDIAN, 2002; LYLE; LEACH; SHUBIN,

1971; ROMÁN et al., 2010). The albedo’s spectral distribution has significant variation within

0.29 to 5.00 µm (LYLE; LEACH; SHUBIN, 1971; GOODE et al., 2001). After the direct solar

radiation, the diffuse albedo radiation is the most significant load for a PV, even though there are

shifts and gaps in its spectrum compared to the direct solar radiation (BRENNAN et al., 2014).

Another source of irradiation for satellites in LEO assumed in this work is the infrared

radiation emitted from the Earth, useful for thermal problems but neutral for the photovoltaic

effect as it is a much longer wavelength than the Sun’s emission (> 4µm). Warmer surfaces of the

Earth will emit more radiation than colder, but dense clouds can block it before it hits the satellite,

reason for significant variations worldwide, although much less severe than albedo (GILMORE;

DONABEDIAN, 2002; LYLE; LEACH; SHUBIN, 1971). This infrared radiation is usually

higher near the subsolar point, while it is lower near the poles and at night, a consequence of the

surface’s temperature. Although there are these variations, an average and constant value usually

assumed in the literature is a flux of Ge = 237 W/m2 based on the effective average temperature

-18◦C for the Earth’s surface (LYLE; LEACH; SHUBIN, 1971; GILMORE; DONABEDIAN,

2002). In this context, another final irradiation is from the cosmic microwave background,

corresponding to black-body radiation at 2.7 K, although its magnitude is minuscule compared to

the previous sources mentioned above. By modeling these radiation sources, traditional satellites

and nanosatellites are thermally tested. For example, the Chinese GF-4 satellite had a difference

between the predicted and measured temperatures around 3◦C for most of the components (LI;

WANG; ZHANG, 2020). FloripaSat-I (FILHO et al., 2020), PiCPoT (CORPINO et al., 2015),

UoMBSat-1 (BONNICI et al., 2019), and SMOG-1 (KOVÁCS; JÓZSA, 2018) are examples of

CubeSat missions with thermal simulations.

One preliminary way to visualize the general radiation environment that a satellite in

orbit is exposed to can be done through the orbit β angle, which defines the minimum angle

between the orbit plane and the solar vector (GILMORE; DONABEDIAN, 2002), as shown in

Figure 7.
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The following figure shows a TLE sample format, which includes more data than

necessary for orbital simulation, for example, the identification of a satellite, a date, and other

parameters.

Figure 8 – Two-line Element Set Coordinate System

Source: NASA (2020)

The actual trajectory of a satellite does not strictly follow the ideal Keplerian orbit. In

more or less sense, every orbit is subject to perturbations, which is the effect that causes the

deviation from the Keplerian orbit. The non-spherical central body, atmospheric drag, solar

radiation pressure, thrust, and gravitational interactions with celestial bodies are the most common

perturbations for the orbit. For satellites in LEO, especially below 600 km, which is most of the

CubeSat missions, the major perturbations originate from the atmospheric drag and gravitational

perturbations (CURTIS, 2014; CAPDEROU, 2014). An overview of these perturbations is in

Figure 9.

The space environment is not a perfect vacuum. Eventually, the satellite will hit molecules

of gas, which will decrease its velocity and retard the satellite’s motion (MCCLAIN; VALLADO,

2001). The probability of hitting these molecules decreases with the altitude, but it is not zero.

The density of the atmosphere is around 10−6 kg/m3 at 100 km of altitude, a reference value

where space begins, then it decreases to 10−11 kg/m3 at 400 km, which is close to the altitude

of the ISS (CURTIS, 2014). As a consequence of this drag, elliptic orbits are circularized,

the angular momentum decreases, and so does the orbit altitude until the satellite reenters the

atmosphere if no booster acts. Atmospheric density is a critical factor for correctly predicting this

perturbing force (ATALLAH, 2018; HANEVEER, 2017), which is a reason for a great variety of

models with diverse accuracy and computational costs in the literature. The models from the

families Jacchia, MSIS, and DTM are usually preferred because they have good accuracy and

computational cost, notably NRLMSISE-00 (VALLADO; FINKLEMAN, 2014; PICONE et al.,

2002).

The Earth does not have perfect mass distribution, neither is it a perfect sphere (CURTIS,

2014). For these reasons, the gravitational field varies with latitude, longitude, and radius. Due to

the oblateness of the Earth (radius at the equator is bigger than in the poles), the right ascension
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Figure 9 – Perturbation accelerations as function of the altitude

Source: Capderou (2014)

angle (Ω), and the argument of perigee (ω) of an orbit suffer significant variation with time.

Satellites take advantage of this feature to work in specific orbit inclination (i), as the Sun-

synchronous (i ≈ 98◦) and Molniya (i ≈ 63◦), whose orbital plane makes a constant angle

with the Sun and the apse line remains constant, respectively. The equation to describe this

perturbation is given by an infinite series, which depends on zonal harmonics (Jk) of the Earth and

Legendre polynomials. The zonal harmonic J2 is the biggest one for LEO, and it is usually the

only term considered in the simulations without significant loss of accuracy. This perturbation’s

primary effect is the precession of Ω and ω (HANEVEER, 2017).

Indeed, perturbations are always present, and their suppression introduces meaningful

errors in estimating the satellite’s position or even the planetary positions. However, it is impracti-

cal to include all known perturbations and use very small timesteps without a huge computational

time (HANEVEER, 2017). In order to propagate the perturbed orbits, three techniques arise:

special (numerical method), general (analytical method), and semi-analytical (combination of

numerical and analytical) (MCCLAIN; VALLADO, 2001). The first case is based on direct

numerical integration rather than analytical expressions for perturbation, resulting in greater
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accuracy if a sufficient small timestep is applied, with lower complexity for special perturbations;

reason for its great application (BATE; MUELLER; WHITE, 1971; HANEVEER, 2017). Within

the special perturbation, there are three techniques: Cowell, Encke, and Variation-of-elements.

Cowell’s method is the simplest and basically permits all the perturbations to be added linearly

in the equation of motion and then numerically integrated (MCCLAIN; VALLADO, 2001). This

great advantage of simplicity brings drawbacks as the necessity of tiny time steps, depending on

the perturbing force’s magnitude. On the other hand, Encke’s method integrates the difference

between the perturbation and the unperturbed motion, requiring rectifications along this process.

It is a much faster technique than Cowell; however, current processors’ computational cost

minimizes this drawback. The Variation-of-elements was developed by Euler in 1748 and relies

on the expression of rates of any consistent set of six orbital parameters, condition to describe a

two-body orbit, as the trajectory of satellites. By numerically integrating these analytical rates,

the state-vector of the satellite is then found. Since these parameters vary much slower than the

state-vector itself, a bigger timestep still provides precise results (BATE; MUELLER; WHITE,

1971). For many orbit estimation applications based on numerical integration, a fourth-order

Runge-Kutta (RK4, single-step) method is sufficient (MCCLAIN; VALLADO, 2001; SHUSTER,

2017).

One last parameter of concern and fundamental for irradiance analysis is the satellite’s

attitude. Issues related to communication, thermal control, and power generation are all impacted

by a satellite’s dynamic in orbit. When dealing with small satellites as CubeSats, this becomes

more critical as the available space to comport typical engineering solutions is very small, as the

available external area for photovoltaic cells (FILHO et al., 2020). Usually, publications without

the focus on control theory idealize the spin of a CubeSat only in a single axis, generally with

one face towards the Earth, with an attitude model not versatile enough to reproduce different

scenarios (PARK; MIYATA; NAGANO, 2017; MASON et al., 2018; KOVÁCS; JÓZSA, 2018;

LEE et al., 1999; FARHANI; ANVARI, 2014). The researchers who deal with attitude control

use different approaches to describe the satellite’s rotation, as Euler angles, quaternions, and

Direction Cosine Matrix (ROLDUGIN; TESTANI, 2014; XING et al., 2010; AURET; STEYN,

2011). Euler angles are more intuitive to visualize than quaternion or Direct Cosine Matrix, but

quaternion is the only free of singularities.

2.2 METHODOLOGY

The methodology to estimate the transient irradiance field of this work bases on:

• An algorithm to estimate the orbit of a satellite and its position, valid for elliptical and

circular orbits subject to perturbations caused by the atmospheric drag and the effect of

the Earth oblateness, available at Curtis (2014);

• A simplified algorithm developed by the authors herein to mimic the attitude of the satellite;
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• A model to project a CubeSat’s surfaces towards the irradiance sources, namely solar,

albedo, and infrared radiation of the Earth.

Therefore, this problem will be described by three main models to be further detailed in

the next section: Orbit, Attitude, and Irradiation source.

2.2.1 Orbit Model

The objective here is to estimate the position of the CubeSat in orbit. A generic view of a

CubeSat is shown in Figure 10 with some of the parameters required to define it completely.

Figure 10 – The orbit and position of a CubeSat
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h θ
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Earth

Source: The author

The constants of the model are:

• Earth’s gravitational parameter: µ = 398600 km3/s2;

• Earth’s radius: RE = 6378 km;

• Second zonal harmonics J2= 1.08263× 10−3 [-].

To initiate the simulation, the first thing needed is the vector of Classical Orbital Ele-

ments (COE) [h0,e0,Ω0,i0,ω0,θ0], where the subscript 0 means the value at the beginning of the

simulation t0. To obtain the COE at t0, the algorithm will rely on TLE data so that the user can

test with real CubeSat’s orbit information. However, only six parameters from the whole TLE

will have to be declared by the user, namely:

• i: orbit inclination [◦];
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• Ω: right ascension of the ascending node [◦];

• e: eccentricity [-];

• ω: argument of perigee [◦];

• M : mean anomaly [◦];

• n: mean motion [rev/day];

The specific angular momentum (h [km/s]) and the true anomaly (θ [rad]) are not readily

available from TLE, so they are calculated by Equations (2.1)—(2.4), where as is the semimajor

axis [km] and E is the eccentric anomaly [rad] (CURTIS, 2014).

as =
3

√
µ

n2
(2.1)

h =
√
asµ (1− e2) (2.2)

E − e sin (E) =M (2.3)

θ = 2 tan−1

[√
1 + e

1− e
tan

(
E

2

)]
(2.4)

It is crucial to transform the mean motion units to rad/s and all the angles to radians. The

eccentric anomaly is solved by some iterative method, for example, the Newton-Raphson. The

user also has to inform the day, month, and year in the beginning of the simulation to estimate

Sun’s position, as will be shown later.

To find the position of the CubeSat in orbit, there are three reference frames. The inertial

Cartesian reference frame called geocentric equatorial frame, shown in Figure 11, is defined

in terms of the right-handed triad unitary vector [̂I, Ĵ, K̂] and located at the center of the Earth

(Figure 10). The component Î points to the vernal equinox direction, K̂ is the axis of rotation of

the Earth, while Ĵ is orthogonal to them and forms the Earth’s equatorial plane.

The second reference frame is the perifocal frame of reference, not shown in Figure 11.

It is fixed in space, centered at the focus of the orbit and defined by [p̂, q̂, ŵ]. p̂ points to the

periapsis (nearest point of the orbit to the Earth), q̂ is 90◦ true anomaly from the periapsis, and ŵ

is normal to the plane of the orbit. The true anomaly is measured from this p̂ axis of the perifocal

frame of reference (Figure 12). The position of the CubeSat in the perifocal frame of reference

(rx̄) may be expressed as:

rx̄ = r



cos (θ)

sin (θ)

0


 =

h2

µ

1

1 + e cos (θ)



cos (θ)

sin (θ)

0


 (2.5)

where r is the magnitude of the position [km].
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equation are:

[R3 (Ω)] =




cos (Ω) sin (Ω) 0

− sin (Ω) cos (Ω) 0

0 0 1


 (2.7a)

[R1 (i)] =



1 0 0

0 cos (i) sin (i)

0 − sin (i) cos (i)


 (2.7b)

[R3 (ω)] =




cos (ω) sin (ω) 0

− sin (ω) cos (ω) 0

0 0 1


 (2.7c)

The matrix in Equation (2.6) is orthogonal, so the position of the CubeSat in the equatorial

frame may be finally calculated by:

r = [Q]⊺Xx̄rx̄ (2.8)

The initial position of the satellite can be already found with the TLE input. For an ideal

orbit without perturbation, the user would utilize a timestep, the information of mean motion (n)

and the mean anomaly (M ) to find the next true anomaly (θ), then the position of the CubeSat.

However, for the case with perturbation, there are few more steps in this process.

Equation (2.9) is valid for the motion in an inertial reference frame with the presence of

perturbation (p), where the first term on the right side originates from the Keplerian orbit while

the second is the perturbation. Ignoring the second term gives the origin of the ideal motion

without perturbation briefly discussed above.

r̈ = −µ r

r3
+ p (2.9)

where r̈ is the acceleration of the CubeSat [km/s2].

Before introducing more equations, a new reference frame is used, called local verti-

cal/local horizontal (LVLH). It is non-inertial, represented by the triad [r̂, ŝ, ŵ]; r̂ is the unit

vector of r and follows the position of the satellite in orbit, ŵ is the same of the perifocal frame,

therefore normal to the orbit plane, and ŝ is the resulting cross product between these vectors.

The components of a perturbation force in the LVHL reference frame are given by Equation

(2.10).

p = prr̂+ psŝ+ pwŵ (2.10)
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The perturbing forces considered in this work will be the drag and the gravitational

perturbation J2 because the cases to be studied here are below 600 km of altitude, a region

where these forces are of greater magnitude. Their components will relate to the Equation (2.10)

through:

pr = prD + prJ2 (2.11a)

ps = psD + psJ2 (2.11b)

pw = pwD
+ pwJ2

(2.11c)

2.2.1.1 Drag

The drag (D) is a force acting opposite to the satellite’s velocity v. If the velocity of the

atmosphere due to the rotation of the Earth is ignored, one can write:

D = −Dv̂ =
1

2
̺v2CDAv̂, (2.12)

where D is the drag magnitude, v̂ is the unitary velocity vector, ̺ is the atmospheric density, v is

the velocity’s magnitude, CD is the dimensionless drag coefficient, and A is the satellite’s frontal

area. Usually, for CD is assumed the constant value of 2.2 over the entire orbital lifetime, though

the theory agrees it is variable (HANEVEER, 2017). Dividing the previous equation by the mass

of the spacecraft, the drag acceleration is:

pD = D/m = −1

2
̺v

(
CDA

m

)
v, (2.13)

where the parameter between parenthesis is also recognized as the ballistic coefficient, and m is

the mass of the CubeSat.

The components of a perturbation with magnitude pD aligned with the velocity vector of

the satellite in the LVLH reference frame are (CURTIS, 2014):

prD = pD
v

v
.r̂ =

pD
v
vr =

pD
v

µe sin (θ)

h
(2.14a)

psD = pD
v

v
.ŝ =

pD
v
vs = psD =

pD
v

h

r
(2.14b)

pwD
= pD

v

v
.ŵ = 0 (2.14c)

Recognizing that the drag perturbation is also tangent to the orbit and opposite to the

velocity vector, the parameter pD is:

pD = −1

2
̺v2
(
CDA

m

)
(2.15)
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where the magnitude of the velocity is (CURTIS, 2014):

v =
µ

h

√
(sin (θ))2 + (e+ cos (θ))2 (2.16)

Therefore, the components of the drag perturbation in the LVLH are:

prD = − 1

2h
µe̺v

(
CDA

m

)
sin (θ) (2.17a)

psD = − 1

2r
h̺v

(
CDA

m

)
(2.17b)

pwD
= 0 (2.17c)

2.2.1.2 Gravitational perturbation

The components of the J2 gravitational perturbation in the LVLH components are given

by Equation (2.18). Further details can be found in Curtis (2014).

prJ2
= −3

2

J2µR
2
E

r4
[
1− 3 sin2 (i) sin2 (ω + θ)

]
(2.18a)

psJ2
= −3

2

J2µR
2
E

r4
sin2 (i) sin [2 (ω + θ)] (2.18b)

pwJ2
= −3

2

J2µR
2
E

r4
sin (2i) sin (ω + θ) (2.18c)

2.2.2 Gauss’s variational equations

The model used in this work for the dynamic behavior of the Classical Orbital Elements

bases on Gauss’s variational equations (BATE; MUELLER; WHITE, 1971; CURTIS, 2014). The

development can be found in Curtis (2014), and basically consists of obtaining the COE from

the state-vector and then finding the rates. The rate equations are:

dh

dt
= rps (2.19a)

de

dt
=
h

µ
sin (θ) pr +

ps
µh

[(
h2 + µr

)
cos (θ) + µer

]
(2.19b)

dθ

dt
=

h

r2
+

[
h2 cos (θ)

µeh
pr −

(
r +

h2

µ

)
sin (θ)

eh
ps

]
(2.19c)

dΩ

dt
=

r

h sin (i)
sin (ω + θ) pw (2.19d)

di

dt
=
r

h
cos (ω + θ) pw (2.19e)
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dω

dt
= − 1

eh

[
h2

µ
cos (θ) pr −

(
r +

h2

µ

)
sin (θ) ps

]
− r sin (ω + θ)

h tan (i)
pw (2.19f)

Notice that singularities arise when e = 0 or i = 0◦, the consequence of assuming that the

position vector used in the above equations is the solution of an elliptic orbit (SCHAUB;

JUNKINS, 2014).

The orbit model is a problem of initial value, essentially summarized by Equations (2.5),

(2.6), (2.8) and (2.19), whose ordinary differential equations of COE are of first order. Therefore,

one can write:

ċ = f (t, c) (2.20)

where c and ċ are the COE vector and its derivative, respectively. The COE at the initial time

(t0) is given by the user, as explained previously. The user still has to inform the timestep (∆t)

between iterations and the final time (tf ) of the simulation.

2.2.2.1 Position of the Sun

Before proceeding to the attitude model, the position of the Sun has to be calculated.

It does not impact orbit determination, but it will be necessary to define specific attitudes

and compute the eclipse caused by the Earth. To compute the solar vector rsun, the following

equations will be used, available at Curtis (2014).

JD = 367year −
⌊7year + ⌊month+9

12
⌉

4

⌉
+
⌊275month

9

⌉
+ day +

UT

24
+ 1, 721, 013.5 (2.21a)

nd = JD − 2, 451, 545 (2.21b)

Ms = 357.529◦ + 0.98560023nd (2.21c)

Ls = 280.459◦ + 0.98564736nd (2.21d)

Λ = Ls + 1.915◦ sin (Ms) + 0.0200◦ sin (2Ms) (2.21e)

ǫ = 23.439◦ − 3.56× 10−7nd (2.21f)

û = cos (Λ) Î + cos (ǫ) sin (Λ) Ĵ + sin (ǫ) sin (Λ) K̂ (2.21g)

rsun = [1.00014− 0.01671 cos (Ms)]− [0.000140 cos (2Ms)]AU (2.21h)

rsun = rsunû (2.21i)

The idea is to initially compute the Julian day number (JD) using the date input, and the

universal time of the initial of the simulation. The next equation gives the number of days since

J2000 (nd). Ms and Ls are the mean anomaly and mean longitude of the Sun, respectively. Λ is

the ecliptic longitude, ǫ is the obliquity. Finally, û is the unit vector from the Earth to the Sun,

and the magnitude of the distance is rsun, where AU = 149, 597, 870.691 km is the astronomical

distance.
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2.2.3 Attitude model

The attitude model aims to mimic the rotation of the satellite around its axis. For a typical

CubeSat 1U, without deployable solar panels, there are six normal vectors that describe the

orientation of each side k.

In this work, the initial orientations of these surfaces in the perifocal frame of reference

are:

n10 = [−1, 0, 0] (2.22a)

n20 = [+1, 0, 0] (2.22b)

n30 = [0,−1, 0] (2.22c)

n40 = [0,+1, 0] (2.22d)

n50 = [0, 0,−1] (2.22e)

n60 = [0, 0,+1] (2.22f)

To define the attitude, the user will have to write the rotation matrices, which are functions

of an angle and axis of rotation, and combine them for different scenarios. The initial set of

rotations are executed in the perifocal frame of reference and, if necessary, later translated to the

geocentric frame of reference. For all of them, Nk means the final orientation of surface k after

all the rotations performed at instant t, in the geocentric reference frame. Some examples to be

explored and discussed in this work are illustrated in Figure 13.

Exactly these specific attitudes are difficult to obtain without a precise active attitude

control, but yet they are close to typical operation modes as Earth imaging missions, reduced

tumbling rate along one major axis, or safe modes where one or more solar panels are exposed

to the Sun for battery’s recharge (XIAO et al., 2015; PHAM et al., 2015).

2.2.3.1 Nadir

In this case, the satellite always keeps the same attitude towards the Earth’s center (Figure

13a). For this case, the satellite only rotates around the ŵ axis, whose angle of rotation is the

same as the true anomaly θ:

[Q]nad =




cos (θ) sin (θ) 0

− sin (θ) cos (θ) 0

0 0 1


 (2.23)

Therefore, as the satellite must follow the orbit inclination, it is necessary to transform

from the perifocal to the geocentric reference frame:

Nk = [Q]⊺Xx̄ [Q]nad nk0 (2.24)
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Figure 13 – Attitude scenarios
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If the satellite keeps the same face towards the Earth, but has a residual rotation Θ that
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causes a detumbling, the rotation matrix can be:

[Q]nadir,2 = [Q]nad



1 0 0

0 cos (Θ) sin (Θ)

0 − sin (Θ) cos (Θ)


 (2.25)

Therefore, the orientation is:

Nk = [Q]⊺Xx̄ [Q]nadir,2 nk0 (2.26)

2.2.3.2 RAM

Another example with the nadir matrix is the RAM attitude (Figure 13b). In this case,

the satellite keeps one of its axis aligned with the satellite’s velocity vector, or in other words, it

will rotate around the ŵ axis once per orbit, as in the nadir attitude. If the satellite has a residual

angular speed Θ along its velocity vector, the resulting rotation matrix is:

[Q]ram = [Q]nad



cos (Θt) 0 − sin (Θt)

0 1 0

sin (Θt) 0 cos (Θt)


 (2.27)

Again, the satellite must follow the orbit inclination, so:

Nk = [Q]⊺Xx̄ [Q]ram nk0 (2.28)

2.2.3.3 Sun-fixed

Another option is to keep the attitude fixed in the space, for example, towards the Sun,

an important case to maximize the photovoltaic energy generation through solar panels of the

satellite. In this case, diverse scenarios may be interesting. For example, only one side of the

CubeSat (Sun1), two (Sun2) or three (Sun3) equally exposed to the Sun, as shown in Figure 13c,

13d and 13e, respectively. For all of these scenarios, the rotation matrix is constant, and the

transformation from the perifocal to the geocentric reference frame is not necessary.

The first step is to find a unitary vector perpendicular to the Sun, in the Earth’s equatorial

plane, by performing a rotation of components û1, û2 (Equation (2.21)) and û3 = 0 around the

K̂ axis, resulting in the vector û⊥. After that, the CubeSat’s normal vectors are rotated around

the û⊥ by the angle Θ1 through the formulation of a rotation matrix around an arbitrary axis

(FILHO et al., 2020):

Θ1 = cos−1

(
û3.K̂

û

)
+Θs,1 (2.29)
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The first part on the right side is the angle between the solar vector and the K̂ axis to

place the sides of the CubeSat parallel to the Earth’s equatorial plane. The second term (Θs,1)

tilts the CubeSat even more if the user wants to. The following step is to rotate the CubeSat’s

normal around the K̂ axis and angle Θ2 to orientate it towards the Sun. The angle is between

û⊥,1 axis and Î:

Θ2 = cos−1

(
û⊥1

.Î

û⊥

)
(2.30)

Finally, the last rotation will be around the Ĵ axis, by the angle Θs,3. The above procedure

will result in one face towards the Sun, two equally projected or three equally projected, valid

for the attitude here called Sun1, Sun2 and Sun3, respectively, as shown in Figure 13. The values

for Θs,1 and Θs,3 in each condition are:

• Sun1: Θs,1 = 0◦, Θs,3 = 0◦;

• Sun2: Θs,1 = 0◦, Θs,3 = 45◦;

• Sun3: Θs,1 ≈ 35.2643◦, Θs,3 = 45◦;

Nk = [Q]sun nk0 (2.31)

2.2.4 Irradiance model

2.2.4.1 Thermal radiation

Every object above the absolute temperature (0 K) emits thermal radiation, an electro-

magnetic phenomenon where the heat transfer that nor require material to exist neither a thermal

gradient, opposed to the convection and conduction heat exchange (BERGMAN et al., 2011).

The emission of radiation is spectral, or in other words, depends on the wavelength, as illustrated

in Figure 14. The thermal radiation comprehends mostly the interval between 0.1 to 100 µm, a

range that affects the temperature of matter (BERGMAN et al., 2011).

The thermal radiation also can be directional, with angle dependence, so the object

can have surface properties with preferable directions related to heat transfer by radiation, as

illustrated by Figure 15.

Equation (2.32) is the Planck Distribution and gives the spectral emissive power for a

black-body (Eλ,b), the superior limit of radiation that a body can emit. In this equation, C1 and
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• Reflectivity ρ: Reflected radiation over total incident radiation;

• Emissivity ε: Emitted radiation over the black-body emission.

2.2.4.2 Irradiation sources

For CubeSats in LEO, the main irradiance sources are from the Sun (Qsun), the albedo

(Qalb), and the Earth (Qe) (GILMORE; DONABEDIAN, 2002).

The solar irradiance reaching the external surfaces k of the CubeSat is:

Qsunk
= GsunAkFk→sunξ (2.35)

The parameter Gsun is the solar flux (1367 W/m2), Ak is the area of the surface k,

Fk→sun is the view factor of surface k towards the Sun, and ξ is a variable to express the shadow

of the earth. The dot product estimates the view factor:

Fk→sun = Nk.
rsun

|rsun|
(2.36)

To compute the shadow of the Earth, one initial task is to locate the Sun’s vector (rsun),

already performed in Equation (2.21). Once the Sun’s vector is determined, Equation (2.37) is

used to verify if the CubeSat is under the Earth’s shadow, based on Figure 17. Notice the shadow

is assumed to have a cylindrical shape.

Figure 17 – Diagram to estimate the shadow

χ
sun

χ
c

χ
rsun

r

EARTH

Source: The author

χc = cos−1

(
RE

|r|

)
(2.37a)

χsun = cos−1

(
RE

|rsun|

)
(2.37b)
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χ = cos−1

(
r.rsun
|r||rsun|

)
(2.37c)

ξ =




0, χc + χsun ≤ χ

1, otherwise
(2.37d)

The equation for the albedo irradiation is:

Qalbk = bGsunAkFk→eψ (2.38)

b is the albedo coefficient, Fk→e is the view factor of surface k towards the Earth, calculated by

Equation (2.39) and based on Figure 18, and ψ the Earth’s area projection towards the solar rays.

Figure 18 – Geometry to estimate Fk→e
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Fk→e =





cos(γk)
H2 , γk ≤ π/2− φ

1
2
− 2

π
(W1 −W2) ,

π
2
− φ ≤ γk ≤ π

2
+ φ

0, otherwise

(2.39a)

γk = cos−1

(
− Nk.r

|Nk| |r|

)
(2.39b)

φ = sin−1

(
1

H

)
(2.39c)

H =
r

RE

(2.39d)

W1 =
1

2

[
sin−1

(√
H2 − 1

H sin(γk)

)]
(2.39e)
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W2 =
1

2H2

{
cos(γk) cos

−1
[
−
√
H2 − 1 cot(γk)

]}
− 1

2H2

{√
H2 − 1

√
1−H2 [cos(γk)]

2
}

(2.39f)

The parameter ψ in Equation (2.38) models the Earth’s area projection towards the solar

rays, as summarized by Equation (2.40).

ψ =




cos (χ) , χ ∈ [0, π/2]

0, χ > π/2
(2.40)

The other source of irradiation comes from the Earth, calculated by Equation (2.41),

where Ge is the heat flux from the Earth (237 W/m2).

Qek = GeAkFk→e (2.41)

Therefore, the sum of all main irradiation is:

Qtot =
6∑

k=1

Qsunk
+Qalbk +Qek (2.42)

It is important to highlight that this is the total amount of radiation reaching the satellite.

However, it may not be totally converted into heat if the satellite absorbs only a fraction of it.

The parameter α is the absorption of thermal radiation, and in the following chapters, its value

will be introduced.

To summarize, the procedure explained in this work is dedicated to the following scenar-

ios:

• Orbit around the Earth;

• Non-circular and non-equatorial orbits;

• Orbits in LEO, below 600 km, since only the drag and gravitational perturbations are

assumed;

• Constant ballistic coefficient;

• CubeSat geometry of any size, without deployable parts.

2.2.4.3 β angle

As seen before, the Sun is the most important source for satellite’s thermal problems.

Adding the fact that satellites may spend a fraction of the orbit under the Earth’s shadow, the

orientation of the orbit towards the Sun is an important parameter to predict the temperature in
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orbit. This is accomplished by the β angle, which defines the minimum angle between the orbit

plane and the solar vector, according to the next equation (GILMORE; DONABEDIAN, 2002):

β = sin−1 (cos (Γ) sin (Ω) sin (i)− sin (Γ) cos (ǫ) cos (Ω) sin (i)

+ sin (Γ) sin (ǫ) cos (i)) (2.43)

where Γ is the ecliptic true solar longitude, Ω is the right ascension angle of the orbit, ǫ is the

ecliptic, and i the orbit’s inclination.

The orbit has the longest eclipse when β = 0◦ and none for β = 90◦. However, an orbit

without eclipse is achieved even below 90◦, as calculated by the following equation for the

eclipse fraction (GILMORE; DONABEDIAN, 2002):

fE =





1
180◦

cos−1

[√
(r−RE)2+2RE(r−RE)

r cos(β)

]
, if |β| < β∗

0, otherwise
(2.44)

where r is the magnitude of the vector from the Earth’s center to the satellite’s center, and β∗ is:

β∗ = sin−1

(
RE

r

)
(2.45)

2.3 CASE STUDY

To demonstrate the capabilities of the proposed methodology, this work will simulate the

two TLEs of Table 2. They were obtained from the Celestrak database, valid for the CubeSat

PropCube-2 (TLE1) launched from ISS and the CubeSat NORBI (TLE2). The beginning of the

simulation starts at 00:00 am, in 1st of January 2015.

Table 2 – TLE input for simulation

Case i Ω e ω M n

TLE1 51.63 142.83 0.00026 168.63 191.47 15.451
TLE2 97.66 233.92 0.00187 147.99 212.25 15.033

Source: The author

The orbit dynamic of these TLEs will be tested with two atmospheric models: the US

Standard Atmosphere 1976 (CURTIS, 2014) and the NRLMSISE-00 (MAHOOTI, 2010), here

referred as USSA76 and NRLMSISE-00, respectively. Finally, the simulations consider the five

scenarios of attitude shown in Figure 13. For the attitude RAM, the speed around the velocity

vector will be four rotations per orbit. Finally, the results are valid for a CubeSat geometry with

solar panels covering all the external surfaces of the satellite, without deployable parts.
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2.3.1 Results

To highlight the importance of β angle, or in other words the orbit orientation, Figure

19 summarizes the average irradiance flux and eclipse fraction as a function of the β, for two

altitudes. As expected, the lowest value of β gives the minimum flux and the most significant

amount of eclipse. However, the maximum irradiance flux is not at β = 90◦ because it results

from solar and albedo radiation, this last reducing as the CubeSat moves away from the subsolar

point. The irradiance peak occurs at the minimum β without eclipse, at β = 77.7◦ and β = 68.2◦

for the altitude of 150 km and 500 km, respectively. The influence of altitude in the total average

irradiance flux is more evident at lower β values because the eclipse fraction is greater, although

the view factor also slightly increases.

Figure 19 – Irradiance sources and eclipse fraction as function of β. The solid lines (—) are valid
for the altitude of 500 km and the dashed lines (- -) are for altitude of 150 km
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For such scenarios of average irradiance, it is also possible to have an idea of the overall

satellite’s temperature as a function of β. Figure 20 shows the average temperature for different

ratios of absorptivity and emissivity (α/ε), and two altitudes. In this case, it was assumed a

hypothetical geometry whose half of the external surface could absorb the incoming radiation.

The average temperature increases with β because the eclipse fraction decreases up to the point

of β = 77.7◦ and β = 68.2◦, where it vanishes for altitude 150 km and 500 km, respectively.

Beyond these points, the temperature slightly reduces because the albedo load decreases as the

satellite moves away from the subsolar point. The temperature increases with altitude for a given

β because the eclipse fraction is smaller at higher altitudes. This graph also shows that big ratios

of α/ε increase the temperature since the satellite easily absorbs the radiation while it poorly
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rejects. The opposite happens for low values of α/ε, where the emission of radiation is more

significant than its absorption, resulting in lower temperature values.

Figure 20 – Average temperature as function of ratio α/ε and β. The solid lines (—) are valid
for the altitude of 500 km and the dashed lines (- -) are for altitude of 150 km
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Figure 21 shows the altitude estimation of TLE1 exposed to four different perturbation

models. "No perturbation" neglect any form of perturbation, and its result reproduces a perfect

horizontal plot, hard to see because it is behind the model "Drag:-,J2", this without any drag

perturbation and only J2 gravitational perturbation. This last case creates wobbles in the altitude,

but the CubeSat does not reduce its altitude permanently. This oscillation is a consequence of

short-period variations in the COE, not shown here. When the drag perturbation is introduced,

the decay appears. While the orbit’s apogee and perigee are noticeable at the beginning of the

simulation, around 196 days after and closer to the reentry, the orbit is almost totally circularized.

Finally, with the density model NRLMSISE-00, the simulation shows that the CubeSat’s lifespan

is longer than the previous model, taking 305 days to achieve an altitude of 100 km. This last

model is coherent with the orbit life of typical CubeSats launched from the ISS.

The altitude variation of the different perturbation models of this case would have a

minor impact in the average irradiance field showed in Figure 19; however, Figure 22 shows that

β is strongly affected through the lifespan of the CubeSat. The influence of J2 perturbation is

evident, essentially because it impacts in the rate of the ascending node (Ω), presented in the

formulation of β (Equation (2.43)). On the other hand, the influence of drag and, consequently,

the altitude decay is negligible.
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Figure 21 – Altitude evolution for TLE1 under different perturbation models
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Figure 22 – β angle along one year for TLE1, with different perturbation models
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Figure 23 shows the altitude for TLE2 under different scenarios of perturbations and

atmospheric models. This case starts with more than 100 km higher than the previous example,

and its orbit is even more eccentric. The perigee is still higher than the apogee of TLE1; therefore,

this satellite is less exposed to the atmospheric drag in the beginning of the simulation. As a

consequence, the total lifespan is greater when compared to the results of TLE1. Again, the

atmospheric model based on NRLMSISE-00 results in a longer lifespan than the model USSA76,

around 3400 days and 1750 days, respectively.

Figure 23 – Altitude evolution for TLE2 under different perturbation models
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The TLE2 comes from a CubeSat launched into a Sun-synchronous orbit, and the

simulations are valid for a CubeSat without thrusters capable of correcting its position. The

consequence of this configuration is in Figure 24, where the satellite keeps β around 40◦ for

a year, and then this angle shifts towards other values for all the cases. The cyclic pattern for

the case without perturbation highlights the importance of them for Sun-synchronous orbit, a

condition where the mission should keep a constant β. When the perturbation J2 is included,

the β variation reduces dramatically and evidences the use of this perturbation to have Sun-

synchronous orbits. However, a shift upwards can be explained by the fact that the orbit is

eccentric. The orbit inclination that locks β into a single value is a function of altitude, but since

the altitude is not constant for this simulation (eccentric orbit), the orbit slowly drifts and changes

the β to other ranges. The requirement for correction of the Sun-synchronous mission is even

more evident when the drag perturbation is included. In these situations, the altitude’s variation
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is even more remarkable, and β deviates more from its initial value as far it is from its initial

altitude.

Figure 24 – β angle along one year for TLE2, with different perturbation models

0 500 1000 1500 2000 2500 3000 3500
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time (days)

β
(°

)

No perturbation

Drag:-, J
2

Drag: USASA76, J
2

Drag: NRLMSISE-00, J
2

Source: The author

The results from TLE1 obtained with the atmospheric model NRLMSISE-00 will be

used in the next results because it brings better relations of accuracy and computational cost

(VALLADO; FINKLEMAN, 2014; PICONE et al., 2002). For a particular orbit period with

β = 0 and attitude of Nadir, the total irradiance on each side Nk of a CubeSat defined in Section

2.2.3 is plotted in Figure 25. The gap in the middle of the figure results from the Earth’s eclipse,

where only the infrared radiation emitted by the Earth hits the surfaces exposed to it. This attitude

has a low irradiance level at surfaces N5 and N6, a consequence of none solar radiation over

them. The sides N5 and N6 have the same behavior, and for this reason only one appear in the

plot. The opposite sides N3 and N4 have the greatest peaks, while the opposite sides N1 and N2

would also have it if the eclipse did not cut it from N2.

This total thermal irradiance is the sum of the incoming solar, albedo, and infrared

emission by the Earth. Figure 26 shows the contribution of each one in the sides of the CubeSat,

where it is evident the most significant magnitude of the solar radiation, although some sides

are not exposed to the Sun. The contribution of albedo may reach around 370 W/m2 on side 2,

a value that can also be significant for photovoltaic simulations because their wavelengths are

similar to the solar emission.
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Figure 25 – Total irradiance flux for each side of the CubeSat. Orbit with TLE1, β = 0◦, date
10/01/15, 00:00 am, attitude Nadir and perturbation "Drag: NRLMSISE-00, J2"
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The total irradiance flux in the entire CubeSat is shown in Figure 27a and 27b for the five

attitude models discussed earlier, and the extreme conditions of β = 0◦ and maximum |β| = 72◦.

Here the importance of β is evident, resulting in the maximum eclipse and absence of it for the

same initial COE. The case with β = 0◦ has the greatest peak and variation of irradiation, for a

given attitude, compared to the case without an eclipse, consequence of albedo radiation through

the orbit. In both scenarios of β, the maximum amount of irradiation is obtained for the attitude

Sun3, where three sides of the CubeSat are equally exposed to the Sun constantly, while the

minimum is for attitude Sun1, where only one surface sees the Sun.

The temperature (T ) for the steady-state of a CubeSat 1U with α/ε = 1.0 is plotted in

Figure 28, for the same conditions of previous Figure 27. In both cases of β, the temperature

follows the total irradiance trend, as it should be specifically for the case of steady-state. The

range of values is between 190 K to 325 K, with the minimum only achieved for the orbit with

eclipse.

Table 3 summarizes the average temperature values for the entire orbit. Notice that other

values are found in Figure 20 for β = 0◦ (318 K for both altitudes) and β = 72◦ (326 K at the
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Figure 26 – Irradiation sources on the sides of the CubeSat
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(a) Side 1.

0 1000 2000 3000 4000 5000
0

250

500

750

1000

1250

1500

Time [s]

Ir
ra

d
ia

n
c
e
 [
W

/m
2
]

 

 

Q"
sun

Q"
alb

Q"
e

Q"
tot

(b) Side 2.
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(c) Side 3.
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(d) Side 4.
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(e) Side 5.
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(f) Side 6.

Source: The author

altitude of 150 km and 346 K at 500 km). The reason for such discrepancy relies on the fact that

Figure 20 ignores the view factor of surfaces towards the irradiation sources and assumes that

half of the satellite’s external surface receives radiation; therefore, it overestimates the targeted

area regardless of any attitude model. On the other hand, in Figure 28, the area projection is ruled
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Figure 27 – Total irradiance flux for each attitude, with TLE1 and perturbation "Drag: NLMSISE-
00, J2"
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Figure 28 – Average temperature at steady-state for each attitude, with TLE1 and perturbation
"Drag: NLMSISE-00, J2"
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◦, at 10 days after the initial orbit.
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by the view factors described earlier for a CubeSat geometry and the corresponding attitude

model. Nevertheless, the reader should pay attention that the average temperature in Figure 28

ignored the transient term, an essential parameter for the proper prediction of the temperature

along an orbit.

Table 3 – Average temperature of the entire orbit for different attitudes and β

β [◦] Nadir [K] RAM [K] Sun1 [K] Sun2 [K] Sun3 [K]

0 256 258 248 259 265
72 289 293 274 292 304

Source: The author
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2.4 CONSIDERATIONS

Considering the need for engineers to simulate, understand the satellite’s behavior in orbit,

and minimize failures or an inadequate satellite operation, this chapter presented a numerical

tool to explore typical irradiation scenarios for CubeSat missions combining state-of-the-art

models. In this sense, three main models were considered to estimate the irradiation flux over a

CubeSat, namely an orbit, an attitude, and a radiation source model, including solar, albedo, and

infrared emitted by the Earth.

Results showed that the altitude impacts the average irradiance sources; however, the

influence of β is more remarkable, especially near before the end of the eclipse. As a consequence

of irradiation, the average temperature follows this same tendency, with larger absorptivity over

emissivity ratios resulting in hotter scenarios, as expected. A case study for a typical CubeSats’

TLE, different perturbations, and five attitudes were presented to illustrate the tool’s abilities.

Results showed that drag was essential to predict the decay of the satellite with atmospheric model

NRLMSISE-00. The inclusion of the J2 was essential to obtain the orbit orientation towards

the Sun through the satellite’s lifespan, consequently the solar and albedo flux. The attitude

models originated different irradiance scenarios for the CubeSat, reinforcing the importance of

this parameter for irradiation estimation, for example, the heat transfer and energy harvesting of

satellites. Therefore, from the previous results, it is evident that the orbit dynamic’s and attitude

proper estimation are crucial.
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3 THE FINITE VOLUME METHOD FOR CUBESATS

In this chapter, a code based on the Finite Volume Method for temperature field estimation

of a CubeSat 1U is developed. The external boundary conditions of the problem were discussed

in the previous chapter, and in this section, the internal heat transfer by radiation will be detailed,

as well as the computation of obstructing surfaces and the consequent view factors.

3.1 LITERATURE REVIEW OF THERMAL SIMULATION

Analytical formulations are typical for the initial stages of a CubeSat’s development,

where a quick estimation of the overall temperature field is obtained and updated repeatedly

as more information about the inputs of the model is available. Inevitably, idealizations make

it a cheap and fast approach at the expense of accuracy. However, nonlinear terms make it

difficult to obtain the analytical solution, and several linearization techniques have been proposed.

Intrinsically to analytical solutions is the use of single nodes, a Lumped Parameter Method

(LPM) approach, to represent the satellite’s entire subsystems and reduce the complexity of

heat transfer estimation. Consequently, the conductive and radiative heat transfer among those

parts and their interaction are oversimplified by the model’s terms. Examples of thermal studies

involving CubeSat’s heat transfer with analytical approaches are Tsai (2004), Pérez-Grande et al.

(2009), Bulut and Sozbir (2015), Anh et al. (2016).

Simulations, on the other hand, provide further insights into the details of the satellite

by quite accurate solutions, at the cost of execution time and complexity for implementation

(TSAI, 2004). Three of the most known numerical techniques are the Finite Difference Method

(FDM), Finite Element Method (FEM), and Finite Volume Method (FVM) (MOUKALLED;

MANGANI; DARWISH, 2015). Reyes et al. (2020) present an example of CubeSat’s thermal

simulation where they develop an algorithm in MATLAB R© based on the FDM and compare

the results with the commercial software Thermal Desktop. Kovács and Józsa (2018) conduct

a thermal analysis of a nanosatellite through a thermal network approach and the commercial

software ANSYS R© Workbench built on FEM. Bonnici et al. (2019) has a thermal model based

on LPM to study the UoMBSat-1 PocketQube, whose results are compared with the commercial

software Ansys R© formulated as FEM. Escobar, Diaz and Zagal (2016) also use FEM to explore

the best thermal control configuration. Corpino et al. (2015) is another example FEM simulation,

implemented by the authors in MATLAB R©, where they assess the worst hot and cold orbit. The

authors use the Absorption Factors Method for the internal boundary condition, also known

as the Gebhart Method (GEBHART, 1961). Filho et al. (2020) simulated different attitudes in

the commercial software CFX/ANSYS built on FVM for the worst cold and hot scenarios of a

CubeSat 1U.
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From all of these thermal simulations, only Corpino et al. (2015) considered radiation heat

transfer at the CubeSat’s internal boundary condition. However, in their in-house code, the Printed

Circuit Boards (PCBs) and the battery were modeled as lumped nodes and therefore did not

account for thermal gradients either their geometry. Internally, the information about components’

dimensions and position is essential for estimating obstructing surfaces and, consequently, proper

heat transfer calculation. Except for the previous work of Filho et al. (2020), none of the

mentioned papers have solved the CubeSat temperature through the FVM. One of the main

attractions of the FVM is the integration of the governing equation over finite control volumes and

its conversion into a system of algebraic equations; therefore, the discretized solution naturally

follows the conservative balance (VERSTEEG; MALALASEKERA, 2007).

3.2 METHODOLOGY

CubeSat’s temperature results from the radiation loads that it faces in orbit, therefore

a function of orbital parameters, attitude, the geometry of the satellite, material, and surface

properties. In this chapter, the equations to perform the thermal simulation of a CubeSat will

be presented. The focus here is to obtain the CubeSat’s transient temperature field through an

in-house code valid for a typical CubeSat 1U and based on the FVM. For thermal problems of

orbiting spacecraft, a good approximation is a perfect vacuum, so the energy balance does not

have the convective term. In this work, the thermodynamic properties are constant, the radiation

heat transfer occurs on external and internal satellite surfaces, and heat transfer by conduction

exists through the CubeSat’s components.

Considering the above, the energy equation is:

̺c
∂T

∂t
− κ∇. (∇T )− S = 0 (3.1)

where ̺ is the density [kg/m3], c is the heat capacity [J/kg.K], T is the temperature [K], t is the

time [s], κ is the thermal conductivity [W/m.K] and S is the source term [W/m3]. Equation (3.1)

is the fundamental equation to be solved in order to find the temperature field, independent of the

method to be used. In this work, initially a simple formulation based on the Lumped Parameter

Method will be discussed, and later the Finite Volume Method.

3.2.1 Lumped Parameter Method (LPM)

The methodology presented in this section is dedicated to solve Equation (3.1) based on

the Lumped Parameter Method (LPM). In the LPM formulation, single points represent each

of the CubeSat’s main parts, as shown in Figure 29. This model will be applied to solve the

temperature field of a CubeSat geometry composed of six solar panels and a battery; for this

reason, there are seven points. The thermal radiance modeled in the previous chapter reaches
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• The irradiance over the external surfaces of the domain comes from the irradiance model

developed in the previous chapter.

Over the domain of Figure 29, the classical energy balance (Equation (3.1)) is performed

along the CubeSat’s orbit, for each node w of the model, resulting in:

Qrw +QZw
− ̺wVwcw

dTw
dt

= 0 (3.2)

where Qr is the incoming and outgoing thermal radiation over the nodes, QZ the net heat transfer

between the solar panel and battery [W ], and V is the volume [m3].

The formulation of incoming radiation for the outer sides of the CubeSat relies on the

previous chapter of irradiance modeling, which includes the solar, albedo and infrared radiation

of the Earth given by Equations (2.35), (2.38) and (2.41). Only one additional equation is required

to close the external boundary condition, given by (BERGMAN et al., 2011):

Qroutk
= εkσAk

(
T 4
k − T 4

∞

)
(3.3)

This is the satellite heat exchange by radiation of the external surfaces with the outer

space, where εw is the emissivity, σ is the Stefan-Boltzmann constant, Tk is the satellite’s surface

temperature, and T∞ is the outer space temperature, corresponding to black-body radiation at 2.7

K.

The battery is inside the CubeSat, therefore Qr7 = 0. The net heat transfer between parts

may occur by conduction and radiation, but this term will be simplified by the following linear

equation.

QZw
=





T7−Tw

Z
if w ≤ 6

6∑
w=1

Tw−T7

Z
if w = 7

(3.4)

The time derivative term will be evaluated according to the following finite difference

scheme, where ∆t is the timestep and “it” the iteration.

dTw
dt

≈ Tw(it)− Tw(it− 1)

∆t
(3.5)

The Newton-Raphson method can solve the nonlinear system summarized by Equation

(3.2), and the user only needs to inform the initial condition and the balance convergence criteria

to obtain the solution.
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3.2.2 The Finite Volume Method (FVM)

In the FVM, the conservation law ruled by the partial differential (Equation (3.1)) in the

continuum domain is integrated over finite control volumes and time. The main advantage of

FVM over the LPM formulation is the conservative nature of the integral solution since the flux

entering a given volume is identical to leaving the adjacent volume, and the discretization of the

domain in more parts (MOUKALLED; MANGANI; DARWISH, 2015).

In this method, the problem’s domain is discretized into a finite number of volumes adja-

cent to each other where the conservation’s equations are solved, resulting in three-dimensional

solutions rather than single values obtained for each part of the LPM’s formulation. By doing

that, the numerical solution retains the conservative principle of the physics phenomena.

The integrating of Equation (3.1) over a Control Volume (CV) results in:

∫

CV

̺c
∂T

∂t
dV −

∫

CV

κ∇. (∇T ) dV −
∫

CV

SdV = 0 (3.6)

The Gauss’s divergence theorem transform a volume integral into an area integral, as

follows:

∫

CV

∇.~LdV =

∫

A

~L.d ~A (3.7)

where ~L can be any vector.

Therefore, it may be written that:

∫

CV

̺c
∂T

∂t
dV −

∫

A

κ∇T.d ~A−
∫

CV

SdV = 0 (3.8)

The integral over time of energy equation energy will result in the next equation, whose

challenge is to evaluate each of the terms:

∫

∆t

∂

∂t

(∫

CV

̺cTdV

)
dt−

∫

∆t

∫

A

κ∇T.d ~Adt−
∫

∆t

∫

CV

SdV dt = 0 (3.9)

3.2.2.1 The mesh

Before the discretized solutions of the previous integral equation are explained, further

details about the discretization are introduced. The domain of this problem is the CubeSat, and

the energy conservation rules the physical phenomena of interest. An overview of the domain is

in Figure 30. In this case, further details can be added, such as a structure, PCBs, and bolts. The

boundary conditions on the external surfaces are the irradiance model of the previous chapter

and the satellite’s emission of radiation. Simultaneously, there is heat exchange by radiation

among the inner surfaces and heat transfer by conduction among the parts.
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3.2.2.2 Equation discretization

The transient term, which represents the time variation of temperature in Equation (3.9),

can be written as:

∫

∆t

∂

∂t

(∫

CV

̺cTdV

)
dt = ̺c (TP − T o

P )∆V (3.10)

The superscript “o” is dedicated to a variable at time t, while the term without it means a

variable at time t+∆t.

The evaluation of remaining terms can be made by two ways: explicit or implicit. For a

generic procedure, the time integration may be:

IL (T ) =

∫

∆t

l (T ) dt = [θ∗L (T ) + (1− θ∗)L (T o)]∆t (3.11)

For θ∗ = 0, the model is explicit, and the terms are assessed at time t. For θ∗ = 1

the model is fully implicit and the integration occurs for variables at t + ∆t. For any value

0 < θ∗ < 1, the model is implicit, and the evaluation occurs from a composition of both instants.

Specifically for θ∗ = 1/2, the model is known as Crank-Nicholson. A model usually applied

and used in this work is the fully implicit method because it does not have limits in timestep,

although not every timestep will reproduce the correct response (MALISKA, 2004).

The integration over the diffusive term will result in the following equation:

∫

∆t

∫

A

(κ∇T ) .d ~Adt = [(κA∇T )e − (κA∇T )w + (κA∇T )n − (κA∇T )s +

+(κA∇T )t − (κA∇T )b] ∆t (3.12)

To assess these gradients, the unidimensional volume of Figure 33 is used to explain the

central differencing approach.

For this case, the gradients at sides e and w can be written as:

(
κeAe

∂T

∂x

)
=
κeAe

δxEP

(TE − TP ) (3.13a)
(
κwAw

∂T

∂x

)
=
κwAw

δxPW

(TP − TW ) (3.13b)

In a similar way, the remaining gradients are:

(
κnAn

∂T

∂y

)
=
κnAn

δyNP

(TN − TP ) (3.14a)
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Figure 33 – Unidimensional volume and its neighbors

Source: Adapted from Maliska (2004)

(
κsAs

∂T

∂y

)
=
κsAs

δyPS

(TP − TS) (3.14b)
(
κtAt

∂T

∂z

)
=
κtAt

δzTP

(TT − TP ) (3.14c)
(
κbAb

∂T

∂z

)
=
κbAb

δzPB

(TP − TB) (3.14d)

Finally, the source term for the fully implicit scheme is described by the following linear

equation:

∫

∆t

∫

CV

SdV dt = S̄∆V = (Su + SPTP )∆t (3.15)

The description of this term as a linear equation improves the convergence of the model

(MALISKA, 2004).

By using a central differencing approach for the face fluxes and a fully implicit method,

the previous differential of the energy conservation Equation (3.9) becomes the next algebraic

equation:

̺c
∆V

∆t
(TP − T o

P )−
κeAe

δxEP

(TE − TP ) +
κwAw

δxPW

(TP − TW )− κnAn

δyNP

(TN − TP )

+
κsAs

δyPS

(TP − TS)−
κtAt

δzTP

(TT − TP ) +
κbAb

δzPB

(TP − TB)− (Su + SPTP ) = 0 (3.16)

Rearranging the terms:

(
κeAe

δxEP

+
κwAw

δxPW

+
κnAn

δyNP

+
κsAs

δyPS

+
κtAt

δzTP

+
κbAb

δzPB

+ ̺c
∆V

∆t
− SP

)
TP =

κeAe

δxEP

TE +
κwAw

δxPW

TW +
κnAn

δyNP

TN +
κsAs

δyPS

TS +
κtAt

δzTP

TT +
κbAb

δzPB

TB
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+ ̺c
∆V

∆t
T o
P + Su (3.17)

This entire equation will be condensed into Equation (3.18):

aPTP = aWTW + aETE + aNTN + aSTS + aTTT + aBTB + aoPT
o
P + Su (3.18)

where:

aW =
κwAw

δxPW

(3.19a)

aE =
κeAe

δxEP

(3.19b)

aN =
κnAn

δyNP

(3.19c)

aS =
κsAs

δyPS

(3.19d)

aT =
κtAt

δzTP

(3.19e)

aB =
κbAb

δzPB

(3.19f)

aoP = ̺c
∆V

∆t
(3.19g)

aP = aW + aE + aN + aS + aT + aB + aoP − SP (3.19h)

Finally, the algebraic system to solve the transient three-dimensional temperature field of

the CubeSat is:

aPTP =
∑

nb

anbTnb + aoPT
o
P + Su (3.20)

where the coefficients a are the diffusive flux terms, P refers to the node of a finite volume

surrounded by its neighboring nodes (nb), the superscript “o” refers to a previous (old) time level,

and Su is the coefficient of the linearized source term. For further details about the FVM, please

refer to Versteeg and Malalasekera (2007). The iterative method to solve Equation (3.20) of this

work is the TDMA (Tridiagonal Matrix Algorithm) (VERSTEEG; MALALASEKERA, 2007).

3.2.2.3 Boundary conditions in the FVM

The variables Su and SP introduces the boundary conditions, heat sinks, and sources,

changing accordingly with the problem. For the heat transfer problem in CubeSat, the two

boundary conditions are:

• Dirichlet (Prescribed temperature);



Chapter 3. The Finite Volume Method for CubeSats 53

• Neumann (Flux prescribed);

In this work, both conditions will be used. The method bases on the frontier volume’s

balance of energy, a versatile technique for different scenarios that does not increase the number

of volumes (MALISKA, 2004). Figure 34 illustrates the frontier volume and the terms applied

for boundary conditions development.

Figure 34 – Frontier volume

Source: Adapted from Maliska (2004)

Assuming fully implicit scheme, the balance in the frontier volume is:

̺c
∆V

∆t
(TP − T o

P ) = q′′bcAbc −
κeAe

δxPE

(TP − TE) (3.21)

The heat flux (q′′bc) is the key parameter to introduce different boundary conditions, to be

discussed below.

One possibility of boundary condition is the incoming heat flux by radiation (q′′rin) on the

volume’s surface, as well as outgoing heat flux by radiation (q′′rout), according to Figure 35.

Figure 35 – Volume at the border with heat exchange by radiation

Source: The author

Therefore:

q′′bc = q′′rin − q′′rout = κ
Tbc − TP
δxbc

(3.22)
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Recognizing q′′rout = εσT 4
bc, the previous equation becomes:

q′′bc = q′′rin − εσT 4
bc = κ

Tbc − TP
δxbc

(3.23)

The idea here is to isolate the variable Tbc, however now it is raised to the fourth power

and to the first power. To solve it, a linearization through the Taylor series around T ∗
bc is performed

in q′′rout , where only the first term is kept, as follows:

q′′rout ≈ q′′rout (T
∗
bc) +

dq′′rout (T
∗
bc)

dT
(Tbc − T ∗

bc) (3.24)

q′′rout ≈ εσT ∗4

bc + 4εσT ∗3

bc (Tbc − T ∗
bc) = −3εσT ∗4

bc + 4εσT ∗3

bc Tbc (3.25)

Replacing it in Equation 3.22:

q′′bc = q′′rin + 3εσT ∗4

bc − 4εσT ∗3

bc Tbc = κ
Tbc − TP
δxbc

(3.26)

Isolating Tbc:

Tbc =

(
q′′rin + 3εσT ∗4

bc +
κ

δxbc
TP

)(
δxbc

κ+ 4εσδxbcT ∗3

bc

)
(3.27)

Substituting the equation for Tbc into Equation 3.22:

q′′bc =

[(
q′′rin + 3εσT ∗4

bc

)( κ

κ+ 4εσδxbcT ∗3

bc

)
− 4κεσT ∗3

bc

κ+ 4εσδxbcT ∗3

bc

TP

]
(3.28)

Replacing it into Equation 3.21:

̺c
∆V

∆t
(TP − T o

P ) =

[(
q′′rin + 3εσT ∗4

bc

)( κ

κ+ 4εσδxbcT ∗3

bc

)
− 4κεσT ∗3

bc

κ+ 4εσδxbcT ∗3

bc

TP

]
Abc

−κeAe

δxPE

(TP − TE) (3.29)

Rearranging the terms:

(
κeAe

δxPE

+ ̺c
∆V

∆t
+

4κεσAbcT
∗3

bc

κ+ 4εσδxbcT ∗3

bc

)
TP =

κeAe

δxPE

TE + ̺c
∆V

∆t
T 0
P+

+
(
q′′rin + 3εσT ∗4

bc

)( κAbc

κ+ 4εσδxbcT ∗3

bc

)
(3.30)
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In the converged solution, T ∗
bc = Tbc.

The second possibility of boundary condition comes from the multi-block grid, where

the heat between grids is exchanged through conduction across their common faces, according

to Figure 36. In this figure, node 2 is from the adjacent mesh.

Figure 36 – Volume at the border with heat exchange by conduction in the multi-block grid

Source: The author

Therefore, the heat flux is:

q′′bc = κ2
T2 − Tbc
δxbc,2

= κp
Tbc − TP
δxbc,p

(3.31)

Isolating the temperature at the boundary:

Tbc =
κpδxbc,2TP + κ2δxbc,pT2
κpδxbc,2 + κ2δxbc,p

(3.32)

Substituting Tbc in Equation (3.31):

q′′bc =
κpκ2

κpδxbc,2 + κ2δxbc,p
T2 −

κpκ2
κpδxbc,2 + κ2δxbc,p

TP (3.33)

This heat flux q′′bc is then replaced in Equation (3.21):

̺c
∆V

∆t
(TP − T o

P ) =

[
κpκ2

κpδxbc,2 + κ2δxbc,p
T2 −

κpκ2
κpδxbc,2 + κ2δxbc,p

TP

]
Abc

−κeAe

δxPE

(TP − TE) (3.34)

Rearranging the terms:

(
κeAe

δxPE

+ ̺c
∆V

∆t
+

κpκ2Abc

κpδxbc,2 + κ2δxbc,p

)
TP =

κeAe

δxPE

TE + ̺c
∆V

∆t
T o
P
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+
κpκ2Abc

κpδxbc,2 + κ2δxbc,p
T2 (3.35)

For both conditions described above, the coefficients Su and SP are summarized in Table

4:

Table 4 – Coefficients of source term for each boundary condition

Boundary condition Su SP

Heat exchange by radiation
(
q′′rin + 3εσT ∗4

bc

)(
κAbc

κ+4εσδxbcT
∗
3

bc

)
− 4κεσAbcT

∗
3

bc

κ+4εσδxbcT
∗
3

bc

Conduction between multi-block grids κpκ2Abc

κpδxbc,2+κ2δxbc,p
T2

κpκ2Abc

κpδxbc,2+κ2δxbc,p

Source: The author

3.2.2.4 Internal heat transfer by radiation

In thermal radiation analysis, the heat exchange between surfaces must be considered

simultaneously, no matter how far they are, leading to a complete enclosure analysis than an

infinitesimal control volume. In this work, radiation’s internal heat transfer will use the Gebhart

Method (GEBHART, 1961; HOWELL; MENGUC; SIEGEL, 2010). The incident heat flux

comes from all its surrounding neighbors for a cavity, even those not directly seen because of

multi-reflections. To calculate the internal heat exchange, the following assumptions will be

necessary:

• Each discretized surface is isothermal;

• Gray and diffuse surfaces;

• The energy leaving or reaching a surface is uniformly distributed, so the view factor

between two surfaces is constant.

The heat transfer by radiation from surface i to j will be:

qi = Aiεi

M∑

j=1

Gi−jσ
(
T 4
i − T 4

j

)
(3.36)

The term Gi−j is the absorption factor and represents the fraction of energy emitted

by surface Ai that hits Aj and there it is absorbed, including direct (emission) and indirect

(reflection) ways from all the surfaces M . The absorption factor has the reciprocity relation and

the summation rule, given by Equation (3.37) and Equation (3.38), respectively.

εiAiGi−j = εjAjGj−i (3.37)
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M∑

j=1

Gi−j = 1 (3.38)

The absorption factor is calculated as:

hG = f (3.39a)

G =




G1−1 G1−2 · · · G1−M

G2−1 G2−2 · · · G2−M

...
...

. . .
...

GM−1 GM−2 · · · GM−M




(3.39b)

h =




1− ρ1F̂1−1 −ρ2F̂1−2 · · · −ρM F̂1−M

−ρ1F̂2−1 1− ρ1F̂1−1 · · · −ρM F̂2−M

...
...

. . .
...

−ρ1F̂M−1 −ρ2F̂M−2 · · · 1− ρM F̂M−M




(3.39c)

f =




F̂1−1ε1 F̂1−2ε2 · · · F̂1−MεM

F̂2−1ε1 F̂2−2ε2 · · · F̂2−MεM
...

...
. . .

...

F̂M−1ε1 F̂M−2ε2 · · · F̂M−MεM




(3.39d)

The term ρ is the reflectivity [-] and F̂ [-] is the normalized view factor.

By assuming that the radiative properties are independent of temperature, the Gebhart

factors’ matrix is solved before the FVM, and the values are recovered from a file in the memory.

The computation of view factors with potential obstructing requires considerable CPU time, and

for this reason, this process divides into two parts: determination of obstructions and then the

view factor itself. These two parameters will be explained in the next section.

3.2.2.5 Obstruction

Internally, depending on the components’ geometry and position, there may have surfaces

that can not see directly each other, but they still exchange by radiation through multiple

reflections. For such a case, an algorithm is necessary to verify the obstruction, here based on

the work of WALTON (1986). The verification of obstructions is computationally costly, so the

tests to confirm the obstruction are arranged to confirm it as earlier as possible. For the pair of

surfaces i and j with obstructing views, the value O (i, j) = −1 will be attributed, while for the

unobstructed pairs it will be O (i, j) = 1.

The first test, shown in Figure 37, uses the dot product between the normal vector of

surface Ai, located at the center of that surface, and the vertices of surface Aj . If the result
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is negative for all of them, it means that Aj is completely behind Ai, so they do not see each

other, and there is an obstruction (O (i, j) = −1). They also do not see if the dot product is

0, a condition where the surfaces are coplanar. If the test is partially negative, there is some

view between the surfaces, but this work assumes an obstruction. This condition will impact the

estimation of view factors, as will be seen in the next section. The surfaces entirely see each

other and assume O(i, j) = 1 only if the dot product is entirely positive.

Figure 37 – Test of the dot product to estimate the obstruction. Left: O(i, j) = −1; Middle:
O(i, j) = −1; Right: O(i, j) = 1
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j

i i

j
j

Source: The author

After this test, only the pairs with O (i, j) = 1 will continue to the next. Although

surfaces i and j are in front of each other, there may have a third surface k blocking their views.

This procedure is illustrated in Figure 38. A radius circumscribing the surface k (Rk) and the

centroid of that surface (xk, yk, zk) are determined. An unitary vector connecting the centroid

of i and j is determined (ui,j), as well as a vector connecting the centroid of i and k (~Vi,k). The

magnitude of the dot product |~Vi,k ·ui,j| gives the projection of ~Vi,k into the direction of ui,j . The

radius circumscribing surface i (Ri) and j (Rj) are also determined. Therefore, a representative

radius Rijk, at the height of k, from the cone englobing both surfaces i and j is:

Rijk = Ri +
|~Vi,k · ui,j|
|~Vj − ~Vi|

(Rj −Ri) (3.40)

The distance from the center of k up to the line connecting the center of i and j will be

obtained by the magnitude of the cross product D = |~Vi,k × ui,j|. Therefore, the surface k will

not obstruct the view of i and j when:

O (i, j) =




1, D2 > (Rijk +Rk)

2

next test, otherwise
(3.41)

If the previous condition is not satisfied, there are still more tests to check whether

k really blocks i and j, done through the dot product. The surfaces i and j are not blocked
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Figure 38 – Test of the cone to estimate the obstruction
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Source: Adapted from WALTON (1986)

(O (i, j) = 1) according to the cases illustrated in Figure 39. If none of the conditions from

Figure 39 are satisfied, they can not see each other.

Figure 39 – Final test of obstruction

i jk

(a) k is behind i.

ki jj

(b) k is behind j.

k

i jj

(c) i and j are in front of k.

k

i jj

(d) i and j are behind of k.

Source: The author

Further actions may minimize errors in the obstruction determination, for example,

accounting for partial shadowing. Also, the circumscribing surface’s radius may overestimate

the surfaces’ actual size when their sides are not equal, as for rectangles. In this work, the

circumscribing surfaces are given by the average length of the surface’s sides, and no action

will be performed for the accounting of partial shadows. The impact of these decisions will be

discussed in the chapter of results.

3.2.2.6 View factor

The view factor between two infinitesimal surfaces dAi e dAj is the fraction of the

radiation leaving surface i that is intercepted by surface j (BERGMAN et al., 2011). It is

calculated by Equation (3.42) and illustrated in Figure 40.

• dFdAi−dAj
: diffuse energy leaving dAi directly toward and intercepted by dAj over the

total diffuse energy leaving dAi
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Figure 40 – Radiative exchange between two surfaces

Source: Adapted from Bergman et al. (2011)

FAi−Aj
=

1

Ai

∫

Ai

∫

Aj

cos(θi) cos(θj)

πS2
dAjdAi (3.42)

After determining unobstructed surfaces, the view factor between them can be computed

by several different techniques available in the literature. In this work, only parallel and perpen-

dicular surfaces exist and they will be calculated exclusively for those surfaces that see each

other, given by O(i, j) = 1. The remaining surfaces will have Fi,j = 0. For both conditions of

orientations shown in Figure 41, the equation to compute the view factor from surface 1 to 2 is

(EHLERT; SMITH, 1993):

F1−2 =
1

(x2 − x1) (y2 − y1)
×

2∑

s=1

2∑

r=1

2∑

q=1

2∑

p=1

(−1)(p+q+r+s) U (xp, yq, ηr, ξs) (3.43)

For parallel surfaces the function U is given by Equation (3.44), while for perpendicular

surfaces it is the Equation (3.45). Figure 41a and Figure 41b illustrate the terms of these

equations.

U =
1

2π

(
(y − η)

[
(x− ξ)2 + z2

]1/2
tan−1

(
y − η

[
(x− ξ)2 + z2

]1/2

)

+ (x− ξ)
[
(y − η)2 + z2

]1/2
tan−1

[
x− ξ

[
(y − η)2 + z2

]1/2

]

−z
2

2
ln
[
(x− ξ)2 + (y − η)2 + z2

])
(3.44)

U =
1

2π

(
(y − η)

(
x2 + ξ2

)1/2
tan−1 (B)− 1

4

[(
x2 + ξ2

)
ln
(
1 + B2

)
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For this reason, a normalization is realized by dividing the analytical view factor obtained

with Equation (3.43) by the sum of view factors obtained with surface i, as follows:

F̂i−j =
Fi−j∑M
j=1 Fi−j

(3.46)

Thus, F̂i−j satisfies the summation rule:

M∑

j=1

F̂i−j = 1 (3.47)

3.3 CONSIDERATIONS

This chapter presented the formulation of two techniques able to solve the temperature

field of CubeSats, namely the Lumped Parameter Method and Finite Volume Method. The first

one has several idealizations and simplifies the conductive and internal radiative heat transfer in

a single parameter QZ . On the other hand, the model based on the FVM computes the internal

heat transfer by radiation through the Gebhart method and uses a procedure to compute the

obstructing views between the surfaces, which requires significant computational resources.

Results from thermal simulations using these models for a CubeSat geometry will be

presented in the next chapter, and a comparison of the outcomes from both models will be

discussed.
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4 RESULTS

This chapter starts by delineating the study cases. Later, the simulation’s parameters are

defined, including the geometry of a CubeSat 1U, its material properties, incoming radiation,

convergence criteria, and the mesh independence test. Finally, the irradiance and thermal model

will be used to simulate a CubeSat integrated to a heat pipe and a thermoelectric generator.

To assess the impact of inner boundary conditions, the following cases will be tested:

• E-0: All surfaces in the internal side of the CubeSat has emissivity equal to 0.0;

• E-1/2: All surfaces in the internal side of the CubeSat has emissivity equal to 0.5;

• E-1: All surfaces in the internal side of the CubeSat has emissivity equal to 1.0;

The extreme condition without internal radiation and maximum internal radiation are

designated by E-0 and E-1, respectively. An intermediate configuration between these two

theoretical limits will be simulated in the case E-1/2, where the internal surfaces have emissivity

equal to 0.5.

4.1 THE DOMAIN OF FVM SIMULATION

The domain is discretized into a structured multi-block grid composed of a set of small

hexahedral volumes, where the temperature and the heat fluxes are evaluated at the centroid

and surfaces of the volume, respectively. The geometry represents a CubeSat 1U, according

to Figure 43. It has the main external dimension of 10.0x10.0x10.0 cm, with six solar panels

covering the outer side of the CubeSat (10.0x10.0x0.2 cm, in red), an internal structure with a

cross-section of 0.5x0.5 cm in each bar (in green), a battery (6.0x6.0x0.9 cm, in magenta), four

PCBs representing generic payloads (9.0x9.0x0.2 cm each, in light-blue), and bolts to connect

the PCBs and the structure (with a cross-section of 0.5x0.5 cm each, in blue). In this work, both

bolts and structure are the same material.

Each side of the CubeSat receives a number for its identification, as in the irradiance

model. Notice that the solar panels cover the CubeSat’s entire external surface, and the bolts

provide a conductive thermal path between the sides 5 and 6 of the CubeSat. The battery is

attached to the top of PCB2. Figure 44 shows a schematic view of the internal parts, without the

structure and bolts. There is one major cavity formed by the solar panels, while the PCBs and

battery act as obstructions inside the cavity, all of them absorbing and emitting radiation.
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Figure 43 – The mesh of FVM simulation
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Source: The author

Figure 44 – Diagram for the internal view
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4.2 MATERIAL PROPERTIES

The literature regarding thermal simulations of CubeSats and satellites presents a wide

range for the thermal and surface properties of the main parts, as shown in Table 5. While the
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emissivity is for short-wave radiation, the absorptivity is for solar-wave radiation.

Table 5 – Thermal and surface properties of CubeSat’s main parts

Thermal property Surface property

Part ̺ [kg/m3] c [J/kg.K] κ [W/m.K] ε [-] α [-]

Solar panel
18401

28101

8001

8622

11507

16004

1.031 0.605

0.854

0.685

0.858

0.914

Structure 28103 9364,5

9601,6
1301

1502,3
0.084,7

0.79-0.888
0.374,5

0.25-0.916

PCB
18407

24001
8001

11507
0.259

1.031 0.227 0.858

Battery
212210

21807

244011

93310

9607

12008

121011

12501

12.511

2110

367
0.77 -

Source: The author

The average values from previous table, and shown in Table 6, are used to compose the

thermal properties of the simulation. Except for the external emissivity and absorptivity of solar

panels, which are the only parts exposed to outer space, the surface properties of remaining

internal components are ruled by the cases of study.

Table 6 – Thermal properties for the standard case

Thermal property Surface property (external side only)

Part ̺ [kg/m3] c [J/kg.K] κ [W/m.K] ε [-] α [-]
Solar panel 2325 1103 1.03 0.72 0.77
Structure 2810 948 140 Defined according to the case study

PCB 2120 975 0.64 Defined according to the case study
Battery 2247 1110 23 Defined according to the case study

Source: The author

1 (FILHO et al., 2020)
2 (ESCOBAR; DIAZ; ZAGAL, 2016)
3 (KARAM, 1998)
4 (REYES et al., 2020)
5 (BULUT; SOZBIR, 2015)
6 (MESEGUER; PÉREZ-GRANDE; SANZ-ANDRÉS, 2012)
7 (BONNICI et al., 2019)
8 (KOVÁCS; JÓZSA, 2018)
9 (CORPINO et al., 2015)
10 (WANG; JI; ZHU, 2021)
11 (YANG et al., 2020)
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4.3 ATTITUDE AND ORBIT

The orbit scenario is coherent with TLE1 showed in Table 2. The CubeSat has an attitude

called nadir, where the normal vector of surface 2 continuously faces the Earth’s surface, as

already shown in Figure 25.

4.4 CONVERGENCE CRITERIA AND MESH INDEPEN-

DENCE TEST

For each timestep, set to 10 s, the convergence criteria is a normalized global residual

smaller than 10−5 for the volumes of a mesh, 10−6 for the volumes in contact with a neighbor

mesh, and a difference smaller than 10−2 in the balance of each surface exposed to internal or

external heat transfer by radiation. The external boundary condition is cyclic, and the interest

is in results independent of the initial condition. For this reason, an extra condition for the

convergence of the result is a difference between the temperature field on the last instant of the

orbit and that obtained in the first, within a margin of ±1 K.

The simulations were implemented in MATLAB. They were run in a Ubuntu environment,

in a computer with an Intel Core Xeon E5-2665 Processor (2.40 GHz), with 8 cores of 2 threads

and 64 GB of RAM.

The overall features obtained with three meshes’ refinements are indicated in Table 7.

These results highlight the strong relation of computational cost with the grid’s size. While

the number of volumes of Mesh 1 is around six times smaller than Mesh 2, the total time to

compute the obstruction is 27 times faster for Mesh 1 than Mesh 2, and 15 times faster to solve

the temperature field. With Mesh 3, the total time to compute the obstruction is 16 times slower

than Mesh 2 and five times slower to solve the temperature field than Mesh 2.

Table 7 – Mesh independence study

Parameter Mesh 1 Mesh 2 Mesh 3

Number of volumes 829 5212 19098
Number of faces with internal heat transfer by radiation 982 2844 7174

Time to compute obstruction [h] 0.2 5.5 90.4
Time to solve the cyclic temperature field [h] 1.1 16.2 89.3

Source: The author

The sum of view factors before the normalization executed by Equation (3.46), for each

discretized surface on the inner side of the CubeSat, are illustrated in the histogram of Figure

45. The x-axis shows the view factor sum, and the y-axis is the percentage of total surfaces

from the mesh with that corresponding view factor sum. The theory states that the sum of view

factor should be one for a cavity, but the determination of obstructions assumed in this work put
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those partially blocked surfaces in the list of totally blocked surfaces. Because the view factor is

calculated only between those unblocked surfaces, which did not necessarily form a complete

cavity here, there may be insufficient pairs of surfaces to result in a sum of view factors equal to

one. It explains the sum of view factor below 1 for some surfaces. Beyond that, the averaging

procedure for the circumscribing surfaces may misinterpret an obstruction and overestimate

the view factor in a given direction. It results in a sum of view factors above 1. These errors

originated in the partial obstruction estimation are more evident with the coarsest Mesh 1 and

reduce with the most refined Mesh 3, while the overestimation of the view factor sum is more

pronounced with Mesh 3.

Figure 45 – The sum of view factor for each face of the internal side
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In terms of temperature of each main CubeSat’s part, the maximum deviation from Mesh

3 to Mesh 2 was 0.8 K, while for Mesh 1 and Mesh 2 it was 4.3 K. This difference is obtained by

comparing the central node of each main part of the CubeSat (solar panels, PCBs, and battery),

so the average values of every parts are even below it. For these reasons, Mesh 2 will be used in

the following results.
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4.5 TEMPERATURE FIELDS

This section will bring the results and discussions about the three cases of internal

radiation simulated with FVM: E-0 (internal emissivity is zero); E-1/2 (internal emissivity is

0.5); E-1 (internal emissivity is 1). A comparison between the outcomes of FVM and LPM will

also be detailed.

4.5.1 Intermediate internal radiation (E-1/2)

The first result in Figure 46 illustrates the importance of simulating three-dimensional

domains. These temperature fields are for t=1720 s, the maximum temperature gradient condition

in the satellite, as will be seen later. Notice that the temperature range for each part is adjusted

for better visualization. In this case, solar panel 4 receives more radiation than any other side

(see Figure 25).

Figure 46 – Temperature field at t=1720 s, for case E-1/2

240

260

280

300

320

340

360

4

2

5

(a) Solar panel 2, 4 and 5.

240

260

280

300

320

340

360

6

1

3

(b) Solar panels 1, 3 and 6.

270

275

280

285

290

295

300

305

4

3

2
1

5

6

(c) Structure.

270

275

280

285

290

295

300

305

4

3

2
1

5

6

(d) Internal parts.

Source: The author

Due to the solar panel’s low thermal conduction, there is a significant temperature

gradient on it, resulting in a peak of temperature in the center and minimum values at the border,
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considering only side 4. This distribution is explained by the fact that the internal structure, made

of aluminum, is in contact with solar panel 4 only near its borders. For all of these fields, it is

evident that a single point of temperature cannot represent the entire CubeSat’s temperature field,

neither of a single main part.

Figure 47 is valid for t=3880 s, the instant with the minimum temperature gradient among

the main parts of the CubeSat and lowest temperature levels, obtained at the last instant before

the CubeSat leaves the eclipse. In this case, the solar flux and albedo are absent, resting the

Earth’s emission as the only heat source for the satellite. Side 2 is normal to the Earth’s surface,

and side 1 is opposite to side 2, the reason for maximum and minimum temperature in these

solar panels, respectively. The remaining sides are perpendicular to the Earth’s surface and have

a lower view factor to it when compared to side 2, which results in less heat flux from Earth in

these surfaces and intermediate temperature levels on them.

Figure 47 – Temperature field at t=3880 s, for case E-1/2
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An approximate view of the temperature field along the entire orbit may be obtained by

averaging the spatial distribution values on each main part, as shown in Figure 48, valid for the



Chapter 4. Results 70

case E-1/2.

Figure 48 – The average temperature of the main parts of the CubeSat for case E-1/2
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As cited above, at 1720 s occurs the maximum temperature gradient, which is the instant

before the eclipse starts, while the minimum gradient is in the last instant of the eclipse, at 3880 s.

The peak at 1720 s is around 340 K, 20 K colder than the observed in Figure 46a, resulting from

the spatial averaging. As observed in Figure 25, side 1 receives more radiation in the beginning of



Chapter 4. Results 71

the orbit, resulting in maximum temperature for this side in that instant. However, the maximum

overall temperature is achieved by side 4 because it is already warmer when the solar radiation

starts to raise its temperature.

In comparison, side 3 has similar incoming radiation to side 4, but it is colder than side

4 when the solar flux heats it. Side 2 stays warmer than other sides near the end of the eclipse

because it receives more radiation from the Earth due to its projection towards that source. The

minimum value occurs on solar panel 1 because it does not receive any radiation from the Sun

or the Earth during the eclipse, even entering the eclipse hotter than sides 3, 5, and 6. Sides 5

and 6 have the same thermal behavior because their projection towards the radiation sources are

identical. These two surfaces do not have significant variations because they do not receive solar

radiation, only albedo and emission from the Earth.

As observed in Figure 43a, the bolts of aluminum passing through the PCBs connect solar

panels 5 to 6, serving as a thermally conductive path for inner parts. The internal components’

temperature shown in Figure 48b oscillates less than the parts exposed to external radiation

sources, and they are hotter than sides 5 and 6. The bottom PCB1 and top PCB4 have similar

curves, always colder than the intermediate PCB2 and PCB3. These parts’ location can explain

the reason for it, as the influence of heat transfer by radiation from usually hotter sides 1, 2, 3,

and 4 is greater in the intermediate PCB2 and PCB3. The peak of temperature occurs first at

PCB2, while the peak for PCB1 and PCB4 are the last, few seconds after PCB3. These phase

shifts increase among their minimum temperature values, but the order of occurrence remains.

The hypotheses for the shift between them come from their different exposition towards the

satellite’s sides.

The temperature shift between PCB2 and PCB3 results from bigger thermal inertia of

the battery on top of PCB2. Interesting to notice an elevation of the battery’s temperature even

after several minutes of the eclipse beginning. The battery’s temperature is strongly related to

the heat transfer by conduction with PCB2, so the battery’s temperature keeps rising as long as

the temperature of PCB2 is higher than the battery’s. The same conclusion is evident when the

battery’s temperature keeps falling after the eclipse and only raises if the temperature of PCB2 is

greater than the battery’s. The small swing in the battery’s temperature also can be explained by

its greater thermal inertia (̺c) than the PCBs.

In Figure 49 there are the temperature ranges, the average temperatures, and the tem-

peratures at the central point (Tp) of each side and battery, obtained from the FVM simulation,

based on case E-1/2. From this plot, it is evident that Tave and Tp are just a partial view of the

CubeSat’s temperature profile, without the expressive temperature gradients resulting from the

low thermal conduction of the solar panel, already discussed in previous graphs. In this same

figure, the curves obtained with the LPM formulation are plotted for different thermal resistances

Z (parameter in Equation (3.4)). The LPM uses the same thermal properties of Table 6 and

dimensions of the FVM mesh’s main parts but discards PCBs and bolts. Except for Z = 0.00,
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where there is no heat exchange between the solar panels and battery, the curves obtained with

LPM are within or very close to the extreme values obtained with FVM. With Z = 0.05, the

LPM curves approximate to the values found in the center of the component (Tp), while Z = 0.10

approaches the average value Tave. The interval between curves with Z = 0.05 and Z = 1E4

reproduces the temperature range of the FVM, with both curves interchangeably touching the

upper and lower bounds. With Z = 0.00, the battery does not exchange heat and, for this reason,

maintains its initial temperature of 273 K. The other values of Z resulted in greater oscillations

for all the Z coefficients compared to Tave or Tp.

The CubeSat’s simplification by 7 points can still follow the temperature tendency

obtained with the FVM, even with the oversimplification of the heat transfer by conduction and

radiation in the term Z. While the FVM simulation takes around 16 hours to finish the simulation,

the LPM simulation only takes a few seconds. Nevertheless, the three-dimensional effects, absent

in the LPM, are essential to fully understand what is going on in the satellite.

Figure 49 – Comparison of LPM and FVM (E-1/2 case)

(a) Side 1. (b) Side 2.

(c) Side 3. (d) Side 4.
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(e) Side 5. (f) Side 6.

(g) Battery.

Source: The author

4.5.2 Zero internal radiation (E-0) and intermediate internal radiation

(E-1/2) from the FVM

The results obtained in each main part of the CubeSat with zero internal radiative heat

transfer (E-0) and those with intermediate internal heat exchange by radiation (E-1/2) are in

Figure 50, both obtained with the Finite Volume Method. In these plots, both average (Tave)

and temperature range (Trange) are plotted. These figures show that around ±15 K and ±20 K

of temperature difference exists in the average value and temperature range of the component,

respectively, by changing from zero emissivity to 0.5. The values obtained with zero emissivity

were overestimated in the hottest regions and underestimated in the coldest areas compared to

the case with emissivity equal to 0.5. For those solar panels with moderate temperature, for

example, sides 2, 5, and 6, the effect from changing the internal surface properties is less evident,

although the zero emissivity results in lower minimum temperatures.

Considering the PCBs, the temperature ranges are quite close between E-0 and E-1/2 for

the hottest levels outside the eclipse and the minimum temperatures inside the eclipse, shown in

Figure 51. On the other hand, the zero emissivity case (E-0) underestimates the maximum levels

of intermediate PCB2 and PCB3 inside the eclipse. Outside the eclipse, it underpredicts minimum
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Figure 50 – Temperature range and average temperature of solar panels for the cases: E-1/2 (with
internal heat transfer by radiation: ε = 0.5); E-0 (without internal heat transfer by radiation:
ε = 0)

(a) Side 1. (b) Side 2.

(c) Side 3. (d) Side 4.

(e) Side 5. (f) Side 6.

Source: The author

levels of PCB1 and PCB4, and almost always underestimates the lower limits of PCB2 and

PCB3. The introduction of internal radiation increases the average temperature of intermediate

PCB2, PCB3 and battery, so does the variation of temperature range of PCB1 and PCB4. It was

expected because more heat could arrive on these internal parts when there is internal heat

transfer by radiation, especially when the walls’ temperature is hot. For the inside parts, the
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cavity temperature is more important than a single wall, which explains the peak of temperature

in the PCBs around 1100 s, before the CubeSat’s maximum absolute temperature at 1720 s (solar

panel 4). For both scenarios of internal boundary conditions, the temperature gradient in the

battery is narrow, explained by its greater thermal conductivity (κ) when compared to the other

parts.

Figure 51 – Temperature range and average temperature of internal parts for the cases: E-1/2
(with internal heat transfer by radiation: ε = 0.5); E-0 (without internal heat transfer by radiation:
ε = 0)

(a) PCB1. (b) PCB2.

(c) PCB3. (d) PCB4.

(e) Battery.

Source: The author
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4.5.3 Maximum internal radiation (E-1) and intermediate internal radia-

tion (E-1/2) from the FVM

Figure 52 shows the results of the case with maximum internal emissivity (E-1) together

with the intermediate condition of emissivity (E-1/2), both from the Finite Volume Method.

Figure 52 – Temperature range and average temperature for the solar panels of cases: E-1/2
(with internal heat transfer by radiation: ε = 0.5); E-1 (with maximum internal heat transfer by
radiation: ε = 1)

(a) Side 1. (b) Side 2.

(c) Side 3. (d) Side 4.

(e) Side 5. (f) Side 6.

Source: The author
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In general, the curves of E-1/2 and E-1 are closer than the pair E-1/2 and E-0. The

temperature range of E-1 has an opposite behavior than case E-0, with extreme hot values being

lower and extreme cold being greater than the results obtained with E-1/2.

When looking in Figure 53, with results for the internal parts of the CubeSat, there is

and interesting additional increase of temperature in PCB2 and PCB3 around 1700 s and 5000 s.

Figure 53 – Temperature range and average temperature for the internal parts of cases: E-1/2
(with internal heat transfer by radiation: ε = 0.5); E-1 (with maximum internal heat transfer by
radiation: ε = 1)

(a) PCB1. (b) PCB2.

(c) PCB3. (d) PCB4.

(e) Battery.

Source: The author
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The probable cause of that is the greater influence of solar panels 4 and side 3, respectively,

caused by the increase in the internal emissivity. The maximum temperature of PCBs in the

eclipse with maximum emissivity (E-1) is generally below the maximum levels obtained with

the intermediate emissivity (E-1/2). Both cases reproduce similar minimum levels in the PCBs

outside the eclipse, except near after the eclipse. Even increasing the emissivity value, the

battery’s temperature still presents a low spatial and temporal temperature gradient, which

evidences the stronger superiority of its heat transfer by conduction with PCB2 than radiative

processes.

4.5.4 Statistical distribution of results

Figure 54 summarizes the average fields of the entire orbit obtained with the FVM,

for each part and case, into boxplot and average values (pink diamond). The non-symmetrical

temperature distribution is more evident for solar panels with more significant temperature

gradients (solar panels 1, 3, and 4). Since the quartile below the median is shorter than the above,

the CubeSat spends most of the time closer to its minimum temperature value than its maximum.

Figure 54 – Temperature distribution of the main parts, obtained with FVM for each case of
internal emissivity. The average value is the pink diamond and the red line is the median
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(b) Side 2.
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(d) Side 4.
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(e) Side 5.
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(f) Side 6.

Source: The author

As already observed, the case without internal heat transfer by radiation (E-0) has the

greatest temperature differences, while the case of maximum internal emissivity (E-1) has the

narrowest ranges. However, the average temperatures are essentially constant for the solar panels,

with sides 5 and 6 having the minimum levels. The medians are lower than the panels’ average

with the most significant temperature gradients, namely panels 1, 3, and 4.

When the internal components are assessed, in Figure 55, the opposite happens. The zero

emissivity condition creates smaller temperature gradients, while the upper and bounder values

move away from each other as the increase in the emissivity enhances the internal heat transfer.

The difference by assuming maximum emissivity (ε = 1) and minimum (ε = 0) may reach up to

10 K for the internal parts and around 20 K for the externals.

Figure 55 – Temperature distribution of the main parts, obtained with FVM for each case of
internal emissivity. The average value is the pink diamond and the red line is the median
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(b) PCB2.
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(c) PCB3.
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(d) PCB4.
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(e) Battery.

Source: The author

4.6 ILLUSTRATIVE APPLICATION

This section presents further applications of previous thermal and irradiance models,

with introduction of additional elements in the simulation.

4.6.1 Heat pipes in CubeSats

Heat Pipe (HP) is a closed device that transports heat based on two-phase flow with

high effective thermal conductivity, without electrical power and no moving parts. Accordingly

to Peterson (1994), despite certain limitations, a heat pipe may be regarded as a synergistic

engineering structure that is equivalent to a material having thermal conductivity, greatly exceed-

ing that of any known metal. The main characteristics of general heat pipes are the high heat

transfer under a relatively low-temperature gradient along the tube, operation in a micro-gravity

environment, and a compact configuration, resulting in a far superior energy-to-weight ratio

compared to pure metallic bars. These capabilities originate from the latent heat of the working

fluid and capillary forces through the wicks (CHEN et al., 2016).

In a HP, there are three distinguished sections: evaporator, adiabatic, and condenser.

Figure 56 shows these main parts. Usually made of a metallic material, the HP consists of a
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sealed hollow tube with a capillary structure known as a wick in the internal walls, and a working

fluid (GILMORE; DONABEDIAN, 2002; ZOHURI, 2016). The air in the tube is extracted to

make a vacuum, and then a working fluid is inserted into it. HP works in a closed biphasic cycle,

and only liquid and pure vapor coexist in a saturated condition. The heat source is connected

in the evaporator section and the heat sink in the condenser section. When heat is added in the

evaporator section, the fluid absorbs heat and begins to evaporate. The vapor then moves to

the opposite side (condenser section) at colder and lower pressure, transporting with itself the

latent heat. There, the fluid exchanges heat with the lower temperature of the region and become

liquid again. The wick capillarities assist the return of fluid to the evaporator section, creating

a loop (PAIVA, 2011). Due to its operation, the heat pipe is not a heat sink but a heat transfer

device, and for this reason, it must be exposed to some external heat sink and heat source to work

properly.

Figure 56 – Conventional heat pipe

Source: Zohuri (2016)

To demonstrate the capacity of heat pipes for CubeSats missions through the proposed

irradiance and thermal models, a simulation of the CubeSat 1U was run with a heat pipe

connecting the opposite solar panels 3 and 4. In this case, the fluid flow was not solved, and

a high thermal conduction coefficient was attributed to a solid bar made. The simulation has

following parameters:

• The length (L) of adiabatic section has 90 mm;

• The length of the evaporator has 30 mm;

• The length of the condenser has 30 mm;

• The thermal contact resistance is neglected;

• The cross-section area (A) of the HP has 6x5 mm;

• The thermal conductivity (k) of the heat pipe is 10000 W/m.K;
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Figure 58 – Temperature field for a CubeSat with a heat pipe connecting solar panels 3 and 4,
under the attitude Nadir
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(d) Solar panels 1, 3 and 6 at 4720 s.

Source: The author

radiation emitted by the Earth. Inside the eclipse, all the surfaces receive infrared radiation for

some instants.

A view about the temperature field of this case is in Figure 61, for the last instant before

the eclipse. Comparing to the Nadir case with HP (Figure 59), the maximum and minimum

temperature levels are similar, but the temperature distribution are totally different. In this case,

the three surfaces exposed to the Sun are hotter than those facing the outer space, as expected.

Surface N5 is highly warmer because at this instant it receives more albedo and infrared radiation

from the Earth than surface N2 and N4. Again, the temperature gradient is evident, with the heat

pipe’s action more significant in the center of the hot solar panel 4 when compared to the same

configuration without heat pipes (- -).

The impact in the average temperature of the solar panels are shown in Figure 62, for

the case with the heat pipe (–) and without heat pipe (- -). In this case, the panels exposed to the
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Figure 59 – The average temperature of the solar panels of CubeSat equipped with a heat pipe,
for attitude Nadir. Curves (–) are for the simulation with heat pipe and curves (- -) are for the
same case, but without heat pipes
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Source: The author

Sun have closer temperatures, and so do those opposed to them. The evaporator and condenser

section of the heat pipe do not change of position, and they are always related to sides 4 and 3,

respectively. The heat pipe’s introduction still impacts the average temperatures; however, it is

not too expressive as the previous case. In the portion of the plot after 3900 s, the side 4 has the

greatest heat flux (Figure 60), however the presence of the heat pipe extracts heat from this panel

and does not let it to be the hottest surface after the eclipse. For this attitude case, the temperature

reduction is smaller than 10 K, while previous case it was around 20 K in some solar panels.

Therefore, from these two examples, the heat pipe simulated in this work can impact the

temperature field of the CubeSat and is a potential solution to control the temperature and heat

transfer between parts of the satellite.

4.6.2 Thermoelectric generator in a CubeSat

Since heat is a type of energy, the conversion of thermal into electrical energy is an

exciting approach for improving energy efficiency in CubeSats. A technology used to transform

heat into electrical energy is the Thermoelectric Generator (TEG), a mechanical device without

moving parts that takes advantage of the Seebeck effect to obtain electrical energy from heat

(LEE, 2016). Enormous spacecraft as Voyager, Pioneer, Galileo, Mars Science Laboratory, and
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Figure 60 – Total irradiance flux for each side of the CubeSat. Orbit with TLE1, and attitude
Sun3
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many others have already used this technology with satisfactory results.

Thermoelectric devices can convert thermal energy into electrical energy and vice-versa,

a phenomenon quickly recognized when a thermocouple measures the temperature and translate

the value into voltage. Figure 63 shows the main parts of a thermoelectric module. A TEG

module usually consists of a number NTEG of p-type and n-type semiconductor elements

disposed electrically in series and thermally in parallel, both between a pair of high-thermal and

low-electrical conductivity material often made of alumina or beryllia, forming a sandwich.

To perform the electrical simulation, the following items are assumed:

• Constant electrical properties;

• Equal length L in each p-type and n-type;

• Equal transverse area of p-type and n-type;

• Adiabatic boundary conditions on the laterals of the legs;

• Only the Seebeck effect;

• Constant Seebeck coefficient;
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Figure 61 – Temperature field at t=1720 s for a CubeSat with a heat pipe connecting solar panels
3 and 4, for attitude Sun3
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• Ideal thermal resistance;

• unidimensional heat transfer;

• The TEG is connected to an external load RL.

For these assumption, the literature shows that (BORBA, 2018):

ITEG =
α∗ (TH − TC)

RL +R
(4.1)

VTEG =
NTEGα

∗ (TH − TC)
RL

R
+ 1

(
RL

R

)
(4.2)

WTEG =
NTEGα

∗2 (TH − TC)
2

R

RL

R(
1 + RL

R

)2 (4.3)
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Figure 62 – The average temperature of the solar panels of CubeSat equipped with a heat pipe,
for attitude Sun3; Curves (–) are for the simulation with heat pipe and curves (- -) are for the
same case, but without heat pipes
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ITEG is the current of generated by the TEG, α∗ is the Seebeck coefficient, TH is the temperature

on the hot side of the TEG, TC is the temperature in the cold side, R is the electrical resistance

of the TEG, VTEG is its voltage, and WTEG its power.

To present a possibility of simulation from this irradiation and thermal model, a TEG

was integrated in the CubeSat’s geometry shown earlier and its electrical performance based on

the temperature fields obtained through the simulation in the FVM. The TEG was attached to the

inner side of the satellite, at the center of solar panel 4, and its parameters are:

The electrical results for the TEG are shown in Figure 64, for the attitude of Nadir and

the orbit based on TLE1, and internal emissivity of 0.5 for all the surfaces, including the TEG.

It can be observed that the maximum current, voltage, and power are minimal, a con-

sequence of the low-temperature difference between the sides of the TEG. While one face

exchanges heat through conduction with solar panel 4, the other side is exposed to internal

radiation heat transfer. For small areas and moderate temperatures, radiation is very limited,

which could explain the poor performance of TEG.

As an attempt to improve the electrical outputs, a heat pipe was introduced in the

simulation, and it connected one side of the TEG to the opposite solar panel 3. The results
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Figure 63 – Main parts of a thermoelectric module

Source: Snyder and Toberer (2008)

Table 8 – Thermoelectric parameters

Variable Value

Seebeck coefficient 215 µV/K
Thermal conductivity 1.6 W/mK

Number of semiconductor 241
Length 5 mm

Transversal area 30x30 mm2

Load resistance 1 Ω
Resistance of the TEG 1 Ω

Source: Adapted from Ostrufka et al. (2019)

from this case are in Figure 65, where it is observed an improvement of around one order of

magnitude in the current and voltage and two orders of magnitude in the power generation.

However, simulation results indicate that they are still tiny, and CubeSat missions may not benefit

from thermoelectric generators unless their heat source and rejection amplifies.
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Figure 64 – Electrical outputs from a TEG’s simulation in a CubeSat
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Figure 65 – Electrical outputs from a TEG’s simulation connected to a heap pipe in a CubeSat
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5 CONCLUSIONS AND FUTURE WORKS

In this thesis, irradiance and thermal models were developed as a framework for thermal

simulation of CubeSats, a satellite’s category with solid growth in the last years and great

potential for expansion in the following years, so this work intends to serve as a support tool for

these missions.

First, an irradiance model was implemented, which gives the external boundary condi-

tions of the CubeSats’ thermal problem for different scenarios of orbit and attitude. The inclusion

of orbit perturbations was essential to simulate the orbit’s dynamic along the satellite’s opera-

tional cycle, and their results showed that they are responsible for changing the environmental

conditions. A preliminary overview of irradiance field is obtained with β, the angle between

the orbital plane and the Sun position. This angle is directly related to the orbit’s fraction spent

under the shadow of the Earth. The study of this angle and its impact in the irradiance fields are

essential to comprehend the thermal conditions that the satellite will be exposed in orbit. The

attitude is also another factor of substantial importance and rules the CubeSat’s external surfaces’

exposition towards the heat sources. The simulated cases illustrated that irradiation’s diverse

scenarios could be obtained for the same satellite, resulting in different thermal fields.

Then, a thermal simulation was built employing the Finite Volume Method (FVM), which

accounted for the irradiance model to give the external boundary conditions, and included the

internal heat transfer by radiation through the Gebhart Method. The CubeSat’s internal cavity

had printed circuit boards and batteries that partially blocked the view between them and the

solar panels, reason for the inclusion of a method to predict these obstructions.

This work has simulated the irradiance and thermal scenarios dedicated to a typical

CubeSat 1U, although this methodology can be extended to other CubeSat sizes without loss of

generality. The results highlighted the importance of including the internal radiation in thermal

problems of CubeSats.

The boundary condition of inner surfaces varied from zero emissivity (E-0) to an in-

termediate case with ε = 0.5 on each internal part (E-1/2), and maximum emissivity equal to

one for all the internal surfaces (E-1). The inner boundary conditions impacted the temperature

field of both internal and external parts. For the components exposed to outer space, the case

without internal heat transfer by radiation (E-0) reproduced greater maximum levels outside

the eclipse and colder minimum values in the eclipse than the case with the internal emissivity

of 0.5 (E-1/2). For the case with internal zero emissivity (E-0), the internal parts receive less

heat than case E-1/2 and have lower temperatures for most of the time. Case E-1 resulted in the

shortest temperature peaks and gradients of the external parts, an expected result because the

solar panels could exchange heat through their two opposite surfaces. By statistically comparing
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the temperature distribution in each case, there is no significant variation among the entire orbit’s

average values, only in their upper and bounder limits.

The temperature field obtained with the FVM was compared to a Lumped Parameter

Method (LPM), a simple and consequently fast formulation to collect results of heat transfer.

The attribution of a single point for each main part of the satellite in the LPM was able to

capture the overall behavior of FVM, and an adjustment in the thermal resistance coefficient (Z)

could adhere to the range, central point, or average values obtained with FVM simulations. For

Z = 0.00, valid for none heat transfer among the solar panels and the battery, the temperature

levels are beyond the extreme values of the FVM. In contrast, Z = 0.05 and Z = 1E4 reproduce

quite well the temperature range of the FVM, with both values of curves defining the superior

and inferior extreme levels, depending on the instant of the orbit. With Z = 0.05 and Z = 0.10,

the LPM approaches the central-point and average values of the FVM formulation, respectively.

However, there are appreciable three-dimensional fields that can not be reproduced with the

simple LPM approach.

The internal radiation boundary condition considered in this work can be helpful for other

formulations, not necessarily FVM. Its inclusion may assist the validation of passive thermal

controls centered on the surface emissions, such as paintings, coats, and Multi-Layer Insulation

(MLI), although they did not exist in this work. Two possibilities of further analysis achievable

with the current framework were illustrated. The preliminary results regarding heat pipes show its

potential use for heat transfer between solar panels and temperature reduction, a positive solution

to control components’ temperature with overheating problems, like solar panels and batteries.

The initial attempt to convert the heat from the satellite into electricity through the thermoelectric

generator (TEG) did not result in appreciable power TEGs, but it illustrates another framework’s

potential.

To further validation of the framework presented here, one must rely on data that are not

readily available. The temperature data is a fraction of the required information for complete

validation because the heat transfer is affected by the CubeSat’s design, its materials, orbit,

attitude, and electrical operation modes. Therefore, it is understood that the validation of the

models will become more comfortable with the advent of more CubeSat’s launches, as more

data are available in the literature.

As future work, the following are suggested:

• To minimize the error in the obstruction of partial shadowed surfaces. There are further

techniques to deal with this problem, which maps these occurrences and uses geometry to

calculate the fraction of a surface that is really obstructed;

• To add the heat dissipation of electronic components of the CubeSat based on the execution

of tasks. The electrical operation of the CubeSat is not an ideal process, and heat is
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generated in diverse parts of the satellite when electrical current passes by resistive

materials;

• To use the irradiance and thermal simulation as a framework to test and evaluate the

performance of passive and active thermal controls that are compatible with CubeSat

missions, for example, heat pipes, phase-change material, electrical heater, and heat

pumps.
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In this section, there is a brief review about publications whose central objective was not

the irradiance or thermal field of CubeSats, but in some extent, they have applied the models

demonstrated in the thesis.

This paper presents an experimental study of a thermoelectric generator (TEG) for electric energy

generation through temperature gradients from solar panels in CubeSats. The generation capacity

is analyzed for different positioning configurations of the TEG relative to each CubeSat’s surface.

A preliminary version of the irradiance model is used to generate the heat flux for the thermal

problem, which is solved using the commercial software Ansys/CFX. The temperature fields are

the input to run the experimental setup, where the amount of power generated was measured.

E. M. Filho, L. O. Seman, C. A. Rigo, V. P. Nicolau, R. G. Ovejero, V. R. Q. Leithardt,

Irradiation flux modelling for thermal–electrical simulation of CubeSats: Orbit, attitude

and radiation integration, Energies 13 (2020). URL: <https://www.mdpi.com/1996-1073/

13/24/6691>

E. Morsch Filho, V. Paulo Nicolau, K. V. Paiva, T. S. Possamai, A comprehensive attitude

formulation with spin for numerical model of irradiance for cubesats and picosats, Ap-

plied Thermal Engineering 168 (2020) 114859, <https://doi.org/10.1016/j.applthermaleng.

2019.114859>;

The influence of attitude in the heat transfer of CubeSat is addressed in this paper. The irradi-

ance model is a previous version of the actual irradiance model of this thesis, without orbital

perturbations, and the impact of the satellite’s spin is assessed for attitudes of nadir, de-tumbling,

high speed, arbitrary motion, and maximum exposition to the Sun, for orbits with and without an

eclipse. The results showed that low spins are associated with the most significant temperature

gradients due to the unequal distribution of heat fluxes. High angular speed homogenizes the

temperature, especially for a spin around three axes. In general, for a high spin, temperatures are

nearly constant and appropriate for typical operational temperatures. Data collect from CubeSats

in orbit are compared with the numerical values, and satisfactory agreement is observed, despite

differences in the designs and geometries.

C. A. Rigo, L. O. Seman, E. Camponogara, E. Morsch Filho, E. A. Bezerra, Task schedul-

ing for optimal power management and quality-of-service assurance in CubeSats, Acta As-

tronautica 179 (2021) 550 – 560. URL: <https://doi.org/10.1016/j.actaastro.2020.11.016>

Despite subject to many constraints, task scheduling is ultimately restricted by the

amount of power available at any given moment. In this paper, the total tasks to be executed

by a satellite are constrained to the available power at any moment of the orbit. The transient

power input depends on the solar cells’ operation, so an analytical model estimates the irradiance

field according to orbit parameters and attitude from a previous version of the thesis’s actual

irradiance model. Several simulations considering three satellite sizes with different orbits and

task parameters are used to demonstrate the methodology’s applicability.



Bibliography 104

S. Vega Martinez, E. M. Filho, L. O. Seman, E. A. Bezerra, V. P. Nicolau, R. G. Ovejero, V.

R. Q. Leithardt, An integrated thermal-electrical model for simulations of battery behav-

ior in cubesats, Applied Sciences 11(2021). URL:<https://doi.org/10.3390/app11041554>

This work presents an integrated thermal-electrical simulation model that considers the battery

and photovoltaic panels’ thermal and electrical effects for each instant of time, in a given orbit

and attitude from a CubeSat 1U. A previous version of the actual irradiance model and the

same Lumped Parameter Method presented in the thesis are used to solve the heat transfer. The

irradiance also provides the input for the electrical generation of energy in the solar panels. The

proposed integrated model can estimate the temperature and energy conditions of the battery.

The performance of photovoltaic panels is affected by the irradiance and temperature fields

along the orbit. The integrated model can take into account, for example, the battery temperature

control through a heater and variations of the power profile of the Energy Power System (EPS)

of the CubeSat.

Rigo, C. A.; Seman, L. O.; Camponogara, E.; Morsch Filho, E.; Bezerra, E. A.. A nanosatel-

lite task scheduling framework to improve mission value using fuzzy constraints. Expert

Systems with Applications (2021), doi:<https://doi.org/10.1016/j.eswa.2021.114784>;

Task scheduling is an effective approach to increase the value of a satellite mission,

which leads to improved resource management and quality of service. This work maximizes the

number of tasks performed in nanosatellite missions through a robust and realistic framework for

optimal offline scheduling. The irradiance model of the thesis is used in this paper to generate the

transient power input from the Two-Line Element (TLE) data of the CubeSat FloripaSat-I and

Nadir’s attitude. Successive orbits with eclipses are used to predict the power input generated in

photovoltaic panels. The work has improved the state-of-the-art in nanosatellite scheduling by

incorporating a realistic battery model and strategies for battery lifetime extension, and provides

a novel methodology for multi-orbit scheduling.
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