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RESUMO

A tecnologia com múltiplas antenas (MIMO) vem sido amplamente considerada em canais
sem fio, uma vez que a capacidade-soma cresce com o número de antenas. Esta tese foca
no canal downlink com multiusuários (MU-MIMO), em que a estação rádio base deseja se
comunicar com múltiplos usuários. Técnicas cujo desempenho se aproximam da capacidade-
soma têm um custo computacional muito elevado, o que é inviável em cenários práticos. Por
outro lado, métodos lineares, como forçagem a zero (ZF) e ZF regularizado (RZF), que são
de baixa complexidade, têm um desempenho muito aquém da capacidade-soma. Como uma
alternativa, técnicas de forçagem a inteiros (IF), que podem ser vistas como uma generalização
dos métodos lineares tradicionais, foram propostas. O objetivo da pré-codificação IF é produzir
um canal efetivo que é aproximadamente uma matriz inteira, ao invés da matriz identidade.
Encontrar os parâmetros ótimos para a pré-codificação IF é uma tarefa difícil já que requer uma
otimização inteira. Silva et al. propuseram dois métodos para a pré-codificação IF chamados
DIF e RDIF. Eles também mostraram como encontrar os parâmetros ótimos de forma analítica
para o caso especial K = 2 usuários. Nesta tese, é proposto um método sub-ótimo de baixa
complexidade para encontrar parâmetros do esquema IF para qualquer número de usuários. O
método proposto consiste em solucionar um problema de otimização relaxado e, em seguida,
aplicar um algoritmo de redução de base de reticulado. É mostrado que o método proposto
tem complexidade de O(K3). Resultados de simulação mostram que o método proposto tem
um desempenho superior aos métodos tradicionais de pré-codificação linear em todos cenários
simulados. Uma segunda contribuição desta tese é combinar o esquema de pré-codificação
proposto com modulação adaptativa, em que o transmissor seleciona a taxa e a energia para
cada usuário baseado na probabilidade de erro de bit. Devido ao canal efetivo com coeficientes
inteiros produzido pela abordagem IF, é necessário que o transmissor seja capaz de operar
com modulações de diferentes cardinalidades. Os resultados de simulação mostram que, para
valores medianos de SNR, o método proposto tem uma taxa-soma maior que os demais métodos
comparados.

Palavras-chave: MIMO multiusuários, canal downlink, pré-codificação forçagem a inteiros,
modulação adaptativa.
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Resumo Expandido

Introdução

Técnicas de pré-codificação são usadas para mitigar a interferência de usuários em canais
downlink MIMO (do inglês, multiple-input-multiple-output) com multiusuários [1]. Métodos
de pré-codificação linear, como forçagem a zero (ZF, do inglês zero-forcing) e ZF regularizado
(RZF, do inglês regularized ZF ) são amplamente usados devido a sua baixa complexidade,
entretanto, seu desempenho fica aquém da capacidade soma [2, 3]. Por outro lado, técnicas
não-lineares, como vector-pertubation [4], podem alcançar taxa-somas mais altas em troca de
um custo computacional potencialmente maior.

A pré-codificação LRA (do inglês, lattice-reduction aided) é uma técnica não-linear de baixa
complexidade que, diferente dos métodos lineares, consegue atingir total diversidade disponível
pelo canal [5, 6]. Na pré-codificação LRA, uma matriz de pré-codificação T é aplicada antes da
transmissão para transformar a matriz do canal H em uma base mais apropriada (de acordo
com alguma heurística), que é obtida através de redução de base em reticulados. Com essa
abordagem, a matriz do canal efetivo, após um escalonamento apropriado pelos usuários, se
torna uma matriz (unimodular) de inteiros A. Para anular esse interferência com coeficientes
inteiros, antes de aplicar a matriz T, os símbolos de modulação são pré-multiplicados pela
inversa de A e, em seguida, é aplicado um operador de modulo para limitar a energia trans-
mitida. Como codificação de canal pode ser aplicada sobre o esquema de pré-codificação LRA,
o desempenho desses esquemas são tipicamente medidos baseados na probabilidade de erro de
símbolo em um cenário sem códigos.

Uma generalização da pré-codificação LRA é a chamada pré-codificação de forçagem a
inteiros (IF, do inglês integer-forcing), cuja principal diferença é que a codificação de canal é
aplicada imediatamente antes da multiplicação por T [7, 8, 9]. Essa abordagem tem a vantagem
que prover maior confiabilidade com um custo computacional similar. Além disso, ela permite
deduzir explicitamente expressões para taxas alcançáveis, ao invés de ser avaliada por simulações
numéricas como em pré-codificação LRA, o que a torna mais receptiva para otimização.

Entretanto, pré-codificação IF ótima (assim como pré-codificação linear ótima) é, em geral,
NP-hard [9]. Por essa razão, trabalhos nessa área focam em desenvolver algoritmos sub-ótimos
de baixa complexidade. Uma das abordagens mais simples é escolher T de tal modo que
HT = cA [7] or HT ≈ cA [8], em que c > 0 é uma constante. Essas abordagens são semelhantes
ao LRA para escolher T, e requerem uma redução de reticulado para encontrar A [10]. Uma
abordagem mais geral, porém mais complexa, é o algoritmo iterativo baseado em dualidade,
que requer uma redução de reticulado em cada iteração. Em [9], Silva et al. mostraram que,
em alta SNR, a escolha ótima para T satisfaz HT = cDA, em que D é uma matriz diagonal.
Para uma SNR qualquer, o desempenho pode ser melhorado escolhendo HT ≈ cDA. Para o
caso especial K = 2 usuários, e em alta SNR, as escolhas ótimas para D e A foram encontradas
de forma analítica. Contudo, para K > 2 usuários as escolhas ainda estão em aberto.

No cenário MU-MIMO, a modulação adaptativa permite uma melhor alocação de recursos
(taxa e energia) uma vez que o transmissor, baseado na SNR e na realização do canal, seleciona
os recursos para maximizar a taxa-soma atendendo algum critério (geralmente em termos de
probabilidade de error de bit) [11]. Modulação adaptativa já foi proposta no cenário MU-MIMO
usando pré-codificação ZF [12], na qual aproximações para as expressões de probabilidade de
error de bit foram usadas uma vez que elas são mais simples de se manipular. Até onde sabemos,
modulação adaptativa em conjunto com pré-codificação IF não foi proposto.
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Objetivos

Nesta tese, nós propomos um método sub-ótimo de baixa complexidade para escolher D e
A para qualquer número de usuários K. Em seguida, nós combinamos o método proposto com
modulação adaptativa pra mostrar seu desempenho em cenários mais práticos.

Metodologia

O método proposto é baseado no esquema RDIF proposto em [9], o qual considera a abor-
dagem ótima em alta SNR para solucionar uma heurística para valores gerais de SNR. Para
solucionar o problema de otimização com essa abordagem, consideramos que a A é uma ma-
triz unitriangular (triangular com 1 na diagonal principal) superior e, em seguida, consideramos
uma problema de otimização relaxado, em que os coeficientes de bA podem ser qualquer número
complexo (ao invés de inteiro Gaussiano). Com essas considerações encontramos as soluções
ótimas para o problema relaxado D̃ e Ã. De maneira geral, se D é conhecido, a escolha de
A que maximiza a taxa-soma corresponde em resolver o problema de vetores independentes
de menor norma em reticulados, que pode ser resolvido (de forma sub-ótima) utilizando o al-
goritmo LLL, cuja complexidade é O(K4 logK). Entretanto, se D = D̃, devido ao fato de
A ser unitriangular, o algoritmo LLL requer apenas O(K3) operações [13], o que é a mesma
complexidade dos métodos de pré-codificação linear.

Uma das dificuldades em se utilizar modulação adaptativa em conjunto com pré-codificação
IF é que, devido ao embaralhamento feito ao pré-multiplicar pela inversa de A, precisa-se que
todas as possíveis constelações sejam um sub-conjunto de uma constelação-mãe. Para contornar
esse problema, consideramos apenas constelações QAM, uma vez que essas constelações são
mais simples de relacionar com reticulados. Além disso, expressões para probabilidade de erro
de bit foram desenvolvidas para essas constelações.

Resultados e Discussão

Nas simulações, nós comparamos a taxa-soma média do método proposto com outros méto-
dos em dois cenários. O primeiro é considerando teoria de informação, em que taxa-soma
é também chamada de taxa alcançável. O segundo considera modulação adaptativa em um
cenário sem códigos. Neste caso, a taxa-soma é também a soma das eficiências espectrais dos
usuários. Em cada simulação, o número de usuários K ≤ N foi escolhido de forma a maximizar
a taxa-soma, em que N é o número de antenas transmissoras.

Em termos de taxas alcançáveis, para N = 16 antenas transmissoras, nós mostramos que
o método proposto tem melhor desempenho que métodos lineares para todos os valores de
SNR simulados. Nós mostramos também que mesmo variando o valor de N (para uma SNR

fixa) o desempenho do método proposto ainda é melhor que os demais. Entretanto, podemos
perceber que a diferença para a capacidade-soma aumenta conforme N aumenta. Para o caso
N = K = 4, nós comparamos o método proposto com o método de [9], que é baseado em busca
exaustiva, e podemos constatar que, de fato, o método proposto é sub-ótimo.

Para modulação adaptativa, as simulações mostraram que o método proposto tem um de-
sempenho melhor que os demais para valores medianos de SNR. Entretanto, para baixa e alta
SNR o método LRA, cuja tendência é fazer com que todos os usuários utilizem a mesma conste-
lação, tem um desempenho melhor que o método proposto. Note que, como o método proposto
é baseado em uma heurística para alta SNR, espera-se que seu desempenho seja degradado
em baixa SNR. Já a degradação em alta SNR acontece devido à limitação das constelações
disponíveis, i.e., para alguns usuários, o transmissor não pode escolher uma constelação de
maior cardinalidade já que ela não está entre as possíveis escolhas de constelação.
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Considerações Finais

Esta tese propôs um projeto para escolhas de parâmetros para o método RDIF para K ≥ 2

usuários e, em seguida, combinou o esquema proposto com modulação adaptativa.
O esquema proposto considera uma estrutura para a matriz A e então, soluciona um prob-

lema de otimização relaxado. Em seguida, a matriz A é encontrada utilizando um algoritmo
de redução de base de reticulado que, nesse caso especial, tem complexidade de O(K3). O
esquema tem uma complexidade global de O(NK2) que é a mesma de métodos lineares, e um
desempenho superior.

Ao considerar constelações QAM, foi possível combinar o método proposto com modulação
adaptativa e mostramos que, para valores medianos de SNR, esse esquema tem desempenho
superior aos demais.

Palavras-chave: MIMO multiusuários, canal downlink, pré-codificação forçagem a inteiros,
modulação adaptativa.





ABSTRACT

Multiple-input-multiple-output (MIMO) technology has been vastly considered in wireless
channels since the sum capacity grows with the number of antennas. This thesis focuses on
the multi-user MIMO (MU-MIMO) downlink scenario, where the base-station wants to com-
municate with multiple users. Techniques whose performance approach the sum capacity have
a high computational cost, which is infeasible in practical scenarios. On the other hand, linear
methods, such as zero-forcing (ZF) and regularized ZF (RZF), which are low-complexity, have
a performance far below the sum capacity. As an alternative, integer-forcing (IF) techniques
have been proposed, which can be seen as a generalization of traditional linear methods. The
goal of IF precoding is to produce an effective channel that is approximately an integer matrix,
rather than an identity matrix. Finding optimal parameters in IF precoding is a difficult task
since it requires integer optimization. Silva et al. proposed two methods for IF precoding called
DIF and RDIF. They also show how to analytically obtain optimal parameters in the special
case K = 2 users. In this thesis, a low-complexity suboptimal method is proposed to optimize
the parameters of an IF scheme for any number of K users. The proposed method involves
solving a relaxation of the problem followed by the application of a lattice reduction algorithm
and is shown to have an overall complexity of O(K3). Simulation results show that the pro-
posed method achieves a higher sum rate than a heuristic choice of parameters and significantly
outperforms conventional linear precoding in all simulated scenarios. A second contribution of
this thesis is combining the proposed precoding scheme with adaptive modulation, where the
transmitter selects power and rate for each user based on the bit-error probability. Due to the
integer effective channel in the IF approach, the transmitter must be able to operate with dif-
ferent modulation sizes. Simulation results show that for a medium range of SNR the proposed
method allows a higher sum of spectral efficiency than other methods.

Keywords: Multi-user MIMO, downlink channel, integer-forcing precoding, adaptive mod-
ulation.
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Chapter 1

Introduction

Multiple-input-multiple-output (MIMO) technology has been widely considered in wireless com-
munications systems since its performance can grow linearly with the number of antennas [1].
The benefits of MIMO communications include, but are not limited to, spatial diversity gain
and spatial multiplexing gain [14].

MIMO technology was first investigated in a single-user scenario and then it was extended to
the multi-user (MU) scenario motivated by the use in cellular networks [14, 2]. MU-MIMO
allows users to share the same time and frequency resources in order to increase the overall
performance (i.e. achievable rate) [15]. There are two types of MU-MIMO channels: the uplink

channel where multiple users send their message to a base station (BS), and the downlink

channel where a BS sends messages to multiple users [1].

In this work, we are interested in the downlink scenario, also called broadcast (BC) channel,
where a BS with N antennas wants to communicate with K users, each one having a single
antenna1.

The channel to the ith user is assumed to be flat-fading, which can be represented by a
complex-valued vector. We also assume that the transmitter has total knowledge of the channel
gains, which is known as channel state information (CSI). There are few ways to obtain the CSI,
for example, in time-division duplexing (TDD) systems, the BS can exploit channel reciprocity
to infer the CSI, while in the frequency-division duplexing (FDD) systems, the BS can transmit
a pilot signal and then each user sends its CSI through a feedback link [15].

In this thesis, we consider a total power constraint, i.e., the power used by all transmit an-
tennas is limited. Some works may also consider a per-antenna constraint, where each transmit
antenna has limited power [16].

The user performance is usually limited by the signal-to-interference-and-noise ratio (SINR),
which itself depends on the transmitter power available and of the channel realization. Pre-
coding techniques are often used in order to mitigate user interference in multi-user (MU)
multiple-input-multiple-output (MIMO) downlink channels [1].

Throughout this work, we are interested in a scheme that maximizes the sum rate (also
called throughput), which measures the number of bits that all users can receive. We investigate
some precoding techniques with two different approaches. In the first approach, which is based
on information theory, the precoding parameters are chosen to maximize the achievable sum

1We assume single-antenna receivers in order to reduce the complexity of the analysis. However, this assump-
tion has some practical benefits, for example, it requires a simpler hardware on user devices and less channel
knowledge at the transmitter [16].
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rate. We say that a sum rate is achievable if there exist a coded scheme with arbitrarily large
code length and an error probability as small as desired. The second approach, which is more
practical, consider that the transmitter uses adaptive modulation in order to select modulation
size for each user in a uncoded scenario such that the bit-error probability does not exceed a
determined value.

1.1 Information Theoretical Approach

The sum-capacity is the supremum of all achievable sum rates. For a MU-MIMO BC channel,
the sum-capacity is well known [17, 18, 19, 20]. A technique that can achieve the sum-capacity
is the “dirty paper coding” (DPC) [21], where the BS takes the non-causal interference (known
by the transmitter) into accounting before selecting the transmitted signal. However, due to
its high complexity, DPC is not very used in practical scenarios.

Linear precoding is a low-complexity alternative, where the signals are pre-multiplied by a
well-chosen matrix before being transmitted. This matrix is called precoding or beamforming

matrix [16]. Among traditional linear precoding techniques, the two most well-known tech-
niques are zero-forcing (ZF) and regularized ZF (RZF) [2, 22, 3]. The former chooses a precod-
ing matrix such that the effective channel is free from interference. While the latter chooses a
precoding matrix in order to maximize the signal-to-interference-and-noise ratio (SINR). Even
though this method produces some interference to the users, the amount of interference can be
controlled by the regularization factor.

Lattice-reduction-aided (LRA) precoding [5, 6] is a low-complexity non-linear technique
that, differently from linear methods, can achieve full diversity supported by the channel. In
LRA precoding, a linear precoding matrix T is applied before transmission, in order to trans-
form the channel matrix H to a more suitable basis (according to some heuristic), which is
obtained through lattice basis reduction [6]. With this approach, the effective channel matrix,
after appropriate scaling by the users, becomes a (unimodular) integer-valued matrix A. In or-
der to cancel this integer interference, prior to the application of T, the modulation symbols are
pre-multiplied by the inverse of A, followed by a modulo operator to limit the transmit power.
Since channel coding can be applied on top of an LRA precoding scheme, the performance of
the latter is typically measured based on uncoded symbol error probability [5, 6].

A generalization of LRA precoding is the so-called integer-forcing (IF) precoding [6, 7, 8, 9],
whose main difference is that channel encoding is applied immediately before the multiplication
by T. This approach has the advantage of providing higher reliability at a similar computa-
tional cost. Moreover, it allows achievable rate expressions to be derived explicitly, rather
than evaluated by numerical simulation as in LRA precoding, leading to a scheme much more
amenable to optimization.

However, optimal IF precoding (as well as optimal linear precoding) is NP-hard in general [9]
and for this reason prior work has focused on developing low-complexity suboptimal algorithms.
The simplest approach is to choose T such that HT = cA [7] or HT ≈ cA [6], where c > 0 is
some constant. This turns out to be equivalent to the LRA approach to choosing T, requiring
lattice reduction to find A [6]. A more general but much more complex approach is the iterative
duality-based algorithm in [8], which requires a lattice reduction step at every iteration.2 In

2Another difficulty with the approach of [8] is that it requires a more complicated transmission scheme using
multiple shaping lattices, so in effect it cannot be applied to the problem considered in this paper.



[9], Silva et al. showed that, for high SNR, the optimal choice of T satisfies HT = cDA, where
D is a diagonal matrix, while, for general SNR, the performance can be improved by choosing
HT ≈ cDA. For the special case of K = 2 users, at high SNR, the optimal choice of D and A

is found analytically in [9], however, the general case remains open.

1.2 Adaptive Modulation

In a MU-MIMO adaptive modulation (AM) scenario, the transmitter selects the power and
rate for each user based on the SNR and the channel realization in order to maximize the
sum rate such that some criteria (generally in terms of a target bit-error rate) is satisfied [11].
Differently of non-adaptive scenario, where those parameters are chosen based on the worst-case
or on average channel condition, AM allows a more efficiency of resources allocation.

AM techniques were first studied in single-user with single antennas system [23, 24, 25] and
then extended to single-user MIMO scenario [11]. In [12] a scheme AM in MU-MIMO scenario
was proposed using ZF precoding combining with user scheduling. In most of those works,
based on estimated instantaneous SINR at the receiver, the transmitter choose a modulation
size, for each user, such that the bit-error probability is not greater than a determined value.
Generally, an approximation or a bound of the bit-error probability expression is used, since it
is simpler to manipulate.

In this thesis, we combine adaptive modulation with LRA and IF precoding schemes. Note
that, due to the pre-multiplication by the inverse of A, it is required that each constellation is
a subset of a “mother” constellation. One way to ensure this requirement is using only QAM
constellation. Moreover, QAM constellations fits well with using of lattice. One major difficult
is that, to the best of our knowledge, there is no closed-form neither approximations of the
bit-error probability for lattice modulations.

1.3 Contributions

In this thesis, we first propose a low-complexity sub-optimal method for choosing D and A for
any number of K users. We show how to find the optimal choice of D for a certain relaxation
of the problem, after which A can be found with a single lattice reduction step. Remarkably,
due to the special structure that we stipulate for A, the latter problem can be solved much
more efficiently than the general case, leading to an algorithm with overall complexity O(K3),
the same as linear precoding methods and lower than previous IF precoding methods [7, 6, 8].
Simulation results show that the proposed method achieves a higher sum rate than the heuristic
choice D = I and significantly outperforms conventional linear precoding in all simulated
scenarios.

After that, we show how adaptive modulation can be applied for LRA/IF precoding in
an uncoded scenario and with QAM constellations. We also find expressions for the bit-error
probability for lattice-modulations. Simulation results show that for medium values of SNR
our schemes achieves higher spectral efficiency than LRA or linear precoding.
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1.5 Organization

This thesis is organized as follows.
In Chapter 2, we define all parameters of the channel model. Moreover, we review linear

precoding methods such as ZF and RZF, as well as non-linear precoding methods such as
LRA and IF. In Chapter 3 we mathematically define our optimization problem and then, after
considering specific structure for matrix A, we solve a relaxed version of this optimization
problem. In Chapter 4, we combine the proposed method with adaptive modulation, where
we make some considerations about the constellation with lattice and the bit-error probability.
Finally, in Chapter 5, we have our conclusions and suggestion for future works.



Chapter 2

Preliminaries

2.1 System Model

Consider a downlink MIMO channel with an N -antenna transmitter and K ≤ N single-antenna
users. Let wi ∈ Wi be the message destined to the ith user, where Wi is the message space
of the ith user with cardinality |Wi|, i = 1, . . . , K, and let x′

j ∈ C
n be the vector sent by the

jth transmitter’s antenna, j = 1, . . . , N . For i = 1, . . . , K, the signal received by the ith user
is given by

yi = hiX
′ + zi (2.1)

where X′ =
[

x
′T
1 · · · x

′T
N

]T

∈ C
N×n, hi ∈ C

N is the channel coefficients to the ith user, and

zi ∈ C
n is the noise vector, such that zi ∼ CN (0, I). We can express (2.1) in matrix form as

Y = HX′ + Z (2.2)

where Y =
[

yT
1 · · · yT

K

]T

∈ C
K×n, H =

[

hT
1 · · · hT

K

]T

∈ C
K×N and Z =

[

zT1 · · · zTK

]T

∈
C

K×n.
The transmitted signals must satisfy an average total power constraint, namely

1

n
E[Tr(X′X′H)] ≤ SNR (2.3)

where SNR > 0.
The ith user will try to infer a message ŵi ∈ Wi from yi. An error occurs if ŵi 6= wi for

any i. The sum rate is given by Rsum = R1 + · · ·+ RK , where Ri =
1
n
log2 |Wi|. A sum rate R

is said to be achievable if, for any ǫ > 0 and a sufficiently large n, there exists a coding scheme
with sum rate at least R and error probability less than ǫ.

2.2 The Sum Capacity

The sum capacity of the channel is the supremum of all achievable sum rates and is given by
[19, 18, 20]

Csum = sup
Q:Tr(Q)≤1

log2 det
(
I+ SNRHHQH

)
(2.4)

where Q ∈ R
K×K is a diagonal matrix with nonnegative entries.
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Figure 2.1: A transmitter using linear precoding.

It is known that it is possible to achieve the sum capacity by using dirty-paper coding

(DPC) [1]. The main idea in DPC comes from the single antenna point-to-point channel with
interference: If the transmitter knows the non-causal interference, the capacity of a channel
with interference is the same as a non-interference AWGN channel [21]. This idea can be
extended for multiuser MIMO downlink channel since the ith user considers the signals sent to
other users as interference [1]. For example, after choosing the codeword to the first user, the
transmitter can take it into account to select codeword to the second user in such a way that
it is no longer treated as interference. This process goes on until the codeword to Kth user,
which takes into account all previously codewords.

However, DPC is not used in practical scenarios due to its high complexity implementation
[1]. Despite performance far from the sum capacity, an alternative to DPC is a family of
low-complexity precoding methods, such as that of linear precoding.

2.3 Linear Precoding

Linear precoding is a low-complexity alternative to the DPC. Here, the messages w1, . . . ,wK

are encoded and then modulated into vector x1, . . . ,xK , respectively, where xi ∈ C
n and

E[‖xi‖2] ≤ nSNR. Let X =
[

xT
1 · · · xT

K

]T

. The signals sent by the transmitter are

X′ = TX (2.5)

where T ∈ C
N×K is called the precoding matrix or beamforming matrix. A linear precoding

transmitter is shown in Fig. 2.1.
Note that, due to (2.3) we have

SNR ≥ 1

n
E
[
Tr
(
TXXHTH

)]
(2.6)

≥ 1

n
Tr
(
E
[
XXH

]
THT

)
(2.7)

≥ SNRTr(THT) (2.8)

and therefore
Tr
(
THT

)
≤ 1 (2.9)

is a constraint to the precoding matrix.



In this scenario, we can rewrite (2.2) as

Y = HTX+ Z (2.10)

= H′X+ Z (2.11)

where H′ , HT. Note that, the signal received by ith user is

yi = hiX
′ + zi (2.12)

= hiTX+ zi (2.13)

= h′
iX+ zi (2.14)

= h′
iixi
︸︷︷︸

desired signal

+
∑

j 6=i

h′
ijxj

︸ ︷︷ ︸

interference

+ zi
︸︷︷︸

noise

(2.15)

where h′
i =

[

h′
i1 · · · h′

iK

]

is the ith row of H′.

Thus, the signal-to-interference-and-noise ratio (SINR) of the ith user is given by

SINRi =
|h′

ii|2 SNR
∑

j 6=i

∣
∣h′

ij

∣
∣
2
SNR + 1

. (2.16)

and the achievable sum-rate of linear precoding schemes is

Rsum(H,T, SNR) =
K∑

i=1

log(1 + SINRi). (2.17)

The two best known linear precoding methods are the zero-forcing (ZF) precoding and the
regularized zero-forcing (RZF) precoding. The first one tries to pre-invert the channel matrix in
order to produce zero interference, while the second one tries to minimize both the interference
and the noise simultaneously.

2.3.1 Zero Forcing

In the zero-forcing precoding, the matrix T is designed to achieve zero interference, i.e., we want
that h′

ii 6= 0 and h′
ij = 0 for j 6= i. Note that, without loss of generality, we can always assume

that h′
ii is real and positive. This means that HT = diag(

√
p) where p =

[

p1 · · · pK

]

∈ R
K

is a real vector with non-negative entries. We can mathematically express the choice of T by
an optimization problem

T = argmax
T′:HT′=diag(

√
p)

Tr(T′T′H)≤1

Rsum(H,T′, SNR) (2.18)

whose optimal solution is given by [2, 22]

T = HH
(
HHH

)−1
diag(

√
p). (2.19)

In this case, it is clear that SINRi = piSNR and therefore Rsum =
∑

i log(1 + piSNR).
It is possible to choose p1 = p2 = . . . = pK , however an optimized power allocation can



improve the performance of ZF precoding. More precisely, the following optimization problem

maximize
K∑

i=1

log(1 + piSNR) (2.20)

subject to
K∑

i=1

pi[(HHH)−1]ii = 1 (2.21)

where the constraint comes from (2.9), can be solved using the well-known water-filling algo-
rithm [22, 26, 27].

One of the main problems of ZF appears when HHH has some small eigenvalue since it limits
the achievable sum rate of ZF schemes [3]. To demonstrate this limitation, let UΛU−1 be the
eigendecomposition of HHH, i.e., HHH = UΛU−1, where U ∈ C

K×K is the matrix whose ith
column is the ith eigenvector and Λ = diag (λ1, . . . , λK) ∈ C

K×K is a diagonal matrix whose
elements are the eigenvalues. Since HHH is Hermitian matrix and nonsingular, U is also a
unitary matrix, i.e., U−1 = UH, and all eigenvalues are real and (strictly) positive. Consider
now the case where we allocate the same power to all users, i.e., p1 = p2 = · · · = pK . Note that
(2.19) can be rewritten as

T =
√
pHH

(
HHH

)−1
(2.22)

where p ∈ R is chosen to satisfy the constraint (2.9) and therefore

p =
1

Tr
(
(HHH)−1) =

1
∑

i λ
−1
i

. (2.23)

Note that since the right-hand side of (2.23) is a scaled version of the harmonic mean, we
have that p ≤ min(λ1, λ2, . . . , λK). The sum rate, in this case, is given by K log(1 + pSNR),
thus, it becomes clear that a small eigenvalue limits the performance of ZF schemes.

2.3.2 Regularized Zero Forcing

One way to overcome the limitation of small eigenvalues is to regularize the inverse in (2.19),
i.e., adding a multiple of the identity matrix before calculating the inverse [3], which means
that

T = HH
(
HHH + αI

)−1
diag(

√
p) (2.24)

where α ≥ 0 ∈ R is called the regularization factor and determines the amount of interference

that we tolerated and p =
[

p1 · · · pK

]

∈ R
K is the vector that contains the power allocated

for each user. The optimal value for α can be found by maximizing the SINR and it is given
by α = K/SNR [3, 2]. Note that, as SNR → ∞ (and therefore α → 0), (2.24) reduces to ZF
precoding [3].

Since (2.24) corresponds to a regularized version of (2.19), this method is called regularized

zero-forcing (RZF). The exact same matrix T can be found if we minimize the mean-square-
error between the transmitted signal X′ = TX and the received signal Y, and therefore, this
method is also called minimum-mean-square-error (MMSE) [28]. Other names can also be
used to refer to this method, such as signal-to-leakage-and-noise ratio (SLNR) or Wiener filter

[2, 16].

As well as in ZF scheme, we can choose p such that each element is equal to each other or



we can use a power allocation algorithm. Note that since HT is no longer a diagonal matrix,
we cannot apply the water-filling algorithm directly. However, it is possible to use a heuristic
approach [2], where we use the objective function (2.20) as in ZF while using a more appropriate
constraint [2]. Specifically, we substitute the constraint (2.21) by

K∑

i=1

pi

[(

HHH +
K

SNR
I

)−1

HHH

(

HHH +
K

SNR
I

)−1
]

ii

= 1 (2.25)

and then we can use the water-filling algorithm.

2.4 Lattices

A lattice Λ ⊆ R
n is a discrete subgroup of Rn [29]. A lattice is closed under reflection, i.e., if

λ ∈ Λ then −λ ∈ Λ, and under addition, i.e., if λ1, λ2 ∈ Λ then λ1 + λ2 ∈ Λ. Thus, any integer
linear combination of lattices points must be in the lattice.

It is possible to define a lattice Λ by its generator matrix (also called basis matrix ) B ∈ R
n×n

as
Λ , {x ∈ R

n : x = Bu,u ∈ Z
n}. (2.26)

where the columns of B are independent vectors over R
n. For example, if B is the identity

matrix, we get the integer lattice Λ = Z
n. Note that the generator matrix in not unique for a

given lattice. More specifically, B and B′ = BA generate the same lattice if and only if A is
unimodular, i.e., A is an integer matrix with |detA| = 1.

This concept of lattice can be extended to the complex field. A (complex) lattice Λ is a
discrete Z[j]-submodule of Cn, i.e., any Gaussian integer1 linear combination of lattice points
lies in the lattice. The definition in (2.26) still holds, however with x ∈ C

n, B ∈ C
n×n and

u ∈ Z[j]n. In the remainder of this work, we consider that all lattices are in the complex field.
A fundamental cell PΛ of a lattice Λ is a bounded set, which, when shifted by lattice points

generates a partition of Cn. That is:

(i) PΛ(λ) = λ+ PΛ, for all λ ∈ Λ,

(ii) PΛ(λ) ∩ PΛ(λ
′) = ∅, for all λ 6= λ′ ∈ Λ,

(iii)
⋃

λ∈Λ PΛ(λ) = C
n.

Note that, every element x ∈ C
n can be uniquely expressed as the sum of a lattice point

and a point in the fundamental cell, i.e., x = λ + xe, where λ ∈ Λ and xe ∈ PΛ. Since this
expansion is unique, we can define a quantization function QΛ : Cn → Λ, such that QΛ(x) = λ

and a lattice-modulus operator, where x mod Λ , x−QΛ(x) ∈ PΛ. A lattice-modulus operator
has the following properties:

(i) (x+ λ) mod Λ = x mod Λ, for all λ ∈ Λ

(ii) (x mod Λ + y) mod Λ = (x+ y) mod Λ, for y ∈ C
n.

Clearly, both the quantization function and the lattice-modulus operator depend on the fun-
damental cell used.

1A Gaussian integer is any number of the form a+ b, where a, b ∈ Z.



One of the most important fundamental cell is the Voronoi region, denoted by VΛ. This cell
uses, as quantization function, the nearest neighbor quantizer, i.e.,

QΛ(x) = argmin
λ∈Λ

‖x− λ‖ (2.27)

and therefore, we can define the Voronoi region as

VΛ = {x ∈ C
n : QΛ(x) = 0}. (2.28)

The second moment (per dimension) of a lattice is defined as

PΛ ,
1

n
E[‖x‖2] (2.29)

where x ∈ C
n is a random vector uniformly distributed over VΛ.

A pair of lattices Λ and Λs are called nested if Λs ⊆ Λ. For each λ ∈ Λ, we say that λ+Λs

is a coset of Λs relative to Λ. The set of relative cosets, denoted by Λ/Λs = {λ+Λs : λ ∈ Λ}, is
called the quotient group. The point λ mod Λs is the coset leader of λ+ Λs. Moreover, the set
of coset leaders, denoted by C , Λ mod Λs = {λ mod Λs : λ ∈ Λ}, is a nested lattice codebook.
The lattice codebook can also be written as C = Λ ∩ VΛs

. In this case, the Voronoi region of
Λs is called the shaping region and Λs is referred as shaping lattice.

2.4.1 Lattice Reduction

An algorithm that, for a given B, finds a “good” basis B′ = BA (in column notation) is called a
lattice reduction algorithm [29]. Generally, the idea of a “good” basis refers to using vectors that
are as short as possible and nearly orthogonal. There are many lattice reductions techniques,
each one having different criteria [30]: (a) the Minkowski reduction (b) the Korkine-Zolotareff
(KZ) reduction and (c) the Lenstra-Lenstra-Lovász (LLL) reduction [31] (see also [32] for an
overview of the LLL algorithm in the complex field). Minkowski and KZ reduction produce
better results (i.e., shorter bases)[33], however they require a high computational cost, since
they need to solve the shortest vector problem (SVP), which is NP-Hard. Meanwhile, the LLL
algorithm, which is one of the most used, can find a suboptimal basis in polynomial time.

LLL Reduction

Let B =
[

B(1) · · · B(n)
]

be a basis of lattice Λ, where B(i) ∈ C
n is the ith column of B,

i = 1, . . . , n. Let B′ =
[

B′(1) · · · B′(n)
]

be the Gram-Schmitd orthogonalization of B, i.e.,

B′(i) = B(i)−
i−1∑

j=1

µijB
′(j) (2.30)

where

µij =
B(i)HB′(j)

‖B′(j)‖2
. (2.31)



We say that B′ is a LLL-reduced basis if it satisfied both the size-reduction condition, i.e.,

|ℜ{µij}| ≤
1

2
and |ℑ{µij}| ≤

1

2
(2.32)

for 1 ≤ j < i ≤ n, and the Lovász condition, i.e.,

‖B′(i) + µi,i−1B
′(i− 1)‖2 ≥ δ ‖B′(i− 1)‖2 (2.33)

for i = 2, . . . , n, where δ ∈
(
1
4
, 1
]

(typically δ = 3
4

is chosen) [31, 32].

The LLL algorithm consists in, for a given B, find a LLL-reduced basis B′ = BA. Starting
with i = 2, it computes (2.30) and verifies if (2.32) and (2.33) are satisfied. Whenever (2.32) is
not satisfied then B(i) is updated to B(i)−⌊µij⌉B(j), where ⌊·⌉ is the rounding to the nearest
(Gaussian) integer operator, and µij and B′(i) are recomputed. Then, if (2.33) is not satisfied,
B(i) and B(i− 1) are swapped and the iteration index i is replaced by i− 1 (provided that is
still greater than 2). The complete procedure of (complex) LLL algorithm can be found in [32].

The complexity of LLL algorithm is hard to precisely estimate since it mostly depends on
the number of times that the Lovász condition is not satisfied [31, 33]. It is estimated that, on
average, the LLL algorithm requires O(n2 log n) iterations [32]. Each iteration has a complexity
of O(n2), which results in a total complexity of O(n4 log n).

Note that, if B is an upper unitriangular, i.e., triangular with ones in the main diagonal,
and B′ and µij are defined as (2.30) and (2.31), respectively, then the Lovász condition (2.33) is
automatically satisfied [13]. In this case, the LLL algorithm has a fixed number n of iterations,
and therefore, a total complexity of O(n3).

2.5 Lattice-Reduction Aided (LRA) Precoding

As said before, although low complexity, the performance of linear methods is far from the sum
capacity. If one allows a more complex implementation in order to increase the performance,
non-linear techniques often are used as an alternative. Some non-linear schemes that appear
to be interesting are the lattice-reduction aided (LRA) approach [5, 6] and the integer-forcing
(IF) approach [8, 7, 9], since both can potentially achieve higher rates than linear precoding,
without a significant increase in complexity. In this section, we explain about LRA precoding.
The IF precoding is presented in the next section.

Let Λ ⊆ C
n and Λs be a nested lattice of Λ. We assume that the second moment (per

dimension) of Λs is PΛs
= SNR. We define the constellation symbols as M = (Λ + s) ∩ VΛs

,
where s ∈ C

n is a shift chosen to ensure zero-mean constellations. Note that, if Λ = Z[j]n and
Λs =

√
MΛ, where

√
M ∈ N, then, with an appropriate choice of s, M is equivalent to a square

M -QAM constellation.

Let wi ∈ M be the data to be sent to the ith user, i = 1, . . . , K and W ,

[

wT
1 · · · wT

K

]T

.

Let A ∈ Z[j]K×K be a unimodular matrix, i.e., an integer matrix with |detA| = 1.

In the first step of LRA precoding, the transmitter computes the precoded message w′
1, . . . ,w

′
K

as
W′ = A−1W (2.34)

where W′ =
[

w′T
1 · · · w′T

K

]T

.
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Figure 2.2: A LRA scheme. On the left the transmitter. On the right, only one receiver is shown.

After that, a lattice-modulus operation is applied in each row of W′, producing

xi = w′
i mod Λs. (2.35)

This step ensures that E
[
‖xi‖2

]
≤ nSNR, for i = 1, . . . , K.

Finally, similar to the linear techniques, a precoding matrix T ∈ C
N×K is applied to the

matrix X =
[

xT
1 · · · xT

K

]T

. Recall from (2.5) that the transmitted matrix X′ is given by

X′ = TX. (2.36)

Note that the constraint (2.9) must still be satisfied.

At the receiver side, a gain αi ∈ C is applied, producing

yeff,i = αiyi = αi (hiX
′ + zi) (2.37)

= aiX+ zeff,i (2.38)

= ai(A
−1W mod Λs) + zeff,i (2.39)

= wi +Aλ+ zeff,i (2.40)

where zeff,i = (αihiT − ai)X + αizi. Recall that x mod Λs = x + λ, and since Aλ ∈ Λ, then
wi + Aλ correspond to a periodically extension of the data points. The receiver can now
estimate its data by

ŵi = QΛ (yeff,i) mod Λs (2.41)

= wi +QΛ (zeff,i) mod Λs (2.42)

Note that if QΛ(zeff,i) ∈ Λs then the receiver can correctly infer wi, i.e., ŵi = wi.

A LRA scheme tries to find A and T based on some heuristic in order to reduce the error
probability. Those parameters can be obtained through a factorization of the channel matrix H.
By using any lattice reduction algorithm, for example the LLL algorithm, we can decompose
H = AHr,2 where Hr is the reduced channel matrix with same dimension as H. In the classical

2In according of notation in 2.4.1, we should write the decomposition as HT
r = HTA−T.
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Figure 2.3: A transmitter using an IF precoding.

approach of LRA [5, 6], the precoding matrix T is chosen as

T = cHH
r (HrH

H
r )

−1

= cHH(HHH)−1A. (2.43)

where c is a constant to ensure (2.3). If A = I then (2.43) corresponds to ZF precoding (2.19)
where we allocate the same power to all users.

In [6], advanced strategies are presented for LRA precoding. We would like to emphasize
the one called factorization of the Hermitian of the inverse augmented channel matrix. Let

H ,

[

H

√
K

SNR
I

]

∈ C
K×N+K be the augmented channel matrix and consider the following

factorization
H

H
(
HH

H
)−1

= T A−1. (2.44)

The precoding matrix for LRA T is obtained from the first N rows of

T = cHH
(
HH

H
)−1

A (2.45)

i.e.,

T = cHH

(

HHH +
K

SNR
I

)−1

A (2.46)

where c is a constant to ensure (2.3). Note that if A = I then the precoding matrix of LRA
corresponds to the RZF precoding matrix (2.24) where the power allocated for each user is the
same.

2.6 Integer-Forcing (IF) Precoding

2.6.1 Transmitter side

At the transmitter side, IF precoding can be divided in three main steps: shows a block diagram
for IF precoding with the three main steps.

Let Λ ⊆ C
n be a lattice and Λs = pΛ be the shapping lattice, where p ∈ Z is a prime

satisfying p mod 4 ≡ 3 so that Zp[j] is a finite field [34]. We assume that the second moment



(per dimension) of Λs is PΛs
= SNR. Let C = Λ ∩ VΛs

be a nested lattice codebook, which is
used by the transmitter.

The transmitter selects a message wi ∈ Wi to be sent to the ith user, where Wi ⊆ W is the
message space of the ith user and W = Zp[j]

n is the ambient space.

Let ϕ : Λ → W be a Z[j]-linear mapping with kernel Λs and let ϕ̃ : W → C be a bijective
encoding function, such that ϕ(ϕ̃(w)) = w for all w ∈ W . Finally, we define the lattice code
Ci ⊆ C such that Ci = ϕ(Wi), which is used as a decoder for the ith user.

Message Precoding

Let A =
[

aT
1 · · · aT

K

]T

∈ Z[j]K×K be a matrix such that det(A) 6= 0 mod p, i.e., A is

invertible modulo p, and let A′ ∈ Z[j]K×K be a matrix such that

AA′ = I mod p. (2.47)

Let W =
[

wT
1 · · · wT

K

]T

∈ WK be a matrix whose ith row is given by wi ∈ Wi. The

transmitter computes the precoded messages w′
1, . . . ,w

′
K ∈ W as

W′ = A′W mod p (2.48)

where W′ =
[

w′T
1 · · · w′T

K

]T

is a matrix whose ith row is w′
i.

Lattice Encoding

Then, for each w′
i, the lattice-code C is applied generating the codeword

c′i = ϕ̃(w′
i). (2.49)

After that, each codeword is shifted by the dither vector ui ∈ C
n and reduced modulus Λs

generating
xi = c′i + ui mod Λs. (2.50)

The dither vector may be chosen by a uniform distribution over VΛs
[29], however, a fixed dither

is also possible [35]. The dither vector together with the lattice-modulus operator ensure that
E[‖xi‖2] ≤ nSNR.

Signal Precoding

Finally, similar to the linear techniques, a precoding matrix T ∈ C
N×K is applied to the matrix

X =
[

xT
1 · · · xT

K

]T

. Recall from (2.5) that the transmitted matrix X′ is given by

X′ = TX. (2.51)

Note that the constraint (2.9) must still be satisfied.



2.6.2 Receiver side

Recall from linear techniques that the signal received by the ith user is given by

yi = h′
iX+ zi (2.52)

where h′
i = hiT. The receiver, then, applies a scalar αi ∈ C and computes

yeff,i = αiyi − aiU mod Λs (2.53)

= ai(X−U) + (αih
′
i − ai)X+ αizi mod Λs (2.54)

= aiC
′ + zeff,i mod Λs (2.55)

= ci + zeff,i mod Λs (2.56)

where U =
[

uT
1 · · · uT

K

]T

, ci = aiC
′ mod Λs and

zeff,i = (αih
′
i − ai)X+ αizi (2.57)

is the effective noise.

The receiver can now infer a codeword ĉi from yeff,i by applying a quantization function
over the fine lattice, i.e.,

ĉi = QΛ(yeff,i) mod Λs (2.58)

= QΛ(ci + zeff,i mod Λs) mod Λs (2.59)

= ci +QΛ(zeff,i) mod Λs (2.60)

Note that if QΛ(zeff,i) ∈ Λs then the receiver can correctly infer ci, i.e., ĉi = ci. Suppose now
that ci was successfully recovered, the user can now obtain its desired message wi by applying
the mapping ϕ. More precisely,

ϕ(ci) = ϕ(aiC
′ mod Λs) = aiϕ(C

′) = aiW
′ = aiA

′W = wi (2.61)

since ϕ is Z[j]-linear. Note that this means that ci = ϕ̃(wi) ∈ C, in other words, ci is the
codeword corresponding to the original message wi.

Theorem 1. [9, 36, 37, 38] For p and n sufficiently large, there is an IF precoding scheme

with achievable sum rate

RIF(H,A,T) =
K∑

i=1

Rcomp(hiT, ai) (2.62)

where

Rcomp(h
′
i, ai) = log+2

(

SNR

σ2
eff,i

)

(2.63)

is the individual rate for each user (also called computational rate in the compute-and-forward

framework) and

σ2
eff,i =

1

n
E[‖zeff,i‖2] = ‖αih

′
i − ai‖2 SNR + |αi|2 (2.64)

is the variance of the effective noise.



The optimal value of αi can be easily calculated by minimizing the variance of the effective
noise σ2

eff,i, and it is given by

αopt
i =

aih
′H
i SNR

‖h′
i‖2 SNR + 1

. (2.65)

Assuming that (2.65) is used, we can rewrite (2.63) as

Rcomp(h
′
i, ai) = log+2




1

ai

(

I− SNR
SNR‖h′

i‖2+1
h′H
i h′

i

)

aH
i



 (2.66)

= log+2

(

1

‖ai‖2 − 1
‖h′

i‖2+SNR−1 |aih
′H
i |2

)

. (2.67)

Even though, for practical implementations, it is necessary that A be invertible modulo
p, for achievable rates, A only needs to be full rank (equivalently, invertible over C

n) since p

can be arbitrarily large. Therefore, the IF precoding tries to find a matrix A ∈ Z[j]K×K with
rank(A) = K and a matrix T ∈ C

N×K with Tr(THT) = 1 that maximizes (2.62).

Note that, if A = I, then finding an optimal T corresponds to solving the optimal linear
beamforming problem [2]. Moreover, if we choose A = I and T = HH(HHH)−1 diag(

√
p), we

have traditional ZF precoding, while choosing A = I and T = HH(KSNR−1I+HHH)−1 diag(
√
p)

we recover RZF precoding. As we can see, IF precoding is a generalization of linear precoding
[39, 9].

As the authors of [9] showed, if we let the choice of T be more flexible, the problem can be
more structured and potentially easier to solve. They also showed two approaches to choosing
T for IF precoding, called DIF and RDIF, which will be more detailed in the next section.

2.6.3 DIF and RDIF Schemes

The first approach proposed by [9] chooses a precoding structure such that the channel seen
by the users is an integer matrix, up to scaling for each user. More precisely, for any full rank
integer matrix A, the precoding matrix T is given

T = cHH(HHH)−1DA (2.68)

where D ∈ C
K×K is a diagonal matrix with nonzero entries such that |detD| = 1 and c > 0 is

chosen to satisfy (2.9).

This method is called diagonally-scaled exact integer-forcing (DIF) precoding. It is clear
that DIF is a generalization of ZF schemes, which corresponds to A = I and cD = diag(

√
p).

The DIF precoding is optimal in the high SNR regime [9], where it can achieve a sum rate
given by

RHI
DIF(H,A,D) , K log2

(

SNR

Tr
(
AHDH (HHH)−1

DA
)

)

(2.69)

which is also shown to be a lower bound on the achievable rate for any SNR.

The second approach proposed in [9], which is called regularized DIF (RDIF), attempts to
improve the performance of DIF for finite SNR by regularizing the matrix inversion in (2.68).



Specifically, (2.68) is modified as

T = cHH

(
K

SNR
I+HHH

)−1

DA. (2.70)

Just as DIF generalizes ZF, RDIF is a generalization of RZF scheme, which is obtained by
making A = I and cD = diag(

√
p). In particular, RDIF reduces to DIF when SNR → ∞.

Note that the diagonal of D in DIF/RDIF has a similar role as the vector p in ZF/RZF, i.e.,
the square of the ith element in the diagonal of D can be seen as the “power” gain applied to an
integer linear combination aiX. However, it is important to emphasize that, unless A = I, D
is not a true power allocation since, in general, we cannot guarantee that E[‖aiX‖2] = nSNR.





Chapter 3

Optimization based on Achievable Sum Rates

3.1 Problem Statement

We are interested in finding matrices A and D that maximize the sum rate (2.62) for the RDIF
scheme, i.e., with T chosen as in (2.70). In general, this is a hard problem due not only to
the integer constraints on A but also to the complicated objective function (2.62). The latter
difficulty is overcome in [9] by solving a simpler optimization problem, which can be interpreted
as the minimization of a regularized version of the denominator in (2.69), namely,

minimize
A,D

f(A,D) , Tr(AHDHMDA) (3.1)

s.t. |detD| = 1

rank(A) = K

where A ∈ Z[j]K×K , D ∈ C
K×K is diagonal, and

M ,

(
K

SNR
I+HHH

)−1

. (3.2)

While generally a suboptimal heuristic, solving the above problem indeed maximizes the sum
rate for the special case of asymptotically high SNR (where RDIF reduces to DIF).

The above problem was solved analytically in [9] for the special case K = 2. For K > 2,
the problem is still open.

3.2 Fixed D

If D is fixed, then finding A that minimizes (3.1) corresponds to the shortest independent

vector problem (SIVP) as shown by [9]. The SIVP can be sub-optimally solved using lattice
basis reduction algorithms, for example the LLL algorithm [31, 32].

Let B ∈ C
K×K be a lattice generator matrix such that BHB = DHMD (B is any square

root of DHMD, in particular, B can be obtained using Cholesky decomposition). In this case,
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note that (3.1) can be rewritten as

Tr(AHDHMDA) = Tr(AHBHBA)

=
K∑

j=1

‖BA(j)‖2 (3.3)

where A(j) is the jth column of A.

Thus, we wish to find K linearly independent vectors in the lattice generated by the columns
of B that minimizes (3.1). Those vectors will correspond to the columns of A.

When D = I, the RDIF scheme becomes equivalent to the LRA precoding proposed [6],
except for the fact that LRA precoding assumes symbol-level detection, while IF precoding
employs codeword-level decoding, as discussed in Section 2.6 (see also [8, 9]). More precisely,
the precoding matrix in LRA precoding has the same form as T in (2.70) (with D = I), while
the integer matrix A is obtained in both schemes by solving the same lattice reduction problem.

We can clearly see that (2.70) becomes, up to scaling, the first N rows of (2.45) when
D = I. Moreover, the integer matrix A found in (2.44) is the same solution obtained for RDIF
by applying lattice reduction on the columns of a matrix B such that BHB = M, as discussed
in Section 3.1. This is because (HH

H)−1 = M, thus one possible square root of M is precisely
the left-hand side of (2.44), i.e., B = H

H(HH
H)−1.

Although the factorization approaches proposed in [6] are based on heuristics, they corre-
spond to a particular case of RDIF which tries to maximize the achievable sum rate. This
means that, if we replace the left-hand side of (2.44) by H

H(HH
H)−1D, where D is a diagonal

matrix, before performing the factorization, we can potentially improve the performance of
LRA precoding.

3.3 Proposed Method

Here we propose a method to find an approximate solution (A,D) to problem (3.1) for any K.
The summary of the algorithm is described in Section 3.3.5. We start by proposing a convenient
choice for the structure of A.

3.3.1 Structure of A

Consider the objective function in (3.1) and note that

f(A,D) =
K∑

i=1

Mii ‖ai‖2 |di|2 +
K∑

i=1

K∑

j=i+1

2Mjiaia
H
j did

∗
j (3.4)

where ai is the ith row of A, di is the i-th element in the main diagonal of D and Mij is the
element of row i and column j of M.

The first summation in (3.4) contains only nonnegative values. If we focus exclusively on
minimizing ‖ai‖, i = 1, . . . , K, then it is easy to see that the optimal choice is A = I. However,
since the second summation can have positive or negative values, we wish some degree of
freedom to be able to minimize or maximize the absolute values of the inner products (

∣
∣aia

H
j

∣
∣).

To satisfy these conflicting requirements, we propose that A be upper unitriangular (upper



triangular with ones along the main diagonal), i.e.

A =










1 a12 · · · a1K

0 1 · · · a2K
...

...
. . .

...

0 0 · · · 1










(3.5)

up to permutation of rows. An advantage of this structure is that the restriction of full rank
A is automatically satisfied. Note that, for K > 2, a row permutation of A may change the
achievable rate.

We first consider A exactly in upper unitriangular form. The generalization to other per-
mutations is discussed in 3.3.4.

3.3.2 Relaxed Problem

Even with the proposed structure for A, we still have an integer optimization problem, which
is generally hard to solve. In order to circumvent this difficulty, we consider in this section a
relaxation of the problem where the indeterminate entries of A can be any complex number.

Theorem 2. Under the relaxed constraint that A ∈ C
K×K and the additional constraint that

A be upper unitriangular, problem (3.1) has a solution given by

Ã = D−1U−1D = Λ
1
2U−1Λ− 1

2 (3.6)

D̃ = (detΛ)
1

2KΛ− 1
2 (3.7)

where U ∈ C
K×K is upper unitriangular and Λ ∈ R

K×K is diagonal such that M = UHΛU.

The solution for A as a function of D is unique and the optimal solution for D (with the

corresponding optimal A) is unique up to a phase shift for each of the diagonal entries. The

optimal value of the problem is K(detM)1/K.

Proof. Let Ã and D̃ be a solution to (3.1) with A ∈ C
K×K . We first find Ã as a function of

D and then find D̃.
Let ∇∇∇Af be a matrix whose (i, j)th element is the partial derivative of (3.1) with respect

to aij if i < j and zero otherwise. Note that (∇∇∇Af)ij = (2DHMDA)ij if i < j. The critical
points of f with respect to A are those which satisfy, for all j and all i < j,

0 = (∇∇∇Af)ij = (2DHMDA)ij. (3.8)

Multiplying by (2d∗i )
−1 and d−1

j on both sides, this is equivalent to requiring that, for all j and
all i < j,

0 = (MDAD−1)ij = (MA′)ij (3.9)

where A′ = DAD−1 ∈ C
K×K is also upper unitriangular.

Note that (3.9) implies that a critical point is any matrix A = D−1A′D such that MA′ = L

is a lower triangular matrix. Thus, any solution, if it exists, can be found by computing an LU
decomposition of M = LA′−1. Moreover, since we require that the diagonal of A′ consists of
ones, such a decomposition is unique whenever it exists.



Since M is a symmetric positive definite matrix, such an LU decomposition always exists.
Specifically, it admits an LDL decomposition M = UHΛU, where U is an upper unitriangular
matrix and Λ is a diagonal matrix with real and positive diagonal entries. Thus, A′ = U−1 is
the unique solution to (3.9), which gives

Ã = D−1U−1D. (3.10)

Now, substituting Ã in (3.1), we have that

f(Ã,D) = Tr(DHΛD) =
K∑

i=1

|di|2 λi (3.11)

where λi > 0 and di are the ith diagonal element of Λ and D, respectively. Due to the inequality
of arithmetic and geometric means, we have that

1

K
f(Ã,D) =

1

K

K∑

i=1

|di|2 λi ≥
(

K∏

i=1

|di|2 λi

) 1
K

(3.12)

with equality if and only if |d1|2 λ1 = · · · = |dK |2 λK .
Applying the constraint | detD| = 1, we have

(
K∏

i=1

|di|2 λi

) 1
K

=

(
K∏

i=1

λi

) 1
K

= (detΛ)
1
K . (3.13)

Thus, the bound in (3.12) is achievable by setting each term |di|2 λi equal to the right hand
side of (3.13), i.e.,

DHD = (detΛ)
1
K Λ−1. (3.14)

By choosing each di to be real and positive, one solution is given by (3.7), which applied in
(3.10) gives (3.6).

Finally, since detΛ = detM, we have f(Ã, D̃) = K (detΛ)
1
K = K (detM)

1
K , completing

the proof.

Remark 1. If we let SNR → ∞ and replace the optimal value of the relaxed problem in (2.69),
we obtain an upper bound on the rate achievable by DIF in this regime. This bound happens to

coincide with the high SNR expression for the sum capacity,

CHI
sum = K log2

(
SNR

K

)

+ log2(detHHH). (3.15)

Of course, this bound is rarely achievable, since A is constrained to be an integer matrix. More

precisely, the bound is achievable if and only if each row of H is a multiple of an integer vector.

3.3.3 Optimization of A

We now show how to find an approximate solution (A,D) to problem (3.1) satisfying A ∈
Z[j]K×K , starting from a solution (Ã, D̃) to the relaxed problem. First take D = D̃, and note



that

f(A,D) = (detΛ)
1
K Tr(AHΛ− 1

2MΛ− 1
2A) (3.16)

= (detΛ)
1
K Tr(AHΛ− 1

2UHΛUΛ− 1
2A) (3.17)

= (detΛ)−
1
K Tr(AHÃ−HÃ−1A) (3.18)

= (detΛ)−
1
K

K∑

i=1

‖BA(i)‖2 (3.19)

where B , Ã−1 = Λ
1
2UΛ− 1

2 and A(i) is the ith column of A.
Note that, finding a Gaussian integer matrix A that minimizes (3.19) is the same problem

described in Section 3.1 (see also [9]) with D fixed. That means that the LLL algorithm can be
used to find K shortest linearly independent vectors from the lattice generated by the columns
of B.

3.3.4 Permutations

Let Ā be an Gaussian integer matrix with a structure given by (3.5) and suppose we want to
solve (3.1) under the constraint that A = PĀ where P is a permutation matrix.

First, note that

Tr(AHDHMDA) = Tr(ĀHPTDHMDPĀ)

= Tr(ĀHD̄HPTMPD̄Ā)

where D̄ = PTDP. Thus, we can use the solution of Theorem 2 with M replaced by PTMP

or, equivalently, M−1 replaced by PTM−1P to obtain

D = PD̃PT (3.20)

A = PĀ (3.21)

where Ā is the output of LLL algorithm.

3.3.5 Summary of the Method

The steps described above allow us to find a choice of A and D (and thus T) for any given
permutation P specifying the structure of A. A summary of the proposed method is given in
Algorithm 1.

Complexity Analysis

The complexity of an IF scheme is hard to precisely estimate. Generally, the lattice reduction
algorithm is the bottleneck on the complexity. It is estimated that the LLL algorithm, one of
the most used lattice reduction algorithms, requires O(K4 logK). However, in our case, since
B in step 6 of Alg. 1 is an upper unitriangular matrix, the LLL algorithm can be computed
with O(K3) [13].

Other operations, such as, the computation of matrix M in step 1 or the computation of
T in steps 8-10 require O(NK2) operations each (recall that we assume N ≥ K). The LDL



Algorithm 1 Proposed RDIF Design

Require: H and SNR

1: Compute M =
(
K/SNRI+HHH

)−1

2: Generate a permutation matrix P

3: Compute the LDL decomposition PTMP = UHΛU

4: Compute D̃ = (detΛ)
1

2K Λ− 1
2

5: Compute B = Λ
1
2UΛ− 1

2

6: Use the LLL algorithm using B as input to find Ā

7: Set D = PD̃PT and A = PĀ

8: Compute T0 , HHMDA

9: Compute c = Tr(TH
0 T0)

− 1
2

10: Compute T = cT0

11: return A and T

Table 3.1: Number of users K, for each method and for each value of SNR, used in Fig. 3.1.

Method 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

M↓ 16 16 13 15 16 16 16

Random 16 16 13 15 16 16 16

D = I 16 15 12 13 13 14 15

RZF 16 14 12 12 13 13 14

ZF 7 8 10 11 12 13 14

decomposition in step 3 requires O(K3) operations. The remaining operations involves only
(upper) triangular and diagonal matrices. Therefore, the total complexity is O(NK2), which
is the same asymptotic complexity of conventional linear precoding methods.

3.4 Simulation Results for Achievable Rate

In this section we show the average sum-rate performance of the proposed method. In our sim-
ulations, the sum rates were obtained through 10000 channel realizations. In each realization,
the channel coefficients were randomly obtained considering a circularly symmetric complex
Gaussian distribution with zero mean and unit variance.

In each simulation, we compare our proposed RDIF design to sum capacity [1] and to the
conventional linear precoding methods, namely, ZF and RZF. We also compare to the RDIF
approach mentioned in Section 3.2, where we fix D = I and apply the LLL algorithm to find
A. This method is denoted by “D = I”.

For our proposed method, we compare two heuristics. Specifically, we compare the heuristic
where a random permutation is chosen, which is denoted by “Random”, with a heuristic inspired
by [40], where the permutation sorts the diagonal elements of M in descending order, which is
denoted by “M↓”.

In Figs. 3.1 and 3.2, we show the performance for N = 16 and N = 64 transmit antennas,
respectively. For each method and for each value of SNR, we choose, through exhaustive search,
the value of K ≤ N that achieves the highest sum rate. The number of users in Fig. 3.1 is
shown in Table 3.1, while the number of users in Fig. 3.2 is shown in Table 3.2. As expected,
the proposed method outperforms linear techniques as well as the previous RDIF approach
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Figure 3.1: Sum rate for N = 16 transmit antennas. For each method and each value of SNR, the
number of users K ≤ N was chosen to maximize the sum rate. On the box, a close up on SNR range
of 26 to 30 dB.
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Figure 3.2: Sum rate for N = 64 transmit antennas. For each method and each value of SNR, the
number of users K ≤ N was chosen to maximize the sum rate. On the box, a close up on SNR range
of 24 to 26 dB.



Table 3.2: Number of users K, for each method and for each value of SNR, used in Fig. 3.2.

Method 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

M↓ 64 62 50 48 51 56 60

Random 64 62 50 48 50 55 62

D = I 64 62 50 48 50 51 53

RZF 64 62 50 48 50 51 53

ZF 24 31 37 44 47 51 53
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Figure 3.3: Sum rate for SNR = 20 dB. For each method and each value of N , K was chosen to
maximize the sum rate. On the box, a close up on the range of N from 14 to 16.

(D = I) for all values of SNR. In particular, for N = 16 and for a sum rate of 105 bits/channel
use, it outperforms the latter by about 2.1 dB and the former by about 3.2 dB. However, for
N = 64 transmit antennas and for a sum rate of 330 bits/channel use, the difference is only
about 0.4 dB.

Fig. 3.3 shows the performance for a fixed SNR = 20 dB while varying the number of
transmit antennas N . The number of users is again chosen in order to maximize the sum rate
and it is shown in Table 3.3. Note that, although the gap to capacity increases with K, the
difference in performance between our proposed method and the other methods considered also
increases.

Fig 3.4 shows the average time for the simulations of Fig. 3.1 and Fig. 3.3. In both situations,
we can see that the proposed method is 2 to 3 times slower than conventional linear methods.
We can also see that the average time of IF methods (the proposed one and D = I) increases
with SNR (and N) due to the LLL algorithm. However, since the LLL algorithm is less
complex for our proposed method, its simulation time is much smaller than that of D = I in
these scenarios.



Table 3.3: Number of users K, for each method and for each value of N , used in Fig. 3.3.

Method N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

M↓ 2 4 6 8 10 12 14 16

Random 2 4 6 8 10 12 14 16

D = I 2 4 6 8 10 11 13 14

RZF 2 4 5 7 8 10 12 13

ZF 2 4 5 7 8 10 11 13
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Figure 3.4: Average simulation time for each method. a Parameters as in Fig. 3.1. b Parameters as in
Fig. 3.3.



Table 3.4: Sum rate for N = K = 4 in bits/channel use.

SNR (dB)

Method 0 10 20 30

Sum capacity 3.585 10.992 22.071 34.796

Exhaustive search [9] 3.108 9.970 21.556 34.380

Proposed method (M↓) 3.083 9.884 20.880 33.566

Gap from M↓ to [9] 0.025 0.086 0.676 0.814

Finally, it is worth mentioning that the proposed method for RDIF optimization is indeed
suboptimal. As can be seen in Table 3.4, for N = K = 4, a small but non-negligible gap exists
between the performance of our method and that of the exhaustive search carried out in [9]
(which has exponential complexity). Whether this gap can be closed under low complexity is
a challenging problem for future work.



Chapter 4

Adaptive Modulation

In adaptive modulation (AM) scenarios, the transmitters selects, for each user, a constellation
with the highest spectral efficiency such that the bit-error probability is less than or equal to a
pre-determined value.

Based on works of [24, 12] we first show how AM can be applied with linear precoding. Note
that, we choose to calculate the exact bit-error probability instead of using an approximation
as [12]. While this choice increases the overall complexity of the schemes, we can make better
comparison with non-linear schemes. After that, we explain how AM can be used with LRA
and IF precoding in a uncoded scenario.

In this chapter, since there are no codes, we consider n = 1.

4.1 Adaptive Modulation for Linear Precoding

Recall the notation in Section 2.3, where wi is the message desired by the ith user which is
modulated into xi ∈ C. Independently of the modulation chosen, we always assume that it has
an average symbol energy of SNR, i.e., E[|xi|2] ≤ SNR, for all i. From (2.15), we have that the
signal received by the ith user is

yeff,i =
1

h′
ii

yi

= xi + zeff,i (4.1)

where zeff,i =
1
h′
ii

(
∑

j 6=i h
′
ijxj + zi

)

is the effective noise.

Note that (4.1) is an additive noise channel. We assume that the effective noise zeff,i follows
a Gaussian distribution with variance

σ2
eff,i =

1

|h′
ii|2

(
∑

j 6=i

∣
∣h′

ij

∣
∣
2
SNR + 1

)

. (4.2)

However, this is only true if the ZF precoding matrix is used.

Let M be the set of possible cardinalities of M -QAM constellations, where M ∈ M is a
power of 2. For a M -QAM constellation, M ∈ M, we denote by dM the minimum distance
between symbols and by PM -QAM

b (dM , σ2) the bit-error probability, where σ2 is the variance of
the additive noise. In an AM scheme, the transmitter selects a precoding matrix T ∈ C

K×N

29



Table 4.1: Exemple of AM using ZF precoding in a 2× 2 channel.

σ2
eff,i P 4-QAM

b P 16-QAM
b P 64-QAM

b P 256-QAM
b P 1024-QAM

b

User 1 5.0318 < 10−6 1.4 · 10−4 2.4 · 10−2 — —

User 2 0.9937 < 10−6 < 10−6 2.9 · 10−5 1.2 · 10−2 —

and cardinalities M1, . . . ,MK ∈ M, such that

{T,M1, . . . ,MK} = argmax
T∈CK×N :Tr(TTH)=1

M ′
1,...,M

′
K∈M

P
M′

i-QAM

b
(dM′

i
,σ2

eff,i
)≤BERtarget

i=1,...,K

K∑

i=1

log2 M
′
i (4.3)

where Mi is the cardinality chosen for the ith user, i = 1, . . . , K and BERtarget > 0. Note that
the noise variance depends on T.

In order to simplify the optimization problem (4.3), we can use the results of achievable
rates to select matrix T. More precisely, in a ZF-precoding-AM scheme, T is chosen as (2.19),
and in a RZF-precoding-AM scheme, T is chosen as (2.24). With this simplification, σ2

eff,i is
now a given value and (4.3) can solved individually for each user.

Lastly, we need to define the values of dM for each possible constellation. Since we require
that the average energy per symbol is equal to SNR, the minimum distance can be easily
obtained as

dM =







2
√
SNR if M = 2

√
6

M−1
SNR if M > 2 and log2 M is even

√
12

I2+J2−2
SNR if M > 2 and log2 M is odd

(4.4)

where I and J are the number of symbols in-phase and quadrature of M -QAM constellation,
respectively. The closed-form expressions of PM -QAM

b (dM , σ2) are found in A.1.

Example. Consider a 2× 2 channel, with SNR = 25 dB, BERtarget = 10−3 and

H =

[

1 1

−3 1

]

.

Assume that the transmitter uses a ZF precoding schemes. From (2.19), the precoding
matrix is given by

T =

[

−1
2

1
2

−3
2

−1
2

]

diag (
√
p)

where p =
[

0.1987 1.0063
]T

is obtained via water-filling.

Suppose that M = {4, 16, 64, 256, 1024}. Table 4.1 contains the values of σ2
eff,i, i = 1, 2

and the bit-error probability for M -QAM constellation, M ∈ M. We can clearly see that the
transmitter selects a 16-QAM constellation for user 1 and a 64-QAM constellation for user 2,



which results in a sum rate of 10 bits/channel use.

4.2 Adaptive Modulation IF/LRA Schemes

Recall definitions from Section 2.6. Let Λ = dZ[j] and Λs = qΛ be lattices, where q is a power
of 2 and d is the minimum distance between symbols of a constellation S = Λ ∩ [0, dq)2. Note
that [0, dq)2 is a fundamental region of Λs. We assume that S has an average energy equals to
SNR. Note that the constellation S is similar to a q2-QAM constellation, up to a shift by u to
ensure zero mean.

Let W = Zq[j] be the ambient space and Wi ⊆ W be the message space to user i, i =

1, . . . , K. Let ϕ : Λ → W be a Z[j]-linear map and let ϕ̃ : W → S be a bijective mapping
function such that ϕ(ϕ̃(w)) = w for all w ∈ W .

The transmitter selects a message wi ∈ Wi to be transmitted to the ith user. Let W =
[

wT
1 · · · wT

K

]T

. After an integer matrix A ∈ Z[j]K×K is chosen, the transmitter computes

W′ = A′W mod q (4.5)

where A′ ∈ Z[j]K×K is an integer matrix such that AA′ = I. Note that W′ ∈ Zq[j]
K×n.

After that, the mapping ϕ̃ is applied in each row of W′, generating signal S′ = ϕ̃(W′) ∈ S.
The transmitter computes

X = S′ +U mod Λs (4.6)

where U =
[

uT · · · uT
]T

. Note that, xi has zero mean and energy equals to SNR, where xi

is the ith row of X, i = 1, . . . , K. Then, the signal X is multiplied by the precoding matrix T

producing the transmitted signal X′.
Recall from (2.52) that the ith user receives signal

yi = h′
iX+ zi (4.7)

where zi is the Gaussian noise with unit variance and h′
i , hiT. After a multiplication by a

scalar αi ∈ C, the ith user computes

yeff,i = αiyi − aiU mod Λs (4.8)

= ai(X−U) + zeff,i mod Λs (4.9)

= si + zeff,i mod Λs (4.10)

where si = aiS
′ mod Λs and zeff,i = (αih

′
i − ai)X + αizi. Although the distribution of zeff,i is

hard to estimate, we will assume that it follows a Gaussian distribution with zero mean and
variance σ2

eff,i. Recall from (2.64) that σ2
eff,i is given by (using optimal α)

σ2
eff,i = SNR

(

‖ai‖2 −
1

‖h′
i‖2 + SNR−1

∣
∣aih

′H
i

∣
∣
2
)

. (4.11)

Since there is a one-to-one mapping between W and S we have that ϕ(si) = ϕ(aiA
′W mod

Λs) = wi. This mean that, from the point of view for the receiver, it can pretend that symbol
si = ϕ̃(wi) ∈ Si was sent over a modulo-lattice additive noise (MLAN) channel given by (4.10),
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Figure 4.1: Example of possible QAM sub-constellation when Λ = dZ[j] and Λs = 4Λ.

where Si ⊆ S is a sub-constellation such that Si = ϕ̃(Wi).

Let S ′ ⊆ S be a sub-constellation. We define its cardinality by |S ′| and its bit-error
probability by P S′

b (σ2,S), where σ2 is the variance of additive noise. The transmitter wants to
select sub-constellations S1, . . . ,SK ⊆ S, a precoding matrix T ∈ C

K×N , a Gaussian integer
matrix A ∈ Z

K×K and q, which is a power of 2, such that

{T,A, q,S1, . . . ,SK} = argmax
T∈CK×N :Tr(TTH)=1

A∈Z[j]K×K :rank(A)=K
q∈N:log2 q∈N
S′
1,...,S′

K⊆S

P
S′
i

b
(σ2

eff,i
,S)≤BERtarget

i=1,...,K

Rsum =
K∑

i=1

log2 |S ′
i| (4.12)

where BERtarget is the maximum BER allowed by the system. Note that, the effective noise
variance depends on T and A, and the constellation S depends on q. Also note that the
minimum distance d can be computed as (4.4) by replacing M with q2.

Problem (4.12) can be very hard to solve. In order to simplify this problem, we can use
the results of achievable rate to determine matrices T and A. For example, we can use our
proposed RDIF design to select those matrices. Moreover, we consider that q is given.

Nevertheless, this optimization problem can still be very hard to solve since, for a general
choice S ′ ⊆ S there are no closed-form expression neither approximations for P S′

b (σ2
eff,i,S). In

order to circumvent this problem, we limit the set of possible choices of S ′.

We denote by M -QAM(S) ∈ S the sub-constellation with a cardinality M such that the
constellation points resemble a QAM constellation. More precisely, when log2 M is an even
number, the constellation points are the traditional square M -QAM constellation, and when
log2 M is an odd number, the constellation points is a rectangular M -QAM constellation. Let
M be the set of possible cardinalities of M -QAM(S), i.e., if M ∈ M then M -QAM(S) ∈ S.
For example, suppose that Λ = dZ[j] and ΛS = 4Λ. It is easy to note that M = {2, 4, 8, 16}. In
Fig. 4.1 , we show the constellation points for each sub-constellation M -QAM(S). The black
dots represent a 16-QAM constellation, the blue squares represents a 8-QAM constellation, the
red crosses a 4-QAM and finally the green circles represents a 2-QAM (BPSK) constellation.



Table 4.2: Exemple of AM using LRA precoding.

σ2
eff,i P

4-QAM(S)
b P

16-QAM(S)
b P

64-QAM(S)
b P

256-QAM(S)
b P

1024-QAM(S)
b

User 1 0.9968 < 10−6 < 10−6 3.8 · 10−5 1.3 · 10−2 —

User 2 0.9846 < 10−6 < 10−6 3.4 · 10−5 1.3 · 10−2 —

Note that we can rewrite (4.12) as

Mi = argmax
M ′∈M

P
M-QAM(S)
b

(σ2
eff,i

,S)≤BERtarget

log2 M
′ (4.13)

where Mi ∈ M is the cardinality of the constellation for ith user, i = 1, . . . , K, PM -QAM(S)
b (σ2,S)

is the bit-error probability of the sub-constellation M -QAM(S) and σ2 is the variance of the
additive noise.

While this approach may limit the performance of AM for IF/LRA precoding, it allows
us to find closed-form expression for the bit-error probability since it becomes similar to the
expressions of the bit-error probability for traditional QAM constellations.

Since a M -QAM constellation can be interpreted as a I-PAM constellation in in-phase and
a J-PAM constellation in quadrature, we can compute the bit-error probability as

P
M -QAM(S)
b (σ2,S) = 1

log2 M

(
log2 IP

I-PAM
b (dI , σ2) + log2 JP

J-PAM
b (dQ, σ2)

)
(4.14)

where P I-PAM
b is the bit-error probability of a lattice I-PAM constellation and dI and dQ are the

minimum distance between symbols of the in-phase and quadrature components, respectively.
The expression of P I-PAM

b are found in Appendix A.2.

Note that, dI and dQ depend on the sub-constellation chosen. For example, in Fig. 4.1, the
16-QAM constellation has dI = dQ = d. The 8-QAM constellation has dI = d and dQ = 2d,
the 4-QAM constellation has dI = dQ = 2d. And finally the 2-QAM constellation, which is a
special case, has dI = 2

√
2d.

In general, if M is an even power of 2 then let m =
√
M , the minimum distance of a M -

QAM(S) constellation is dI = dQ = q
m
d. If M is an odd power of 2 then let mI =

√
2M and

mQ =
√

M
2

, which are the number of symbols of in-phase and number of symbols in quadrature,

respectively. In this case, a M -QAM(S) constellation has minimum distance of dI = q
mId and

dQ = q
mQd.

Example. Consider again the same channel as before, with SNR = 25 dB, BERtarget = 10−3.

Suppose that we choose Λ = dZ[j] and Λs = qΛ, where q = 32 and d =
√

6
q2−1

SNR =

1.362. Finally, let M = {4, 16, 64, 256, 1024} be the set of possible cardinalities of M -QAM
constellation, where M ∈ M.

First, suppose that LRA precoding is used, where T = cHH
(
HHH + K

SNR
I
)−1

A, c is a
constant and A is obtained via the LLL-reduction. In Table 4.2 we show the bit error probability
of each possible constellation for all users. Note that, both users select a 64-QAM constellation,
which give a sum rate of 12 bits/channel use.

Now, suppose that RDIF scheme is used, where T = cHH
(
HHH + K

SNR
I
)−1

DA, c is a
constant and D and A are obtained using our proposed method. In Table 4.3 we show the bit



Table 4.3: Exemple of AM using IF/proposed scheme.

σ2
eff,i P

4-QAM(S)
b P

16-QAM(S)
b P

64-QAM(S)
b P

256-QAM(S)
b P

1024-QAM(S)
b

User 1 4.9414 < 10−6 2.6 · 10−4 2.7 · 10−2 — —

User 2 0.1987 < 10−6 < 10−6 < 10−6 3.8 · 10−6 6.1 · 10−3
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Figure 4.2: Sum of spectral efficiency using adaptive modulation with N = 16.

error probability for each possible constellations for all users. Note that, is this case, the user
1 selects a 16-QAM constellation and the user 2 selects a 256-QAM constellation, which give
the same sum rate of 12 bits/channel use as the LRA precoding.

4.3 Numerical Results

In this section we show the average sum of the spectral efficiency of the proposed method. In our
simulations, the sum of spectral efficiency were obtained through 10000 channel realizations.
In each realization, the channel coefficients were randomly obtained considering a circularly
symmetric complex Gaussian distribution with zero mean and unit variance. In all simulation
we consider a BERtarget = 10−3.

The set of possible modulations contains M -QAM constellation, where M ∈ {2, 4, 8, . . . , 1024}.
For IF and LRA precoding, q ∈ {2, 4, 8, 16, 32} was chosen such that the sum rate is maximized.

In each simulation, we compare our proposed RDIF design to the conventional linear pre-
coding methods, namely, ZF and RZF, as well as the LRA design, which is obtained by chosen
D = I. For our proposed method, we use only the heuristic where the permutation sorts the
diagonal elements of M in descending order.

Fig. 4.2 shows the performance for N = 16 transmit antennas. For each method and for



Table 4.4: Number of users K, for each method and for some values of SNR, used in Fig. 4.2.

Method 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB

Proposed 2 8 12 16 16 16 16

LRA 2 8 11 14 16 16 16

RZF 2 8 11 13 14 15 16

ZF 2 7 11 13 14 15 16

2 4 6 8 10 12 14 16
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Figure 4.3: Sum of spectral efficiency using adaptive modulation varying the number of transmitter
antennas and SNR = 35 dB.

each value of SNR, we choose, through exhaustive search, the value of K ≤ N that achieves the
highest sum rate and it is shown in Table ??. Note that for medium values of SNR, our proposed
method can achieve higher spectral efficiency than other methods. For example, for a sum of
spectral efficiency of 112 bits/channel use, the gap between our method and LRA is about
1.5 dB, and between our method in linear schemes is about 2 dB. In low SNR the performance
of our method is degraded since in our design we use a high SNR approximation. Finally, in
high SNR, we can note that the LRA schemes outperforms our method. This happens due
to the limited set of constellation. For LRA schemes, we expected that most of users selects
the same constellation, differently of our schemes where some users selects constellations with
higher spectral efficiency while others select lower spectral efficiency constellations. This means
that, in high SNR some users can selects constellation with spectral efficiency greater than 10,
which is the highest in our set.

Fig. 4.3 shows the performance for a fixed SNR = 35 dB while varying the number of
transmit antennas N . Again, we choose K ≤ N such that the sum rate is maximized. The
number of users K is shown in Table 4.5. Since we consider a medium value of SNR, we can
see that the proposed method outperforms both linear and LRA schemes. We can also note



Table 4.5: Number of users K, for each method and for each value of N , used in Fig. 4.3.

Method N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

Proposed 2 4 6 8 10 12 14 16

LRA 2 4 6 8 9 11 12 13

RZF 2 4 5 7 9 10 12 13

ZF 2 4 5 7 8 10 12 13

that gap between method is constant when N varies for the simulated scenarios.



Chapter 5

Conclusion

In this thesis, we first proposed a desing for RDIF method for K ≥ 2 users and then we combine
the proposed scheme with adaptive modulation. In order to obtain a precoding matrix T and
a Gaussian integer matrix A for RDIF method, we establish a structure for matrix A and
then we solve a relaxed optimization problem, where A could be a complex matrix. This
optimization problem can be solved with O(K3) operations. Moreover, the solution for this
problem allow us to use a lattice basis reduction with complexity of O(K3) since the basis are in
unitriangular form. This approach leads to an overall complexity of O(NK2), which is the same
as linear precoding methods. Simulation results show that our approach not only significantly
outperforms conventional linear precoding, but also improves on previous low-complexity IF
precoding both in performance and complexity.

To combine the proposed scheme with adaptive modulation, we first needed to ensure that
each possible modulation can be used with the chosen shaping lattice, which leads to limit the
set of constellation as QAM. By using matrices T and A found in the information theoretical
approach as well as limiting the set of constellations, the transmitter can select a constellation
for each user such that the bit-error probability is less than a BER target. We also have found
expressions for the bit-error probability for lattice modulations. Simulation results show that
for a medium range for SNR the proposed scheme outperforms both LRA and linear precoding
methods.

5.1 Suggestions for Future Works

Some suggestions for future works are:

• Consider the adaptive modulations schemes with codes. One difficulty with this approach
is to estimate the bit-error probability in this scenario.

• Consider imperfect channel estimation. Throughout this thesis we consider that CSI in
available for the transmitter, however, in cases where the channel changes quickly, it can
be hard to have a perfect estimation of the channel.

37





Appendix A

Bit-Error Probability of M -QAM Constellations

A.1 AWGN Channels

Consider an AWGN channel y = x + z, where z is the Gaussian noise with variance of N0/2

per dimension, and x is the transmitted symbol of a M -QAM constellation, where M = 2k is
the cardinality, k ≥ 1, with a minimum distance between symbols equals to d.

Note that if M = 2 then we have the traditional BPSK constellation and if k is even we have
a traditional square M -QAM constellation, which can be interpreted as

√
M -PAM constellation

in-phase and quadrature. If k > 1 is odd, let M = I · J , where I = 2
k+1
2 and J = 2

k−1
2 , then a

M -QAM constellation consists of a I-PAM constellation in-phase and a J-PAM constellation
in quadrature. We assume that the modulation uses a Gray code mapping. The bit-error
probability Pb of a M -QAM is given by [41]

PBPSK
b (d,N0) = Q

(

d/2
√

N0/2

)

(A.1)

for 2-QAM (BPSK) constellation,

PM -QAM
b (d,N0) =

4√
M log2 M

log2
√
M

∑

ℓ=1

(1−2−ℓ)
√
M−1

∑

i=0

(−1)

⌊

i2ℓ−1
√
M

⌋

·

(

2ℓ−1 −
⌊
i2ℓ−1

√
M

+
1

2

⌋)

Q

(

(2i+ 1)
d/2

√

N0/2

)

(A.2)

for M -QAM constellation if k = log2 M is even, and

PM -QAM
b (d,N0) =

2

log2 M

(

1

I

log2 I∑

ℓ=1

PI(ℓ) +
1

J

log2 J∑

ℓ=1

PJ(ℓ)

)

(A.3)
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where

PI(ℓ) =

(1−2−ℓ)I−1
∑

i=0

(−1)

⌊

i2ℓ−1

I

⌋

(

2ℓ−1 −
⌊
i2ℓ−1

I
+

1

2

⌋)

Q

(

(2i+ 1)
d/2

√

N0/2

)

PJ(ℓ) =

(1−2−ℓ)J−1
∑

j=0

(−1)

⌊

j2ℓ−1

J

⌋(

2ℓ−1 −
⌊
j2ℓ−1

J
+

1

2

⌋)

Q

(

(2j + 1)
d/2

√

N0/2

)

for M -QAM constellation if k = log2 M is odd, where Q(x) , 1√
2π

∫∞
x

exp
(

−u2

2

)

du is the

Q-function.

A.2 MLAN channel

Let Λ = dZ be a lattice and Λs = qΛ, where q is a power of 2 and d is the minimum distance
between symbol of Λ. Consider a MLAN channel y = x + z mod Λs, where z is a Gaussian
noise with zero mean and variance N0/2 per dimension and x ∈ M, M = Λ ∩ Cube(Λs) is
the constellation points with cardinality M . Note that M resembles a M -PAM constellation,
except for a shift to ensure zero mean. We assume that a Gray code mapping is used. Recall
that, due to modulo-lattice operator, the receiver sees as the constellation M is periodically
extended over the real field.

Let bk be the kth bit of a symbol xℓ ∈ M, k = 1, . . . , log2 M and ℓ = 1, . . . ,M . Let b̂k be
the estimated kth bit of x̂. We say that an error ek occurs if bk 6= b̂k for any k.

The bit-error probability can be calculated as

PM -PAM
b (d,N0) =

1

log2 M

log2 M∑

k=1

Pb(ek) (A.4)

where Pb(ek) is the probability of an error occurs in the kth bit1, k = 1, . . . , log2 M . Since we
assume that the symbols are equiprobable, we have that

Pb(ek) =
1

M

M∑

ℓ=1

Pr [ek|xℓ] . (A.5)

where Pr [ek|xℓ] is the probability of an error occurs in the kth bit if symbols xℓ is transmitted.
We define the error regions of bk for xℓ as the values of z such that if xℓ is transmitted, we

have that b̂k 6= bk. Note that, for k = 1, . . . , log2 M , if we know all the error regions of bk for
xℓ, ℓ = 1, . . . ,M , then we can compute Pb(ek).

For simplicity, let

q(x) , Q

(

x
d/2

√

N0/2

)

(A.6)

where Q(·) is the Q-function.

A.2.1 2-PAM/BPSK

First, let us consider that M resembles a 2-PAM/BPSK constellation. In Fig. A.1, we show the

1We omit the dependence of d and N0 in the expression of Pb(ek) for simplicity.
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Figure A.1: A 2-PAM constellation in a MLAN channel. The dashed lines are the decision regions.

constellations points as seen by the receiver, i.e., an periodically extended 2-PAM constellation,
and its decision regions.

The error regions of b1 for x1 can be expressed as d/2+2id = (1+4i)d/2 < z ≤ 3d/2+2id =

(3 + 4i)d/2, where i ∈ Z. For example, if i = 0 we have the red region in Fig. A.1, and if i = 1

we have the blue region in Fig. A.1. Note that, by symmetry, the error regions of b1 for x2 are
the same. Therefore, we have that

P 2-PAM
b (d,N0) =

∞∑

i=−∞
Pr [(1 + 4i)d/2 < z < (3 + 4i)d/2]

=
∞∑

i=−∞
Pr [z > (1 + 4i)d/2]− Pr [z > (3 + 4i)d/2]

=
∞∑

i=−∞
q(1 + 4i)− q(3 + 4i)

=
∞∑

i=0

q(1 + 4i)− q(3 + 4i) +
−1∑

j=−∞
q(1 + 4j)− q(3 + 4j)

Now, let i = n and j = −n− 1 and note that q(−x) = 1− q(x)

P 2-PAM
b (d,N0) =

∞∑

n=0

q(1 + 4n)− q(3 + 4n) +
0∑

n=∞
q(1 + 4(−n− 1))− q(3 + 4(−n− 1))

=
∞∑

n=0

q(1 + 4n)− q(3 + 4n) +
∞∑

n=0

q(−(3 + 4n))− q(−(1 + 4n))

=
∞∑

n=0

q(1 + 4n)− q(3 + 4n) +
∞∑

n=0

(1− q(3 + 4n))− (1− q(1 + 4n))

=
∞∑

n=0

2q(1 + 4n)− 2q(3 + 4n)

Moreover, since the argument of q(·) is always an odd number, we can rewrite the expression
as

P 2-PAM
b (d,N0) =

∞∑

n=0

(−1)n2q(2n+ 1). (A.7)

A.2.2 General M-PAM

Now we consider that M can resemble any general M -PAM constellation. In this case, we are
going to find each Pb(ek), k = 1, . . . , log2 M , separately.
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Figure A.2: Regions for the first bit b1 of a M -PAM constellation using gray mapping.

We start by calculating the bit-error probability of the first bit b1, i.e., Pb(e1). Fig. A.2
shows the regions where, based on the received signal, the decoder will infer b1 = 0 or b1 = 1.
Note that, symbols x1, . . . , xM/2 have b1 = 0, while symbols xM/2+1, . . . , xM have b1 = 1.

We can see that an error region of b1 for x1 can be found in
(
M
2
− 1

2

)
d = (M − 1)d

2
< z ≤

(
M
2
− 1

2

)
d + M

2
d = (2M − 1)d

2
(it corresponds to the red region in Fig. A.2). Note that, if we

translate this region by iMd, where i ∈ Z, other error region can be found. For example, if
i = −1, we have (M−1)d

2
−Md = −(M+1)d

2
< z < (2M−1)d

2
−Md = −d

2
, which corresponds

to the blue region in Fig. A.2. In general, the error regions of b1 for x1 can be expressed as
−(M + 1)d

2
− iMd = −(2iM +M + 1)d

2
< z < −d

2
− iMd = −(2iM + 1)d

2
for any i ∈ Z, and

therefore

Pr[e1|x1] =
∞∑

i=−∞
Pr

[

−(2iM +M + 1)
d

2
< z < −(2iM + 1)

d

2

]

=
∞∑

i=−∞
Pr

[

z > −(2iM +M + 1)
d

2

]

− Pr

[

z > −(2iM + 1)
d

2

]

=
∞∑

i=−∞
q(−(2iM +M + 1))− q(−(2iM + 1))

=
∞∑

i=−∞
q(2iM + 1)− q(2iM +M + 1) (A.8)

since q(−x) = 1− q(x).

Note that, the error regions of b1 for x2 are the same as the error regions of b1 for x1 but
translated by d. For example, an error region is found in −(M + 1)d

2
− d = −(M + 3)d

2
< z ≤

−d
2
− d = 3d

2
(which corresponds to the blue region in Fig. A.2). Again, if we translate this

region by iMd, where i ∈ Z, other error regions are found. In general, the error regions of b1
for x2 can be expressed as −(2iM +M + 3)d

2
< z ≤ −(2iM + 3)d

2
and therefore

Pr[e1|x2] =
∞∑

i=−∞
q(−(2iM +M + 3))− q(−(2iM + 3))

=
∞∑

i=−∞
q(2iM + 3)− q(2iM +M + 3). (A.9)

The error regions of b1 for xℓ, ℓ = 2, . . . ,M/2, are the same error regions of b1 for xℓ−1 but
translate by d. For example, the error regions of b1 for xM/2 can be expressed as −(2iM +M +

1)d
2
−
(
M
2
− 1
)
d = −(2iM + 2M − 1)d

2
< z < −(2iM + 1)d

2
−
(
M
2
− 1
)
d = −(2iM +M − 1)d

2
,

where i ∈ Z (in particular, if i = 0 then the region corresponds to the blue region in Fig. A.2).
Moreover, due to symmetry, symbols x1 and xM/2+1 share the same error regions, as well as
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Figure A.3: Regions of the second bit b2 of M -PAM constellation using Gray mapping.

symbols x2 and xM/2+2, and so on, up to xM/2 and xM . We can show that, for appropriate
values of ℓ, Pr[e1|xℓ] = Pr[e1|xℓ±M/2].

We can now use (A.5), and show that

Pb(e1) =
1

M

∞∑

i=−∞
2q(2iM + 1) + 2q(2iM + 3) + · · ·+ 2q(2iM +M − 1)
︸ ︷︷ ︸

M/2 terms

− 2q(2iM +M + 1)− · · · − 2q(2iM + 2M − 1)

By using a similar trick as we used for 2-PAM (i.e., we separate the summation for i from 0 to
∞ and j from −∞ to −1, and set i = n and j = −n− 1), it is possible to show that

Pb(e1) =
1

M

∞∑

n=0

4q(2nM + 1) + · · ·+ 4q(2nM +M − 1)

− 4q(2nM +M + 1)− · · · − 4q(2nM + 2M − 1)

=
1

M

∞∑

n=0

M−1∑

m=0

(−1)⌊ 2m
M ⌋4q(2nM + 2m+ 1)

Finally, let i = m+ nM . Note that (−1)⌊ 2m
M ⌋ = (−1)⌊ 2i−2nM

M ⌋ = (−1)⌊ 2i
M

−2n⌋ = (−1)⌊ 2i
M ⌋−2n =

(−1)⌊ 2i
M ⌋. Moreover, we can combine the two summations into one and rewrite the above

equation in a more closed form

Pb(e1) =
1

M

∞∑

i=0

(−1)⌊
2i
M

⌋4q(2i+ 1). (A.10)

Note that, if M = 2, this is the same expression as bit-error probability of BPSK constellation
(A.7).

We can use the same idea as Pb(e1) to find Pb(e2). Fig. A.3 shows the region where b2 = 0

and b2 = 1. For example, symbols xM/4+1, . . . , x3M/4 have b2 = 1, while the other symbols have
b2 = 0. Note that the error regions correspond to a translated version of b1. For example, the
error regions of b2 for xM/4+1 can be expressed as −(2iM +M +1)d

2
< z < −(2iM +1)d

2
, where

i ∈ Z (in Fig. A.3, if i = 0, the error region corresponds to the blue region and if i = −1, it
correspond to the red region). We can conclude that Pb(e2) = Pb(e1), i.e.,

Pb(e2) =
1

M

∞∑

n=0

(−1)⌊
2n
M

⌋4q(2n+ 1). (A.11)

Fig. A.4 shows the regions of b3 = 1 and b3 = 0. An error region of b3 for xM/8+1 can be
expressed as

(
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2

)
d =

(
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)

d
2
< z <

(
M
4
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2

)
d+ M

4
d = (M −1)d

2
(which corresponds to
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Figure A.4: Regions of the second bit b3 of M -PAM constellation using Gray mapping.

the red region in Fig. A.4). Note that we can find other error regions by translate it by iM
2
d for

i ∈ Z. For example
(
M
2
− 1
)

d
2
− M

2
d = −

(
M
2
+ 1
)

d
2
< z < (M − 1)d

2
− M

2
d = −d

2
corresponds

to the blue region in Fig. A.4. By following the same argument as b1 we can show that

Pr[e3|xM/8+1] =
∞∑

i=−∞
q

(

−M

2
− 1− iM

)

− q (−1− iM)

=
∞∑

i=−∞
q(iM + 1)− q

(

iM +
M

2
+ 1

)

. (A.12)

It is possible to show that if symbol xℓ is transmitted, for ℓ = M
8
+ 2, . . . , 3

8
M , the error

regions are the same as xℓ−1 translate by d. Moreover, for appropriate values of ℓ, Pr[e3|xℓ] =

Pr[e3|xℓ±M
4
]. We have that

Pb(e3) =
1

M

∞∑

i=−∞
4q(iM + 1) + 4q(iM + 3) + · · ·+ 4q

(

iM +
M

2
− 1

)

︸ ︷︷ ︸

M/4 terms

− 4q

(

iM +
M

2
+ 1

)

− · · · − 4q(iM +M − 1) (A.13)

Again, since the summation for negative values of i is equal to the summation for nonnegative
values of i, we can express the above equation in a more closed form

Pb(b3) =
1

M

∞∑

n=0

(−1)⌊
4n
M

⌋8q(2n+ 1). (A.14)

By using this idea, it is possible to show that, for k ≥ 2

Pb(ek) =
1

M

∞∑

i=−∞
2k−1q

(

i
4M

2k−1
+ 1

)

+ · · ·+ 2k−1q

(

i
4M

2k−1
+

2M

2k−1
− 1

)

︸ ︷︷ ︸

M/2k−1 terms

− 2k−1q

(

i
4M

2k−1
+

2M

2k−1
+ 1

)

− · · · − 2k−1q

(

i
4M

2k−1
+

4M

2k−1
− 1

)

=
1

M

∞∑

n=0

(−1)

⌊

2k−1n
M

⌋

2kq(2n+ 1) (A.15)

We can now calculate (A.4), where Pb(ek) is given by (A.10) if k = 1 and by (A.15) if k ≥ 2.
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