
FEDERAL UNIVERSITY OF SANTA CATARINA
TECHNOLOGICAL CENTER

GRADUATION PROGRAM IN AUTOMATION AND SYSTEMS ENGINEERING

João Gabriel Zago

Defense Methods for Convolutional Neural Networks Against Adversarial
Attacks

Florianópolis
2021

João Gabriel Zago

Defense Methods for Convolutional Neural Networks Against Adversarial
Attacks

Thesis submitted to the Graduation Program in Au-
tomation and Systems Engineering from the Federal
University of Santa Catarina for obtaining the Master
Degree in Automation and Systems Engineering.
Supervisor:: Prof. Fabio Luis Baldissera, Dr.
Co-supervisor:: Prof. Rodrigo Tacla Saad, Dr., Prof.
Eric Aislan Antonelo, Dr.

Florianópolis
2021

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Zago, João Gabriel
 Defense Methods for Convolutional Neural Networks
Against Adversarial Attacks / João Gabriel Zago ;
orientador, Fabio Luis Baldissera, coorientador, Rodrigo
Tacla Saad, coorientador, Eric Aislan Antonelo, 2021.
 66 p.

 Dissertação (mestrado) Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de PósGraduação em
Engenharia de Automação e Sistemas, Florianópolis, 2021.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2. Adversarial
examples. 3. Convolutional Neural Networks. 4. Adversarial
defenses. I. Baldissera, Fabio Luis. II. Tacla Saad,
Rodrigo. III. Aislan Antonelo, Eric IV. Universidade
Federal de Santa Catarina. Programa de PósGraduação em
Engenharia de Automação e Sistemas. V. Título.

João Gabriel Zago

Defense Methods for Convolutional Neural Networks Against Adversarial
Attacks

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca
examinadora composta pelos seguintes membros:

Prof. Maurício Fernandes Figueiredo, Dr.
Federal University of São Carlos

Prof. Jomi Fred Hubner, Dr.
Federal University of Santa Catarina

Prof. Marcelo Stemmer, Dr.
Federal University of Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi
julgado adequado para obtenção do título de mestre em Engenharia de Automação e
Sistemas.

Prof. Werner Kraus Junior, Dr.
Coordenador do Programa

Prof. Fabio Luis Baldissera, Dr.
Supervisor:

Florianópolis, 5 de Abril de 2021.

I dedicate this Thesis to my parents, my sisters, Dori and
all the loved ones. Hope you appreciate this work.

ACKNOWLEDGEMENTS

Working on this Master’s Thesis and, in general, developing research in this sci-
entific environment is arduous. Without the support of various people, the difficulty level
of this path would have increased substantially. First of all, I wish to express my sincere
appreciation to my Supervisor, Prof. Fabio Baldissera, Dr. and Co-supervisors Prof.
Rodrigo Tacla Saad, Dr. and Prof.Eric Aislan Antonelo, Dr. for their support, intellec-
tual guidance, encouragement, and valuable advice. This work would have significantly
different results, and this document would not have reached this level of coherence
without their assistance and teachings.

My appreciation also goes for the Coordination for the Improvement of Higher
Education Personnel (CAPES) for offering a scholarship as a graduate student, enabling
access to higher education. Last but not least, I would like to express my appreciation for
my parents, Mr. Alair Aparecido Zago and Madam Maria Lucia Celestino Zago, for their
emotional and financial support, providing all the necessary tools and the opportunity
of going through this experience.

RESUMO

Mesmo com seu sucesso na classificação de imagens, as redes neurais convolucionais
são frágeis com relação a pequenas perturbações inseridas nas imagens que tal mod-
elo deve classificar: pequenas alterações nos valores de alguns dos pixels da sua
entrada podem resultar em uma classificação de saída completamente diferente. Tais
imagens intencionalmente perturbadas para enganar o classificador são conhecidas
como exemplos adversários. A vulnerabilidade das redes neurais convolucionais com
respeito aos exemplos adversários levanta um alerta com relação a utilização destes
modelos em aplicações que necessitam de garantias de segurança: que envolvem
risco a vida, ambiental, ou tem implicações financeiras. Esta dissertação contém dois
métodos complementares e computacionalmente baratos que buscam auxiliar a aliviar
e eliminar tal vulnerabilidade. a) uma nova estratégias que reduz a efetividade de
ataques adversários, ofuscando as saídas da rede neural a partir da adição de pertur-
bações controladas, não necessitando de nenhum tipo de treinamento; e b) um método
que emprega a lei de Benford para distinguir imagens sem perturbação de exemplos
adversários, provendo uma proteção extra que age nas entradas de um classificador
vulnerável. O primeiro método de defesa desenvolvido (a) não somente reduz a taxa
de sucesso, mas também força a adição de uma perturbação de maior magnitude por
parte do atacante. O estudo conduzido em (b) indicou que: 1) imagens adversárias
possuem uma tendência de desviar de forma significativa com respeito a lei de Benford,
em comparação com imagens que não foram perturbadas; 2) há um incremento deste
desvio com o aumento da perturbação inserida; 3) em alguns casos é possível identi-
ficar ataques em andamento através de um monitoramento deste desvio, o que torna
possível o desligamento do atacante antes que o mesmo complete a sua operação e
crie um exemplo adversário. Por fim, pelo fato de ambos os métodos propostos serem
ortogonais, é esperada uma maior proteção contra ataques adversários ao se utilizar
ambos simultaneamente.

Palavras-chave: Redes neurais convolucionais. Métodos de defesa. Ataques adver-
sários. Lei de Benford. Detecção de exemplos adversários.

RESUMO EXPANDIDO

Introdução

As redes neurais convolucionais alcançaram o estado da arte na classificação de im-
agens (KRIZHEVSKY; SUTSKEVER; HINTON, 2012; SZEGEDY; VANHOUCKE, et
al., 2016; SIMONYAN; ZISSERMAN, 2014). Entretanto, estes modelos se mantém
vulneráveis com relação a pequenas perturbações inseridas nas entradas que estas
classificam, o que restringe seu uso em aplicações que não necessitam de garantias
de segurança (SZEGEDY; ZAREMBA, et al., 2013; HUANG et al., 2017). Para um mel-
hor entendimento deste fenômeno, pesquisadores da área desenvolveram algoritmos
para a geração dos chamados exemplos adversários, que representam tais entradas
projetadas para induzir um erro de classificação por parte do modelo de classificação,
sem alterar a classe atribuída por um ser humano.

Foram propostas e desenvolvidas diversas abordagens para proteger as redes con-
volucionais contra tais algoritmos, as quais podem ser classificadas em dois grandes
grupos: a) centradas na redes, as quais buscam reduzir a vulnerabilidade da redes com
relação aos exemplos adversários atuando no modelo de classificação (MADRY et al.,
2017; PAPERNOT; MCDANIEL; WU, et al., 2016; KATZ et al., 2017); b) centradas nas
entradas, que são aquelas que atuam nas entradas dadas ao modelo, detectando ou
reconstruindo-as de tal forma a reduzir o impacto destes ataques (LU; ISSARANON;
FORSYTH, 2017; SONG et al., 2017). Mesmo com os avançados das técnicas de de-
fesa contra ataques adversários, até o momento os atacantes seguem na frente, o que
parece ser resultado de uma vulnerabilidade inerente dos modelos de classificação
baseados em redes neurais convolucionais, com respeito a imagens perturbadas que
se encontram fora da distribuição de exemplos de treinamento do modelo.

Objetivos

Com base nesta fragilidade apresentada por modelos de classificação de imagens, o
objetivo principal desta dissertação foi trabalhar no desenvolvimento de métodos de
defesa visando uma redução no impacto dos ataques adversários, fazendo com o que
o número de exemplos adversários gerados fosse reduzido. Como objetivos específi-
cos deste trabalho, buscou-se realizar um estudo detalhado da literatura de ataques e
defesas para redes neurais com respeito aos exemplos adversários, propor uma nova
abordagem para defender as redes neurais convolucionais, avaliar o método proposto
frente ao que já existe na literatura, realizar alguns estudos teóricos em exemplos sim-
plificados para criar um entendimento maior sobre o problema em questão, propiciando
assim um aprimoramento e uma busca por novas técnicas de defesa.

Metodologia

Para o desenvolvimento da pesquisa, iniciou-se com uma investigação detalhada da
literatura de exemplos adversários relacionados a redes neurais convolucionais, já que
tais modelos representam atualmente o estado da arte em classificação de imagens.
Dentro desta busca, foi realizada a implementação de métodos de ataque e defesa
existentes na literatura com o intuito de identificar possíveis melhorias e oportunidades
para a proposição e o desenvolvimento de novas abordagens. Com base nas infor-
mações obtidas, a etapa seguinte consistia de uma primeiro proposta de método de

defesa para os modelos de classificação. Para avaliar o funcionamento da ideia, foi
construída uma estrutura de teste composta por um modelo convolucional treinado
com os dados do MNIST, que são imagens de baixa resolução contendo dígitos de
0 até 9, além de ataques adversário. Validado o método para este modelo, seria en-
tão iniciada uma nova etapa de exploração para identificar melhorias na proposta e
possíveis novas abordagens para a redução do impacto de exemplos adversários no
funcionamento das redes neurais.

Resultados e Discussões

A duas contribuições principais construídas com a realização desta pesquisa foram: 1)
um método de defesa para redes neurais convolucionais contra métodos de ataque do
tipo caixa-preta (aqueles que necessitam de acesso apenas às saídas da rede), que
se baseia na aplicação de um ruído aleatório na distribuição de saída do modelo; e
2) uma análise estatística da distribuição do primeiro dígito que permite a detecção
de exemplos adversários após serem gerados ou durante o seu procedimento de
construção.

O método (1) consiste da adição de uma perturbação na distribuição de saída dada
pela rede neural, cujo o objetivo é o de confundir o algoritmo de ataque com relação a
direção da perturbação a ser inserida. Tal proposta não envolve nenhum processo de
treinamento da rede neural, atuando apenas durante o período de inferência do modelo.
O método (1): a) reduz a taxa de sucesso de um ataque caixa-preta particular de
99.8% para 65.3%; e b) induz um aumento na magnitude de perturbação inserida pelo
atacantes, o que é um resultado importante, já que um bom ataque adversário é aquele
que gera exemplos adversários com perturbações aproximadamente imperceptíveis.

Relativa a proposta (2), a análise apresentada permite o desenvolvimento de um novo
método de detecção de exemplos adversários com base na lei de Benford (BENFORD,
1938). Tal lei apresenta o comportamento esperado para a distribuição do primeiro
dígito de um conjunto de dados não artificiais. Analisando a distribuição do primeiro
dígito em imagens em comparação com a distribuição teórica prevista na lei de Benford,
é possível identificar imagens propositalmente alteradas. Os resultados dos experimen-
tos realizados mostraram que: a) imagens adversários, diferentemente de imagens
naturais, tendem a desviar significativamente da lei de Benford; b) o desvio é maior
para algoritmos de ataque que se baseia na utilização da ||.||∞-norma; c) o aumento
da magnitude da perturbação faz com que o desvio com relação a lei de Berford au-
mente; d) em alguns casos, é possível identificar atacantes que estejam no processo
de geração de exemplos adversários, antes mesmo de que o ataque seja finalizado;
e e) tal abordagem provê uma métrica de baixo custo computacional que pode ser
utilizada para a detecção de exemplos adversários.

Considerações Finais

Neste trabalho foram propostas duas abordagens diferentes para lidar com os ex-
emplos adversário, ambas com foco em reduzir a vulnerabilidade de tais modelos
frente a diferentes ataques adversários. O primeiro método consiste da adição de uma
perturbação aleatório e controlada nas camada de saída de um classificador neural.
Tal abordagem consiste de uma estratégia de defesa com foco em ataque do tipo

caixa-preta, dificultando a identificação dos pixels que levarão a uma mudança de clas-
sificação. A segunda proposta consiste de uma análise que pode ser utilizada para a
criação de um detector de exemplos adversários. Esta abordagem se baseia no calculo
da distribuição do primeiro dígito para as entradas do classificador, tomando como pre-
missa a ideia de que exemplos adversários não seguem a distribuição prevista na lei de
Benford. Ambas propostas trabalham apenas na fase de inferência, não necessitando
de qualquer tipo de alteração ou incremente no processo de treinamento ou alteração
nos parâmetros e na arquitetura da rede.

ABSTRACT

Despite its success in image classification, Convolutional Neural Networks (CNN) are
still fragile to small perturbations in the input images they have to classify: slight changes
in the values of some pixels might result in completely different network outputs. Such
images purposefully perturbed to deceive a classifier are known as adversarial images.
This vulnerability of CNN to adversarial images raises concerns in safety-sensitive ap-
plications: involving life-threatening, environmental, or financial implications. This thesis
proposes two computationally cheap and complementary methods to help circumvent
and alleviate this fragility of CNN: a) a novel strategy that reduces the success of adver-
sarial attacks by obfuscating the softmax output, which does not require any network
training; and b) a method that employs Benford’s Law for distinguishing transformed
natural images from transformed adversarial ones at the pixel level, providing an extra
shield acting at the input layer of vulnerable CNN. The defense we developed in (a) not
only decreases the attack success rate but also forces the attack algorithm to insert
larger perturbations in the input images. The study conducted in (b) indicates that: 1)
adversarial images tend to deviate significantly more from Benford’s distribution than
unaltered images; 2) this deviation increases with the magnitude of the perturbation;
3) in some cases, it is possible to identify ongoing attacks by online monitoring this
deviation, making it possible to turn off the classifier for the particular requester before
it completes an attack. Finally, these two methods are orthogonal in that we expect the
CNN classifier to get better protection against attacks while using them simultaneously.

Keywords: Convolutional neural networks. Defense strategies. Adversarial attacks.
Benford’s law. Adversarial detection.

LIST OF FIGURES

Figure 1 – Document reading paths . 18
Figure 2 – Neuron architecture representation 19
Figure 3 – Artificial Neural Network Representation 20
Figure 4 – Convolution and pooling operations 22
Figure 5 – Convolutional neural network architecture representation 23
Figure 6 – Convolution Layer Mapping Process 23
Figure 7 – Adversarial example crafting process 24
Figure 8 – Disturbance-based defense method overview 40
Figure 9 – Concentric circles data set . 43
Figure 10 – Attack success rate against disturbance methods 45
Figure 11 – Perturbation magnitude distribution regarding disturbance defense

methods . 46
Figure 12 – Adversarial and clean examples regarding each defense method . . 47
Figure 13 – ZOO gradient approximation . 48
Figure 14 – Visualization of the ZOO iterations against the proposed defense

method . 49
Figure 15 – Overview of the proposed method based on Benford’s Law 50
Figure 16 – First digit distribution as in Benford’s Law 51
Figure 17 – Scatter plot for the deviation of clean and adversarial examples . . . 55
Figure 18 – Deviation regarding the perturbation magnitude 56
Figure 19 – Behavior of the KS statistic regarding the PGD attack iterations . . . 57

LIST OF TABLES

Table 1 – Neural Network Architecture for the MNIST data set - Disturbance-
based defense method . 43

Table 2 – Neural Network Architecture for the concentric circles data set -
Disturbance-based defense method 44

Table 3 – Defense methods for CNN classifier 44
Table 4 – Neural Network Architecture - MNIST 53
Table 5 – Maximum separation percentage comparison between the Kullback-

Leibler divergence and the Kolmogorov-Smirnov statistics. 58

CONTENTS

1 INTRODUCTION . 15
1.1 CONTRIBUTIONS . 16
1.2 DOCUMENT ORGANIZATION . 17
2 ADVERSARIAL EXAMPLES: FUNDAMENTALS 19
2.1 ARTIFICIAL NEURAL NETWORKS 19
2.2 CONVOLUTIONAL NEURAL NETWORKS 22
2.3 ADVERSARIAL EXAMPLES . 24
2.4 ADVERSARIAL ATTACKS . 25
2.5 ADVERSARIAL DEFENSES . 34
3 DISTURBANCE-BASED DEFENSE 39
3.1 PROBLEM FORMULATION . 39
3.2 DEFENSE PROPOSALS . 39
3.2.1 Homogeneously Disturbed Classes (HDC) 40
3.2.2 Disturbed Classes with Order Preservation (DCOP) 41
3.2.3 Limited Disturbed Classes with Order Preservation (LDCOP) . . 42
3.3 EXPERIMENTAL SETUP . 42
3.3.1 Convolution neural network (CNN) 42
3.3.2 Experimental procedure . 44
3.3.3 Adversarial Attack . 45
3.4 RESULTS . 45
3.4.1 ZOO attack success rate reduction 45
3.4.2 Perturbation magnitude increment 46
3.4.3 Defense method visualization . 48
4 BENFORD’S LAW FOR ADVERSARIAL DETECTION ? 50
4.1 OVERVIEW . 50
4.1.1 Benford’s Law . 50
4.1.2 Image Transformation: Gradient Magnitude 51
4.1.3 Computing the First Digit Distribution 52
4.1.4 Comparing two distributions: the Kolmogorov-Smirnov test . . . 52
4.2 EXPERIMENTAL COMPONENTS . 52
4.2.1 Data sets . 52
4.2.2 CNNs under attack . 53
4.2.3 Adversarial Attacks . 54
4.2.4 Experimental Description . 54
4.3 RESULTS . 54
4.3.1 First digit distribution deviation . 55
4.3.2 Deviation regarding different attack norm 56

4.3.3 Deviation regarding the perturbation magnitude 56
4.3.4 Deviation regarding attack iteration 57
4.3.5 KS test compared to the KL divergence 57
5 CONCLUSION . 59
5.1 FUTURE WORKS . 60
5.2 PUBLICATIONS . 60

REFERENCES . 62

15

1 INTRODUCTION

Convolutional Neural Networks (CNN) have achieved state-of-the-art per-
formance in image classification (KRIZHEVSKY; SUTSKEVER; HINTON, 2012;
SZEGEDY; VANHOUCKE, et al., 2016; SIMONYAN; ZISSERMAN, 2014). However,
they are vulnerable to small perturbations in the inputs they ought to classify, a fact
that restricts them to applications that are not safety-sensitive (SZEGEDY; ZAREMBA,
et al., 2013; HUANG et al., 2017). One example of such fragility is that of a neural
network that mistakes a slightly perturbed image of a panda for a gibbon (GOOD-
FELLOW; SHLENS; SZEGEDY, 2014). To better study this vulnerability phenomenon,
researchers have recently developed algorithms that generate the so-called adversarial
examples. These are inputs purposefully designed to induce a misclassification by the
neural network (though not by a human being).

One can divide the adversarial attack algorithms into two main categories re-
garding the attacker’s knowledge about the network: white-box and black-box methods.
White-box attacks are those that use at least one internal parameter of the neural net-
work (e.g., its number of layers or the values of its synaptic weights) to generate their
attacks (SZEGEDY; ZAREMBA, et al., 2013; GOODFELLOW; SHLENS; SZEGEDY,
2014; KURAKIN; GOODFELLOW; BENGIO, 2016a; PAPERNOT; MCDANIEL; JHA,
et al., 2015; MOOSAVI-DEZFOOLI; FAWZI; FROSSARD, 2016; CARLINI; WAGNER,
2017b; MOOSAVI-DEZFOOLI; FAWZI; FAWZI, et al., 2017; SABOUR et al., 2015;
MADRY et al., 2017). On the other hand, black-box algorithms only access the out-
puts of CNN classifiers for a given set of input images to devise adversarial exam-
ples (PAPERNOT; MCDANIEL; GOODFELLOW, et al., 2017; NARODYTSKA; KA-
SIVISWANATHAN, 2016; CHEN et al., 2017; SU; VARGAS; SAKURAI, 2017; ZHAO;
DUA; SINGH, 2018).

To protect CNN against such attacks, researchers have devised a wide range
of defense strategies in the last few years. We can group them into two major cate-
gories: a) network-centered, whose aim is to decrease the neural network vulnerability
to adversarial attacks (SZEGEDY; ZAREMBA, et al., 2013; GOODFELLOW; SHLENS;
SZEGEDY, 2014; MADRY et al., 2017; TRAMÈR et al., 2018; KURAKIN; GOOD-
FELLOW; BENGIO, 2016b; PAPERNOT; MCDANIEL; WU, et al., 2016; MOOSAVI-
DEZFOOLI; FAWZI; FROSSARD, 2016); b) input-centered, where the goal is to detect
or reconstruct adversarial images (LU; ISSARANON; FORSYTH, 2017; METZEN et al.,
2017; FEINMAN et al., 2017; GROSSE et al., 2017; SONG et al., 2017; KATZ et al.,
2017; GU; RIGAZIO, 2014; SONG et al., 2017; MENG; CHEN, 2017). Despite the
advances in defense techniques, the attackers are, up to now, winning this digital arms
race since CNN-based classifiers seem to be inherently vulnerable to perturbed images
that lie outside their training set probability distributions.

Chapter 1. Introduction 16

In this Master thesis, we propose two different approaches that act on the de-
fensive side of neural network classifiers. The first one reduces the attack success
rate by inserting controlled disturbances to the classifiers’ output probabilities (network-
centered). The second provides a different feature for detecting adversarial attacks
requiring only the given input without changing the CNN (input-centered).

1.1 CONTRIBUTIONS

Our research brings two main contributions:

1. a disturbance based defense method against black-box attacks that need access
to the output layer of CNN (class probabilities);

2. a statistical analysis that enables detecting adversarial examples prior to or during
an ongoing attack.

The method referred in (1) consists of disturbing the class probabilities output
by CNN to confuse the attack algorithm regarding the promising perturbation directions
(i.e., pixels that, when perturbed, render an adversarial example). Note that this strategy
is different from adversarial training (SZEGEDY; ZAREMBA, et al., 2013; GOODFEL-
LOW; SHLENS; SZEGEDY, 2014; MOOSAVI-DEZFOOLI; FAWZI; FROSSARD, 2016;
MADRY et al., 2017; KURAKIN; GOODFELLOW; BENGIO, 2016b; TRAMÈR et al.,
2018) and defensive distillation (PAPERNOT; MCDANIEL; WU, et al., 2016), which
requires training CNN regarding specific criteria, resulting in an increment of the clas-
sifier’s robustness (i.e., reducing the effective number of existing adversarial images).
Our approach does not involve training CNN, but it acts at inference time, disturbing in
a controlled way the predicted class probabilities, rendering it a computationally cheap
method compared to the literature. What our strategy does is to make it harder for
the attack algorithm to find such adversarial inputs. As we show later, our proposal: a)
reduces the success rate of particular black-box attacks from 99.8% to 65.3%; and b)
induces the attack algorithms to insert perturbations of higher magnitude. This result is
an interesting feature because a good adversarial image is one that not only deceives
the classifier but does so "gracefully”.

Our method stands out in comparison to adversarial training and defensive dis-
tillation because: one showed that scaling up the size of the training set using adver-
sarial training method, seems to be unfeasible as the authors proved to be insufficient
to improve the neural network robustness against all possible adversarial examples
(KHOURY; HADFIELD-MENELL, 2019). Yet, the defensive distillation succumbed to
the C&W adversarial attack (CARLINI; WAGNER, 2017b), which differs from ZOO by
the gradient calculation procedure (CHEN et al., 2017).

Chapter 1. Introduction 17

Regarding the second contribution, we present a thorough analysis that could
enable the development of a detection method for adversarial examples based on Ben-
ford’s law (BENFORD, 1938). This law states the behavior of the first digit distribution
in numbers from real-world data sources. By analyzing the first digit distribution of the
pixels in images concerning Benford’s law theoretical distribution, it is possible to infer
purposefully altered images. The application of Benford’s Law (BL) came from its uses
in other domains, such as fraud detection (TÖDTER, 2009; DECKERT; MYAGKOV;
ORDESHOOK, 2011) and image forensics (MILANI et al., 2016; PEVNY; FRIDRICH,
2008). Our empirical experiments show that: 1) adversarial images, differently from
natural ones, tend to deviate significantly from BL; 2) this deviation is higher for attack
algorithms based on ||.||∞-norm perturbations; 3) deviations from Benford’s Law in-
crease with the magnitude of the designed perturbation; 4) in some cases, adversarial
attacks can be anticipated even before the perturbed image becomes adversarial, that
is, a deviation from BL takes place during the perturbation iterative design process;
and, 5) another fundamental characteristic of this new approach is that it produces a
computationally cheap low-dimensional input feature that could be used for adversarial
image detection.

Besides, both of the proposed procedures are orthogonal among existing de-
fense methods as their functioning does not influence the training procedure or the
architecture of neural networks classifier. This feature enables the combination of these
approaches with different adversarial defense methods.

1.2 DOCUMENT ORGANIZATION

In this section, we present the document structure and guidance for reading
paths regarding the lector profile. Figure 1 presents three different recommended read-
ing tracks that one may follow for reading this document, composed of five chapters.
Chapter 1 started with a presentation on the context and the contributions of this re-
search.

In Chapter 2 we present fundamental concepts on adversarial examples regard-
ing artificial neural networks for image classification.

Chapter 3 shows the first method proposed in this research based on the appli-
cation of disturbance to the output probabilities of a neural network.

In Chapter 4 we show our second proposed approach, comprising a statistical
analysis of the first digit distribution of images regarding Benford’s Law. As chapters
3 and 4 present independent (although complementary to each other) methods, their
reading order choice is up to the reader.

Finally, Chapter 5 shows the conclusions from our methods regarding the
achieved results. Furthermore, we describe future works and references to the papers
submitted during this Master’s research.

Chapter 1. Introduction 18

Figure 1 – Flowchart presenting three different reading paths, regarding different inter-
ests. The reader 1 has inexperienced comprehension on artificial neural net-
works. Reader 2 has the necessary knowledge on artificial and convolutional
neural networks, yet not a deeper understanding on adversarial examples.
The last reader, number 3, comprehends the adversarial examples theory
and focus the proposed approaches.

19

2 ADVERSARIAL EXAMPLES: FUNDAMENTALS

In this chapter, we begin introducing artificial neural networks. We expose in-
formation about their inspiration, different architectures (i.e., fully connected and con-
volutional neural networks), and their inference and training processes. Further, we
describe and define the adversarial examples. We present some of their properties and
the concern raised by applying these models in safety-sensitive environments. We also
show some of the attack procedures proposed in the literature for generating those
examples and also defending neural networks against them.

2.1 ARTIFICIAL NEURAL NETWORKS

Architecture

Artificial neural networks are mathematical models for information processing.
They draw their inspiration from the architecture and functioning of animal brains. As
their (much more intricate) biological counterparts, artificial neural networks find applica-
tions in different domains, such as image classification (KRIZHEVSKY; SUTSKEVER;
HINTON, 2012; SIMONYAN; ZISSERMAN, 2014; SZEGEDY; VANHOUCKE, et al.,
2016), natural language processing (HINTON; DENG, et al., 2012) and many others.

An artificial neuron is the processing unity of information for the operations of a
neural network. Figure 2 presents a visual representation of a generic artificial neuron
functioning. A single neuron comprises three elementary components: the synaptic

Figure 2 – Artificial neuron functioning representation. The inputs are weighted,
summed and activated by a function σ. The output comprises of the acti-
vation from a linear combination of the inputs.

Chapter 2. Adversarial Examples: Fundamentals 20

weights applied to each input, the sum operation of the weighted inputs, and the activa-
tion function. Equation 1 shows the mathematical representation for an artificial neuron
mapping.

y = σ

(
n∑
i=0

wixi

)
(1)

Artificial networks are composed of several layers, which, in turn, have several
neurons. There are different architecture arrangements for the neurons inside an
artificial neural network. We present here the fully connected and the convolution
architectures. The latter achieves state-of-the-art results for image classification
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012; SIMONYAN; ZISSERMAN, 2014;
SZEGEDY; VANHOUCKE, et al., 2016), and also is the scope of this research.

The fully connected architecture comprises arranging the neurons so that all the
artificial neural cells from the previous layer connect directly with all the neurons from
the posterior layer. The artificial neuron: a) receives inputs from some (possibly all)
neighboring neurons located in the layer k − 1; b) map these inputs to a scalar output,
according to a (generally nonlinear) function, called activation function; and c) sends
its output signal to some (possibly all) neurons in the layer k + 1. First layers neurons
receive external inputs, which can be images, sounds, or other data objects. Figure 2
presents this arrangement. Neural networks with more than two layers (i.e., the input
and output layers) include the so-called hidden layers, which are those internal layers
connecting a neural network’s inputs and outputs.

There are two main processes assigned to artificial neural networks: inference
and training. Formally, one can model artificial neural networks inference process by
mathematical maps F : Rn → Rm that go from a given n-dimensional input space to
some m-dimensional output space. In the case of image classification, for instance,
x ∈ Rn is the mathematical representation of an image, whereas F (x) ∈ Rm is a
probability vector, where F (x)i contains the probability that the example x belongs to

Figure 3 – Directed acyclic graph representation of a fully connected neural network.
Each internal node represents a neuron, represented in Figure 2

Chapter 2. Adversarial Examples: Fundamentals 21

the class i, 1 ≤ i ≤ m, e.g., a cat, a dog or a baseball bat.
Let Zk denote the output of the k-th layer of a neural network N , where Z0 = x

is the external input and ZL+1 = F (x) is the network’s output, with L being the number
of hidden layers. Then, for the case of a fully connected neural network, Equation
2 describes the map between layers, where Wk ∈ R|Zk−1|×|Zk| is the weights matrix,
bk ∈ R|Zk| the bias vector, and fk : R|Zk| → R|Zk| the activation function of a single layer.
The weights and biases are the adjustable parameters.

Zk = fk(Wk × Zk−1 + bk) (2)

The choice of the activation functions, as well as the network architecture, are
application-dependent. For instance, classification models use the softmax (or sigmoid
for binary classifier) function as activation for the output layer, as this function returns
the probability distribution associated with each class.

Training

The training process in supervised learning comprises adapting the weights
of an artificial neural network based on a training data set. This data set consists
of input patterns and their respective target outputs. We define the training set as
{(x(j), t(j)) : x(j) ∈ X and t(j) ∈ T,∀j ∈ {1, . . . , T}}, where X ⊆ Rn is a subset of the
input space (i.e., the set of training inputs), T ⊆ Rm the set of expected outputs or
targets, T = |X| = |T| represents the size of the training set and t(j) the corresponding
expected output associated with x(j). The epochs of training indicate the number of
iterations over all the samples from the data set. The training procedure consists of an
optimization task to minimize a given loss function, regarding the adjustable parameters
W and b, that represent Wk and bk for all k ∈ {1, . . . , L}. Without loss of generality, we
represent both, W and b, as W′.

The loss function, denoted as J , must agree with the problem solved by the
neural network. For classification models, the categorical cross-entropy is preferable,
presented in Equation 3:

JCE(W′) = −
T∑
j

m∑
i

t
(j)
i log(F (x(j);W′)i) (3)

where T denotes the size of the training set and t(j) the desired output for x(j). On the
other hand, the mean squared error usually fits better for regression models, showed
in Equation 4:

JMSE(W′) =
1

T

T∑
j

m∑
i

(t
(j)
i − F (x(j);W′)i)

2 (4)

The gradient descent and the Adam optimizer (KINGMA; BA, 2014) are examples
of optimization algorithms usually employed to minimize the loss function. Equation 5

Chapter 2. Adversarial Examples: Fundamentals 22

shows the weights update by using the gradient descent optimization procedure:

W′ = W′ − η × ∂J(W′)

∂W′ (5)

where W′ represent the weights and bias matrices, and η represents the learning rate
of the training process.

The minimization relies on the gradient of the loss function regarding the weights,
∇J(W′), which employs the whole data set or a minibatch of examples. The latter form
is called stochastic gradient descent. The computation of gradients takes place through
the error back-propagation algorithm (RUMELHART; HINTON; WILLIAMS, 1986).

2.2 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNN) are Artificial Neural Networks specialized
in processing data with a grid-like topology. This architecture comprises two distinct
operations: the discrete convolution and pooling operations. Typically, CNN comprise
two types of layers, where each of them represents a different operation (i.e., convolu-
tional and pooling layers). Discrete convolutional layers return the activation mapping
of a discrete convolution output, also known as feature maps. The pooling layer locally
summarizes the output of the activation function.

The discrete convolution operation extracts spatial information from a given input
and propagates it to the following layers, as presented in Equation 6:

Zk(i, j) = fk

((
O∑
o

P∑
p

Zk−1(i− o, j − p)×Kk(o, p)

)
+ bk(i, j)

)
(6)

where K is the kernel from the convolution operation, i and j are matrix indices, O and
P represent the size of the kernel employed in the convolution operation.

Figure 4 – Functioning examples of both, the discrete convolution and the max pooling
operation.

Chapter 2. Adversarial Examples: Fundamentals 23

Figure 5 – Representation of a Convolutional Neural Network. The first and second
layers correspond to convolution and a pooling operation, respectively. The
following layers represent a Fully Connected Neural Network classifier.

The pooling procedure reduces the dimensionality of the input data. It replaces
the given input with a local summary from the previous operation. This procedure
comprises different implementations, the max pooling, and the average pooling. The
max pooling summarizes by calculating the maximum value from a given region of the
input, while the average pooling computes the average of this region. Figure 4 shows a
practical example of both, convolution and pooling operations.

During the training procedure, the optimization algorithm adjusts the kernels
and biases, employing the loss functions and algorithms presented in the previous
section for fully connected networks in a very similar way. Figure 5 presents an example

Figure 6 – Convolutional layer process representation. For each Kernel, Ki, from the
discrete convolution operation, a different feature map is created as output.
The outputs represented in white refer to kernels that we did not represent
for simplification.

Chapter 2. Adversarial Examples: Fundamentals 24

of a CNN architecture. The presented representation includes fully connected layers
because of their labeling function, required to construct classifier models. Figure 6
shows feature mapping process inside convolutional layers.

2.3 ADVERSARIAL EXAMPLES

Regardless of the success of state-of-the-art convolutional neural networks, it is
possible to fool these classifiers with small perturbations to their inputs. For instance,
observe Figure 7. There, we applied noise to a given input initially classified as a rabbit
by a CNN. As the applied perturbation is almost imperceptible, we expect that the output
classification should remain the same for the crafted sample. However, as we can see,
the CNN changes the classification of the output to a dog. This phenomenon reflects
the lack o robustness of neural networks regarding small perturbations (SZEGEDY;
ZAREMBA, et al., 2013). The images designed in this way are the so-called adversarial
examples.

Adversarial images raised a concern on the usage of artificial neural networks
in safety-sensitive applications (i.e., with life-threatening and financial or environmental
implications). However, while analyzing them in a real-world environment, some ques-
tions about their relevance raised (LU; SIBAI, et al., 2017). On the other hand, further
experiments showed that it is possible to create 3D models of adversarial examples
that fool neural network classifiers regarding different points of view (ATHALYE et al.,
2017). These experiments confirmed the necessity of a deeper understanding of adver-
sarial examples, as they consist of a real threat for critical systems that employ these
technologies.

Figure 7 – Representation of an adversarial example design process, where an input
image combined with a small designed perturbation generated an output
image with a different classification associated by the classifier. Although,
the label associated by a human remains unchanged.

Chapter 2. Adversarial Examples: Fundamentals 25

2.4 ADVERSARIAL ATTACKS

Adversarial attacks are procedures designed to fool neural network classifiers.
Despite the non-linearity of neural networks, these attack algorithms sight the smallest
possible perturbation that leads to a change in the classification of the crafted sample
(SZEGEDY; ZAREMBA, et al., 2013; GOODFELLOW; SHLENS; SZEGEDY, 2014; PA-
PERNOT; MCDANIEL; JHA, et al., 2015; MOOSAVI-DEZFOOLI; FAWZI; FROSSARD,
2016; CARLINI; WAGNER, 2017b; MADRY et al., 2017). More specifically, they identify
those pixels that are critical to the classifier’s decision. Then subsequently, perturb the
original input strategically to change its classification.

The adversarial images designed by these attacks possess the intriguing prop-
erty of transferability. This characteristic is associated with the capacity of adversarial
examples to transfer between different models. For instance, consider two different
neural networks N1 and N2 created to classify the same type of inputs. The adversarial
examples from N1 are likely to transfer to N2 in case: 1) they have different architec-
tures; or 2) the training process occurs with disjoint data set (SZEGEDY; ZAREMBA,
et al., 2013; GOODFELLOW; SHLENS; SZEGEDY, 2014).

Adversarial attacks consider different threat models to design the perturbed ex-
amples. Some algorithms create input samples that a human classifies correctly, though
the classifiers cannot identify the correct classification (false negative). Or examples
that a human classifies incorrectly, though the CNN does so with high confidence (false
positives).

We can classify adversarial attacks in two different groups according to the knowl-
edge used to generate the perturbation: 1) the white-box attacks, which use internal
information from the neural network (i.e., the number of layers, the architecture, the
synaptic weights, hyperparameters, the activation functions, and training data, for in-
stance); and 2) the black-box attacks that consider the classifier as an oracle, accessing
only the output probabilities of a given input.

In general, one employs the ||.||p − norm to calculate the designed perturbation
magnitude. The most commonly used norms are the ||.||0 − norm, ||.||2 − norm and
||.||∞ − norm. The norm ||.||0 − norm measures the number of inputs changed by the
perturbation, the ||.||2 − norm is the euclidean distance, calculating the length of a line
between the original and the perturbed input. The norm ||.||∞ − norm evaluates the
maximum change among all inputs.

||x||p =

(
n∑
i=1

xpi

) 1
p

(7)

It is advisable to employ benchmarks for the data sets and the CNN architecture
to generate comparable results while conducting experiments. For training and testing
models, commonly used data sets are the:

Chapter 2. Adversarial Examples: Fundamentals 26

• MNIST: data set containing 70,000 grayscale low resolution images for digits from
0 to 9 (LECUN; CORTES, 2010);

• CIFAR10: data set composed 60,000 low resolution RGB images from 10 different
classes (KRIZHEVSKY; HINTON, 2012);

• ImageNet: data set comprising approximatelly 1,000,000 RGB images from 1,000
different classes (DENG et al., 2009).

For the architecture of the classifier, the most used models are: LeNet (LECUN;
BOTTOU, et al., 1998), AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), VGG
(SIMONYAN; ZISSERMAN, 2014), GoogLeNet (SZEGEDY; LIU, et al., 2015), Inception
(SZEGEDY; VANHOUCKE, et al., 2016) and ResNet (SZEGEDY; IOFFE, et al., 2017).
The development and design of each of these architectures focus on specific data sets.

In the following sections, we provide an overview of different adversarial attack
algorithms. We divided these attacks according to their knowledge from the classifier
they aim to defeat. We started by describing the white-box attacks and the existing
black-box algorithms. Among these adversarial attacks, we present those employed
during the experiments proposed in this research.

White-box

We begin presenting those attacks that use at least one internal information from
the classifier to design the smallest possible perturbation for a given input sample.

L-BFGS

The first adversarial attack algorithm against deep neural networks solved the
problem given by the Equation 8:

min
x′

c||ε||2 + J(x′, l′) (8)

s.t. x′ ∈ [0, 1]n

where x′ represents the perturbed image, ε denotes the perturbation, J is the loss
function, l′ the target label for the input x′. And, c is the constant obtained by the
solution, using a search algorithm, of the problem given by the Equation 8.

This method aims to design a perturbation for the given input sample with the
smallest possible ||.||2-norm, such that the classification of the crafted example changes
for the given target. The algorithm employed to solve the optimization problem above is
the L-BFGS (SZEGEDY; ZAREMBA, et al., 2013).

Chapter 2. Adversarial Examples: Fundamentals 27

Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) adversarial attack (GOODFELLOW;
SHLENS; SZEGEDY, 2014) was designed to generate perturbations in a cheap one-
step iterative process. As a white-box attack, this algorithm necessitates access to
internal information from the classier or the training data set. The author created this
method based on the hypothesis that neural networks have a linear behavior. They
claimed that this linear behavior suggests the existence of these adversarial examples.

One computes the perturbation by applying the gradient of the loss function
J(θ, x, y) usually the same employed for training the neural network classifier, where x
is a given input image and y the target output; θ represents the weights and biases of a
neural net. This attack calculates the gradient of the loss function concerning the input
image instead of the trainable classifiers’ trainable parameters. Then, the adversarial
perturbation for each sample x is computed by Equation 9:

x∗ = x+ ε sign(∇xJ(θ, x, y)) (9)

where ε is the magnitude of the perturbation and x∗ is the new image which was per-
turbed using only the sign of the gradient in a direction to maximize the loss function
(i.e., this attack does not have a target class for the perturbations). The method em-
ployed the error back-propagation algorithm to efficiently calculate the gradient of the
loss function (GOODFELLOW; SHLENS; SZEGEDY, 2014).

Basic Iterative Method and Iterative Least Likely Class Method

Using some concepts of the FGSM algorithm, the authors developed some
different attack approaches: the Basic Iterative Method (BIM) and the Iterative Least
Likely Class Method (ILLC) (KURAKIN; GOODFELLOW; BENGIO, 2016a).

The first method propose the iterative application of the gradient sign in the
direction to increase the loss function (i.e., untargeted attack), meaning that at each
iteration the crafted examples will be closer to a different class, given by the Equation
10:

x0 = x (10)

xn+1 = Clipx,ξ {xn + ηsign(∇xJ(xn, l))}

where η is the iteration step-size, xi represents the input at the i-th iteration and Clip :

Rn × R→ Rn a function that limits the perturbation on the input x at each step by ξ.
The second method (ILLC) computes the gradient sign in the direction of re-

ducing the loss function for the least likely class, according to the output of the neural

Chapter 2. Adversarial Examples: Fundamentals 28

network, generating small perturbation in a iterative way given by the Equation 11:

x0 = x (11)

xn+1 = Clipx,ξ {xn − ηsign(∇xJ(xn, lLL))}

where lLL denotes the label of the least likely class.

Jacobian-Based Saliency Map Attack

The Jacobian-Based Saliency Map Attack (JSMA) proposes a different approach
for generating adversarial examples. This method employs saliency maps to find small
portions of the input sample that, if slightly perturbed, leads to a significant change
in the classifiers’ output probabilities. This algorithm computes the forward derivative
of the neural network, which corresponds to the Jacobian function of the function that
represents the features learned by the neural network. Then, the saliency map is built
to identify the input features to be perturbed:

Si(x, t) =

0, if ∂Ft(x)
∂xi

< 0 or
∑

j 6=t
∂Fj(x)

∂xi
> 0(

∂Ft(x)
∂xi

) ∣∣∣∑j 6=t
∂Fj(x)

∂xi

∣∣∣ , otherwise
(12)

where S(x, t) is the saliency map, F (x) represents the output probabilities of the neural
network classifier, t the target label for the adversarial example, i the input index and j
the output index.

Finally, the algorithm applies a proper perturbation regarding the calculated
saliency map. This algorithm allows crafting small adversarial perturbations that will
fool the neural network with high confidence. It has a target label, making it possible
to choose the desired class for the given input. However, this algorithm has a high
computational cost by the necessity of computing the Jacobian of the neural network
(PAPERNOT; MCDANIEL; JHA, et al., 2015).

DeepFool

The DeepFool algorithm searches for an approximation to the minimum per-
turbation necessary to change the classification of a given input sample. Due to the
non-linearity of neural networks, it is impossible to guarantee that the algorithm will
return the optimal solution. This algorithm approximates the output regions for a given
label as a polyhedron and employs this approximation to evaluate the distance be-
tween the current sample and the decision boundary (MOOSAVI-DEZFOOLI; FAWZI;
FROSSARD, 2016).

The optimization problem solved by DeepFool is given by the Equation 13:

min
ηi
||ηi||2 (13)

s.t. F (xi) +∇F (xi)
Tηi = 0

Chapter 2. Adversarial Examples: Fundamentals 29

where η represents the perturbation and F (x) the output probabilities of the neural
network classifier.

C&W’s Attack

The C&W algorithm is an attempt to defeat the Defensive Distillation method (PA-
PERNOT; MCDANIEL; WU, et al., 2016), described further in Section 2.5. This attack
aims to minimize the perturbation for a given input employing different objective func-
tions f , and applying a variety of distance metrics (l0, l2 and l∞) (CARLINI; WAGNER,
2017b). The optimization problem is given by the Equation 14:

min
η
||η||p + c× f(x+ η) (14)

s.t. x+ η ∈ [0, 1]n

where η is the perturbation value and f the loss function.
The authors show that this adversarial attack procedure defeats a diversity of de-

tection method, and compared to existing white-box methods, this algorithm employed
fewer perturbation (CARLINI; WAGNER, 2017a)

Universal Perturbation

Instead of generating a specific perturbation for each input image, the Universal
Perturbation method proposes a unique disturbance for all the samples of a data set, or
in other words, a single η is computed and applied to all the attacked images. The attack
algorithm utilizes a subset of inputs to reduce the computational cost of the designing
process.

The universal perturbation fools different neural networks with distinct architec-
tures due to the transferability capacity of adversarial examples. It also fools classifiers
trained with disjoint data sets (MOOSAVI-DEZFOOLI; FAWZI; FAWZI, et al., 2017).

Feature Adversary

Another approach comprises the design of perturbation regarding information
from internal layers of the neural network classifier. Instead of minimizing the interval
between the target and the original output probability, this method seeks to shrink
the distance between internal feature layers. Equation 15 presents the optimization
problem:

argmin
x∗
||Zk(x∗)− Zk(x)||22 (15)

s.t.||x∗ − x||∞ < δ

where Zk represents the output of the k-th layer.

Chapter 2. Adversarial Examples: Fundamentals 30

This method relies on the claim that adversarial images are too close to the
original examples in the pixel space, although their internal representation bears a
resemblance from images that belong to the misclassified label (SABOUR et al., 2015).

Projected Gradient Descent

The Projected Gradient Descent (PGD) method (MADRY et al., 2017) aims to
craft perturbations for an input image in an iterative process to generate adversarial
examples with a small disturbance compared to other existing attack algorithms. This
method is considered the universal first-order attack algorithm.

The PGD adversarial attack algorithm is essentially a multi-step iterative variation
of the FGSM. As a white-box attack, it also uses internal information from the neural
network classifier to compute the gradient of the loss function regarding a given input
image. The error back-propagation algorithm calculates the gradients. Equation 16
presents the iterative calculation of the perturbation :

xi+1 = xi + ε sign(∇xJ(θ, x, y)) (16)

where J(θ, x, y) corresponds to the loss function, usually the same employed during the
training procedure, x is a given image, y the target output, θ the weights and biases of
a neural network, ε controls the magnitude of the perturbation designed at each step of
the attack and i the iteration of the algorithm.

The PGD attack can be employed in two different ways, the ||.||2 − norm and the
||.||∞ − norm. In Equation 16 we have the ||.||∞ − norm representation. The iterative
calculation for the ||.||2 − norm attack is presented in Equation 17:

xi+1 = xi + ε
∇xJ(θ, x, y)

||∇xJ(θ, x, y)||2
(17)

Black-box

In this section, we describe those attacks that use the neural network classifier
as an oracle.

Substitute Model

The transferability of adversarial examples provides the possibility of designing
perturbations such that internal information from the classifier is not required. The main
idea is to create a substitute model that approximates the decision boundaries of the
original classifier. To acquire this approximation, the attacker gives artificially created
samples and collects its output probability distribution. Posteriorly, the algorithm creates
a training set for training a substitute model.

It is possible to generate adversarial examples for the substitute model that
will possibly transfer to the original classifier with any white-box attack. This property

Chapter 2. Adversarial Examples: Fundamentals 31

permits using this procedure for different classifiers other than neural networks (PA-
PERNOT; MCDANIEL; GOODFELLOW, et al., 2017).

This approach defeats defenses that use gradient masking because this algo-
rithm uniquely requires the classifiers output probabilities. However, due to the necessity
of training a different neural network classifier, this approach can be computationally
expensive.

Local Search Attack

The Local Search Attack (LSA) proposed a greedy local-search algorithm to gen-
erate adversarial examples in a black-box condition. This approach randomly selects
pixels of a given input sample, generates new images with one of the selected pixels
perturbed, according to Equation 18 (NARODYTSKA; KASIVISWANATHAN, 2016).

xa,bpert(u, v, c) =

x(u, v, c), if a 6= u or b 6= v

p× sign(x(u, v, c)), otherwise
(18)

Subsequently, the algorithm selects T pixels, from those selected previously,
that generated the images that mostly minimized the proposed loss function fl(x)(x) =

Fl(x)(x), and generate a new image with all the T pixels perturbed, according to Equation
19.

xadv(u, v, c) =

r × x(u, v, c) + (UB − LB), if r × x(u, v, c) < LB

r × x(u, v, c)− (UB − LB), if r × x(u, v, c) > LB

r × x(u, v, c), otherwise

(19)

If the generated image is an adversarial example or the algorithm reaches the
maximum number of iterations, the process stops. Otherwise, it selects new pixels
among the neighbors within a distance s from the previously chosen pixels and repeats
the procedure from the beginning.

Zeroth Order Optimization

Given a neural network N and an input image x0 that belongs to the class l0, the
Zeroth Order Optimization Method (ZOO) computes the adversarial x∗ associated to x0
by solving the following optimization problem:

min
x
g(x) = min

x
(||x− x0||22 + c× f(x)) (20)

s.t. x ∈ [0, 1]n

f(x) = max{log[Fl0(x)]−max
i 6=l0
{log[Fi(x)}],−κ}, (21)

Chapter 2. Adversarial Examples: Fundamentals 32

where f(x) is a function that depends on the difference between the two highest
confidence scores in F (x), c and κ are positive constants, and ||x − x0||22 is a normal-
ization factor used to obtain adversarial images x∗ as close as possible to x0.

According to Equation (20), the adversarial x∗ is an image similar to x0 that
makes the neural network change its classification output from l0 to another class. To
solve the optimization problem above, the ZOO attack approximates the gradient of
F (x) with respect to the coordinates xi by the quotient:

∂f(x)

∂xi
≈ f(x+ h× ei)− f(x− h× ei)

2h
, (22)

where h is a small and fixed constant and ei is the standard basis vector with the i-th
component set to one and all other components equal to zero.

Finally, the increment added at each iteration of the optimization algorithm to
obtain the image xk+1

i from xki is modulated by a factor η, e.g., if the Newton’s method
is used to solve Equation (20), then xk+1

i = xki + η × ∂f
∂xi

/
∂f2

∂x2i
, instead of simply xk+1

i =

xki + ∂f
∂xi

/
∂f2

∂x2i
. In this study, we employed the ADAM optimizer to solve the optimization

problem presented in Equation 20.

One Pixel Attack

To generate adversarial examples with fewer perturbations regarding the ||.||0-
norm, or in other words, by changing a slight amount of pixels, the One pixel attack
algorithm was designed (SU; VARGAS; SAKURAI, 2017).

This attack generates adversarial examples by perturbing only one pixel from
the input sample (||η||0 = 1). By means of the differential evolution method, from the
evolutionary computation, this attack aims to find those pixels that are critical for the
assignment of the input image with a given class. Equation 23 shows the problem
formulation:

min
η
−Ft(x+ η) (23)

s.t.||η||0 = 1

where η is the perturbation, F (x) the output probabilities of the neural network classifier,
t the target class and d the maximum perturbed pixels.

Expectation Over Transformation

The Expectation of Transformation (EOT) attack answers the doubt raised above
the relevance of adversarial examples for real-world applications (LU; SIBAI, et al.,
2017). More specifically, this algorithm presents the possibility of creating adversarial
examples that maintain the misclassification over different viewpoints.

Chapter 2. Adversarial Examples: Fundamentals 33

This method crafts adversarial examples using defined transformations, repre-
senting changes in the points of view (i.e., translation, rotation, or scaling) applied to
the input sample. It enabled the development of adversarial images (2D) and objects
using a 3D printer that could fool artificial neural networks regarding different points of
view (ATHALYE et al., 2017).

Adversarial Patch

Traditionally adversarial attack algorithms aim to craft slight perturbations so that
the distance between the clean and the designed examples is as smaller as possible.
The Adversarial Patch attack creates adversarial perturbations that are not impercepti-
ble and do not change a human classification. The patch development process takes
under consideration a subset of transformations (i.e., scaling or rotation) and the applied
location.

The Adversarial Patch attack generates a perturbation that can be printed or
applied to the image virtually and can fool the classifier by changing the classification to
a target class defined in the generation of such perturbation (BROWN et al., 2017). This
approach employs a variant of the Expectation Over Transformation algorithm during
the determination of the patch (ATHALYE et al., 2017).

Natural GAN

The Natural GAN attack algorithm proposes a different approach to generate
the adversarial perturbation. This method operates with a Generative Adversarial Net-
work (GAN) trained on a data set to generate images representing the training data.
Following, the authors propose the use of an Inverter which is a function that maps
input images to the latent space of the generator from the GAN. This function enables
the applications of the perturbation on the latent variables of an input image.

Perturbing latent variables allow the creation of different output images that
carry features from the trained data set to the newly crafted example. Searching in the
latent space for adversarial example also qualifies adversaries to be legible images and
semantically similar to the original input (ZHAO; DUA; SINGH, 2018).

Semantic Adversarial Examples

One proposes an adversarial attack algorithm that generates perturbed exam-
ples by changing the colors of the given input. This method relies on the human vision
bias over shapes rather than by colors. The problem of creating semantic adversarial
examples can be described by Equation 24:

find x∗ (24)

s.t. Ω(x∗) = Ω(x) and F (x∗) 6= F (x)

Chapter 2. Adversarial Examples: Fundamentals 34

where Ω stands for the human vision system, F is the neural network classification, x
the original input and x∗ the adversarial example.

The algorithm consists of an input image transformation from RGB to HSV (Hue,
Saturation, and Value). This conversion allows the application of changes to the val-
ues of Hue and Saturation. The Value guarantees that the shape of the input sample
remains the same by transforming singularly the colors (HOSSEINI; POOVENDRAN,
2018).

2.5 ADVERSARIAL DEFENSES

Adversarial defense methods are tools designed to overcome attack algorithms.
These methods employ different approaches and focus on distinct objectives: increase
the robustness of the classifier regarding small perturbations, identify or reconstruct
adversarial examples, formal verification of the classifiers functioning, for instance.

At this point, we go through five different existing approaches to deal with these
malicious examples: adversarial training, defensive distillation, adversarial detection,
input reconstruction, and network verification. For each of them, we present several
works from the literature and their achievements.

Adversarial Training

The first proposed approach to increase the robustness of neural networks
against malicious examples was the adversarial training, which comprises augmenting
the training data set with perturbed inputs generated using one or more adversarial
attacks (SZEGEDY; ZAREMBA, et al., 2013).

There already exist two distinct ways of implementing the adversarial training
method: a) in the first one, adversarial examples are generated during the training
procedure, iteratively and within a maximum perturbation value, until the classifier
learns to classify these examples; b) the second approach comprises training a neural
network with the original training set, then generate adversarial examples using some of
the malicious attacks to augment the training set for optimizing a second neural network
classifier (NA; KO; MUKHOPADHYAY, 2018).

Empirical tests showed that adversarial training increased the robustness of neu-
ral networks against one-step attacks and that iterative attacks are less transferable
than one-step attacks. Training neural networks with a one-step attack is also an alter-
native for defending against black-box attacks, which is related to the decrement of the
transferability (KURAKIN; GOODFELLOW; BENGIO, 2016b).

By applying the adversarial training with the PGD attack (reliable first-order
malicious attack), using the approach a), for a neural network trained on the MNIST
data set, the CNN achieved an accuracy of at least 89% against stronger adversaries,

Chapter 2. Adversarial Examples: Fundamentals 35

being robust even against iterative white-box attacks. For the CIFAR10 data set, the
accuracy reached 46% against the same adversaries (MADRY et al., 2017).

Instead of optimizing the neural network with adversarial examples generated
by a single attack, the authors proposed creating and training auxiliary models, attack
these classifiers with a diversity of different methods and augment the training set with
all of these generated adversarial examples. With the augmented training set, one can
optimize another neural network classifier to increase its robustness (TRAMÈR et al.,
2018).

Theoretical results showed that comparing a neural network and the k-nearest
neighbors (KNN) model, the second is sample efficient regarding the first one. In other
words, it means that the amount of necessary data to make a neural network robust to
perturbation, of size ε, by using adversarial training, is higher compared to KNN, and it
grows according to the codimension (the difference between the input dimension and
the data manifold dimension) of the data set (KHOURY; HADFIELD-MENELL, 2019).

Defensive Distillation

The network distillation method consists of a simple approach to reduce the
computational cost of neural networks. The principal reason was to apply neural network
models in devices with lower computational capacity, such as smartphones (HINTON;
VINYALS; DEAN, 2015). This method comprises training two neural networks. The first
neural network uses the training data set and desired outputs (i.e., hard labels) during
the training process, with a higher temperature T in the softmax activation function,
given by Equation 25. Hard labels are output probabilities with 100% assigned to the
correct classification and 0 to all the other classes.

F (X) =

[
e

zi(X)

T∑N−1
l=0 e

zl(X)

T

]
(25)

The method proposes training the second neural network, which has a more
compact architecture, with the same input samples employed to the first model, except
that the desired labels are the outputs of the first classifier regarding the input samples
applied during the training process, denoted as soft labels. The temperature remains
the same for the second neural network training.

Defensive distillation algorithms make use of the network distillation method,
except that this method does not reduce the neural network architecture for the second
trained model, as this approach seeks to increase the robustness of neural networks
instead of reducing the computational cost (PAPERNOT; MCDANIEL; WU, et al., 2016).

The authors claim that the proposed method increases the robustness of the
second neural network model, as it enlarges the smoothness of this model with the
increment on the temperature employed in the softmax function. There is an increment

Chapter 2. Adversarial Examples: Fundamentals 36

in the amount of information provided for training the second neural network, as some
classes share features captured by the soft labels.

Besides the success of defensive distillation against some adversarial attacks,
other algorithms circumvented such a defense method, for example, C&W (CARLINI;
WAGNER, 2017b), and the substitute model (PAPERNOT; MCDANIEL; GOODFEL-
LOW, et al., 2017).

Adversarial Detection

The detection of adversarial examples comprises another approach employed
to circumvent the flaw in the robustness of neural networks regarding these malicious
examples. Differently from previously presented methods, the detection was studied
jointly with a range of distinct techniques. These approaches aim to identify instead of
reduce existing adversarial examples.

One of these approaches employed deep neural networks as a binary classifier,
trained on generated adversarial examples, to identify if the given inputs are clean or
adversarial examples (METZEN et al., 2017). Just in case of being classified as an
ordinary example, the model feeds into the classifier. Another approach incremented a
new class in the outputs of the original classifier, denoted as the outlier class, where this
extra label is responsible for identifying if the input is an adversarial example (GROSSE
et al., 2017).

Employing Radial Basis Function Support Vector Machine, SafetyNet gets as
input the outputs of each layer from the deep neural network and uses it to identify if
the entry is an adversarial example. The authors claimed that it is hard to defeat their
proposed algorithm because it is necessary to fool both the neural network and also
the detector (LU; ISSARANON; FORSYTH, 2017).

With the claim that the uncertainty of adversarial examples is higher than the on
clean data, one proposed a Bayesian neural network to measure this uncertainty and
classify this input as an original or adversarial example (FEINMAN et al., 2017).

The discovery that the adversarial examples distribution differs from the clean
data distribution made it possible to develop a new detection algorithm. This approach
detected perturbed examples created with FGSM, BIM, DeepFool, and C&W (SONG
et al., 2017).

Despite the success in the identification of some adversarial examples generated
by different attack algorithms, it was possible to defeat all of these detection methods
by attacking them with the C&W algorithm. It was possible with the application of
some changes in the loss function. These results showed that the process of detecting
adversarial examples is not a simple task (CARLINI; WAGNER, 2017a).

Chapter 2. Adversarial Examples: Fundamentals 37

Input Reconstruction

Another proposed way of defending against adversarial examples relies on re-
constructing the inputs to transform the given malicious inputs so that the generated
samples do not fool the classifier. This approach reduces the number of adversarial
examples instead of increasing the classifier’s robustness regarding these attacks.

Some of these approaches used autoencoders to reach the original example or
retrieve the original classification (GU; RIGAZIO, 2014). Another use of autoencoders
remained on reconstructing these adversaries back to the distribution of clean inputs
(SONG et al., 2017).

MagNet algorithm reconstructs adversarial examples by primarily applying a
Gaussian noise to the input sample, and as a second plan, employs an autoencoder to
retrieve the original classification associated with the given input (MENG; CHEN, 2017).

Network Verification

Although the network verification problem is provably NP-complete (KATZ et al.,
2017), it is still a promising solution to defend against adversarial examples because
it allows the detection of unknown counterexamples and the previous identification of
flaws in the classification procedure.

There are three main classes to divide these algorithms according to the prob-
lem each of them aims to solve (LIU et al., 2019). The first set of algorithms returns
counterexamples, which are examples classified with a different label regarding the
original class (HUANG et al., 2017).

Denoted as adversarial result, the second aims to find and return the maximum
allowed perturbation that, if applied to a given original input, will not cause a transfor-
mation on the output classification (TJENG; XIAO; TEDRAKE, 2017).

Finally, the third class of algorithms, which focuses on computing the reachable
set for some inputs of a given label and compares it to the expectable output set, based
on the problem constraints and the other output set of the other classes (XIANG; TRAN;
JOHNSON, 2017).

Proposed Methods

Different from adversarial training, defensive distillation, and network verification,
which aim to reduce the amount of existing perturbed examples, in this research, we
propose two different approaches that focus on reducing the impact of adversarial ex-
amples in the classification tasks of CNN models, decreasing the efficacy of adversarial
attacks.

We classify the first proposed approach as a gradient masking method, similarly
to adversarial training and defensive distillation (PAPERNOT; MCDANIEL; GOODFEL-

Chapter 2. Adversarial Examples: Fundamentals 38

LOW, et al., 2017) because it inserts a controlled disturbance (noise) to the outputs of
a neural network classifier, making the correct direction to design a perturbation un-
certain for a black-box attack algorithm that uses these output probabilities (uncertain
gradient).

Due to the way this method works, it is possible to combine it with different
defensive methods, including those that increase the classifier robustness (MADRY
et al., 2017) and adversarial detectors (SONG et al., 2017), as the proposed method
also forces the attacker to increase the perturbation inserted to the input images.

The second proposed method enables developing a new detector using a dif-
ferent feature compared to existing detection methods. According to our results for
this approach, the first digit distribution of adversarial examples generated by some
white-box attacks diverges from the first digit distribution associated with clean inputs.

Our results also suggest that, by the behavior of the divergence of the empirical
and the theoretical first digit distribution regarding the attack iterations, it is possible to
identify neural network classifiers under attack for several cases.

39

3 DISTURBANCE-BASED DEFENSE

In this chapter, we propose a method to defend neural networks against black-
box adversarial attacks. This method relies on the perturbation of the output layer of a
network.

3.1 PROBLEM FORMULATION

Let N be any convolutional neural network for image classification and A be a
black-box adversarial attack. We shall use A(N, I0) to denote the set of adversarial
images generated by A for N , regarding a subset of seed images I0. F (x) ∈ Rm

represent the m-dimensional output of the softmax layer of N when presented with
an n-dimensional image vector x ∈ [0, 1]n. N classifies this input x into one of the m

available classes. We assume that some coding mechanism is available to convert
matrices representing images to column vectors.

Let us now call N ′ the network that is equal to N , except for the output of its
softmax layer, which is now given by G(F (x) + d), where d ∈ Rm is a controlled
disturbance vector, and G : Rm → Rm is a normalization function, given by Equation
(26). G makes the outputs of the network N ′ sum up to one, retaining the form of a
probability distribution over the classes i ∈ {0, . . . ,m− 1}.

G(F (x) + d)i =
(F (x) + d)i∑m−1
j=0 (F (x) + d)j

(26)

Our goal is to design such d in a way that:

1. the success rate of N ′ on the classification of A(N ′, I0) is higher than that of N for
A(N, I0); and

2. for any i, j ∈ {0, . . . ,m− 1}, if Fi(x) ≤ Fj(x), then di + Fi(x) ≤ dj + Fj(x). That is,
the disturbance vector d does not affect the ordering of the values of F (x); and

3. for any i ∈ {0, . . . ,m− 1}, the inequality |di| ≤ δ×Fi(x) holds, where δ is a design
parameter satisfying 0 < δ < 1. In other words, it limits the designed disturbance
to be within the closed interval [−δ × Fi(x), δ × Fi(x)].

3.2 DEFENSE PROPOSALS

We selected a black-box setting as a constraint for applying this defense method,
as it is a much more realistic scenario for a malicious attack. The proposed approach
aims to hinder the input critical pixels identification by the attacker. The application of a
controlled disturbance to the output probabilities complicates the approximation of the

Chapter 3. Disturbance-based defense 40

Figure 8 – Overview visualization of the proposed approaches, composed of three
steps: a) class probability distribution calculation in a black-box setting, repre-
sented by F (.); b) controlled disturbance addition, , to the output probabilities;
and c) normalization of F (X) + d, represented by the mapping G(.).

gradient regarding a given input. One possible application for the proposed method is
to defend commonly used online deep learning API.

We describe in this section three different approaches to design a disturbance
vector d for adding to the output layer of a neural network. Figure 8 presents an overview
visualization of the proposed defense method, where we see that this method intends to
reduce the amount of knowledge obtained by the attacker during the inference process,
compared to the black-box setting.

The statement (1), previously presented in the problem formulation, constitute
the objective of the proposed methods. The only one that satisfies the requirements (2)
and (3) is the last method, termed Limited Disturbed Classes with Order Preservation
(Subsection 3.2.3). We present the other two, though, as a means to later evaluate the
performance of our ideas when we relax the constraints on d posed by the problem
formulation.

3.2.1 Homogeneously Disturbed Classes (HDC)

This first method generates a scalar disturbance d (or noise) that is homoge-
neously applied to each F (x)i using the same normal distribution N (0, σf) with 0 mean
and standard deviation σf . The standard deviation σf was defined to be equal to ∆÷ r,
where we choose a ∆ equal to half of the difference between the largest and the second
higher value of the vector F (x). We divided ∆ by a parameter r so that the saturation
function, defined further, does not affect the disturbance’s random behavior. For all the
experiments presented in this paper, we employed r = 3.

In Algorithm 1, which describes the HDC method, the function sort(F (x)) returns
a m-dimensional vector whose values are sorted in descending order, i.e., the largest

Chapter 3. Disturbance-based defense 41

Algorithm 1: Homogeneously Disturbed Classes
Input: F (x) ∈ Rm

σf ← (sort0(F (x))− sort1(F (x)))÷ (2× r);
for i ∈ {0, . . . ,m− 1} do

Select a random d from distribution N (0, σf);
F (x)i ← F (x)i + satσf×r(d);

end
return G(F (x));

value is the first element, represented by sort0(F (x)). Additionally, satz(x) denotes the
saturation function, which is equal to x, if |x| ≤ z, and to z × sign(x), otherwise.

3.2.2 Disturbed Classes with Order Preservation (DCOP)

In this second approach, our goal is to change the HDC method to attain the
requirement (2) of the problem formulation. To simplify the notation, and without loss
of generality, we assume that the vector F (x) given as input to our algorithm is already
sorted in descending order. Still, we define the map diff : Rm × {0, . . . ,m− 1} → R to
be:

diff(v, i) =

vi − vi+1, i = 0

min{vi − vi+1,vi−1 − vi}, 1 ≤ i ≤ m− 2

vm−2 − vm−1, i = m− 1

This map computes the distance between some element i of v and its nearest
neighbor, where v is the output probabilities of the classifier in descending order, that
is, the standard deviation for calculating the disturbance associated with each output
probability represents a fraction of the distance calculated by the diff map.

The algorithm below shows that, now, the magnitude of each di is delimited by
diff(F (x), i), thus keeping the ordering of F (x) intact.

Algorithm 2: Disturbed Classes with Order Preservation
Input: F (x) ∈ Rm

for i ∈ {0, . . . ,m− 1} do
σv,i ← diff(F (x), i)÷ (2× r);
Select a random di from distribution N (0, σv,i);
F (x)i ← F (x)i + satσv,i×r(di);

end
return G(F (x));

Although this new version does satisfy requirement (2) of the problem formulation,
it does not attain specification (3). In the subsequent subsection, we deal with the
last variant of our disturbance approach called Limited Disturbed Classes with Order
Preservation.

Chapter 3. Disturbance-based defense 42

3.2.3 Limited Disturbed Classes with Order Preservation (LDCOP)

In this approach, the standard deviation σv of N (0, σv,i) is computed in the same
way as in DCOP. However, δ × |F (x)| limits the magnitude of each di in this variant,
as presented in the pseudocode that follows. We assume that F (x) is in descending
sorted order.

Algorithm 3: Limited Disturbed Classed with Order Preservation
Input: F (x) ∈ Rm and δ ∈ [0, 1] ;
for i ∈ {1, . . . ,m} do

σv,i ← diff(F (x), i)÷ (2× r) ;
Select a random di from distribution N (0, σv,i);
Fi(x)← Fi(x) + satδ×Fi(x)(satσv,i×r(di));

end
return G(F (x));

3.3 EXPERIMENTAL SETUP

We present in this section the three main elements used to evaluate the proposed
defense method against black-box attacks: the CNN, the experimental scenarios, and
the employed adversarial attack.

3.3.1 Convolution neural network (CNN)

We employ a CNN of 12 layers (described in Table 1) that makes use of convolu-
tion functions interleaved with batch normalization and max pooling operations. In Table
1, we use conv(m, n)− c referring to a convolutional layer with kernel of size m× n and
c channels. ReLU activation function was applied for all the layers, except for the last
one.

The classifier model presented above (Table 1), was trained on the MNIST data
set (LECUN; CORTES, 2010), for further information about this data set, refer to the
Section 2.4. For training this model, we divided the MNIST data set into three different
disjoint subsets: training set, validation set, and test set.

The training set comprised 50, 000 images, whereas the validation and test sets,
10, 000 samples each. ADAM (KINGMA; BA, 2014) was used as the optimization method
to adjust the CNN parameters, minimizing a categorical cross-entropy loss on the
training set. For such an optimization process we applied a learning rate of 5e−5,
β1 = 0.9, β2 = 0.999 and ε = 1e−08. The CNN was trained for approximately 50
epochs, resulting in an accuracy of 99.59% and 97.71% on the training set and test set,
respectively.

Chapter 3. Disturbance-based defense 43

We trained a second neural network classifier over a data set comprising con-
centric circles, presented in Figure 9, as proposed in (KHOURY; HADFIELD-MENELL,
2019). A fully connected neural network, represented in Table 2, was trained over this
data set, where the training set comprises 2, 000 samples and 500 samples for the
validation and test sets.

The ADAM optimizer was employed during the training process, with learning
rate of 5e−5, β1 = 0.9, β2 = 0.999 and ε = 1e−08. The Classifier was trained for about

Table 1 – Neural Network Architecture for the MNIST data set - Disturbance-based
defense method

Layer Type Dimensions

0 Input (32x32x3)
1 Conv(3x3)-32 (32x32x32)
2 Conv(3x3)-32 (32x32x32)
3 Batch Normalization (32x32x32)
4 Max Pooling(2x2) (16x16x32)
5 Conv(3x3)-64 (16x16x64)
6 Conv(3x3)-64 (16x16x64)
7 Batch Normalization (16x16x64)
8 Max Pooling(2x2) (8x8x64)
9 Fully Connected (1024)
10 Batch Normalization (1024)
11 Fully Connected (1024)
12 Fully Connected (10)

Figure 9 – Scatter plot of the concentric circles data set, employed to visualize the
behaviour of the ZOO attacker against the neural network classifier, with
and without the proposed defense methods. The data set consist of two
concentric circumferences, with radius equal to 3 (Label 0) and 1 (Label 1).

Chapter 3. Disturbance-based defense 44

Table 2 – Neural Network Architecture for the concentric circles data set - Disturbance-
based defense method

Layer Type Dimensions

0 Input (2)
1 Fully Connected (100)
2 Fully Connected (1)

Table 3 – Defense methods for CNN classifier

v Method

0 Original CNN
1 HDC
2 DCOP
3 LDCOP10
4 LDCOP20
5 LDCOP50

40 epochs, reaching an accuracy of 100% on both, the training set and test set.

3.3.2 Experimental procedure

Below we describe the test scenarios used to evaluate the performance of our
defense approaches:

1. Set the maximum number of iterations of the ZOO algorithm to 10;

2. Set h = 0.0001 and the optimizer parameters β1 = 0.9, β2 = 0.99 and ε = 1e−8, as
proposed by the authors of the ZOO method (CHEN et al., 2017);

3. Randomly select 500 images from the training set1;

4. For each v ∈ {0, . . . , 5}, obtain the corresponding neural network Nv according to
Table 3, where LDCOPX denotes the LDCOP defense strategy with δ = X/100.;

5. For each η ∈ {0.01, 0.05, 0.1}, compute the set of adversarial images Sη(Nv) using
the ZOO algorithm;

6. Classify the sets of examples Sη(Nv) with the network Nv;
1 Preliminary experiments show equivalent results with images selected from the test set.

Chapter 3. Disturbance-based defense 45

Figure 10 – Attack success rate for the ZOO algorithm against different variants of
CNNs, with and without defenses. The leftmost bar shows the result for the
original CNN without any defense.

3.3.3 Adversarial Attack

The ZOO algorithm (CHEN et al., 2017), which is a black-box attack, was em-
ployed to generate the adversarial examples associated with the neural network clas-
sifiers presented previously for each of the variations proposed in this research. For
further details on these attack algorithms, refer to Section 2.4.

3.4 RESULTS

We evaluate the two main effects of our defense method: the reduction in the
attack success rate and the increment in the magnitude of the attacker’s perturbation.

3.4.1 ZOO attack success rate reduction

Figure 10 shows the success rate of the adversarial images generated by ZOO
for the original network as well as for the networks enhanced with our defense meth-
ods, i.e., with the disturbance d added to F (x). The attack success rate represents
the percentage of samples, from a set of attacked images, that turned into adversarial
examples. We observed a significant accuracy improvement of the defended networks
while classifying the candidate adversarial images. Our method reduced the attack suc-
cess rate from 99.8% to 65% in the most restricted scenario (variant LDCOP10), relative
to the ZOO attack. The different performances of the defense strategies are associated
with the restrictions imposed on the additive disturbance d: the more properties of F (x)

the disturbance d must preserve, the less effective is the defense. In other words, as the
LDCOP approach attains properties (2) and (3) from problem formulation, we expected
its performance to be lower or equal compared to the other methods, while HDC aims
solely in the objective, stated in (1), without satisfying the remaining requirements.

Chapter 3. Disturbance-based defense 46

Figure 11 – Distribution of the perturbations’ magnitude added by ZOO to generate
adversarial images from a given set of images. We divided the x-axis into
five intervals of perturbation magnitudes. The y-axis shows the relative fre-
quency associated with each of these intervals. For example, 57.1% of the
adversarial images generated for the original network has a perturbation
magnitude between 0 and 3, whereas only 0.6% of all images lie in this
interval for the network defended with HDC. The black bars correspond to
effective adversarial examples, whereas the blue ones represent the total
candidates of adversaries. The first interval is smaller than the others as
the Euclidean norm is greater or equal to 0.

3.4.2 Perturbation magnitude increment

Let I = {x0, x1, . . . , xi} be a set of images xk ∈ Rn and A(Nv, I) =

{xadv0 , xadv1 , . . . , xadvi } be the corresponding set of adversarial images generated
by ZOO for the network Nv, v ∈ {0, . . . , 5}. Define αk to be ||xadvk −xk||2, i.e., the 2-norm
of the perturbation added to xk in order to generate an adversarial xadvk .

Figure 11 presents the distribution of the αk for all six network variants. We can
see that the defenses forced the attack algorithm to increase the magnitude of the
applied perturbation. The higher the magnitude of αk, the less similar is xadvk to xk,
making xadvk a weaker and possibly a more questionable adversarial image. Therefore,
our method not only decreases the attack success rate but also forces the creation of
intensively perturbed adversarial examples (generating adversaries of worse quality).

Figure 11 also shows the distribution of those αk associated with the images xk

Chapter 3. Disturbance-based defense 47

Figure 12 – Examples of images generated by ZOO to attack different CNNs trained on
MNIST. Starting at the leftmost column, we have a sample of images gener-
ated for the following networks: 0 (Original CNN), 1 (HDC), 2 (DCOP), and
3 (LDCOP with δ = 0.1). The class with the highest score according to the
corresponding classifier is shown above each image. Note how the quality
of the adversarial images worsens when a defense method is employed.

that indeed fooled the classifier (black bars). We observe that for slight perturbations
(αk ≤ 3), the percentage of adversarial examples declined from 57.1% for the original
network to 7.0% for the network defended with the LDCOP10 approach, corresponding
to a reduction of 87.7% in that interval.

Figure 12 depicts the quality degradation of the images generated by the ZOO
algorithm. For each column, it displays candidate adversarial images and the label
predicted by the respective network. Note how these images have a visually higher
perturbation in columns 1, 2, and 3 (the ones where we employ our defenses) compared
to column 0. This degradation is a consequence of the increased perturbation forced
by the defense methods.

Figure 13 shows the gradient approximation computed using the ZOO algorithm
for each proposed defense method. We can see that the gradients computed for Nv,
with v ∈ {1, 2, 3} (when the defense is active) have no spatial regularities through the
image pixels when compared with the gradient computed for the neural network N0

(Orig.). This result incurs from the induced uncertainty in the gradient approximation by
disturbing the neural network’s output probabilities. The attacker is left confused about
which direction it should perturb the image: the uncertainties perceived by the attacker
are spatial (through the image) and temporal (at each iteration).

Chapter 3. Disturbance-based defense 48

Figure 13 – Visualization of the approximate gradient (Equation 22), built by ZOO at its
first algorithm iteration for a particular image and different defense strate-
gies for the CNN. Each plot comprises a matrix of arrows representing an
approximation of the loss function gradient concerning each input pixel. We
fixed the arrow length, and its angle represents the gradient value for the
pixel position. The defense is active except for the top leftmost plot.

3.4.3 Defense method visualization

Figure 14 presents a visualization of the ZOO adversarial attack against the fully
connected neural network classifier, trained over the data set of concentric circles, with
and without the application of the defense methods. We can see that the original input
effortlessly turned into an adversarial example for the original neural network. However,
the proposed disturbance approaches hampered the process of identifying the correct
perturbation direction, making it harder to generate adversarial images and, in some
cases, preventing the success of the attacker.

Chapter 3. Disturbance-based defense 49

Figure 14 – Visualization of the ZOO attack iterations against the original neural net-
work, with and without the application of the defensive methods. The blue
and yellow circumferences consist of the training data set, the red curve
comprises the decision boundary, the black dots represent the original sam-
ple where the attack begins and, the green dots form a trajectory during
the ZOO attack procedure.

50

4 BENFORD’S LAW FOR ADVERSARIAL DETECTION ?

In this chapter, we show that adversarial images present a statistical property
that differs when compared to natural images after applying proper mathematical trans-
formations. More specifically, we analyze adversarial images concerning their First Digit
Distribution.

4.1 OVERVIEW

Let x ∈ Rn×m be any two-dimensional image. We associate to each x a statistic
s computed as follows: a) calculate the gradient magnitude of x, here denoted as the
transformation T (x); then b) get the frequency of the first digits of T (x); c) compare,
through the Kolmogorov-Smirnov statistic, the distribution got in (b) with the one given
by Benford’s law. The procedure encompassed by steps (a)-(c) is shown in Figure 15.
We now detail each of these steps in the sections that follow.

4.1.1 Benford’s Law

Benford’s Law (BL) or the First Digit Law (BENFORD, 1938) states that, across
different domains, the distribution of the leading digits of numerical data follows a similar
pattern, namely, the one given by Equation 27:

P (d) = log10

(
1 +

1

d

)
(27)

where d ∈ {1, . . . , 9} represents the first digit value, and P (d) the probability associated
with each d.

Figure 16 portrays the First Digit distribution, as proposed in BL. Pixel-based

Figure 15 – Overview of the proposed approach, composed of three steps: a) transfor-
mation of the image x, represented by the mapping T (.); b) a statistical
analysis of T (x), denoted by P̂ and c) a comparison of P̂ with a distribution
of reference P .

Chapter 4. Benford’s Law for adversarial detection ? 51

Figure 16 – First digit distribution as in Benford’s Law

images rarely follow BL (JOLION, 2001). However, for certain transformations, the trans-
formed images do. Two examples of such transformations are: the gradient magnitude
of the input image (JOLION, 2001) and the Discrete Cosine Transformation (DCT)
(PÉREZ-GONZÁLEZ; HEILEMAN; ABDALLAH, 2007). We employed the former as
presented in Chapter 4 to map images such that the natural ones behave as in BL.

4.1.2 Image Transformation: Gradient Magnitude

Given an input image x ∈ Rn×m, we compute its gradient G(x) according to
Equation 28, below:

G(x)i,j =
√
Ge1(x)2i,j +Ge2(x)2i,j, (28)

where G(x) is the gradient magnitude; i and j are indices indicating each pixel value;
Ge1(x) and Ge2(x) are the horizontal and vertical components of the gradient approxi-
mation, given by:

Ge1(x) = x ∗Ke1, Ge2(x) = x ∗Ke2 (29)

which are computed using the following Sobel filters Ke1 and Ke2 for the convolution
operation with the input image:

Ke1 =

−1 0 1

−2 0 2

−1 0 1

 , Ke2 =

−1 −2 −1

0 0 0

1 2 1

The discrete convolution operation, employed in Equation 29 for the approxima-

tion of the gradient in both directions, is given by:

(x ∗K)i,j =
O∑
o=1

P∑
p=1

xi−o,j−pKo,p (30)

where K represents, generically, both of the Sobel filters; O and P are the number of
rows and columns, respectively, relative to K.

Chapter 4. Benford’s Law for adversarial detection ? 52

4.1.3 Computing the First Digit Distribution

Given the transformed image T (x), we aim to calculate its associated first digit
distribution. Firstly, we get the leading digit of each of its pixel values. The first digits
of T (x) are denoted as F (T (x)) (e.g., F will output 1 given the pixel value 176, and
5 given 54). Then the frequency for each digit d ∈ {1, . . . , 9} is computed, forming a
distribution P̂ (d), satisfying

∑9
d=1 P̂ (d) = 1. Note that T (x) corresponds to G(x) in this

work.

4.1.4 Comparing two distributions: the Kolmogorov-Smirnov test

Given two distributions, one may use the Kolmogorov-Smirnov (KS) test to com-
pute how much these distributions diverge. This test evaluates the distance between
two empirical distributions or between the theoretical and an empirical distribution.

To assess the difference between the empirical distribution P̂ and the theoret-
ical distribution P , given by BL, we employed this test, by calculating the KS statistic
between these distributions, denoted as DKS(P̂ , P), using the formula below:

DKS(p, q) = sup |Acc(p)− Acc(q)|, (31)

where Acc returns the accumulated distribution of its given input distribution; and p and
q correspond to the given distributions.

4.2 EXPERIMENTAL COMPONENTS

In this section, we present the experimental setup to evaluate the deviation of
adversarial images regarding Benford’s Law. We briefly present the selected image
data sets and the employed CNN architecture and training parameters (when applied).
The adversarial attacks used in our experiments are also listed.

4.2.1 Data sets

To evaluate this approach, we employed three different image data sets, listed
as follows:

• MNIST;

• CIFAR10;

• ImageNet.

For further information, we described in detail these three data sets in Section 2.4.

Chapter 4. Benford’s Law for adversarial detection ? 53

4.2.2 CNNs under attack

We employed a different CNN model architecture for each of the data sets. We
trained the CNN selected to classify images from the MNIST (Table 4) and CIFAR10
(VGG16 with the necessary adjustments due to some differences in the input size (SI-
MONYAN; ZISSERMAN, 2014)) data sets from scratch and employed a benchmark pre-
trained network as the classifier for the images from ImageNet (VGG19 (SIMONYAN;
ZISSERMAN, 2014)).

For the MNIST data set, the ADAM (KINGMA; BA, 2014) optimization algorithm
was employed in the training procedure, with a learning rate of 1e−3, β1 = 0.9, β2 = 0.999

and ε = 1e−08. We divided the data set into three different image sets: the training set
comprising 50, 000 images, whereas the validation and test sets, 10, 000 samples each.
The classifier was trained for about 50 epochs, reaching a training accuracy of about
99.29% and for the test set 97.03%.

Table 4 – Neural Network Architecture - MNIST

Layer Type Dimensions

0 Input (32x32x3)
1 Conv(3x3)-64 (32x32x64)
2 Conv(3x3)-64 (32x32x64)
3 Batch Normalization (32x32x64)
4 Max Pooling(2x2) (16x16x64)
5 Conv(3x3)-128 (16x16x128)
6 Conv(3x3)-128 (16x16x128)
7 Batch Normalization (16x16x128)
8 Max Pooling(2x2) (8x8x128)
9 Conv(3x3)-256 (8x8x256)
10 Conv(3x3)-256 (8x8x256)
11 Batch Normalization (8x8x256)
12 Max Pooling(2x2) (4x4x256)
13 Fully Connected (2048)
14 Batch Normalization (2048)
15 Fully Connected (2048)
16 Fully Connected (10)

For training the classifier on the CIFAR10 data set, the optimization algorithm
employed was the Gradient Descent with momentum, where the learning rate and the
momentum values were 1e−3 and 0.9, respectively. We divided the data set into three
different image sets: the training set comprising 40, 000 images, whereas the validation
and test sets, 10, 000 samples each. The training procedure took about 50 epochs,
reaching a training accuracy of about 99.74% and for the test set 80.11%.

Chapter 4. Benford’s Law for adversarial detection ? 54

4.2.3 Adversarial Attacks

We employed two different adversarial attack algorithms, the FGSM (GOODFEL-
LOW; SHLENS; SZEGEDY, 2014) and the PGD (MADRY et al., 2017). For the PGD
attack, we applied two different settings: the ||.||2 − norm and the ||.||∞ − norm. Both
of the attacks are white-box. We presented a description of both adversarial attacks in
Sections 2.4 and 2.4.

4.2.4 Experimental Description

To analyze the deviation between the first digit distributions of the original and
the adversarial images, we employed the following steps:

1. Select 1000 random images from the test set for each of the tested data sets
(MNIST, CIFAR10, and ImageNet);

2. Attack each of these selected images with the employed adversarial attack algo-
rithms (FGSM and PGD);

3. Compute transformation of the inputs by evaluating the gradient magnitude of
the original, and the corresponding generated adversarial examples, according to
Equation 28;

4. Compute the first digit distribution, P̂ , for the transformed input;

5. Evaluate the KS statistic for the first digit distribution of each original and adver-
sarial example, compared to the original first digit distribution proposed by BL
(Equation 31);

6. Evaluate the Kullback-Leibler (KL) divergence between the first digit distribution
of both clean and adversarial examples, compared to the theoretical distribution
presented in the FDL (Equation 32). As the KL divergence also evaluates the
distance between distributions, this test enables its comparison regarding the
Kolmogorov-Smirnov test.

DKL(p, q) =
9∑
d=1

p(d) log(p(d)÷ q(d)) (32)

4.3 RESULTS

In this section, we show in detail the results reached by following the experimen-
tal procedure presented previously. We evaluate empirically the deviation of adversarial
examples compared to clean inputs, compared these results while applying different

Chapter 4. Benford’s Law for adversarial detection ? 55

(a) Represents the adversarial examples generated using the ||.||∞ − norm PGD attack

(b) Results associated with the examples crafted with the ||.||2 − norm PGD attack

Figure 17 – Scatter plot of the KS statistic for adversarial and clean examples. The first
column comprises the dispersion of the KS statistic for both adversarial
and original examples. The second column contains the behavior of the
separation percentage concerning the KS test value.

norms during the attack, analyzed the relation between the first digit distribution de-
viation and the perturbation magnitude, investigated the behavior of the computed
deviation during the adversarial attack for PGD attack and compared the Kolmogorov-
Smirnov test with the Kullback-Leibler divergence.

4.3.1 First digit distribution deviation

The comparison between the KS test for the adversarial examples and the orig-
inal examples generated by the PGD using both the ||.||∞ − norm and ||.||2 − norm

approaches, presented in Figure 17, indicates that most of the generated adversarial
examples had a higher KS statistic value compared to the theoretical FDL.

We also have the relation of the separation percentage and the KS statistic for
both cases, where it was possible to reach 94.7% for the adversarial examples generated
by the ||.||∞ − norm PGD attack, and 81.8% for the malicious inputs generated by the
||.||2−norm PGD attack. These results corroborate the fact that the first digit distribution
of a transformed input image deviates from the adversarial examples associated with it.

Chapter 4. Benford’s Law for adversarial detection ? 56

Figure 18 – Images a), b), and c) present the Kullback-Leibler divergence between the
first digit distribution of the gradient magnitude for the adversarial and the
original examples, concerning the original distribution proposed by Ben-
ford’s Law, where we sampled the attacked images from the Imagenet data
set. The adversarial examples were designed by the ||.||∞-norm FGSM
attack with ε equal to 0.1, 0.2 and 0.5, respectively. Image d) contains the
mean and standard deviation for the KL-divergence while varying the ε for
three different data sets.

4.3.2 Deviation regarding different attack norm

Figure 17 presents a comparison between the deviation calculated for adversar-
ial examples generated by an ||.||∞ − norm and a ||.||2 − norm attacker. By analyzing
the separation percentage for different values of the KS test, it is possible to visualize
that the deviation of the ||.||∞ − norm attacker is larger compared to the ||.||2 − norm,
resulting in a higher reachable separation percentage. These results remained invariant
for different image data sets.

4.3.3 Deviation regarding the perturbation magnitude

We have that the proposed approach makes it possible to separate adversar-
ial examples from clean examples for different values of ε, as presented in Figure
18. Moreover, by comparing the divergence for higher values of ε, we notice that the

Chapter 4. Benford’s Law for adversarial detection ? 57

Figure 19 – Behavior of the KS test along the attack iteration of the 2−norm implemen-
tation of the PGD attack for 11 examples from the Imagenet data set.

higher the perturbation imposed to the original example, the more explicitly separated
these sets become. This behavior is invariant for all the data sets employed during the
experiments.

Despite the non-intuitive relation between the increment on the magnitude of
the imposed perturbation and the deviation of the first digit distribution, the higher the
perturbation designed, or artificiality crafted by the ||.||∞−norm attack, the easier it is to
identify adversarial examples by comparing the first digit distribution with the distribution
proposed by Benford’s Law, as presented in this research.

4.3.4 Deviation regarding attack iteration

We have that the KS statistic overcame the separation limit computed according
to the Figure 17 before turning into an adversarial example, for some of the examples
presented in Figure 19. This limit consists of the separation value with a higher success
rate for adversarial and clean inputs.

This result shows that, by analyzing the KS test value, it may be possible to
identify that a neural network is under attack, i.e., that an attacker is using output
information to design a perturbation that will change the classification associated with
the original input image.

4.3.5 KS test compared to the KL divergence

We employed the PGD attack, under ||.||2−norm and ||.||∞−norm, for comparing
the maximum separation percentage while using the KS test and the KL divergence
as it is considered the universal first-order attack (MADRY et al., 2017). The results
presented in Table 5 indicate a significant increment in the separation percentage when
applying the KS test under both PGD settings.

Chapter 4. Benford’s Law for adversarial detection ? 58

Table 5 – Maximum separation percentage comparison between the Kullback-Leibler
divergence and the Kolmogorov-Smirnov statistics.

KL-divergence KS test

PGD∞− norm 90.23% 94.70%
PGD 2− norm 66.96% 81.79%

This analysis suggests that the KS test is more sensitive to the deviations on the
first digit distribution because it enables reaching a higher separation percentage using
the same amount of information given for the KL-divergence.

59

5 CONCLUSION

In this work, we have proposed two different approaches to deal with adversarial
examples focused on the defensive side of the digital arms race between adversarial
attacks and defenses. The first approach consists of a novel defense strategy against
black-box adversarial attacks. It comprises adding a controlled random disturbance to
the softmax output layer of a neural network classifier. The second consists of a new ap-
proach by which one can use to create a detector of adversarial images. Our approach
relies on computing the first digit distribution of the pixel values for the classifier’s input
samples, assuming that adversarial examples do not follow Benford’s law (BL) as natu-
ral images do, when transformed. Both methods act solely in the prediction phase. They
do not change the training data set or the classifiers parameters and training process.

For the defense method against black-box adversarial attacks, we have designed
three different approaches to compute such disturbance. The difference among them
lies in the set of requirements the disturbance vector must satisfy.

To evaluate our defensive approach, we have trained a CNN on the MNIST
data set and attacked it with the ZOO algorithm. Our findings show that the proposed
defense methods make the trained CNN less vulnerable to the images crafted by ZOO.
Our defense method reduces the attack success rate of ZOO while keeping the utility
of the network’s predictions (i.e., the general form of the probability distribution over
classes). For instance, the LDCOP10 method (which keeps the class ordering of the
softmax output and limits the noise magnitude) still attains a significant reduction in the
attack success rate generated by ZOO from 99.8% to 65.3%.

Our defense methods force the attacker to increase the magnitude of the pertur-
bation necessary to cause a misclassification. Therefore, if the network misclassifies an
image generated by the attacker, it is probable that this image either: is not adversarial
due to its high perturbation or is detectable by other defense methods (LU; ISSARA-
NON; FORSYTH, 2017; METZEN et al., 2017; FEINMAN et al., 2017; GROSSE et al.,
2017; SONG et al., 2017).

The combination of the proposed method with existing algorithms, left as future
work, would result in a strong defense since they are orthogonal: while most methods
depend on augmenting the training data set or retraining the network, ours act exclu-
sively on the network prediction and does not explicitly depend on a particular data
set. Moreover, because of its simplicity and ease of application, we advocate using the
proposed strategy as a standard method to evaluate the robustness of new black-box
attack methods.

The second proposed approach comprises computing the Kolmogorov-Smirnov
statistic between the first digit distribution of CNN’s input image and the fixed distribu-
tion from BL (after applying a suitable transformation to the given image). Specifically,

Chapter 5. Conclusion 60

we have shown that the leading digit distribution of adversarial images generated by
FGSM and PGD attack methods differ significantly from the corresponding distribution
observed in unaltered images: the former deviates significantly more from BL when
compared to the latter. This deviation tends to become higher as the perturbation’s
magnitude increases (for the FGSM attack).

Besides, one can use our approach to anticipate a potential undergoing attack
since we have observed that, in many cases, the deviation given by the KS statistic
reaches the separation threshold before the image becomes adversarial.

5.1 FUTURE WORKS

Additionally, we plan to investigate the performance of our defenses against
black-box adversarial attacks in different settings, such as: a) against other black-box
attack algorithms that depend on the output of the softmax layer; b) when using a clas-
sifier trained on different data sets with a higher number of features and output labels
(e.g., CIFAR-10, CIFAR-100); c) when different probability distributions (such as the
uniform distribution) are employed to compute the required controlled disturbance; d)
when combining the proposed defense method with existing adversarial defensive ap-
proaches (those that increase the classifier’s robustness and those that detect malicious
examples).

Regarding the statistical study of adversarial images, we left as future works:
a) devising a sophisticated adversarial image detector, based on the output of the
KS statistic test, which can serve as a low-dimensional input feature instead of the
whole high-dimensional image; b) divide an image such that multiple KS statistics
tests are obtained from a given input image, providing a more refined, informative view
of the deviation caused by the attack perturbation; c) consider different adversarial
attack methods, mainly black-box algorithms or those that perturb only a few pixels; d)
investigate the iterative application of the gradient transformation over a given image
(e.g., two times) due to preliminary tests that showed an improvement in the results
while employing the KL divergence instead of the KS test.

5.2 PUBLICATIONS

The studies in this work resulted in the following publications:

• Zago J. G., Antonelo E. A., Baldissera F. L. and Saad R. T.. It is double pleasure to
deceive the deceiver: disturbing classifiers against adversarial attacks. 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), p. 160-165.
DOI: 10.1109/SMC42975.2020.9282889;

Chapter 5. Conclusion 61

• Zago J. G., Antonelo E. A., Baldissera F. L. and Saad R. T.. Benford’s law: what
does it say on adversarial images? arXiv preprint: 2102.04615 (Submitted to
Neural Processing Letters journal).

62

REFERENCES

ATHALYE, Anish et al. Synthesizing Robust Adversarial Examples, July 2017.

BENFORD, Frank. The law of anomalous numbers. Proceedings of the American
philosophical society, JSTOR, p. 551–572, 1938.

BROWN, Tom et al. Adversarial Patch, Dec. 2017.

CARLINI, Nicholas; WAGNER, David. Adversarial Examples Are Not Easily Detected:
Bypassing Ten Detection Methods, May 2017.

CARLINI, Nicholas; WAGNER, David. Towards Evaluating the Robustness of Neural
Networks. In: p. 39–57. DOI: 10.1109/SP.2017.49.

CHEN, Pin-Yu et al. ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep
Neural Networks without Training Substitute Models. In: p. 15–26. DOI:
10.1145/3128572.3140448.

DECKERT, Joseph; MYAGKOV, Mikhail; ORDESHOOK, Peter C. Benford’s Law and
the detection of election fraud. Political Analysis, Cambridge University Press, v. 19,
n. 3, p. 245–268, 2011.

DENG, J. et al. ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR09.
[S.l.: s.n.], 2009.

FEINMAN, Reuben et al. Detecting adversarial samples from artifacts. arXiv preprint
arXiv:1703.00410, 2017.

GOODFELLOW, Ian J.; SHLENS, Jonathon; SZEGEDY, Christian. Explaining and
Harnessing Adversarial Examples. CoRR, abs/1412.6572, 2014.

GROSSE, Kathrin et al. On the (statistical) detection of adversarial examples. arXiv
preprint arXiv:1702.06280, 2017.

GU, Shixiang; RIGAZIO, Luca. Towards deep neural network architectures robust to
adversarial examples. arXiv preprint arXiv:1412.5068, 2014.

HINTON, Geoffrey; DENG, li, et al. Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research Groups. Signal Processing
Magazine, IEEE, v. 29, p. 82–97, Nov. 2012. DOI: 10.1109/MSP.2012.2205597.

HINTON, Geoffrey; VINYALS, Oriol; DEAN, Jeff. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1145/3128572.3140448
https://doi.org/10.1109/MSP.2012.2205597

REFERENCES 63

HOSSEINI, Hossein; POOVENDRAN, Radha. Semantic Adversarial Examples, Mar.
2018.

HUANG, Xiaowei et al. Safety Verification of Deep Neural Networks. English. Ed. by
Rupak Majumdar and Viktor Kunčak. Springer, Part 1, p. 3–29, July 2017. DOI:
10.1007/978-3-319-63387-9_1.

JOLION, Jean-Michel. Images and Benford’s law. Journal of Mathematical Imaging
and Vision, Springer, v. 14, n. 1, p. 73–81, 2001.

KATZ, Guy et al. Reluplex: An efficient SMT solver for verifying deep neural networks.
In: SPRINGER. INTERNATIONAL Conference on Computer Aided Verification.
[S.l.: s.n.], 2017. P. 97–117.

KHOURY, Marc; HADFIELD-MENELL, Dylan. On the Geometry of Adversarial
Examples. [S.l.: s.n.], 2019. Disponível em:
https://openreview.net/forum?id=H1lug3R5FX.

KINGMA, Diederik P; BA, Jimmy. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

KRIZHEVSKY, Alex; HINTON, Geoffrey. Learning Multiple Layers of Features from
Tiny Images. University of Toronto, May 2012.

KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey. ImageNet Classification
with Deep Convolutional Neural Networks. Neural Information Processing Systems,
v. 25, Jan. 2012.

KURAKIN, Alexey; GOODFELLOW, Ian; BENGIO, Samy. Adversarial examples in the
physical world, July 2016.

KURAKIN, Alexey; GOODFELLOW, Ian; BENGIO, Samy. Adversarial Machine
Learning at Scale, Nov. 2016.

LECUN, Yann; BOTTOU, Léon, et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, Ieee, v. 86, n. 11, p. 2278–2324, 1998.

LECUN, Yann; CORTES, Corinna. MNIST handwritten digit database, 2010.
Disponível em: http://yann.lecun.com/exdb/mnist/.

LIU, Changliu et al. Algorithms for verifying deep neural networks. arXiv preprint
arXiv:1903.06758, 2019.

https://doi.org/10.1007/978-3-319-63387-9_1
https://openreview.net/forum?id=H1lug3R5FX
http://yann.lecun.com/exdb/mnist/

REFERENCES 64

LU, Jiajun; ISSARANON, Theerasit; FORSYTH, David. SafetyNet: Detecting and
Rejecting Adversarial Examples Robustly. In: p. 446–454. DOI:
10.1109/ICCV.2017.56.

LU, Jiajun; SIBAI, Hussein, et al. NO Need to Worry about Adversarial Examples in
Object Detection in Autonomous Vehicles, July 2017.

MADRY, Aleksander et al. Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083, 2017.

MENG, Dongyu; CHEN, Hao. Magnet: a two-pronged defense against adversarial
examples. In: PROCEEDINGS of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. [S.l.: s.n.], 2017. P. 135–147.

METZEN, Jan Hendrik et al. On detecting adversarial perturbations. arXiv preprint
arXiv:1702.04267, 2017.

MILANI, Simone et al. Phylogenetic analysis of near-duplicate images using
processing age metrics. In: IEEE. 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). [S.l.: s.n.], 2016. P. 2054–2058.

MOOSAVI-DEZFOOLI, Seyed-Mohsen; FAWZI, Alhussein; FAWZI, Omar, et al.
Universal Adversarial Perturbations. In: p. 86–94. DOI: 10.1109/CVPR.2017.17.

MOOSAVI-DEZFOOLI, Seyed-Mohsen; FAWZI, Alhussein; FROSSARD, Pascal.
DeepFool: a simple and accurate method to fool deep neural networks. CVPR, Nov.
2016.

NA, Taesik; KO, Jong Hwan; MUKHOPADHYAY, Saibal. Cascade Adversarial Machine
Learning Regularized with a Unified Embedding. In: INTERNATIONAL Conference on
Learning Representations. [S.l.: s.n.], 2018. Disponível em:
https://openreview.net/forum?id=HyRVBzap-.

NARODYTSKA, Nina; KASIVISWANATHAN, Shiva Prasad. Simple black-box
adversarial perturbations for deep networks. arXiv preprint arXiv:1612.06299, 2016.

PAPERNOT, Nicolas; MCDANIEL, Patrick; GOODFELLOW, Ian, et al. Practical
Black-Box Attacks against Machine Learning. In: p. 506–519. DOI:
10.1145/3052973.3053009.

PAPERNOT, Nicolas; MCDANIEL, Patrick; WU, Xi, et al. Distillation as a Defense to
Adversarial Perturbations Against Deep Neural Networks. In: p. 582–597. DOI:
10.1109/SP.2016.41.

https://doi.org/10.1109/ICCV.2017.56
https://doi.org/10.1109/CVPR.2017.17
https://openreview.net/forum?id=HyRVBzap-
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/SP.2016.41

REFERENCES 65

PAPERNOT, Nicolas; MCDANIEL, Patrick D.; JHA, Somesh, et al. The Limitations of
Deep Learning in Adversarial Settings. 2016 IEEE European Symposium on
Security and Privacy (EuroS&P), p. 372–387, 2015.

PÉREZ-GONZÁLEZ, Fernando; HEILEMAN, Greg L; ABDALLAH, Chaouki T.
Benford’s law in image processing. In: IEEE. 2007 IEEE International Conference on
Image Processing. [S.l.: s.n.], 2007. P. i–405.

PEVNY, Tomas; FRIDRICH, Jessica. Detection of double-compression in JPEG
images for applications in steganography. IEEE Transactions on information
forensics and security, IEEE, v. 3, n. 2, p. 247–258, 2008.

RUMELHART, David E.; HINTON, Geoffrey E.; WILLIAMS, Ronald J. Learning
Representations by Back-propagating Errors. Nature, v. 323, n. 6088, p. 533–536,
1986. DOI: 10.1038/323533a0. Disponível em:
http://www.nature.com/articles/323533a0.

SABOUR, Sara et al. Adversarial manipulation of deep representations. arXiv
preprint arXiv:1511.05122, 2015.

SIMONYAN, Karen; ZISSERMAN, Andrew. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

SONG, Yang et al. Pixeldefend: Leveraging generative models to understand and
defend against adversarial examples. arXiv preprint arXiv:1710.10766, 2017.

SU, Jiawei; VARGAS, Danilo; SAKURAI, Kouichi. One Pixel Attack for Fooling Deep
Neural Networks. IEEE Transactions on Evolutionary Computation, PP, Oct. 2017.
DOI: 10.1109/TEVC.2019.2890858.

SZEGEDY, Christian; IOFFE, Sergey, et al. Inception-v4, inception-resnet and the
impact of residual connections on learning. In: 1. PROCEEDINGS of the AAAI
Conference on Artificial Intelligence. [S.l.: s.n.], 2017.

SZEGEDY, Christian; LIU, Wei, et al. Going deeper with convolutions. In:
PROCEEDINGS of the IEEE conference on computer vision and pattern recognition.
[S.l.: s.n.], 2015. P. 1–9.

SZEGEDY, Christian; VANHOUCKE, Vincent, et al. Rethinking the Inception
Architecture for Computer Vision. In: DOI: 10.1109/CVPR.2016.308.

SZEGEDY, Christian; ZAREMBA, Wojciech, et al. Intriguing properties of neural
networks. CoRR, abs/1312.6199, 2013.

TJENG, Vincent; XIAO, Kai; TEDRAKE, Russ. Evaluating robustness of neural
networks with mixed integer programming. arXiv preprint arXiv:1711.07356, 2017.

https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/CVPR.2016.308

REFERENCES 66

TÖDTER, Karl-Heinz. Benford’s Law as an Indicator of Fraud in Economics. German
Economic Review, Wiley Online Library, v. 10, n. 3, p. 339–351, 2009.

TRAMÈR, Florian et al. Ensemble Adversarial Training: Attacks and Defenses. In:
INTERNATIONAL Conference on Learning Representations. [S.l.: s.n.], 2018.
Disponível em: https://openreview.net/forum?id=rkZvSe-RZ.

XIANG, Weiming; TRAN, Hoang-Dung; JOHNSON, Taylor T. Reachable set
computation and safety verification for neural networks with relu activations. arXiv
preprint arXiv:1712.08163, 2017.

ZHAO, Zhengli; DUA, Dheeru; SINGH, Sameer. Generating Natural Adversarial
Examples. ICLR, Feb. 2018.

https://openreview.net/forum?id=rkZvSe-RZ

	Title page
	Approval
	Dedication
	Acknowledgements
	Resumo
	Resumo Expandido
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Contributions
	Document Organization

	Adversarial Examples: Fundamentals
	Artificial Neural Networks
	Convolutional Neural Networks
	Adversarial Examples
	Adversarial Attacks
	Adversarial Defenses

	Disturbance-based defense
	Problem Formulation
	Defense Proposals
	Homogeneously Disturbed Classes (HDC)
	Disturbed Classes with Order Preservation (DCOP)
	Limited Disturbed Classes with Order Preservation (LDCOP)

	Experimental Setup
	Convolution neural network (CNN)
	Experimental procedure
	Adversarial Attack

	Results
	ZOO attack success rate reduction
	Perturbation magnitude increment
	Defense method visualization

	Benford's Law for adversarial detection ?
	Overview
	Benford's Law
	Image Transformation: Gradient Magnitude
	Computing the First Digit Distribution
	Comparing two distributions: the Kolmogorov-Smirnov test

	Experimental Components
	Data sets
	CNNs under attack
	Adversarial Attacks
	Experimental Description

	Results
	First digit distribution deviation
	Deviation regarding different attack norm
	Deviation regarding the perturbation magnitude
	Deviation regarding attack iteration
	KS test compared to the KL divergence

	Conclusion
	Future Works
	Publications

	REFERENCES

		2021-05-04T21:27:46-0300

		2021-05-05T10:06:31-0300

