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“Water is the driving force of all nature.”  

Leonardo da Vinci  



 

RESUMO 

 

Simulações de vazões de rios em escala global através de modelos hidrológicos estão sujeitas 

a diversos tipos de incertezas. Dessa forma, os dados de entrada de precipitação são os 

principais causadores de variabilidade nos resultados simulados. Por esse motivo, esse estudo 

focou em analisar a habilidade individual de produtos de precipitação em reproduzir as vazões 

de rios simuladas através do Modelo Hidrológico Global da DHI no território Brasileiro. Assim, 

o trabalho comparou os resultados de vazões simulados com os hidrogramas observados em 

todas as regiões hidrográficas Brasileiras. Os seguintes quatro produtos de precipitação em 

escala global foram analisados como forçantes do modelo: Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS), Global Precipitation Measurement (GPM) - Final 

and Late versions, e ERA5 reanalysis. Além disso, uma grade de precipitação observada foi 

utilizada. O estudo investigou a disponibilidade de dados de vazões de rios no no território 

Brasileiro. Por conseguinte, analisamos as séries temporais de vazão simuladas pelo Modelo 

Hidrológico Global da DHI forçado pelos diferentes produtos de precipitação.   A capacidade 

do modelo hidrológico em reproduzir os fluxos nos rios, o quais funcionam como variáveis 

independentes do modelo para validação, determina a acurácia dos produtos de precipitação 

como forçantes do modelo. Nesse sentido, os coeficientes de eficiência do modelo incluem a 

avaliação do balanço hídrico: Erro Médio (ME) e Erro Médio Relativo (MRE), e também, o 

coeficiente de eficiência Kling-Gupa (KGE), e seus componentes: correlação linear (r), 

variabilidade do erro (Alfa), e o viés (Beta). O Modelo Hidrológico Global da DHI é uma versão 

distribuída do modelo chuva-vazão NAM, também chamado de RDII em Inglês (Rainfall 

Dependent Inflow and Infiltration model). Adicionalmente, o método Kinematic descreve o 

roteamento nos rios. Resultaods preliminares do modelo em países como Estados Unidos da 

América (EUA) e França foram classificados como razoáveis quando forçados com os produtos 

de precipitação CHIRPS e GPM. Os resultados do estudo mostraram que em termos de balanço 

hídrico (ME e MRE) e KGE, a grade observada é uma referência suficiente para avaliar os 

produtos globais de precipitação. Além disso, ERA5 apresentou resultados não esperados, uma 

vez que mostrou os melhores resultados simulados entre os produtos de precipitação 

(MEQ50%=95.02 mm e MREQ50%=23.66 %). Contudo, ERA5 apresentou o menor KGE 

calculado entre as simulações, à medida que apontou baixos coeficientes de correlação. Entre 

os produtos com dados de satélite/corrigidos com observações (CHIRPS e GPM Final), 

CHIRPS mostrou os melhores resultados (MEQ50% = 153.86 mm e MREQ50% = 40.16 %). De 

forma geral, o GPM Final apresenta melhora relevante quando corrigido pelas observações 

(GPM Late). Finalmente, em relação às regiões hidrográficas Brasileiras, os produtos de 

precipitação mostraram acurácias diferentes - CHIRPS performou melhor que o GPM Final nas 

regiões do sul (subtropical). Enquanto o GPM Final apresentou os melhores resultados 

(MREQ50% = 19.86 %) na bacia Amazônica (floresta tropical).  

 

Palavras-chave: NAM. Modelos hidrológicos globais. Grades de precipitação. Vazão 

observada. 

 

 

 

 

 

  



 

 

ABSTRACT 

 

Rivers discharge simulations on a global-scale by hydrological models are subject to several 

types of uncertainties. Thus, precipitation data inputs are the main cause of simulated results 

variability. For this reason, this study aimed to evaluate the ability of individual global-scale 

precipitation datasets to reproduce river discharges simulated by the DHI Global Hydrological 

Model in the Brazilian territory. In this regard, we compared the discharge model results against 

observed hydrographs from all the Brazilian Hydro-Regions. The following four global 

precipitation datasets were analyzed as simulation forcings: Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS), Global Precipitation Measurement (GPM) - Final 

and Late versions, and ERA5 reanalysis. Additionally, an observed precipitation grid was 

analyzed. The study investigated the availability of observed river discharge data in the 

Brazilian territory. Therefore, we evaluated the simulated discharge time-series from the DHI 

Global Hydrological Model forced by the different precipitation products. The hydrological 

model capacity to reproduce the in-situ rivers-flows, which act as a model-independent 

validation variable, determined the accuracy of the simulation-input precipitation datasets. In 

this sense, the model efficiency coefficients included the water balance assessment: Mean Error 

(ME) and Mean Relative Error (MRE), also, the Kling-Gupta efficiency coefficient (KGE), and 

its components: linear correlation (r), variability error (Alpha), and the bias (Beta). The DHI 

Global Hydrological Model is a grid-based version of the NAM rainfall-runoff model, also 

named RDII in English standing for Rainfall Dependent Inflow and Infiltration model. 

Additionally, the Kinematic method describes the river routing. Previous results of the model 

in countries as the United State of America (USA) and France were classed as good when forced 

by CHIRPS and GPM precipitation datasets. The study results showed that in terms of water 

balance (ME and MRE) and KGE, the observed grid is an enough reference to evaluate the 

global precipitation datasets. Also, ERA5 presented not expected results, since it provides the 

best-simulated values among the precipitation products (MEQ50%=95.02 mm and 

MREQ50%=23.66 %). However, ERA5 showed the lowest calculated KGE, since it gives low 

linear correlation coefficients. Among the satellite/observation-corrected datasets (CHIRPS and 

GPM Final), CHIRPS showed the best results (MEQ50% = 153.86 mm and MREQ50% = 40.16 

%). In general, GPM Final shows a relevant improvement after the observation corrections 

(GPM Late). Finally, over the Brazilian Hydro-Regions, the precipitation products showed 

different accuracy - CHIRPS performs much better than GPM Final in the southern regions 

(subtropical). While GPM Final presents the best results (MREQ50% = 19.86 %) in the Amazon 

Basin (tropical rainforest).  

 

Keywords: NAM. Global Hydrological Models. Precipitation datasets. Observed discharge. 
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1  INTRODUCTION 

 

Modeling water flows and water storage variations on a global scale according to a 

temporal and spatial approach is essential to deal with water resources (DÖLL et al., 2016). 

The models that aim to represent global hydrological phenomena, which include the main and 

associated process, have a similar structure over several stand-alone hydrological models and 

hydrological components of the general circulation models (GCMs). Global hydrological 

models (GHMs) simulate the hydrologic dynamics of continental-scale river basins at the land 

surface. As most of the hydrological models, GHMs represent mainly the rainfall-runoff 

processes and river flows ( SIMON; NIGEL, 2010; MOTOVILOV et al., 1999) 

Hydrological simulations require accurate and representative climatological variables 

(e.g. temperature, precipitation, evaporation) as forcing, and their representation in space and 

time is necessary (BEVEN, 2011; KIRCHNER, 2009; WATSON et al., 1996). Additionally, 

the spatial resolution of the available input data often determines the GHMs discretization, 

having model-specif effects on the simulation results. In this way, the modeling approach is 

becoming more complex and resolute since high-resolution global datasets have been made 

available for the last decades (SOOD SMAKHTIN, 2015; DÖLL et al., 2008, LAMMERS et 

al., 2008). 

The uncertainties in hydrological simulation mainly can be separated in model 

uncertainty (structure, parameters, and forcings) and observation uncertainty (SOOD & 

SMAKHTIN, 2015). Accurate precipitation data is essential in hydrological modeling since 

rainfall is the major driving force of basin runoff generation (CHO et al., 2009). Nevertheless, 

the spatial variability of precipitation input is related to the major source of uncertainty in 

hydrological modeling. The relation is notable in large and small catchments (SCHILLING & 

FUCHS, 1986; KREJCI & SCHILLING, 1989; BONACCI, 1989).  In this sense, the 

precipitation uncertainty is linked to (i) magnitude, (ii) temporal distribution, and (iii) spatial 

distribution of the rainfall (MASKEY; GUINOT; PRICE, 2004). 

In situ precipitation measurements can present large spatial-temporal variability 

(BOHNENSTENGEL; SCHLÜNZEN; BEYRICH, 2011). Traditionally, gauge measurements 

have been used as actual precipitation in hydrological models (MUSIE; SEN; SRIVASTAVA, 

2019; ZHU et al., 2015). In this sense, rain gauge punctual observations are interpolated to 

regular grids, representing the precipitation at basins or sub-basins locations (BELETE et al., 

2020; OREGGIONI WEIBERLEN; BÁEZ BENÍTEZ, 2018). In places with low gauge density 
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as mountainous regions or remote areas such as the Amazon basin, interpolated observation 

might represent a rough estimation. Additionally, in tropical regions precipitation has a 

convective origin with high spatial variation during the day (COLLISCHONN; 

COLLISCHONN; TUCCI, 2008). Also, rain stations are vulnerable to errors from 

meteorological phenomena as wind effects and evaporation (STRANGEWAYS, 2004).  

As a result of this limited gauge representativeness, several gridded precipitation 

datasets have been developed for large-scale hydrological modeling during the last decades, 

these products differ in terms of data sources: radar, gauge, satellite, numerical weather model, 

or combinations thereof (BECK et al., 2017). Among the different options of sources, 

precipitation radar measurements might present errors associated with rain-intensity 

relationships, range effects, clutter, etc (JAMESON; KOSTINSKI, 2002). For the last decades, 

a global effort has been taking to develop satellite-based precipitation retrieval algorithms. 

More recently, satellite-based precipitation products have emerged, providing uninterrupted 

precipitation time series with quasi-global coverage (BEHRANGI et al., 2011). In this way, the 

satellite systems present a range of variety in respect to sensor technology, temporal sampling, 

and measurement variables (HUFFMAN et al., 2007; SAPIANO; ARKIN, 2009). 

  In this regard, many studies focused to evaluate the different precipitation products 

to understand their accuracy. For this purpose, data is compared to field observations or gauge-

adjusted radar fields in terms of spatio-temporal patterns. While others evaluate the 

performance of precipitation datasets assessing simulated river discharge from hydrological 

modeling forced by the specific rainfall data (BECK et al., 2017). The advantage of evaluating 

remote sensing rainfall estimates by running hydrological models is to directly identify the 

rainfall impact over simulated river discharge (COLLISCHONN; COLLISCHONN; TUCCI, 

2008). Additionally, there are not too many studies that have focused on catchment modeling 

over the entire Brazilian territory. Altough, Siqueira et al. (2018), and David (2020) had 

recently made great progress on the topic.  

With this in view, this study aims to evaluate the ability of individual global-scale 

precipitation datasets to reproduce river discharges simulated by the DHI Global Hydrological 

Model in the Brazilian territory. 
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1.1  OBJECTIVES 

 

1.1.1  General objective 

 

Evaluate the ability of individual global-scale precipitation datasets to reproduce river 

discharges simulated by the DHI Global Hydrological Model in the Brazilian territory. 

 

1.1.2  Specific objectives 

 

• Investigate the availability of river discharge data in the Brazilian territory. 

 

• Establish a database of precipitation products with the following datasets: Observed 

grid, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), 

Global Precipitation Measurement (GPM) - Final and Late versions, and ERA5 

reanalysis. 

 

• Compare the different global precipitation datasets according to a spatial and temporal 

approach.   

 

• Evaluate the simulated discharge time-series from the DHI Global Hydrological Model 

forced by the different precipitation products. 
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2  LITERATURE REVIEW 

 

This section describes the theoretical background of this study. It is mainly focused on 

a review of the utilized hydrological model. Section 2.1 covers the basics topics about the NAM 

model, while Section 2.2 presents the DHI Global Hydrological Model and the distributed 

version of the NAM model.   

 

2.1 NAM RAINFALL-RUNOFF MODEL 

 

NAM stands for the Danish abbreviation of “Nedbør-Afstrømnings-Model”, which 

means Precipitation-Runoff-Model or RDII in English - Rainfall Dependent Inflow and 

Infiltration model (DHI, 2017). The model was proposed by Nielsen & Hansen (1973), the work 

presented the model as an engine to simulate the rainfall-runoff process of rural watersheds. 

Firstly, the model was tested in three different Danish watersheds, providing promissory results. 

Since its first application, the model has been applied worldwide to simulate the rainfall-runoff 

phenomena in many hydrological conditions. The NAM model is characterized as a 

deterministic, lumped, conceptual model with moderate input data requirements (DHI, 2017). 

However, as described in Section 2.2, the DHI Global Hydrological Model utilizes a physically 

based distributed NAM version. 

 

2.1.1 Model forcings 

 

2.1.1.1Meteorological data 

 

2.1.1.1.1Precipitation 

 

Precipitation is the principal input for catchments water balance, the phenomena 

determine the water quantity and quality.  The spatial and temporal distribution of precipitation 

drives the available water in space and time. The rainfall intensity controls the amount and peak 

of runoff during a storm event. The seasonality during the year determines the need for 

irrigation in an agricultural system. However, its measurement is difficult and small errors will 

affect the entire water balance on the catchment scale (DAVIE; QUINN, 2019).  
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With this in view, the precipitation forces the NAM model. Additionally, for the 

validation process, the time resolution of the rainfall time series should follow the time 

resolution of the discharge measurements (DHI, 2017). 

 

2.1.1.1.2Evapotranspiration 

 

Evaporation is the only loss away from the surface in the water balance equation, it 

has an important influence on the catchment water quantity. In this sense, the loss of water from 

the soil through direct evaporation and plant's transpiration impact the amount of water flowing 

into the rivers during a storm event. Also, it partially determines the amount of water available 

to infiltrate into groundwater. However, the impact of evapotranspiration on the water balance 

is not as great as for precipitation, but it presents a significant role in the spatial and temporal 

runoff process (DAVIE; QUINN, 2019).  

In this sense, the evapotranspiration forces the NAM model. The evapotranspiration 

specified as a model forcing is the potential evapotranspiration. For a daily time step simulation, 

monthly values of potential evapotranspiration are usually sufficient. Thus, only minor 

improvements might be obtained by utilizing daily data (DHI, 2017). 

 

2.1.1.2Hydrological data 

 

2.1.1.2.1Discharge 

 

Ruoff is the term utilized to describe the water dynamic movement to the streams after 

it has reached the ground as precipitation. When the water flows into the rivers in a channelized 

form, hydrology science refers to it as streamflow or riverflow - expressed as discharge 

(DAVIE; QUINN, 2019).  

Observed discharge data at the catchment outlet are utilized for comparison with the 

simulated discharge. The time step discharge value is the average discharge since the last input 

data (DHI, 2017). 
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2.1.2 Model structure 

 

The NAM model is based on physical structures and equations combined with semi-

empirical ones - a conceptual model. Figure 1 shows the model structure. The structure aims to 

imitate the land phase of the hydrological cycle. This structure allows representing the physical 

process by simulating the rainfall-runoff through continuously accounting for the water content 

in four different and interrelated storages. The storages are: 

 

• Snow storage 

• Surface storage 

• Lower or root zone storage 

• Ground storage 

 

Figure 1 - Model Structure. 

 
Source: DHI, 2021. 

 

The meteorological inputs force the NAM model. The produced outputs are runoff 

(overland flow, interflow, and baseflow), evapotranspiration, soil moisture content, 

groundwater recharge, and groundwater levels (DHI, 2017). 
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2.1.3 Basic modeling components and parameters 

 

This section summarizes the NAM basic modelling components and the main model 

parameters. Besides, the section focus on the components and parameters that are cited along 

with the study as background for the methodology presentation and results sections. More 

information is fully described in the main model reference: DHI (2021). Figure 2 shows the 

model conceptualization of the physical processes represented by NAM.  

 

Figure 2 - Model Components. 

 

Source: DHI (2021). 

 

Surface storage 

The surface storage represents the moisture intercepted on the vegetation, water 

trapped in depressions and in the uppermost, and cultivate ground part. Umax [mm] introduces 

the maximum amount of water in the model storage. Common values for Umax stand from 10 to 

20 mm. Dynamically, the storage will generate PN (net excess rainfall) when U ≥ Umax. It is 

consumed by evaporation and horizontal leakage (interflow) (DHI, 2021).  
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Lower zone or root zone storage 

The lower zone or root zone storage stands for the soil layer above the surface. Lmax 

defines the maximum water quantity in the compartment, which acts as the maximum potential 

soil moisture for vegetation transpiration. Thus, in terms of water balance, the root zone plays 

an important role. Additionally, besides other simplifications, Lmax represents the average root 

depths of the individual vegetation types. The reference value is 100 mm (DHI, 2021). 

Evapotranspiration 

Initially, the evapotranspiration demand meets the potential rate from the surface 

storage. When U < Ep, the remaining fraction is linearly consumed by root activity from the 

lower storage according to the soil moisture content ratio L/Lmax (DHI,2021). The following (1 

explains the process. 

𝐸𝑎 = (𝐸𝑝 − 𝑈)
𝐿

𝐿𝑚𝑎𝑥
 (1) 

Where,  

𝐸𝑎 = Actual Evapotranspiration [mm] 

𝐸𝑝 = Potential Evapotranspiration [mm] 

𝑈 = Surface water content [mm] 

𝐿 = Root zone water content [mm] 

𝐿𝑚𝑎𝑥 = Root zone maximum water content [mm] 

 

2.2 DHI GLOBAL HYDROLOGICAL MODEL 

 

2.2.1 General information 

 

The DHI Global Hydrological Model is an operational data service providing access 

to reliable and frequently update hydrological model results all over the world using an 

increasing number of global datasets. The ongoing project goals to create automatic modelling 

workflows, which produces hydrological data to provide boundary conditions for local models, 

or even for direct data usage (DHI, 2021).  

The model grid runs in a global tiles scheme, covering all the longitudes (-180˚ to 

180˚), and latitudes from -60˚ to 60˚ - the model mesh will be extended to global coverage in 
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the future. There are 251 tiles with a resolution of 10˚x10˚ (432 tiles would cover the entire 

globe). Then, each tile comports 10,000 models, providing a resolution equals to 0.1˚x0.1˚ 

(approximately 11 km). There is also a sub-grid resolution, which is mainly applied to mountain 

areas. The sub-grid defines the different elevation zones in these regions, this downscaling 

allows expressing the variation in temperature or other parameters related to the elevation. In 

this regard, regions as the Andes or the Himalayas present further discretization for each grid 

cell. With this in view, the hydrological model corresponds to a distributed version of the 

classical DHI rainfall-runoff NAM model (DHI, 2021).  

Thus, the parameter estimation process can be divided into two different approaches:  

(i) regionalization, in which the parameters are calibrated according to discharge gauge 

observations in the catchments. Subsequently, the parameters are extrapolated to ungauged 

catchments.  However, it is sensitive to the model forcings and observation uncertainties - the 

biases on the observations and model forcings are transferred to parameters estimation. Also on 

a global scale, there is a limited network of streamflows observations. (ii) physical-based, in 

which the parameters are estimated from observed physical quantities. This approach easily 

allows combining available gridded datasets to the hydrological model grid. Also, it provides 

reasonable parameters in ungauged areas. Nevertheless, a merged procedure rises as a 

reasonable option, since the physical-based method would work as priori estimation, while the 

regionalization makes the local calibration possible. Thus, the model results, forcing global 

datasets, and physical observed quantities are evaluated through the discharge observations in 

the rivers (DHI, 2021). 

Additionally, the Fast Kinematic method describes the river routing, using the 

discharge estimations from the rainfall-runoff model as the primary input.  The river routing 

happens according to three levels: (i) On the grid through the NAM routing (ii) Routing from 

the grid to the basin outlets through the Kinematic routing (iii) Routing between the basins 

through the Kinematic routing. 

 

2.2.2 Basins delineation and real basin area 

 

The basins are described by the database HydroBASINS (LEHNER; GRILL, 2013), 

which is a series of polygon layers that represent watershed boundaries and sub-basins at a 

global scale. The used algorithm provides the up and downstream connectivity between the 

basins. In this sense, to evaluate the simulated discharges against the observations, the model 
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corrected the simulated flow by the real basin area - provided in the station's catalog.  (2 is used 

for the discharge correction. 

 

𝑄𝑓𝑖𝑛𝑎𝑙 =  
𝐴𝑏𝑎𝑠𝑖𝑛

𝐴𝑚𝑜𝑑𝑒𝑙
 𝑄𝑠𝑖𝑚 

(2) 

 

Where, 

𝑄𝑓𝑖𝑛𝑎𝑙 = Corrected discharge [m3/s] 

𝑄𝑠𝑖𝑚 = Simulated discharge [m3/s] 

𝐴𝑏𝑎𝑠𝑖𝑛 = Real basin area [km2] 

𝐴𝑚𝑜𝑑𝑒𝑙 = Model basin area [km2] 
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3 METHODOLOGY 

 

3.1 METHODOLOGY SCHEME  

 

Figure 3 shows the study methodology scheme. In this sense, five precipitation datasets 

were evaluated. The rainfall products correspond to four different types of data sources: 

observations-only (Observed Grid), satellite/observation-corrected products (CHIRPS and 

GPM Final), satellite-only (GPM Late), and reanalysis (ERA5). 

Therefore, each one of the precipitation products forced a specific DHI Global 

Hydrological Model simulation over the model area (Section 3.5) - according to the simulation 

specifications (Section 3.8). Thus, the agreement between the simulated and observed discharge 

indicates the performance of the precipitation products to estimate the stream flows through the 

rainfall-runoff process.  

Additionally, the model performance is evaluated at different geographical scales. The 

country scale compares the model results against the field observations from 769 discharge 

gauges in the Brazilian territory. While the region scale selected three Brazilian Hydro Regions 

- which presented the best results among the twelve existing ones (Section 3.2). The selected 

areas are Amazônica (#1), Atlântico Sul (#6), and Uruguai (#12). Finally, one basin for each 

region was analyzed. Thus, the model precipitation products were evaluated in well-calibrated 

basins. Also, the basins present different magnitude areas.   

 

Figure 3 - Methodology scheme. 
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3.2 STUDY AREA 

 

The model results were evaluated in the entire Brazilian territory. However, for a better 

understanding of the model accuracy over the different hydrological patterns, the study used 

the 12 Brazilian Hydro-Regions to cluster the model performance evaluation. The Brazilian 

Water Agency (ANA) groups the Brazilian Hydro-Regions according to their natural, social, 

and economic mutual characteristics, which region is described by a close basin, group of 

basins, or sub-hydro-regions (ANA, 2021a). The Brazilian Hydro Regions are: 

 

• Amazônica (#1) • Paraguay (#7) 

• Altântico Leste (#2) • Paraná (#8) 

• Altântico Nordeste Ocidental (#3) • Paranaíba (#9) 

• Altântico Nordeste Oriental (#4) • São Francisco (#10) 

• Altântico Sudeste (#5) • Tocantins-Araguaia (#11) 

• Altântico Sul (#6) • Uruguai (#12) 

 

Figure 4 shows the Brazilian Hydro-Regions locations: 

 

Figure 4- Brazilian Hydro-Regions 

 
Source: Author. 
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3.3 MODEL AREA 

 

The model area (12,890,685 km²) covers approximately 72% of the South American 

area (17,840,000 km²). The drainage area is mainly delimited by the Andes Mountains on the 

west, the Atlantic Ocean coast on the east, the Guiana Shield on the north, and the Argentinian 

Pampas region on the southern border. Figure 5 shows the model area and the major rivers. 

 

Figure 5 - Model area. 

 
Source: Author. 

 

3.4 OBSERVED DISCHARGE 

 

 The model performance corresponds to the ability of the simulation results to 

reproduce the in-situ streamflow values. Therefore, this worked aimed to build a solid river 

discharge database. As a result, the final frame covers mainly the Brazilian territory, which was 

submitted to further data screening analysis. 
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3.4.1 Datasets 

 

The study utilizes two different observed river discharge datasets: (1) Environmental 

Research Observatory (ORE) - Geodynamical, Hydrological, and Biogeochemical control of 

erosion/alteration and material transport in the Amazon River Basin/HYBAM (HYBAM, 

2021). The organization is a partnership between the hydrological and meteorological agencies

/services for some of the countries located in the Amazon Basin: Brazilian Water Agency/ANA 

(ANA, 2021a) in Brazil, National Meteorology and Hydrology Service/SENHAMI in Peru 

(SENAMHI-PE, 2021),  and Bolivia (SENAMHI-BO, 2021), National Meteorology and 

Hydrology Institute/INAMHI in Ecuador (INAMHI, 2021), and the French Institute of 

Research for Development/IRD (IRD, 2021). Commonly called SO-HYBAM - how the study 

refers the database for the rest of the document. 

The database's geographical coverage is the Amazon Basin. The time series are 

available on a daily time step. As a result, the database has been used as a streamflow 

observation reference by several researchers in the Amazon, which facilities information 

exchanging and comparison to the previous studies. Among the studies are (CHEN et al., 2020; 

GUIMBERTEAU et al., 2012; PAIVA et al., 2013). 

Additionally, (2) the Brazilian Water Agency/ANA (ANA, 2021b) observed discharge 

dataset has been gathered. The agency makes available the most complete hydrological dataset 

(water-level and discharge) on the country territory, hence it incorporates the database from 

several local Brazilian hydrological and meteorological agencies/services. The enrolled public 

organizations are the Geological Survey of Brazil/CPRM (CPRM, 2021), the Agricultural 

Research and Rural Extension Company of Santa Catarina/EPAGRI (EPAGRI, 2021), the 

Water and Energy Department of the São Paulo State/DAEE-SP (DAEE-SP, 2021), the Water 

Management Institute of Minas Gerais/IGAM (IGAM, 2021), the Paraná Water Institute/IAP 

(IAT, 2021), and the contracted companies as the Water Resources and Irrigation Development 

Company of Sergipe State/COHIDRO (COHIDRO, 2021), CONSTRUFAM 

(CONSTRUFAM, 2021), and the Federal University of Ceará/UFC (UFC, 2021). The rest of 

the document refers to the dataset only as ANA dataset. 

The dataset is composed of discharge [m3/s] time series on a daily resolution. There is 

a quality control code for each measurement, where "1" means a raw level for the observed 

flow, and "2" means that the agency has realized a further treatment on the measured value. The 

present study defines number "2" as the preference level when both codes are available. 
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Besides, only the station gauges with available rating curve data have been chosen for the 

quality control process, working as a first quality assessment. The ANA data covering the 

Amazon was not utilized, since the SO-HYBAM database is the reference over the region.  

A total of 3,658 stations were computed from the two datasets. Among the discharge 

gauges, 210 stations (5.74%) correspond to the SO-HYBAM source, while 3,448 stations 

(94.26%) stand for the ANA dataset. Therefore, further data screening analysis considered the 

entire created frame. Figure 6 shows the station's spatial distribution.   

 

Figure 6 - Preliminary stations locations. 

 

Source: Author. 

 

3.4.2 Data Screening 

 

The data screening procedure focused on the studying period, completeness, and data 

quality. Additionally, this study focuses on the period from the year 2000 to the near present. 

Firstly, the database was filtered by two conditions: (1) Time series longer than 15 years after 

the year 2000 (2) time series with less than 10% of missing data. Secondly, a visual inspection 
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of the plots for the daily discharge time series, yearly maximum discharge, yearly minimum 

discharge, and flow duration curve. Thus, some of the stations were removed from the database 

due to unexpected values (i.e. too many outliers or a clear step in the time series). Figure 7 

shows an example of the plots for the most downstream station in the Amazon Basin (Obidos - 

17050001).  

Figure 7 - Discharge Gauge Statistics - Obidos - 17050001. 

 

Source: Author. 

 

Also, the last quality control was developed through the methodology presented by 

Cole, Johnston and Robinson (2003), which recommends the visualization of the yearly flow 

duration curves. Some of the stations were removed due to the visual variance among the 

different yearly flow duration curves, or an unexpected shape. Finally, the gauges were filtered 

by three additional conditions: (1) minimal drainage area of 500 km2, and (2) maximal 

difference of |10%| between the catchment model area and the metadata catchment area, and 

(3) only discharge stations located in the Brazilian territory. As a result, there are 769 stations 

in the treated frame, 50 stations (6.5 %) from the SO-HYBAM source, and 717 stations (93.50 

%) from the ANA database. Although a visual data quality assessment was realized, 

uncertainties about the observation may be present. Figure 8 shows the discharge station's 

spatial distribution after the treatment. 
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Figure 8 - Treated stations locations. 

 
 

Source: Author. 

 

3.5  PRECIPITATION DATASETS 

 

The following section describes each studied precipitation dataset: Observed, 

CHIRPS, GPM Final, GPM Late, and ERA5. In this regard, all the grids were interpolated to a 

0.1° resolution over the model area when necessary. Table 1 shows the main information about 

the datasets. 

Table 1 - Precipitation Datasets Details 

Short 

name 

Data 

source(s) 
Full name 

Spatial 

resolution 

Spatial 

coverage 

Temporal 

resolution 

Temporal 

Coverage 

Ref. 

Observed 

grid 
G 

Daily grided 

meteorological 

variables in Brazil 

0.25° 
Brazilian 

territory 
Daily 

Jan/1980 

to 

Dec/2015 

1 

CHIRPS S, G 

Climate Hazards 

Infrared Precipitation 

with Stations 

0.05° 
-50° to 

50° 
Daily 

Jan/1981 

to near-

present 

2 

GPM 

Late 
S 

Global Precipitation 

Measurement - IMERG 

Late Run 

0.1° 
-60° to 

60° ¹ 
Daily 

Jun/2000 

to near-

present 

3 
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GPM 

Final 
S, G 

Global Precipitation 

Measurement - IMERG 

Final Run 

0.1° 
-60° to 

60° ¹ 
Daily 

Jun/2000 

to near-

present 

3 

ERA5 R 

European Centre for 

Medium-range Weather 

Forecasts ReAnalysis 

~0.28° 
-90° to 

90° 
Hourly 

Jan/1979 

to near-

present 

4 

*Where, ¹ - 90° to 90° for not-full coverage; G - Gauge data; S - Satellite; R - Reanalysis.  

Source: 1- Xavier, King and Scanlon (2017); 2 - Funk et al.( 2015); 3 - NASA (2021); 4 - 

ECMWF (2021).  

 

3.5.1 Observed  

 

Xavier, King, and Scalon (2016) developed a gridded dataset for meteorological 

variables in Brazil. The dataset contains precipitation and reference ET (ETo) based on the most 

comprehensive meteorological station data available for Brazil. The database spatial resolution 

is 0.25° (~28 km) for daily and monthly temporal resolution (1980 to 2013). In this sense, 

Xavier, King, and Scalon (2017) took an update on the previous product. The latest version 

made use of 9,259 rainfall gauges instead of 3,630 in the preliminary version. Additionally, the 

temporal coverage was extended by two years (1980-2015).  

Most of the observed data were collected from the Brazilian Water Agency (ANA) and 

the National Meteorological Institute (INMET), combing 8,515 and 744 gauge stations 

respectively. The spatial distribution of the gauge stations presents a high variation across the 

Brazilian Hydro-Regions. The Parana Basin shows the highest spatial coverage over the 

national territory, while the Amazon Basin shows the lowest one. The dataset covers the entire 

Brazilian territory 

The observed precipitation is measure on a daily base, accumulated over 24 hours. 

Interpolated methods over the grid were validated by comparing interpolated results with 

observations on meteorological stations. Thus, the associated value [mm/day] of each grid point 

represents the fixed representative amount of precipitation for the specific day on the entire cell. 

The dataset is considered an observation only-dataset. 

 

3.5.2  CHIRPS 

 

Funk et al. (2015) presented the Climate Hazards Infrared Precipitation with Stations 

(CHIRPS) precipitation dataset. The data covers the period from 1981 to the near-present (~40 

years) on a daily, pentadal, and monthly time resolution.  The database presents a spatial 

resolution equals to 0.05° on a quasi-global coverage, spanning from -50° to 50° (and all 



35 

 

longitudes). The Climate Hazards Center, University of California - Santa Barbara 

operationally maintains the dataset.  

The CHIRPS building appropriates three different sources of precipitation data: 1) the 

Climate Hazards group Precipitation climatology (CHPclim), 2) the satellite-only Climate 

Hazards Group Infrared Precipitation (CHIRP), and 3) the station blending procedure that 

finally generates the CHIRPS.  

The CHPclim represents monthly precipitation climatological data based on two sets 

of monthly historical long-term means. The two sets are a combination of 27,453 monthly 

stations from the Organization of the United Stations (FAO), and 20,591 stations from version 

two of the Global Historical Climate Network (GHCN). Additionally, besides the traditional 

physiographic indicators (elevation, latitude, and longitude) utilize in climatological products, 

the main algorithm also includes monthly statistics from five different satellite products. 

Secondly, the CHIRP products present the variation grid from the CHPclim mean. The 

methodology follows a local calibration with satellite precipitation estimations. The Climate 

Hazards Group (CHG) station archive built through the combination of several private and 

public data sources is used to set a global base of 47,390 observation stations.  

Therefore, the CHIRPS algorithm combines the last datasets to calculate the final 

results. The interpolation algorithm approach is classified as a modified inverse distance 

weighting method. The blending procedure takes the radio between the five closest stations and 

the CHIRP product. Thus, the final CHIRPS version is a merging between the unadjusted and 

bias-adjusted CHIRP data. 

 

3.5.3 GPM 

 

The Global Precipitation Measurement (GPM) is a satellite mission headed by the 

National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration 

Agency (JAXA). The mission aims to provide next-generation global observations of rain and 

snow, utilizing the previous successful mission: Tropical Rainfall Measuring Mission 

(TRMM). The GPM’s satellite carries an advanced radar/radiometer system to measure the 

precipitation phenomena from space. Besides, the measurements serve as a reference for 

unifying observed rainfall from a combination of research and operational satellites. The GPM 

Core Observatory satellite launched in February/2014. 
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The algorithm approach intercalibrate, merge, and interpolate satellite microwaves 

precipitation estimates with microwave-calibrated infrared (IR) satellite estimates from the 

entire satellite network, precipitation gauge analyses, and potentially other precipitation 

estimators on a close time and space scale to GPM.  

About the spatial resolution, the grid full coverage is provided from -60° to 60°, while 

the gap latitudes on the upper and under area (-90° to 90°) are understood as not a full coverage. 

The grid resolution is 0.1°. The daily time step stands from June/2000 to the near-present (~21 

years) (NASA, 2021). 

 

3.5.3.1GPM Late Run and Final Run 

 

The algorithm system runs many times for each observation time. In this sense, the 

first estimation gives a quick result (IMERG Early Run), as soon as more data arrives, a better 

estimation is provided through the IMERG Late Run. The main difference between the two 

stages is that the Early Run only presents the possibility of forwarding propagation (applying 

extrapolation), while the Late Run provides both forward and backward propagation (applying 

interpolation).  

The final step (IMERG Final Run) uses monthly gauge data to provide research-level 

products. The method combines the monthly gauges analysis from the Global Climatology 

Centre (GPCC) to the satellite data. The final results respect the adjustment of a fixed value for 

the month, but spatially varying. For research working applications, the Final Run version is 

always indicated, mainly when a fine time resolution is required (NASA, 2021). 

 

3.5.4 ERA5 

 

The European Centre for Medium-Range Weather Forecasts (ECMWF) built and 

maintained the ERA5 dataset. The grid is generated by a 4D-Var data assimilation and model 

forecasts of ECMWF’s Integrated Forecasted System (IFS), combining different levels in the 

vertical. However, for the precipitation variable, the data extends over a 2D grid (surface or 

single level).  

The dataset contains both: a high-resolution realization (reanalysis) and a reduced 

resolution ten-member ensemble (ensemble). The data is available at a sub-daily and monthly 

frequency, which consists of analyses and short (18 hours) forecasts. The present study 

considers the accumulated precipitation on a daily time-step. The database covers the period 
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from 1979 to the near-present  (~42 years). The spatial grid covers the entire world from -90° 

to 90° on a ~0.28° grid resolution (ECMWF, 2021). 

 

3.6  EVAPOTRANSPIRATION DATASETS 

 

The following section describes each studied Evapotranspiration dataset: Observed 

(model forcing), TerraClimate (model forcing), and MODIS (only utilized in terms of 

comparison). In this regard, all the grids were interpolated to a 0.1° resolution over the model 

area when necessary. Table 2 shows the main information about the datasets. 

 

Table 2 - Evapotranspiration dataset details. 

Short name Full name 
Spatial 

resolution 

Spatial 

coverage 

Temporal 

resolution 

Temporal 

Coverage 
Ref. 

Observed grid 

Daily grided 

meteorologica

l variables in 

Brazil 

0.25° 
Brazilian 

territory 
Daily 

Jan/1980 to 

Dec/2015 
1 

TerraClimate TerraClimate ~0.04° -90° to 90° Monthly 
Jan/1985 to to 

Dec/2019 
2 

MODIS 

MODIS 

Global 

Evapotranspir

ation Project 

500 m -90° to 90° 
8 accumulated 

days 

Jan/2000 to 

near-present 
3 

Source: 1 - (XAVIER; KING; SCANLON, 2017) ; 2 - (ABATZOGLOU et al., 2018); 3 - 

(NTSG, 2021) . 

 

3.6.1 Observed 

 

Section 3.5.1 describes the general specifications related to the dataset (XAVIER, 

KING and SCALON, 2016).  Besides precipitation data,  the dataset makes available estimated 

reference evapotranspiration (ETo). Also, the frame combines the necessary meteorological 

data used for the evapotranspiration estimation: maximum and minimum temperature (Tmax and 

Tmin), solar radiation (Rs), wind speed at 2 m height (u2), and relative humidity (RH). The 

meteorological data is collected from conventional and automatic weather stations of the 

National Meteorological Institute (INMET). The dataset methodology uses the Food and 

Agriculture Organization of the United Nations (FAO) Penman-Monteith method (ALLEN et 

al., 1998). The equation estimates reference potential evapotranspiration for grass cover 

according to the following (3): 
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𝐸𝑇𝑂 =  
0.408 ∆ (𝑅𝑛 − 𝐺) +  𝛾 

900
𝑇 + 273 𝑢2(𝑒 𝑠 − 𝑒 𝑎)

∆ +  𝛾 (1 + 0.34 𝑢2)
 

(3) 
 

 

Where,  

𝐸𝑇𝑂 = Reference Potential Evapotranspiration [mm/day] 

𝑅𝑛= Net Radiation [MJ/m2day] 

𝐺 = Soil heat flux density [MJ/m2day] 

𝑇 = Air temperature at 2 m [°C] 

𝑢2= Wind speed at 2 m  [m/s] 

𝑒 𝑠= Saturation vapour pressure [kPa] 

𝑒 𝑎= Actual vapour pressure [kPa] 

(𝑒 𝑠 − 𝑒 𝑎) =  Saturation Vapour Pressure Deficit [kPa] 

∆ = Slope vapour pressure curve [kPa/°C] 

𝛾 = Psychrometric constant [kPa/°C] 

 

3.6.2 TerraClimate 

 

Abatzoglou et al. (2018) developed a high-spatial resolution dataset (~0.04°) for 

monthly climate/climatic water balance with global coverage from Jan/1985 to Dec/2019. The 

methodology uses climatically data from the WorldClim dataset and other sources to produce 

a primary monthly frame with Precipitation, Maximum and Minimum Temperature, Wind 

Speed, Vapor Pressure, and Solar Radiation. From the primary data, evapotranspiration (ETo) 

is calculated using the Equation (3). However, it reaffirms that the approach assumes a reference 

grass surface cover, which might provide biases where the vegetation presents different 

behavior compared to this assumption.  

 

3.6.3 MODIS Evapotranspiration 

 

MODIS Global Evapotranspiration Project (NTSG, 2021) estimates global terrestrial 

evapotranspiration using a combination of satellite remote data and global meteorological data. 

The dataset methodology to calculate potential evapotranspiration utilizes the Penman-

Monteith approach Monteith (1965) through the following Equation (4): 
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λET =  
∆ (𝑅𝑛 − 𝐺) + 𝑝𝑎𝑐𝑝  

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

∆ +  𝛾 (1 +
𝑟𝑠
𝑟𝑎

)
 (4) 

Where,  

𝐸𝑇 = Potential Evapotranspiration [mm] 

λ = Latent Heat [J/kg] 

𝑅𝑛= Net Radiation [MJ/m2day] 

𝐺 = Soil heat flux density [MJ/m2day] 

𝑇 = Air temperature at 2 m [°C] 

𝑢2= Wind speed at 2 m  [m/s] 

𝑒 𝑠= Saturation vapour pressure [kPa] 

𝑒 𝑎= Actual vapour pressure [kPa] 

(𝑒 𝑠 − 𝑒 𝑎) =  Saturation Vapour Pressure Deficit [kPa] 

∆ = Slope vapour pressure curve [kPa/°C] 

𝛾 = Psychrometric constant [kPa/°C] 

𝑟𝑠 = Surface resistance [s/m] 

𝑟𝑎 = Aerodynamics resistance [s/m] 

 

The main difference between the more generic approach from equation (3) to (4) is the 

term 
𝑟𝑠

𝑟𝑎
, which describes the stomatal and aerodynamics resistance for the considered vegetation 

cover.  The MODIS algorithm uses the LAI (Leaf Area Index) to estimate vegetation 

parameters.   

 

3.7 MODEL EFFICIENCY COEFFICIENTS  

 

The evaluation of the hydrological model's performance usually utilizes a comparison 

between observed and simulated river discharges at the catchment outlet. In this sense, the 

conclusion may be based on a simple visual inspection of the observed and simulated 

hydrograph. However, objective assessment requires a mathematical approach, which estimates 

the error between the simulated and observed discharge through efficiency coefficients 

(KRAUSE; BOYLE; BÄSE, 2005). 

Firstly, the present study uses an adaptation of the Mean Relative Error (MRE) and the 

Mean Error (ME), computing the yearly average of both coefficients along the simulation years. 
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Finally, the Kling-Gupta efficiency (KGE) is calculated, the more complex coefficient allows 

comparison between different models and applications, besides a further comprehension of the 

model performance through its terms. The coefficients are described below. 

 

3.7.1 Mean Error (ME) and Mean Relative Error (MRE)  

 

As a first model evaluation, the Mean Error (ME, mm) and Mean Relative Error (MRE, 

%) are calculated in terms of depth runoff - a measurement of the water balance agreement 

between observed and simulated discharge. The chosen methodology adapts both coefficients 

to a yearly average over the simulation period. Besides, the depth runoff normalizes the 

discharge according to the gauge catchment area, as a result, the comparison between 

catchments with different areas is made possible. According to Unduche et al. (2018), the MRE 

calculates the error as a percentage of the observed values. In this sense, the coefficient presents 

a limitation that a small deviation in error can result in representative changes in MRE when 

dealing with small denominators. With regards to the limitation, the Mean Error (ME) is also 

computed, allowing a direct interpretation related to the precipitation phenomena on the 

catchment. The equations are shown below (the time step is only computed if there are valid 

values for simulated and observed discharges at the time step). 

 

The simulated mean yearly depth runoff (5): 

 

𝑄̅𝑠𝑖𝑚 =  
1

𝑁
 ∑ 𝑄𝑠𝑖𝑚,𝑡𝑠

𝑡𝑠

𝑡𝑠=1

 (5) 

 

The observed mean yearly depth runoff (6): 

 

𝑄̅𝑜𝑏𝑠 =  
1

𝑁
 ∑ 𝑄𝑜𝑏𝑠,𝑡𝑠

𝑡𝑠

𝑡𝑠=1

 
(6) 

Where, 

𝑄̅𝑠𝑖𝑚 = simulated mean yearly depth runoff [mm] 

𝑄𝑠𝑖𝑚,𝑡𝑠 = simulated depth runoff at the time step [mm] 

𝑄̅𝑜𝑏𝑠 = observed mean yearly depth runoff [mm] 
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𝑄𝑜𝑏𝑠,𝑡𝑠 = observed depth runoff at the time step [mm] 

N = number of simulated years 

ts = time step 

Therefore,  

 

Mean error (ME, mm) is shown below ((7): 

 

𝑀𝐸 = 𝑄̅𝑠𝑖𝑚 −  𝑄̅𝑜𝑏𝑠 
(7) 

 

Mean relative error (MRE, %) is shown below ((8): 

 

𝑀𝑅𝐸 = [
(𝑄̅𝑠𝑖𝑚 −  𝑄̅𝑜𝑏𝑠)

𝑄̅𝑜𝑏𝑠

 ] 𝑋 100 
(8) 

 

 

3.7.2 Kling-Gupta Efficiency (KGE) 

 

The Kling-Gupta efficiency (KGE) was developed from the Nash-Sutcliffe (NSE) 

coefficient, which has been widely used to calibrate and evaluate hydrological models for the 

last decades. The KGE approach decomposes the NSE into its constitutive components 

(correlation, variability bias and mean bias). The method utilization has been increasing for 

model calibration and evaluation, hence it facilitates the analysis of the relative importance of 

its different components. Therefore, KGE = 1 indicates a perfect match between simulations 

and observations(GUPTA et al., 2009). The KGE equation is shown below (Eq. (9)). 

 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 +  (𝛽 − 1)2 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

 
(9) 
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Where, 

𝐾𝐺𝐸 = Kling-Gupta efficiency (KGE) 

𝑟 = linear correlation between observations and simulations 

𝛼 = a measure of the flow variability error 

𝛽 = a bias term 

𝜎𝑠𝑖𝑚 = standard deviation in simulations 

𝜎𝑜𝑏𝑠 = standard deviation in observations 

𝜇𝑠𝑖𝑚 = simulation mean 

𝜇𝑜𝑏𝑠 =observation mean 

 

This study sets the KGE threshold of 0.5 as a satisfactory model performance to 

evaluate the precipitation products. A reference combination of the KGE components would 

be: 

𝐾𝐺𝐸 ≥ 0.5 

Where, 

𝑟 ≥ 0.8  

0.67 ≤  𝛼 ≤ 1.33 

0.67 ≤  𝛽 ≤ 1.33 
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3.8 SIMULATION SPECIFICATIONS 

 

Finally, Table 3 describes the general information about each simulation. In this sense, 

each running of the DHI Global Hydrological Model was forced by one of the five different 

studied precipitation datasets. Thus, the name of the specific precipitation forcing identifies the 

simulation. Also, the available period coverage of the precipitation product determines the 

simulation period.  

 

Table 3 - Simulation Specifications. 

Simulation 

Name 

Precipitation 

Dataset 

Evapotranspiration 

Dataset 

Start1 End2 Duration 

Observed Observed Grid3 Observed Grid4 02/01/2000 01/01/2016 16 years 

CHIRPS CHIRPS TerraClimate 02/01/2000 01/01/2020 20 years 

GPM Final GPM Final TerraClimate 01/01/2001 01/01/2020 19 years 

GPM Late GPM Late TerraClimate 01/01/2001 01/01/2020 19 years 

ERA5 ERA5 TerraClimate 02/01/2000 01/01/2020 20 years 

*Where, 1,2 - dd/mm/yyyy, 3 - The Observed grid only covers the Brazilian Territory. Thus, 

the model area was filled by CHIRPS dataset; 4 - The Observed grid only covers the Brazilian 

Territory. Thus, the model area was filled by TerraClimate dataset. 

 

The Appendix A shows the NAM parameters in the model area. 

 

3.9 POST-PROCESSING PROGRAM 

 

Each batch simulation (five precipitation datasets) generates a matrix with 

approximately 35 million values (365 days/year x 20 simulated years x 769 stations x (5 

simulations + observed data). 

Thus, a Python module named ghm.py was developed for the study. The Object-

Oriented Programming (OOP) paradigm was utilized to guide the development. Besides, the 

Test-Driven development (TDD) approach was chosen for the coding process. Besides, the 

following data science, scientific, and GIS Python libraries compose the program: pandas, 

numpy, matplotlib, cartopy, and seaborn. Also, a specific library for hydrology studies was 

utilized (hydroeval). The program generates, in a matter of minutes, the final statistics, plots, 

ands maps. 
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4 RESULTS AND DISCUSSION 

 

4.1 PRECIPITATION ANALYSIS 
 

This section investigates the different model precipitation forcings: Observed Grid, 

CHIRPS, GPM Final, GPM Late, and ERA5. The mean yearly precipitation was calculated for 

the intersection period between the products (Jan/2001 to Jan/2016) for each model area pixel. 

The average values were grouped by the twelve Hydro-Regions (section 3.2). The regional 

yearly means indicate the expected model outputs in each model sub-area according to the 

rainfall dataset. Table 4 summarizes the results for the sixty possible combinations (12 Hyro-

Regions x 5 precipitation products). While Figure 9 shows the precipitation spatial distribution 

over the Brazilian Territory.  

The Hydro-Region Amazônica presents the highest mean yearly precipitation among 

the regions. The Observed grid gives the lowest value between the products. However, all the 

datasets provide close values, the GPM Late shows the highest bias (145.90 mm/year) when 

compared to the Observed grid, which represents only 6.5%. Figure 9 shows that the CHIRPS 

product utilizes an algorithm able to smooth the interpolation over this complex area. 

Additionally, some sharp peaks appear in the Observed grid, it might be a result of the lack of 

data in the area.  

The GPM Final product tends to overestimate the precipitation in the entire Brazilian 

territory - Observed grid as the reference. Particularly, in the southern regions (Region Uruguai 

#12 and Atlântico Sul #6). The bias reaches positive values of approximately 15% (281.66 

mm/year and 242 mm/year respectively).  

 

Table 4 - Hydro-Regions: Mean Yearly Precipitation. 

Hydro-Region # 
Observed 

[mm/year] 

CHIRPS  

[mm/year] 

GPM Final  

[mm/year] 

GPM Late  

[mm/year] 

ERA5 

[mm/year] 

Amazônica 1 2246.24 2302.10 2322.37 2392.14 2356.11 

Atlântico Leste 2 879.75 871.49 812.58 741.15 803.98 

Atlântico Nordeste 

Ocidental 
3 1617.11 1610.69 1636.37 1680.48 1591.06 

Atlântico Nordeste 

Oriental 
4 828.89 823.55 860.50 730.81 704.40 

Atlântico Sudeste 5 1411.46 1390.09 1487.41 1343.46 1436.43 

Atlântico Sul 6 1673.80 1652.43 1818.53 1915.80 1641.91 

Paraguay 7 1341.85 1336.80 1508.23 1727.00 1384.67 

Paraná 8 1475.51 1470.53 1588.95 1705.99 1430.20 

Parnaíba 9 990.71 991.55 1054.31 1140.04 992.58 

São Francisco 10 896.77 913.47 987.07 1031.95 842.26 

Tocantins-Araguaia 11 1769.49 1809.37 1842.79 1940.69 1703.83 

Uruguai 12 1771.55 1760.75 1883.14 2053.22 1754.52 

Mean - 1408.59 1411.06 1483.52 1533.55 1386.82 
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Figure 9 - Map Mean Yearly Precipitation. 

 
Source: Author.
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4.2 BRAZILIAN TERRITORY  

 

This section describes the model results according to the different precipitation forcing 

datasets in the entire Brazilian territory. The results are evaluated in terms of  Mean Error (ME) 

- based on mean yearly depth runoff, Mean Relative Error - (MRE) - based on mean yearly 

depth runoff, Kling-Gupta efficiency  (KGE), ads its components: Linear Correlation (r), Flow 

Variability Error (Alpha), and Bias (Beta). 

The analyses utilized the whole observed discharge dataset built in the last section. 

However, station number 30055000 showed a large ME, which was compromising the overall 

statistics. In this sense, the statistics calculation does not include this gauge for this/next 

sections. The total number of analyzed stations is 767. 

 

4.2.1 Mean Error (ME) 

 

As the first overview of results over the Brazilian territory, the ME is explored related 

to each precipitation dataset. Table 5 shows the measures of central tendency. In this sense, the 

ERA5 dataset showed the best results, which respectively presents mean and median (Q 50%) 

equals 96.78 mm and 95.02 mm. However, as expected, the statistics for the Observed run also 

indicate a low error in average (100.74 mm) and in its median (105.13 mm). Additionally, it 

was expected a better performance for the CHIRPS dataset, since it combines sources of 

satellite and bias correction. However, the mean ME for the running is 145.29 mm, and the 

median of 153.86 mm. The GPM products presented the highest error, the results indicate an 

important improvement related to the Final version in comparison with the Late dataset, 

indicating how fundamental the bias correction is for the area.  

 

Table 5 - Brazilian territory - ME. 

Dataset 
Mean 

[mm]  

S. D. 

[mm] 
Min. [mm] Q 25% [mm] Q 50% [mm] 

Q75% 

[mm] 

Max. 

[mm] 

Observed 100.74 159.80 -611.19 11.30 105.13 192.88 719.04 

CHIRPS 145.29 162.48 -492.60 45.14 153.86 243.93 718.16 

GPM Final 192.49 152.86 -489.82 97.82 203.46 285.14 640.08 

GPM Late 214.38 196.72 -633.41 92.50 215.93 348.01 719.31 

ERA5 96.78 182.96 -820.73 -3.99 95.02 206.15 652.08 

 

In this sense, Figure 10 presents the variability of the results centered on zero error. 

The Q 25% for ERA5 (-3.99 mm) confirms the model's accuracy when forced by the dataset. 
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In contrast to GPM Final that presents a Q 25% close to the ERA 5 median. However, the 

smallest Interquartile Range is provided by the Observed dataset (181.58 mm). 

 

Figure 10 - Brazilian territory - ME. 

 

Source: Author. 

Additionally, the same pattern of a positive bias is presented for the five different 

simulations. Thus, it stresses the importance of a better understanding related to the water 

balance in the Brazilian territory – further analysis about the evapotranspiration forcing is taken 

in Section 4.5. 

Besides, Figure 11 shows the ME spatial distribution over the Brazilian territory, 

comparing the precipitation datasets. The improvement between the GPM Final version and 

GPM Late is more visible in the south. In a general overview, all the datasets are overestimating 

the discharge in the north of the country. For the observed dataset, some punctual issues rise, 

mainly a result of local interpolation problems - lack of rainfall gauges.  
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Figure 11 - Map Brazilian territory - ME. 

 

Source: Author. 
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4.2.2 Mean Relative Error (MRE) 

 

Table 6 summarizes the Mean Relative Error (MRE) in the terms of the ratio between 

the simulated and observed runoff depth. It is an important measurement since the model deals 

with a large range of river discharge amounts. As a result of being a ratio indicator, the values 

themselves might assume extreme results. Thus, it makes sense to analyze the Q 50% (median) 

as the main indicator. 

As observed in the ME analyzes. ERA5 and Observed runs show the best accuracy. 

Concerning these datasets, the median assumes a value close to 25%: 26.49% for ERA5 and 

23.66% for Observed. However, the Q 25% shows an error close to 0% for both datasets: 1.73% 

(Observed) and -0.92% (ERA5).  

 

Table 6 - Brazilian territory - MRE. 

Dataset 
Mean 

[%]  

S.D. 

[%] 

Min. [%] Q 25% [%] Q 50% [%] Q75% 

[%] 

Max.[%] 

Observed 83.80 241.65 -66.48 1.73 26.49 71.49 4748.92 

CHIRPS 96.66 220.04 -54.20 7.26 40.16 95.63 3662.67 

GPM Final 117.05 255.80 -65.07 18.46 49.37 104.31 3715.32 

GPM Late 126.49 276.64 -92.71 18.47 51.44 116.00 3309.81 

ERA5 69.95 196.98 -87.14 -0.92 23.66 68.35 3320.25 

 

Also, Figure 12 shows a comparison of the different datasets according to MRE group 

intervals. The group (-20%:20%) is considered the focus since it represents the stations with 

the best model results. 

 

Figure 12 - Brazilian territory - MRE. 

 

Source: Author. 
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The same pattern in Figure 11 is observed in Figure 13. The satellite products 

(CHIRPS and GPM Final/Late) tend to overestimate (113.40% on average) more the MRE than 

the Observed and ERA5 products.  
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Figure 13 - Map Brazilian territory - MRE. 

 

 

Source: Author. 
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4.2.3 Kling-Gupta Efficiency - KGE 

 

The Kling-Gupta efficiency was grouped in different ranges: < 0.00; 0.00:0.25; 

0.25:0.50; 0.50:0.75; 0.75:1.00. Figure 14 shows the station's frequency grouped by KGE 

intervals and precipitation datasets. The interval < 0.00 is not shown in the plot to make the 

visualization easier, but Figure 15 shows its locations. The station's frequencies for each 

simulation in this interval are Observed (63.2%), CHIRPS (66.0%), GPM Final (68.8%), GPM 

Late (75.9%), ERA5 (62.8%). The model results would be satisfactory for a KGE threshold of 

0.50, thus, the focus interval groups are 0.50:0.75, and 0.75:1.00.  

With regards to the interval of 0.50:0.75, CHIRPS (17.1%) and the Observed (17.7%) 

dataset presents the highest station frequency. While only 8.6% of the stations in the ERA5 run 

show a KGE in this range. For the last two analyzed error measurements (ME and MRE), ERA5 

had provided better accuracy than CHIRPS. It suggests that ERA5 has a better performance in 

terms of water balance, but not for the hydrograph shape. In this sense, the interval 0.75:1.00 

computes a small frequency for all the simulations. However, the same pattern happens.  

For the next three sections, further analysis is conducted to investigate each component 

of the KGE (Linear Correlation [r], Flow Variability Error [Alpha], and Bias [Beta]). It is 

therefore expected fitter linear correlation results for the CHIRPS and Observed datasets than 

for ERA5. Although ERA5 would perform better for the Bias coefficient than CHIRPS.   

Figure 15 indicates a good improvement for the GPM Final when compared to GPM 

Late. It stresses the importance of observation correction conducted by the GPM Final 

algorithm in the South of Brazil. Nevertheless, there is still a large difference between 

satellite/observation-corrected products (GPM Final and CHIRPS). 

 

Figure 14 - Brazilian territory - KGE. 

 

Source: Author.
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Figure 15 - Map Brazilian territory - KGE. 

 

Source: Author 
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4.2.3.1Linear Correlation (r) 

 

The Linear Correlation (r) is the first analyzed KGE component. Table 7 shows the 

calculated statistics for the r coefficient. The model efficiency is analyzed in terms of the 

median. The Observed dataset provided the highest median (0.78). Besides, the 

satellite/observation-corrected products (CHIRPS and GPM Final) showed a similar accuracy, 

respectively, 0.73 and 0.74. As expected when analyzing the KGE results, ERA5 provided the 

worse results with a medium equals to 0.65, and the same pattern for the mean (0.62). It 

demonstrates why the product presented low values of KGE, even though it performs well for 

ME and MRE. 

 

Table 7 - Brazilian territory - Linear Correlation (r) 

Dataset 
Mean  Standard 

Deviation 

Minimum Q 25%  Q 50%  Q75%  Maximum  

Observed 0.73 0.16 -0.14 0.68 0.78 0.83 0.95 

CHIRPS 0.69 0.16 -0.30 0.64 0.73 0.80 0.94 

GPM Final 0.71 0.16 -0.15 0.66 0.74 0.81 0.93 

GPM Late 0.63 0.17 -0.25 0.57 0.67 0.74 0.94 

ERA5 0.62 0.18 -0.28 0.53 0.65 0.75 0.95 

 

The following range groups were created to classify the calculated coefficients over 

the different datasets: < 0.00; 0.00:0.25; 0.25:0.50; 0.50:0.75; 0.75:1.00. The negatives r values 

are shown only in Figure 17 as it presents a low frequency. As three of the datasets provided 

medians close to 0.75, this value is set as the threshold for satisfactory model results. Figure 16 

shows the grouped linear correlation coefficients, more than 400 stations are classified in the 

most upper group for the Observed dataset, followed by the satellite/observation-corrected 

products (CHIRPS and GPM Final), which approximately 300 stations are presented.  
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Figure 16 - Brazilian territory - Linear Correlation (r). 

 

Source: Author. 

 

Figure 17 shows the spatial distribution of the linear correlation over the Brazilian 

territory. Despite the high values for ME and MRE in the north region, the r values identify a 

high linear correlation between observed and simulated discharges.  
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Figure 17 - Map Brazilian territory - Linear Correlation (r). 

 

Source: Author.
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4.2.3.2Flow Variability Error (Alpha) 

 

Table 8 shows the statistics calculated from the Flow Variability Error (Alpha) over 

the precipitation products. As the statistics presented sparse maximum values (a good result 

would be centered on one), the median is again utilized to evaluate the model performance 

concerning the variability. Therefore, the calculated medians for the datasets do not show a 

significant difference between them. Additionally, the Observed, CHIRPS, and ERA presents 

approximately the same mean (~3). Thus, the KGE is mainly defined by the Linear Correlation 

(r) and the Bias (Beta).  

 

Table 8 - Brazilian territory - Flow Variability (Alpha). 

Dataset Mean  Standard Deviation Minimum Q 25%  Q 50%  Q75%  Maximum  

Observed 3.04 3.13 0.28 1.31 2.33 3.28 26.80 

CHIRPS 3.03 3.01 0.29 1.32 2.35 3.29 25.90 

GPM Final 3.45 3.55 0.41 1.59 2.56 3.68 32.44 

GPM Late 3.61 3.94 0.26 1.82 2.50 3.61 37.15 

ERA5 2.97 3.35 0.22 1.22 2.18 3.19 30.45 

 

As shown in the statistics, there are large maximum values for the calculated Alpha. 

The following range groups were created to classify the calculated ratios over the different 

datasets: 0.00:0.50; 0.50:1.50; 1.50:2.00; 2.00:3.00; 3.00:4.00; >4.00. In this sense, the model 

efficiency according to the precipitation datasets is evaluated in the range group centered on 

one (0.50:1.50). In this range, the station frequency is almost the same for Observed, CHIRPS, 

and ERA5 (Figure 18). 

Figure 18 - Brazilian territory - Flow Variability Error (Alpha).  

 

Source: Author. 

 

Figure 19 shows almost the same pattern as the ME and MRE indicators. But in this 

case, the CHIRPS dataset shows results close to the Observed and ERA5 datasets. 
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Figure 19 - Map Brazilian territory - Flow Variability Error (Alpha). 

 

Source: Author. 
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4.2.3.3Bias (Beta) 

 

Table 9 shows the Bias (Beta) statistics. The MRE (section 4.2.2) has the same 

interpretation as the Bias, but the MRE is presented in percentage and the Bias as a ratio. The 

median is used as the main efficiency measurement. ERA5 and Observed datasets show the 

best results for the median, 1.26 and 1.24 respectively. While CHIRPS presented a median 

equals to 1.40.  

 

Table 9 - Brazilian territory -Bias (Beta). 

Dataset Mean  Standard Deviation Minimum Q 25%  Q 50%  Q75%  Maximum  

Observed 1.84 2.42 0.34 1.02 1.26 1.72 48.46 

CHIRPS 1.97 2.20 0.46 1.07 1.40 1.96 37.61 

GPM Final 2.17 2.56 0.35 1.19 1.49 2.04 38.18 

GPM Late 2.27 2.77 0.07 1.18 1.51 2.16 34.12 

ERA5 1.70 1.97 0.13 0.99 1.24 1.69 34.19 

 

Utilizing the same group range as the Flow Variability Error (Alpha), the model 

efficiency is also considered reasonable in the range centered on one (0.50:1.50). The results 

are illustrated in Figure 20. Among the KGE components, Bias shows the best results. Observed 

and ERA5 datasets show a frequency of almost 500 stations (~64%), while CHIRPS presents 

more than 400 stations (56.6%). The GPM products do not show a large difference between the 

two datasets. 

 

Figure 20 - Brazilian territory -Bias (Beta). 

 
Source: Author. 

 

Figure 21 reaffirms the MRE (section 4.1.2) comparison, in which the 

satellite/observation-corrected products (CHIRPS and GPM Final) tend to present a higher 

BIAS than the Observed and ERA5 datasets. 
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Figure 21 - Map Brazilian territory -Bias (Beta). 

 

Source: Author. 
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4.3 HYDRO-REGIONS 

 

This section describes the model evaluation analysis grouped by the Brazilian Hydro-

Regions (introduced in section 3.2) for the different precipitation products. Hence, the model 

evaluation over the entire Brazilian territory had indicated a large variability in the calculated 

model efficiency indicators. Thus, this section aims to cluster the discharge gauges according 

to the physical characteristics of their basins/drainage areas. Figure 22 summarizes the Mean 

Error (ME). Each plot (row) describes a precipitation dataset, while the box plots (columns) 

refer to a specific Hydro Region numbered from #1 to #12 (indicated in section 3.2).  

Since section 4.2.1 determined that ERA5 and the Observed runs had shown the best 

accuracy for the ME indicator, it is relevant to understand the error pattern across the regions 

for both simulations. Concerning the Observed dataset, the region Uruguai (#12) gives the best 

median result (16.02 mm). However, CHIRPS provides a better median result (15.63 mm) for 

the region. Although ERA5 showed a small ME median for the region, it is the only negative 

value (-50.80 mm). Therefore, it indicates that the ERA5 simulated discharge values are lower 

than the observed ones. In respect of the region Amazônica (#1), the boxplots indicate a sparse 

error for most of the datasets, which is expected due to the large discharges in the region - the 

relative error (covered in section 4.3.1.2) would be more meaningful in this case. In this sense, 

ERA5 provided the smallest Interquartile Range (250.24 mm) among the simulations for region 

#1. 

In contrast to the region Amazônica (#1), the Hydro-Regions Parnaíba (#9) and São 

Francisco (#10) provide the small Interquartile Ranges over all the combinations (5 

precipitation datasets x 12 Hydro-Regions). For instance, region #9 Interquartile Range presents 

an averaged value over the precipitation datasets equals to 82.47 mm, while region #10 gives 

79.23 mm. However, the ME median is approximately 200 mm or larger for both regions across 

all the simulations - which indicates a systematic calibration problem in the model for these 

areas. 

Finally, the analyses covered in this section, and the KGE coefficient spatial 

distribution (Figure 15) suggest that further evaluation of the precipitation products should be 

investigated in the following Hydro Regions: Amazônica (#1), Atlântico Sul (#6), and Uruguai 

(#12). Since the model had shown the best accuracy in these regions. 
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Figure 22 - Hydro Regions -ME. 

 
Source: Author. 
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4.3.1 Hydro Region Amazônica (#1) 

 

This section evaluates the models results according to the different datasets for the 

Hydro Region Amazônica (#1). The statistical analyses over the Hydro Regio Amazônica 

investigated 53 discharge gauges, corresponding to 6.91% of the total analyzed stations. For 

these gauges, the yearly mean observed depth runoff in the region is 1015.11 mm for the studied 

period (2000-2020). 

 

4.3.1.1Mean Error (ME) 

 

With this in view, Table 10 describes the statistics for the Mean Error (ME). Again, 

the statistics might be influenced by the extremal minimum and maximal values, thus the 

median provides the best measurement for the indicator. Therefore, the Observed dataset gives 

the best results in the region, since it presents a median ME equals to 128.27 mm. However, it 

is relevant to notice that the run provided the largest maximum value among all the simulation, 

additionally, it gives the only outlier for the maximum threshold. As presented in Section 3.5.1, 

the Amazon Basin shows the lowest spatial coverage of rainfall gauges. Thus, the high 

variability showed in the discharge results, might be correlated to local interpolation issues in 

the precipitation grid. 

 

Table 10 - Hydro-Region Amazônica - ME. 

Dataset n 
Mean 

[mm] 

S. D. 

[mm] 

Min. 

[mm] 

Q 25% 

[mm] 

Q 50% 

[mm] 

Q75% 

[mm] 

Max. 

[mm] 

Observed 53 78.55 243.55 -440.66 -99.25 128.27 213.13 719.04 

CHIRPS 53 177.61 228.90 -339.72 19.33 247.49 323.12 601.32 

GPM Final 53 145.39 223.48 -489.82 65.30 162.55 331.99 572.94 

GPM Late 53 127.84 287.55 -633.41 -59.60 209.20 350.36 542.33 

ERA5 53 154.70 266.40 -816.04 77.30 224.69 327.54 574.24 

 

As the region presents a low coverage of precipitation gauges, the 

satellite/observation-corrected products (CHIRPS and GPM Final) normally tend to show good 

results. But cloud contamination at rainforest such as the Amazon Forest is usually an issue for 

the satellite’s measurements. In this sense, GPM provides a better performance in the region 

than CHIRPS, with median ME equals to 162.55 mm and 247.49 mm respectively (Figure 23). 

Concerning the GPM products (Final and Late), the observation corrections applied to the Final 

version plays a relevant role, hence the interquartile range decreases from 409.96 mm (GPM 
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Late) to 266.69 mm (GPM Final). Thus, good improvements in the results are locally expected 

when high-quality observed precipitation data corrects the satellite measurements. In this sense, 

further investigation might be conduced to understand the local forcings. Although the ME 

indicates some tendencies about the model sensibility to the rainfall products, the next section 

investigate the MAE - important indicator for the area, hence the region presents a high yearly 

mean observed depth runoff. 

 

Figure 23 - Hydro-Region Amazônica- ME. 

 

Source: Author. 

 

Figure 24 shows the spatial distribution of ME in the region. The high variability 

presented in the Observed run is concentered in some sub-areas of the regions, which once 

again indicates local interpolation issues over precipitation grid.  
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Figure 24 - Map Hydro-Region Amazônica- ME. 

 

Source: Author. 
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4.3.1.2Mean Relative Error (MRE) 

 

Table 11 presents the MRE for the region, which demonstrates the same pattern 

observed in the MAE indicator. The Observed run gives a median MRE equals to 14.65%. 

However, a minimum MRE of -65.75% for the run results, which confirms the large variability. 

 

Table 11 - Hydro-Region Amazônica- MRE. 

Dataset n 
Mean 

[%] 
S. D. [%] Min. [%] 

Q 25% 

[%] 

Q 50% 

[%] 

Q75% 

[%] 

Max. 

[%] 

Observed 53 9.74 29.83 -65.75 -5.95 14.65 27.02 66.66 

CHIRPS 53 26.24 34.11 -38.27 1.59 25.75 43.96 133.63 

GPM Final 53 24.20 36.97 -39.71 4.35 19.86 36.71 171.89 

GPM Late 53 24.47 42.74 -56.54 -4.16 22.85 48.23 205.33 

ERA5 53 28.20 38.80 -33.29 5.50 27.70 44.91 187.49 

 

 

Also, Figure 25 indicates the same pattern observed for the ME.  

 

Figure 25 - Hydro-Region Amazônica- MRE. 

 

Source: Author. 

 

While Figure 26 stress the variability presented by the Observed run. 
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Figure 26 - Map Hydro-Region Amazônica- MRE 

Source: Author.  
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4.3.1.3Sensibility Analyze Obidos Station - 17050001 

 

This section focuses on the discharge results for the Obidos Station - 17050001, which 

is the most downstream gauge in the Amazon Basin. The station location (-1.95°, -55.18°) is 

pointed in Figure 26 - orange circle. The drainage area is 4,680,000 km2 (~1/3 of the model 

area), it measures the Amazon River flow. The altitude corresponds to 7 meters.  The station 

was chosen between the 53 gauges in the Hydro Region Amazônica because the results 

determine a good model accuracy for the location over all the precipitation datasets (KGE ~>= 

0.50). Additionally, the Amazon River is the largest in the world - in terms of water volume 

(BRITANNICA, 2021), which emphasizes its importance for the hydrological process in South 

America.   

 Table 12 presents the calculated statistics for the station, while Figure 27 shows the 

observed and simulated daily hydrograph for the simulation periods. In this sense, the Observed 

grid demonstrates the best KGE (0.82). Also, it provides the best results for variability (Alpha), 

and Linear Correlation (r), which indicates a good agreement between the simulated and 

observed hydrographs - confirmed by the modeled and observed hydrographs shapes in the plot 

(Figure 23). However, this simulation provides a MRE larger than absolute 10%. 

 

Table 12 - Obidos Station - 17050001. 

Datase KGE Alpha Beta r 

Simulated 

Annual 

Depth 

Runoff 

[mm] 

Observed 

Annual 

Depth 

Runoff 

[mm] 

ME [mm] MRE [%] 

Observed 0.82 0.97 0.89 0.87 1076.48 1216.34 -139.86 -11.50 

CHIRPS 0.75 1.17 1.02 0.83 1237.63 1218.30 19.33 1.59 

GPM Final 0.70 1.22 1.07 0.81 1307.45 1217.75 89.70 7.37 

GPM Late 0.54 1.30 1.08 0.66 1317.60 1217.75 99.85 8.20 

ERA5 0.49 1.43 1.14 0.77 1388.17 1218.30 169.87 13.94 

 

With regards to CHIRPS simulation, it gives a reasonable KGE (0.75). Additionally, 

the Bias (Beta) shows an excellent result (1.02), since it approximately equals 1. But, the 

simulated variability provides an Alpha equals to 1.17.  

Next, a large improvement is observed from the GPM Late to GPM Final - the same 

pattern observed for the entire Hydro Region. The period from approximately 2010 to 2016 

reflects this behavior. The GPM Final algorithm applied a relevant Bias correction when 

compared to GPM Late.  
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Figure 27 - Obidos Station - 17050001. 

 

Source: Author. 
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4.3.2 Hydro Region Uruguai (#12) 

 

This section evaluates the model results according to the different datasets for the 

Hydro Region Uruguai (#12). The statistical analyses over the Hydro Regio Amazônica 

investigated 57 discharge gauges, corresponding to 8.18 % of the total analyzed stations. For 

these gauges, the yearly mean observed depth runoff in the region is 935.66 mm for the studied 

period (2000-2020). 

 

4.3.2.1Mean Error (ME) 

 

Table 13 presents the ME calculated statistics. Likewise, in the region Amazônica #1, 

the Observed grid and CHIRPS provide the best results in terms of ME median in the area, 

16.02 mm and 15.63 mm respectively. In opposite direction, the ERA5 presents negative ME 

in the region - a pattern that differs from the Brazilian Territory conclusions. 

 

Table 13 - Hydro-Region Uruguai- ME. 

Dataset n 
Mean 

[mm] 

S. D. 

[mm] 

Min. 

[mm] 

Q 25% 

[mm] 

Q 50% 

[mm] 

Q75% 

[mm] 

Max. 

[mm] 

Observed 57 -17.41 136.07 -611.19 -71.21 16.02 49.78 225.89 

CHIRPS 57 -9.23 131.11 -492.60 -69.57 15.63 68.45 231.38 

GPM Final 57 116.65 122.70 -340.58 65.92 123.07 201.66 314.49 

GPM Late 57 276.19 184.88 -255.56 187.60 286.47 421.90 573.39 

ERA5 57 -72.93 162.06 -820.73 -137.47 -50.80 23.37 195.42 
 

Figure 28 demonstrates a large difference between the GPM Late and GPM Final 

related to interquartile range and median. Also, both products show a large error when 

compared to the others precipitation products.  

 

Figure 28 - Hydro-Region Uruguai- ME 

 

Source: Author. 

Figure 29 shows the spatial distribution of the ME in the region. 
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Figure 29 - Map Hydro-Region Uruguai- ME. 

 

Source: Author. 
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4.3.2.2Mean Relative Error (MRE) 

 

Table 14 shows the calculated MRE in the region. The Observed Grid and CHIRPS 

provide a mean of approximately 0%, which demonstrates an excellent water balance 

agreement between the simulated and observed values. Among the satellite/observation-

corrected products (CHIRPS and GPM Final), the region follows the Brazilian Territory pattern 

- CHIRPS performs better than the GPM Final. 

 

Table 14 - Hydro-Region Uruguai- MRE. 

Dataset n 
Mean 

[%] 

S. D. 

[%] 
Min. [%] Q 25% [%] Q 50% [%] 

Q75% 

[%] 

Max. 

[%] 

Observed 57 -0.37 11.76 -35.45 -7.69 2.06 6.99 22.83 

CHIRPS 57 0.53 12.12 -31.08 -7.64 1.73 8.24 23.4 

GPM Final 57 14.19 12.87 -21.3 7.61 13.8 22.61 39.34 

GPM Late 57 32.94 24.51 -22.55 19.05 30.92 45.74 97.54 

ERA5 57 -6.63 13.55 -51.77 -14.72 -7.23 2.94 20.60 

 

In this sense, Figure 30 shows a small interquartile range for almost all the products, 

except for GPM Late, which demonstrates a notable media MRE in the region (30.92 %). 

 

Figure 30 - Hydro-Region Uruguai- MRE. 

 

Source: Author. 

 

Figure 31 shows the MRE spatial distribution in the region, it suggests the good 

agreement between the Observed, CHIRPS, and ERA5 in the region.  
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Figure 31 - Map Hydro-Region Uruguai- MRE. 

 

Source: Author. 
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4.3.2.3Sensibility Analyze Uruguaiana Station - 77150000 

 

This section focuses on the discharge results for the Uruguaiana Station - 77150000, 

which is the most downstream gauge in the Uruguai Basin. The station location (-29.75°, -

57.09°) is pointed in Figure 31 (orange circle). The drainage area is 190,000 km2, it measures 

the Urugaui River flow. The altitude corresponds to 38 meters.  The station was chosen between 

the 57 gauges in the Hydro Region Uruguai because the results determine a good model 

accuracy for the location over almost all the precipitation datasets (KGE ~>= 0.50).  

Table 15 presents the calculated efficiency coefficients for the station, while Figure 32 

shows the observed and simulated daily hydrograph for the simulation periods. In this sense, 

the Observed grid and CHIRPS demonstrate almost the same KGE, 0.82 and 0.83, respectively. 

Therefore, the KGE components (Alpha, Beta, and r) values are almost the same for both 

datasets.  

For this discharge gauge, the improvement quality from GPM Late to GPM Final is 

notable again. The calculated KGE for GPM Late is equal to 0.31, while GPM Final presents a 

much better KGE (0.73). Since GPM Late does not perform well for the Bias (Beta) and 

Variability (Alpha), but there is a reasonable Linear Correlation between the observed and 

simulated hydrograph as shown in Figure 32. 

Finally, the station follows the pattern presented by its Hydro Region, which presented 

a better performance for the CHIRPS and Observed datasets. Also, ERA5 performs well for the 

specific basin, giving the only negative ME - the same pattern concluded for the region.  

 

Table 15 - Uruguaiana Station - 17050001. 

Datase KGE Alpha Beta r 

Simulated 

Annual 

Depth 

Runoff 

[mm] 

Observed 

Annual 

Depth 

Runoff 

[mm] 

ME [mm] MRE [%] 

Observed 0.82 0.91 1.04 0.85 839.10 810.34 28.76 3.55 

CHIRPS 0.83 0.94 1.04 0.84 856.42 820.64 35.78 4.36 

GPM Final 0.73 1.13 0.73 0.87 984.60 821.62 162.98 19.84 

GPM Late 0.31 1.49 1.42 0.78 1168.02 821.62 346.40 42.16 

ERA5 0.72 0.84 0.97 0.78 798.91 820.64 -21.73 -2.65 
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Figure 32 - Uruguaiana Station - 17050001. 

 

Source: Author. 
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4.3.3 Hydro Region Atlântico Sul (#6) 

 

This section evaluates the model results according to the different datasets for the 

Hydro Region Atlântico Sul (#6). The statistical analyses over the Hydro Regio Atlântico Sul 

investigated 42 discharge gauges, corresponding to 6.30 % of the total analyzed stations. For 

these gauges, the yearly mean observed depth runoff in the region is 818.66 mm for the studied 

period (2000-2020). 

 

4.3.3.1Mean Error (ME) 

 

Table 16 presents the ME calculated statistics. The Hydro Regions Uruguai (#12) and 

Atlântico Sul (#6) are neighbor regions. Thus, it is expected similar error pattern for both 

regions. Thus, the Observed Grid and CHIRPS still give the best results related to the median 

MEA, 60.38 mm and 54.80 mm respectively. However, ERA5 also presents close performance. 

 

Table 16 - Hydro-Region Uruguai- ME. 

Dataset n 
Mean 

[mm] 

S. D. 

[mm] 

Min. 

[mm] 

Q 25% 

[mm] 

Q 50% 

[mm] 

Q75% 

[mm] 

Max. 

[mm] 

Observed 42 49.59 161.35 -348.24 -55.30 60.38 111.82 462.44 

CHIRPS 42 63.92 154.57 -236.22 -20.31 54.80 122.75 512.15 

GPM Final 42 177.90 119.06 -81.95 109.25 195.52 265.46 425.99 

GPM Late 42 278.27 230.70 -213.37 121.86 370.84 433.64 638.21 

ERA5 42 69.75 147.11 -178.85 -17.85 66.87 140.83 527.19 

 

Figure 33 stress the large interquartile range for the GPM Late (647.01 mm). 

 

Figure 33 - Hydro-Region Atlântico Sul- ME. 

 

Source: Author. 

 

Figure 34 shows the ME spatial distribution 
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Figure 34 - Map Hydro-Region Atlântico Sul- ME. 

Source: Author. 
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4.3.3.2Mean Relative Error (MRE) 

 

Table 17 shows the MRE statistics. Differently than the Hydro Region Uruguai (#12), 

the Observed grid and CHIRPS do not provide mean MRE close to 0%, they give a mean MRE 

close to 10%. However, both datasets provide the best results related to the median MRE: 7.90% 

(Observed) and 6.75% (CHIRPS).  

 

Table 17 - Hydro-Region Uruguai- MRE. 

Dataset n Mean [%] S. D. [%] 
Min. 

[%] 

Q 25% 

[%] 

Q 50% 

[%] 

Q75% 

[%] 

Max. 

[%] 

Observed 42 7.77 19.89 -32.63 -6.13 7.90 15.45 66.26 

CHIRPS 42 9.47 20.01 -23.16 -2.55 6.75 15.45 76.13 

GPM Final 42 24.07 17.02 -7.4 12.49 24.61 38.19 63.47 

GPM Late 42 37.35 31.07 -20.96 16.555 44.81 54.67 105.16 

ERA5 42 9.10 19.76 -24.8 -2.675 8.23 19.19 78.36 

 

Figure 35 shows the same pattern concluded for the Hydro Region Uruguai (#12) for 

the GPM products, which shows improvement from GPM Late to GPM Final, but not enough 

to perform well as the Observed grid and CHIRPS.  

 

Figure 35 - Hydro-Region Atlântico Sul- MRE. 

 

Source: Author. 

 

Figure 36 shows the MRE spatial distribution 
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Figure 36 - Map Hydro-Region Atlântico Sul- MRE. 

 

Source: Author. 
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4.3.3.3Sensibility Analyze Pardo Station - 85900000 

 

This section focuses on the discharge results for the Pardo Station - 85900000. The 

station location (-29.99°, -52.37°) is pointed in Figure 36- (orange circle). The drainage area is 

38,700 km2, it measures the Jacua River flow. The altitude corresponds to 2 meters.  The station 

was chosen between the 42 gauges in the Hydro Atlantic South because the results determine a 

good model accuracy for the location over almost all the precipitation datasets (KGE ~>= 0.50). 

Additionally, it presents the smallest drainage area between the 3 analyzed basins - further 

investigation through different drainage areas on the basin analyses scale. Table 18 shows the 

calculated model efficiency indicators, while Figure 37 presents the observed and simulated 

hydrographs.  

Once again, the Observed grid and CHIRPS provide the best KGE results, 0.78 and 

0.77, respectively.  Also, both simulations give excellent results in terms of Variability (Alpha) 

and Bias (beta), values close to 1. The Linear Correlation (r) is similar for the datasets, but the 

Obitos Station (Section 4.3.1.3) and Uruguaiana Station (Section 4.3.2.3) lightly provide higher 

r coefficients, since they present larger areas. 

The GPM products provide the worse KGE between the different simulations. For 

instance, GPM Late gives a negative KGE, mainly a result of high simulated variability as 

shown in Figure 37. Also, the ERA5 provides negative MRE such as in the Uruguaiana Station 

(Section 4.3.2.3). 

 

Table 18 - Pardo Station - 85900000. 

Datase KGE Alpha Beta r 

Simulated 

Annual 

Depth 

Runoff 

[mm] 

Observed 

Annual 

Depth 

Runoff 

[mm] 

ME [mm] MRE [%] 

Observed 0.78 0.96 0.99 0.79 808.32 814.15 -5.83 -0.72 

CHIRPS 0.77 0.97 1.00 0.77 819.01 822.47 -3.46 -0.42 

GPM Final 0.61 1.23 1.17 0.74 969.95 826.19 143.76 17.40 

GPM Late -0.11 1.95 1.45 0.62 1195.44 826.19 369.25 44.69 

ERA5 0.63 0.84 0.88 0.69 722.73 822.47 -99.74 -12.13 
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Figure 37 - Pardo Station - 85900000. 

 

Source: Author. 
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4.4 RESULTS SUMMARY 

 

This section summarizes and discusses the calculated model efficiency coefficients for 

each simulation and studied spatial coverage (country, region, and basin-scale). Figure 38 

shows the ME and MRE (medians), while Figure 39 presents the KGE and its components 

(medians).  

Mean Error (ME) and Mean Relative Error (MRE) 

Firstly, the model results for the different precipitation datasets were evaluated in the 

entire Brazilian territory. The calculated median ME are 105.13 mm (Observed), 153.86 mm 

(CHIRPS), 203.46 mm (GPM Final), 215.93 mm (GPM Late), and 95.02 mm (ERA5). With 

this in view, all the simulations present a positive deviation from the observed runoff, although 

the Observed grid and ERA5 presented the lowest biases.  

Additionally, the calculated median MRE determines that the Observed grid (26.49%) 

and the ERA5 (23.66%) dataset provide a lower level of biases when compared to the others 

simulations, which present values close to 40% and 50%. In terms of water balance, the 

Observed grid and ERA5 are the most accurate precipitation datasets.  

With regards to the downscaling analysis, the MRE seems more appropriate to 

compare the different Hydro-Regions, hence they present large variation in the matter of 

observed mean yearly depth runoff. Thus, in the southern regions (Uruguai and Atlântico Sul), 

the CHIRPS and ERA5 show results close to zero error, which demonstrates the ability of both 

datasets to reproduce almost the same bias as the Observed simulation. However, the same does 

not occur with the Hydro-Region Amazônica, where all the simulations give MRE larger than 

10%, even for the observed dataset. Although the GPM Final provides the closest results to the 

Observed simulation – differently to the southern regions. 

On the basin scale, once again the MRE seems more appropriate. In this sense, almost 

all the combinations (precipitation datasets x basins) show satisfactory results. Except for GPM 

products that present high biases – the same pattern for the regional-scale. Therefore, the 

smallest analyzed basin (Pardo - 38,700 km2) shows the best results over all the simulations, 

which indicates the ability of CHIRPS and Observed grid to deal with different areas. Figure 

38 presents the ME and MRE summary (medians) for the simulations and spatial coverage 

analysis.  
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Figure 38 - ME and MRE summary 

 

Kling-Gupta Efficiency (KGE) and components  

Secondly, the KGE and its components were computed for the country and basin scale. 

On the basin scale, all the precipitation products present good performance for the different 

basins, except for GPM Late. Therefore, it demonstrates the capacity of the precipitation 

products to generate discharge through the model in different basin areas (Obidos – 4,680,000 

km2, Uruguaiana – 190,000 km2, and Pardo – 38,700 km2).  

The calculated linear correlation (r) demonstrates that all the precipitation products 

can represent the hydrographs dynamics. Although the Observed, CHIRPS, and GPM Final 

present the high values. Also, there is a tendency for better results in the larger basins. Besides, 

the variability error (Alpha) presents large values for all the simulations on the country scale. 

However for the selected basins,  the simulations Observed grid, CHIRPS, and GPM Final show 

better results. It is important to stress that the results for the Observed grid are close to one over 

the chosen catchments. Finally, the bias term (Beta) has the same interpretation as the MRE.  

Figure 39 presents the KGE and components summary (medians) for the simulations 

over the country and basin scale.  
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Figure 39 - KGE and components summary 

 

* Where means that no KGE was calculated in the country scale, once the several 

negative values would affect the final statistics.  
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4.5 EVAPOTRANSPIRATION ANALYSIS 

 

This section describes an additional investigation motivated by the positive bias 

obtained from the five different simulations (section 4.2.1). Section 3.6 describes how each one 

of the studied datasets methodologies estimate the Evapotranspiation values over the grids. The 

studied datasets are the Observed grid and TerraClimate datasets (used as forcings in the 

simulations) and the MODIS Potential Evapotranspiration (only utilized in terms of 

comparison).  

In this sense, the mean yearly evapotranspiration was calculated for the period from 

Jan/2000 to Jan/2016 (Observed grid time coverage) over the entire model area. The original 

grids were interpolated to 0.1° resolution (GHM grid). Figure 41 shows the calculated averages. 

From visual inspection, the MODIS Potential Evapotranspiration provides notable higher 

values in the entire grid when compared to the others. Additionally, the Observed grid gives 

higher mean evapotranspiration values over the model area when compared to TerraClimate. 

Finally, a correction factor was calculated (diving one grid by another) to quantify the 

difference in terms of mean yearly evapotranspiration from the MODIS Evapotranspiration 

compared to the others two datasets (MODIS/TerraClim and MODIS/Observed). Figure 40 

shows the density for each calculated factor. Both datasets converge to a factor approximately 

equals to 1.6 (60% higher) for the highest density.  

 

Figure 40 - Correction Factors. 

 
Source: Author. 

 

 

Figure 42 presents the spatial distribution of the calculated factor for both datasets.  
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Figure 41 - Map Mean Yearly Evapotranspiration. 

 
 

Figure 42 - Map Correction Factor. 

 
Source: Author. 
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As described in Section 2.1.1.1.2, the impact of Evapotranspiration on the water 

balance is not as great as for precipitation, but it presents a significant role in the spatial and 

temporal runoff process. Also, Section 3.6.2 alerted that a grass cover reference for the 

Evapotranspiration calculation might yield biases on the process estimation. The mean positive 

difference of 60% calculated between the evapotranspiration products indicates that further 

analysis should happen to better understand the evapotranspiration participation on the 

simulated water balance – which might explain the positive ME for all the studied simulations 

(Section 4.2.1). 

Thus, the more specific approach utilized by MODIS Evapotranspiration to calculate 

the surface resistance (𝑟𝑠) and aerodynamics resistance (𝑟𝑎) seems to be more appropriate for 

the Brazilian territory conditions, despite the grass generalization (explained in Section 3.6.1). 

Hember, Coops, and Spittlehouse (2017) have studied the spatial and temporal variability of 

Potential Evapotranspiration across the North American Forets. The variation of the surface 

resistance (𝑟𝑠) and aerodynamics resistance (𝑟𝑎) from the grass reference cover to a well-coupled 

canopy significantly alters the process estimation along the latitudes.   

Finally, mainly in the center of Brazilian territory (Hydro-Regions #11, #8, and #10). 

Many species have deep root systems, Ferreira et al. (2007) observed water depletion by plants 

down to 10 m depth, which allows transpiration to be maintained even during the dry months 

(the dry season, May to August) as reported by Oliveira et al. (2005). Section 2.1.3 showed the 

importance of the root zone model component on the Actual Evapotranspiration. So, an 

increased Lmax would affect the water balance in the region by modifications on the model 

parameters – physically justified.  
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5 CONCLUSIONS 

 

This study successfully evaluated the ability of individual global-scale precipitation 

datasets to reproduce river discharges simulated by the DHI Global Hydrological Model in the 

Brazilian territory. The five investigated precipitation products are Observed grid (XAVIER, 

KING, and SCALON, 2016), CHIRPS (FUNK et al., 2015), GPM Final (NASA, 2021), GPM 

Late (NASA, 2021), and ERA5 (ECMWF, 2021). Thus, the simulated discharges were 

compared to the observation of 769 stations in the Brazilian territory.  

For the entire country extension, the calculated median ME are 105.13 mm 

(Observed), 153.86 mm (CHIRPS), 203.46 mm (GPM Final), 215.93 mm (GPM Late), and 

95.02 mm (ERA5). With this in view, all the simulations present a positive deviation from the 

observed runoff, although the Observed grid and ERA5 presented the lowest biases. 

Additionally, the calculated median MRE determines that the Observed grid (26.49%) 

and the ERA5 (23.66%) dataset provide a lower level of biases when compared to the other 

simulations, which present values close to 40% and 50%. Then, among the four global-scale 

analyzed products, ERA5 is the most accurate one to represent the water balance in the Brazilian 

territory. While the Observed grid is a reasonable reference to compare results from other 

datasets. However, the positive pattern of the error over all the simulations suggests that further 

investigation might be conducted on the secondary importance model forcing: 

evapotranspiration.  

Parallelly, the precipitation analysis indicated that the ERA5 mean yearly precipitation 

over the Brazilian territory is the lowest one (1,386.82 mm/year) - reaching a difference of -

10.58% when compared to GPM Late, followed by the Observed grid (1,408.58 mm/year). 

Additionally, the ERA5 dataset presents lower precipitation in eight of the twelve Brazilian 

Hydro-Regions when compared to the Observed dataset. Thus, it clarifies the relationship 

between the precipitation quantity and the smallest ME and MRE found for both runs among 

the simulations. 

With regards to the downscaling analysis, the water balance error pattern is variable 

over the Brazilian Hydro-Regions – as expected for a country with a continental scale. In the 

southern regions (Atlântico Sul [#6] and Uruguai [#12]), CHIRPS performs better than GPM 

Final among the satellite/observation-corrected datasets. Since both GPM products 

overestimate the rainfall amount in the area. However, in the Hydro-Region Amazônica (#1), 

GPM presents good performance, even slightly better than CHIRPS. In this sense, in a rainforest 
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as the Amazon, the satellite/observation-corrected products (CHIRPS and GPM Final) tend to 

show measurement issues related to cloud contamination. However, they play an important role 

as the region presents a lack of precipitation gauges.  

In terms of KGE, the CHIRPS and Observed datasets present the highest station 

frequency for the range (0.50:0.75) - approximately 140 stations (∼17% of total). While only 

8.6% of the stations in the ERA5 run show KGE in this range. It affirms that ERA5 has the best 

performance in terms of water balance, but not for the hydrograph shape representation. 

Among all the analyzed model efficiency coefficients, the Linear Correlation (r) 

showed the best results – it suggests that the model and some of the precipitation products 

present enough ability to represent the hydrographs dynamics in the country scale. Therefore, 

more than 400 stations showed a linear correlation factor larger than 0.75 for the Observed grid, 

while approximately 300 are presented in the range for the satellite/observation-corrected 

products (CHIRPS and GPM Final). As expected, ERA5 provided the worse results with a 

median of 0.65. It demonstrates why the product presented low values of KGE, even though it 

performs well in terms of water quantity (ME and MRE).  

Differently from the Linear Correlation (r) investigation, the model and all the studied 

precipitation datasets showed not satisfactory results for the flow variability error (Alpha) in 

terms of the Brazilian territory. Thus, the Observed, CHIRPS, and ERA5 present approximately 

the same mean (~3). Thus, the KGE is mainly defined by the Linear Correlation (r) and the Bias 

(Beta) – which has the same interpretation as the MRE. 

For the selected basins, there is not a significant difference when comparing the 

precipitation datasets for water balance performance, except for the GPM products. Once more, 

the  GPM products demonstrate significant issues to force the model. Also, there is a tendency 

for better hydrographs dynamics representation in larger basins – as expected, since small 

basins are more sensible.  

Finally, the study showed different conclusions for each simulation/precipitation 

product by downscaling the geographical investigation. In this sense, the usability of the 

different rainfall products depends on the final application of the model and focus area. For the 

next studies, researchers can explore additional precipitation datasets or combinations of them. 

Also, the evapotranspiration analyses stress the necessity to better understand the process on 

the country scale, hence it would strongly affect the simulated discharges. 
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APPENDIX A - NAM PARAMETERS 

NAM Parameter: Umax [mm] 

 

Source: Author. 

 

NAM Parameter: Lmax [mm] 

 

Source: Author. 
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NAM Parameter: CQOF 

 

Source: Author. 

 

NAM Parameter: CKIF [hours] 

 

Source: Author. 

NAM Parameter: CKOF 1,2 [hours] 
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Source: Author. 

 

NAM Parameter: TOF 

 

Source: Author. 

 

NAM Parameter: TIF 
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Source: Author. 

 

NAM Parameter: TG 

 

Source: Author. 

NAM Parameter: CKBF 



99 

 

 

Source: Author. 

 

NAM Parameter: CQlow (fixed value=0) 

 

Source: Author. 

 

NAM Parameter: CKlow (fixed value=1000) 
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Source: Author. 
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