

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS JOINVILLE CENTRO TECNOLÓGICO DE JOINVILLE DEPARTAMENTO DE ENGENHARIAS DA MOBILIDADE ENCENHADIA AUTOMOTIVA

ENTO DE ENGENHARIAS DA MODI ENGENHARIA AUTOMOTIVA SEMESTRE 2021.1

I. IDENTIFICAÇÃO DA DISCIPLINA

Código: EMB 5317 **Nome:** Aerodinâmica Veicular

Carga horária: 72 horas-aula Créditos: 04

Turma(s): 09603

Professor: Leonel R Cancino

II. CONDIÇÕES DE OFERTA EM ENSINO REMOTO (Resolução 140/2020/CUN)

Quesito	RESPOSTA
Informe o horário da disciplina no CAGR. Este horário será reservado para as <u>atividades síncronas da disciplina</u> ⁽¹⁾ (1) o estudante não deve prever nenhuma outra atividade concomitante no mesmo horário.	Horário CAGR para Atividades Síncronas: 2.1510-2 3.1510-2
Observado o item anterior, qual a periodicidade prevista para ocorrerem as atividades síncronas de ensino e atendimento aos estudantes, excetuando-se eventuais avaliações síncronas?	As atividades síncronas de <u>ensino</u> e <u>atendimento</u> aos estudantes ocorrerão: (X) em todos os horários do item anterior () semanalmente () quinzenalmente
Quais as plataformas digitais a serem utilizadas nos encontros síncronos?	Plataforma: BBB-Moodle
Como o docente planeja realizar a aferição de frequência por parte dos estudantes na disciplina?	Chamada, em cada aula via ferramenta do BBB-Moodle
O docente disponibilizará o material gravado das atividades síncronas para que os alunos possam acessá-lo de forma assíncrona posteriormente?	() SIM (X) NÃO Plataforma:
Que tipo de material de apoio pedagógico o docente disponibilizará aos alunos para estudo assíncrono?	Slides das aulas, materiais de referência para leitura (artigos científicos, TCC's, dissertações e teses de doutorado)
Como o docente pretende realizar a avaliação e aproveitamento dos estudantes na disciplina? (o docente deve especificar claramente os instrumentos, plataformas e metodologias de avaliação)	Quatro trabalhos a serem entregues em data previamente informada no cronograma da disciplina. Dois destes trabalhos deverão ser entregues no mesmo dia (e horário da disciplina no Moodle) de lançamento no Moodle.
O docente solicitará dos estudantes a instalação de	(X)SIM ()NÃO

software(s) para o desenvolvimento da disciplina que não esteja(m) disponível(eis) no Terminal de Softwares da UFSC?

Quais: ANSYS Academic Version https://www.ansys.com/academic

Bibliografia de Acesso Digital para esta disciplina.

- Aerodynamics of Road Vehicles Wolf Heinrich Hucho, disponível em: https://pdfslide.net/engineering/automotive-aerodynamics-book-wolf-heinrich-hucho.html
- Race Cars Aerodynamics Designing for Speed Joseph Katz, disponível em: https://pdfslide.net/documents/race-car-aerodynamics-joseph-katz-1st-edition.html

Abaixo, o docente deve apresentar informações adicionais relacionadas à forma de oferta da disciplina, avaliação e aferição de frequência e utilização de materiais em outros idiomas.

- Uma parte do conteúdo desta disciplina (~30%) será oferecido no modelo de "Sala de Aula Invertida", desta forma conteúdos (arquivos pdf) serão repassados no Moodle da disciplina na semana anterior à aula, e os mesmos serão discutidos e aprofundados nos encontros virtuais da semana seguinte.
- A avaliação será feita via média ponderada de quatro trabalhos (Trabalho 1, Trabalho 2, Trabalho 3 e Trabalho 4), dois dos quais serão lançados no Moodle para entrega no mesmo dia (Trabalho 1 e Trabalho 2, datas sinalizadas no cronograma).
- A aferição da frequência será realizada da seguinte forma: 75% da presença individual, chamada em todos os eventos síncronos, e 25% presença avaliada de acordo com o aproveitamento do estudante.
- A maioria do material de referência para esta disciplina encontra-se em língua inglesa. Somente os slides das aulas, disponibilizados no Moodle estarão em língua portuguesa.

III. PRÉ-REQUISITO(S)

EMB5304 – Motores de Combustão Interna I

IV. EMENTA

- Princípios básicos de aerodinâmica.
- História do desenvolvimento da aerodinâmica em automóveis.
- Efeitos aerodinâmicos.
- Aerodinâmica e forma (Influência da forma nas forças aerodinâmicas).
- Modelos em escala (Análise dimensional e semelhança, túnel de vento, aplicações no desenvolvimento de protótipos).
- Resistência ao movimento de veículos e arrasto aerodinâmico.
- Aerodinâmica e transmissão de calor.
- Anteprojeto

V. OBJETIVOS

Fornecer aos alunos conhecimentos fundamentais para executar com autonomia o dimensionamento, modelagem e teste de veículos automotores e equipamentos, considerando os aspectos relacionados com a aerodinâmica, a troca de calor e o desempenho.

Ao término do curso, o aluno deverá ser capaz de:

- ✓ Descrever os princípios básicos da aerodinâmica aplicados a veículos comerciais, de competição e comerciais.
- ✓ Conhecer a operação de tuneis de vento e a sua aplicação em aerodinâmica veicular.

- ✓ Adquirir destreza no uso de ferramentas de CFD aplicadas à experimentação numérica em aerodinâmica.
- ✓ Apresentar um anteprojeto usando CFD como ferramenta principal.

VI. CONTEÚDO PROGRAMÁTICO

UNIDADE 1 - INTRODUÇÃO À AERODINÂMICA VEICULAR

- 1.1 Princípios básicos.
- 1.2 Peculiaridades da aerodinâmica veicular.
- 1.3 Campos da engenharia relacionados.
- 1.4 História do desenvolvimento da aerodinâmica em automóveis.
- 1.5 Estado da arte e tendências futuras.

UNIDADE 2 – MECÂNICA DOS FLUDOS E AERODINÂMICA VEICULAR

- 2.1 Tipos de escoamentos e Número de Reynolds.
- 2.2 Propriedades de escoamentos compressíveis.
- 2.3 Introdução ao escoamento em veículos.
- 2.4 Escoamento externo em veículos.
- 2.5 Escoamento interno em veículos.
- 2.6 Relação entre escoamento interno e externo em veículos.

UNIDADE 3 – TÚNEL DE VENTO E DINÂMICA DE FLUIDOS COMPUTACIONAL

- 3.1 Túneis de vento: Introdução, Conceitos fundamentais, Limitações.
- 3.2 Testes em túneis de vento usando modelos em escala reduzida.
- 3.3 Introdução à Dinâmica de Fluidos Computacional.
- 3.4 Métodos CFD usados em aerodinâmica veicular.
- 3.5 Modelos de turbulência.
- 3.6 Programas de CFD disponíveis.

UNIDADE 4 – DESEMPENHO DE VEÍCULOS E CAMINHÕES PEQUENOS

- 4.1 Resistência ao movimento do veículo.
- 4.2 Desempenho.
- 4.3 Consumo de combustível e Economia de combustível.
- 4.4 Estratégias para mínimo consumo de combustível.
- 4.5 Consumo de combustível em caminhões pequenos.

UNIDADE 5 – AERODINÂMICA DE VEÍCULOS DE PASSEIO

- 5.1 − O veículo de passeio como sendo um *bluff-body*.
- 5.2 Campos de escoamento ao redor do veículo.
- 5.3 Análise de arrasto e locais de origem.
- 5.4 Estratégias para geração de formas geométricas.
- 5.5 Arrasto de veículos de passeio em produção.

UNIDADE 6 - ESTABILDADE DIRECIONAL DO VEÍCULO

- 6.1 Introdução.
- 6.2 História da estabilidade direcional.
- 6.3 Forças e momentos aerodinâmicos.
- 6.4 Aerodinâmica e dirigibilidade.
- 6.5 Influência das formas geométricas do veículo nas forças e momentos aerodinâmicos.
- 6.6 Testes e métodos de avaliação.

UNIDADE 7 – VEÍCULOS DE ALTO DESEMPENHO (COMPETIÇÃO)

- 7.1 Introdução.
- 7.2 Algumas metas históricas.
- 7.3 O significado de aerodinâmica em veículos de alto desempenho.
- 7.4 Alternativas de projeto.
- 7.5 Problemas especiais.
- 7.6 Tendências para o futuro de veículos de alto desempenho.

UNIDADE 8 – VEÍCULOS COMERCIAIS

- 8.1 Introdução.
- 8.2 Resistencia de tração e consumo de combustível.
- 8.3 Redução do arrasto e consumo de combustível.
- 8.4 Coeficiente de arrasto aerodinâmico de veículos comerciais.
- 8.5 Redução do arrasto aerodinâmico.
- 8.6 Vantagens de efeitos de interferência aerodinâmica.
- 8.7 Sujidade das superfícies externas do veículo.

UNIDADE 9 – ANTEPROJETO

9.1 – Simulação em CFD de um veículo de passeio / comercial / competição

VII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A oferta desta disciplina será no modelo de aula invertida, conteúdos (arquivos ppt, artigos científicos, vídeos e informação de domínio público) serão repassados no Moodle da turma semanalmente e os mesmos serão discutidos e aprofundados nos encontros virtuais da semana seguinte. Ao longo do curso será utilizado o programa **ANSYS-FLUENT** (https://www.ansys.com/Products/Fluids/ANSYS-Fluent) para processos de simulação anteprojeto. O aluno deverá acessar no portal da ANSYS e fazer download da versão acadêmica no seu computador (desktop / laptop) para a realização dos trabalhos ao longo do curso.

VIII. METODOLOGIA DE AVALIAÇÃO

Será realizada por intermédio de avaliação individual (quatro trabalhos) ao longo do desenvolvimento do curso, da seguinte forma e ponderação:

- Trabalho 1, correspondente a 35 % da nota,
- Trabalho 2, correspondente a 30 % da nota,
- **Trabalho 3,** correspondente a 15 % da nota
- Trabalho 4 + apresentação do anteprojeto, correspondente a 20 % da nota

A data e o lançamento dos trabalhos no Moodle da turma estão marcados no item CRONOGRAMA. Os trabalhos 1 e 2 serão lançados no Moodle no mesmo dia que deverão ser entregues pelo aluno, via Moodle, em formato de apresentação livre. O tempo estipulado para a apresentação do Trabalho 4 será de 10 min + 5 de perguntas. O aluno deverá entregar os Trabalhos 3 e 4, usando as normas de apresentação de trabalhos ABNT disponível no site da Biblioteca Universitária - http://www.bu.ufsc.br/design/Estrutura.html, contendo a análise dos resultados obtidos. Será considerado aprovado o estudante que alcançar a média igual ou superior a 5,75 (cinco vírgula setenta e cinco) ao final do semestre letivo.

<u>Observação</u>: O Trabalho 2 versará sobre todo o conteúdo da disciplina, incluindo os trabalhos ao longo do curso.

IX. AVALIAÇÃO FINAL

O(a) aluno(a) com média das notas entre três (3,0) e cinco vírgula cinco (5,5) terá direito a uma nova avaliação (Recuperação) no final do semestre que versará sobre todo o conteúdo da disciplina, conforme o que dispõe o § 2º do Art. 70 e § 3º do Art. 71 da Resolução nº 17/Cun/97. Neste caso, a média final será calculada através da média aritmética simples entre a média das notas das avaliações feitas durante o semestre e a nota obtida na nova avaliação (Recuperação). A nota mínima de aprovação é seis (6,0). A nova avaliação (Recuperação) supracitada consistirá em um

trabalho, a ser realizado num período de tempo máximo de 2 horas após o lançamento do mesmo no Moodle da disciplina, na data (e horário da aula cadastrado no CAGR) marcado no Cronograma.

X. CRONOGRAMA

Semana	Data	Dia de aula, na semana correspondente	Aula#	Conteúdo
S1	14/06/2021	Segunda-feira	1	Apresentação do plano de ensino /
	11/00/2021		2	1.1 - 1.2 - 1.3
	15/06/2021	Terça-feira	3	1.4 - 1.5
	10,00,2021		4	1.7 1.5
S2	21/06/2021	Segunda-feira	5	2.1 - 2.2
			6	
	22/06/2021	Terça-feira	7	2.3 - 2.4
		,	8	
	28/06/2021	Segunda-feira	9	2.5 - 2.6
S3			10 11	
	29/06/2021	Terça-feira	12	3.1 - 3.2
			13	
	05/07/2021	Segunda-feira	14	3.3 - 3.4
S4			15	3.5 - 3.6 (Trabalho 3 - Primeira
	06/07/2021	Terça-feira	16	entrega)
	12/07/2021	Segunda-feira	17	
			18	4.1 - 4.2 (+ duvidas CFD)
S5	13/07/2021	Terça-feira	19	
			20	4.3 - 4.4 (+ duvidas CFD)
	19/07/2021	0 1 6	21	45 () () () ()
96		Segunda-feira	22	4.5 (+ duvidas CFD)
S6	20/07/2021	Transa frins	23	5.1 (+ deside a CED)
		Terça-feira	24	5.1 (+ duvidas CFD)
	26/07/2021	Segunda-feira	25	5.2 - 5.3
S7			26	3.2 - 3.3
57	27/07/2021	Terça-feira	27	5.4 - 5.5 (Trabalho 3 - Segunda
		Terça Terra	28	entrega)
	02/08/2021	Segunda-feira	29	Lançamento do Trabalho 1 no
S8		Segunda Tenta	30	Moodle / Entrega do Trabalho 1
50	03/08/2021 Te	Terça-feira	31	6.1 - 6.2
			32	0.2 0.2
S9	09/08/2021 S	Segunda-feira	33	6.3 - 6.4
	10/08/2021 Terça-feira	34		
		Terça-feira	35	6.5 - 6.6
\$10	16/09/2021		36	7.1 (+ duvides CED)
S10	16/08/2021	Segunda-feira	37	7.1 (+ duvidas CFD)

			38	
	17/08/2021	Terça-feira	39	7.2 (+ duvidas CFD)
			40	
S11	23/08/2021	Segunda-feira	41	7.3 - 7.4 (+ duvidas CFD)
			42	
	24/08/2021	Terça-feira	43	7.5 - 7.6 (+ duvidas CFD)
			44	
	30/08/2021	Segunda-feira	45	8.1 - 8.2 - 8.3(a)
S12			46	8.1 - 8.2 - 8.3(a)
512	31/08/2021	Terça-feira	47	8.3(b) - 8.4 - 8.5(a)
	31/06/2021	Terça-rena	48	8.3(b) - 8.4 - 8.3(a)
	06/09/2021 Segu	Segunda-feira		Data reservada para vestibular
S13		Segunda-tena		(DAE/UFSC)
	07/09/2021 Terça-fe	Terca_feira		Entrega Final do Trabalho 4/
		Terça-terra		(Dia não letivo)
S14	13/09/2021	Segunda-feira	49	9.1 - 9.2 (Apresentação de
			50	anteprojeto)
514	14/09/2021 Terça-feira	51	9.1 - 9.2 (Apresentação de	
		Terça Terra	52	anteprojeto)
S15	20/09/2021	Segunda-feira	53	Atendimento alunos
		Begunda Tena	54	Attenumento atunos
	21/09/2021 Terça-feira	Terca-feira	55	Lançamento do Trabalho 2 no
		56	Moodle / Entrega do Trabalho 2	
S16	27/09/2021 Segunda-feira	Segunda-feira	57	Recuperação
		58	Recuperação	
	28/09/2021 Terça-feira	Terca-feira	59	Atendimento alunos
		60		

Observações:

- O aluno precisará de 12 horas-aula de estudo em casa para realização dos trabalhos da disciplina, completando de esta forma a carga horaria de 72 horas-aula.
- Quintas-feiras, no horário das 08:00 às 12:00 horas, sob agendamento prévio via e-mail, o professor da disciplina estará disponível para atendimento a alunos em sala virtual do Google Meet / Conferência web – RNP.
- <u>Trabalho 3 Primeira entrega:</u> Relatório preliminar da simulação de uma geometria automotiva simplificada, segundo instruções a ser repassadas em sala de aula. O aluno deverá fazer up-load de todos os arquivos (geometria arquivo em SolidWorks, arquivo de malha em ANSYS via Gdrive), e documento do relatório preliminar em Word / PDF.
- <u>Trabalho 3 Segunda entrega</u>: Arquivos de simulação e relatório final da simulação da geometria automotiva simplificada, via GDrive.
- <u>Trabalho 4 Entrega</u>: Anteprojeto. Arquivos de simulação em ANSYS-FLUENT de um veículo de passeio / competição / comercial, incluindo relatório final para apresentação. Até a data especificada desta atividade, o aluno deverá fazer up-load de todos os arquivos de simulação (via Gdrive) incluindo o arquivo de apresentação em pptx
- O cronograma está sujeito a alterações.

XI. BIBLIOGRAFIA BÁSICA

- ISMARIL, K.A.R. Aerodinâmica Veicular. Grafica Cisgraf. ISBN 85-900609-6-9, 2007, 295p
- MILLIKEN, W.F.; MILLINKEN, D.L. Race Car Vehicle Dynamics. SAE International. 1994.
- PARKET, B. The Isaac Newton School of Driving: Physics and Your Car. John Hopkins University Press. 2003.

XII. BIBLIOGRAFIA COMPLEMENTAR

- MILLIKEN, W.F.; MILLINKEN, D.L. METZ, L.D., KASPRZA, E.M. Race Car Vehicle Dynamics Book and Problems, Answers and Experiments Set. SAE International. 2003.
- SAINTIVE, N.S. TEORIA DE VOO PP/PC INTRODUÇAO A AERODINAMICA. 5^a Edição. 2010.
- SIMON, M. e ELIZALDE, P. AERODINAMICA DEL AUTOMOVIL DE COMPETICION. Editora CEAC ESPANHA. 2ª Edição. 2005.

XIII. OBSERVAÇÕES

- 1) SOBRE O CALENDÁRIO: O calendário poderá sofrer algumas alterações,
- 2) SOBRE A BIBLIOGRAFIA: Adicionalmente, recomenda-se os seguintes livros para consulta:
 - Çengel, Y & Cimbala, J., Mecânica dos Fluidos: Fundamentos e Aplicações, Mc Graw-Hill, Rio de Janeiro.
 - Fox, R. W & McDonald, T., Introdução à mecânica dos Fluidos, 6ª ed., LTC- Livros Técnicos e Científicos Editora, Rio de Janeiro
 - Moran, M.J. & Shapiro, H. S. Princípios de Termodinâmica para Engenharia, LTC Editora

Atualizado em:

Joinville, 14 de maio de 2021.