
FEDERAL UNIVERSITY OF SANTA CATARINA

DEPARTMENT OF AUTOMATION AND SYSTEMS, CENTER OF TECHNOLOGY

POSTGRADUATE PROGRAM IN AUTOMATION AND SYSTEMS ENGINEERING

Gustavo Rezende Silva

ACTIVE PERCEPTION WITHIN BDI AGENTS REASONING CYCLE
WITH APPLICATIONS IN MOBILE ROBOTS

Florianópolis

2020

Gustavo Rezende Silva

ACTIVE PERCEPTION WITHIN BDI AGENTS REASONING CYCLE
WITH APPLICATIONS IN MOBILE ROBOTS

Monograph submitted to the Post-

graduate Program in Automation

and Systems Engineering of Federal

University of Santa Catarina for de-

gree acquirement in Master in Au-

tomation and Systems Engineering.

Supervisor: Prof. Jomi Fred Hüb-
ner, Phd.

Co-Supervisor: Prof. Leandro Buss

Becker, Phd.

Florianópolis

2020

Cataloging at source by the University Library of the Federal University of Santa Catarina.

File compiled at 23:46h of the day Monday 8th March, 2021.

Gustavo Rezende Silva

Active Perception within BDI Agents Reasoning Cycle with Applications

in Mobile Robots / Gustavo Rezende Silva; Supervisor, Prof. Jomi Fred Hüb-

ner, Phd. ; Co-Supervisor, Prof. Leandro Buss Becker, Phd. - Florianópo-

lis, 23:46, 13 of October of 2020.

78 p.

Monograph - Federal University of Santa Catarina, Department of Automa-

tion and Systems, Center of Technology, Postgraduate Program in Automation

and Systems Engineering.

Includes references

1. BDI Agents. 2. Mobile robotics. 3. Active Perception. 4. UAV. I. Prof.

Jomi Fred Hübner, Phd. II. Prof. Leandro Buss Becker, Phd. III. Postgrad-

uate Program in Automation and Systems Engineering IV. Active Perception

within BDI Agents Reasoning Cycle with Applications in Mobile Robots

Gustavo Rezende Silva

ACTIVE PERCEPTION WITHIN BDI AGENTS REASONING CYCLE
WITH APPLICATIONS IN MOBILE ROBOTS

This Monograph was considered appropriate to get the Master in Automation and Systems
Engineering, and it was approved by the Postgraduate Program in Automation and
Systems Engineering of Department of Automation and Systems, Center of Technology of
Federal University of Santa Catarina.

Prof. Jomi Fred Hübner, Phd.
Federal University of Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que
foi julgado adequado para obtenção do título de Mestre em Engenharia de Automação e
Sistemas.

Prof. Werner Kraus Jr., Phd.
Coordinator of Postgraduate Program in
Automation and Systems Engineering

Prof. Jomi Fred Hübner, Phd.
Supervisor

Federal University of Santa Catarina

Prof. Leandro Buss Becker, Phd.
Co-Supervisor

Federal University of Santa Catarina

Florianópolis, 13 of October of 2020.

This work is dedicated to all humanity, I hope that somehow the knowledge produced in
this project will contribute to science and the world.

ACKNOWLEDGEMENTS

I am grateful to the Federal University of Santa Catarina, to the Department of
Automation and Systems, to the Graduate Program in Automation and Systems Engi-
neering, to the teaching and administrative staff for the opportunity to take the master’s
course. In particular, I am grateful to my advisors Leandro B. Becker and Jomi F. Hubner
for their support, guidance, and dedication. I also thank my family, girlfriend and friends
who supported me and were by my side during my journey up to this moment. I also
extend my thanks to everyone who somehow passed through my life and contributed to
me becoming the person I have become. My sincere thanks!

RESUMO

Em sistemas multi agentes o principal processo responsável por obter informações sobre o
ambiente é a percepção, geralmente este processo é realizado passivamente independente
do estado interno do agente. Entretanto, principalmente quando inseridos em ambientes
reais, um problema frequente é que os agentes têm percepção parcial do ambiente, não
conseguindo perceber tudo aquilo que é necessário. Para contornar este problema, uma
solução é ativamente realizar ações para perceber o que é de interesse do agente, ao invés
de apenas perceber passivamente o que está disponível no ambiente, por exemplo, em um
sistema de visão computacional, a câmera pode ser reposicionada para ter uma melhor
visão de um objeto. Com isso, este trabalho tem como objetivo elaborar um modelo
de percepção ativa integrado com o ciclo de raciocínio de agentes BDI. Ainda, um dos
objetivos é testar a percepção ativa em ambientes os mais próximos de reais possíveis, em
razão disso foi desenvolvido uma arquitetura embarcada que visa promover a utilização de
agentes cognitivos em cooperação com o The Robotic Operating System para programar
a inteligência de robôs. Foram realizados experimentos utilizando agentes BDI com ROS
para comandar veículos aéreos não tripulados para analisar os benefícios e impactos de se
utilizar agentes cognitivos e percepção ativa para programar a inteligência de robôs.

Palavras-chaves: Agentes BDI. Robótica Móvel. Percepção ativa. VANT.

RESUMO EXPANDIDO

INTRODUÇÃO

Técnicas de sistemas multiagentes (SMA) parecem ser uma abordagem vantajosa para progra-

mar a parte cognitiva de robôs, uma vez que oferecem ferramentas teóricas e práticas para o de-

senvolvimento de sistemas autônomos. Em SMA um dos mecanismos que os agentes possuem

para reunir conhecimento sobre o estado do ambiente é por meio de um processo denominado

percepção, este é responsável por perceber o mundo e traduzir essas informações em abstrações

de alto nível compreensíveis pelo agente.

O processo de percepção pode ser classificado em dois tipos diferentes, a abordagem passiva ou

ativa. A percepção passiva é realizada independente do estado interno do agente. Já na percep-

ção ativa, o agente determina o que precisa ser sentido e então realiza uma ação adequada para

perceber o que é necessário.

Em cenários do mundo real, um problema que frequentemente surge é que os robôs têm percep-

ção parcial do ambiente. Para contornar esse tipo de problema, uma solução é perceber ativa-

mente o que interessa ao robô, em vez de apenas perceber passivamente o que está disponível

no ambiente.

Nos agentes BDI tradicionais apenas a percepção passiva é normalmente levada em conside-

ração. Assim, este trabalho propõe um modelo de percepção ativa integrado à arquitetura de

agentes BDI. Uma vez que as vantagens da percepção ativa são destacadas em cenários comple-

xos do mundo real, o modelo proposto deve ser avaliado em cenários o mais próximo possível

do real. Para isso, também está sendo proposta uma arquitetura para a programação de robôs

inteligentes baseada nos conceitos cognitivos do BDI.

OBJETIVOS

Este trabalho tem como principal objetivo a concepção, desenvolvimento, e avaliação de um

mecanismo de percepção ativa integrado com o ciclo de raciocínio dos agentes BDI. Além

disso, outro objetivo é desenvolver uma arquitetura embarcada que permita utilizar agentes

BDI para programar a inteligência de robôs, de forma a possibilitar que o modelo de percepção

ativa proposto seja aplicado em robôs.

METODOLOGIA

Para alcançar os objetivos propostos a primeira tarefa consiste em expandir os conceitos e defi-

nições de agentes BDI para incluir a percepção ativa, em seguida, com base nos novos conceitos

é proposta uma possível modificação do ciclo de raciocínio dos agentes BDI para incluir a per-

cepção ativa. Em sequência, é analisada diversas opções existentes para transformar o modelo

proposto em uma implementação. Então, é discutido como de fato implementar a percepção

ativa para agentes BDI utilizando a linguagem de programação de agentes Jason.

Como um dos objetivos é testar a proposta de percepção ativa em ambientes reais, é desen-

volvida uma arquitetura embarcada para possibilitar que agentes Jason sejam utilizados para

programar robôs através do uso do ROS.

Com o intuito de verificar a eficiência da arquitetura desenvolvida e se a utilização de agentes

BDI para programar a inteligência de robôs oferece alguma vantagem, são elaborados dois

experimentos que consistem na utilização de veículos aéreos não tripulados programados com

Jason para realizar missões de busca e resgate.

RESULTADOS E DISCUSSÃO

Neste trabalho é demonstrado que é possível integrar agentes BDI com o ROS e utiliza-los para

programar a inteligência de robôs. Com a execução de experimentos são obtidas evidências que

demonstram que a utilização de agentes BDI facilita o processo de programação de comporta-

mentos complexos. Porém, a utilização de agentes BDI para este fim trás como desvantagem um

maior custo computacional, entretanto em plataformas como rapsberry pi 3 isto não é proibitivo.

E também, é mostrado que é possível desenvolver um mecanismo de percepção ativa integrado

com o ciclo de raciocínio dos agentes BDI. Através da realização de alguns experimentos é

apresentado como a percepção ativa pode impactar na realização de missões de busca e resgate

com VANTs. E ainda, é apresentado como a dinamicidade do ambiente se relacionada com a

frequência de realização da percepção ativa, e como deve ser feito a parametrização da mesma.

CONSIDERAÇÕES FINAIS

Este trabalho propõem uma arquitetura embarcada composta de agentes BDI e ROS para a

programação de robôs inteligentes, e um modelo de percepção ativa integrada com o ciclo de

raciocínio de agentes BDI. E são apresentadas evidências que apontam as vantagens da utiliza-

ção de agentes BDI para programar a parte cognitiva de robôs, e a importância da utilização de

percepção ativa em alguns cenários.

Palavras-chaves: Agentes BDI. Robótica Móvel. Percepção ativa. VANT.

ABSTRACT

In multi-agent systems the main process responsible for obtaining information about the
environment is perception, generally this process is performed passively regardless of the
agent’s internal state. However, especially when inserted in real environments, a frequent
problem is that agents have partial perception of the environment, failing to perceive
everything that is necessary. To circumvent this problem, a solution is to actively take
actions to perceive what is of interest to the agent, instead of just passively perceiving
what is available in the environment, for example, in a computer vision system, the camera
can be repositioned to have a better view of an object. Thus, this work aims to develop an
active perception model integrated with the reasoning cycle of BDI agents. Also, one of
the goals is to test active perception in environments as close to real as possible, for this
reason, an embedded architecture was developed that aims to promote the use of cognitive
agents in cooperation with The Robotic Operating System to program the intelligence of
robots. Experiments were performed using BDI agents with ROS to command unmanned
aerial vehicles to analyze the benefits and impacts of using cognitive agents and active
perception to program robot intelligence.

Keywords: BDI Agents. Mobile robotics. Active Perception. UAV.

LIST OF FIGURES

Figure 3.1 – Perception taxonomy . 31
Figure 3.2 – Beliefs taxonomy . 32
Figure 3.3 – Regular beliefs FSM . 34
Figure 3.4 – Timed beliefs FSM . 35
Figure 3.5 – Regular active perception beliefs FSM 35
Figure 3.6 – Timed active perception beliefs FSM 35
Figure 3.7 – Desires taxonomy . 36
Figure 3.8 – Intentions taxonomy . 36
Figure 3.9 – Plans taxonomy . 37
Figure 3.10–Plan selection flowchart . 41
Figure 3.11–Active perception class diagram . 46
Figure 3.12–Jason Reasoning Cycle (source (BORDINI; HUBNER; WOOLDRIDGE,

2007)) . 47
Figure 3.13–Syntactic substitution flowchart . 48

Figure 4.1 – System architecture . 55
Figure 4.2 – Jason-ROS nodes and topics graph . 56
Figure 4.3 – Typical sequence of messages exchanged by the system nodes 59

Figure 5.1 – Single UAV mission nodes and topics graph 64
Figure 5.2 – ArduPilot SITL view . 65
Figure 5.3 – ArduPilot SITL + Gazebo view . 66
Figure 5.4 – Gazebo search-and-rescue world . 69
Figure 5.5 – Scout path . 69
Figure 5.6 – Lifebuoy . 70
Figure 5.7 – Victims distribution . 71

LIST OF TABLES

Table 3.1 – Active perception mechanism options 44

Table 4.1 – Topics used by the agents . 56
Table 4.2 – Overloaded methods . 57

Table 5.1 – Adopted embedded computing platforms 65
Table 5.2 – Results for Single-UAV mission . 66
Table 5.3 – Programs metrics in S-UAV mission . 67
Table 5.4 – Results for Multi-UAVs mission . 68
Table 5.5 – Programs metrics in M-UAVs mission 68
Table 5.6 – Victims drowning times . 71
Table 5.7 – Scenario 1 results . 71
Table 5.8 – Scenario 2 results . 72
Table 5.9 – Scenario 3 results . 73

LIST OF ABBREVIATIONS AND ACRONYMS

AP Active perception

APB Active perception belief

APD Active perception desire

API Active perception intention

APP Active perception plan

BDI Belief, desire, intention

FSM Finite state machine

MAS Multi-Agent systems

OS Operating System

PP Passive perception

RAPB Regular active perception belief

RB Regular belief

RD Regular desire

RI Regular intention

RP Regular plan

ROS The Robot Operating System

SA Situational awareness

SITL Software in the loop

TAPB Timed active perception belief

TB Timed belief

UML Unified modeling language

UAV Unmanned aerial vehicles

CONTENTS

1 INTRODUCTION . 23

2 LITERATURE REVIEW . 25
2.1 INTELLIGENT AGENTS . 25
2.2 BDI AGENTS . 25
2.3 ACTIVE PERCEPTION . 27
2.4 AGENTS AND HARDWARE ARCHITECTURES 29
2.5 LITERATURE REVIEW CONCLUSIONS 30

3 ACTIVE PERCEPTION WITHIN BDI AGENTS REASON-
ING CYCLE . 31

3.1 MODEL . 31
3.1.1 Definitions . 31

3.1.1.1 Perception . 31
3.1.1.2 Beliefs . 32
3.1.1.2.1 Types . 32
3.1.1.2.2 States . 33
3.1.1.2.3 Beliefs states and transitions . 34
3.1.1.3 Desires . 35
3.1.1.4 Intentions . 36
3.1.1.5 Plans . 37
3.1.1.6 Active perception selection pressure 37
3.1.2 Modified reasoning cycle . 38

3.2 DESIGN . 39
3.2.1 Plan representation and selection . 40

3.2.2 Distinction of beliefs . 40

3.2.3 Analysis of relevant plans . 42

3.2.4 Context verification . 42

3.2.5 Timed active perception belief lifetime 43

3.2.6 Revealing order . 44

3.2.7 Options analyses . 44

3.3 IMPLEMENTATION . 45
3.3.1 Object model for active perception beliefs 45

3.3.2 Jason implementation . 45

4 ARCHITECTURE FOR PROGRAMMING BDI AGENTS
FOR ROBOT APPLICATIONS 55

4.1 AGENT NODE . 55
4.1.1 Specifications and standards . 55

4.1.2 Agent architecture customization . 57

4.2 HWBRIDGE NODE . 57
4.3 HARDWARE CONTROLLER NODE 59
4.4 COMM NODE . 60

5 EXPERIMENTS . 61
5.1 JASON-ROS EXPERIMENTS . 61
5.1.1 Experiments setup . 61

22 CONTENTS

5.1.2 Single UAV Mission . 65

5.1.3 Multiple UAV Mission . 67

5.2 ACTIVE PERCEPTION EXPERIMENTS 68
5.2.1 Experiments setup . 68

5.2.2 First scenario . 70

5.2.3 Second scenario . 72

5.2.4 Third scenario . 73

6 CONCLUSIONS . 75
6.1 FUTURE WORKS . 76

REFERÊNCIAS . 77

1 INTRODUCTION

When designing robots one of the difficulties is to develop autonomous software
that is capable to perceive the environment, reason about what it knows, and then
choose appropriate actions. To solve this challenge, multi-agents systems (MAS) tech-
niques seem to be an advantageous approach since it offers theoretical and practical tools
to develop autonomous systems (BORDINI; HÜBNER; VIEIRA, 2005; BORDINI; HUB-
NER; WOOLDRIDGE, 2007). Among the benefits, agents can properly balance reactivity
and pro-activeness, specially those agents built on top of the BDI model (BDI stands for
Belief, Desire, Intention).

In MAS one of the mechanisms that agents have to gather knowledge about the
state of the environment is via a process called perception, which is responsible for sensing
the world and translating those information into high-level abstractions understandable by
the agent, in BDI agents this is represented by beliefs. As proposed in (SO; SONENBERG,
2009), the perception process can be classified into two different types, the bottom-up
(passive) or top-down (active) approach.

The passive perception is described as a process that does not require the agent
to deliberate about its sensing needs, it perceives the environment in the same way inde-
pendently of its own internal state. On the other hand, the active perception process was
characterized by being goal-driven, which means that the goals of the agent determine
what needs to be sensed and then a proper action is taken in order to perceive what is
needed.

In (BAJCSY; ALOIMONOS; TSOTSOS, 2018) active perception was thoroughly
reviewed proposing the following definition: “An agent is an active perceiver if it knows
why it wishes to sense, and then chooses what to perceive, and determines how, when and
where to achieve that perception”. This statement will serve as guideline for this work.

In real world scenarios one problem that often arises is that robots have partial
perception of the environment, mostly due to computational power restrictions, sensor
limitations, and objects being occluded or out of range. In order to circumvent this type
of problem one solution is to actively perceive what is of interest to the robot instead of
only perceiving passively what is available in the environment, e.g., in a computer vision
system the camera can be repositioned in order have a better view of an object, a robot
indoors may move outside to check if there is still light or not.

In the traditional BDI agents (WOOLDRIDGE, 1999) only the passive perception
is usually taken into account. The regular BDI architecture assumes that the agent knowl-
edge is updated. However, it is possible that agents have partial or outdated information
about the environment, specially when they are inserted in the real world. Therefore, it
would be advantageous for the agents to update or acquire knowledge about the world
before deciding their actions.

Thus, this work proposes a model for active perception integrated with BDI agents
architecture. Since the advantages of active perception are highlighted in complex real
world scenarios, the proposed model should be evaluated in scenarios as close to real
as possible. Therefore, the active perception mechanism developed is evaluated using
robots as testbed. For this, it is also being proposed an architecture for programming
intelligent robots based on the cognitive concepts of BDI. To verify if the developed
architecture is feasible to be embedded and practically used to operate robots, a couple of

24 Chapter 1. Introduction

experiments are performed. Also, to highlight the advantages and limitations of using BDI
agents to program robots, its usage is compared to more traditional approaches. Then,
new experiments including active perception are executed to evaluate its impact in the
deliberation process, and in the computational resources consumption.

The reminder parts of this work are organized as follows. Chapter 2 provides the
literature review for what is discussed in this work; Chapter 3 describes the model, some
design aspects, and implementation details of the active perception model being proposed;
Chapter 4 contains the description of the proposed architecture used to integrate BDI
agents and hardware; Chapter 5 details the performed experiments; Chapter 6 outlines
the conclusions and the future works.

2 LITERATURE REVIEW

This chapter addresses the literature review of the main concepts covered in this
work. Including intelligent agents, BDI agents, active perception, and a brief review of
the related works of agents and hardware integration.

2.1 INTELLIGENT AGENTS

As stated in (WOOLDRIDGE, 1999), the task of defining intelligent agents is not
an easy one, even because there is no consensus for the concept of intelligence. Despite
this, the author came up with the following definition: “An intelligent agent is one that is
capable of flexible autonomous action in order to meet its design objectives”, and flexible
means that it posses reactivity, pro-activeness, and social ability. Reactivity is the ability
to perceive the environment and promptly reacting according to what is perceived; pro-
activeness is the capability of taking the initiative to perform actions in order to achieve
its goals, this is called goal-driven behaviour; social ability is the capacity of interacting
with other agents.

It is relevant to emphasize that an important characteristic of intelligent agents is
the balance between reactivity and pro-activeness (WOOLDRIDGE, 1999). In the case
that an agent is only reactive, it will not perform actions to achieve a goal, it will simply
be reacting to the environment which probably will not lead to the accomplishment of
goals. On the other hand, if an agent is purely pro-active, goal-driven, it will take actions
to accomplish goals but it will never check if the conditions that led it to commit to those
goals still stands, which may result in an agent trying to conclude a goal that is no longer
possible to be completed.

2.2 BDI AGENTS

According to Bratman et al.(M. E. BRATMAN; ISRAEL; POLLACK, 1988) an
ideal but unrealistic solution to the problem of balancing between reactivity and pro-
activeness would be to compute at each instant of time which is the best possible course
of action. However, it is not possible since agents have a limited amount of resources
to perform computation. Therefore, the author proposed an architecture for practical
reasoning based in the cognitive notions of belief, desire, and intention (BDI) (M. BRAT-
MAN, 1987), which in short is the combination, in the right amount, of reactivity and
pro-activeness.

Agents based on the BDI architecture are composed of three main components:
beliefs, desires, and intentions. Beliefs are the representation of what the agent knows
about the world and itself, desires are what the agent wants to achieve, and intentions
are the desires that the agent decided and committed to accomplish.

As an example of how the practical reasoning happens in BDI agents, lets analyze
a scenario of a search and rescue mission using unmanned aerial vehicles (UAVs). In this
context, the agent is an UAV that carries a buoy. Lets suppose that this UAV receives a
message informing the location of several drowning victims, immediately the agent begins
to have a desire to deliver a buoy for all the victims. However, it is not possible to drop a
buoy for all of them, thus the agent must choose one and commit to rescuing it. Based on
the beliefs of the victims’ locations, the agent commits to deliver a buoy to the nearest.

26 Chapter 2. Literature review

The desire that the agent has committed becomes an intention.

According to Wooldridge (WOOLDRIDGE, 1999) intentions are crucial for the
practical reasoning process and they have certain properties, such as driving means-ends
reasoning, constraining future deliberation, persisting, and influencing beliefs upon which
future practical reasoning is based.

Driving means-end reasoning : consists that the agent really tries to achieve its
intention. To do this, it must define how it will achieve its goals and, if it fails, he must try
to choose different ways of achieving it, instead of abandoning the intention immediately.
In the case of the UAV, the agent must trace a path and follow it to reach the victim,
and in the case that the path is not right or blocked by trees or something, it should try
to follow a different path.

Constraining future deliberation: indicates that the agent should not consider op-
tions that are not compatible with its intentions. In our example, the agent should not
consider not dropping a buoy for a victim in need.

Persisting : intentions should persist while there is no reason for abandoning it.
Plausible reasons for dropping an intention are that the intention was achieved, it is no
longer possible to achieve its goal, or the purpose for having that intention does not exist
anymore. In the context of the rescue mission, it could be because the agent successfully
dropped the buoy for the victim, the UAV does not have enough battery to reach its goal,
or the victim was already rescued by someone else.

Influencing beliefs upon which future practical reasoning is based : the agent should
plan its future based on the assumption that it will successfully fulfill its intention, because
it would be irrational to persist with an intention if the agent does not believe it will be
achieved. In the case of the UAV, the agent could plan what it would do after the rescue
considering that it successfully dropped the buoy for the victim.

With all this in mind, Wooldridge (WOOLDRIDGE, 1999) defined the process of
practical reasoning of BDI agents as can be seen in listing 2.1, in summary it consists in
the mapping of the current percepts and beliefs into actions.

First, based on the current beliefs and perceptual inputs a belief revision function
(brf) updates the agent’s beliefs. In the example of the UAV, considering that the message
containing the victims’ locations is a perceptual input, the brf would take this perception
and all the others and update the agent’s belief base to include the victims locations and
any other new info acquired.

Then, an options generating function determines the new desires of the agent
based on its current intentions and beliefs. For the UAV agent, this function would take
the new beliefs about the victims’ location and their current intentions and, based on this,
would generate the desire to rescue all victims, assuming that the agent had no conflicting
intentions.

Following, a filter function takes the current beliefs, desires, and intentions of the
agent and determines its new set of intention, this represents the deliberation process. In
the context of the rescue mission, the filter function would take the beliefs of the victims’
location, the desire for rescuing all of them, the current intentions and, with this, commit
to the desire of rescuing the nearest victim.

Lastly, an action selection function (execute) selects an action to be performed
based on the agents intentions. For the UAV, this would represent taking off, flying trough

2.3. Active perception 27

a path that leads to the victim, and dropping a buoy.

Listing 2.1 – BDI reasoning cycle

1 func t i on ac t i on (p :P) :A

2 begin

3 B = br f (B, p)

4 D = opt ions (B, I)

5 I = f i l t e r (B,D, I)

6 return execute (I)

7 end func t i on ac t i on

2.3 ACTIVE PERCEPTION

In this work, active perception is reviewed in the context of intelligent agents.
Firstly, the review will address works that have a more theoretical point of view, such as
(WEYNS; STEEGMANS; HOLVOET, 2004; SO; SONENBERG, 2009), then it will con-
centrate on practical works, like (BEST; CLIFF, et al., 2018; BEST; FAIGL; FITCH, 2018;
J-M et al., 2012; UNTERHOLZNER; HIMMELSBACH; WUENSCHE, 2012; RAFAELI;
KAMINKA, 2017).

In (WEYNS; STEEGMANS; HOLVOET, 2004) the authors point out the lack of
theories and general models for perception in MAS, despite its importance, highlighting
that most MAS adopt a simplistic model for perception or ad hoc solutions. Therefore,
they proposed a generic model for active perception in situated MAS, which is composed
of three functional modules: sensing, interpreting, and filtering.

Sensing is the process of mapping the state of the environment to a representation,
which depends on two factors: foci, and perceptual laws. The latter is the set of environ-
mental constraints of the representation, e.g. something behind an obstacle can not be
perceived, in the physical world the perceptual laws are intrinsic to the environment, but
in simulated/virtual environments they must be explicitly defined. The former, foci, is
the direction of perception, which allows the agent to choose what type of information
it wishes to perceive, e.g. an agent can select to smell or see. Following, interpreting is
the translation of a representation into a perception, which is an expression that is under-
standable by the machinery of the agent. Lastly, filtering is the process of selecting only
the perceptions that match a specific criteria. The authors make the following compari-
son to biological systems: “Focus selection can be viewed as choosing a particular sense to
observe the environment, while filter selection is comparable to the direction of attention,
both driven by the current interests”.

This model of active perception is interesting since it allows the agent to direct its
focus to relevant aspects of the environment. However, it considers that what the agents
want to perceive is directly available, which in physical systems may not be true, e.g.
using a visual focus the object of interest may be out of range. One solution for this
problem would be to include a mechanism in the foci step to ensure that the agent is able
to perceive what it wishes, e.g. the visual system could be repositioned in order to be in
range of the object of interest.

In (SO; SONENBERG, 2009), the authors emphasize the importance of the per-
ception process for intelligent agents, since it is the main mechanism used by agents to

28 Chapter 2. Literature review

gather knowledge about the environment, and most of the decisions taken by the agents
are based on what it knows about the environment. Then, it is pointed out that the defini-
tion of an agent’s perception (sensing) behaviour usually consists on defining the strategies
for two factors: dynamism, frequency of sensing, and selectivity, choosing what to sense.
The authors argue that the answer for the sensing behaviour lies in active (goal-driven)
perception, and that situational awareness (SA) is an appropriate approach for solving
active perception. Therefore, they proposed a SA mechanism that enables the agent to
switch between goal-driven and data-driven behaviour, where the top-down goal-driven
process works by projecting what is known about the environment into the near future
revealing what must be sensed, in the case of BDI which beliefs must be updated. One
missing point of this work is that it does not address the problem of integrating it within
any agent’s architecture.

In (UNTERHOLZNER; HIMMELSBACH; WUENSCHE, 2012), an active per-
ception framework was developed in order to enable an autonomous car to redirect its
sensors to focus on relevant surrounding area, in urban traffic scenarios. To accomplish
this, three main criteria are taken into account, the importance of other vehicles, the
available information about different vehicles, and the sensor coverage of the vehicle’s rel-
evant surrounding area. However, the proposed solution solves only the active perception
problem specific to its respective use case.

Despite the existence of several works that explore the concept of active perception
there are almost none that addresses the problem of integrating active perception within
agents reasoning cycle in a more general way. One of the few works available is (RAFAELI;
KAMINKA, 2017) where the authors proposed a solution to integrate active perception
at the architecture level of a BDI agent. For this, they focused on enhancing the BDI
architecture, which usually has as presupposition that the agent has all the necessary
beliefs about the world, however, is not uncommon for beliefs to be unknown or outdated.
Thus, the architecture was modified in order to apply active perception plans to reveal
missing beliefs, unknown or outdated, that are used as preconditions for plans.

With that in mind, the authors (RAFAELI; KAMINKA, 2017) proposed four
algorithms: IAP, ITAP, SAP, and DSAP. The first one, IAP, reveals all the missing beliefs
of the agent, thereby, it guarantees that the optimal plan is selected. However, since it is
likely to perform unnecessary active perception plans its performance is not ideal, except
when executing active perception plans that have no cost. The second one, ITAP, allows
the agent to choose between performing an active perception plan or a feasible plan, then
if perception plans have cost it may choose, at any time, to perform a feasible plan instead
of performing all the perception plans. With this, the algorithm is able to reduce the cost
of the active perception, but it is not guaranteed that the optimal plan will be selected.
The third one, SAP, demands that the agent commits to a plan before performing the
active perception plans that reveals it, and then if it becomes feasible that the agent can
choose to execute it or select another plan to reveal. Lastly, DSAP, also demands the agent
to commit to a plan to be revealed and additionally allows the selection of the order of
execution of the active perception plans that reveal it.

These algorithms seem to be a suitable approach to solve the problem of integrating
active perception with the BDI architecture. However, it lacks information related with
how the active perception mechanism was developed and properly integrated within the
BDI reasoning cycle. Besides, there is no implementation available or experimental results
showing its effectiveness.

2.4. Agents and hardware architectures 29

2.4 AGENTS AND HARDWARE ARCHITECTURES

The use of BDI agents to control robots is already being explored (VERBEEK,
2003; MORAIS, 2015; PANTOJA et al., 2016; MENEGOL; HÜBNER; BECKER, 2018).
Based on a previous work on the same research group, (MENEGOL; HÜBNER; BECKER,
2018) proposed an architecture for embedding Jason agents and effectively embedded the
solution into a real unmanned aerial vehicle (UAV), proving that it is feasible to use BDI
agents to command real-world robots. While these proposals keep the hardware details
transparent for the agent programmer, the integration works in an ad hoc manner. The
high-level (BDI agent) and low-level layers (robot hardware) are connected via specific
protocols and ports – no standardization has been used or defined for using agents to
command hardware. As a consequence, if the hardware is exchanged, part of the architec-
ture must be reprogrammed for the new specific use case. Therefore, it is not trivial to
reuse the architecture proposed by Menegol et al. for other applications. Also, it does not
provide any interface for utilizing any of the robotic software already developed by the
roboticist community, such as navigation, localization, and control stacks.

Wesz (2015)(WESZ, 2015) proposed JaCaROS an architecture composed of Jason,
CArtAgO (RICCI et al., 2009), and ROS to integrate BDI agents with hardware. In
summary, CArtAgO artifacts are used as the main abstraction for sensors and actuators,
which communicate with the hardware software via ROS topics and services. The authors
already provide some artifacts for handling a few existent sensors and actuators. However,
for each different hardware it is necessary to implement a specific artifact using Java,
where it is needed to handle how actions are converted into ROS messages, how the
messages coming from ROS are converted into beliefs, and how the agent is updated in
relation to the artifact. Using a different hardware requires that a significant peace of
software is programmed, demanding that the programmer possess knowledge in Java and
CArtAgO, resulting in a non trivial process. On the other hand, this solution supports
customization quite well. One interesting point of this method is that to interact with the
hardware the agent must only know about how to operate the artifact. Another advantage
of this method is that with the use of ROS it is possible to leverage all the robotic software
that already exists within the framework.

In order to promote the integration of hardware and BDI agents, (MORAIS, 2015)
also developed a solution that combines Jason and ROS. The author modified the archi-
tecture of the Jason agents to receive perceptions and to send actions using standardized
ROS topics. The agents communicate with intermediary nodes called decomposers and
synthesizers, the former is responsible for translating high-level actions into commands
for the hardware, and the latter receives data from the hardware and translate it to per-
ceptions understandable by the agents. Thus, the exchange of hardware requires that new
decomposers and synthesizers nodes are programmed. Both can be programmed in any
language supported by ROS since they are decoupled from the Jason agents. Once again,
this process is not trivial. An advantage of this approach is that the integration with the
hardware is totally transparent for the agent. Also, since it uses ROS, the existing robotic
stack can be utilized.

Although inspired by all these work, we focus particularly on the improvement of
the architecture proposed by (MORAIS, 2015). This will be accomplished by establishing
standards for using ROS alongside Jason, and by designing an intermediary node that is
more generic, mitigating the need of reprogramming when the hardware is changed.

30 Chapter 2. Literature review

2.5 LITERATURE REVIEW CONCLUSIONS

Although there are several studies on BDI agents and active perception, there
are few studies that discuss how to include active perception in BDI agents, especially
integrated in their reasoning cycle. Even the few studies that address this theme do not
go into much detail about how the proposed model was defined and implemented, much
less how it was evaluated.

Regarding the integration of BDI agents with hardware, there are already some
works that solve this problem, however, most of them work in an ad hoc manner, requiring
that for each different application a considerable part of the integration architecture must
be reprogrammed.

With this, this work aims to propose an active perception mechanism integrated
with BDI agents reasoning cycle, detailing the necessary definitions, how the BDI’s rea-
soning cycle can be modified to include active perception, what aspects must be taken
into account to transform the model into an implementation, how the implementation can
be done, and how the active perception mechanism can be evaluated in realistic scenarios.
Also, another objective is to propose and evaluate a generic architecture to integrate BDI
agents with hardware, which is used in the experiments performed to assess the active
perception.

3.1. Model 33

are considered to be outdated and, therefore, it can no longer be trusted. Regarding
perception, just like RB it is only subjected to passive perception.

TimedBeliefs ⊆ Beliefs (3.2)

Active perception beliefs (APB) are a subset of beliefs, they differ from regu-
lar beliefs and timed beliefs regarding perception, APB can be also subjected to active
perception instead of only passive perception.

ActivePerceptionBeliefs ⊆ Beliefs (3.3)

Since active perception capabilities can be added both to regular beliefs and timed
beliefs, the active perception beliefs set is separated in two subsets: regular active per-
ception beliefs (RAPB), and timed active perception beliefs (TAPB). The former
has the characteristics of RB and APB, and the latter from TB and APB.

RegularActivePerceptionBeliefs ⊆ ActivePerceptionBeliefs (3.4)

RegularBeliefs ∩ ActivePerceptionBeliefs = RegularActivePerceptionBeliefs

(3.5)

TimedActivePerceptionBeliefs ⊆ ActivePerceptionBeliefs (3.6)

TimedBeliefs ∩ ActivePerceptionBeliefs = TimedActivePerceptionBeliefs (3.7)

3.1.1.2.2 States

Known beliefs are the set of beliefs that the agent knows about, are contained
in the belief base of the agent, and are lasting, that is, once they are known it only ceases
to be when they are removed from the belief base. Both regular beliefs and regular active
perception beliefs have this state.

(KnownBeliefs ∩ RB) ∪ (KnownBeliefs ∩ RAPB) = KnownBeliefs (3.8)

Unknown beliefs are the set of beliefs that the agent has no information about,
in other words, the ones that are not in the agent’s belief base. Regular beliefs, timed
beliefs, regular active perception beliefs, and timed active perception beliefs have this
state.

(UnknownBeliefs ∩ RB) ∪ (UnknownBeliefs ∩ TB)∪

(UnknownBeliefs ∩ RAPB) ∪ (UnknownBeliefs ∩ TAPB) = UnknownBeliefs

(3.9)

34 Chapter 3. Active perception within BDI agents reasoning cycle

Updated beliefs are the set of beliefs that the agent knows about and can be
considered updated. Different from known beliefs, the beliefs in this set are not lasting, it
has a lifetime and once it is over they are removed from this set. Both timed beliefs and
timed active perception beliefs have this state.

(UpdatedBeliefs ∩ TB) ∪ (UpdatedBeliefs ∩ TAPB) = UpdatedBeliefs (3.10)

Outdated beliefs are the set of beliefs that were previously considered updated
beliefs but their state changed because they were not updated for longer than their lifetime.
Both timed beliefs and timed active perception beliefs have this state.

(OutdatedBeliefs ∩ TB) ∪ (OutdatedBeliefs ∩ TAPB) = OutdatedBeliefs (3.11)

Missing beliefs are the set of beliefs that contains the unknown and outdated
beliefs.

Outdatedbeliefs ∪ UnknownBeliefs = MissingBeliefs (3.12)

3.1.1.2.3 Beliefs states and transitions

The transitions among the states of regular beliefs is detailed by a finite state
machine (FSM), as can be seen in figure 3.3. Unknown RB can become a known RB with
the usual processes: passive perception process, exchanging messages with other agents,
or through their own reasoning. Also, a known RB can be updated or removed via the
usual processes.

Known
RB

Unknown
RB

Passive Perception/Messages/Reasoning

Passive Perception/Messages/Reasoning

Passive Perception/Messages/Reasoning

Figure 3.3 – Regular beliefs FSM

The finite state machine for timed beliefs can be seen in figure 3.4. The main
difference from RB FSM is that updated TB can become an outdated TB. Updated beliefs
have a lifetime, i.e., when the time elapsed from its last updated is greater than its lifetime
its state changes to outdated. Outdated beliefs can become updated beliefs via the usual
processes.

Now for regular active perception beliefs the FSM can be seen in figure 3.5.
The difference with the RB FSM is that for an unknown RAPB to become an updated
RAPB and for a known RAPB to update itself, it can use active perception in addition
to usual processes.

3.1. Model 35

Updated
TB

Outdated
TB

Unknown
TB

Time Elapsed > Lifetime

Passive Perception/Messages/Reasoning

Passive Perception/Messages/Reasoning

Passive Perception/Messages/Reasoning

Passive Perception/Messages/Reasoning

Passive Perception/Messages/Reasoning

Figure 3.4 – Timed beliefs FSM

Known
RAPB

Unknown
RAPB

Active Perception + Usual Processes

Active Perception + Usual Processes

Active Perception + Usual Processes

Figure 3.5 – Regular active perception beliefs FSM

The timed active perception beliefs finite state machine is represented in
figure 3.6. Its difference from the TB FSM is that outdated TAPB and unknown TAPB
can become updated TAPB via an active perception process in addition with the usual
processes.

Updated
TAPB

Outdated
TAPB

Unknown
TAPB

Time Elapsed > Lifetime

Active Perception + Usual Processes

Active Perception + Usual Processes

Active Perception + Usual Processes

Active Perception + Usual Processes Active Perception + Usual Processes

Figure 3.6 – Timed active perception beliefs FSM

When active perception beliefs are needed for the reasoning cycle and they are
in the missing state, the agent actively tries to perform active perception to change its
state. However, active perception is not restricted to this situation, the agent can choose
to apply AP whenever it desires, even when the belief is already updated.

3.1.1.3 Desires

The concept of desires is also expanded in this work to encompass active perception,
as can be seen in figure 3.7.

Desires are what the agent wants to achieve.

Regular desires (RD) are the subset of desires that are used in the traditional
BDI reasoning cycle. RD aim to change the state of the world. An example would be
opening a door or moving from one location to another.

38 Chapter 3. Active perception within BDI agents reasoning cycle

The credibility of active perception beliefs is the probability of an AP belief being
correct, and it is directly related to the frequency at which the AP plans are performed
and the dynamism of the environment. Suppose that an agent has the AP belief that it is
daytime and it has no information about its location and current season, if it applies an
active perception plan to verify if it is daytime at 1:00 pm and then only perform an AP
plan at 7:00 pm, it could not be sure if it was still daytime at 6:30 pm, since the sunset
depends on the region of the world and the current season, therefore, in this situation the
credibility of this active perception belief would be low. However, if the active perception
plan was performed within an interval of 5 minutes or if the agent knew in which region
of the world it is located and what is the current season, it would be more sure if it is
daytime at 6:30 pm, thus, in this new scenario the credibility of this active perception
belief would be high.

Thus, it is important to find the right balance between the active perception plans
frequency and active perception beliefs credibility. However, there is no right answer for
this trade off, since it is directly tied to the dynamism of the environment, and each
specific use case. For future reference this trade off will be called active perception selec-
tion pressure, when the AP frequency and the AP beliefs credibility is high the active
perception selection pressure is also high, and when they are both low the active percep-
tion selection pressure is also low. This problem is in certain way similar to the balance
between reactivity and pro-activeness (WOOLDRIDGE, 1999).

3.1.2 Modified reasoning cycle

The traditional BDI architecture proposed by Wooldridge (WOOLDRIDGE, 1999),
discussed in section 2.2, consider that the agent has all the necessary beliefs required to
deliberate which intentions it should commit to achieve. However, especially in real world
scenarios, this assumption is not reasonable since beliefs may be unknown or outdated, and
if this is not taken into account, the agent deliberation process may lead to the selection of
suboptimal actions. One approach for solving this problem is to drop the assumption that
all beliefs are known and updated, and based on the agent internal state (beliefs, desires
and intentions) try to actively perceive what is required for the deliberation process.

To demonstrate the process of active perception, the example used in section 2.2
can be modified. Suppose that the UAV agent now carries a buoy and a camera facing
down. The mission to be performed by the agent is still the same, when the UAV receives
information about drowning victims it must rescue the nearest one. The difference now is
that the rescue plan will be split into 3 parts, taking off, flying to the victim’s location, and
dropping the buoy. The first two parts remain the same, however, the latter, dropping
the buoy, is modified to not assume that the belief of the victim’s location is always
known and updated, in other words, consider that the victim’s location is an timed active
perception belief. This is because the victim may have moved or has already been rescued
and, in both cases, it would not be wise to drop the buoy for a victim that is not there, if
this happens the agent should fly to the next nearest victim and try to rescue it instead.
Thus, before dropping the buoy, the agent actively tries to perceive if the victim is in the
informed position, or even in a small area around it.

Taking the process of practical reasoning proposed by Wooldridge (WOOLDRIDGE,
1999) as starting point, the active perception can be included as an intermediary process
between the options generating function and filter function, this can be seen in listing 3.1.

The idea is that, based on the new desires of the agent and its active perception

3.2. Design 39

Listing 3.1 – BDI reasoning cycle with Active Perception
1 func t i on ac t i on (p :P) :A
2 begin
3 B = br f (B, p)
4 D = opt ions (B, I)
5
6 APD = optionsAP (D, APB)
7 i f (has APD)
8 API = f i l t e rAP (APB, APD, I)
9 APB = execute (API)

10
11 I = f i l t e r (B,D, I)
12 return execute (I)
13 end func t i on ac t i on

beliefs, an active perception options generating function (optionsAP) is applied to verify
if any of the active perception beliefs (APB) that are related to the agents desires are
missing beliefs, if there are any missing beliefs the agent acquire an active perception
desire (APD) to reveal them. In the context of the UAV example, lets assume that the
belief of the victim’s location has a lifetime of 1 minute, in the case that the agent reach
the victim’s position after 1 minute or more of receiving the information, that belief can
be considered a missing belief, thus it would generate an APD to verify if the victim
is in the indicated position or in a small area around it. The optionsAP is focused on
generating APD for missing beliefs, but if the agent desires it can generate an APD for
any of the APB independently of its state during its regular reasoning cycle.

If there are any APD, based on the APB, APD, and current intentions an active
perception filter function (filterAP) generates an active perception intention (API) to
reveal the missing beliefs. In the example of the UAV, since there is only one APD, the
filterAP function would commit to the desire of verifying if the victim is in the indicated
location or in a small area around it.

Lastly, based only on the API the execute function select the actions that tries
to reveal the missing beliefs. For the UAV, this would represent turning on the camera,
running recognition algorithms, tracing a flight path, and actually flying.

As pointed out, our proposal maintains all the steps of the traditional BDI rea-
soning cycle, resulting on a model that contains a mix of passive and active perception.
This is advantageous since the advantages of both approaches are leveraged, and the
disadvantages of each method are mitigated by the other.

3.2 DESIGN

The process of transforming the proposed model with a high level of abstraction to
an implementation with a lower level of abstraction can be performed in several different
ways, and it requires that several details are taken into account. Therefore, to facilitate
this process, in this section, these aspects are described and analyzed with an intermediate
level of abstraction before committing to the implementation phase.

Following, it is described how plans are represented and selected and how the
active perception mechanism can be included in this selection (section 3.2.1). Then, some

40 Chapter 3. Active perception within BDI agents reasoning cycle

designing choices are discussed, such as how to differentiate a regular belief from an
active perception belief (section 3.2.2), how to reveal missing beliefs (section 3.2.3), how
to test the revealed missing beliefs (section 3.2.4), for how long a belief revealed should
be considered updated (section 3.2.5), and the order of execution of the active perception
plans (section 3.2.6).

3.2.1 Plan representation and selection

Plans play a major role in the deliberation process since it maps desires into
intentions and contain the set of instructions needed to fulfill the intention. In this work,
plans are composed of a name, an associated desire, a set of instructions (plan body),
and a set of preconditions (context) that must be fulfilled in order to perform the plan
body. They are represent as in listing 3.2. Where plan1 is the name of the plan, desire1 is
the desire that is being mapped into an intention, its preconditions is the logical formula
(belief1 and belief2), and the plan body is the set of instructions action1 and action2. A
single desire may have multiple different plans that maps it to an intention, all these
associated plans are called relevant plans.

Listing 3.2 – Plans

1 plan1 for desire1:

2 preconditions = belief1 and belief2

3 plan body = action1 and action2 ...

The process of selecting a plan and committing to an intention given a desire is
represented in figure 3.10a. When an agent has a desire it looks for all relevant plans,
then proceeds to verify one by one if its preconditions are satisfied, when a relevant plan
that has all its preconditions fulfilled is found it is chosen to be performed, in case none
is found the desire does not become an intention.

One approach for including the proposed active perception mechanism into the
deliberation process is represented in figure 3.10b. Before checking if any of the relevant
plans can be performed, it is verified whether they contain any missing beliefs in their
preconditions and if there are any missing beliefs the agent generates active perception
desires, then if there are any APD the agent performs active perception plans. The process
of committing and selecting plans to an active perception desire is the same as the one
previously described (figure 3.10a). After the active perception plans are performed the
agent resumes the deliberation process and tries to select a relevant plan to commit with.

The inclusion of the AP mechanism in the plan selection flow can be done in
several different ways. Thus, the rest of this section details the possibilities, advantages
and disadvantages of each approach.

3.2.2 Distinction of beliefs

The first aspect that is taken into account is how to differentiate regular beliefs
from active perception beliefs. For this, two approaches are considered, annotated plans
and annotated beliefs. The annotated plans approach (1) consists to mark plans as re-
quiring active perception and consider all beliefs in its preconditions as active perception
beliefs. Therefore, before executing the plan, it must be checked whether the precondi-
tion beliefs are missing beliefs, and for those which are considered as missing an active
perception plan must be carried out if one is available, and if there is none it is treated

3.2. Design 41

start

select
relevant plans

select plan

end

desire

get relevant plan N

preconditions
satisfied?

has relevent plan
N+ 1?

N = 0

N = N + 1

No

No
Yes

Yes

(a) Without active perception

start

missing beliefs?

yes

no

check for
missing beliefs

select
relevant plans

try to select plan

end

regular desire

active perception
desires?

yes

no

perform active
perception plan

generate active
perception desires

(b) With active perception

Figure 3.10 – Plan selection flowchart

as a regular belief. This is represented in listing 3.3, where the plan plan1 is marked with
[ap] implying that belief1 and belief2 are active perception beliefs, so they may require
to perform an active perception plan.

The annotated beliefs approach (2) consists in marking, individually, the beliefs
in the preconditions of plans as being active perception beliefs, thus for the ones marked
an active perception plan is performed if they can be considered missing. This alternative
can be seen in listing 3.4 where only belief1 is marked, meaning that just this belief is
subjected to active perception.

Among the alternatives presented, the marking of beliefs seems to be a more
natural and practical approach since the necessity of active perception is based on the
characteristics of beliefs, and not plans. Besides, when marking the whole plan the ability
to distinguish regular beliefs and active perception beliefs is lost.

Listing 3.3 – Annotated plans

1 plan1[ap] for desire1:

2 preconditions = belief1 and belief2

3 plan body = action1 and action2 ...

42 Chapter 3. Active perception within BDI agents reasoning cycle

Listing 3.4 – Annotated beliefs

1 plan1 for desire1:

2 preconditions = belief1[ap] and belief2

3 plan body = action1 and action2 ...

3.2.3 Analysis of relevant plans

Another designing choice that has to be made is (1) if all the active perception
plans referring to all the available relevant plans should be performed beforehand, and
only then check if the preconditions are satisfied (grouped mode), or (2) to start by
checking the context of the relevant plans one by one and only perform active perception
when it is needed (individual mode).

Taking listing 3.5 as an example, suppose the agent has the desire1 which has
two relevant plans: plan1 and plan2. The grouped mode approach consists to perform the
active perception plans for belief1, belief3, and belief4 and only then verify if the contexts
(belief1[ap] and belief2) and (belief3[ap] and belief4[ap]) are satisfied. The individual
mode consists to first execute the active perception plan just for belief1 and check if the
context (belief1[ap] and belief2) is fulfilled and only if it fails proceed to perform the
active perceptions plans for belief3 and belief4 and after that analyze if the context (
belief3[ap] and belief4[ap]) is satisfied.

In this regard, applying active perception for all the relevant plans grouped is sim-
ilar to the algorithm IAP proposed in (RAFAELI; KAMINKA, 2017), where the authors
concluded that IAP guarantees that the best plan is selected, but it is only optimal when
all the missing beliefs must be revealed in order to choose the most advantageous plan,
or when the active perception plans have no cost. Nonetheless, this conclusion has the
assumption that the BDI reasoning cycle algorithm for selecting a relevant plan to com-
mit (filter selection function from listing 3.1) guarantees that the best plan is selected,
however, it is not uncommon for BDI architectures to have strategies that can not assure
that the best plan is selected. Thereby, the grouped mode can only be considered the
best choice when all this conditions are met, otherwise it may perform unnecessary active
perception plans.

Listing 3.5 – Plans example

1 plan1 for desire1:

2 preconditions = belief1[ap] and belief2

3 plan body = action1 and action2 ...

4
5 plan2 for desire1:

6 preconditions = belief3[ap] and belief4[ap]

7 plan body = action3 and action4 ...

3.2.4 Context verification

Another important aspect to consider is the context verification, this can be done
with two distinct approachs. The first method (1) is to reveal all the missing beliefs and
only then check whether the context is true or false. Using listing 3.5 as an example, in

3.2. Design 43

plan2 the beliefs belief3 and belief4 would be revealed and only then the whole context
would be checked, in the case that belief3 is false it is unnecessary to perform an active
perception plan for belief4.

This problem is mitigated with the second method (2), in the case the relevant
plans are being analyzed in the individual mode, which consists in verifying one-by-one
each missing belief after they are revealed whether the context can still be true. Using
listing 3.5 as an example, when belief3 is revealed it is verified if it is true or false and if
it is false no active perception plans would be performed for belief4.

Therefore, using the second method is advantageous because it might avoid per-
forming unnecessary active perception plans, however, the process of verifying the context
more frequently could cause an increase in computational complexity or in the required
processing power.

3.2.5 Timed active perception belief lifetime

One important characteristic of the model being proposed is that it considers
the possibility of a belief being outdated, opposed to the traditional BDI architectures.
Therefore, it is essential to consider how a belief would change its state of being known
and updated to known and outdated.

To provide this notion, a method is to add a mark into the plan or belief to
indicate for how long the belief should be considered updated once revealed (1). In the
case of annotated plans, such as in listing 3.6, the whole context should be revealed and
verified within the time limit, in this case 1000 milliseconds, otherwise it is considered false.
For annotated beliefs, like in listing 3.7, it indicates the amount of time (lifetime) that
beliefs should be considered updated after being revealed, in this case belief1 is considered
outdated after 1000 milliseconds.

However, some variations can be applied to the notion of being outdated. Another
method (2) is to consider after revealing a missing belief that it is updated until all
the relevant plans related to the associated desire are checked, or one is selected. In the
case that the relevant plans are being checked in the individual mode (section 3.2.3),
an alternative (3) is to consider the revealed belief as updated until the end of the
context verification. All three approaches seem to be valid, but the stricter the time
constraint, the greater active perception selection pressure and consequently the AP belief
credibility. However, smaller time constraints may result in more active perception plans
being performed which can increase the computational cost. Thus, choosing the best
alternative is tied to each use case.

Listing 3.6 – Annotated plans with lifetime

1 plan1[ap, 1000] for desire1:

2 preconditions = belief1 and belief2

3 plan body = action1 and action2 ...

Listing 3.7 – Annotated beliefs with lifetime

1 plan1 for desire1:

2 preconditions = belief1[ap, 1000] and belief2

3 plan body = action1 and action2 ...

44 Chapter 3. Active perception within BDI agents reasoning cycle

3.2.6 Revealing order

Another aspect to take into account is the execution order of the active perception
plans. A possibility (1) is to follow the order in which the active perception beliefs appear,
another approach (2) is to perform the active perception plans for the AP beliefs with
greater lifetime first.

Using listing 3.8 as example, for the first approach the active perception plan for
belief1 would be performed before the AP plan for belief2. For the second method, since
belief2 has a greater lifetime it would be revealed before belief1.

Listing 3.8 – Revealing order plan example

1 plan1 f o r d e s i r e 1 :

2 p r e cond i t i on s = b e l i e f 1 [ap , 1000] and b e l i e f 2 [ap , 3000]

3 plan body = act ion1 and act i on2 . . .

The second method, revealing taking the belief lifetime into consideration, may
increase the chances of the context being valid until all beliefs are revealed. Other than
this, there is no clear advantages/disadvantages between both approaches.

3.2.7 Options analyses

Considering that there are three different approaches for defining the active per-
ception beliefs lifetime and two distinct ways for the distinction of beliefs, analysis of
relevant plans, context verification, and revealing order. If all the options were combined
it would result in 48 possibilities. However, there are two combination of options that can
not be together: revealing the relevant plans in grouped mode with beliefs lifetime being
valid until the end of context, and relevant plans in grouped mode with context verifi-
cation being done one by one. Hence, there are 28 valid combinations of design options,
therefore, it would be exhaustive to analyze all possible combinations. Thus, considering
the advantages and disadvantages of each design option presented in the previous sections,
Table 3.1 was created with the combinations that look most promising.

Table 3.1 – Active perception mechanism options

Approach Annotation Mode Context
Verification

Belief
Expiration

Revealing
Order

AP Selection
Pressure

1 Beliefs (2) Grouped (1) All (1) Relevant Plans (2) Natural (1) +
2 Beliefs (2) Grouped (1) All (1) Time (1) Natural (1) ++
3 Beliefs (2) Individual (2) All (1) Time (1) Natural (1) ++
4 Beliefs (2) Individual (2) One by One (2) End of Context (3) Greater lifetime (2) ++
5 Beliefs (2) Individual (2) One by One (2) Time (1) Greater lifetime (2) +++

Approach number 1 uses annotated beliefs, it reveals all the relevant plans be-
forehand, it only checks the context after all the revealing is completed, the beliefs do
not expire until all the relevant plans are analyzed, and the active perception plans are
applied in the order that they appear. This makes this approach the one with less active
perception selection pressure out of the five, since all AP beliefs are revealed beforehand
and they last until all relevant plans context are analyzed or one is selected. As a result,
active perception plans are performed less frequently, all of them are executed exactly
once at the beginning of the process. This method is advantageous when all active percep-
tion beliefs would need to be revealed anyway, otherwise, it would execute unnecessary

3.3. Implementation 45

AP plans, which can be really costly in real world scenarios, and when the environment
is not very dynamic, since its AP beliefs credibility is low.

Approach number 5 uses annotated beliefs, it reveals the relevant plans individu-
ally, the context is verified after revealing each missing belief, the beliefs expire with time,
and the active perception plans are applied for the AP beliefs with greater lifetime first.
This results in this approach being the one with more active perception selection pressure
out of the five. With this, active perception plans are performed more frequently, since
active perception beliefs can expire between checking the relevant plans. This method is
advantageous when it is not required that all AP plans are executed. And it proves to be
advantageous in more dynamic environments, since its AP beliefs credibility is high.

Approaches 2, 3, and 4 are in between 1 and 5 in relation to the active perception
selection pressure. In any case, it is difficult to assess objectively which method is better,
since each approach can prove to be more efficient in different situations. It is possible to
notice that designing an active perception mechanism does not have an obvious answer
and it is not a trivial task.

3.3 IMPLEMENTATION

This section describes an alternative for implementing the proposed model of ac-
tive perception. It is divided into two parts, one describing the object model for active
perception beliefs, and the other the algorithms used do implement the active perception
model for the Jason language.

3.3.1 Object model for active perception beliefs

The unified modeling language (UML) class diagram for the proposed implemen-
tation can be seen in figure 3.11. Regular beliefs have exactly one predicate that in its
turn can have from zero to many terms, e.g. a RB could have a predicate UAV with a
couple of terms indicating the battery level, height, current position etc.

Timed beliefs inherit everything from RB, additionally they have a member called
lastUpdated which indicates the time that the belief was last updated, and a member
called lifetime that represents the lifetime of that belief, the default value for lifetime is
zero which means that the belief lifetime is infinite. When TB are not updated for longer
than its lifetime they are considered to be outdated. The method isUpdated returns True
when the belief is updated and False when it is outdated.

It was opted to represent both regular active perception beliefs and timed active
perception beliefs with a single class called active perception belief, inherited from TB.
When lifetime is set to zero it is a RAPB and when it has another value it is a TAPB.
Active perception beliefs may have an associated desire, intention, and plans. An active
perception desire is associated when the agent has the desire to apply active perception
plan for that belief. An active perception intention is associated when the agent commits
to an active perception plan for the APD. An APB can have several active perception
plans mapping its APD into API in different ways.

3.3.2 Jason implementation

To better evaluate the advantages and disadvantages of the several different ap-
proaches described in the last chapter, a few are implemented and integrated with Jason

46 Chapter 3. Active perception within BDI agents reasoning cycle

Active Perception Belief

PredicateTerms Regular Belief

Desire

Plan

Intention

0..* 1

0..1

0..1

0..*

Timed Belief

lifetime : int =0

lastUpdated : timestamp

boolean isUpdated():
 return now()-lastUpdated < lifetime

Figure 3.11 – Active perception class diagram

programming language (BORDINI; HÜBNER; VIEIRA, 2005), a BDI agents program-
ming language.

Jason reasoning cycle can be seen in figure 3.12. If the model presented in section
3.1 were to be replicated for Jason it would required that step Check Context (7) were
modified to include the active perception mechanism. For this, before checking the context
of the relevant plans, the agent must perform the active perception plans. However, to do
this, the agent generates AP intentions and, in Jason, intentions are only dealt with after
step 8, so it would be necessary for the reasoning cycle to be modified to allow the agent
to generate AP intentions before step 7. Thus, it is possible to notice that it involves a
lot of steps and it would not be a trivial to task to modify it to include active perception.

Since it is not yet clear that the proposed model is satisfactory and which of the
approaches presented in section 3.2 is the best one, in a first moment, it was opted to
adopt a simpler solution that enables the implementations to be done faster. This enables
that different approaches are tested with less effort. And once different approaches are
tested and evaluated, it would be interesting to use the Jason architecture modification
as a definitive solution.

For this, it was decided to automatically modify the agent’s program to consider
AP instead of altering Jason architecture. The proposed algorithm can be seen in listing 3.9
and its flowchart in figure 3.13. In summary, before executing the agent logic, the syntactic
substitution algorithm checks which plans have active perception beliefs as precondition
and with that information as input the change takes place. In Jason this can be done by
using directives, according to (BORDINI; HUBNER; WOOLDRIDGE, 2007) “directives
are used to pass some instructions to the interpreter that are not related to the language
semantics, but are merely syntactical”.

48 Chapter 3. Active perception within BDI agents reasoning cycle

Listing 3.9 – Syntactic substitution algorithm

1 procedure SyntaticSubstitution(PlanLibrary):

2
3 let PlansWithAp be a list

4
5 for all Plans in PlanLibrary:

6 if Plan has ap belief in context:

7 PlansWithAp.add(Plan)

8
9 PlanLibrary = Directive(PlanLibrary, PlansWithAp)

10 return PlanLibrary

start

agent plans

check which plans have AP
beliefs as preconditions

plans with AP beliefs
as precondition

syntactic substitution

modified plans

end

Figure 3.13 – Syntactic substitution flowchart

The application of the syntactic substitution algorithm in the Jason program rep-
resented in listing 3.10 would identify that one of the relevant plans for the desire !g
contains active perception beliefs as precondition, then it would perform the substitution
for all the plans that map !g into an intention, which in this case are the plans with the
trigger +!g. For each approach discussed in the last section the substitution is different.
The active perception plans for the AP beliefs must be explicitly described as an achieve
goal +? with ap as annotation.

For approach 2 from Table 3.1 the algorithm of the directive used is represented
in listing 3.11. By applying the syntactical substitution algorithm with Directive2 in the
Jason program shown in listing 3.10 it would result in the one presented in listing 3.12.
The triggers +!g are replaced with +!g[rp]. A new plan with trigger +!g[ap] is added, it
calls the plan update for each belief marked as requiring active perception, and then sets
up the intention !g. The update plan is added and it is responsible for initiating the active
perception plan, this takes place by triggering an event like +?b[ap] for the belief passed
as parameter, however, this only occurs when the belief is unknown or outdated, in this
case outdated means that the last update occurred before the time limit. To check the

3.3. Implementation 49

Listing 3.10 – Jason program before syntactical changes
1 !g.
2
3 +!g: b[ap(1000)] & d[ap(3000)]
4 <- .print("GOAL G1").
5
6 +!g
7 <- .print("GOAL G2!").
8
9 +?b[ap]

10 <- .time(HH,MM,SS);
11 +b[ap(_),lu(HH,MM,SS)];
12 .print("Active perception plan for b").
13
14 +?d[ap]
15 <- .print("Active perception plan for d").

state of the belief the internal action active_perception.isUpdated is used, it returns true
when the AP belief is updated and false when it is not.

For approach 3 from Table 3.1 the directive algorithm is represented in 3.13. When
applying the syntactic algorithm with the Directive3 in the program illustrated in listing
3.10 it results in the one in listing 3.14. The event !g is replaced with !g[ap, l_1], the plans
+!g[ap, l_x] are added in order to call the update plan for the active perception beliefs
used as precondition of the respective +!g, the plan’s triggers +!g are changed to +!g[rp,
l_x], with x being the number of the plan, and an additional +!g[rp, l_x] is added for
each existing +!g[rp, l_x] in order to call +!g[rp, l_x+1]. Also, the update plan is added
just like the Directive2.

It is possible to conclude that by applying syntactic substitution in Jason it is
possible to imitate the behavior of the proposed reasoning cycle to include active percep-
tion. This approach is advantageous because it does not require that all the details of
Jason’s reasoning cycle are known to implement active perception, which facilitates the
process. However, since syntactic substitution is not conceptually equivalent to modifying
the reasoning cycle, the active perception mechanism is not guaranteed to work correctly
for all situations, such as when plans are added or changed dynamically while the agent
is running.

All the implementations related to the active perception model discussed in this
chapter can be found at https://github.com/Rezenders/jason-active-

perception.

50 Chapter 3. Active perception within BDI agents reasoning cycle

Listing 3.11 – Directive2 algorithm
1 procedure Directive2(PlanLibrary, PlansWithAp):
2
3 # e.g: !g becomes !g[ap]
4 for all Goals in Initial Goals:
5 if Goal has same literal as one of PlansWithAP:
6 annotate Goal with ap
7
8 # e.g: +!z <- !g. becomes +!z <- !g[ap].
9 for all Plans in PlanLibrary:

10 if Plan has any Goal with the same literal as one
of PlansWithAP:

11 annotate Desire with ap
12
13 # e.g: +!g <- ... becomes +!g[rp] <- ...
14 for all Plans in PlanLibrary:
15 if Plan trigger is equal to one of PlansWithAp:
16 annotate Plan trigger with rp
17
18 # e.g: +!g[ap] <- !update(b[ap(1000)]); !g[rp].
19 for all distinct PlanTriggers in PlansWithAp:
20 NewPlan = { trigger = PlanTrigger[ap]
21 preconditions = None
22 plan body = goal to update all the AP

bels and goal to achieve Plan[rp] }
23
24 add NewPlan to Agent PlanLibrary
25
26 # +!update(X[ap(T)])[ap]: not

active_perception.isUpdated(X[ap(T)]) <- ?X[ap].
27 UpdatePlan = { trigger = UpdateTrigger(X)[ap]
28 preconditions = X is not updated
29 plan body = calls AP plan for X }
30
31 add UpdatePlan to Agent PlanLibrary
32 return PlanLibrary

3.3. Implementation 51

Listing 3.12 – Jason program after syntactical changes (Approach 2)
1 !g[ap].
2
3 +!g[ap]
4 <- !update(b[ap(1000)])[ap];
5 !update(d[ap(3000)])[ap];
6 !g[rp].
7
8 +!g[rp]: b[ap(1000)] & d[ap(3000)]
9 <- .print("GOAL G1").

10
11 +!g[rp]
12 <- .print("GOAL G2!").
13
14 +?b[ap]
15 <- .time(HH,MM,SS,MS);
16 +b[ap(_),lu(HH,MM,SS,MS)];
17 .print("Active perception plan for b").
18
19 +?d[ap]
20 <- .print("Active perception plan for d").
21
22 +!update(X[ap(T)])[ap]: not

active_perception.isUpdated(X[ap(T)])
23 <- ?X[ap].
24
25 +!update(X[ap(T)])[ap].

52 Chapter 3. Active perception within BDI agents reasoning cycle

Listing 3.13 – Directive3 algorithm
1 procedure Directive3(PlanLibrary, PlansWithAp):
2
3 # e.g: !g becomes !g[ap,l_first]
4 for all Goals in Initial Goals:
5 if Goal has same literal as one of PlansWithAP:
6 annotate Goal with ap and first plan label
7
8 # e.g: +!z <- !g. becomes +!z <- !g[ap, l_first].
9 for all Plans in PlanLibrary:

10 if Plan has any Goal with the same literal as one
of PlansWithAP:

11 annotate Goal with ap and first plan label
12
13 # e.g: +!g <- ... becomes +!g[rp,l_x] <- ...
14 for all add Plans in PlanLibrary:
15 if Plan trigger is equal to one of PlansWithAp:
16 annotate Plan trigger with rp and respective

plan label
17
18 # e.g: -!g <- ... becomes -!g[rp,l_last] <- ...
19 for all del Plans in PlanLibrary:
20 if Plan trigger is equal to one of PlansWithAp:
21 annotate Plan trigger with rp and last plan

label
22
23 #e.g:+!g[ap,l_x] <- !update(b[ap(1000)]); !g[rp,l_x].
24 for all Plans in PlansWithAp:
25 NewPlan = { trigger = PlanTrigger[ap,l_x]
26 preconditions = None
27 plan body = goal to update the AP bels

in PlanContext and goal to achieve
Plan[rp,l_x] }

28
29 add NewPlan to Agent PlanLibrary
30
31 #e.g: +!g[rp,l_x] <- !g[ap,l_x+1].
32 for all Plans in PlansWithAp:
33 if PlanLibrary has Plan[ap,l_x+1]:
34 NewPlan = { trigger = PlanTrigger[rp,l_x]
35 preconditions = None
36 plan body = goal to achieve

Plan[ap,l_x+1] }
37
38 add NewPlan to Agent PlanLibrary
39
40 # +!update(X[ap(T)])[ap]: not

active_perception.isUpdated(X[ap(T)]) <- ?X[ap].
41 UpdatePlan = { trigger = UpdateTrigger(X)[ap]
42 preconditions = X is not updated
43 plan body = calls AP plan for X }
44
45 add UpdatePlan to Agent PlanLibrary
46 return PlanLibrary

3.3. Implementation 53

Listing 3.14 – Jason program after syntactical changes (Approach 3)
1 !g[ap, l_1].
2
3 +!g[ap, l_1]
4 <- !update(b[ap(1000)])[ap];
5 !update(d[ap(3000)])[ap];
6 !g[rp, l_1].
7
8 +!g[ap, l_2]
9 <- !g[rp, l_2].

10
11 +!g[rp, l_1]: b & d
12 <- .print("GOAL G1").
13
14 +!g[rp, l_1]
15 <- !g[ap, l_2].
16
17 +!g[rp, l_2]
18 <- .print("GOAL G2!").
19
20 +?b[ap]
21 <- .time(HH,MM,SS,MS);
22 +b[ap(_),lu(HH,MM,SS,MS)];
23 .print("Active perception plan for b").
24
25 +?d[ap]
26 <- .print("Active perception plan for d").
27
28 +!update(X[ap(T)])[ap]: not

active_perception.isUpdated(X[ap(T)])
29 <- ?X[ap].
30
31 +!update(X[ap(T)])[ap].

4.2. HwBridge Node 57

1 Header header

2 bool r e s u l t

3 u int32 id

Regarding communication, when an agent wants to send messages to external
agents it publishes it into the topic /jason/send_msg using a custom type of message
called Message (see listing 4.4). This message is composed of 2 fields: header and the data.
In order to receive messages the agent subscribes to the topic /jason/receive_msg, which
also makes use of the Message type.

Listing 4.4 – Message message

1 Header header

2 s t r i n g data

4.1.2 Agent architecture customization

With the specification completed and the standards defined, the agent architecture
was modified to include the functionalities discussed, which was done by overloading the
methods represented in Table 4.2. Jason is interpreted with the Java language thus these
methods must be overloaded using Java. To accomplish that, since ROS does not provide
support for using Java in its official distribution, a 3rd party Java ROS implementation,
rosjava was used. It must be emphasized that for the Jason programmer this is all trans-
parent, in other words, a user of this Jason-ROS integration does not need to modify any
code in Java.

Table 4.2 – Overloaded methods

Method Customization
init Initialize a ROS node
act Send actions via ROS

reasoningCycleStarting Receive feedback of actions via ROS
perceive Receive perceptions via ROS

checkMail Receive msgs via ROS
sendMsg Sends msgs via ROS
broadcast Broadcast msgs via ROS

4.2 HWBRIDGE NODE

The HwBridge node is the main advantage in relation to the architecture proposed
by (MORAIS, 2015), this node has a similar purpose that the ones he calls decomposers
and synthesizers. As discussed in Section 2.4, they are used as intermediary nodes to
translate the information between the agent and the hardware. The biggest difference here
is that instead of requiring that both of these nodes are programmed for each specific use
case, depending on the hardware, a general purpose node (HwBridge node) is available
and the only thing that has to be adjusted for each case is a couple of configuration files.

The communication with the Agent node is done via the first three topics defined
in Table 4.1, /jason/percepts, /jason/actions, and /jason/actions_status. However, the

58 Chapter 4. Architecture for programming BDI agents for robot applications

information flow is in the opposite direction. The HwBridge node publishes the perceptions
it receives from the Hardware Controller into the topic /jason/percepts, it subscribes to
the topic /jason/actions to get the actions it needs to send to the Hardware Controller,
and it publishes into the topic /jason/actions_status to inform the agent about the status
of previously submitted actions.

To communicate with the Hardware Controller specific topics and services are
used for each different perception and action, which are configured via two configuration
files, the perceptions and actions manifest. These files contain all the information required
to translate actions sent by the agent into understandable commands by the Hardware
Controller, and to create perceptions understandable by the agent based on data published
by the Hardware Controller.

The perception manifest contains the information about which topics the Hw-
Bridge node must subscribe to get each perception, and how to translate the data into a
perception understandable by the agent. An example of perception manifest is shown in
listing 4.5. In this case the perception comes from the topic /turtle1/pose and it results
in a perception such as pose(3.0, 2.0, 0.3) being sent to the Agent node, then the agent
replaces in its belief base all the perceptions called pose by this new one, or add it in case
none exists.

Listing 4.5 – Perception manifest

1 [pose]

2 name = / t u r t l e 1 /pose

3 msg_type = Pose

4 dependenc ies = tu r t l e s im . msg

5 args = x , y , theta

6 buf = update

The action manifest describes in which topics/services the HwBridge node should
publish/request to perform each action, and how the data being sent must be set up. An
example of action manifest can be seen in listing 4.6. With this configuration when the
agent tries to perform an action, as for example cmd_vel(1.5, 0.0, 0.0), the HwBridge
node would publish to the topic /turtle1/cmd_vel a message of the type Twist with its
fields “linear.x=1.5”, “linear.y=0.0”, and “linear.z=0.0”.

Listing 4.6 – Action manifest

1 [cmd_vel]

2 method = top i c

3 name = / t u r t l e 1 /cmd_vel

4 msg_type = Twist

5 dependenc ies = geometry_msgs . msg

6 params_name = l i n e a r . x , l i n e a r . y , l i n e a r . z

7 params_type = f loat , f loat , f loat ,

Figure 4.3 illustrates typical sequence of messages exchanged by the system nodes.
Firstly, when an Agent sends an action, the HwBridge node translates the message and
forwards it to the Hardware Controller node in the right topic/service, which then executes

60 Chapter 4. Architecture for programming BDI agents for robot applications

The proposed architecture is advantageous since the programmer has to only im-
plement the Agent node, set up the perceptions and actions manifest and reuse an existent
Hardware Controller node. This allows a person that only posses knowledge about Jason
to program real robots, even for those with extended knowledge about different program-
ming languages, it reduces the time needed for setting up a robotic system.

4.4 COMM NODE

Given that our proposal works in a distributed way, that is, there exists several
ROS-Master nodes, it was created the Comm node. It serves as communication interface
between agents, given that standard ROS protocols cannot be used within this scenario.

It is left to developers to decide which technology should be used to implement
the Comm node, attempting that the message Data Field (listing 4.4) must comply
with the Jason message specification. It consists in a string with the following format:
“<id,sender,itlforce,receiver,data>”. Where id is an unique identifier for the message,
sender is the name of the agent sending the message, itlforce is the illocutionary force
(SEARLE, 1965), receiver is the name of the agent receiving the message, and data is the
information being sent.

5 EXPERIMENTS

This chapter describes the experiments conducted in this project and the method-
ology used for its realization and analysis. First, section 5.1 presents the experiments per-
formed to evaluate the proposed architecture for integrating Jason and ROS. Afterwards,
section 5.2 details the experiments performed to assess the active perception mechanism
proposed in this work, and its impact on mobile robotics applications.

5.1 JASON-ROS EXPERIMENTS

In order to validate and evaluate the proposed architecture for programming in-
telligent robots based on the cognitive concepts of BDI, a MAS composed of unmanned
aerial vehicles (UAVs) serve as testbed. First, all the configurations done in order to
perform the experiments are described in section 5.1.1. Then, a simulation with a sin-
gle UAV is performed an it is outlined in section 5.1.2, the main objective of this ex-
periment is to serve as a proof of concept. Following, a more complex simulation in-
volving multiple UAVs is performed in order to assess the advantages of using BDI
agents as a programming paradigm instead of the more traditional approaches, as ex-
plained in section 5.1.3. The implementation of the experiments performed can be seen
at: https://github.com/Rezenders/mas_uav.

5.1.1 Experiments setup

The first step is to enable the proposed architecture to control a single UAV.
For that, a proper Hardware Controller node must be used. Fortunately, there is already
implemented a ROS package called Mavros(MAVROS - ROS WIKI. . ., n.d.) that allows to
communicate with flight controllers (FC), avoiding the need to develop a new Hardware
Controller node. This UAV architecture differs from the one shown in Figure 4.1 with
regard to the Hardware Controller node, which in this case is Mavros, and the UAV is
the actual hardware.

It was necessary to properly configure the perceptions and actions manifests to
allow the Agent node to command the UAV through Mavros. This enables the HwBridge
node to communicate with the Hardware Controller node through the correct topics and
services. The produced perception manifest is presented in Listing 5.1. It results in the
following perceptions being sent to the agent:

• state(Mode, Connected, Armed)

– Mode: indicates the current flight mode, can be one of: [‘RTL’, ‘POSHOLD’,
‘LAND’, ‘OF_LOITER’, ‘STABILIZE’, ‘AUTO’, ‘GUIDED’, ‘DRIFT’, ‘FLIP’,
‘AUTOTUNE’, ‘ALT_HOLD’, ‘LOITER’, ‘POSITION’, ‘CIRCLE’, ‘SPORT’,
‘ACRO’]

– Connected: indicates if Mavros in connected to Ardupilot (boolean)

– Armed: indicates if the motors are armed (boolean)

• altitude(Altitude)

– Altitude: current UAV altitude (float)

62 Chapter 5. Experiments

• global_pos(Latitude, Longitude)

– Latitude: current UAV latitude (float)

– Longitude: current UAV longitude (float)

• home_pos(Latitude, Longitude)

– Latitude: UAV latitude when motors were armed (float)

– Longitude: UAV longitude when motors were armed (float)

Listing 5.1 – Mavros perception manifest

1 [s t a t e]

2 name = mavros/ s t a t e

3 msg_type = State

4 dependenc ies = mavros_msgs . msg

5 args = mode , connected , armed

6 buf = update

7

8 [a l t i t u d e]

9 name = mavros/ g l oba l_pos i t i on / r e l_a l t

10 msg_type = Float64

11 dependenc ies = std_msgs . msg

12 args = data

13 buf = update

14

15 [global_pos]

16 name = mavros/ g l oba l_pos i t i on /global

17 msg_type = NavSatFix

18 dependenc ies = sensor_msgs . msg

19 args = la t i t ude , l ong i tude

20 buf = update

21

22 [home_pos]

23 name = mavros/home_position/home

24 msg_type = HomePosition

25 dependenc ies = mavros_msgs . msg

26 args = geo . l a t i t ude , geo . l ong i tude

27 buf = update

The actions manifest of Listing 5.2 sends the following actions to Mavros:

• set_mode(Mode)

– Mode: represents the desired flight mode (‘RTL’, ‘POSHOLD’, ‘LAND’, ‘OF_-
LOITER’, ‘STABILIZE’, ‘AUTO’, ‘GUIDED’, ‘DRIFT’, ‘FLIP’, ‘AUTOTUNE’,
‘ALT_HOLD’, ‘LOITER’, ‘POSITION’, ‘CIRCLE’, ‘SPORT’, ‘ACRO’)

5.1. Jason-ROS experiments 63

Listing 5.2 – Mavros action manifest
1 [set_mode]
2 method = s e r v i c e
3 name = mavros/set_mode
4 msg_type = SetMode
5 dependenc ies = mavros_msgs . s rv
6 params_name = custom_mode
7
8 [arm_motors]
9 method = s e r v i c e

10 name = mavros/cmd/arming
11 msg_type = CommandBool
12 dependenc ies = mavros_msgs . s rv
13 params_name = value
14 params_type = bool

15
16 [t a k e o f f]
17 method = s e r v i c e
18 name = mavros/cmd/ t a k e o f f
19 msg_type = CommandTOL
20 dependenc ies = mavros_msgs . s rv
21 params_name = a l t i t u d e
22 params_type = f l oa t

23
24 [s e t po i n t]
25 method = top i c
26 name = mavros/ s e tpo in t_pos i t i on /global

27 msg_type = GeoPoseStamped
28 dependenc ies = geographic_msgs . msg
29 params_name = pose . p o s i t i o n . l a t i t ude , pose . p o s i t i o n . long i tude ,

pose . p o s i t i o n . a l t i t u d e
30 params_type = f loat , f loat , f l oa t

31
32 [land]
33 method = s e r v i c e
34 name = mavros/cmd/ land
35 msg_type = CommandTOL
36 dependenc ies = mavros_msgs . s rv

5.1. Jason-ROS experiments 67

as an indicator that the Jason approach has better readability and maintainability, and
one can also infer that it is easier to program.

However, it should be noted that the Jason approach requires the perception and
action manifests to be properly set up. Besides, rosjava needs to be installed and con-
figured. This results in development and execution overhead in the side of the proposed
architecture, which must be properly balanced in too simple applications.

In order to better assess the complexity gap (difficulty) in between programming
using Jason versus Python, a more elaborate experiment was developed, as follows.

Table 5.3 – Programs metrics in S-UAV mission

Approach Size (bytes) # of lines # of words
Python 518 49 112
Jason 344 26 64

5.1.3 Multiple UAV Mission

To better understand and evaluate the usage of Jason in more complex tasks, it
was chosen to design an application that is already being explored in the real world, a
search-and-rescue (S&R) mission where UAVs are being used to find victims in floods and
then deliver them buoys.

In the context of S&R missions, it is really useful to have more than one UAV
collaborating since when vehicles are equipped with buoys their flight autonomy time is
reduced due to the increased payload. Hence, a good strategy to adopt is to have two
types of UAVs working together: (i) the Scouts which are equipped with cameras and (ii)
the Rescuers that are in possession of buoys, using the former to find victims and inform
the latter about their location, which then deliver the buoys.

Thus, an application was designed to mimic a S&R mission that uses one Scout
and two Rescuers agents working in cooperation. Firstly, the Scout takes off and flies over
an area looking for victims. When a victim is located the agent informs the rescuers about
the victim’s position. When the rescuers receive information about a victim’s location they
negotiate to decide which one will deliver the buoy. The one that ends up in charge of the
rescue takes off, flies to the designated position, drops a buoy, and then returns to the
landing area to recharge and replace the buoy. For the sake of simplicity, scouts are only
in charge to locate victims and the rescuers to drop buoys.

In this experiment each agent will be embedded in a distinct Raspberry device,
in total 3, and the simulation will be running in a separate desktop computer. Another
simplification done in this experiment is that the connection between the Raspberrys’ is
considered to be constant and without losses. The Raspberrys and the desktop were con-
nected with each other via Ethernet. The Comm node was implemented to send/receive
messages to/from other devices via UDP.

Like in the single UAV experiment, the agents performed the same mission using
both Jason and Python. During the execution of both methods the CPU and memory
usage were monitored and the data collected can be seen in Table 5.4. As expected, Jason
uses more CPU and memory than Python, 2.31 and 2.30 times respectively. Again, this
is not a problem for embedded platforms such as Raspberry Pi 3.

72 Chapter 5. Experiments

ception pressure is higher. With this, AP is always carried out before throwing a buoy
which ensures that no buoy will be thrown in vain, increasing the efficiency of the mission.
In this specific case, constantly performing active perception plans does not affect the
agent’s performance, since the AP plan has almost no cost, it consists only of turning the
camera on and off and waiting for 1 second.

For experiment 4, active perception is replaced from approach 3 to approach 2,
which has no impact on the mission result. This is expected, since the agent has only
one relevant plan to drop the buoy that has a TAPB as a precondition, with the only
difference between approaches 2 and 3 being how the relevant plans are revealed.

What happens in experiments 5 and 6 is that the environment is not changing fast
enough for the active perception to have any impact on the mission, and since performing
the AP plan has almost no cost it does not bring any disadvantages for the mission.

5.2.3 Second scenario

The second scenario is also a modification of the search-and-rescue mission de-
tailed in section 5.1.3, but now the change is that instead of assuming that the network
connection between the agents is constant and without losses the connection is limited to
a predefined distance. Again, to measure the impacts of active perception on this scenario
a mission with AP and one with only passive perception are performed.

To add AP into this scenario, a TAPB indicating if the UAV is in communication
range is added as communication precondition. Thus, before sending any messages the
agent checks if the communication range belief is a missing belief and, if it holds, the
agent performs an AP plan to reveal it. The AP plan consists of flying to a predefined
position where the UAV has communication range with most of the mission area.

In this experiment, the victims are distributed as shown in figure 5.7. The commu-
nication range is limited to 10m and the communication range TAPB lifetime is 1000ms
in the scout agent. The AP mission is repeated for different TAPB lifetimes in the rescuers
agents, and for both active perception approaches implemented.

To assess the results of the missions, the main aspect taken into account is the
number of victims rescued. After that, it can be analyzed the number of buoys thrown
and the ratio between the former and the latter, which indicates the efficiency of the
system. Sometimes communication fails even with active perception, causing rescuers to
drop a buoy for repeated victims. The setups and results of each experiment can be seen
in table 5.8.

Table 5.8 – Scenario 2 results

Experiment AP Rescuer range
lifetime [ms]

Victims rescued Buoys dropped Efficiency
w/ modeMean Std Mode Mean Std Mode

1 NO - 1.80 0.45 2 1.80 0.45 2 1.00
2 Approach 2 5000 6.00 0.00 6 6.40 0.55 6 1.00
3 Approach 3 5000 6.00 0.00 6 6.60 0.89 6 1.00
4 Approach 3 1000 6.00 0.00 6 6.20 0.45 6 1.00
5 Approach 3 10000 6.00 0.00 6 7.40 1.14 7 0.86

Experiment number 1 relates with using passive perception only. It is possible to
observe that with this configuration most of the time only 2 victims are rescued (mode),
which is the smallest number among the 5 experiments. This happens because when the
scout sends the location of victims 3 to 6 it is already out of the communication range.

5.2. Active perception experiments 73

Also, it can be noted that the efficiency calculated with the mode is 1, which means that
when the mission is successfully performed no redundant buoy is dropped.

For all the experiments performed using active perception, 2 to 5, all the victims
were rescued in all executions, since the mean is 6 and the standard deviations is 0. The
only difference is regarding the efficiency of the system, in experiment 5 most of the time
one unnecessary buoy is dropped, this is due to the larger TAPB lifetime which leads to
an insufficient active perception pressure. Consequently, the rescuers sometimes do not
perform active perception before communicating when it would be necessary, failing to
inform that a victim was already rescued by them.

An interesting aspect to be highlighted in this scenario is that, although active
perception has a cost related to flying to predefined positions, executing AP constantly
does not bring disadvantages to the mission, as the environment is static.

5.2.4 Third scenario

The third scenario is a combination of the last two, the victims drown after a
predefined amount of time and the network connection is limited to a certain distance. One
more time, some missions with only passive perception and some with AP are performed
to measure the impacts of using the latter.

The AP is included in the same way as the last scenarios, so in this case there are
two timed active perception beliefs instead of only one. In this experiment, the victims
are distributed as shown in figure 5.7, and the victims drowning times are represented
in table 5.6. The communication range is limited to 10m, and for the AP missions the
victim’s position and the scout communication range TAPB lifetime are set to 5000ms
and 1000ms, respectively. The AP approach, the victims drowning times, and the rescuer
communication range TAPB lifetime are varied to verify their impact on the mission
results. The experiments configurations and results are presented in table 5.9.

Table 5.9 – Scenario 3 results

Experiment Setup AP Rescuer range
lifetime [ms]

Victims rescued Buoys dropped Efficiency
w/ modeMean Std Mode Mean Std Mode

1 1 NO - 1.60 0.55 2 2.00 0.00 2 1.00
2 1 Approach 2 5000 1.20 0.45 1 1.20 0.45 1 1.00
3 1 Approach 3 5000 1.20 0.45 1 1.20 0.45 1 1.00
4 1 Approach 3 10000 1.60 0.55 2 1.60 0.55 2 1.00
5 1 Approach 3 1000 1.00 0.00 1 1.00 0.00 1 1.00
6 2 NO - 2.00 0.00 2 2.00 0.00 2 1.00
7 2 Approach 3 5000 4.40 0.55 4 5.20 0.45 5 0.80
8 2 Approach 3 10000 4.20 0.45 4 4.60 0.55 5 0.80
9 2 Approach 3 1000 3.60 0.55 4 4.20 0.45 4 1.00

Experiment 1 and 6 have only passive perception and their behavior is similar to
the first experiment in scenario 2. The only difference is that in experiment 1, in some
executions, the victims drown before being rescued, however, in most cases, 2 victims are
rescued.

For the first victim’s setup, the active perception experiments 2, 3, and 5 have worse
results, only experiment 4 has the same performance as the experiment with only passive
perception. This happens because the active perception plans for the communication
range TAPB take a considerable amount of time to be performed, so before they have
time to complete, the victims drown. Thus, it can be concluded that the active perception

74 Chapter 5. Experiments

pressure for experiments 2, 3, and 5 is too high for an environment with this amount of
dynamism.

For the second victim’s setup, most of the time the active perception experiments
7, 8, and 9 have the same result, 4 victims rescued, which is better than experiment 6, 2
victims rescued. However, experiment 7 has a slightly higher average of victims rescued,
which is an indicative that it is better suited for this victim’s setup. It is interesting to
notice that experiment 7 has an intermediary active perception pressure in comparison
with experiment 8 and 9.

After analyzing the results from both victim’s setup, one can conclude that the
amount of active perception pressure that can be applied in order to improve the mission
results depends directly on the dynamism of the environment and the cost, e.g. time,
of the active perception plans. The lower the dynamism of the environment, the less the
need for active perception, as beliefs maintain their credibility for longer. In more dynamic
environments, the credibility of beliefs diminishes quickly, which requires active perception
to be carried out more often. The problem of performing actions more constantly is that
when it has a medium/high cost it can impact negatively on the performance of the
mission. As an example, in this scenario the mission has a time restriction to be completed
and the active perception requires an amount of time to be completed, thus, if the AP
is performed too often it can reduce the performance of the mission, so it can be more
advantageous to have a lower credibility than to spend time performing AP.

The experiments performed in this section demonstrate that the proposed active
perception (AP) model can be an asset in some application scenarios, such as in search
and rescue applications like scenario 2. Additionally, it is important to notice that the
mechanism proposed in this Thesis allows adding AP to BDI agents in a simple manner,
just by adding an annotation indicating that a belief is an active perception belief and
another annotation expressing the belief lifetime, not requiring any code related to the
active perception process to be programmed.

6 CONCLUSIONS

Conducting this work allowed me to conclude that it is not trivial to define an
active perception (AP) model for BDI agents and to transform such model into a concrete
implementation. It required several concepts related with BDI agents to be expanded and
several new ones to be created. In addition, this could have been done in several different
ways, leaving countless possibilities to be explored. Throughout this work it was detailed
how and why some decisions were made to arrive at possible approaches to model and
implement an AP mechanism integrated with the reasoning cycle of BDI agents.

With the experiments carried out, it could be noted that active perception is
important in some scenarios, where through its inclusion the efficiency of the system is
improved. This is due to the fact that in the proposed model of active perception, the agent
does not consider that all the necessary information for the reasoning cycle is available or
updated, trying to actively perceive what is necessary for its deliberation process. This
results in more assertive decisions, since the deliberation process depends directly on the
quality of the information that the agent has.

Also, it can be noticed that it is possible to use the proposed model and implemen-
tations of the active perception mechanism with BDI agents programmed with Jason to
create complex behaviours for mobile robots. Of course, the same behaviors can be pro-
grammed without the proposed AP mechanism, but it would require the programmer to
code everything related to the AP for each Jason program created, which requires more la-
bor and is also more error-prone. In other words, our proposal simplifies the programming
of AP for Jason.

In addition, it is possible to notice that an impactful aspect that must be taken
into account when including AP is the trade off between the AP beliefs credibility and
the associated cost of performing AP. This balance is regulated by the active perception
pressure. The greater the AP pressure, the more often active perception is carried out and,
consequently, the greater the credibility of beliefs. However, it should be noted that taking
actions, mainly in the real world, has an associated cost, e.g. time, battery consumption.

Regarding the Jason-ROS integration, it can be concluded that it is possible to use
Jason agents with ROS interface, even within an embedded platform. And that by using
ROS it is possible to take advantage of existing ROS packages to simplify the development
of complex tasks needed to program robots.

Also, the experiments shows that the use of BDI agents approach simplifies the
development when compared to the conventional imperative programming, and has better
readability and maintainability. Such conclusion is supported by metrics such as number
of lines from the respective programs, their binary size, number of words, and code com-
plexity in terms of the need to use multi-threading and locks. Another interesting point to
highlight is that given the nature of the Comm node, it is possible to create a multi-robot
system with heterogeneous agents, i.e., where some agents may be programmed using
Jason and others using Python. A disadvantage of the proposed approach is that it uses
more computational resources.

76 Chapter 6. Conclusions

6.1 FUTURE WORKS

As future work, in the Jason-ROS integration, it is necessary to implement a way
to get the responses of actions performed using a service, one way to do this would be to
get the response via a rostopic and treat it as a perception. Also, it should be explored
if the perception and actions manifests can be replaced by rosparams in order to make it
even more compliant with ROS.

The Jason-ROS integration developed in this work uses The Robot Operating Sys-
tem (ROS) as robotics framework, this allows Jason to be used to program different types
of robots and to leverage a lot of existing ROS packages. ROS was developed with the in-
tention to ease the process of programming robots, and its fair to say that it accomplished
its goal since it is one of the most used robotics framework today. The development of ROS
adopted some characteristics such as: running a single robot, workstation-class computa-
tional resources on board, no real-time requirements, excellent network connectivity, etc.
However, there are a lot of use cases for robots that do not comply with this characteristics.
Therefore, ROS 2 is being developed to include the following use cases: teams of multi-
ple robots, small embedded platforms, real-time systems, non-ideal networks, production
environments, and prescribed patterns for building and structuring systems. Thereby, it
would be interesting to also develop the Jason-ROS integration for ROS 2 in order to
comply with future robots and technologies.

For the active perception, one topic that can be further addressed in the future is
the concept of an belief being updated or outdated. In this work, a belief changes its state
from updated to outdated when the time elapsed since the last update is longer than the
belief lifetime, which is abrupt. Instead of having this binary changes it can be explored if
it makes senses for the beliefs to have a fuzzy transition, having some kind of credibility
(as addressed in section 3.1.1.6) that decreases over time, ranging from 0 (outdated) to 1
(updated). With this, more complex behaviours for the active perception mechanism can
be designed, such as doing a fuzzy combination of all the beliefs in a plan preconditions
in order to decide if active perception plans should be performed or not.

Regarding the implementation of the AP mechanism, more of the approaches pro-
posed in section 3.2.7 should be implemented and tested. After that, it should be analyzed
the viability of modifying the Jason architecture to include the active perception mecha-
nism as a definitive solution, and if it would bring any advantages.

Lastly, the experiments performed in this work could be incremented to become
more realistic. For example, a camera can be added to UAVs and actually perform object
detection, currents can be added into the water to make victims move, victims can simulate
to be swimming, etc. This could help understanding the impacts of the environment in
the active perception. Also, this simulation could be used by other work that use a search
and rescue scenario.

REFERÊNCIAS

BAJCSY, Ruzena; ALOIMONOS, Yiannis; TSOTSOS, John K. Revisiting active percep-
tion. Autonomous Robots, 2018. ISSN 15737527. DOI: 10.1007/s10514-017-
9615-3. Cit. on p. 23.

BEST, Graeme; CLIFF, Oliver M, et al. Dec-MCTS: Decentralized planning for multi-
robot active perception. The International Journal of Robotics Research, SAGE
PublicationsSage UK: London, England, p. 027836491875592, Mar. 2018. ISSN 0278-3649.
DOI: 10.1177/0278364918755924. Address: <http://journals.sagepub.
com/doi/10.1177/0278364918755924>. Cit. on p. 27.

BEST, Graeme; FAIGL, Jan; FITCH, Robert. Online planning for multi-robot active
perception with self-organising maps. Autonomous Robots, 2018. ISSN 15737527. DOI:
10.1007/s10514-017-9691-4. Cit. on p. 27.

BORDINI, Rafael H.; HÜBNER, Jomi F.; VIEIRA, Renata. Jason and the Golden Fleece
of Agent-Oriented Programming. In: [sineloco]: Springer, Boston, MA, 2005. pp. 3–37.
DOI: 10.1007/0-387-26350-0{_}1. Address: <http://link.springer.
com/10.1007/0-387-26350-0_1>. Cit. on pp. 23, 46.

BORDINI, Rafael H.; HUBNER, Jomi Fred; WOOLDRIDGE, Michael. Programming
Multi-Agent Systems in AgentSpeak using Jason. Chichester, UK: John Wiley &
Sons, Ltd, Oct. 2007. (Wiley Series in Agent Technology). ISBN 9780470061848. DOI:
10.1002/9780470061848. Address: <http://doi.wiley.com/10.1002/
9780470061848>. Cit. on pp. 23, 46, 47.

BRATMAN, Michael. Intentions, Plans, and Practical Reason. [sinelocosinenomine],
1987. ISBN 0-674-45818-4. Cit. on p. 25.

BRATMAN, Michael E.; ISRAEL, David J.; POLLACK, Martha E. Plans and resource-
bounded practical reasoning. Computational Intelligence, John Wiley & Sons, Ltd
(10.1111), vol. 4, no. 3, pp. 349–355, Sept. 1988. ISSN 0824-7935. DOI: 10.1111/j.
1467-8640.1988.tb00284.x. Address: <http://doi.wiley.com/10.1111/j.
1467-8640.1988.tb00284.x>. Cit. on p. 25.

J-M, Auberlet et al. Improved Road Crossing Behavior with Active Percep-
tion Approach. [sineloco], 2012. Address: <http://perso.lcpc.fr/roland.
bremond/documents/TRB12_Ketenci.pdf>. Cit. on p. 27.

MAVROS - ROS WIKI. [sinelocosinenomine]. Address: <http://wiki.ros.org/
mavros>. Cit. on p. 61.

MENEGOL, Marcelo S.; HÜBNER, Jomi F.; BECKER, Leandro B. Evaluation of Multi-
agent Coordination on Embedded Systems. In: [sineloco]: Springer, Cham, June 2018.
pp. 212–223. DOI: 10.1007/978- 3- 319- 94580- 4{_}17. Address: <http:
//link.springer.com/10.1007/978-3-319-94580-4_17>. Cit. on pp. 29, 65.

MORAIS, Márcio Godoy. Integration of a multi-agent system into a robotic framework :
a case study of a cooperative fault diagnosis application. Pontifícia Universidade Católica
do Rio Grande do Sul, Mar. 2015. Address: <http://tede2.pucrs.br/tede2/
handle/tede/6396>. Cit. on pp. 29, 55, 57.

NIELSEN, Lasse Damtoft; SUNG, Inkyung; NIELSEN, Peter. Convex decomposition for
a coverage path planning for autonomous vehicles: Interior extension of edges. Sensors
(Switzerland), MDPI AG, vol. 19, no. 19, Oct. 2019. ISSN 14248220. DOI: 10.3390/
s19194165. Cit. on p. 69.

78 REFERÊNCIAS

PANTOJA, Carlos Eduardo et al. ARGO: An Extended Jason Architecture that Facili-
tates Embedded Robotic Agents Programming. In: [sinelocosinenomine], 2016. pp. 136–
155. DOI: 10.1007/978-3-319-50983-9{_}8. Address: <http://link.
springer.com/10.1007/978-3-319-50983-9_8>. Cit. on p. 29.

RAFAELI, Niv; KAMINKA, Gal A. Active Perception at the Architecture Level
(Extended Abstract). [sineloco], 2017. Address: <www.ifaamas.org>. Cit. on
pp. 27, 28, 37, 42.

RICCI, Alessandro et al. Environment Programming in CArtAgO. In: MULTI-AGENT
Programming. [sineloco]: Springer US, 2009. pp. 259–288. DOI: 10.1007/978-0-
387-89299-3{_}8. Cit. on p. 29.

SEARLE, John R. What is a Speech Act? Perspectives in the philosophy of lan-
guage: a concise anthology, vol. 2000, pp. 253–268, 1965. Address: <https://pdfs.
semanticscholar.org/a6c7/56a24ea621d3882d9b2baa8eb5352105a2cd.

pdf>. Cit. on p. 60.

SO, Raymond; SONENBERG, Liz. The Roles of Active Perception in Intelligent Agent
Systems. In: [sineloco]: Springer, Berlin, Heidelberg, 2009. pp. 139–152. DOI: 10.1007/
978-3-642-03339-1{_}12. Address: <http://link.springer.com/10.
1007/978-3-642-03339-1_12>. Cit. on pp. 23, 27, 31, 32.

UNTERHOLZNER, Alois; HIMMELSBACH, Michael; WUENSCHE, Hans-Joachim. Ac-
tive perception for autonomous vehicles. In: 2012 IEEE International Conference on
Robotics and Automation. [sineloco]: IEEE, May 2012. pp. 1620–1627. ISBN 978-1-4673-
1405-3. DOI: 10.1109/ICRA.2012.6224879. Address: <http://ieeexplore.
ieee.org/document/6224879/>. Cit. on pp. 27, 28.

VERBEEK, Marko. 3APL as Programming Language for Cognitive Robots. [sineloco],
2003. Cit. on p. 29.

WESZ, Rodrigo Buenavides. Integrating robot control into the Agentspeak(L) program-
ming language. Pontifícia Universidade Católica do Rio Grande do Sul, Mar. 2015. Ad-
dress: <http://tede2.pucrs.br/tede2/handle/tede/6941>. Cit. on p. 29.

WEYNS, Danny; STEEGMANS, Elke; HOLVOET, Tom. Towards Active Perception
In Situated Multi-Agent Systems. Applied Artificial Intelligence, Taylor & Francis
Group, vol. 18, no. 9-10, pp. 867–883, Oct. 2004. DOI: 10.1080/08839510490509063.
Address: <http://www.tandfonline.com/doi/abs/10.1080/08839510490509063>.
Cit. on p. 27.

WOOLDRIDGE, Michael. Intelligent agents. Multiagent systems, MIT Press London,
vol. 35, no. 4, p. 51, 1999. Cit. on pp. 23, 25, 26, 38.

	Capa
	Title page
	Approval
	Dedication
	Acknowledgements
	Resumo
	Resumo Expandido
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Literature review
	Intelligent agents
	BDI agents
	Active perception
	Agents and hardware architectures
	Literature Review Conclusions

	Active perception within BDI agents reasoning cycle
	Model
	Definitions
	Perception
	Beliefs
	Types
	States
	Beliefs states and transitions

	Desires
	Intentions
	Plans
	Active perception selection pressure

	Modified reasoning cycle

	Design
	Plan representation and selection
	Distinction of beliefs
	Analysis of relevant plans
	Context verification
	Timed active perception belief lifetime
	Revealing order
	Options analyses

	Implementation
	Object model for active perception beliefs
	Jason implementation

	Architecture for programming BDI agents for robot applications
	Agent Node
	Specifications and standards
	Agent architecture customization

	HwBridge Node
	Hardware Controller node
	Comm Node

	Experiments
	Jason-ROS experiments
	Experiments setup
	Single UAV Mission
	Multiple UAV Mission

	Active perception experiments
	Experiments setup
	First scenario
	Second scenario
	Third scenario

	Conclusions
	Future works

	REFERÊNCIAS

		2021-03-08T20:57:45-0300

		2021-03-09T06:22:41-0300

		2021-03-25T05:40:52-0300

