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RESUMO

A criação, a proliferação e o consumo de informações são constantemente observados na soci-
edade. Um agente situado em um ambiente dinâmico está suscetível a perceber grande quan-
tidade de informações, sendo que muitas delas são irrelevantes para os seus objetivos atuais.
Além disso, dado o estado do ambiente, uma situação pode ser modelada utilizando diferentes
representações de conhecimento, como por exemplo, ontologias para modelar situações com
semântica bem definida, e redes Bayesianas para situações de incerteza. Dessa forma, o agente
deve ser capaz tanto de perceber de acordo com seus objetivos, quanto integrar essas percep-
ções conforme a representação da situação utilizada. A literatura descreve agentes BDI como
adequados para atuar em ambientes dinâmicos, porém considera a percepção do ambiente como
dependente da implementação e independente do raciocínio do agente e a flexibilização do raci-
ocínio para representar situações é limitada. Com base nisto, esta pesquisa investiga a utilização
de mecanismos de percepção e de representação de situações no raciocínio do agente de modo a
aprimorar sua tomada de decisão. O agente é modelado com a perspectiva de sistemas multicon-
texto, permitindo a decomposição modular de seus componentes. Essa abordagem possibilita
a adição de situações representadas em diferentes formalismos e seus relacionamentos com os
demais componentes do agente. Um componente pode ser representado por um ou mais con-
textos do sistema multicontexto, e a troca de informações entre contextos é feita por meio de
regras de ponte. Uma regra de ponte é formada por uma cabeça, o contexto que adicionará
uma nova informação, e um corpo, o conhecimento que precisa ser satisfeito em um ou mais
contextos para que a informação seja adicionada na cabeça. Para avaliar a operacionalização é
desenvolvido o framework Sigon, a primeira implementação para o desenvolvimento de agentes
situados em ambientes dinâmicos como sistemas multicontexto. São apresentadas implementa-
ções realizadas no framework adicionando contextos para representar situações com ontologias
e redes Bayesianas, e estratégias para estender a arquitetura do agente por meio de regras de
ponte. A parte experimental da pesquisa é desenvolvida no contexto da computação urbana.
Inicialmente são realizados três experimentos utilizando realidade virtual para encontrar novos
entendimentos do impacto de distrações em smartphones na consciência situacional de pedes-
tres. Testes estatísticos foram realizados nos conjuntos de dados criados, e associações foram
encontradas mostrando que eventos inseguros e tempo de resposta aumentam com distrações
no smartphone. Por fim, é simulado um ambiente urbano para avaliar o processo perceptivo e
a utilização no apoio a tomada de decisão de um agente implementado em Sigon. A análise
destes experimentos seguiu a abordagem Factorial Designs para avaliar a influência dos fatores
de percepção ativa e passiva, recebimento contínuo de dados, ontologias e redes Bayesianas no
tempo de tomada de decisão. A percepção de informações irrelevantes para os objetivos atuais
aumentam o tempo para a tomada de decisão em ambientes dinâmicos, mas percepção ativa e
políticas de percepções são estratégias para reduzir esse problema. Os resultados fomentam o
desenvolvimento de agentes como sistemas multi-contexto para a computação urbana.
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RESUMO ESTENDIDO

Introdução

A criação, a proliferação e o consumo de informações são observados em nossa sociedade
(GANDOMI; HAIDER, 2015; HILLS, 2019). Por exemplo, em ambientes dinâmicos, a todo
instante estão sendo criadas novas informações e um agente situado no ambiente precisa con-
siderar essas informações em sua tomada de decisão. Dispositivos computacionais nestas cir-
cunstâncias apresentam restrições de tempo, espaço e comunicação para processar todos os
dados disponíveis. De forma similar, um humano operando em um ambiente complexo e di-
nâmico pode ‘ser severamente desafiado a organizar todas as informações disponíveis de uma

forma que seja gerenciável para tomar decisões precisas’ (ENDSLEY, 2016, pag. 3). Em um
ambiente urbano é possível observar tanto a limitação de dispositivos computacionais quanto a
de seres humanos. Um smartphone apresenta capacidade de detecção física, cognitiva, emocio-
nal e social, porém, a sua capacidade para armazenar e processar essas informações é limitada
(KONSOLAKIS et al., 2018). Um pedestre ou motorista utilizando smartphone enquanto anda
ou dirige apresenta redução no processo de tomada de decisão (JIANG et al., 2018; OVIEDO-
TRESPALACIOS et al., 2018). Nestas situações, um agente inteligente pode atuar como uma
interface entre o ambiente complexo e dinâmico e a consciência situacional limitada do usuário
(FERNANDEZ-ROJAS et al., 2019). O paradigma de agentes em ambientes dinâmicos per-
mite a criação de agentes para o gerenciamento distribuído e descentralizado de informações
(JULIAN; BOTTI, 2019; RAKIB; UDDIN, 2019). Isso permite que o agente escolha uma ação
adequada para a região, contexto, em que ele está situado. Para um objetivo atual, ele deve de-
cidir quais partes do ambiente são relevantes e construir um modelo do estado futuro (DAHNL;
GRASS; FUCHS, 2018; GEHRKE, 2009). Um agente precisa combinar informações represen-
tadas em diferentes formalismos para melhorar as decisões tomadas. Existem várias formas de
combinar conhecimento contextual, por exemplo, filtros de Kalman, co-training, ensemble le-

arning, e sistemas multicontexto (GJORESKI, 2015; GIUNCHIGLIA; SERAFINI, 1994). Um
sistema multicontexto permite representar um agente como um conjunto de contextos, onde um
contexto é definido usando o formalismo que melhor descreve uma característica do ambiente,
situação ou capacidade do agente (GIUNCHIGLIA; SERAFINI, 1994). As regras de ponte des-
crevem como serão realizadas as trocas de informações entre os contextos (BREWKA; EITER,
2007; BREWKA et al., 2018). De acordo com a perspectiva de representação de conheci-
mento, essa decomposição modular permite o desenvolvimento de agentes utilizando múltiplas
representações, em que cada contexto representa um componente do agente, aumentando a sua
representatividade e simplificando-o conceitualmente (SABATER et al., 2002; DYOUB; COS-
TANTINI; GASPERIS, 2018). O uso de sistemas multicontexto é proeminente em ambientes
dinâmicos, porém seu uso prático ainda é abstrato (BREWKA et al., 2018; CABALAR et al.,
2019). O modelo de agentes BDI é adequado para ambientes complexos e dinâmicos com recur-
sos limitados (RAO, 1995; CHONG; TAN; NG, 2007; ALECHINA et al., 2011). Normalmente,
o processamento e controle de percepções no modelo BDI é independente do agente, e isso é
uma limitação para ambientes em que os dados são heterogêneos e dinâmicos (OIJEN; DIG-
NUM, 2011; JR; PANTOJA; SICHMAN, 2018; DENNIS et al., 2016; DÖTTERL et al., 2019).
Um fator agravante ocorre quando os dados dos sensores chegam em maior frequência do que
a capacidade do agente de processá-las (DENNIS et al., 2016). As percepções podem ser vistas
como parte do processo de entender a situação do ambiente para realizar os objetivos do agente
(SO; SONENBERG, 2009). Filtros e políticas de percepções podem ser utilizadas para reduzir
o número de dados percebidos (CRANEFIELD; RANATHUNGA, 2015; JR; PANTOJA; SICH-
MAN, 2018). Portanto, esta tese investiga o problema de integração de dados heterogêneos no



processo de tomada de decisão de agentes em ambientes dinâmicos. Quatro fatores relevantes
são: (i) dados heterogêneos são aqueles que podem ser percebidos por diferentes sensores, com
taxas de atualização variadas e semântica própria na representação interna do agente; (ii) em
adição a estar situado em um ambiente dinâmico, é analisado o conhecimento da situação para
tomada de decisão; (iii) um agente é construído como uma abstração de sistemas multicontexto
para atuar em ambientes dinâmicos; e (iv) computação urbana é a área de estudo. Este traba-
lho investiga as seguintes perguntas de pesquisa: P1 - Como modelar e implementar agentes
inteligentes para combinar conhecimento com múltiplas representações utilizando a abordagem
de sistemas multicontexto? P2 - Como restringir o processo perceptivo com base no estado
interno de um agente BDI? P3 - Qual é a influência de smartphones na consciência situacional
de pedestres em ambientes urbanos?

Objetivos

O objetivo geral deste trabalho é desenvolver um modelo de raciocínio prático para agentes in-
teligentes situados em ambientes dinâmicos, seguindo a abordagem de sistemas multicontexto,
para suportar o raciocínio contínuo de dados heterogêneos situacionais. Os objetivos especí-

ficos são: definir um framework para implementar agentes, dando flexibilidade para raciocinar
em fontes heterogêneas de conhecimento; medir o impacto do uso de smartphones na consci-
ência situacional de pedestres; identificar estratégias de priorização de percepções de acordo
com o estado interno do agente; analisar o uso de raciocínio prático com recursos limitados e
representações heterogêneas de situações em ambientes dinâmicos.

Metodologia

O delineamento deste trabalho é dado pela abordagem de design science research. Esse método
de pesquisa pode ser considerado como um paradigma de resolução de problemas, onde as duas
principais atividades são construir e avaliar. A primeira envolve criar um artefato com um pro-
pósito específico e a segunda determina o desempenho deste artefato (MARCH; SMITH, 1995;
HEVNER et al., 2004). Com base no design science research, quatro iterações foram realizadas
para essa pesquisa. A primeira iteração foi constituída dos seguintes passos: estudo sobre a área
de sistemas multicontexto, a sua aplicabilidade no desenvolvimento de agentes, e a implemen-
tação do framework Sigon para o desenvolvimento de agentes como sistemas multicontexto. O
código do Sigon está disponível para a comunidade e é utilizado por pesquisas derivadas desta
tese. Na segunda iteração foram realizados três experimentos utilizando realidade virtual para
analisar o impacto de diferentes níveis de distração em smartphones na consciência situacio-
nal de pedestres em ambientes urbanos. O desenvolvimento dos experimentos considerou os
elementos de percepção, compreensão e projeção de acordo com o modelo de consciência si-
tuacional proposto por Endsley (1988). A terceira iteração apresentou o estudo de modelos de
percepção que podem ser aplicados em agentes e sua adequação em um agente BDI-like imple-
mentado em Sigon. Os experimentos desta iteração seguem a abordagem 2k factorial design. A
quarta iteração foi construída considerando os produtos das três iterações anteriores. Variações
de agentes implementados em Sigon são utilizados em um ambiente urbano para analisar a to-
mada de decisão utilizando representações heterogêneas de situações e com diferentes formas
de percepção.

Resultados e Discussão

O Sigon é o primeiro framework para desenvolvimento e implementação de agentes baseados
em sistemas multicontexto encontrado na literatura para atuar em ambientes dinâmicos. Um
agente Sigon é uma definição abstrata, permitindo alta customização. No contexto desta pes-



quisa, foi utilizado o modelo BDI como base. O Sigon foi testado utilizando integração de
conhecimento representado em ontologias e redes Bayesianas, e algoritmos de percepção pas-
siva e ativa. Além disso, em trabalhos derivados, o Sigon foi utilizado para estudo de agentes
negociadores e integração com redes neurais multilayer perceptron. Os experimentos com rea-
lidade virtual forneceram um novo entendimento do uso de smartphones por pedestres em vias
urbanas. Como resultados, foram encontradas associações mostrando que eventos inseguros e
tempo de resposta aumentam com o nível de distração do smartphone. O cenário urbano criado
para analisar o nível de consciência situacional de pedestres serviu como base para um conjunto
de experimentos utilizando implementações de agentes Sigon com representações heterogêneas
de situações e com estratégias diferentes de percepções. Diferentes formalismos podem ser
aplicados para representar situações e modelar a tomada de decisão. Ontologias são aplicadas
para modelar situações e permitir que o agente raciocine utilizando semântica bem definida e
detalhada. Uma rede Bayesiana é aplicada para modelar a consciência situacional do pedestre
e permitir o raciocínio em condição de incerteza. A percepção de informações irrelevantes para
os objetivos atuais aumentam o tempo para a tomada de decisão em ambientes dinâmicos, mas
percepção ativa e políticas de percepções são estratégias para reduzir esse problema. Os resul-
tados mostram a capacidade de flexibilização do raciocínio em ambientes dinâmicos utilizando
sistemas multicontexto.

Considerações Finais

Esta tese investigou mecanismos para permitir a representação e o raciocínio em fontes hetero-
gêneas de conhecimento de agentes com recursos limitados. O ponto principal para isso foi a
criação do framework Sigon seguindo a abordagem de Sistemas Multicontexto para represen-
tação de conhecimento. Cada contexto representa um componente do agente e regras de ponte
fornecem a troca de informação entre os contextos. No Sigon, a ordem de execução das regras
de ponte definem a arquitetura do agente. Os resultados alcançados mostram a capacidade de
flexibilização do raciocínio em ambientes dinâmicos, permitindo representar situações em di-
ferentes formalismos. Na perspectiva da computação urbana, novos entendimentos do uso de
dispositivos móveis em ambientes urbanos por pedestres foram encontrados, tais como fatores
que implicam na redução de consciência situacional durante interação com um smartphone.
Simulações mostraram que o paradigma de agentes pode ser utilizado como interface entre o
ambiente urbano e o pedestre e também apoiar à tomada de decisão. Contudo, é interessante a
realização de novos experimentos em realidade virtual considerando os resultados desta tese.

Palavras-chave: Agente. Consciência Situacional. Sistemas Multicontexto. Computação Ur-

bana. Ontologia. Rede Bayesiana.





ABSTRACT

The creation, proliferation and consumption of information are frequently observed in our so-
ciety. An agent situated in a dynamic environment is susceptible to perceiving a large amount
of information, several of which are irrelevant to its current goals. Also, given the state of the
environment, a situation can be modelled using different representations of knowledge, such as
ontologies to model situations with well-defined semantics, and Bayesian networks for situa-
tions of uncertainty. The agent must be able to perceive according to its goals and to integrate
these perceptions conforming to the situation’s representation. The literature describes BDI
agents as suitable to act in dynamic environments. However, it examines the perception of the
environment as being dependent on the implementation and independent of the agent’s reason-
ing, and the flexibility in representing situations is limited. This research investigates the use
of perception mechanisms and representation of situations in the agent’s reasoning to improve
its decision making. The agent is modelled with the multi-context systems approach, allow-
ing the modular decomposition of the agent’s components. This approach enables to represent
situations in different formalisms and their relationships with other agent’s components. A
component can be represented by one or more contexts of the multi-context system, and bridge
rules exchange the information between contexts. A bridge rule has a head, the context that will
add new information, and a body, the knowledge that has to be satisfied in one or more contexts
to add the information in the head. The Sigon framework is developed to evaluate the applica-
tion of multi-context systems in the agent paradigm. Sigon is the first implementation for the
development of agents situated in dynamic environments using multi-context systems. We cre-
ated contexts to represent situations with ontologies and Bayesian networks, and strategies for
extending the agent’s architecture through bridge rules. We conducted three experiments using
virtual reality to find new understandings of pedestrian behaviour when interacting with smart-
phones. We applied statistical tests in the created data sets, finding associations showing that
unsafe events and reaction time increase with smartphone distraction. Finally, an urban envi-
ronment is simulated to evaluate the perceptual process in a Sigon agent, and a decision support
agent for pedestrians. The experimental analysis followed the Factorial Designs approach to
evaluate the impact of active and passive perception, continuous data gathering, ontologies and
Bayesian networks in the decision-making time. The perception of irrelevant information to
current goals increases the time for decision making in dynamic environments. However, active
perception and perception policies are strategies to reduce this problem. The results instigate
the development of agent as multi-context systems for urban computing.

Keywords: Agent. Situational Awareness. Multi-context Systems. Urban computing. Ontol-

ogy. Bayesian Network.
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1 INTRODUCTION

The creation, proliferation, and consumption of information is a phenomenon present

in our society (GANDOMI; HAIDER, 2015; HILLS, 2019). This is a typical characteristic of

dynamic environments, in which the environment changes while a decision-maker is combining

information to choose the next action. Computational devices in these circumstances have time,

space, and communication restrictions in processing the amount of available data. Similarly,

a human operator in a complex and large-scale environment ‘can be severely challenged in

rapidly bringing all of the available information together in a form that is manageable for

making accurate decisions in a timely manner’ (ENDSLEY, 2016, pag. 3).

In an urban environment, it is possible to observe both device and human limitation:

on the one hand, smartphones have possibilities of physical, cognitive, emotional, and social

sensing, but at the same time, they have limited battery and processing power to evaluate all

those sensing modalities (KONSOLAKIS et al., 2018); on the other hand, drivers and pedestri-

ans consuming smartphone data have a reduction in the decision-making process (JIANG et al.,

2018; OVIEDO-TRESPALACIOS et al., 2018). In such a situation, an intelligent agent can act

as an interface between the complex and dynamic environment and the limited human situation

awareness (FERNANDEZ-ROJAS et al., 2019).

Agent paradigm in dynamic environments allows the creation of agents for the dis-

tributed and decentralised management of information (JULIAN; BOTTI, 2019; RAKIB; UD-

DIN, 2019). This enables an agent to choose the appropriate action for the neighbourhood in

which it is situated. For a given goal, the agent should know which parts of the environment are

relevant and build a model of how it may evolve (DAHNL; GRASS; FUCHS, 2018; GEHRKE,

2009). Keeping attention on the relevant aspects of the situation is an approach to reduce the

data amount processed.

Intelligent systems have to fuse and integrate localised contexts from different sensors

to improve mission success or act as decision support to human beings, and context-awareness

is an approach for this (KIM; YOON, 2018; FERNANDEZ-ROJAS et al., 2019). In this direc-

tion, agent-oriented is an emerging programming paradigm for context-aware systems (ALE-

GRE; AUGUSTO; CLARK, 2016). For example, in mobile computing, there are three broad

fields for context awareness: localisation, tracking user movement and sensing the surrounding

environment (CAPURSO et al., 2018). An agent in a mobile device may need to perceive and

process the available data in all sensors to be aware and decide which action to take.

There are many ways to combine multiple contextual knowledge, for example, Kalman

filters, ensemble learning, and Multi-Context Systems (GJORESKI, 2015; GIUNCHIGLIA;

SERAFINI, 1994). A Multi-Context System (MCS) allows representing an agent as a set of

contexts, in which a context is defined using the formalism that best describes a characteris-

tic of the environment, situation or an agent’s capability (GIUNCHIGLIA; SERAFINI, 1994).

Bridge rules describe the information exchange between contexts (BREWKA; EITER, 2007;

BREWKA et al., 2018). From a knowledge representation point of view, this modular de-
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composition allows the agent’s development through multiple representations, and each one

represents a component or a part of it. This decomposition increases the representativeness and

conceptually simplifies agents (SABATER et al., 2002; DYOUB; COSTANTINI; GASPERIS,

2018). The use of MCS in agents allows the development of context-aware agents using con-

textual information from heterogeneous knowledge sources (UDDIN et al., 2018). MCS is also

prominent in dynamic environments with continuous online reasoning. However, its practical

use is still too abstract (BREWKA et al., 2018; CABALAR et al., 2019).

The BDI (Beliefs-Desires-Intentions) agent model is suitable for complex, dynamic

environments with limited resources (RAO, 1995; CHONG; TAN; NG, 2007; ALECHINA et

al., 2011).

This model is based on Bratman’s (BRATMAN, 1987) theory of practical reasoning, in

which reasoning is directed towards actions, with two main processes: deliberation and means-

end reasoning. The first deciding which goals to achieve and the latter deciding how to do it

(WOOLDRIDGE, 2000).

The perception processing and control in the BDI model is usually an independent

component of the agent, and this is a limiting factor in environmental sensors, such as the

mobile device one, in which data is low-level and dynamic (OIJEN; DIGNUM, 2011; JR; PAN-

TOJA; SICHMAN, 2018; DENNIS et al., 2016; DÖTTERL et al., 2019). An aggravating factor

occurs when the sensor’s data arrives faster than the agent’s ability to process it (DENNIS et al.,

2016). Perceptions can be seen as part of the process involving understanding the environment’s

situation to achieve an agent’s goals (SO; SONENBERG, 2009). Perception policies and fil-

ters can be applied to reduce the number of data perceived (CRANEFIELD; RANATHUNGA,

2015; JR; PANTOJA; SICHMAN, 2018). The analysis of the factors that influence performance

in many models, such as BDI agents is still limited (JR; PANTOJA; SICHMAN, 2018). The

representation of BDI agents as MCS started with Parsons, Sierra & Jennings (1998) work,

and there are a variety of works adding capabilities such as reasoning under uncertainty, trust,

reputation, norms, emotions, preferences and negotiation (PINYOL; SABATER-MIR, 2009;

PINYOL et al., 2010; CASALI; GODO; SIERRA, 2011; CRIADO et al., 2014; KOSTER;

SCHORLEMMER; SABATER-MIR, 2013; GELAIM; SILVEIRA; MARCHI, 2015; MELLO;

GELAIM; SILVEIRA, 2018). However, none of them describing the perception process.

1.1 PROBLEM

This thesis investigates the problem of integrating heterogeneous data streaming in

intelligent agents decision making with limited resources situated in dynamic environments.

The problem description contemplates: (i) heterogeneous data streams refer to data that can

be perceived by different sensors, with varying update rates and own semantics in the agent’s

internal state; (ii) in addition to being situated in a dynamic environment, the agent, a BDI-like,

demands a more comprehensive understanding of the situations to act appropriately; (iii) this

work creates an abstraction in MCS to act in dynamic environments; (iv) urban computing is
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the field in which this problem is evaluated.

As such, this work intends to answer the following research questions:

• RQ1: How to model and develop intelligent agents to combine knowledge with multiple

representations following the Multi-Context Systems approach?

• RQ2: How to restrict the perceptual process based on a BDI agent’s internal representa-

tions of situations?

• RQ3: What has been the influence of smartphone in pedestrian’s situational awareness

on the vicinity of urban traffic?

1.2 OBJECTIVES

This section presents the objectives of the thesis.

1.2.1 General Objective

To develop a practical reasoning model for intelligent agents situated in a dynamic en-

vironment, following the multi-context systems approach, to handle heterogeneous overwhelm-

ing situational data.

1.2.2 Specific Objectives

• To define a framework for developing agents, giving flexibility to the reasoning in hetero-

geneous sources of knowledge;

• To measure the impact of smartphones in a pedestrian’s situational awareness;

• To identify perception prioritisation strategies according to the agent’s internal state;

• To analyse practical reasoning for heterogeneous representations of situations in dynamic

environments with limited resources.

1.3 RESEARCH METHOD

The Design Science Research gives the outline of this thesis. Design science can

be considered as a problem-solving paradigm. It consists of two main activities: build and

evaluate. The first one involves creating an artefact with a specific purpose, and the second one

determines the performance of this artefact (MARCH; SMITH, 1995; HEVNER et al., 2004).

Peffers et al. (2007), presents a design science research methodology, including six

activities:
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1. Problem identification and motivation. The problem formalisation is useful to develop

an artefact to create a solution. The motivation helps to understand the reasoning asso-

ciated with the problem of integrating heterogeneous data streaming in intelligent agents

decision making with limited resources situated in dynamic environments.

2. Definition of the objectives for a solution. Infer the objectives of a solution from

the problem specification rationally. Resources required for inferring objectives include

knowledge of the state of problems and current solutions.

3. Design and development. Create a design research artefact. It can be ‘any designed

object in which a research contribution is embedded in the design’. Resources required

for this include knowledge of theory to develop a solution.

4. Demonstration. Demonstrate the use of the design research artefact to solve one or more

instances of the problem. Resources required for this include adequate knowledge of how

to use the artefact.

5. Evaluation. Compare the objectives of a solution to actual observed results from use

of the artefact in the demonstration. This evaluation could include appropriate empirical

evidence or logical proof.

6. Communication. Communicate the problem, the artefact, its utility, its design, and its

effectiveness.

This research follows this methodology to investigate the problem presented. Iterations

are performed on activities 2 to 6, aiming to obtain solutions incrementally.

1. Iteration 1

• Objective: to define a framework for developing agents, giving flexibility to the rea-

soning in heterogeneous sources of knowledge; A resource to achieve this objective

are related works presented in section 3.1;

• Design and development: the creation of the Sigon framework;

• Demonstration: Section 4.4 presents a set of examples adding custom contexts to

show flexibility and heterogeneity in Sigon agents;

• Evaluation: Chapter 6 compares the results of the examples;

• Communication: Chapter 4 and paper (GELAIM et al., 2019b).

2. Iteration 2

• Objective: to measure the impact of smartphones in a pedestrian’s situational aware-

ness. Resources required for it is presented in Section 5.1;
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• Design and development: development of three experiments with human beings

interacting with smartphones in virtual reality urban environment;

• Demonstration: statistical analysis of the experiments are presented in Chapter 5;

• Evaluation and Communication: Chapter 5 and paper (GELAIM et al., 2019a).

3. Iteration 3

• Objective: to identify perception prioritisation strategies according to the agent’s

internal state; Section 3.2 analyses the literature of perception in BDI-like agents;

• Design and development: development of a perception model in an MCS-based

agent;

• Demonstration: application of the model in a Sigon agent. This is presented in

subsection 4.4.3;

• Evaluation and Communication: Chapter 6 and paper (FREITAS et al., 2020).

4. Iteration 4

• Objective: to analyse practical reasoning for heterogeneous representations of situ-

ations in dynamic environments with limited resources;

• Design and development: specification of an urban environment to evaluate the in-

tegration of the artefacts presented in iterations 1, 2 and 3;

• Demonstration: application of the model with Bayesian and Ontological represen-

tations in Sigon agents. This is presented in Chapter 6;

• Evaluation and Communication: Chapter 6.

1.4 ASSUMPTIONS, LIMITATIONS, AND SCOPE

This thesis focuses on the single-agent concept within the integration of heterogeneous

knowledge sources. In this sense, it is possible to draw a parallel between the model developed

in this thesis, Sigon, with programming languages and development platforms of BDI agents,

such as AgentSpeak and Jason (RAO, 1996; BORDINI; HüBNER; WOOLDRIDGE, 2007).

Sigon adds an abstraction according to the agent paradigm in an MCS, where the BDI model is

the basis for the agent’s abstract layer created for this thesis experiments.

This research is limited to the use of Sigon to combine situation knowledge in the

decision-making process, in which the BDI theory is simplified. Sigon’s implementation is still

a prototype, with a primary focus on how different knowledge representations affect the agent’s

reasoning. Therefore, it is assumed that comparing performance with other frameworks or other

BDI-like implementations is not adequate. As it is a prototype, the agent’s performance can be

improved.
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1.5 CONTRIBUTIONS

The work presented in this thesis constitutes a contribution to the following areas:

• The Sigon framework for modelling intelligent agents within heterogeneous knowl-

edge sources based on the MCS approach: Sigon is a framework for developing in-

telligent agents following RQ1 to combine heterogeneous knowledge sources. The BDI

agent model is the basis for the majority of experiments produced so far in Sigon. BDI is

suitable for resource-bounded reasoning (BRATMAN; ISRAEL; POLLACK, 1988) and

there are applications in several areas: healthcare (CROATTI et al., 2019), distributed

data mining (LIMÓN et al., 2019) and social simulations (ADAM; GAUDOU, 2016).

MCS is the ground of the Sigon framework; it is part of the Computational Logic, and

it allows reasoning under different formalisms. In this work, we focus on ontological

and Bayesian reasoning, but other approaches are possible. For example, Mello (2016)

implements a negotiation logic in Sigon Framework; in a seminal work, Eichstaedt et al.

(2019) investigates the use of sensors with neural networks to integrate with symbolic

reasoning in a Sigon agent.

• A situation awareness decision-making agent for urban environments: A situation

can be modelled under several representations, implying distinct forms of reasoning, such

as a Bayesian network (for reasoning about partial beliefs in the presence of uncertainty)

or an ontology (shared and detailed description of the domain). The agent can build

models for the situations relevant to its current intention. Once a situation is modelled

and associated with the agent’s intention, it is up to the agent’s perception mechanism

to prioritise or filter perceptions. Following RQ2, this thesis presents mechanisms and

experiments for reasoning under heterogeneous representations in an MCS agent. More

precisely, it shows how a resource-bounded device can handle an overwhelming percep-

tion in an urban environment.

• New understanding of pedestrians’ behaviour in urban environments when using

smartphones: The motivational application of this thesis is the use of a mobile device by

pedestrians in urban environments. It is an example of a resource-bounded computational

device acting in a dynamic environment. It had support from Royal Society International

Exchange Award Nr. IE150542 and is the motivation for RQ3. We developed three

experiments to analyse pedestrian situational awareness interacting with mobile devices.

They are presented in Chapter 5. Also, these studies corroborated in the development of

experiments for agents in dynamic environments with heterogeneous data.
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1.6 THESIS ORGANISATION

This thesis is organised as follows: Chapter 2 presents the main concepts related to

the research topic. Chapter 3 presents the related work in: (i) the use of MCS and agents;

and (ii) perception in BDI agents. Chapter 4 describes the model developed in this research

to combine heterogeneous knowledge sources and examples of the agent’s implementation.

Chapter 5 presents an experimental analysis of the use of mobile devices by pedestrians in

urban environments. In Chapter 6, experiments in the field of urban computing are presented,

including the knowledge of Chapters 4 and 5. Finally, Chapter 7 presents conclusions and future

works.
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2 BACKGROUND

This Chapter aims is to give the reader an understanding of the context surrounding

the work described within this thesis. Section 2.1 provides an overview of the terms context,

situation, and awareness. Section 2.2 gives a formal definition of MCS. Section 2.3 presents the

main properties of agents and environments. Section 2.4 defines urban computing.

2.1 CONTEXT, SITUATION, AND AWARENESS

The Oxford Dictionary defines context as ‘the circumstances that form the setting for

an event, statement, or idea, and in terms of which it can be fully understood’ 1. This is a broad

definition. Dey (2001, pag. 5) defines context according to the computer science perspective as

any information that can be used to characterise the situation of
an entity. An entity is a person, place, or object that is consid-
ered relevant to the interaction between a user and an application,
including the user and applications themselves.

This characterisation is widely accepted. However, some variations are found in the lit-

erature based on the application domain (SCHILIT; ADAMS; WANT, 1994; BROWN; BOVEY;

CHEN, 1997; BENERECETTI; BOUQUET; BONIFACIO, 2001; LI et al., 2015). Giunchiglia

(1993) defines the term context in an agent perspective as a partial and approximate theory. It

is a partial theory because the agent’s complete knowledge of the environment is the result of

all contexts, and is an approximate theory because the world is not fully described. We use

Giunchiglia (1993)’s definition in Chapter 4 to integrate heterogeneous knowledge sources us-

ing the Sigon framework, and Dey (2001) definition in Chapter 6 for testing agents in dynamic

environments.

The word situation is defined as ‘a set of circumstances in which one finds oneself; a

state of affairs’2. It is closely related to the term context. Mccarthy & Hayes (1969, pag. 18)

describe the word situation as ‘the complete state of the universe at an instant of time’. Based

on this definition, computer modelling of a situation is not feasible. In many cases, the goal is to

evaluate an individual’s situation with some environmental constraints. Artificial Intelligence

looks for ways to model situations based on different theories, mainly intending to develop

abstract contexts for reasoning about situations, such as Bayesian networks and ontologies.

The term Context-aware was presented in the early 90s by Schilit, Adams & Want

(1994, pag. 1) as a software that ‘adapts according to its location of use, the collection of

nearby people and objects, as well as changes to those objects over time’. Dey (2001, pag. 5)

describes a system as context-aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’s task. They are applied in different

1 https://www.lexico.com/en/definition/context
2 https://www.lexico.com/en/definition/situation
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domains, such as in recommender systems (VILLEGAS et al., 2018) and mobile applications

(CAPURSO et al., 2018).

Situation awareness (SA) is a term used to describe one’s attention to a certain situa-

tion. It is a state of knowledge (ENDSLEY, 1995). In this thesis, the experiments conducted

are based on Endsley’s definition of situation awareness (ENDSLEY, 1988, pag. 792). ‘Situ-

ation awareness is the perception of the elements in the environment within a volume of time

and space, the comprehension of their meaning, and the projection of their status in the near

future’.

This definition has three phases. The first level of SA is the perception of the situational

elements and their current states. A situational element can be an object, such as a white car

in the road’s left side at a certain speed, a person standing on the sidewalk, or a traffic light.

The second level is comprehension, it is the fusion of the main pieces of perceived situational

elements. For example, the pedestrian is standing on the sidewalk because the traffic light is

green, and there is a car approaching. The third level is the projection of the future actions of

the elements in the environment. The car will follow the road, the traffic light will become red,

and the pedestrian will cross the street. A poor SA can result in an accident.

Several factors can cause limited situational awareness, such as data overload, uninte-

grated data, automation, excess attention demands (ENDSLEY, 2016, pag. 58). The process to

achieve/aquire/maitain situation awareness is called Situation Assessment (ENDSLEY, 1995).

An appropriate SA is critical for various domains, such as air traffic control, education, and

driving (ENDSLEY, 2016, pag. 13).

Kokar, Matheus & Baclawski (2009) divide situation awareness for humans and for

computers. Endsley, Garland et al. (2000)’s model is usually referenced in both domains, but

with different views: ‘Human situation awareness process needs to be measured and possibly

supported’, ‘computer processes need to be defined and implemented’ (KOKAR; MATHEUS;

BACLAWSKI, 2009, pag. 83). Feng, Teng & Tan (2009, pag. 455) distinguish between sit-

uation awareness and context awareness. The first is about helping the user to be “aware of

his current situation” and the latter focuses on dynamically changing the system’s behaviour to

help the user to have a more effective interaction.

In this thesis, it is investigated the level of situational awareness of pedestrians in ur-

ban environments. A pedestrian situation awareness is modelled using Bayesian networks and

evaluated in section 6.2. Situations are computationally modelled in an agent using an ontol-

ogy according to the description of Kokar, Matheus & Baclawski (2009) about computational

situation awareness. It is presented in Section 4.4.1 and evaluated in an urban environment in

Section 6.3.

2.2 MULTI-CONTEXT SYSTEMS

Intuitively, a multi-context system allows representing knowledge in multiple contexts,

where a context Ci is constituted of a logical language Li, a knowledge base (set of axioms) Axi



35

and inference rules δi. Bridge rules, ∆br, are the mechanism to exchange information between

contexts. A bridge rule has two components: head and body. The head represents a context and

some fact to be added in it; the body represents the knowledge that needs to be held in a set of

contexts to add knowledge in the head context. For example,

C1 : ψ, C2 : ϕ

C3 : θ
(2.1)

means that when ψ is deduced in context C1 and ϕ is deduced in context C2 (the body), θ

is added to context C3 (head) (CASALI; GODO; SIERRA, 2005). This gives the ability of a

context to “learn” through the inter-context exchange (CABALAR et al., 2019).

A multi-context system is formally defined as:

Definition 2.1 (Multi-Context System (GIUNCHIGLIA; SERAFINI, 1994)). Let I be a set of

finite indexes, {Li}i∈I a set of languages, {Axi}i∈I a set of axioms, {δi}i∈I a set of inference

rules, and {Ci = 〈Li,Axi,δi〉}i∈I a set of contexts.

A Multi-Context System M is a pair 〈{Ci}i∈I,∆br〉, where {Ci}i∈I is the set of contexts and ∆br

is the set of bridge rules over M.

Managed MCSs (mMCSs)(BREWKA et al., 2011) is a generalisation allowing arbi-

trary (e.g. deletion, revision) operations on context knowledge bases. It addresses the problem

of integration of different knowledge representation formalisms, it is a reactive device and not

able to incorporate new data items, i.e., not suitable in dynamic environments. Related work

presented in Chapter 3 presents current approaches to overcome this issue.

2.3 AGENT

The definition of agent converges to be a particular software component, situated in an

environment and with the autonomy to accomplish its project goals (BELLIFEMINE; CAIRE;

GREENWOOD, 2007; WOOLDRIDGE, 2002, pag. 3). It is rational when it chooses to per-

form actions following its interests, i.e. maximising its performance criteria, considering the

beliefs it has about the world (WOOLDRIDGE, 2000). For example, if the agent is an au-

tonomous vehicle and its goal is to reach its destination safely, it is rational that it respects

traffic rules on the way.

The properties available in rational agents are: being situated in an environment,

autonomous, proactive, reactive and possessing social ability (WOOLDRIDGE; JENNINGS,

1995). Autonomy is related to the agent’s ability to perceive and act in the environment,

over time, according to its schedule and in order to affect what its will notice in the future

(FRANKLIN; GRAESSER, 1997). Proactivity is the ability to display behaviour directed at

achieving its goals. A reactive agent is capable of responding to changes in the environment.

Social ability is the ability to communicate at a level of knowledge, i.e. communicating beliefs,

goals, and plans (BORDINI; HüBNER; WOOLDRIDGE, 2007).
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The BDI is one of the main agents’ models found in the literature and is suitable for this

research. The decision-making process in a BDI agent is defined under the deliberation and the

means-end reasoning (WOOLDRIDGE, 2002). There are several architectures to describe the

working process in such an agent. One of the main architectures is the Procedural Reasoning

System (PRS), that is the basis for the language AgentSpeak(L) (INGRAND; GEORGEFF;

RAO, 1992; RAO, 1996). The semantics of AgentSpeak(L) is developed in the Jason interpreter

(BORDINI; HüBNER; WOOLDRIDGE, 2007), a framework for the development of agent and

multi-agent systems.

2.3.1 Agent’s Perception

The information about the current state of the environment is required for agent’s

decision-making. Perception of environmental situations allows the realisation or abandonment

of one’s goals. It transforms raw inputs into data according to the agent’s internal representation

to execute cognitive tasks (KOTSERUBA; TSOTSOS, 2018).

Perception usually can be active or passive. Active perception attempts to define pro-

cesses for data acquisition intelligently, and the agent plays the role of leading their perceptions

to the most relevant aspects of the environment; In passive perception, the agent does not de-

liberate on what to perceive (SO; SONENBERG, 2009; WEYNS; STEEGMANS; HOLVOET,

2004).

Active perception allows an agent to decide which environmental information is rele-

vant to his current goal or goals. This ability is essential for agents situated in dynamic envi-

ronments, including a large amount of information, several representations and inaccurate data

(SO; SONENBERG, 2009). Agent’s internal state defining which environmental data will be

perceived can decrease its reactivity since it requires reasoning about what is relevant. Thus,

this reasoning is applied to situations where the cost to it is smaller than adding all perceptions

in the agent’s beliefs (JR; PANTOJA; SICHMAN, 2018).

Bajcsy, Aloimonos & Tsotsos (2018) describe a complete framework to implement

active perception in agents, using a tuple: why, what, when, where and how to perceive. The

why component is the capacity of the agent to decide, based on the expectations that current

state generates, what its next actions might be. What is the process of choosing a subset of the

environment to sense. When describes when the perception is valid, and how long it should be.

In a broad sense, how to perceive is the set of actions that precede the observation itself. The

where to perceive component describes the needed position of the agent and its sensors.

2.3.2 BDI Agent as MCS

The development of BDI agents as MCS started with Parsons, Sierra & Jennings (1998)

work. The authors’ model has four contexts, one for each component of beliefs, desires, inten-

tions, and communication with the environment. These contexts can define three BDI archi-
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tectures through bridge rules: (i) strong realism, a cautious agent, ‘if an agent does not believe

something, it will neither desire nor intend it’; (ii) realism, an enthusiastic agent, ‘if an agent be-

lieves something, it both desires and intends it’ ; and (iii) weak realism, an agent between strong

and realism, it will not desire something if its negation is believed, will not intend something

if its negation is desired, and will not intend something if the negation is believed (PARSONS;

SIERRA; JENNINGS, 1998). In addition to these rules that describe the architecture, the au-

thors pointed that the agent may have specific rules according to application needs (PARSONS;

SIERRA; JENNINGS, 1998; PARSONS et al., 2002).

The graded BDI model as MCS (CASALI; GODO; SIERRA, 2005) enables beliefs,

desires, and intentions to be graded so that the agent can reason about uncertainty Graded beliefs

represent the credibility of the agent’s beliefs about the world. Graded desires, can be positive

or negative, where positive means what the agent wants and negative what it rejects or not

wants that became true. Graded intentions have the cost and benefices of an intention becoming

true. The model also briefly presents two functional contexts, planner, and communication. The

planner is responsible for building plans, and the communication is the agent’s communication

with the environment (CASALI; GODO; SIERRA, 2008; CASALI; GODO; SIERRA, 2011;

CASALI; GODO; SIERRA, 2009).

2.3.3 Environment

The environment in which the agent is situated is categorised as (RUSSELL; NORVIG,

2016): Fully observable if agent’s sensors are able to receive the complete environmental state

at any time, otherwise it is partially observable. Deterministic if the current state of the envi-

ronment and the agent’s action determine the next environment state, else it is stochastic. In an

episodic environment, the agent performs one action, and the next episode does not depend on

actions in previous episodes, on the other hand, a sequential environment, the current actions

can affect the future one. The distinction between a discrete and continuous is defined by how

time is handled, and the agent’s percepts and actions.

If the environment is dynamic, it can change while the agent is deliberating. On the

other hand, in a static environment, the agent does not have to pay attention to the environment

while deciding the next action. This feature of static environments simplifies the agent’s de-

liberation process, once there is no chance of a new state of the environment invalidating the

current reasoning. In a dynamic environment, the agent has to keep looking to perform a valid

action, and at the same time, it has to execute an action as soon as possible.

2.4 URBAN COMPUTING

Urban areas have an increasing potential in the use of devices to assess the situation of

the environment. At the environmental level, it is possible to evaluate congestion, air quality,

and fuel consumption (ZHENG et al., 2014). At the entity (agent) level, smartphones can play
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a relevant role in decision making for pedestrians or drivers, and the autonomous vehicles can

decide the next actions to be taken based on their sensors and information from nearby systems

(KUUTTI et al., 2018).

Urban computing is an interdisciplinary field that seeks to solve urban issues. It is

“a process of acquisition, integration, and analysis of big and heterogeneous data generated

by diverse sources in urban spaces, such as sensors, devices, vehicles, buildings, and humans,

to tackle the major issues that cities face” (ZHENG et al., 2014). The smartphone is one of

the technologies used in urban computing (SALIM; HAQUE, 2015) and is suitable for this

thesis case study. This thesis adopts a computational and psychological perspective of urban

computing. In the computational perspective, we use agents and MCS to study it, and in the

psychological, we apply the Endsley model to evaluate pedestrian’s situation awareness. Others

perspectives of urban computing, such as civil engineering and economics, are not evaluated.

2.5 STATISTICAL METHODS

Analyses described in Chapter 5 make use of analysis of variance (ANOVA) for hy-

pothesis testing. A hypothesis is a conjecture about the problem (MONTGOMERY, 2017,

pag.34). For each situation, we can have one, two or three independent variables, we specify

a null hypothesis (H0 : µ1 = µ2), an alternative hypothesis (H1 : µ1 6= µ2) and a significance

level (p-value). There are three primary assumptions in ANOVA: (i) independence of observa-

tions; (ii) normality of experimental errors; (iii) equal variances between treatments (QUEEN;

QUINN; KEOUGH, 2002, pag. 191). The first assumption is considered at the design stage,

the second was evaluated using the Shapiro-Wilks test for normality, and to verify the third

assumption we applied the Bartlett test for homogeneity of variances.

The Kruskal-Wallis is a non-parametric rank-based test. It is an alternative to the one-

way ANOVA. The test statistic H, representing the variance of the ranks among groups, is

evaluated by:

H =
12

N(N +1)

k

∑
i=1

R2
i

ni
−3(N +1) (2.2)

where N is the total number of observations in all k groups, ni is the number of observations

contained in the ith group, and Ri is the sum of ranks in the ith group. Under the null hypoth-

esis, H’s value follows an χ2 distribution with degrees of freedom of k−1 and significance α

(KRUSKAL; WALLIS, 1952).

The Pearson’s χ2 of Independence is a method for testing the significance of associa-

tions between two qualitative variables expressed in a contingency table, and to compare two or

more samples when the results of the dependent variable are in categories (BARBETTA, 2011).

The statistical test χ2 is measured from its expected frequency (E)

E =
(row total)× (column total)

(Grand total)
(2.3)
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as

χ2 = ∑
(O−E)2

E
(2.4)

where O is the number of observations in the cell, and E is the expected frequency in the

cell. Fisher’s exact test is an alternative to the χ2 test in analysing contingency tables when

the sample sizes are small (MCCRUM-GARDNER, 2008). The Cramer’s Phi coefficient is a

measure of association between categorical variables in a contingency table (SHESKIN, 1996,

pag. 678). The odds ratio is a measure of association representing the odds of an outcome given

an exposure (SZUMILAS, 2010).
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3 RELATED WORK

Intelligent agents situated in dynamic environments are likely to receive large volumes

of data and in different representations. Two essential abilities for the agent are (i) reasoning

in different formalisms and, (ii) if it is a system with limited resources, perceive the situation

related to its current goals. Section 3.1 presents a systematic literature review (SLR) for the first

premise under the Multi-Context System view. An SLR is ‘ a means of identifying, evaluating

and interpreting all available research relevant to a particular research question (KEELE et

al., 2007). Section 3.2 shows the main works on the topic of the second premise for BDI-like

agents.

3.1 MULTI-CONTEXT SYSTEMS AND AGENTS

Following the thesis objectives and the research question: “RQ1: How to model and

develop intelligent agents to combine knowledge with multiple representations following the

MCS approach?”, this section reports an SLR aiming to identify studies about the development

of agents and multi-context systems in dynamic environments. The SLR process presented in

this section is an adaptation of the guidelines proposed by Keele et al. (2007). Adaptations

are in the number of researchers reviewing papers (one), in the secondary study (not reported)

and the PICOC (Population, Intervention, Comparison, Outcome, Context) criteria (examining

Population and Intervention).

The search query is:

((“BDI” OR “beliefs-desires-intentions” OR “agent”) AND (“Multi-context”))

The search in all document was initially executed on July/2017 and the last update

on the May/2020. Initial searches are undertaken using the following digital libraries: Scopus,

ACM Digital Library, IEEE Xplore and SpringerLink. The next step had as inclusion criteria:

Last 10 years and in Computer Science.

Table 1 – Systematic Literature Review: Works from search and first selection stages.

Data Source Search Results 2011 - 2020 /CS

Scopus 407 191
ACM Digital Library 506 277
IEEE Xplore 117 75
SpringerLink 296 99

Source: The author.

642 works remain after the first exclusion criteria. Table 1 shows the result of these

stages. In the subsequent step, duplicates and the “ Table of contents ” were removed, resulting

in 497 documents. In the next stage, all abstracts and all relevant works were evaluated. In this

round, the exclusion criteria are:
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Dao-Tran & Eiter (2017) introduce Streaming MCS (sMCS) a proposal to add time in

mMCS to handle dynamic data. The main idea is to keep continuously receiving input from

other contexts, compute, and then send output to other contexts. This approach extends bridge

rules with window atoms for snapshots of input streams at contexts.

Cabalar et al. (2019) present timed MCS (tmMCS) a formal extension of MCS for prac-

tical use in dynamic environments (CABALAR; COSTANTINI; FORMISANO, 2017). The

main feature is the notion of action as operations that can be performed to update a context.

The base application is a smart Cyber-Physical Systems for the e-Health field. In such a setting,

there are a set of computational entities, knowledge bases, and sensors, all immersed in the IoT.

In the e-Health application, an agent is in charge of each patient, and it interacts with other

computational entities, with the patient, and with the environment. Ontologies are mechanisms

allowing more flexible knowledge exchange.

In this thesis, the MCS is the basis of a single-agent model. The agent is developed

as an abstraction layer in an MCS, being this the main difference from these related works.

In a distributed MCS and multi-agent, it is essential to know which context can query which

one, in a single agent, this role is defined by the agent’s model. In this work, controlling

information exchange with the heterogeneous and dynamic environment is a task achieved by

a communication context. There are specific bridge rules to connect received information from

the communication context to the context that should get this data.

3.1.2 BDI Agents as MCS

Parsons, Sierra & Jennings (1998), Parsons et al. (2002)’s and Casali, Godo & Sierra

(2005)’s research represent the foundation for the main works of BDI agents as MCS. Section

2.3.2 presents a discussion of them. Despite the last graded BDI agent as MCS presented by

Casali, Godo & Sierra (2011) be from 2011, it is also shown in the background Chapter.

Zhang et al. (2012) present a formal graded BDI agent model based on MCS to ex-

plicitly represent the uncertainty of beliefs, desires and intentions. Pinyol et al. (2012) take as

the starter MCS BDI agent, the Casali, Godo & Sierra (2005)’s approach for integrating a rep-

utation context in BDI agents. The agent can employ probabilistic reasoning in beliefs context.

Koster, Schorlemmer & Sabater-Mir (2013) propose a method for integrating trust models (an

algorithm to calculate a trust evaluation) into an MCS BDI agent. Criado et al. (2014) define

an MCS normative BDI agent (n-BDI) based on Casali, Godo & Sierra (2005) approach al-

lowing agents to reason about norms under uncertainty in dynamic environments (CRIADO;

ARGENTE; BOTTI, 2011). An n-BDI agent has two normative contexts: one for all norms

which are valid at a given moment, and one for relevant norms at a specific moment. To reason

about norms and its probabilities, bridge rules are proposed in the perception and deliberation

phases. Othmane et al. (2016), Othmane et al. (2017) propose a BDI agent as MCS being mo-

tivated in Parsons, Sierra & Jennings (1998) and Casali, Godo & Sierra (2005) work to act as a

recommender system. Plans and intentions are described using ontologies, and there are specific
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contexts to the agent’s goals and social capabilities. Fuzzy sets are defined for representing and

reasoning about spatial-temporal knowledge in recommendations (OTHMANE et al., 2018).

IATE’s research group of the Federal University of Santa Catarina presents two main

works about agents as MCS. Gelaim, Silveira & Marchi (2015) add contexts for emotions and

trust in a multi-context BDI agent following Casali, Godo & Sierra (2005) approach. Mello,

Gelaim & Silveira (2019) create a negotiation context in an MCS-based BDI agent following

Gelaim, Silveira & Marchi (2015) work.

Works in BDI agents as MCS show the potential for flexibility in the agent’s rea-

soning. It shows the capability to add different theories, such as trust, reputation, norms,

emotions and negotiation in reasoning through bridge rules (PINYOL et al., 2012; CRIADO

et al., 2014; KOSTER; SCHORLEMMER; SABATER-MIR, 2013; GELAIM; SILVEIRA;

MARCHI, 2015; MELLO; GELAIM; SILVEIRA, 2019). To explore this potential in the cre-

ation of different components, the model developed in this thesis allows the combination of

various capabilities in a single agent.

Although various works attempt to illustrate how to develop such models, the liter-

ature’s solution is somewhat limited to a descriptive set of examples or simulations in the

NetLogo environment (OTHMANE et al., 2018). Casali, Godo & Sierra (2013) described a

language for the execution of graded BDI agents under uncertainty and dynamic environments.

Their work proposed a multi-context calculus (MCC), based on ambient calculus (CARDELLI;

GORDON, 1998) to describe the language. In Sigon language, we enable the developer to

create other agents than only graded BDI ones and others agent architectures as well. It is,

therefore, more flexible. Also, we present a framework for the implementation of agents.

It is important to note that none of the BDI agents as MCS evaluates how to perceive

heterogeneous data in a dynamic environment. Perceptions is part of the process that involves

understanding the situation in order to act appropriately. Also, there is more than one way to

represent a situation, for example, using ontologies or Bayesian networks.

3.1.3 Implementing/Practical MCS Agents

Bikakis, Antoniou & Hasapis (2011) propose a distributed approach for reasoning in

Ambient Intelligence environments based on MCS. The authors apply preferences to express

the confidence that an agent (a context in the MCS) has in the knowledge imported by other

agents. Le, Son & Pontelli (2018) have a similar approach modelling each agent as a context

to express its preferences in an MCS. The work presents a ranked logic for representing and

reasoning about multi-agents preferences.

Agent Computational Environment (ACE) is a software engineering approach for de-

signing modular intelligent logical agents (COSTANTINI, 2015) using MCS. An agent in the

ACE framework is composed by (i) the ‘main’ agent program; (ii) Event-Action modules; (iii)

external contexts in order to gather information. The main agent program is independent of

the Agent-Oriented Programming (AOP) language. The aim to integrate MCS and AOP. In this
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sense, bridge rules are a device for interaction and knowledge integration among an agent and

modules (contexts) that are components able to perform a task or respond to queries (COSTAN-

TINI; GASPERIS, 2016). Costantini & Formisano (2018) enable ACEs to choose the modules

to use dynamically. The authors also create a new generalisation called K-ACE (COSTANTINI;

PITONI, 2019) to gather and organise agents, components and sub-systems.

Haque & Khan (2018) develop a context-aware reasoning framework, following MCS

approach which extracts the set of rules derived from heterogeneous knowledge sources, to

model and verify interesting properties of a multi-agent system (HAQUE; RAKIB; UDDIN,

2017). The work incorporates mapping rules using the notion of contextual defeasible reason-

ing.

Uddin et al. (2018) present a conceptual framework and multi-agent model based on

MCS for context-aware decision support in dynamic environments. According to the authors,

each context-aware agent is a context with a set of bridge rules in the MCS. The work also

incorporates users’ preferences and provides personalised services. A context is defined in two

levels: (i) to model heterogeneous systems, and (ii) as a subject, predicate and object triple.

Bögl et al. (2010) present a multi-context plugin for semantic evaluation and inconsis-

tency explanation in DLVHEX systems (a logic-programming reasoner, which is an extension of

answer set programming with external atoms and higher-order features, where heterogeneous

knowledge bases are linked via nonmonotonic rules (REDL, 2016)). In their work, there is no

description of the development of agent architectures such as the BDI. It is work before 2011,

but applicable in recent works (REDL, 2016).

In this thesis, the main aim is to evaluate a single agent’s perspective as MCS and

not as a multi-agent system. Several contexts, or modules, can be defined to express agents

capabilities, such as beliefs, desires, and intentions or agent’s knowledge representation for

situations such as ontologies and Bayesian networks. Bridge rules have the role of defining the

agent’s behaviour. This distinction in the role of MCS in the dynamic environment gives more

autonomy and context-awareness for agents, but at the same time may increase the time to act.

Table 2 presents the comparison of related works considering MCS in dynamic envi-

ronments, BDI agents as MCS and Implementing and practical MCS. The related works are or-

ganised according to the following numbering: 1. (BREWKA; ELLMAUTHALER; PüHRER,

2014), 2. (ELLMAUTHALER; PüHRER, 2014), 3. (GONÇALVES; KNORR; LEITE, 2014;

GONÇALVES; KNORR; LEITE, 2015), 4. (DAO-TRAN; EITER, 2017), 5. (CABALAR et

al., 2019; CABALAR; COSTANTINI; FORMISANO, 2017), 6. (PARSONS; SIERRA; JEN-

NINGS, 1998; PARSONS et al., 2002) 7. (CASALI; GODO; SIERRA, 2011), 8. (ZHANG

et al., 2012), 9. (PINYOL et al., 2012), 10. (KOSTER; SCHORLEMMER; SABATER-MIR,

2013) 11. (CRIADO et al., 2014; CRIADO; ARGENTE; BOTTI, 2011), 12. (OTHMANE

et al., 2016; OTHMANE et al., 2017; OTHMANE et al., 2018) 13. (GELAIM; SILVEIRA;

MARCHI, 2015), 14. (MELLO; GELAIM; SILVEIRA, 2019) 15. (BIKAKIS; ANTONIOU;

HASAPIS, 2011), 16. (LE; SON; PONTELLI, 2018) 17. (COSTANTINI, 2015; COSTAN-

TINI; GASPERIS, 2016; COSTANTINI; FORMISANO, 2018; COSTANTINI; PITONI, 2019),
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18. (HAQUE; KHAN, 2018; HAQUE; RAKIB; UDDIN, 2017) 19. (UDDIN et al., 2018).

Table 2 – Comparison of the state of the art.

Work Approach Purpose Perception

MCS in
dynamic

environments

1 rMCS heterogeneous reasoning bridge rules
2 aMCS heterogeneous reasoning computation controller

3
Evolving
MCS

heterogeneous reasoning observation contexts

4 sMCS heterogeneous reasoning window atoms
5 tmMCS heterogeneous reasoning observation contexts

BDI agents
as MCS

6
Single agent
as MCS

negotiation, realisms passive

7
Single agent
as MCS

graded BDI passive

8
Single agent
as MCS

graded BDI passive

9
Single agent
as MCS

reputation and norms passive

10
Single agent
as MCS

trust models passive

11
Single agent
as MCS

norms, uncertainty passive

12
Single agent
as MCS

recommender system passive

13
Single agent
as MCS

emotions and trust passive

14
Single agent
as MCS

negotiation passive

Implementing/
practical

MCS

15
multi-agent
as MCS

preferences *

16
multi-agent
as MCS

preferences *

17
agent
and MCS

heterogeneous reasoning *

18
multi-agent
as MCS

context-aware reasoning *

19
multi-agent
as MCS

context-aware reasoning *

This

work

Single agent
as MCS

heterogeneous reasoning,
single-agent development

active

Source: The author. (* Application or bridge rules.)
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3.2 PERCEPTION AND BDI AGENTS

The systematic literature review presented in section 3.1 indicates that there are MCS

for continuous online reasoning in dynamic environments (BREWKA et al., 2018). However,

there is no work doing this for MCS BDI agent restricting the perception process. This is

a relevant feature to handle heterogeneous data in agents and related to the second research

question. The RQ2 is “ how to restrict the perceptual process based on a BDI agent’s internal

representations of situations?”

Relevant researches of perceptions in BDI agents are selected to formulate a perception

model in a BDI agent as MCS. The first step in the selection process was to find works related

to RQ2. The second step was to read the papers citing the selected papers. The last step was to

read the works in the citation list of related papers of previous steps. The source to perform the

search was Google Scholar.

Rodriguez & Favela (2008) describe an agent middleware for ubiquitous computing in

healthcare with heterogeneous data sources. The main goal is to facilitate the development of

autonomous agents in such a situation. The agent’s life cycle reasoning is described based on

perceiving, reasoning and acting. The perception component has the premises of passive and

active perception. The passive perception is based on the Observer design pattern (GAMMA

et al., 1995, pag. 326). Data sent from a device, agent or user is observed from the perception

component, and action is taken according to the information received. Active perception im-

plements the Adapter design pattern (GAMMA et al., 1995, pag. 157). An agent decides when

to perceive using actions to get information from a sensor or device. The component reasoning

has an abstract method think() that should be implemented by the developer. The component of

action also has abstract methods to implement agents’ actions.

In the work of van Oijen and Dignum (OIJEN; DIGNUM, 2011) it is presented a

framework to perceptual attention for BDI agents. Ontologies are used to model the information

coming from the environment to semantic sensory information. With that, the perceptions can

be filtered accordingly to the agent’s objectives. Besides, it can dynamically change the filter

according to the current objectives.

Cranefield & Ranathunga (2015) propose a design for an agent percept buffer to sim-

plify the perceived information from external systems, especially those producing high-frequency

streams. The agent’s percept buffer has the assignment of receiving perceptions from the

environment and delivering them to a ‘configurable percept management policies’. Three

application-independent policies are presented: Keep the latest percept, keep the latest with

history and keep most significant.

In Dötterl et al. (2018) approach, the perceptual process is driven by the agent’s expec-

tations — agent’s subjective attitude towards percepts, and interpretations — detect higher-level

knowledge in low-level percept streams. The agent behaviour has two main components: (i)

a percept pattern using the SQL-inspired SELECT-FROM-WHERE structure; (ii) specification

of the action to be executed when a pattern match occurs. The goal is enabling mobile agents
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to perceive higher-level knowledge in low-level streaming data.

Jr, Pantoja & Sichman (2018) describe a perception mechanism removing percepts that

the agent is not interested in based on filters. When the agent’s intentions change, an agent’s

internal action has the role of changing the perception filter. A filter is defined in an XML file

and the Jason interpreter (BORDINI; HüBNER; WOOLDRIDGE, 2007).

In a broad sense, we find in literature two classes of related work: models of percep-

tion for Intelligent Agents, and filtering perception in BDI agents (SO; SONENBERG, 2009;

WEYNS; STEEGMANS; HOLVOET, 2004; BAJCSY; ALOIMONOS; TSOTSOS, 2018; OI-

JEN; DIGNUM, 2011; CRANEFIELD; RANATHUNGA, 2015; DÖTTERL et al., 2018; JR;

PANTOJA; SICHMAN, 2018). In this thesis, we enable active perception in the MCS agent ar-

chitecture. Rodriguez & Favela (2008) have a conceptual view similar to this work but without

a formal representation in heterogenous knowledge sources and an explicit relationship between

active perception and current intention. Oijen & Dignum (2011) use an interface between the

agent reasoning and the perception, while in this work, this is integrated with the agent’s rea-

soning. Also, the use of ontologies has different purposes, van Oijen and Dignum use it to filter

perception, and we use first to create situations and then filtering data. Cranefield & Ranathunga

(2015) have a focus on perception policies (bottom-up), and this thesis has a focus on the agent’s

goals (top-down). However, we also use perception policies once they are complementary. Döt-

terl et al. (2018) have an expectations/interpretations approach of perception and reasoning, and

in this thesis, we have an active perception and heterogeneous representation of situation ap-

proach. Jr, Pantoja & Sichman (2018) have a Jason agent approach with internal action and

filtering and we use Sigon (and MCS) with agent’s internal representation of situations and

agent’s plans.

3.3 SUMMARY

This thesis work fuses the theories in the fields of MCS and intelligent agents. One of

the main characteristics of MCS is the ability to connect heterogeneous knowledge sources. The

RSL shows recent efforts to adapt MCS in dynamic environments where it is crucial to adapt

contexts according to heterogeneous data streaming, confirming this thesis study’s relevance.

Chapter 4 shows a framework for the development of intelligent agents as MCS.

The literature of agents based on BDI theory presents recent work for the processing of

perceptions. These efforts are still limited when talking about large volumes and heterogeneous

data. Also, there no approach to evaluate the perception processing of agents modelled as MCS.

In section 4.4.3, we present a multi-context active perceiver agent, and in Chapter 6, we evaluate

this agent.
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4 SIGON: A MULTI-CONTEXT SYSTEM FRAMEWORK FOR INTELLIGENT

AGENTS

Sigon 1 is a framework aiming at the development of agents based on MCS. The main

focus is on BDI-like agents, but Sigon enables the development of other deductive-based agent

architectures. The key factor in developing different models is the correct definition of bridge

rules, which describe the relationship between contexts, thus defining the agents’ components

(GELAIM et al., 2019b).

This Chapter aims to describe the Sigon framework. The language specification is

based on multi-context systems and on BDI multi-context agent models found in the literature,

as presented in section 3.1. Section 4.1 presents the definition of agents as MCS. In Section

4.2, we define the grammar rules for representing the Sigon language. Section 4.3 describes the

main elements of the framework that implements Sigon language. In Section 4.4, we present

four examples of reasoning flexibility in Sigon agents.

4.1 SIGON AGENT MODEL

One of the main objectives in creating Sigon is to facilitate the development of MCS-

based agents, in which the developer can add components and describe the relationship between

them. This flexibility is relevant in two main aspects: describing situations in different repre-

sentations and extending the agent’s architecture. A Sigon agent is defined as:

Definition 4.1 (Sigon Agent). Let AG be an agent. AG is defined as:

AG = 〈CC∪
n
⋃

i=1

Ci,∆br〉 (4.1)

where CC is the Communication Context. Ci with 0 ≤ i ≤ n are the n contexts representing

agent’s capabilities/knowledge sources. A bridge rule br j ∈ ∆br is a rule exchanging knowledge

between contexts.

The communication context (CC) is the interface between the agent’s internal state

and the environment. In its most basic form, a Sigon agent is reactive, mapping perceptions

to actions using only CC. In this sense, any other agent’s capability is optional and defined

according to domain demands.

CC is composed of a set with sensors and actuators. A sensor Si is an ordered pair

Si = (ω,ξ ), (4.2)

where ω is the sensor identifier, and ξ is a function mapping an observation to a perception.

The function’s behaviour is domain-dependent, allowing both the creation of symbolic sensors,

1 The ability to choose what sign (Sig) will be put into operation (on).



50

e.g. a query in an ontology, and non-symbolic sensors, such as a neural network for mapping

image objects to tokens (FREITAS et al., 2020; EICHSTAEDT et al., 2019).

An actuator A j is formalised as an ordered pair

A j = (ρ,λ ), (4.3)

where ρ is the actuator identifier, and λ is the action to be performed. For a reactive agent, it is

necessary to map perceptions to actions:

CC : sense(ϕ)

CC : action(ρ)
(4.4)

where sense(ϕ) is the resulting perception from a sensor Si, and action(ρ) is the action to be

executed when ϕ is perceived. CC is defined as:

Definition 4.2 (Communication Context). Let CC be the Communication Context:

CC = 〈
n
⋃

i=1

Si ∪
m
⋃

j=1

A j〉, (4.5)

where Si with 1 ≤ i ≤ n are the agent’s sensors, and A j with 1 ≤ j ≤ m are its actuators.

The Planner Context is the other specific context in Sigon. It has the task of creating

and controlling plans execution. In the literature, the Planner Context consists of two main

components: actions and plans. In Sigon, we define these elements as presented by Casali,

Godo & Sierra (2005). An action is defined as

action(λ , γ, ζ ,ca) (4.6)

where λ is the name of the action. γ are preconditions of the action, i.e., things that must be

true before the action execution. ζ are the postconditions, that is, what the agent will believe to

be true after the action execution of λ . ca is the cost to execute this action. A plan is defined as

plan(ψ,β , γ, ζ ,ca) (4.7)

where ψ is a postcondition representing what the agent beliefs to be true after the plan execution.

β is the action or the set of actions the agent must execute to achieve the plan. γ is a set of

preconditions of the plan. ζ is a set of postconditions. ca is the cost of the plan execution. This

plan construction is a variation on the work of Casali, Godo & Sierra (2005), since there is not

a certain degree of plan achievement. We denote the set of all defined plans by P.

Definition 4.3 (Planner Context). Let PC be the Planner Context. PC is defined as:

PC = 〈
n
⋃

i=1

Aci ∪
m
⋃

j=1

Pj〉, (4.8)
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where Aci with 1 ≤ i ≤ n are the set of agent’s actions, and Pj, with 1 ≤ j ≤ m the set of plans.

According to this thesis scope, the planner context is a predefined collection of plans

specified by the developer. This approach is common in many implemented practical reasoning

agents (WOOLDRIDGE, 2009, pag. 75). However, planning algorithms can use actions pre/-

postconditions to create a plan able to achieve an agent desire/intention. In this sense, LaValle

(2006) present a wide variety of planning algorithms.

The other agent’s contexts are defined as:

Definition 4.4 (Context). Let C be a context. C is defined as:

C = 〈L,Ax,δ 〉, (4.9)

where L is the context’s language, Ax is the set of axioms, and δ are the inference rules. A

context can be built based on propositional, first-order, dynamic, and probabilistic logic.

The knowledge exchange between contexts is done declaratively through bridge rules.

The model does not impose any rules, allowing the developer to specify the contexts and relate

them according to application requirements. The structure of bridge rules follows the literature,

with a context to add a belief (head) based on knowledge from other contexts (body). For

example:

C1 : ψ, C2 : ϕ

C3 : θ
(4.10)

describes the addition of θ in C3 (head), when ψ and ϕ are deduced respectively in C1 and C2

(body).

The complexity of a Sigon agent depends on its contexts. If all contexts complexity are

in P, the consistency checking is NP. Eiter et al. (2014) presents the complexity of consistency

checking of standard knowledge-representation formalisms in MCS.

4.1.1 A BDI Agent in Sigon

As presented in Chapter 1, BDI agents are the base model to analyse the use of hetero-

geneous data streaming in this thesis. Therefore Sigon has a predefined BDI agent:

AGBDI = 〈{CC,BC,DC, IC,PC},∆br〉 (4.11)

where CC is the Communication Context as presented in definition 4.2, PC is the Planner Con-

text following definition 4.3, and BC, DC, IC are Logic Contexts for beliefs, desires, and in-

tentions according to definition 4.4 and ∆br are the bridge rules presented in 4.12.
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∆br = {

CC : sense(ϕ)

BC : ϕ

DC : ϕ and BC : not ϕ and IC : not ϕ

and PC : plan(ϕ,β ,γ,ζ ,ca)

IC : ϕ

PC : plan(ϕ,β ,γ,ζ ,ca)

and IC : ϕ and BC : γ

CC : β

}

(4.12)

The reasoning of this agent follows the approach defined by RAO (1995). First, the

agent perceives the environment and update its beliefs (BC). Then the agent decides which

intention (IC) it may achieve based on what it beliefs (BC), in its desires (DC) and the plans

(PC) it has to fulfil the desires. The last step of the reasoning cycle is to choose one action

to be executed (CC) based on agents’ intentions, plans and beliefs. The agent can execute a

plan if all the preconditions are deduced in its beliefs. This BDI-based reasoning is a simple

example, in which the agent does not have many abilities, such as create new desires. Each

context has its machinery for reasoning, and the bridge rules have the role of integrating the

knowledge and controlling the reasoning steps. Also, the agent may have other bridge rules,

adding other knowledge representation or capabilities. Subsections 4.4.1, 4.4.2, 4.4.3, and 4.4.4

present more complex examples.

4.2 SIGON LANGUAGE

In this section, the key elements of the Sigon language are described. The goal is to

create an abstraction in MCS according to AOP. An agent is built mandatory from the Commu-

nication context, and it can have other contexts and bridge rules. The grammar rule in equation

4.13 describes this specification.

agent : communicationContext (context | bridgeRule)∗; (4.13)

Sigon has two groups of contexts: functional and logical. Functional contexts have

specific roles for an agent, they are the Communication — an interface with the environment;

and the Planner — a set of plans and actions. A logical context may represent a mental state,

such as beliefs, desires, and intentions, or represent a situation with specific semantics.

Studies in this thesis are based on BDI agents. In this sense, Sigon has a structure to

develop this agent model. All other contexts or agents’ capabilities that are not Belief, Desire,

Intention, Communication, and Planner, are defined in the agent’s grammar as custom contexts.

In equation 4.14 it is presented the structure of contexts according to Sigon language. It is
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important to note that the grammar enables a context to be called many times in different agent’s

code points. For example, the developer can call the Intention context and add some intentions,

call the Planner context to add plans related to these intentions, and then call the Intention

context and repeat the strategy. The main idea is to abstract MCS and developing thinking in

the agent’s capabilities.

context : logicalContext | functionalContext;

logicalContext : logicalContextName ‘:’ formulas;

functionalContext : communicationContext | plannerContext;

communicationContext : COMMUNICATION ‘:’ sensor+ actuator+;

plannerContext : PLANNER ‘:’ plansFormulas;

logicalContextName : primitiveContextName | customContextName;

primitiveContextName : BELIEFS | DESIRES | INTENTIONS;

customContextName : ‘_’ (LCLETTER|UCLETTER)+ character∗;

(4.14)

The structure to represent a knowledge fact in a logical context is a formula, which is

a propositional or first-order clause or a logical expression. In all cases, there is the possibility

to add the classical negation and the negation as failure. Sigon grammar permits graded values

and appending an action to a clause, and this representation is used in the graded BDI of Casali,

Godo & Sierra (2005). But, a Sigon agent may have graded values in other contexts, such as

a Bayesian context to represent a situation. Rules presented in 4.15 show these components of

the grammar.

formulas : (term ‘.’)∗;

term : negation? constant (annotation | (‘(’atom(‘,’ atom)∗ ‘)’)annotation?)?

| term(AND | OR) term

| ‘[’term (‘,’ term)∗ ‘]’)

| term ‘:-’ term;

annotation : (preAction gradedValue?) | gradedValue;

gradedValue : ‘->’ (ZERO.NUMERAL | ONE);

(4.15)

Agent’s sensors and actuators are represented in the Communication context according

to equation 4.16. Each sensor/actuator has an identifier, which can be called by bridge rules by

other contexts, and a path to its implementation.

sensor : SENSOR ‘(’sensorIdentifier‘,’ sensorImplementation‘)’‘.’;

actuator : ACTUATOR ‘(’actuatorIdentifier‘,’ actuatorImplementation‘)’‘.’;
(4.16)
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In the Planner context, the agent has a set of plans and actions. For a plan or an action

to be executed, preconditions must be satisfied. A Sigon agent may have an empty precondition

if the environment’s condition is irrelevant to its execution. Plans and action have the option

to add a cost to its execution. This is similar to Casali, Godo & Sierra (2005) work, in which

the degree of beliefs are factors in achieving a plan. A Sigon agent has the rule ‘operator’ to

describe the possibilities of adding and removing clauses for postconditions. Another important

aspect of a plan is its invocation. The goal of a plan execution is to get something to be true. In a

BDI perspective, this is represented by intentions. The structure of Planner context is presented

in equation 4.17.

plansFormulas : ((plan | action) ‘.’)∗;

plan : PLAN ‘(’somethingToBeTrue‘,’ compoundAction

(‘,’ planPreconditions‘,’ operator? planPostconditions)?

(‘,’ cost)?‘)’;

action : ACTION ‘(’functionInvocation‘,’

(actionPreconditions‘,’ operator? actionPostconditions)?

(‘,’ cost)?‘)’;

(4.17)

The last main component of Sigon language, as in MCS, are the bridge rules. In an

agent, a bridge rule starts with the symbol ‘!’ and the head and body are separated by the symbol

‘:-’. The head context will add a knowledge fact if all the conditions in the body are satisfied.

The key elements of the grammar for bridge rules are presented in 4.18. The complete grammar

is presented in Appendix A.

bridgeRule : head ‘:-’ body‘.’;

head : ‘!’ negation? contextName (clause | negation? variable);

body : negation? contextName ((clause | negation? variable) | plan)

((AND | OR) negation? contextName (

(clause | negation? variable) | plan))∗;

(4.18)

4.2.1 An Urban Agent in Sigon

To exemplify the Sigon syntax, consider the following example: an agent in the smart-

phone of a pedestrian situated in an urban environment. The main goal of this agent is to keep

the user safe. To achieve it, the agent keeps observing the traffic flow and smartphone usage

through five sensors: three to get information from smartphone device (screen, headphone, and

GPS), one to communicate with vehicles (vehicle), and one to do a query in an ontology base

(query). It is important to note that all sensor have their own update rates and all information

perceived may be added to the agent’s beliefs.
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In the Belief context, the agent has the current status of the screen, microphone, head-

phone, GPS, a safe distance from cars (safe(radius, 10)), and information about cars based on

this distance. This agent has 2 desires (safe(user), aware(user)), two intentions (safe(user),

do(something)), and 4 plans (3 to achieve safe(user), and one to achieve do(something)). This

agent has a specific bridge rule to add a belief about a car based on the distance between the car

and the smartphone. Listing 4.1 presents the code for this agent.

Listing 4.1 – The main status of an agent in an urban environment

1 communication:

2 sensor("screen" , "perceptionExperiment .SmartphoneSensor").

3 sensor("headphone", "perceptionExperiment .SmartphoneSensor").

4 sensor("gps" , "perceptionExperiment .SmartphoneSensor").

5 sensor(" vehicle " , "perceptionExperiment .MessageSensor").

6 sensor("query" , "perceptionExperiment .OntologySensor").

7

8 actuator("blockHeadphone", "perceptionExperiment .BlockActuator") .

9 actuator("blockScreen" , "perceptionExperiment .BlockActuator") .

10 actuator(" notifyDriver " , "perceptionExperiment . NotifyActuator") .

11 actuator(" textNotification " , "perceptionExperiment . NotifyActuator") .

12 actuator(" audioNotification " , "perceptionExperiment . NotifyActuator") .

13 actuator("do", "perceptionExperiment .Something").

14

15 // This bridge rule add in beliefs a car W if it is in the notification region

T.

16 ! beliefs car (W, T) :− beliefs smartphone(gps, X, Y, Z) &&

17 beliefs safe ( radius , S) &&

18 communication car(W, X1, Y1, Z1) &&

19 communication distance (T, S, X, Y,Z, X1, Y1,

Z1).

20 beliefs :

21 smartphone(screen , off ) .

22 smartphone(gps, 0, 0, 0) . // Simplification coordinate x, y and z.

23 smartphone(microphone, off ) .

24 smartphone(headphone, off ) .

25 safe ( user ) .

26 car (myCar, far ) .

27 // minimum distance between the agent and other entity

28 safe ( radius , 10) .

29

30 desires :

31 safe ( user ) .

32 aware(user ) .
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33

34 intentions :

35 safe ( user ) .

36 do(something) .

37

38 planner :

39

40 plan(do(something) ,

41 [action (do(something)) ],

42 [do(something) ],

43 _) .

44

45 plan( safe ( user ) ,

46 [action ( audioNotification ( user , audio) ) , action (blockHeadphone(true)) ],

47 [ car (_, close ) , smartphone(headphone, on) , smartphone(screen , off ) ],

48 [smartphone(headphone, off ) ]) .

49

50 plan( safe ( user ) ,

51 [action ( textNotification ( user , text ) ) , action (blockScreen( true ) ) ],

52 [ car (_, close ) , smartphone(screen , on) , smartphone(headphone, off ) ],

53 [smartphone(screen , off ) ]) .

54

55 plan( safe ( user ) ,

56 [action ( notifyDriver (X, yes) ) ],

57 [ car (X, close ) , smartphone(screen , on) , smartphone(headphone, on) ],

58 _) .

4.3 SIGON FRAMEWORK

This section presents the key features developed in the current version of Sigon2. The

structure is divided into two main modules: (i) the parser module — the transformation of

agents’ source code into an executable object; and (ii) the agent module built of contexts and

bridge rules. Each bridge rule can add, remove or update knowledge in only one context at a

time. Also, the order in which bridge rules are presented describes the agents’ reasoning cycle.

ANTLR (ANother Tool for Language Recognition) (PARR, 2013) is the parser generator used

to implement the language. It generates recursive-descent parsers from Sigon grammar rules.

The agent source code is defined in text files with the extension ‘.on’. The parser

module performs lexical and syntactical analysis in the source code. The result of this process

creates the agent as an object and it is executed by the agent module (GELAIM et al., 2019b).

2 https://github.com/sigon-lang/sigon-lang
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4.3.1 The Agent Module

An agent’s context has a unique name, a theory, methods for checking, updating, re-

moving its theory, and a set of internal inference rules. This makes possible to create contexts

with specific characteristics. A bridge rule consists of a data structure that contains a head

proposition or its negation, and a body. The head has a term or variable and a context refer-

ence; the body is recursively composed of contexts with clauses and the connectors and and or.

Each context is established on inner rules of inference, that is, on its own theory. Furthermore,

each bridge rule performs reasoning in a larger scope of theories between different contexts

(GELAIM et al., 2019b).

The sequence of bridge rules defines the agent’s reasoning. This implies in preferences

on queries/updates/addition in contexts. It is also important to note that at a specific reasoning

cycle, a bridge rule is able to update several knowledge facts in a context, but only one action

in the environment is taken. Another relevant feature is concerning the sequential execution of

bridge rules, enabling algorithms’ creation to define the agent’s architecture.

Sensors and actuators are developed in the communication context and provide an

interface for integration with the environment. They are low coupling structure with the en-

vironment. This enables the agent to create sensors and actuators to integrate with different

knowledge representations. However, the result of a sensor perception must be a literal accord-

ing to agents’ contexts. An actuator is an abstract object able to handle the result of a reasoning

cycle.

The agent’s semantics in the urban environment presented in subsection 4.2.1 is: The

agent is always executing and choosing the action based on the current environment state.

The agent’s reasoning is described according to the bridge rules presented in 4.12. The de-

sire aware(user) will not be added to intentions once the agent does not have a plan for it. If the

agent’s belief context has a belief about a car close (car(carName,close)), and there are distrac-

tions in the smartphone ( smartphone(headphone, on), smartphone(screen, on)), the agent will

have the intention to keep the user safe. The plan the agent will execute depends on its beliefs.

For example, if it believes in a car approaching, and it senses, the headphones on, and the screen

off, it will execute the actions of blocking the headphone, and send an audio notification.

4.4 EXTENDING A BDI-LIKE AGENT IN SIGON

Taking as starter point the BDI agent presented in subsection 4.2.1, this section presents

four examples giving flexibility in a Sigon agent: the first shows how to integrate an ontologic

knowledge based on Description Logic; the second one is an example of reasoning under un-

certainty; the third describes the agent as an active perceiver; the last one extends the agent

architecture with a computational model of emotions.
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4.4.1 Case 1 - Adding Ontologies

This example adds an ontological context for reasoning about situations in the agent

presented in subsection 4.2.1. A well-known and well-accepted definition of ontology in com-

puter science is “a formal, explicit specification of a shared conceptualisation” (GRUBER,

1993; STUDER; BENJAMINS; FENSEL, 1998). The use of ontologies for knowledge rep-

resentation in a heterogeneous environment permits a shared and detailed description of the

domain. Thus, the agent can use shared knowledge for its decision-making process. For ex-

ample, the agent situated in the urban environment can verify in a shared urban ontology that a

particular driver is speedy, and act differently than for a rational driver.

The logical representation of ontologies in this context is based on Description Logics

(DL). DL are a family of formalisms to knowledge representation and reasoning (BAADER et

al., 2003, pag. 47). Sigon language does not have a specific way for representing and reasoning

with description logic knowledge, but a context can access an OWL DL ontology3 engine. For

simplification purposes, the result of ontology reasoning is represented in Horn clauses. Many

ontologies used in practice are formed mostly of Horn axioms (GLIMM et al., 2014).

This context’s core is the Situation Theory Ontology (STO) (KOKAR; MATHEUS;

BACLAWSKI, 2009). It is an ontology based on the situation theory of Barwise (PERRY;

BARWISE, 1983), in which a situation is a limited part of the world, “a part of reality that

can be comprehended as a whole in its own right — one that interacts with other things.”

(BARWISE, 1989). The key classes of STO ontology for this experiment are: Situation: its

instances are specific situations; Individual: represent the class of individuals; Relation:

captures the n-ary relations; Rule: is used for inferring whether a specific relation holds in a

situation; Attribute: locations and time instants of individuals and situations.

The key properties are:

• relevantIndividual: individual of a situation. The domain is Situation and range is

Individual and its inverse is inSituation;

• relevantRelation: relation relevant to a given situation. The domain is Situation

and the range is Relation;

The class Situation has three subclasses: UtteranceSituation — queries from a

formal situation awareness system, probably referring to another situation; ResourceSituation

—- used as ‘background for reasoning with the current situation’; FocalSituation — the rel-

evant part of the world to a given utterance. Based on these concepts, the following situations

were built based on the STO:

• PedestrianInteractingWithSmartphone: a pedestrian (subject) interacts with a smart-

phone (object) in the relevant relation interacts. Smartphone attributes are distraction

3 https://www.w3.org/TR/owl2-syntax/
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type and location. The interaction with the smartphone may reduce pedestrian’s situation

awareness.

• CarLifeThreatenPedestrian: in this situation, a specific car may collide with the

pedestrian in the relevant relation lifeThreaten. Attributes of this situation are vehicles in

the region and pedestrian’s distractions. Vehicle attributes are the location, speed, type of

driver (speedy, nervous, rational). Situation PedestrianInteractingWithSmartphone

plays the role of resource situation.

Although there are other objects in the environment, for simplification purposes, only

those mentioned are part of the ontological component. Reiterating that each agent’s component

is a context, with a mechanism for reasoning, and bridge rules exchange information between

contexts.

The code presented in Listing 4.2 is added on the agent allowing the representation

of ontological situations and influencing the agent’s reasoning. There is a new plan in the

planner context, and it only can be executed when the ontological context deduces that there

is a car threatening the pedestrian. This plan also needs the belief context to deduce that the

car is close. The ontological context (_ontologic) presents the predicate of the situation (car-

LifeThreatenPedestrian(X, user)). The bridge rule decides the action Y to be performed based

on the reasoning the contexts of intentions, planner, beliefs and ontological. The OWL API4 is

the engine for manipulating the ontology.

Listing 4.2 – The aditional code for ontologic reasoning

1 planner :

2 plan(safe ( user ) ,

3 [action ( notify ( driver ) ) ],

4 car (X, close ) , smartphone(screen , on) , smartphone(headphone, on) ,

carLifeThreatenPedestrian (X,user) ,

5 [ notify ( driver ) ]) .

6

7 _ontologic :

8 carLifeThreatenPedestrian (X, user ) .

9

10 !communication Y :− planner plan( safe ( user ) ,Z,W,_)

11 & planner member(Y,Z)

12 & intentions safe ( user )

13 & planner member(carLifeThreatenPedestrian(X, T),W)

14 & beliefs car (X, close )

15 & _ontologic carLifeThreatenPedestrian (X, T).

4 https://github.com/owlcs/releases
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The situation CarLifeThreatenPedestrian has the following semantics: the car X

is life threatening the pedestrian ‘user’. To know the X’ value, the ontology uses the attributes

about the pedestrian and the vehicles to infer if there is really a car harming the pedestrian.

Figure 2 presents in orange the main class addition in STO ontology enabling these inferences.

Figure 2 – Main classes created in STO ontology for pedestrian safety agent.

Source: Adapted from (KOKAR; MATHEUS; BACLAWSKI, 2009).

This example adds to the agent a mechanism for representing and reasoning about

situations using ontologies. It formalises a situation and how to use it in the decision-making

process according to DL axioms. A problem with this approach emerges when the agent has

access to the position of all vehicles that may constitute the situation, and does not have a

mechanism to optimise it. In fact, the data collection problem can be formulated as a scheduling

optimisation problem and it is NP-complete (HE; ZHANG, 2017).
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4.4.2 Case 2 - Adding Bayesian Networks

This example adds a Bayesian context for reasoning about situations in the agent pre-

sented in subsection 4.2.1. Bayesian methods are applied to reason about partial beliefs in

the presence of uncertainty (PEARL, 1988, pag. 29). Bayesian networks have advantages in

simplifying conditionals, planning decisions under uncertainty, and explaining the outcome of

stochastic processes (ZELTERMAN, 2005). For example, it is possible to create a Bayesian

network to check the probability that a pedestrian using a smartphone is aware of the situation

(GELAIM et al., 2019a).

In this example, the Bayesian network (BN) is constructed based on the knowledge

obtained from the experiments on pedestrian situation awareness presented in Chapter 5. The

main reasons for using BN for situational awareness are: it combines graph theory and Bayesian

inference — directed arcs can propagate new information, experts can specify relevant informa-

tion, the knowledge can be updated, it presents a temporal continuity for SA (NADERPOUR,

2015; SU et al., 2011). On the other hand, BN is domain-dependent, and when adding one to

an agent, it will probably be about a specific domain or situation.

The developed BN is added in the agent’s reasoning according to the MCS approach.

An agent’s sensor captures the evidence from the environment and then adds the information in

Bayesian Network Context (BNC). A perception and evidence ϕ , obtained by CC, is added in

the BNC through the bridge rule 4.19.

CC : ϕ ∧ BNC : (ϕ)
BNC : (update(ϕ)))

(4.19)

BNC influence the decision-making process through plans. Let ϕ be a variable (belief)

from a BN with probability r, ψ an intention having a plan with precondition ϕ , and s is the

minimum probability of ϕ enabling the plan’s execution for intention ψ . The bridge rule 4.20

allows the agent to try to achieve intentions considering the uncertainty of the situation. It is

important to note that the ontologic context has focused on describing the situation, and the

Bayesian in the uncertainty situation.

BNC : (ϕ, r) ∧ IC : ψ ∧ PC : plan(ψ,β ,ϕ,ζ ,s) ∧ r > s

CC : (do(β )))
(4.20)

The code presented in Listing 4.3 is added on the agent code allowing the representa-

tion and reasoning of bayesian situations. The Bayesian network, and therefore the Bayesian

context, of this agent, has four nodes (userAware, carNearby, soundDistraction, screenDistrac-

tion). The carNearby, soundDistraction, screenDistraction nodes present conditional probabil-

ity to the userAware node. For example, if a car is nearby, there is a 20% chance of the user

being aware and an 80% chance of not being at any specific time.

The bridge rules presented in lines 13 and 15 perform the addition of information

about the smartphone and cars in BNC. In the planner context, there is a plan which has as a

precondition an inference from the userAware node. Its value is obtained through line 23 of the
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agent’s code and according to the bridge rule 4.20. The predicate userAware(T, X) has the role

of checking the probability of user awareness at a specific moment. For example, if the Belief

context has the belief userAware(no, 40) (the threshold), and the result in the Bayesian context

the value of the userAware node is higher than 40, the plan will be executed. The substitution of

the threshold value impacts the plan execution. A lower value in the userAware belief implies

in the agent performing more actions to ensure the pedestrian’s safety. Higher value implies

that the plan only will be executed when the level of awareness is small.

Listing 4.3 – The aditional code for bayesian reasoning

1 _bayesian :

2 userAware(50,50) .

3 carNearby(userAware).

4 soundDistraction (userAware).

5 screenDistraction (userAware).

6 carNearby(yes , 20, 80) .

7 carNearby(no, 95, 5) .

8 soundDistraction (yes , 80, 20) .

9 soundDistraction (no, 95, 05) .

10 screenDistraction (yes , 20, 80) .

11 screenDistraction (no, 95, 05) .

12

13 !_bayesian addEvidence(X,Y) :− beliefs smartphone(X,Y) && _bayesian

isVariable (X).

14

15 !_bayesian addEvidence(car ,yes) :− beliefs car (_, close ) .

16

17 planner :

18 plan( safe ( user ) ,

19 [action ( notify ( driver ) ) ],

20 [ car (_, close ) , smartphone(screen , on) , smartphone(headphone, on) ,

userAware( false ) ] ,

21 [ notify ( driver ) ]) .

22

23 !communication Y :− planner plan(safe ( user ) ,Z,W,_)

24 & planner member(Y,Z)

25 & intentions safe ( user )

26 & planner member(userAware(false),W)

27 & beliefs car (_, close )

28 & _bayesian userAwareT(T, X)

29 & beliefs userAware(T, X).

Adding a context of Bayesian networks does not guarantee consistency with the other
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components of the agent. In this way, it may have conflicting beliefs in different contexts. For

example, in the ontological context, the agent can infer user awareness by evaluating declarative

information, without uncertainty, and the Bayesian network context can provide this informa-

tion with a degree of certainty. The use of Bayesian networks, in this case, allows choosing

the action to be performed based on a situation of uncertainty. In this sense, it is even possi-

ble to combine unambiguous contexts knowledge, with Bayesian reasoning, making the agent’s

decision-making more flexible.

4.4.3 Case 3 - A Multi-Context Active Perceiver Agent

Actively perceiving is a relevant skill for agents situated in dynamic environments,

enabling the agent to decide which environmental aspects are relevant to its current goals and

having situational awareness. This section describes a BDI-like agent as an active perceiver

following the generic framework presented by Bajcsy, Aloimonos & Tsotsos (2018) and intro-

duced in section 2.3.1.

The first element of active perception of Bajcsy, Aloimonos & Tsotsos (2018)’s frame-

work is why to perceive. A BDI agent must perceive certain aspects of the environment because

it has an intention that expects the situation’s knowledge. For example, the intention to have the

user safe depends on the knowledge of the user’s interaction with the smartphone and the traffic

flow.

The second element is what to perceive of Bajcsy, Aloimonos & Tsotsos (2018)’s

model. A BDI agent’s intention comprises one or more plans to achieve it. Plans can be in

a library of precompiled plans, each one of these includes a set of preconditions in which it

is applied. Thus, what to perceive is defined by plans preconditions. That is, monitoring the

aspects of the environment that can drive the agent to maintain/achieve the desired situation.

A perception ϕ obtained in the communication context will only be added to the Belief

context if the agent has an intention ψ where ϕ is part of the preconditions γ of at least one of

its plans, or if ϕ represents the fulfilment of the intention γ . Bridge rules 4.21 and 4.22 show

these formalisations, and Listing 4.4 presents its mapping to Sigon. For example, considering

user(safe) from Listing 4.1, the plan presented on line 45, the agent needs to know that: (i)

there is a car nearby, (ii) the user is listening in the headphone, and (iii) the smartphone screen

is off.

CC : ϕ ∧ PC : plan(ψ, β , γ, ζ ,c) ∧ (ϕ ∈ γ) ∧ IC : ψ

BC : ϕ
(4.21)

CC : ϕ ∧ IC : ϕ

BC : ϕ
(4.22)

Listing 4.4 – Adding active perception in the urban agent

1 ! beliefs X :− communication sense(X) and planner plan(Y,_,Z,_)
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2 and planner member(X, Z) and intentions Y.

3

4 ! beliefs X :− communication sense(X) and intentions X.

The third component is when to perceive. This aspect is temporal, corresponding to

the update rate of objects perceived. For example, the update of knowing that a driver is speedy

has minor importance than the update rate of an oncoming car position. And also, an oncoming

car should have a higher priority in the perception process than a leaving one. A problem in this

temporal aspect occurs when perceptions arrive faster than the agent’s capability of processing

it. In this case, perceptions policies are useful to define when to perceive. Freitas et al. (2020)

present two policies for the sensors’ prioritisation in Sigon agents: progressive and sudden.

The first increases/decreases sensors’ priority based on the number of new information; The

last strategy focus on the amount of unforeseen perception detected in a specific moment.

The fourth element of active perception from Bajcsy, Aloimonos & Tsotsos (2018)

generic model is how to perceive. This is an abstract element in a Sigon agent. It is limited

to enabling/disabling a perception function and combining sensors’ data to create a percept.

For example, if the agent enables the smartphone’s camera and the microphone, it can obtain

a car position and know that it has a combustion engine. The last element is where. It gets

information from the smartphone sensors related to current intention. For example, the intention

user(safe) requires attention to the traffic flow.

Active perception improves the effectiveness of beliefs revision. The association is

straightforward: fewer beliefs in the knowledge bases mean lower costs for searching and up-

dating beliefs. On the other hand, adding a mechanism to choose which aspects of the en-

vironment to examine can imply in increasing the time for decision making, since it requires

comparing what is perceived with the agent’s goals (JR; PANTOJA; SICHMAN, 2018). In this

way, active perception is beneficial in situations where the cost to apply it is less than the cost

to add all perceptions in the agent’s beliefs.

4.4.4 Case 4 - Creating An E-BDI Agent

The intent of examples presented in subsections 4.4.1 and 4.4.2 is to show how to

represent knowledge of the situation with different approaches: uncertainty and description

logic. Subsection 4.4.3 shows how a Sigon agent can perceive in dynamic environments. In this

subsection, we create an example to show the flexibility in an agent’s architecture implemented

in Sigon, in which the new component may cause a different action.

In its core, this research uses BDI-like architecture to test practical reasoning in deci-

sion making. To demonstrate an example of integration, this subsection describes how to add a

computational model of emotions in BDI agents. However, the purpose of this example is not

to present a discussion of how emotions can impact in decision making, neither to argue about

its benefits. It is only to show how to extend an architecture of agent with new capabilities.
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The literature of computational models of emotion presents applications in areas such

as improving human-machine interaction and optimising decision-making reasoning (MARSELLA;

GRATCH; PETTA, 2010). Taking as a starting point the BDI agent in an urban environment

presented in section 4.2.1, to add a new context representing emotions, the first step is to create

a new custom context to it. This context will have the logic to reason about agents’ emotions.

The logic of emotions follows the Ortony Clore and Collins (OCC) model, which

focuses on the cognitive structure of emotions (ORTONY; CLORE; COLLINS, 1990) and its

integration in the agent reasoning described by Silveira et al. (2016). For this example, the agent

has only three emotions: hope, fear, and joy. Also, in this context, the agent is able to evaluate

events as: pleased(X) if it is positive about an event X ; and displeased(X) if it is negative about

X .

Bridge rules are defined to update the agent’s emotional state (emotional context). The

bridge rule in Sigon code presented in Listing 4.5 adds the emotion of hope for the event X in

the agent emotional context, if it has an intention Y and a plan to achieve Y in which the event

X is a postcondition. If the agent finds a plan to achieve the event X and is pleased about it, it

will have hope on this.

Listing 4.5 – Adding the emotion hope in emotional context

1 !_emotional hope(X) :− intentions Y

2 & planner plan(Y, _, _, Z)

3 & member(X, Z)

4 & _emotional pleased (X).

The bridge rule described in Listing 4.6 adds the emotion of fear in the emotional

context when the agent has an intention Y , and some plan that will bring X in its postcondition.

In this sense, the agent may avoid such a plan and try to choose one without X because it is

displeased about X.

Listing 4.6 – Adding the emotion fear in emotional context

1 !_emotional fear (X) :− intentions Y

2 & planner plan(Y, _, _, Z)

3 & member(X, Z)

4 & _emotional displeased (X).

The joy of emotion is added in the emotional context when the agent is pleased with

an event X , and in its beliefs, it has X or when it senses it. It is presented in Listing 4.7.

Listing 4.7 – Adding the emotion joy in emotional context

1 !_emotional joy(X) :− _emotional pleased (X)

2 & ( beliefs X | communication sense(X)).

This abstraction can change agent decision-making, and it is common in Emotional-
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BDI agents. For example, according to Listing 4.8, the agent will try to execute an action T in

which a belief X will bring joy.

Listing 4.8 – Using joy to influence BDI reasoning

1 !communication T :− _emotional joy(X)

2 & planner plan(Y, W, _, Z)

3 & planner member(T, W)

4 & planner member (X, Z).

4.5 SUMMARY

This Chapter applied MCS theory to build the Sigon framework for agent develop-

ment. This approach is based on MCS’s ability to combine heterogeneous knowledge sources

and in the literature of BDI agents as MCS. From a theoretical point of view, this approach

allows the selection of the formalism that best describes the desired functionality. In a practical

perspective, this provides more flexible reasoning for the agent. To the developer, a context is a

component, a module of the agent. Furthermore, a bridge rule is a path to connect components.

The flexibility of reasoning allows agent modelling in different ways. This Chapter

presented paths for representing the situation with different formalisms (ontology and Bayesian

networks), adding mechanisms for perceiving the environment and adding another mental state,

emotions, in the decision-making. Consequently, the agent’s reasoning cycle is defined by the

combination of contexts and the sequence in which bridge rules are executed.

The Sigon framework was designed during the thesis for studies in situation awareness,

perception and decision-making. The experiments in the thesis are limited to these domains.

However, Sigon has already proved interesting for applications considering negotiation in BDI

agents (MELLO; GELAIM; SILVEIRA, 2019).
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5 PEDESTRIANS SITUATION AWARENESS

Pedestrians are a fragile class of vulnerable road users in urban environments. To guar-

antee pedestrian’s safety it is essential to respect the rules, such as walking in a crosswalk or be

aware of the surroundings. Improving their safety in these environments can be analysed from

at least two perspectives: (i) vehicles, by adding pedestrian behaviour recognition algorithms

(KOOIJ et al., 2019; SOTO et al., 2019; NEOGI et al., 2017; PHAN et al., 2014; PHAN et

al., 2015; VASISHTA; VAUFREYDAZ; SPALANZANI, 2017); (ii) pedestrians, by improving

their situational awareness, usually achieved by changes of behaviour, re-education policies, or

by improving the environment’s infrastructure (ASADI-SHEKARI; MOEINADDINI; SHAH,

2015; NESOFF et al., 2019). In this Chapter, we investigate how to measure pedestrian situa-

tion awareness based on their smartphone usage, and in Chapter 6, we evaluate how an agent

with heterogeneous data can improve pedestrian decision making in an urban environment.

There are several activities for pedestrians that may limit their situational awareness,

such as talking on a mobile phone or with other pedestrians, eating or, using headphones

(BUNGUM; DAY; HENRY, 2005; THOMPSON et al., 2013). This work analyses the sit-

uation awareness related to the use of mobile devices. Mobile device usage is growing. In

Brazil, the number of smartphone users increased from 14% in 2012 to 67% in 2017, tablet

expansion is from 1% to 15% (BAROMETER, 2017a). In the UK, in the same period, the

growth is from 51% to 77% for smartphones and from 11% to 53% for tablets (BAROMETER,

2017b). Besides, there is a growth in the number of tasks that can be performed on mobile

devices, attracting more attention to devices than to the environment.

This Chapter presents a comprehensive study on aspects affecting situational aware-

ness of smartphone users in the vicinity of urban traffic. Virtual environments are used to

simulate the immersion in the urban environment, free of the inherent dangers of testing in real

scenarios. In all experiments reported, we are interested in the impact caused by distractions

from using a smartphone on safe behaviours around moving traffic.

The remainder of this Chapter is structured as follows. Section 5.1 presents similar

works found in the literature. Sections 5.2 and 5.3 present experiments performed on the Oc-

tave multimodal system1, and section 5.4 presents the experiment using the HTC VIVE virtual

reality glasses. Endsley’s situation awareness model is the base of all experiments (ENDSLEY,

1988).

5.1 RELATED WORK

This section presents previous research on pedestrians’ situation awareness using smart-

phones. There are three main groups of environments: (i) real environment — urban or labo-

ratory (PLUMMER et al., 2015; HAGA et al., 2015; LICENCE et al., 2015; PIZZAMIGLIO

1 An octagonal virtual reality environment in which the user is immersed with the ability to interact using devices
and his own body. Source: http://www.salford.ac.uk/octave/home
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et al., 2017; JIANG et al., 2018; YEN; ZHENG, 2018; CHEN; PAI, 2018; FELD; PLUM-

MER, 2019); (ii) semi-virtual environment — use of single or multiple video screens without

necessarily forming a Computer Automated Virtual Environment (CAVE) (SCHWEBEL et al.,

2012; BYINGTON; SCHWEBEL, 2013; LIN; HUANG, 2017) or use of sound reproduction

without a visual counterpart (DAVIS; BARTON, 2017); or (iii) a fully immersive multimodal

virtual environment (NEIDER et al., 2010; BANDUCCI et al., 2016; RAHIMIAN et al., 2016;

RAHIMIAN et al., 2018). The three experiments in this Chapter were run in fully immersive,

multimodal virtual environments. The first and second are run in a CAVE environment —

Octave, whilst the third one is run in a head-mounted display (HMD) — HTC VIVE.

The use of a virtual environment allows full control and capture of environmental

and participant variables, whilst avoiding the inherent risks of running situational awareness

experiments in real urban environments with real threats. On the other hand, the environment’s

ecological validity may be limited — the difference can influence participants’ behaviour in

their perception between the real and virtual world. For example, Rahimian et al. (2016) argue

that pedestrians may assume risks that would not take in real environments. Thus, it is critical

to balance between the real environment and the conditions tested in the virtual environment.

The test conditions in related works usually involve typing, talking, walking and lis-

tening to music. Few studies analyse the impact of games (HAGA et al., 2015; LICENCE et

al., 2015; LIN; HUANG, 2017; CHEN; PAI, 2018; HAGA et al., 2015; LICENCE et al., 2015;

LIN; HUANG, 2017; CHEN; PAI, 2018). The three experiments conducted in this work use

games and music on the smartphone to analyse the level of situational awareness. In the second

and third experiments, it is added a walking variable.

Two studies in the literature showed samples greater than 100 participants. The largest

sample has 2556 in a real environment without strict control over the environment variables

(CHEN; PAI, 2018). 2215 participants had some distraction, of which 834 were playing. This

value corroborates with the premise of this research in using games to analyse pedestrians’

situational awareness. In this thesis, twenty participants took the first two experiments and

twenty-nine the third. Like many works of literature, the participants belong to the academic

community (NEIDER et al., 2010; SCHWEBEL et al., 2012; PLUMMER et al., 2015; HAGA

et al., 2015; RAHIMIAN et al., 2016; JIANG et al., 2018; RAHIMIAN et al., 2018).

Related work shows that there are impacts on mobile devices’ usage, such as the re-

duced perception of the environment, movement and decision making. Also, the type of dis-

traction is related to the level of impact of using mobile devices. Typing has the most significant

adverse impacts, being part of the study in 15 of the 16 studies. The impact of playing is the

least explored. Thus, the chosen distraction. It is important to collect data from these factors

for developing a support agent.
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5.2 EXPERIMENT 1: PEDESTRIAN CONTROLLING A TRAFFIC LIGHT

In this experiment we test whether a distraction on the smartphone screen is likely to

lead to unsafe behaviour by pedestrians. The experimental setting requires the participant to

make a decision on whether a kitten can safely cross a road on a pedestrian crossing whilst

under different levels of engagement with the smartphone and under different visual and audi-

tory occlusion conditions. Two dependent variables are investigated: (i)The number of times a

kitten is likely to be run over due to unsafe behaviour by the participant; (ii) the time taken to

detect and signal the presence of a car in the environment. The scenarios and the smartphone

applications were developed in the Unity engine (Unity Technologies, 2019). A set of scripts

were written in C# and Python to configure and collect data.

5.2.1 Experimental Design

The virtual environment consists of an urban intersection in a residential area, in which

the participant is situated and interacting with the mobile device while observing the moving

traffic. In the environment, three types of simulated entities form the basis of the situation: a

pedestrian crossing and corresponding traffic light, controlled via the smartphone; cars, travel-

ling in four possible directions - front, back, left and right; and kittens, spawned on the sidewalk

across the street intending to cross it but respecting the signalling on the traffic light. Figure

3 presents the top view of the environment with the possible car and kitten paths, as well as a

space marked with an ‘X’ representing the participant’s location.

An experimental trial run consists of 16 travelling cars. Only one car is allowed in the

environment at any one time, randomly approaching from one of four possible directions, two

of which are partially occluded as the car travels behind buildings - paths C and D in Figure 3

- to allow the measurement of effects of visual occlusion on awareness. The number of cars is

balanced for all directions with a total of four vehicles per direction. Of these, two cars will

emit sound — a combination of combustion engine noise and tyre noise — whilst the other two

are silent, allowing measurement of car noise’s affordance on awareness. There are always two

kittens present in the environment following paths E and F. The only acoustic signal present in

the environment is that generated by the cars with sound.

A participant signals detection of a car by pressing a button on the mobile device screen

which brings a ‘do not cross’ icon on the pedestrian traffic light and programmatically prevents

kittens from crossing the street and being run over. Once the car travels over the pedestrian

crossing, the traffic light turns green, allowing kittens to cross the street once again. Figure 4

presents a participant in the Octave environment with all these elements: a car that has travelled

over the crossing, a kitten crossing and the traffic light showing green.

Participant distraction conditions have been set as follows: (i) ‘No distraction’ simply

presents the button for signalling detection of a car. This button is present in all conditions;

(ii) ‘Game only’ presents a multiple-choice game where the participant is asked to solve simple
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Figure 3 – Experiment 1: Top view of the scenario. Car routes are in red (A, B, C, D) and kitten routes in green
(E, F). The place with an ‘X’ is the participant position near the crosswalk and the traffic light (G).

Source: The author.

mathematical problems of addition and subtraction. In this condition, the participant is not

wearing a headset; (iii) ‘Game and music’ has participants playing the game in (ii) whilst also

listening to music in a headset (set at a comfortable listening level).

Figure 5 presents a version of the app with the game and the car notification button. A

Samsung Galaxy S7 Edge 5.5” was used for the experiment. Data on the traffic light control

and participant’s performance during the game was sent via Bluetooth to a control computer.

Twenty participants took part in the test. Most participants were students or staff at

The University of Salford in 2016. Each participant performed three trial runs, one for each

distraction condition listed above. Before starting the test, participants trained running a test

with five cars under condition (iii) and were given the option to repeat the training, but no one

requested this. Distraction conditions were presented in random order between participants,

defined by randomising conditions (i), (ii) or (iii) in a list of 20 entries prior to the tests. The

variables of car direction and sound were randomised at runtime. As such, we assume test

conditions to be independent.

In summary, for this experiment: Dependent Variables: Failing to safely signalling the

presence of a car leading to kitten and car in the crossing at the same time - ‘Unsafe Event’; Time
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Figure 5 – Experiment 1: App developed to distract participant with the game and the car notification button.

Source: The author.

Table 3 – Experiment 1: Number of unsafe events where participant failed to signal the presence of a car for each
of the distraction conditions and grouped by independent variable level: car sound (silent and with sound)
and visual occlusion (occluded and Unoccluded).

Condition Silent With Sound Occluded Unoccluded

No Distraction 9 1 8 2
Game Only 21 7 18 10
Game and Music 25 11 25 11
Total 55 19 51 23

Source: The author.

odds-ratios are also presented. Table 4 shows a significant association between unsafe events

and car sound even when the subject is under no distraction from the smartphone (Fisher’s exact

= 0.0193, Odds Ratio = 9.5454). Under our experimental conditions, a pedestrian is almost 10

times more likely to report the presence of a car in time if the car has sound. This falls to

3.3 times if the subject is distracted by the smartphone but can still hear their surrounding

environment (Table 5; p = 0.0048, Cramer’s Phi = 0.156, Odds Ratio = 3.3642), and to 2.5

times if the subject is, in addition, listening to music (Table 6; p = 0.0122, Cramer’s Phi=0.1435,

Odds Ratio = 2.5412). As expected, the degree of distraction appears to affect the number of

unsafe events significantly. The sound of a car seems to be important as an early warning of its

presence. However, this diminishes rapidly if the subject is distracted regardless of whether the

auditory system becomes occluded or not.

The cars’ visual occlusion is only significant in the case where full distraction by both

the game and the music are present (Table 7; p = 0.0138, Cramer’s Phi = 0.141, Odds Ratio =
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2.5036). In this case, subjects are 2.5 times more likely to report the car’s presence on time if it

is travelling via an unoccluded direction.

Table 4 – Experiment 1: Safe and Unsafe events per
car sound under No distraction condition
(Fisher’s exact = 0.0193, Odds Ratio =
9.5454).

No Distraction
Silent With sound

Safe 132 140
Unsafe 9 1

Source: The author.

Table 5 – Experiment 1: Safe and Unsafe events per
car sound under Game distraction condition
(p = 0.0048, Cramer’s Phi = 0.156, Odds Ra-
tio = 3.3642).

Game Distraction
Silent With sound

Safe 140 157
Unsafe 21 7

Source: The author.

Table 6 – Experiment 1: Safe and Unsafe events per
car sound under Game and Music distraction
condition (p = 0.0122, Cramer’s Phi=0.1435,
Odds Ratio = 2.5412).

Game and Music Distraction
Silent With sound

Safe 127 142
Unsafe 25 11

Source: The author.

Table 7 – Experiment 1: Safe and Unsafe events per
occlusion type under Game and Music dis-
traction condition (p = 0.0138, Cramer’s Phi
= 0.141, Odds Ratio = 2.5036).

Game and Music Distraction
Occluded Unoccluded

Safe 128 141
Unsafe 25 11

Source: The author.

5.2.3 Reaction Time

It is hypothesised that, when distracted, participants will take longer to detect the pres-

ence of a car in the environment, potentially leading to near misses or fatalities on the pedestrian

crossing under their control. This thus defines reaction time as the time taken by the participant

in signalling the presence of a car in the environment. This was coded as the time between the

spawn of a new car in the environment and the participant pressing the smartphone screen’s

traffic light button.

A Shapiro-Wilk test (Shapiro-W: stats = 0.98, p-value = 5.53e-11) and a Bartlett’s test

(stats = 2.15, p = 0.90) were used to check assumptions for the application of an ANOVA. Al-

though the assumption that the residuals are normally distributed is violated, it is known that,

for large sample sizes such as this one, a small deviation will not affect the results of a paramet-

ric test (ÖZTUNA; ELHAN; TÜCCAR, 2006). A three-way ANOVA has been calculated and

is shown in Table 8. There are no significant interaction effects, and the effects on car sound

and direction are significant. A non-parametric Kruskal-Wallis test applied independently for

each variable (distraction: Stats=9.770, p=0.008; car sound: stats=24.876, p< 0.001; occlusion

stats=94.777, p < 0.001) confirms the main effects without assumptions required for the para-

metric ANOVA. The eta squared values in Table 8 show that the effect sizes for main effects

are in the range small to medium. Figure 6 presents the box plot of reaction time, distraction
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ment is a street in an urban residential area, similar to experiment 1. In this case, the participant

is positioned in the middle of the road, in front of oncoming cars. As in experiment 1, the

scenario and the smartphone applications were developed in the Unity engine.

5.3.1 Experimental Design

An experimental trial run consists of a total of 12 cars each randomly chosen to travel

through the six directions shown in Figure 8. At any one time during the experiment, only one

car is present in the environment so we can test the pedestrian’s awareness of that one car. Two

car sound conditions are simulated for each of the possible directions, one with combustion

sound, and one silent. The pedestrian is placed on one of two squares marked on the floor, one

green (representing the current participant side), and one red (on the opposite side).

Figure 8 – Experiment 2: In red, the six possible paths for cars (A, B, C, D, E and F). The green and red squares
represent, respectively, the side that the participant considers safe and dangerous, changing according
to the participant’s movement.

Source: The author.

The participant is asked to move to the safe side of the road and avoid being run over

immediately after signalling a car’s detection by using the smartphone. This is done under dif-

ferent distraction levels as in experiment 1. Figure 9 shows a participant in the test environment.

This experiment has three levels of distraction: (i) no distraction, just the car detect

button; (ii) add game distraction to the previous condition; (iii) add music distraction to the pre-

vious condition (playing on headphones). The game consists of tapping the screen to maintain

a virtual ball bouncing between moving objects. This requires a very high level of attention and

has been designed such that the operator cannot look away from the screen for too long without

loosing and the game restarts. The idea was to attempt to simulate the same engagement level

required when users use text messaging apps or read content on the smartphone screen. As in

experiment 1, the application contains a ‘CAR’ button used to signal the detection of car in the
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tion consists of 12 travelling cars. The order in which the distractions were presented varied

uniformly among the participants. At the beginning of the tests, the participants went through a

training session where they could learn how to play the game and interact with the experimental

procedure. This training consisted of playing the game whilst 5 cars, one at a time, were driving

through the road.

5.3.2 ‘Unsafe’ Events

The data set consists of 732 records, disregarding the data of adaptation to the envi-

ronment, on the cars’ perception of the 20 participants. After removing missing data and speed

outliers, the resulting set contains 654 records. The speeds that were not in the interquartile

range of the original data were considered outliers. From these records, 223 are of car percep-

tion without distraction, 215 of game distraction, and 216 of game and music distraction. 328

records are of cars with combustion engine noise and friction with the ground, and 326 silent

cars. The directions A, B, C, E, F of Figure 8 had 122 cars, and the direction D had 44.

The average speed is 30,5411 mph, with a standard deviation of 5,1997. This high

standard deviation is due to the complexity of the system. Nevertheless, when comparing the

three simulations, it is possible to observe homoscedasticity in the speed variances. In the

Bartlett test, p = 0.4540, i.e., the populations have the same variance. Thus, the ANOVA was

performed, obtaining F = 0.1409 and p = 0.8685.

On 102 occasions, the participants did not report the perception of the car. Of these,

80 times the participant’s position was the same as in the previous car, i.e., he did not change

sides. In half of these, he was virtually run-over. In 22 situations the participant changed side,

probably perceiving the car, but without notifying.

There were 58 situations with the participant being ‘run over’. In most circumstances,

the car had no sound (55). The pedestrian was run over in 22 situations without any distraction,

with game distraction in 17 cases, and with game and music, there were 19 occurrences. For

each distraction level, we had only 1 run over of a combustion engine car.

The instruction given to all participants was ‘press the car’s perception button as soon

as you perceive it’. This notification was taken for 552 of the 654 cars, with 522 being done

before the car reached the participant’s position. The assumption of first deciding to be saved,

i.e., crossing the street, to later notifying the car perception, presented 311 situations in which

the participant changed his side of the street, being hit in one of them. In just 11 of these

situations, he moved before pressing the car’s perception button.

The level of cars’ occlusion does not demonstrate to impair the participants’ perception

in this experiment. Of the 102 occurrences of non-notification of cars, 62 were from direction

‘A’ and 9 from ‘B’ as presented in Figure 8. 39 situations of a pedestrian being ‘run over’ were

from the region ‘A’. These regions are considered non-occluded in the experiment. A proba-

ble justification for these numbers is how participants position themselves in the environment,

observing the region ‘B’ more and leaving the region ‘A’ occluded.
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We apply the Pearson χ2 for each distraction level comparing pedestrian’s safety with

occlusion or car sound. A pedestrian is safe if he notifies the car’s perception before the inter-

section, and he is not run over. Outcomes of analysing pedestrian’s safety and occlusion are:

Game distraction — Pearson χ2 p-value = 0.0398, Cramer’s Phi = 0.1402 and Odds Ratio =

1.9259 (Table 9). Game and Music distraction — Pearson χ2 p-value = 0.0158, Cramer’s Phi

= 0.1642 and Odds Ratio = 2.1552 (Table 10). No distraction — Pearson χ2 p-value = 0.0004,

Cramer’s Phi = 0.2367 and Odds Ratio = 3.7553 (Table 11). Under occlusion condition, a

pedestrian is 3.75 times more likely to report the presence of a car if he is not distracted and the

car is not occluded. This falls to 2.15 if he has game and music distraction and 1.92 if he has

only the game distraction.

Table 9 – Experiment 2: Safe and Unsafe events per
occlusion type under Game distraction (p =
0.0398, Cramer’s Phi = 0.1402, Odds Ratio
= 1.9259).

Game Distraction
Occluded Unoccluded

Safe 108 54
Unsafe 27 26

Source: The author.

Table 10 – Experiment 2: Safe and Unsafe events per
occlusion type under Game and Music dis-
traction (p = 0.0158, Cramer’s Phi = 0.1642,
Odds Ratio = 2.1552 ).

Game and Music Distraction
Occluded Unoccluded

Safe 110 53
Unsafe 26 27

Source: The author.

Table 11 – Experiment 2: Safe and Unsafe events per
occlusion type under No distraction (p =
0.0004, Cramer’s Phi = 0.2367, Odds Ratio
= 3.7553).

No Distraction
Occluded Unoccluded

Safe 127 63
Unsafe 12 22

Source: The author.

Table 12 – Experiment 2: Safe and Unsafe events per
car sound under Game distraction (p =
1.7436e-10, Cramer’s Phi = 0.4236, Odds
Ratio = 10.8805).

Game Distraction
withSound Silent

Safe 101 61
Unsafe 7 46

Source: The author.

Table 13 – Experiment 2: Safe and Unsafe events per
car sound under Game and Music distrac-
tion (p = 0.0001, Cramer’s Phi = 0.2690,
Odds Ratio = 3.7950).

Game and Music Distraction
withSound Silent

Safe 94 69
Unsafe 14 39

Source: The author.

Table 14 – Experiment 2: Safe and Unsafe events
per car sound under No distraction (p =
0.0000, Cramer’s Phi = 0.3761, Odds Ratio
= 22.2784).

No Distraction
withSound Silent

Safe 110 79
Unsafe 2 32

Source: The author.

Outcomes of analysing pedestrian’s safety and car sound are: (i) Game distraction —

Pearson χ2 p-value = 1.7436e-10, Cramer’s Phi = 0.4236 and Odds Ratio = 10.8805 (Table

12). That is, 10.88 times more likely to perceive a car with sound. Game and Music distraction
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Table 15 – Experiment 2: ANOVA reaction time per simulation type.

df sum sq mean sq F PR(>F) eta sq
omega

sq

Intercept 5162.6382 5162.6382 1.0 157.2970 1.98e-32 0.1759 0.1745
distraction 463.5591 231.7795 2.0 7.0619 9.25e-04 0.0157 0.0135
car_sound 982.7233 982.7233 1.0 29.9419 6.38e-08 0.0334 0.0323
direction 300.1412 300.1412 1.0 9.1448 2.59e-03 0.0102 0.0090
distraction:

car_sound
545.5684 272.7842 2.0 8.3112 2.73e-04 0.0185 0.0163

distraction:

direction
236.3296 118.1648 2.0 3.6002 2.78e-02 0.0080 0.0058

car_sound:

direction
390.7452 390.7452 1.0 11.9053 5.96e-04 0.0133 0.0121

distraction:

car_sound:

direction

196.5518 98.2759 2.0 2.9943 5.07e-02 0.0066 0.0044

Residual 21071.0490 32.8209 642.0

Source: The author.

— Pearson χ2 p-value = 0.0001, Cramer’s Phi = 0.2690 and Odds Ratio = 3.7950 (Table 13).

This conditions reduced participants perception of oncoming cars to 3.79. No distraction —

Pearson χ2 p-value = 0.0000, Cramer’s Phi = 0.3761 and Odds Ratio = 22.2784 (Table 14), i.e.

a pedestrian is 22.27 times more likely to report the presence of a vehicle with sound.

5.3.3 Reaction Time

The evaluated hypothesis is: The time to perceive a car is longer when the participant

is playing games with or without listening to music. A three-way ANOVA was computed, as

shown in Table 15. All the main effects for distraction, car sound and direction are significant.

There is evidence for significant interaction effects between distraction and car sound, distrac-

tion and direction, car sound and direction. The eta squared values show that the effect sizes are

in the range small to medium. The normality assumption is violated (p< 0.001), but is assumed

that the deviation will not affect the results. Figure 11 presents the box plot of reaction time,

distraction level and car sound. There is a high variation in the reaction time in cars without

sound. Figure 12 shows the box plot of reaction time, distraction level and occlusion.

The second analysis considers only safe perceptions: perceptions that occur before

the intersection between car and participant. It has a total of 522 occurrences. Bartlett’s test

for the reaction time obtained p = 0.7052, thus verifying homoscedasticity of variance. In the

oneway ANOVA between the level of distraction and the reaction time, the value obtained was

p = 0.0015. Table 16 shows a significant difference in the reaction time between playing and

listening to music and not being distracted.

There is no significant difference between the time to change the side of the street for
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represents the minimum distance of 48,45 meters. Figure 14 presents the minimum distance

between two cars when one of them is in the participant’s position.

Figure 14 – Experiment 3: In red, the minimum distance between 2 opposite cars in the environment.

Source: The author.

The experiment game is ‘Colour Switch’, the same one used in experiment 2 and is

presented on one of the controllers on HTC-VIVE. Both controllers have a trigger to notify the

perception of cars. The participant needs to be looking at the car to be able to notify the aware-

ness of it. A perceived car has its colour changed from white to green so that the participant

can confirm the awareness. We applied the strategies of experiments 1 and 2 to guarantee the

independence of the tests in this experiment.

Resources used in the ecological validity of this experiment are improved from those

used in Octave. The sound calibration is performed using the artificial ear B&K Artificial Ear

Type 4153. It has an ‘acoustic impedance similar to that of humans’2. The source of the sound

used for the calibration of the artificial ear is the B&K Acoustical Calibrator Type 4231, with

the measuring amplifier B&K Measuring Amplifier Type 2610. The headset sound calibration

considering a combustion engine sound3. Cars sound behaviour is described with the Unity’s

logarithmic roll-off with ending in the sound at a distance of 260m. In this way, the car’s

highest volume is noticeable when it is in the participant’s position and increases or decreases

logarithmically and under the influence of the Doppler effect. The volume perceived in the

headset is defined according to the operating system’s volume level, using the combustion car

engine at 30 mph is normalised to 3dB.

The sound of the cars at a distance of 1 meter from the participants is 70 dB (A). This

value is close to the ISO 362 limit of 74 dB (A) (SANDBERG; GOUBERT; MIODUSZEWSKI,

2010; GARAY-VEGA et al., 2010; PAPAIOANNOU; ELLIOTT; CHEER, 2018). Also, in

2020 the limit may be reduced to 70 dB(A) and 68 dB(A) by 2024 (CAPRIOLI, 2018). In tests

where it is simulated to be listening to music on headphones, car noise is reduced by 18 dB (A)

to simulate noise isolation from the headset used, DT 770 PRO. Furthermore, in simulations
2 Artificial Ears — Types 4152 and 4153: https://www.bksv.com/-/media/literature/Product-Data/bp0265.ashx
3 “Car Engine, Exterior, B.wav” by InspectorJ: https://freesound.org/people/InspectorJ/sounds/345557/
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confirmed. Cars with a combustion noise caused 17 run overs against 13 in electric cars. Play-

ing with or without music corresponded to 13 pedestrian accidents with combustion cars and

12 electric cars. Due to the reduced number of unsafe events, we did not find significance in the

Pearson χ2 test in the car sound study.

Table 17 summarises the relationship between (i) perceiving the car in time according

to the level of distraction and (ii) the number of people being hit by cars for each situation. A

participant is Aware when he presses the car perception button before the car is 1 meter from a

collision. Late Aware occurs when the participant perceives the car after 1 meter distance. A

Critical is when the participant does not press the car perception button. Run Over represents

the participant being virtually run over.

Table 17 – Experiment 3: Number of awareness and run over.

Aware
Late

Aware
Critical Run Over

No
distraction

578 0 0 3

Music 568 0 0 2
Game 582 5 2 11
Game and
Music

538 5 7 14

Run Over 26 2 2 30

Source: The author.

Participants were instructed to report cars perception as soon as possible. In 560 sit-

uations, the participant notified the car’s perception and did not change his side of the street

before the intersection with the car. Of these, in 32 situations, the pedestrian changed the side

before notifying the car’s perception. With no distraction, or listening to music, the safe cross-

ing occurred in 3 situations each. Playing games and listening to music had 11 occurrences. A

pedestrian changed his side in 15 situations while only playing games. Of these 26 occurrences

with games (with or without music), 14 were from 3 participants. That is, in most cases, 1725,

the participant chose to notify first and then change the side of the street, if necessary.

5.4.2.1 Questionnaires

All participants took three questionnaires: Five-Factor Model (FFM) of personal-

ity (MCCRAE; JOHN, 1992); Empathy Quotient and Systemizing Quotient (EQ/SQ) (WAK-

ABAYASHI et al., 2006); and Immersive Tendencies Questionnaire (ITQ) (WITMER; SINGER,

1998). The goal is to examine the profile of the participants.

Five-Factor Model (FFM) of personality (MCCRAE; JOHN, 1992) has five basic di-

mensions: Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness to Ex-

perience. It is a high hierarchical model. The profile is constructed considering the participants’
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responses to 44 questions with 5 possible answers (strongly disagree, disagree a little, neither

agree or disagree, agree a little and strongly agree) (MCCRAE; JOHN, 1992). Table 18 presents

the descriptive statistics.

Extraversion describes how active, assertive, energetic, enthusiastic, outgoing and

talkative the person is. A high score on Agreeableness suggests a person more appreciative,

forgiving, generous, kind, sympathetic, trusting. A highly conscientious person is efficient, or-

ganised, planful, reliable, responsible, thorough. The neuroticism trait measure how anxious,

self-pitying, tense, touchy, unstable, worrying a person is. Openness is about how open or

closed the person thinking is, an open person appreciates arts, is curious, imaginative, insight-

ful, original and with broad interests.

Table 18 – Experiment 3: Descriptive statistics for BIG FIVE responses.

Min 1st Q Median Mean Std 3rd Q Max

Extraversion 1 2.5 3.0 2.879 0.787 3.375 4.500
Neuroticism 1.625 2.875 3.375 3.375 0.871 4.125 5.00
Conscientiousness 1.0 2.556 3.0 3.050 0.791 3.667 4.667
Openness 1.8 3.5 3.7 3.652 0.618 4.1 4.6
Agreeableness 2.111 3.778 4.0 3.835 0.623 4.222 4.889

Source: The author.

The empathising - systemising theory is based on folk psychology and consists of two

dimensions: empathising and systemising (BARON-COHEN, 2002). The first is an intentional

agency, it allows to predict and care about others feelings, and the last is causal, it involves

predicting the behaviour of non-agentive events or objects (WAKABAYASHI et al., 2006). The

Empathy Quotient and Systemising Quotient are instruments to evaluate the empathising —

systemising theory. In this work, we used the short version of these instruments, as they are

highly correlated with the full scale versions (WAKABAYASHI et al., 2006). It has 22 items

of the EQ (EQ-Short) and 25 items of the SQ (SQ-Short). Table 19 presents the descriptive

statistics.

The results of Shapiro-Wilks tests for normality shows that EQ does not conform to

a normal distribution (with α = 0.05, p ∼= 0.023). The validation report of the EQ-short and

SQ-short (N = 1761) presents a mean EQ of 23.8 and the standard deviation of 8.75. In this

sense, the non-normality may be related to the sample size (N = 29) of this study. On the other

hand, SQ found to be normal (p ∼= 0.479), but with significant differences from the validation

report (mean = 19.0 and std = 10.05).

Immersive Tendencies Questionnaire (ITQ) measures individuals’ propensity for the

experience of presence (WITMER; SINGER, 1998). Witmer & Singer (1998) defines presence

as ‘the subjective experience of being in one place or environment, even when one is physically

situated in another.’. The answers to the questions are on a scale of 1 to 7. There are three

sub-scales: involvement — propensity to be passively involved in activities such as watching,

reading books; focus — mental alertness, ability to concentrate on enjoyable activities; and
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Table 19 – Experiment 3: Descriptive statistics for EQ-SQ responses.

Min 1st Q Median Mean Std 3rd Q Max

EQ 6 24 34 30.483 9.451 38 42
SQ 8 24 34 31.31 10.971 38 50

Source: The author.

game — how often they play and whether they feel they are in the game. Table 20 presents the

descriptive statistics. Shapiro-Wilks test for normality shows a normal distribution (p = 0.850)

in total ITQ scores. Figure 16 presents the correlation matrix for personality factors (FFM,

EQ/SQ and ITQ).

Table 20 – Experiment 3: Descriptive statistics for ITQ responses.

Min 1st Q Median Mean Std 3rd Q Max

Focus 23 31 33 33.379 4.663 37 43
Involvement 19 27 32 32.172 6.228 36 45
Games 2 4 7 6.655 3.265 9 13
Total 52 73 83 81.241 12.412 90 104

Source: The author.

5.4.3 Reaction Time

The experiment allows 1, 2 or 3 cars at a time in the environment. Thus, the first hy-

pothesis tested is: ‘the time to perceive a car may be conditioned by the perception of another

perceived car and smartphone distraction ’. We had to perform a new outlier removal consid-

ering the reaction time for each car spawned order once the reaction time for each car order is

different. In the first car, we reduced from 1387 to 1326 records, for the second car, the number

of records decreased from 902 to 859, and the third car from 438 to 434. Figure 17 shows a

point plot representing the central tendency for the reaction time variable for the first, second

and third spawned vehicle in all distraction conditions. It is possible to observe the influence of

playing games in the reaction time.

This hypothesis has two independent categorical variables: distraction and car spawned

order; and one dependent variable: reaction time. Again, probably due to the size of the data

set, the Shapiro-Wilk test failed to prove the normality (stats = 0.9576, p-value = 3.9077e−

24). Bartlett test was applied to show the homogeneity of variances (stats = 19.0894, p-value

= 0.05950). In this hypothesis, we found significance in distraction (p = 2.6350e− 37), in

spawned order (8.5905e− 04) and the interaction between them (5.9176e− 03). The results

presented a small effect size (eta _sq ≤ 0.080), as shown in Table 21. The car sound as an

independent variable does not have significance for this hypothesis.
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6 SITUATION AWARENESS IN DYNAMIC ENVIRONMENTS

A dynamic environment evolves during the agent’s reasoning cycle. Moreover, an

agent may not have all current environmental data. To be aware of a situation, an agent, in the

broad definition of the term, first, have to perceive according to the relevant situation. Then he

uses the obtained data to comprehend and project the future state of the perceived data in the

decision-making process (ENDSLEY, 1988).

The BDI agent model is suitable for dynamic environments and is based on a practical

reasoning theory. The main BDI concepts’ are implemented in Sigon framework and constitute

the basis for this Chapter’s evaluation. We developed an agent to perceive the environment using

active and passive perception as described in Section 4.4.3, and uses the ontological context,

presented in Section 4.4.1, or Bayesian context, presented in Section 4.4.2, for representing

situations.

Active perception enables perceiving the situation related to current goals, from an

ontological or Bayesian representation. The ontological knowledge enables the agent to rea-

son about individuals belonging to a specific situation, in well-defined and detailed semantics.

Bayesian knowledge uses an environmental situation to attach probabilities to events. From the

agent’s practical reasoning, ontological and Bayesian reasoning enables different plans execu-

tion to the same situation. The first one chooses from the situation description and the last one

the situation uncertainty.

Following the thesis problem of integrating heterogeneous data in the decision making

with limited resources, the contributions of this Chapter are: (i) Sigon: (a) analysing the agent’s

practical reasoning time when acting in a dynamic environment; (b) the ability to develop a

flexible reasoning mechanism, which uses different perceptions process, varying update rate,

and uses different types of knowledge representation; (ii) urban and mobile computing: (a) a

framework to analyse pedestrian warning safety systems from a Vulnerable Road User (VRU)

perspective using the agent paradigm.

This Chapter is organised as follows: Section 6.1 presents the environment created for

experiments. Subsection 6.1.1 presents the factorial design approach for experimental design.

In section 6.2 we evaluate a Bayesian agent’s reasoning cycle. Section 6.3 evaluates the use of

ontology for representing situations.

6.1 EXPERIMENTAL DESIGN: A SIGON AGENT IN AN URBAN ENVIRONMENT

Experiments in this Chapter are built over the urban computing perspective. The urban

environment is similar to those from experiments presented in Sections 5.3 and 5.4. Vehicles

travel at 40 km/h and one pedestrian (the subject of analysis) walking at 5 km/h. The pedes-

trian’s smartphone interacts with all the nearby vehicles. A Sigon agent is simulated in the

smartphone, acting as decision support to the pedestrian. The pedestrian interacts with the

smartphone and is notified when the agent perceives a hazardous situation.
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(MERRY; BETTINGER, 2019; SZOT et al., 2019). Experiments are built based on the literature

and tools of urban computing (SEWALKAR; SEITZ, 2019), using the following tools:

• SUMO (Simulation of Urban MObility): is a road traffic simulator (BEHRISCH et al.,

2011). It simulates vehicles and the pedestrian routes during a certain period;

• Veins (Vehicles in Network Simulation): is an open-source vehicular network simulation

framework (802.11p-based V2P network) (SOMMER; GERMAN; DRESSLER, 2010).

Every SUMO vehicle and pedestrian is represented by a network object, where each

object can exchange messages with other objects;

• OMNeT++: is an event-based network simulator (VARGA; HORNIG, 2008). Every

interaction between vehicles and pedestrian’s smartphone is controlled by this tool;

• Sigon: is a framework for developing agents based on multi-context systems introduced

in Chapter 4.

The infrastructure to create simulations in SUMO, Veins, and OMNET++ is available

by Veins developers1. The more significant additions developed in this thesis are in simulating

a pedestrian smartphone and allowing a Sigon agent perceiving environmental data and event

manipulation. We developed methods to simulate a smartphone sensing screen, microphone,

camera and web data. It is important to note that each sensor has an update rate and different

processing capabilities. The smartphone can also send warning messages to objects in the

environments, blocking sound and screen. The agent can control smartphone sensing and acting

functions.

6.1.1 2k Factorial Design

The experimental design and analysis follow the guideline presented in Jain (1990).

It is applied in similar literature works from both vehicular ad-hoc networks (FOGUE et al.,

2011) and perception filters in agent systems (JR; PANTOJA; SICHMAN, 2018).

The key terms of factorial design for the context of this research are: (i) response

variable — the outcome of the experiment; (ii) factor — a variable that affects the response

variable; (iii) level — a value that a factor can assume; (iv) replication – repetition of all or some

experiment; (v) design — specification of the number of experiments, factors and replications.

A full factorial design is a type of experimental design in which every possible combi-

nation of levels and factors are examined. A fractional factorial design is commonly used when

it is impracticable to apply a full factorial design — too many factors or levels. The 2k factorial

design is a type of factorial design, in which all k factors have two levels. Replications of all

conditions are used to estimate experimental errors. In a 2k factorial design with r replications,

we have 2kr observations.

1 https://veins.car2x.org/
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Table 22 – 2k Factorial Design: Analysis of a 22 design.

Experiment A B AB y

1 -1 -1 1 20
2 1 -1 -1 65
3 -1 1 -1 40
4 1 1 1 95

Source: adapted from (JAIN, 1990).

The following scenario explains this approach’s basis: an agent can perceive the envi-

ronment every 10ms or 100ms, and each time it perceives the environment, it receives 5 or 15

percepts. This is a 22 experimental design with 2 factors (perception time and the number of

perceptions) and 2 levels each factor (10ms - 100ms and 5 or 15 perceptions). Let

xA =

{

−1 if 10 ms

1 if 100 ms
(6.1)

and

xB =

{

−1 if 5 perceptions

1 if 15 perceptions
(6.2)

The response variable (reasoning time in ms) can be described on xA and xB as

y = q0 +qAxA +qBxB +qABxAxB (6.3)

Testing each condition of the model produces four responses (yi). Using the results

from Table 22, we have the following equations

20 = q0 −qA −qB +qAB

65 = q0 +qA −qB −qAB

40 = q0 −qA +qB −qAB

95 = q0 +qA +qB +qAB

(6.4)

where qA,qB and qAB are linear combinations of the responses. This regression can be solved

as

y = 47.5+15xA +7.5xB +5xAB (6.5)

and be interpreted as the mean reasoning cycle is 47.5 ms; the effect of perception time is 15

ms; the effect of the number of perception is 7.5 ms; and the interaction between perception

time and the number of perception is 5 ms.

The next step is to measure the total variation of the Sum of Squares Total (SST) of

responses values y

Total variation of y = SST =
22

∑
i, j

(yi − ȳ)2 (6.6)
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The variation of each factor can be described as

SSA = 22q2
A (6.7)

SSB = 22q2
B (6.8)

SSAB = 22q2
AB (6.9)

and the sum of these variation is equals to SST. Thus, it is possible to measure each compo-

nent’s proportion as a fraction: SSA/SST explains factor A; SSB/SST explains factor B; and

SSAB/SST explains the interaction between factors A and B.

In the study presented in this section, the total variation is 1225, of which 73.469%

can be attributed to factor A (perception time), and 18.367% to factor B (number of percep-

tions), and 8.163% to the interaction factors A and B. As a consequence, to increase agent

performance, the perception time factor should be improved.

6.2 BAYESIAN AGENT

The experiment objective is to evaluate the agent’s reasoning cycle time in an urban

environment under a set of constraints using the Bayesian agent presented in Section 4.4.2.

In the Bayesian context, the agent has a network with 4 nodes: userAware, soundDistraction

(listening to music), screenDistraction (number of times the screen is tapped for an oncoming

car) and carNearby (time to collision). The agent’s goal is to keep the user safe. Data collected

from experiments presented in Section 5.4 are applied to construct the network structure and

cases. There is a threshold for safety in the node “userAware”. If there is a probability >= 0.15

in the user not being aware, the agent must act. Figure 23 shows the network included in the

Bayesian Context.

Factors (independent variables) are: density of vehicles, periodicity of messages, per-

ception type (active or passive), and relevant information. The response variable (dependent

variable) is the agent’s needed time to act in the environment. Each simulation lasts for 360

seconds. The experimental factors determination follows 2k factorial analysis.

The density of vehicles and roadmap (road topology) are factors pointed out by Fogue

et al. (2011) to take into account in Vehicular ad hoc networks (VANETs) simulations. In their

work, the periodicity of messages had little impact in a warning message delivery process.

However, in this experiment, the periodicity of messages may increase the agent’s reasoning

time. The periodicity message levels are 1 packet/s (level -1) and 10 packets/s (level 1). The

levels for vehicle spawning (density of vehicles) are 10s (-1) and 20s (1). There is only the

roadmap presented in Figure 22. It is similar from the studies presented in Chapter 5.

The perception factor follows the model presented in section 4.4.3. In active perception

(-1), only perceptions related to current goals are added to the agent’s knowledge. On the other
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• The number of actions to protect the user.

The independent variables are:

• The distance between car and pedestrian is below a threshold (rational driver: 40m,

speedy driver: 60m);

• Ontology Situation CarLifeThreatenPedestrian: below the threshold (Algorithm 1) vs

below the threshold and be decreasing (Algorithm 2);

• Message periodicity: thresholds are 100ms or 500ms;

• Relevant information: assuming the use of perception policies, the new levels of relevant

information are 100% or 75%.

This experiment’s variables are different from the previous one, once the agent has

some performance improvements and has a new dependent variable. Table 25 presents the

factors of this experiment.

Table 25 – Ontological reasoning: Number of reasoning cycles by factor.

Factor Level -1 Level 1

Algorithm v1 v2
Message periodicity 100 500
distance threshold 40 60
Relevant information 100 75

Source: The author.

Algorithms 1 and 2 are two possible ways to develop a pedestrian notification sys-

tem. These algorithms have limitations regarding the information’s representation received as

input, the veracity of the data received, and have no degree of autonomy. The use of the agent

paradigm to execute this kind of algorithm (as agent’s plans) adds an abstraction layer capable

of improving decision-making. In addition to giving autonomy to actions, context representa-

tion of situations and active perception are approaches to improving the number and quality of

the information received.

The execution of the 16 simulations produced 71708 records of agent’s reasoning cy-

cle. The agent had more reasoning cycles when the simulation had more interaction with ve-

hicles (60012 when message periodicity is 100 ms and 11692 when it is 550 ms). The result

displayed several outliers even after interquartile range removal as can be seen in Figure 27.

Results of the 2k factorial analysis under reasoning cycle assumption determine that

the factors of the algorithm (83,159%), and the intersection between message periodicity and

relevant information (10.05%) have more influence in agent’s reasoning cycle. The interaction

between message periodicity and relevant information had only 2.65% of the influence, and
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Algorithm 1: Naive pedestrian notification algorithm.
Input: Pedestrian p, vehicle v

Output: Notify pedestrian
1 if !p.distracted() then

2 return false

3 distance := p.position()− v.position()

4 if distance < v.getDriversT hreshold() then

5 return true

6 return false

Algorithm 2: An improved pedestrian notification algorithm.
Input: Pedestrian p, vehicle v

Output: Notify pedestrian
1 if !p.distracted() then

2 return false

3 lastDistance := p.lastPosition()− v.lastPosition()

4 distance := p.position()− v.position()

5 if distance > lastDistance then

6 return false

7 if distance < v.getDriversT hreshold() then

8 return true

9 return false

other factors have < 1% of influence. The number of warnings sent shows this influence: using

algorithm 1, there are 12426 warnings, and using algorithm 2, the total is 1722.

Algorithm 1 sends more warning messages, yet the variation in the distance for notifi-

cation is smaller than using algorithm 2 (std = 2.4362 and mean = 37.2044 in algorithm 1 and

std = 12.6955 and mean = 22.1131 in algorithm 2). It is impossible to apply ANOVA since the

assumption of independence between samples ends up being violated (the agent will perceive

the nearest car first). Figures 28 and 29 show the time to perceive each car considering the two

algorithms and the message periodicity. Vehicle 17 and vehicle 18 were in the opposite direc-

tion and joined the warning zone with a difference of 1 perceived message, resulting in more

time for the agent deciding the action for the vehicle 18 (the pedestrian was already aware of

the situation).

An experimental trial run consists of a total of 36 vehicles. The algorithm 2 notified 23

vehicles of the 26 that crossed its path, taking longer to recognise the possibility for collision.

Algorithm 1 notified 30 vehicles. In this manner, for environments where there is a risk to

human safety, a more conservative view tends to be more appropriate. However, this thesis

does not define which approach is better. It only presents possible approaches to the problem.
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7 CONCLUSION

This thesis investigated mechanisms allowing agents with limited resources to repre-

sent and reason about heterogeneous knowledge sources in dynamic environments. The Multi-

Context System approach enables applying different formalisms to define the agent’s knowl-

edge and capabilities. The systematic literature review presented in section 3.1 demonstrates

that gaps in knowledge remain in agents as MCS, mainly in the development of single agents in

dynamic environments.

To address these gaps in knowledge Chapter 4 presented Sigon, the first framework

allowing agents to be modelled and developed according to the MCS approach. To create it,

it was analysed the main components of theoretical agents as MCS. First, it was described

formally how a Sigon agent is defined. A Sigon agent is an abstract definition, leading to high

customisation that can be a problem if it is unknown the agent’s architecture. In this sense, Sigon

has a BDI architecture in its framework, to facilitate the addition of behaviours and knowledge

sources. The framework has the structure for representing the agent, its contexts, bridge rules,

sensors, and actuators.

In this thesis context, Sigon is evaluated on practical reasoning using BDI-like agents.

However, the key factor in developing different agent’s behaviours in the Sigon framework

is the correct definition of bridge rules. The sequential execution of bridge rules enables the

creation of algorithms to define the agent’s architecture. The Sigon framework achieves the

thesis’ specific objective ‘to define a framework for developing agents, giving flexibility to the

reasoning in heterogeneous sources of knowledge’.

Situations are modelled with ontology and Bayesian networks to demonstrate the agent’s

ability to represent and reason in heterogeneous knowledge sources. The ontological knowledge

enables the agent to reason about individuals belonging to a specific situation, in well-defined

and detailed semantics. We use the Situation Theory Ontology (STO) (KOKAR; MATHEUS;

BACLAWSKI, 2009) for modelling pedestrian situations. Bayesian knowledge uses an envi-

ronmental situation to attach probabilities to events. We create a Bayesian network to describe

pedestrian awareness. These studies with ontology and Bayesian network answer the RQ1

(How to model and develop intelligent agents to combine knowledge with multiple representa-

tions following the MCS approach?).

The addition of an active perception model to restrict the agent’s perceptual process

allows the agent’s internal state to guide the decision of relevant environmental aspects for

the current intention. An agent’s intention may have several plans, and each plan can have

a different set of preconditions. A precondition may be represented in a specific formalism,

thus reiterating the importance of different knowledge representations in the agent’s decision

making. Section 4.4.3 presents a multi-context active perceiver agent. It achieves the specific

objective ‘to identify perception prioritisation strategies according to the agent’s internal state’,

and answer to RQ2 (How to restrict the perceptual process based on a BDI agent’s internal

representations of situations?).
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Agent’s definition and the representation of situations allows the analysis of its perfor-

mance in dynamic environments. Therefore, this thesis’s experimental Chapters are contextu-

alised in urban environments, in the usage of smartphones by pedestrians. The two main points

concerning this subject are: (i) to identify factors that decrease situational awareness of pedes-

trians, and (ii) how to model agents to act as a decision-supporting system in these situations.

Chapter 5 argued the first point, showing a comprehensive study on pedestrian sit-

uational awareness when using smartphones and providing a new understanding of their be-

haviour. We conducted three experiments in virtual environments, two in the Octave, and one

using the HTC VIVE virtual reality glasses. In these experiments, we found a significant num-

ber of associations between unsafe events, reaction time, and factors of distraction level and car

sound. The Chapter’s study achieves the specific objective ‘to measure the impact of smart-

phones in a pedestrian’s situational awareness’ and answers the RQ3 (What has been the influ-

ence of smartphone in pedestrian’s situational awareness on the vicinity of urban traffic?). This

analysis also allowed the development of models of situations that can be analysed individually,

for example, as a Bayesian network, or as a component of the agent’s decision process.

The second point of the experimental Chapters regards the agent paradigm in the ur-

ban computing context. It creates an abstraction layer in the interaction between entities in

the environment. Vehicles, pedestrians, and infrastructure elements can use the autonomy, pro-

activeness, reactivity, and social ability to interact with their peers acting correctly in the envi-

ronment. Section 4.4 presented some approaches for modelling agents to act in such situations

using an ontology, a Bayesian network and active perception. These examples were applied

in Chapter 6, to evaluate the impact of receiving irrelevant data for decision-making, and how

active perception can reduce it. Chapter 6 also presented a method to apply contextual data in a

decision support agent. The studies presented in sections 6.2 and 6.3 achieve the specific objec-

tive ‘to analyse practical reasoning for heterogeneous representations of situations in dynamic

environments with limited resources’.

The outcome of specifics objectives produces a practical reasoning model, based on

BDI and implemented in the Sigon framework. It achieves the general objective of this thesis

‘To develop a practical reasoning model for intelligent agents situated in a dynamic environ-

ment, following the multi-context systems approach, to handle heterogeneous overwhelming

situational data’. The model developed in Sigon enables the use of different representation for

modelling situations of the dynamic environment, and perception policies and active perception

are mechanisms to improve overwhelming situation data.

The Sigon framework is a prototype, and several optimisations are still needed. Conse-

quently, the comparison with Agent Programming Languages can be tricky. This characteristics

also impact the experiments performed in Chapter 6. Although the infrastructure has been de-

veloped for simulation in urban environments, the analysis ended up being limited to ontology

and Bayesian network. Some optimisations are characterised as future work and are described

below.
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7.1 FUTURE WORKS

The main future works are organised into two perspectives: Sigon development and

urban computing.

7.1.1 Sigon Development

Several properties of the MCS theory can be added to Sigon. For example, preferences,

inconsistency analysis and answer set programming (BREWKA; EITER; TRUSZCZYŃSKI,

2011; EITER et al., 2014; MU; WANG; WEN, 2016). These theories can be used in the devel-

opment of both a single agent and a multi-agent system.

The addition of answer set programming ability in the Sigon framework is useful for

BDI agents, in which it is possible to verify all the applicable intentions at a given moment. To

do such analysis is necessary to evaluate all bridge rules applicable at a given time. However,

the agent having to evaluate it at every reasoning cycle can be a costly task. Thus, a preference

mechanism may also be useful for searching applicable bridge rules examining only a subset of

intentions.

The concept of preferences is also applied to other contexts. For example, if the

Bayesian context states that the pedestrian will be run over, and the ontological states the oppo-

site, the agent needs a mechanism to choose one. Other operators can be added to Sigon, both

at the bridge rules level — adding bridge rule uncertainty; and at the context level — generation

of new beliefs through the function execution.

Costantini & Pitoni (2019) presented K-ACE, a more general approach for agent devel-

opment than the one presented in this thesis, using bridge rules and any other communication

device. However, the authors suggest the use of Sigon to implement it. Future research is

creating a mechanism to enable the development of a K-ACE agent in the Sigon framework.

Multi-Entity Bayesian Networks (MEBN) (LASKEY, 2008) is a related approach in-

tegrating First-order Language (FOL) with probabilistic knowledge. It is modular — the prob-

ability distributions are local, over a small group of hypothesis; and it is compositional — the

global probability is consistent over sets of hypotheses. There are applications of MEBN with

probabilistic ontologies (COSTA; LASKEY; CHANG, 2009) and Predictive Situation Aware-

ness (PARK; LASKEY, 2018). Future research is to integrate a MEBN in an MCS and in the

Sigon.

All the studies developed in this thesis examine a single agent situated in a dynamic

environment perspective and with the requirement to use heterogeneous knowledge sources.

The information contained therein can be extended to analyse collective behaviour. It is a

process that involves social interactions and can imply in capabilities as negotiation and trust.

A gap in the context-awareness systems literature is at ‘how it can trust its own understanding

of its context’ (FERNANDEZ-ROJAS et al., 2019). The agent literature presents trust models

that can be studied and adapted to this problem.
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7.1.2 Urban Computing

This research presented several facets of mobile devices in urban environments: tasks

that can reduce pedestrian situational awareness; V2X simulation with agents; development of

models to improve safety. The following work is to perform tests similar from those presented in

Chapter 5 using the agent developed and tested in Chapter 6 as context-aware decision support.

The urban experiments reflected the thesis goals, but the integration of Sigon with these

tools allows for further analysis. For example, other environmental factors are available, such

as speed variations, interaction with other pedestrians and infrastructure. For example, an ap-

plication study is representing the pedestrian and/or drivers as Sigon agents and thus simulating

the user’s behaviour. Additionally, our experiments examined the interaction between vehicles

and pedestrians, and this interaction may involve criteria such as the truthfulness of previous

information. Thus, the use of security devices is motivated, such as a trust model for interacting

or negotiating with other devices/agents. In this sense, a current challenge for agent societies in

urban environments is negotiating resources and services (BAARSLAG et al., 2017).

Dynamic Bayesian networks is a Bayesian network allowing to model situations by

including temporal dependencies of dynamic behaviours of situation variables. A pedestrian

situation awareness model in a Dynamic Bayesian networks perspective can be developed using

the dataset created in this thesis.

We plan to develop a model to improve situation awareness of people with lower at-

tention, blind or elderly in urban environments. To achieve it, we are investigating how to get

the surrounding environment sound to measure the distance between blind people and close

objects.
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APPENDIX A – SIGON GRAMMAR

1

2 grammar Agent;

3

4 agent

5 :

6 communicationContext (context | bridgeRule)*

7 EOF

8 ;

9

10 context

11 :

12 logicalContext | functionalContext

13 ;

14

15 bridgeRule

16 :

17 head ':-' body '.'

18 ;

19

20 logicalContext

21 :

22 logicalContextName ':' formulas

23 ;

24

25 functionalContext

26 :

27 communicationContext |

28 plannerContext

29 ;

30

31 communicationContext:

32 'communication' ':' (sensor | actuator)+

33 ;

34

35 plannerContext

36 :

37 'planner' ':' plansFormulas

38 ;

39

40
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41 logicalContextName

42 : primitiveContextName

43 | customContextName

44 ;

45

46 primitiveContextName

47 : 'beliefs' | 'desires' | 'intentions'

48 ;

49

50 customContextName

51 :

52 CUSTOMNAME

53 ;

54

55 CUSTOMNAME :

56 '_' ALPHA CHARACTER*

57 ;

58 plan

59 : 'plan' LeftParen somethingToBeTrue ',' compoundAction (','

planPreconditions ',' internalOperator? planPostconditions)? (','

cost)? RightParen '.'

60 ;

61

62

63

64 somethingToBeTrue

65 : term

66 ;

67

68 planPreconditions

69 : conditions

70 ;

71

72 planPostconditions

73 : conditions

74 ;

75

76 conditions

77 : ('_' | term)

78 ;

79

80 action
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81 : 'action' LeftParen functionInvocation (',' actionPreconditions ','

internalOperator? actionPostconditions)? (',' cost)? RightParen

82 ;

83

84 actionPreconditions

85 : conditions

86 ;

87

88 actionPostconditions

89 : conditions

90 ;

91

92 functionInvocation

93 : functionName LeftParen argumentList? RightParen

94 ;

95

96 functionName

97 : CONSTANT

98 ;

99

100 sensor

101 : 'sensor' LeftParen sensorIdentifier ',' sensorImplementation

RightParen '.'

102 ;

103

104 sensorIdentifier

105 : STRING

106 ;

107

108 sensorImplementation

109 : STRING

110 ;

111

112 actuator

113 : 'actuator' LeftParen actuatorIdentifier ',' actuatorImplementation

RightParen '.'

114 ;

115

116 actuatorIdentifier

117 : STRING

118 ;

119
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120 actuatorImplementation

121 : STRING

122 ;

123

124 internalOperator

125 : beliefAdition | beliefRemotion | desireAdition | desireAdition

126 ;

127

128 beliefAdition

129 : '+'

130 ;

131 beliefRemotion

132 : '-'

133 ;

134

135 desireAdition

136 : '+!'

137 ;

138 desireRemotion

139 : '-!'

140 ;

141 argumentList

142 : expression (',' expression)*

143 ;

144

145 expression

146 : CONSTANT | VARIABLE

147 ;

148

149 compoundAction

150 : ('[' action (',' action)* ']') |'_'

151 ;

152

153 plansFormulas

154 : ((plan | action )) *

155 ;

156

157 contextName:

158 logicalContextName | 'planner' | 'communication'

159 ;

160

161 head
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162 :

163 '!' negation? contextName (term | negation? VARIABLE)

164 ;

165

166 body

167 : negation? contextName ((term | negation? VARIABLE) | plan)

168 ((AND | OR) negation? contextName ((term | negation? VARIABLE) | plan))*

169 ;

170

171 term

172 : negation? CONSTANT ( annotation | (LeftParen atom (',' atom )*

RightParen) annotation?)?

173 | term (AND | OR) term

174 | ('[' term (',' term)* ']')

175 | term ':-' term

176 ;

177

178 formulas

179 : (term '.' )*

180 ;

181

182 atom

183 : (NUMERAL | CONSTANT | VARIABLE | '_') (operator (NUMERAL |

CONSTANT | VARIABLE | '_') )?

184 ;

185

186 operator

187 : '<' | '=<' | '>' | '>=' | '-' | '+'

188 ;

189

190 negation

191 : 'not ' | '~';

192

193 annotation

194 : (preAction gradedValue ? ) | gradedValue

195 ;

196

197 preAction

198 : '['CONSTANT']'

199 ;

200

201 gradedValue
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202 : '->0.' NUMERAL

203 ;

204 cost

205 : '0.' NUMERAL

206 ;

207 NUMERAL

208 : DIGIT+

209 ;

210

211 CONSTANT

212 : LCLETTER CHARACTER*

213 ;

214

215 VARIABLE

216 : UCLETTER CHARACTER*

217 ;

218

219 AND

220 : '&'

221 ;

222

223 OR

224 : '|'

225 ;

226

227 LeftParen : '(';

228 RightParen : ')';

229

230 STRING

231 :

232 '"' (~["\\\r\n])* '"';

233 fragment ALPHA:

234 LCLETTER | UCLETTER

235 ;

236 fragment CHARACTER

237 : LCLETTER | UCLETTER | DIGIT

238 ;

239 fragment LCLETTER

240 : [a-z_];

241 fragment UCLETTER

242 : [A-Z];

243 fragment DIGIT
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244 : [0-9];

245 WS

246 : [ \t\r\n] -> skip

247 ;

248 BlockComment

249 : '/*' .*? '*/' -> skip

250 ;

251 LineComment

252 : '//' ~[\r\n]*

253 -> skip

254 ;
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