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RESUMO

Os sensores têm sido empregados para fins de monitoramento em vários campos de aplicação
ao longo de décadas, e a identificação de falhas, sejam causadas por mau funcionamento, inter-
ferência ou intrusão, é de grande relevância para a tolerância a falhas em sistemas. Redundância
e diversidade de sensores são uma das principais abordagens para lidar com falhas. Comparar
medidas distintas de sensores que observam o mesmo fenômeno é uma maneira natural de obter
confirmação. Entretanto, os sistemas tolerantes a falhas geralmente resolvem o problema com
modelos estáticos, baseados em leis da física ou estatísticas sobre a operação do sensor. Esses
modelos são específicos e não se adaptam bem a ambientes dinâmicos, onde se espera que sen-
sores sejam adicionados dinamicamente ao sistema, seja para substituir aqueles com falha ou
para adquirir dados adicionais sobre seu comportamento.
Este trabalho propõe uma abordagem para determinar a exatidão dos dados detectados usando
preditores que exploram a correlação de dados para atribuir um nível de confiança a cada dado
produzido por sensores. A variação nos níveis de confiança permite a identificação de sensores
com defeito, além de fornecer feedback sobre grupos de sensores. O mecanismo de atribuição
de confiança proposto pode ser aplicado a qualquer cenário no qual conjuntos de sensores mo-
nitoram fenômenos correlacionados. Neste trabalho, é aplicado para aumentar a tolerância a
falhas em Redes de Sensores Sem Fio (RSSF), visto que estas naturalmente têm que lidar com
sensores com falha em ambientes dinâmicos. As RSSF também podem tirar proveito da natu-
reza distribuída do mecanismo de atribuição de confiança, com uma sobrecarga muito pequena
nas mensagens originais, sem mensagens de diagnóstico ou votação.
As RSSF geralmente usam algoritmos de roteamento geográfico totalmente reativos para supor-
tar nós móveis e falhas de comunicação, uma vez que tais algoritmos não requerem procedimen-
tos de construção e manutenção de rotas. Este trabalho contribui para este campo, explorando
redundância de gateways e algoritmos de desvio de vazio. As soluções propostas aumentam
a disponibilidade e a confiabilidade da comunicação entre os sensores e o mundo externo. O
protocolo proposto, denominado FT-TSTP, usa um "modo de recuperação"para encontrar ro-
tas alternativas para os pacotes ao enfrentar vazios. Também entrega mensagens para todos
os gateways, ao contrário dos protocolos que escolhem um deles, reduzindo assim o tempo de
entrega e o consumo de energia, enviando pacotes apenas para o gateway mais próximo.
As soluções propostas foram avaliadas através de simulações. O protocolo FT-TSTP alcançou
taxas de entrega acima de 97% nos seis cenários avaliados. O consumo de energia apresentou
um crescimento linear de até 150% com 3 gateways, com estabilização para mais de 3 ga-
teways. O mecanismo de atribuição de confiança foi avaliado em quatro cenários diferentes,
identificando cerca de 90% das falhas dos sensores. Uma análise dos parâmetros do algoritmo
foi realizada para mapear sua sensibilidade para tipos de erros específicos. Ao rotular os da-
dos com confiança, também acelera a identificação de mudanças no ambiente sempre que um
conjunto de sensores correlacionados mostram alterações simultâneas nos níveis de confiança.
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Vazios em Roteamento Geográfico. Redes de Sensores sem Fio.





RESUMO ESTENDIDO

Introdução

Os avanços na tecnologia na área de sistemas embarcados permitiu a uso de Rede de Sensores
sem Fio (RSSF) em uma variada gama de aplicações. Edifícios e cidades inteligentes, mo-
nitoramento industrial, monitoramento ambiental e diversos outros tipos de aplicações podem
ser monitorados e controlados por dispositivos cada vez menores e mais econômicos, equipa-
dos com sensores e atuadores, comunicando-se através de rádio. As RSSF são base para a
infra-estrutura de comunicação em locais remotos, onde redes comuns não estão disponíveis.
A tolerância a falhas é um requisito fundamental em diversos domínios, que necessitam operar
de maneira confiável e segura. Estas aplicações executam, muitas vezes, em ambientes sujeitos
a falhas e interferências no sensoriamento e na comunicação. Desta forma, incrementar a to-
lerância a falhas das RSSF, tanto no aspecto da comunicação entre os nodos, como nos dados
obtidos pelos sensores, permite melhorar a qualidade e a confiabilidade dos dados coletados,
bem como aumentar a corretude das atuações deste tipo de sistemas.
Redundância e diversidade de sensores são uma das principais abordagens para lidar com fa-
lhas. Comparar medidas distintas de sensores que observam o mesmo fenômeno é uma maneira
natural de obter confirmação. Entretanto, os sistemas tolerantes a falhas geralmente resolvem o
problema com modelos estáticos, baseados em leis da física ou estatísticas sobre a operação do
sensor. Esses modelos são específicos e não se adaptam bem a ambientes dinâmicos, onde se
espera que sensores sejam adicionados dinamicamente ao sistema, seja para substituir aqueles
com falha ou para adquirir dados adicionais sobre seu comportamento.
Em RSSF que utilizam protocolos de roteamento geográfico reativo, há uma deficiência de algo-
ritmos de desvio de vazios, pois os algoritmos atualmente apresentados na literatura dependem
de informações sobre posicionamento dos nodos vizinhos, ou então de algoritmos de constru-
ção de rotas. Outro aspecto que compromete a tolerância a falhas nas arquiteturas tradicionais
é o uso de um único gateway. Este componente concentra toda a comunicação entre uma RSSF
e a estrutura de TI, configurando um ponto único de falha. Sua inatividade ou sua tomada por
um invasor malicioso pode comprometer a operação de toda a RSSF.

Objetivos

Este trabalho propõe uma abordagem para determinar a exatidão dos dados detectados usando
preditores que exploram a correlação de dados para atribuir um nível de confiança a cada dado
produzido por sensores. A variação nos níveis de confiança permite a identificação de sensores
com defeito, além de fornecer feedback sobre grupos de sensores. O mecanismo de atribuição
de confiança proposto pode ser aplicado a qualquer cenário no qual conjuntos de sensores mo-
nitoram fenômenos correlacionados. O objetivo deste trabalho é demonstrar que a tolerância
a falhas, em redes de sensores sem fio que utilizam protocolos de roteamento geografico re-
ativo, pode ser incrementada pela combinação de um protocolo de roteamento com múltiplos
gateways e um algoritmo de atribuição de confiança. Desta forma espera-se resolver o problema
de falta de dados devido à vazios na rede e o problema da configuração de um ponto único de
falha representado pelo gateway. Espera-se também fornecer um mecanismo para que os nodos
e a aplicação possam determinar a corretude dos dados produzidos pelos sensores.

Metodologia

Para atingir o objetivo proposto, a primeira etapa foi o projeto e a implementação do protocolo
para RSSF denominado Fault-Tolerant Trustful Space-Time Protocol (FT-TSTP), com suporte a



múltiplos gateways e com um mecanismo de roteamento que permite contornar regiões vazias.
Este protocolo foi então avaliado, no tocante às taxas de entrega de pacotes e em relação ao con-
sumo de energia pelos nodos, em diferentes tamanhos de redes, frequências de sensoriamento
e configurações de áreas vazias, além de diferentes números de gateways. Para tanto foi utili-
zada uma ferramenta de simulação de RSSF, denominada OMNet++ (versão 4.6) (OPENSIM,
2017), sobre o framework Castalia (versão 3.3) (BOULIS, 2017).
Numa segunda etapa, um mecanismo de atribuição de confiança foi desenvolvido, baseado em
preditores que devem executar localmente nos nodos. O preditor de cada nodo, utilizando
como entrada os dados dos nodos próximos, deve calcular o valor esperado para o sensor em
questão. Com base nestas informações, o mecanismo atribui um nível de confiança ao dado
lido do sensor. Este nível de confiança pode ser utilizado por outros algoritmos para decidir se
o dado pode ser utilizado ou deve ser descartado em uma eventual tomada de decisão. Após
o desenvolvimento do mecanismo, dados de sensoriamento reais foram empregados para sua
avaliação. Com a injeção de diferentes tipos de erros — outliers, peak, stuck-at, e noise —
as variações dos parâmetros de configuração do mecanismo foram avaliadas, produzindo dados
para a análise da eficácia do mesmo.

Resultados e Discussão

O protocolo FT-TSTP mostrou-se eficaz em atingir os objetivos para os quais foi projetado,
apresentando altas taxas de entrega nos diferentes cenários avaliados. Em relação ao protocolo
anterior (denominado Trustful Space-Time Protocol (TSTP)), mostrou-se resiliente a diversos
tamanhos e formatos de vazios de comunicação na rede. Em cenários com diferentes números
de gateways, o protocolo também mostrou-se capaz de propiciar altas taxas de entrega dos
dados para todos os gateways da rede, com taxas de entrega acima de 97% nos seis cenários
com vazios avaliados. Desta forma, é possível concluir que a tolerância a falhas de comunicação
das RSSF foi consideravelmente incrementada. Aliada ao uso de um protocolo de consenso
bizantino entre os gateways, a solução proposta também oferece uma solução para a detecção
de intrusos que tentem alterar dados, seja pela invasão de alguns nodos individuais, seja pela
invasão de algum dos gateways envolvidos.
O mecanismo de atribuição de confiança também mostrou-se eficiente na tarefa de identificar
sensores cujas leituras não estão de acordo com os valores preditos pelos modelos gerados.
O algoritmo desenvolvido permite, sob determinadas condições, identificar os nodos em que
o dado lido está incorreto, através da substituição dos valores incorretos lidos pelos preditos.
Isto previne a interferência entre os resultados dos nodos, de modo que apenas o sensor em
desacordo atribua um seu nível de confiança baixo ao seu dado. A solução foi avaliada em
quatro diferentes cenários, com a identificação de aproximadamente 90% as falhas em sensores,
dependendo do tipo de erro. Foram avaliadas as combinações dos parâmetros do algoritmo, com
uma análise do impacto de cada um nos resultados obtidos.
A atribuição de confiança também fornece um dado adicional para a aplicação, que pode ana-
lisar a variação nos valores da confiança em diferentes nodos, permitindo a identificação de
Concept Drifts através da análise da variação da confiança dos dados, além do efeito de di-
ferentes fenômenos. Além disso, há indícios de que a variação nos níveis de confiança dos
sensores possa ser também utilizada como indicadores para a detecção de alteração de dados
por intrusos.

Considerações Finais

Os resultados obtidos nos experimentos validaram a hipótese de que é possível aumentar a to-
lerância a falhas em RSSF, através de um protocolo multi-gateway em roteamento geográfico



reativo, além da atribuição de confiança por um mecanismo que permite aos nodos uma avalia-
ção dos dados gerados pelos sensores, sem a necessidade de mensagens adicionais.

Palavras-chave: Tolerância a Falhas. Detecção de Falhas. Atribuição de Confiança. Desvio de
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ABSTRACT

Sensors have been employed for monitoring purposes in several application fields over decades,
and failures, either due to malfunction, interference, or intrusion, is of major relevance to fault-
tolerance systems. Sensor redundancy and diversity is one of the main approaches to deal
with failures. Comparing distinct measurements from sensors that are observing the same phe-
nomenon is a natural way to achieve confirmation. Nevertheless, fault-tolerant systems often
address the problem with static models, based on physics laws or statistics about sensor op-
eration. These models are specific, and do not adapt well to dynamic environments in which
sensors are expected to be dynamically added to the system, either to replace failing ones or to
acquire additional data about its behaviour.
This work proposes an approach to determine the correctness of sensed data using predictors
that exploit correlation in data to assign a confidence level to each piece of data produced by
sensors. The variation in confidence levels enables the identification of faulty sensors, and also
provides feedback about sensor groups. The proposed confidence attribution mechanism can be
applied to any scenario in which sets of sensors monitor correlated phenomena. In this work, it
is applied to increase the fault-tolerance on Wireless Sensors Networks (WSN), as they naturally
have to deal with faulty sensors in dynamic environments. WSN can also take advantage of the
distributed nature of the confidence attribution mechanism, with a very small overhead in the
original messages, without diagnose or voting messages.
WSN often use fully reactive geographical routing algorithms to support mobile nodes and
communication faults, since such algorithms do not require route construction and maintenance
procedures. This work contributes to this field by exploiting gateway redundancy and void
detour algorithms. The proposed solutions increase the availability and the confiability of the
communication between sensors and the external world. The proposed protocol, named FT-
TSTP, uses a ‘recovery mode’ to find alternative routes for the packets when facing voids. It
also delivers messages to all gateways, in contrast to the protocols that choose one of them, thus
reducing delivery time and energy consumption, by sending packets to the nearest gateway.
The proposed solutions were evaluated through simulations. The FT-TSTP protocol achieved
delivery rates above 97% in the six evaluated scenarios. The energy consumption showed a
linear growth up to 150% when using 3 gateways, with a stabilization for more than 3 gateways.
The confidence attribution mechanism was evaluated in four different scenarios and was able to
identify around 90% of sensor faults. An analysis of the algorithm’s parameters was performed
to map their sensibility for specific error types. By labeling data with confidence, it also speeds
the identification of changes in the environment whenever a set of sensors show correlated rates
of changes simultaneously.

Keywords: Fault Tolerance. Fault Detection. Confidence Attribution. Void Detour in Geogra-

phy Routing. Wireless Sensor Networks.
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1 INTRODUCTION

Several application fields rely on sensors for monitoring purposes over decades, and

failures, either due to malfunction, interference, or intrusion, is of major relevance to fault-

tolerance systems. Sensor redundancy and diversity is one of the main approaches to deal with

failures. Fault-tolerant systems often address the problem of verifying sensors’ data integrity

with static models based on statistics about the sensor’s operation, or on models built based on

physics laws. Besides, redundancy is a solution widely used in fault-tolerance also applied to

sensors, as comparing distinct measurements from the same phenomenon can provide a required

level of confirmation. Fault detection solutions, in such scenarios, use these static models to

evaluate the data produced by a specific type of sensor. It also assumes that the environment

and the expected behavior of the sensor are well known. This allows identifying a faulty sensor

if it does not behave as reported by the model, reinforcing the decision by comparing values of

other sensors.

When running on a centralized device connected to all sensors, such fault detection

methods perform well, as models can be applied and results are easily compared. However,

the use of Wireless Sensor Network (WSN) in application in several fields turns the problem of

ensuring fault-tolerance on sensors into a distributed problem. In this work, the sensor fault de-

tection will be applied to the WSN field, in order to improve the fault tolerance in applications

that use this type of sensor infrastructure. Another problem arises when considering the dy-

namic nature of many of the WSN application fields, where sensors can be dynamically added

to the system, either to replace the failing ones or to improve the system with additional data

from new sensors.

WSN are typically deployed in wide areas, with no direct connection to a network.

Therefore, the devices have to establish a self-organized network, forwarding data from each

other, and the communication protocols between the WSN nodes must attend to some restric-

tions on connectivity and energy. Many times the WSN deployment occurs in harsh environ-

ments, where nodes are subject to unexpected interference, signal propagation obstacles, nodes

displacement, among other problems. The communication between the WSN devices and the

internet infrastructure is done through special nodes called gateways or sinks. Despite many ap-

plications that use sensors that can communicate through standard internet infrastructure, using

the Internet of Things (IoT) paradigm, there are fields where the access is not available, demand-

ing a WSN infrastructure. Applications of WSN are diverse, involve monitoring, tracking, and

controlling in different areas, as risk areas as volcanoes and mountains, field data acquisition in

solar and wind power farms, smart cities monitoring devices, military field surveillance, agricul-

tural fields monitoring, healthcare, industries, among others (Kassim; Harun, 2016), (GLORIA

et al., 2019), (AWADALLAH; MOURE; TORRES-GONZÁLEZ, 2019), (Polavarapu; Panda,

2020).

Fault-tolerance is a mandatory requirement under domains that must operate in a re-

liable and trustful manner. Many times these systems have to use the WSN technology, and
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networks are deployed in harsh environments and are highly susceptible to interferences in

sensing and communication. Fault tolerance mechanisms are essential to ensure correct read-

ings and actuation by the WSN elements. Several aspects should be addressed at the WSN

node level, ensuring the correctness of the transmitted data. Different communication protocols

were proposed for these systems, not always considering requirements such as timeliness, po-

sitioning, security, and fault-tolerance. If the network is correctly dimensioned, it is expected

that the communication protocols deliver all collected data to the application. However, this is

not always true when some nodes fail, are isolated by jamming attacks, or if intruders overtake

them. Therefore, at the same time at which the sensor’s data correctness must be ensured by

identifying incorrect readings, it must also be ensured that the WSN provides an infrastructure

that delivers data to the application in a reliable manner. So, there is a need for a fault detection

mechanism at the sensor’s level that does not overload the network traffic. The network has also

to be resilient to communication interruptions caused by node failures or displacement that pro-

duce void regions, or by a communication interruption between the WSN and the application

due to a gateway failure.

Protocols that use reactive greedy geographic routing are efficient and resilient to tran-

sient node faults when enough redundancy is provided by the WSN design. There is no need for

maintaining routing tables nor to run route-building algorithms when a node fails. Once, at each

hop, all nodes closer to the destination are relay candidates. This provides a natural redundancy

against node failure as any of those can forward the message. Only when a local minimum is

reached, when no nodes closer to the destination can be reached, a void-detour algorithm must

be started. This is not trivial in reactive geographical routing, as most of the proposed solutions

use control packet exchange, directed messages, and knowledge about neighbor localization to

overcome a void. So, they may not be the best choice for void-aware transport protocols on

reactive geographical routing, as alternative route calculations must be carried out when some

node fails.

In a typical WSN architecture, a single gateway (or sink) is responsible for all the com-

munication between the application and the WSN devices. It configures a single point of failure,

compromising the entire system if the gateway comes down or is overtaken by an intruder. Also,

if nodes near to the gateway stop forwarding packets for any reason, the communication of the

whole network is subject to greater delivery delays, or can even be interrupted. To solve these

problems, some protocols use multiple gateways to reduce the traffic and power consumption

of the nodes near the gateways, as well as to provide resilience against the failure of some

gateways.

Besides handling communication problems and ensuring that data is timely delivered,

the data integrity is also an important aspect concerning sensors as a whole, and specifically

on WSN. Incorrect readings from a sensor can be transmitted to the application, leading to

incorrect actuation decisions. These errors can be caused by hardware malfunction, sensing

interferences, malicious software on the nodes, or on the gateway. Additional mechanisms

must be developed to ensure that a compromised gateway is not able to send wrong commands



27

to the actuator nodes in the WSN. It demands protocols where data and commands confidence

can be checked.

Therefore, we conclude that the reliability of WSN mesh networks, running reactive

geographical routing protocols, still have room for improvements, at the network infrastructure

level and at the data fault detection aspect. This work aims to contribute to the development of

this field, by answering the research questions proposed next.

1.1 RESEARCH QUESTIONS AND GOALS

This work investigates the dependability enhancement of fully-reactive geographical

routing protocols for wireless sensor networks. In the several contexts, the problem of assur-

ing the integrity and the correctness of data arriving at the application has to be addressed. As

such, this work aims to answer the following research questions: (a) How can the single point

of failure problem, represented by the WSN gateway, be avoided in terms of failure and data

integrity? (b) How can the void-detour problem in a fully-reactive geographical routing proto-

col be addressed, with little or no need of control and routing messages? (c) How to identify

a faulty or malicious node, producing incorrect data, with minimum overhead in terms of data

exchange and control messages between nodes? and (d) how can the application perform the

correctness verification of the data received from the WSN without complex protocols?

Therefore, the main objective of this work is to demonstrate that fault-tolerance in

WSN can be increased by the combination of a multi-sink routing protocol and a data confi-

dence attribution algorithm. This will be addressed in three aspects: The first concern is to

avoid gateways to be a single point of failure, either in the sense of unavailability and the sense

of malicious data manipulation. The second concern is to prevent voids in a mesh network

from holding messages to be delivered, by using a greedy geographically routing algorithm.

The third concern is to identify sensors that are producing incorrect data, either due to exter-

nal interference, hardware malfunction, or malicious software. This identification should be

achieved without the need for extra messages between nodes, in a distributed way. The first and

the second aspects define a fault-tolerant fully reactive routing protocol for WSN using multiple

sinks. The third aspect defines a confidence attribution mechanism for sensors that can be ap-

plied in other contexts, not restricted to the WSN context. It can also be applied in a centralized

architecture.

1.2 ASSUMPTIONS AND SCOPE

In terms of WSN architecture, this work focuses on mesh networks, where each node

is a candidate for forwarding messages from any other node, following the rules of a fully-

reactive geographical routing protocol. Each node is aware of its position through a positioning

device, fixed coordinates for fixed nodes, or using a trilateration algorithm. But, except for the

gateways, nodes do not have to know other nodes’ positions. Regarding the gateways, every
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node knows the localization of each gateway, which are in fixed positions while the network

is up and running. Regarding sensors, each node can be monitoring several sensors, reporting

the values to an application running on a conventional network infrastructure or the Cloud. The

gateways – or sinks – are responsible for managing communication between sensors and the

application. The WSN nodes can also be responsible for actuation, in response to commands

received from the application. The networks are expected to be correctly dimensioned in terms

of the number of nodes, their positions, as well as the sensing interval to be compatible with the

network throughput.

1.3 METHODOLOGY

The following steps were devised to demonstrate that the goal of this work is reached:

1. To present the actual void detour and fault detection algorithms actually in use in different

layouts of WSN.

2. To discuss the problems in applying these algorithms in mesh WSN, in terms of applica-

bility or in terms of computational and time overhead.

3. To develop a routing algorithm that is able to deliver messages to multiple gateways, to

avoid the single point of failure problem, and that is also able to perform void detour

when facing empty regions due to transient or permanent node faults.

4. To develop a model that is able to assign confidence levels to data sensed by different

sensors, without the need of extra message exchange between nodes.

This work was developed in the Software/Hardware Integration Laboratory (LISHA)

in the Federal University of Santa Catarina (UFSC), and based on the research conducted over

the last twenty years, supervised by Professor Antônio Augusto de Medeiros Fröhlich. Sev-

eral previously published works by researchers that worked in LISHA paved the way for this

work. The main research areas were routing protocols, time and space synchronization, and

data representation.

1.4 CONTRIBUTIONS

The contributions of this work can be enumerated as:

• An analysis of the drawbacks of traditional single-gateway architectures to fault tolerance

in WSN, and a discussion of the techniques for the handling of voids in fully-reactive

geographical routing algorithms;

• A discussion of the fault detection techniques used to verify the correctness of sensed

data, in terms of their impact on processing and network overhead;
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• The introduction of a model and a fully-reactive geographical routing algorithm that ad-

dresses the problem of transient voids in mesh WSN, as well as the problem of a single

gateway;

• The introduction of a model that allows the attribution of a confidence level to the data

sensed by the nodes, based on data sensed at correlated sensors.

1.5 STRUCTURE OF THE DOCUMENT

The remainder of this document is organized as follows: Chapter 2 reviews the funda-

mental concepts about data fault detection and void handling in wireless sensor networks. Chap-

ter 3 shows the current state-of-the-art of the proposed solutions on these two aspects of fault

tolerance, presenting and discussing the related works. Chapter 4 describes the Fault-Tolerant

Trustful Space-Time Protocol (FT-TSTP), able to handle multiple sinks and void regions. Next,

chapter 5 describes the proposal and the evaluation of the confidence attribution mechanism,

with the evaluation on some real-world datasets. The conclusions are presented in chapter 6.
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2 BACKGROUND

This chapter reviews some of the base concepts used in the next chapters of this doc-

ument. It makes a general overview, providing references to the reader for further information.

Section 2.1 reviews the basic definitions of fault tolerance. Section 2.2 reviews the void problem

in WSN routing and the main approaches to address this problem in the different architectures.

Section 2.3 addresses several faults that can occur on a WSN. Finally, section 2.4 reviews the

main techniques used in fault detection on sensor data acquisition.

2.1 FAULT TOLERANCE

The definition of fault tolerance is the property of a system to handle the occurrence

of faults during its operation, without leading to a failure. To better understand this, it is nec-

essary to understand the definitions of fault, error, and failure, as outlined by Tanenbaum &

Steen (2007). Therefore, in this document, a fault is any kind of defect that leads to an error,

which corresponds to an incorrect (undefined) system state that may lead to a failure, that is

the observable manifestation of an error, when the system deviates from its specification, not

delivering its intended functionality. Or, as stated by Laprie (1985): "Upon occurrence, a fault

creates a latent error, which becomes effective when it is activated; when the error affects the

delivered service, a failure occurs. Stated in other terms, an error is the manifestation of a fault

in the system, and a failure is the manifestation of an error on the service .". The objective of

fault tolerance is to prevent faults and errors from leading to system failure (absence of service,

or wrong results), so it is required to employ techniques for dealing with errors and techniques

for dealing with faults.

The dependability of a system is defined as "the quality of the delivered service such

that reliance can justifiably be placed on this service" (LAPRIE, 1985). The author also states

that a dependable system is achieved by the combined utilization of methods classified into

fault-avoidance: preventing fault occurrence, by construction; fault-tolerance: provide, by

redundancy, service complying with the specification despite the occurrence of faults; error-

removal: minimize the presence of latent errors, by verification; and error-forecasting: esti-

mate the presence, the creation and the consequences of error, by evaluation.

In the context of WSN and Cyber-Physical Systems (CPS), to increase the depend-

ability of a system the methods above must be applied at different stages. Still following the

concepts proposed by Laprie (1985), we can state that in the context of WSN, fault-avoidance

can be approached at design time, e.g., by correct network architecture and traffic dimensioning.

Redundancy of components as sensors and gateways, as well as providing alternative routes to

messages, are aspects that increase fault-tolerance. Error removal can be achieved by tools that

allow the verification of properties required by the application, as data freshness and availabil-

ity. Finally, error forecasting can be provided by tools that analyze aspects as data correctness,

timeliness of packets in the network, and energy consumption by nodes.
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Regarding the causes of faults, in a WSN some different sources were identified by

Souza, Vogt & Beigl (2007): Node Faults are caused by hardware failure or damage by a

harsh environment, incorrect sensing caused by interference, battery depletion, or even latent

software bugs. Node failure on specific locations can isolate an entire area of the network. Net-

work Faults can be caused by node displacement, interference, or obstacles for the radio signal.

Packet collision or path errors can also cause message loss. Sink Faults can make the whole

network unreachable, as it configures a single point of failure if the network architecture pro-

vides no redundancy for this component. In remote deployments, for example, severe weather

conditions can break satellite communication with the sink.

When considering the temporal aspect, faults are categorized by Koushanfar, Potkon-

jak & Sangiovanni-Vincentell (2002) into three types: Permanent, that are continuous and sta-

ble by nature, as hardware faults that completely disconnect a sensor node from the others.

Intermittent, with sporadic manifestation due to unstable hardware, or even intermittent bugs in

software. Transient or temporary faults, which commonly are the result of some environmental

impact on the sensor’s hardware or interference in the radio signal.

Two categories of tasks have to be performed to provide resilience in the occurrence of

faulty situations, as stated by Souza, Vogt & Beigl (2007). Fault detection: the first step is to

correctly identify that a given functionality or component is (or will be) faulty; Fault recovery:

the next step is to prevent or to recover from the fault, avoiding the occurrence of a failure.

Components redundancy is one of the most employed techniques for system recovery.

2.2 WIRELESS SENSORS NETWORKS AND ROUTING PROTOCOLS

Wireless Sensor Networks consist of several (maybe hundreds) of Sensor Nodes (SN),

deployed in a region where they are expected to measure some quantity or send information

about the occurrence of certain events. Several dimensions can be analyzed when engineering

a WSN, as presented by Mohamed et al. (2018). The aspects to be taken into account, cited by

the authors, are:

• Measured Data, which defines the frequency and accuracy needed to represent the data.

• Target type, such as tracking a specific type of entity, monitoring some measurable value,

or verify the occurrence of specific events.

• Data Transmission determines under which circumstance data flows on the WSN. Sens-

ing can be done timely, answering specific queries or on the occurrence of events.

• The Node Placement aspect encompasses where and how the sensors will be positioned

on the field (region of interest). They can cover the body of a person (BAN), be placed

underwater, underground, or on the ground. The nodes’ placement can be carefully pre-

determined or be random. The monitoring can also cover 2D or 3D spaces.
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• The Service Area describes the field of activity of the collected data. To exemplify, it

can be environmental monitoring, precision agriculture, military applications, healthcare,

or industrial applications, among others. The service area determines aspects such as

freshness and reliability of data.

The communication between nodes or between the gateway and a node in a WSN uses a routing

protocol to deliver the messages between them. Several aspects can be considered when design-

ing such protocols, and can be grouped under the different dimensions, as stated by Al-Karaki

& Kamal (2004), Sabor et al. (2017), explained below.

The route processing dimension determines how a route is built from the origin to

destination. Proactive protocols make route calculation in advance, and keep information in

memory. Reactive protocols only make routing processing when messages arrive and make

different decisions upon each arrival. Finally, hybrid protocols can use both techniques together,

e.g. on nodes of several hierarchy levels.

The protocol operation dimension is concerned with how a protocol operates, as a

pattern for communication, hierarchy, delivering, and next-hop calculation. Negotiation based

routing uses high-level data descriptors to eliminate redundant data transmission. Nodes also

keep track of their resources to determine how messages are delivered to optimize overall re-

source consumption. The multipath based protocols try to send messages through alternative

routes, ensuring delivery. Query based routing sends special packets (queries) to get data and

to prospect network status. Collecting information about nodes’ energy and communication

load is also an essential part of QoS based routing, which uses this information to determine

routes that get a balance between energy consumption and data quality. A routing protocol is

called coherent if a minimum data processing (such as stamping, duplicate suppression, and

others) is performed at the node level, that only transmits it to their destination. Alternatively,

in non-coherent based routing protocols data can be processed at intermediate nodes, which

can perform operations like aggregation, that can suppress or change characteristics from the

original data.

The dimension regarding the network structure plays an important role, as it defines

the characteristics of the Base Station (BS)s and the Sensor Node (SN)s. Flat networks routing

implies that all nodes have the same capabilities and play the same roles in the routing protocol.

On the other hand, the hierarchical network routing makes a distinction between nodes. Sensor

nodes communicate with a Cluster Head (CH), that can be responsible for, e.g., make data or

packets fusion and forward to a superior node. The location based routing protocols make

decisions about routing based on the node’s location, the origin, and the destination of the

transmitted packets.

These aspects can also be somehow combined in the protocol implementation, leading

to hybrid protocols that can use one or another aspect while making routing decisions.
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2.3 NETWORK FAULTS IN WSN

Recently, several wireless sensor network routing protocols have adopted location-

based solutions. The use of protocols that use addresses, like the Internet Protocol (IP), have to

handle address assignment, maintain routing tables, as well as keep track of devices’ location to

determine where the data was produced. On the other hand, in location-based protocols, a node

has only to know its location and, at most, the state of its one-hop neighbors. This information

locality, without the need for requests and state propagation messages for route building, makes

this kind of protocols save bandwidth and energy (KUMAR et al., 2017).

Some WSN protocols use route building routines. Usually, these routines are started

by the gateway sending a query to the network. Each node that receives it has to make some

decision about the route building process, based on information like network traffic or battery

power from himself and from the nodes, collected while the query goes through the network.

Every node keeps the information about the routes in tables, updates the control packet, and

forwards it. When the process ends, each node knows where a message must be routed, when

it has to send or relay it. Network faults are easily detected by the absence of data received

by the sink or by the lack of communication with the neighbors. If available, the protocol can

activate redundant nodes. Another solution to the absence of a node involved in a route is to

find alternative routes to overcome a path interruption. In this case, the protocol must rebuild

routing tables or run a route building protocol, possibly exchanging some control messages.

This rebuilding procedure demands time and energy. When transient faults occur at the end of

the rebuilding algorithm, the network configuration can be changed.

Alternatively, most of the called location-based protocols use greedy forward routing

algorithms. Each packet is transmitted to the next node that is closer to the destination. This

leads to the problem of black holes or void areas, when a node does not find any neighbor

that can help the message to make progress to the destination. When this situation occurs, it is

also said that a message has reached a local minimum. The void can be caused by poor node

placement, a node displacement (either real or virtual), natural obstacles, or when some nodes

suffer hard failures or are refusing to forward messages.

Several void-detour algorithms were proposed for location-based routing protocols.

They can be classified into two categories: right-hand rule and back-pressure rule (AISSANI

et al., 2010). The right-hand rule is based on graph traversing algorithms and is used to detect

the nodes at the border of the void. These nodes are then responsible for routing messages

around the void region. This can lead to high traffic and power depletion of these nodes. On the

other hand, the back-pressure rule algorithms make nodes facing a black hole send messages

backward. Doing so, the precedent nodes that receive the message back have to search for other

alternative routes. By "learning" that some nodes are facing voids, the precedent nodes can

preventively use the alternative routes and avoid the defective route.

To increase the dependability of a WSN network protocol, mechanisms to deal with

transient or even permanent node faults are mandatory. If the faulty nodes make some other
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nodes be overwhelmed by the extra traffic, the application can cancel some requests, restricting

the sensing to a subset of critical sensors. In other words, the presence of voids can lead to

the need for a complete network capacity recalculation. The traffic over the WSN has to be

carefully planned in order not to exceed the nodes’ transmission capabilities, which can be

radically changed by the extra traffic demanded by a void occurrence.

However, only a reliable transport layer is not enough to guarantee data correctness.

Data must be delivered in strict timelines, but must also be correct. To a dependable WSN,

the detection of possible incorrect readings on the sensors has to be addressed, as they can

be subject to faults due to natural or induced interference, hardware errors, and other causes.

In many systems as CPS, inaccurate values can lead to incorrect actuation commands, with

undesired behavior, economic losses, or even catastrophic consequences. These aspects are

discussed in the next section.

2.4 DATA FAULT DETECTION TECHNIQUES

The previous section discussed the data and commands transporting problems in a

WSN. However, faults in sensors’ data reading, which can be caused by defective hardware,

interference in sensing, or malicious nodes forging incorrect values, are a kind of problem

harder to address. The node acts as usual in the network, sending and relaying data from other

nodes. But the data it produces is useless or even dangerous, as it can lead to erroneous actuation

decisions by the application. A standard solution is the deployment of redundant sensors to

compare readings. We used the term data fault to identify incorrect data, in opposition to

sensor fault, that can also denote a sensor that turns inoperative due to hardware failure or

battery depletion, or even one that continues to read sensor data but is unable to communicate

with the WSN due to a radio failure.

Fault detection techniques on sensed data can be applied into different levels and classi-

fied in three different classes, considering the involved parties. In self-diagnosis methods nodes

can identify faults on its components, in an autonomous way. In a group detection mode, nodes

monitor the behavior of other nodes trying to detect errors. This kind of solution is mainly used

in dense deployments of homogeneous sensors. Finally, when a hierarchical method is used,

the detection is shifted to more powerful nodes, as cluster heads or sinks, which have access to

more data, and use more powerful hardware to make complex computations (SOUZA; VOGT;

BEIGL, 2007).

A slightly different taxonomy is presented by Khan (2013). In a Centralized Archi-

tecture, the base station is responsible for collecting information and controlling the whole

network. A Distributed Architecture uses multiple stations throughout the network, each con-

trolling a subset of nodes. Mobile agents are used for going through the network and to perform

some diagnosis and recovery tasks in a Distributed Agent-Based Approach. In a Hierarchical

Architecture, lower-level nodes (starting on the sensors) send reports to higher-level nodes, in

a hybrid architecture between centralized and distributed. Cluster heads act as intermediate
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managers in most architectures.

Sensors’ data faults can present different patterns and are classified by Sharma, Gol-

ubchik & Govindan (2010) in three main types. Short faults are single readings with values very

different from normal readings (spikes). Noise faults are long duration readings with values ran-

domly varying in different ranges around the correct value. Finally, constant faults are readings

that differ by a (relatively) constant difference between real and sensed data. The authors also

classify the data fault detection methods in four classes, as follows. Rule-based methods use

domain knowledge to develop heuristic rules/constraints that the sensor readings must satisfy.

These rules can be originated by some scientific law, or by long-term observations previously

made. Estimation methods use spatial correlation in measurements of different sensors to define

the "normal" behavior of a sensor. Time series analysis based methods use time-series forecast-

ing to predict the sensor’s value, based on a model built from previous readings of the same

sensor, to define if it is faulty. Learning-based methods use previously read data, classified as

normal or faulty, to infer and train a model able to classify newly collected data.

Rule-based methods rely on the expert’s knowledge and are mainly hardcoded in the

algorithms. They are suitable for domains with well-known behavior and dynamics. Estimation

methods use statistical analysis and direct comparison of sensor readings of the same mea-

surement. They are relatively simple and efficient in dense networks of homogeneous sensors.

Time series analysis does not need data exchange with other sensors, saving communication,

but when a deviation occurs, it can be hard to determine if it is a local fault or a change in the

environment.

Changes in the environment can be deterministic in data correctness analysis. A rule

or model that is unaware of the impacts of environmental changes will fail if some unexpected

change occurs, leading the system to an inconsistent state. This change in the read values

can then be wrongly classified as a fault, while it is just an correct, but unforeseen, change in

the environment. Therefore, change detection is a crucial part of prediction models applied

to non-stationary (or drifting) environments. As pointed out by Ditzler et al. (2015), "In such

nonstationary environments, where the probabilistic properties of the data change over time, a

non-adaptive model trained under the false stationarity assumption is bound to become obsolete

in time, and perform sub-optimally at best, or fail catastrophically at worst."

The change detection methods can be grouped into four main families: Hypothesis Test

uses statistical techniques to verify the classification error of a fixed-length set of readings. The

variation of the classification error is compared to the error of the training dataset. Change-Point

Methods also use a fixed-length data sequence, analyzing all partitions of the data sequence to

identify the instant where the data changes its statistical behavior, called change-point. The

main drawback of this method is the high computational complexity. A Sequential Hypoth-

esis Test inspects each incoming sample until enough evidence that a change has occurred is

found. Change Detection Tests are specifically designed to analyze the statistical behavior of

data streams sequentially. Most of them operate by comparing the prediction of absolute error

or its variance to a specified threshold, which is hard to determine at design time. Some adaptive
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algorithms were proposed, using cumulative errors. The use of hybrid change detection is also

proposed. A change detection test can be used in a first layer, followed by a validation layer

that uses a change-point method (DITZLER et al., 2015).

Model update, performed after a change is detected, consists of retraining the model

with new data. The main approaches are windowing, weighting and random sampling (DIT-

ZLER et al., 2015). Windowing approaches, as the name implies, use a window of N most

recently values to retrain the model, considering the samples that already left the window as

obsolete. Therefore, when the model is retrained, it reflects the current environment dynamics.

The second class of methods considers all the available samples, but assigns different weights

to each one, based on its age or relevance to the accuracy obtained with the data in earlier clas-

sification models. Finally, random sampling methods collect several samples in the previously

read data, randomly, to form the training dataset to update the model. As the new environmental

conditions are now present in training data, it is expected that the model will be able to correctly

classify it. One of the main questions is if the model has to forget the oldest rules and reinforce

the new ones, or if the learning has to be cumulative. In the former case, the model is entirely

retrained with new data. This implies retraining the model every time a change is detected but

leads to smaller models. In the latter case, incremental learning can keep past knowledge, but

models are larger, demanding more memory and processing.

2.5 ARTIFICIAL NEURAL NETWORKS AS FUNCTION APPROXIMATORS

The Artificial Neural Network (ANN)s are subject of study for several years, and many

types of neural networks were proposed in the literature, and new variations are still continu-

ously proposed, aiming to solve specific types of problems. Some of the basic definitions are

kept through the different approaches and will be briefly described here to lay out some foun-

dations.

The basic architecture of an ANN used as a predictor is illustrated in Figure 1. It is

composed of an input layer, an output layer, and some hidden layers. It computes an approxi-

mation of y based on a set of input features, meaning ŷ = f (x1,x2, . . . ,xn). The main differences

between the ANNs are about the number of hidden layers, the connections between the neurons

and layers, and the activation functions used in the neuron computations. If the values of each

neuron of the previous layer – or each input feature – are used as input of every neuron in the

next layer, the ANN is said to be dense, and is said sparse otherwise. The activation functions

are defined in a way that the output is bounded to the [0,1] or to the [−1,1] interval, therefore

the need to do a normalization process on the input values, to get all values in a unified scale.

Several types of activation functions are proposed in the literature, for different application do-

mains. The number of hidden layers can vary when used in different kinds of computations at

each layer. A more detailed definition and discussion about the characteristics and applications

of ANN can be found in the literature, as Murtagh (1991), Dreyfus (2005), and Walczak (2019).

It was stated by Hornik et al. (1989), Hornik (1991) that an ANN, with a single hidden
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Instances of SmartData abstract local transducers or create local proxies of remote

transducers. Sensed data is encoded as a SI quantity, which type is represented as a 32-bit

identifier (IEEE 1451.0, 2007). Sensor readings are configured by the parameters period and

expiry, defining the sampling periodicity and data’s validity. For remote transducers, a region

of interest for a given SI Quantity is specified as a Space-Time Region(x, y, z, r, t0, t f ), where

x, y, z denote its center, r designates its radius and [t0, t f ] defines the time interval. All nodes that

match the criteria specified by that region of interest will reply, producing SmartData objects in

the specified time interval, at the specified periodicity.

When encapsulated in a network packet, SmartData includes the spatial coordinates

and a high-resolution timestamp identifying where and when the data was produced (Origin(

x, y, z, t)), the data’s validity expressed as an absolute timestamp (Expiry), and a Mes-

sage Authentication Code (MAC). Packets are signed and encrypted using the Poly1305-AES

(BERNSTEIN, 2005) cryptographic MAC, with a key derived using Elliptic Curve Diffie-

Hellman (ECDH) (RASO et al., 2015), demanding synchronized clocks to timestamp data.

For Poly1305-AES, timestamps can serve as one of the input parameters; for ECDH, they can

define a narrow time window for sensor deployment. ECDH can also use nodes’ unique serial

numbers or UUIDs as input. Data must be reciphered at the gateways to avoid sharing keys

with the Cloud, but all WSN symmetric keys are kept in logs. Auditing a SmartData from the

Cloud is as easy as recalculating and comparing the MAC.

Trustful Space-Time Protocol (TSTP)

TSTP Space and Time Synchronization

SmartData relies on nodes being synchronized in time and in space. TSTP implements

the mechanisms needed for these synchronizations relying on its cross-layer design and some

control information carried within its messages. TSTP achieves time synchronization via the

Speculative Precision Time Protocol, which achieves sub-microsecond precision on an IEEE

802.15.4 WSN (RESNER; FRöHLICH; WANNER, 2016). Space synchronization within TSTP

is achieved using a speculative version of the Heuristic Cooperative Calibration Positioning

System (HeCoPs) (REGHELIN; FRöHLICH, 2006).

TSTP Medium Access Control and Routing

The TSTP Media Access Control (MAC), proposed by Resner & Fröhlich (2016) is the

component within TSTP that is responsible for interfacing the protocol with the physical net-

work in an energy-aware manner. Its design follows the general principles of RB-MAC (AKHA-

VAN; WATTEYNE; AGHVAMI, 2011): a long preamble composed of microframes is sent be-

fore each message, such that just one sender occupies the channel at every full period S; sensor

nodes sleep for most of the time and, when they receive a message, nodes closer to the destina-

tion become relay candidates, using their distances to the destination to derive the time offset
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δ (m) for Clear Channel Assessment (CCA) and retransmission. The relay candidate closest

to the destination accesses the channel earlier and wins the contention, resulting in a greedy,

fully-reactive, geographic routing.

Messages being routed by node i are kept in a queue Qi. Each entry eQ ∈Qi represents

a message m that is scheduled for transmission or retransmission. In addition to the message,

eQ also holds m’s Id (extracted from the microframes), its Expiry Tε (extracted from its header),

its Destination and the message’s offset δ (m) previously calculated.

TSTP uses implicit acknowledgment (ACK) to confirm the routing of messages. A

node i only removes a message m from its queue Qi when another message m′ with the same Id

is overheard in the network, transmitted by a node that is closer to the destination. An explicit

ACK is only used when the message reaches its final destination: that node must retransmit

the same message (Last Hop = destination), just to acknowledge the last forwarder and any

neighbors that might still have that message queued. TSTP considers that an unacknowledged

message either suffered a collision or reached a geographic void. To handle this, the tradi-

tional random exponential backoff scheme is used, retransmitting the message until an ACK is

received or it expires.

TSTP’s transmission time offset δ (m) is made sensitive to other routing metrics by

distorting space. A node running out of memory or consuming too much energy can stretch

space, increasing its distance to the destination so that other nodes become more likely to win

the contention to retransmit a message. Conversely, a node with a message close to expiring

can shrink space, increasing the chances of winning the contention and transmitting it earlier.

This distortion can be introduced by coefficient α ∈ [0,1] that multiplies δ (m) and defines how

much any other metric influences the perceived distance, and the offset used for contention. A

value of α = 0.5 produces an offset equivalent to the real distance, an α ∈ [0,0.5) shrinks space,

while an α ∈ (0.5,1] stretches space.

TSTP Greedy Forwarding Algorithm

To prevent the distortion coefficient from causing messages to be forwarded to an

incorrect destination, the TSTP Greedy Forwarding Algorithm ensures that all messages queued

on a node for transmission satisfy the Progress Property: there must be positive spatial progress

towards the destination. This property can be written as ∀ j∀i{m ji ∈ Qi|Di < D j}, meaning

that each message m ji from node j overheard by node i will be stored in node i’s transmission

queue Qi if and only if the distance Di from node i to the message’s destination is smaller than

the distance D j from node j to the same destination. The algorithm presented by Resner &

Fröhlich (2016) handles four possible cases:

Case 1: If m is already enqueued and is coming from a node closer to the destination,

then m is an ACK, and eQ is removed from Qi and m is discarded.

Case 2: If m is already enqueued and m is coming from a node farther from the desti-

nation, then m is a retransmission and can be ignored.

Case 3: If m is a new message that came from a node more distant from the destination,
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then this node becomes a relay candidate for m. So, m is inserted into Qi (creating an eQ).

Case 4: If m is a new message that came from a node closer to the destination, then m

is ignored, since the current node would not make positive progress towards the destination.

The TSTP routing algorithm is resilient to network failures due to transient nodes

failures when the network design provides adequate node redundancy. Allied to the mechanism

of space distortion upon resources restriction, it provides an adaptive routing protocol able to

perform some simple void detour and let some overloaded nodes to deny packet forwarding

services. But its main drawbacks are the inability to handle a local minimum when a void is

created by node failure or displacement, as well as its dependency on a single gateway.
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3 RELATED WORK

This chapter presents the related works regarding the main subjects addressed in this

thesis. To increase the fault tolerance of a WSN, this work addresses two dimensions. The first

dimension is to improve the delivery rate of the sensor’s data on fully reactive geographical

routing protocols, and also take care of single point of failure represented by the single gateway

on traditional WSN architectures. Therefore it is mandatory to make a literature review of the

void detour algorithms in the routing protocols, and also of protocols that deliver sensors’ data

to multiple sinks.

The second dimension is to verify the correctness of the data that arrives at the appli-

cation, due to sensors’ hardware or calibration problems, external interferences, or even data

forging. So, a literature review on methods to identify faulty sensors in a WSN is necessary.

At the routing protocol level, the main aspects of void detour algorithms are investi-

gated, in section 3.1. Solutions that use multiple sinks are described in section 3.2. Finally, the

algorithms that are concerned with the fault detection on sensors’ data are discussed in section

3.3.

3.1 VOID DETOUR

The void detour problem is well known in the WSN context and is addressed by sev-

eral works. In geographic routing protocols, these algorithms can be classified into two groups:

right-hand rule and back-pressure rule. The first makes the packet be routed through the border

of the void, as in the Greedy Perimeter Stateless Routing - GPSR (KARP; KUNG, 2000). They

have the side effect of high power consumption on the border nodes. Several enhancements and

variations of GPRS are proposed. Among others, Wei & Yang (2010) proposed the Buffering

Zone Greedy Forwarding Strategy (BZGFS) protocol to lower the priority of the nodes at the

transmission range edges when recovery mode action is taken to avoid rapid power depletion.

The protocol proposed by (XIAN; LONG, 2016), named EGPRS (Enhanced Greedy Perimeter

Stateless Routing) divided the forward region into a set of sub-regions. Each sub-region has

the same area, in the one with the highest average remaining energy is selected. The variation

presented by Sun, Guo & Yao (2017), named Speed-Up GPSR (SU-GPSR), increases EGPRS’s

remaining energy function, calculating its future energy of the notes in each forward region. It

also includes mobile nodes that move through the WSN and can carry packets in their buffers,

while moving to areas with better transmission conditions due to signal strength or traffic in-

tensity. Packets can be transmitted in a greedy mode (to still nodes) or in speed-up mode (to a

moving node). The next node is selected based on a probability function that takes into account

the number of nodes in each region, assigning greater weights for nodes that are mobile or that

are able to do energy harvesting.

The protocol proposed by Qian & Zhang (2020) uses an enhancement of the right-hand

rule to detect the boundary of a void. Then a node in the convex hull of the boundary is selected
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as a relay node, making the packets from the source run around the void to construct a path with

less hop count.

The back-pressure rule, as in SPEED (HE et al., 2003) and FT-SPEED (ZHAO et

al., 2007), send messages back to the upstream nodes, notifying the presence of a void and

demanding the use of alternative paths. In their work, Aissani et al. (2010) presented three

schemes in order to merge these two approaches, and the authors claim that they can be used

with any geographic routing protocol. Each node has to know the neighbors’ position and must

be able to send messages addressed to a specific node. Special packets for Void Detection and

Void Maintenance are employed in order to map the voids.

The protocol proposed by Theoleyre, Schiller & Duda (2009) uses a technique called

Reactive Deflection. Each node, when unable to forward a message to a specific destination,

updates a "blocked sector". It is described by the start and the end angle relative to the sender

position, for which the node is unable to forward messages and send this information back to the

sender node. When receiving this information, nodes insert it in a control list and stop sending

messages to destinations that need to take a direction inside a blocked sector. If no node able to

forward the message is found, then controlled flooding is started, until a viable node is reached.

Several research works have been made in Underwater Wireless Sensor Networks

(UWSN). The Void Handling using Geo-Opportunistic Routing (VHGOR) protocol as pro-

posed by Kanthimathi et al. (2017), merging geographic routing and opportunistic routing. The

closest sink is defined by the distance and by the node’s condition in terms of energy, queue

length, and others. The algorithm handles convex and concave void in different ways. First,

it tries to find neighbors that can find an alternative path (convex void). If it is not possible, it

enters the concave void algorithm, making the packet go backward to find another way to the

sink.

In the context of sparse mobile ad hoc networks (MANET), Hu & Sosorburam (2019)

proposed a scheme that uses the geographic location and two-hop neighborhood information

to define a forwarding node selection policy for determining the best relay candidates, which

move towards target nodes. It reduces the transmission overhead and end-to-end delay against

communication voids in infrastructure-less environments. The protocol proposed by Julie, Sara-

vanan & Robinson (2019) for mobile nodes networks employs a neuro-fuzzy system that selects

the next best forwarding node inside the communication area considering the residual energy,

number of hops, the distance towards the sink, direction, and number of neighbors.

The aforementioned protocol types need to know the neighbor nodes’ positions, to

choose the next node to which a packet should be forwarded. Therefore, the algorithms do

not apply to reactive geographic protocols. In this kind of protocol, nodes do not keep infor-

mation about neighbors’ positions. However, such protocols require that each node maintains

information about its location. They can also require that nodes keep the system clock highly

synchronized. When it listens to a message, the node decides if it can help in the message

progress and, if it decides so, reacts to the message, forwarding it. Network packets include

the last hop and the destination addresses, and it is the only information a node needs to decide
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the process. The protocol works with one single sink, and there are no authentication or privacy

mechanisms.

Discussion

Void-detour algorithms are developed mainly in protocols that have route building al-

gorithms, and require that a node knows the location of each neighbor. Much of them also

requires that the data packet has to be addressed to a specific node, instead of broadcasting it.

The neighbors’ addresses can be obtained by different methods, such as routing building pack-

ets, periodic beacons, or even by pig-tailing node addresses when forwarding messages. These

characteristics do not apply to fully reactive geographical protocols, in which each node only

knows its position and the sink’s position.

Algorithms that make use of void-discovery packets have the drawback of the addi-

tional time needed to make the void measurement. In a situation where the void can change

dynamically due to irregular interferences or transient node failures, it can be a considerable

drawback, as the void configuration can change before the discovery process ends.

Unless the REACT algorithm presented by Lima et al. (2017), to our best knowledge

there is no other proposal of a void-detour algorithm for fully-reactive geographical routing

protocols in the literature. As a fully reactive routing protocol, the TSTP algorithm is unable to

use these void-detour techniques directly. This is because every node, knowing only its position,

the position of the last hop, and destination of every message, has to make local decisions if it

will forward the received messages, or if it will drop it since it can not help the message to make

progress.

3.2 MULTIPLE SINKS IN WSN

Several works have employed multi-sink approaches, mainly intending to provide al-

ternative routes for packets to improve nodes’ battery lifetime, or to prevent node isolation

when the network suffers a partition due to communication problems. In their work, Yasotha,

Gopalakrishnan & Mohankumar (2016) proposed the use of multiple mobile sinks that move to

WSN regions where nodes have the most remaining energy. This aims to minimize the problem

of power depletion on the nodes closer to the sinks. The sink chosen by each node is always

the closest one. As sinks move through the WSN, the routing decision parameters must be

constantly updated. In the solution proposed by Ozen & Oktug (2014), each node tries to send

packets to the closest sink. Sinks’ positions are known by all nodes. If a void is detected, a

flexible set flag is set in the packets to enlarge the forwarder set, to circumvent the void, or to

transmit packets to another sink.

In the work presented by Carlos-Mancilla, Lopez-Mellado & Siller-Gonzalez (2015)

an algorithm builds clusters and backbones, connection nodes to trees with a sink as root. There
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are N trees, one for each sink, and each node belongs to a unique tree. Trees are rebuilt on

nodes or sinks failures.

Pheromone levels (ant colony algorithm) are used by Zhang & Dong (2015) to deter-

mine multiple routes from nodes to sinks and from sinks to nodes, based on QoS parameters.

Again, each node delivers its messages to the sink whose path offers the best QoS parameters.

This is the same strategy of the Ant-based Dynamic Hop Optimization Protocol (ADHOP) pro-

posed by Okazaki & Fröhlich (2011), which also uses pheronome leves determined by QoS

parameters to make routing decisions. The protocol is fully reactive, able to dynamically adjust

itself to network changes. However, the current version works with a single sink. The BAMBi

protocol proposed by Misra, Bhattarai & Xue (2011) sends a copy to every known sink sepa-

rately. Routing trees with sinks as roots are built with each node belonging at least to N trees

(where N is the number of sinks). Trees are rebuilt on a node or sink failure.

The work presented by Khoufi, Minet & Laouiti (2016) addresses the relay node place-

ment problem from a fault-tolerance perspective. The proposed solution aims at minimizing the

number of relays needed to connect a set of points of interest to a sink by placing them on the

vertices of a triangular lattice inscribed in a minimal rectangle that encompasses all the points.

Their placement outperforms those based on straight lines or Steiner-points, being a powerful

design tool for WSNs when nodes’ placement can be planned.

An algorithm to optimize data aggregation in WSN with multiple sinks is presented

by (Yestemirova; Saginbekov, 2018). Two data aggregation algorithms are proposed, based on

Minimum Spanning Tree and the Shortest Path Tree. Virtual Sinks make data aggregation inside

the WSN, and send the collected data to another Super Virtual Sink. These special nodes then

send the aggregated data to all sinks of the network.

The protocol proposed by Mukherjee, Amin & Biswas (2019) uses smart three-sector

antennas to get better communication between nodes. It also uses a round-robin schema to

choose the neighbor to forward a message, and different routing algorithms are used by nodes

up to two hops away from a sink and by the nodes that are more distant from a sink. A message

is delivered when it reaches one single sink.

The Multi-sink distributed power control (MSDPC-SRMS) algorithm, proposed by

Wei et al. (2019) considers each sink as a cluster head node. The optimal transmission range

is negotiated among the sinks to get optimal connectivity for each node, based on the coverage

quadrangles needed to cover all nodes, and nodes choose their sink using a Voronoi scoping

algorithm. Each node will send data to one sink. The multi-sink protocol proposed by Gangwar,

Tyagi & Soni (2020) uses main and alternative paths from each node/sink pair. Routes are built

in a three-phase process and updated when nodes reach a user-defined critical battery level.

Packets are considered delivered when reaching one sink. The destination sink can change while

the packet is retransmitted by intermediate nodes in the route tree. Multi-sink protocols, with

each node choosing a sink based on energy or timeliness criteria, were proposed by several other

authors, as Carlos-Mancilla, Lopez-Mellado & Siller (2018), Carlos-Mancilla, López-Mellado

& Siller (2019), Ramadan, Alreshidi & Sharif (2020), Rajput & Kumaravelu (2020), Vasavada
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& Srivastava (2020). Differences are mainly about clustering algorithms and reconfiguration

procedures on a node or a sink failure.

Discussion

All the mentioned solutions that use multiple sinks try to minimize the impact of nodes

and gateways failures, to get a better energy balance, or to lower delivery times. They consider

a message delivered if it reaches one sink. None of them proposes advanced integrity checking

for messages, so they are susceptible to attacks that can modify the message content while it is

transmitted over the network, or even by a sink before the data is delivered to the application. If

one sink is taken over by an intruder, the application would have no mechanisms to determine

which sink is the malicious one, as different values can arrive from the same node if it uses

alternated sinks due to routing decisions.

Therefore, there is a lack of a solution that increases fault-tolerance on WSNs regarding

redundant sinks on fully reactive geographical routing protocols. This kind of solution would

prevent a subset of the nodes, or even the entire WSN, from becoming unreachable on a sink

fault. Additionally, an agreement protocol between the sinks can also provide fault tolerance

against data forging by a malicious sensor node, and even by a malicious gateway.

3.3 SENSORS DATA FAULT DETECTION

Sensors provide data to monitoring systems that are responsible for registering it and,

most of the time, feed decision-making programs that can send commands to actuators in re-

sponse to specific situations. Therefore, the correctness of the sensors’ readings is crucial to

avoid failures in these kinds of systems. A standard solution to increase the dependability of

a wireless sensor network is the deployment of redundant sensors to compare readings. It de-

mands a dense deployment of sensors to allow the identification of the faulty sensor among the

correct ones by contrast.

To avoid the dense deployment of sensors, several alternative methods were proposed

to verify the correctness of the sensors’ data. These methods can be centralized, running on the

server, distributed, running on the sensor nodes or hierarchical, when some particular nodes

— like the cluster heads — collect data from a set of nodes and run the diagnosis algorithms

(KHAN, 2013).

The errors in the sensor’s readings were classified by Ni et al. (2009) and by Sharma,

Golubchik & Govindan (2010) in four main types. Outliers are isolated readings that differ sig-

nificantly from normal readings expected by the models. The spike or peak errors are readings

that deviate too much from the normal values for a certain period of time. They are composed

of at least a few data samples, and not an isolated reading as an outlier. The third type is the

"stuck-at" error when the readings present a zero (or very little) variation for a period greater

than expected. The amount of time in which the reading has to be "flat" to be considered a
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"stuck-at" must be determined for each type of sensor. Finally, the high noise or variance is the

occurrence of unusually high variance in the sensor’s readings, in such a way that it differenti-

ates it from the usual noise which appears in many sensor types.

Several techniques were proposed to identify faults in sensors’ readings. Recurrent

Neural Network (RNN) were used by Moustapha & Selmic (2008) to predict sensors values,

based on previous readings of the sensor and its neighbors. The authors made the assumption

that all sensors are of the same type, and that the difference between the values read by neighbor

nodes is bounded by a constant value of ε . After building and training the RNN, the difference

between the sensed value and the predicted value is compared to a threshold η . If the difference

is greater than η , the node is considered faulty.

Time series analysis combined with a voting schema is presented by Nguyen et al.

(2013), assuming that all nodes sense the same phenomenon, neighbors can communicate di-

rectly, and faults occur interrelatedly. The Auto-Regressive Moving Average (ARMA) model

is applied, with p auto-regressive terms and q moving-average terms. The calculation of the

regression formula’s parameters is done on correct (validated) readings, before the sensors’ de-

ployment. In the voting phase, readings of the neighbors are collected. Then the median of these

readings is calculated and compared with the actual reading of the sensor. If the difference is

larger than a threshold τ , the read value is considered faulty. Faulty values are not included in

the node’s history, to not disturb the moving average used in classification.

Statistical analysis of sensed values is another method applied for fault detection. The

Distributed Fault Detection (DFD) algorithm, proposed by Li et al. (2015), uses the statistical

technique of Grouping Test (GT), that identifies a small number of defective items in a large

population. Sensors are supposed to be uniformly and independently distributed in a 2D space.

A sensor is considered defective if its readings differ significantly from other sensors’ readings.

All nodes exchange their readings with the neighbors, run an outlier test, and broadcast the

result. These steps are repeated for L rounds. In the last phase, every node updates its status,

based on the results obtained from data exchanged in the previous rounds, by comparing to a

threshold γ . The values of L and γ determine the trade-off between false alarms and no detection

and are hard to determine for large networks. The authors also proposed an adaptive algorithm

that dynamically determines the values of L and γ .

A modified three-sigma edit test is proposed by Panda & Khilar (2012) and by Panda

& Khilar (2015), using the ratio between the current value, the median, and the normalized

median absolute deviation of the last n readings. If this ratio is greater than 3, it considers the

reading an outlier, and that the sensor is faulty. The spatial-temporal correlation of sensor data

in agricultural systems is used by (BAE; LEE; SHIN, 2019). Data from homogeneous sensors

are classified by the gateway, using statistical methods to analyze the variation of a sensor in

relation to the variation of the set of correlated sensors. It assumes that more than half of the

sensors are sensing correct values to be able to detect the faulty ones. Variation analysis is also

used by (JIA; MA; QIN, 2019) to detect data faults locally at the sensors, avoiding message

exchange for sensor’s diagnose. The authors assume that homogeneous sensors, in the same
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area, will sense similar data.

The Distributed Bayesian Algorithm (DBA) is presented by Yuan, Zhao & Yu (2015).

Sensors of the same type calculate the probability of being faulty in three steps. First, the

nodes periodically exchange their values and probabilities to the other nodes in the radio range

R. Sensors are in the same state (faulty or not faulty) if the difference between their readings

is smaller than a specified threshold rt . The Bayesian formula is used to calculate the fault

probability of each node. In the second step, adjustments are made to avoid that a good node

surrounded by faulty nodes becomes faulty (and vice versa). In the third step, nodes with a fault

probability higher than a given threshold τ will send a warning message to the sink.

A distributed fault detection based on the Hidden Markov Model is presented by Saihi

et al. (2015). Each node uses the difference between its value and the values of the neighbors,

determining its state as Possibly Normal or Possibly Faulty. In the sequence, the probability of

the node to change its state from good to f aulty (or vice versa) is calculated using a transition

matrix built from the results obtained in the first step. The algorithm assumes a WSN composed

by dense deployment of sensors of the same type, to directly compare readings.

A fault-tolerant algorithm for event detection in WSNs called Spatiotemporal Corre-

lation Based Fault-Tolerant Event Detection (STFTED) is proposed by Liu et al. (2015). The

presented scheme uses a Location-Based Weighted Voting Scheme (LWVS) to get a decision

from the involved nodes. It explores the spatiotemporal correlation between sensor nodes, as-

suming a dense deployment of sensors of the same type, to detect events. It also assumes a mean

value mn representing a normal reading (or absence of event) and a mean value me representing

the presence of an event. At the node level, the readings of the neighbors are weighted based on

their distance. Closer nodes have a higher influence on the estimation function and vice versa.

In this step (LWVS), an estimator Rn for the state node n is calculated, which can be inaccurate.

So, the second step (STFTED) uses the Bayesian formula to calculate the probability of a node

to be faulty, based on the estimation of other nodes in the same fault range. If the majority of

nodes have a high likelihood of normal readings, abnormal readings are considered faulty, and

the contrary is also true.

In the work presented by Titouna, Aliouat & Gueroui (2016), an algorithm named Fault

Detection Scheme (FDS) is proposed, based also on a local step, carried out on sensor nodes,

and a second decision step that runs on the cluster head nodes. On the local step, each node

calculates the probability of node i being faulty (Joint Probability, or PJi), using a Bayesian

Network that uses the energy level and the sensed data of node i (ELi and SDi). If the proba-

bility of being faulty exceeds a threshold δ , the node classifies itself as Possibly Faulty - PF.

Otherwise, it classifies itself as Possible Normal - PN. Each node sends PJi and its decision

to the CH, which executes the second step of the scheme. The CH maintains a table called

Probability Join Table (PJT) with the PJ of every node from the cluster. For each node i, the

PJT contains the previous and the actual PJi. When the node decision is PF and the differ-

ence between PJt+1
i , and PJt

i is greater than a threshold γ2, then the node is considered faulty.

Otherwise, it is considered a false alarm. Based on FDS, the authors proposed a Distributed
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Fault-Tolerant Algorithm (DFTA), where they describe a scheme to make the elimination and

the recovery of faulty nodes (TITOUNA et al., 2017).

A method based on logistic regression is proposed by Zhang, Zhao & Nakamoto

(2017), using a logistic regression function. The parameters of the function are obtained in

the model construction (called Learning Step) executed on the sink, using data from all sensors

in this step. After training the model it is sent to the nodes, where it is executed. The value pre-

dicted by the model is compared to the one read by the sensor. If the difference is greater than

a threshold, the node is classified as faulty, and it is classified as normal otherwise. No method

to determine the threshold value is proposed, and the authors decided it is ’based mainly on

experience and intuition.’

A distributed fault detection for WSNs in Smart Grids is presented by Shao, Guo &

Qiu (2017), based on credibility and cooperation among sensors. Each sensor evaluates its

status as suspicious or not, based on the mean and the variance of a window containing the

last k sensed values. A healthy sensor keeps the variance bounded. When a sensor detects

itself as suspicious, a Diagnostic Request is sent to the neighbors, and the Diagnostic Response

messages are used to determine the node’s state. After receiving the response of sensors in an

area determined by a radius R, the node can update its probability of being healthy or faulty.

ANNs are used by Swain & Khilar (2017) to detect and classify different faults in a

WSN of homogeneous sensors. The work assumes that the sensors are uniformly distributed

and with a set of anchor nodes (cluster heads) that have broad radio range and are fault free. A

genetic algorithm combined with gradient descent is used to train the neural networks. These

neural networks classify the state of the nodes. After node classification as secure or faulty, the

last ones are disconnected from routing paths.

The use of large models, with several inputs and complex interconnections, may not

be the best choice for prediction models. When data is sparse or with complex interactions,

the use of ensembles can obtain better prediction results. As each classifier explores specific

competence domains, an ensemble outperforms a single classifier that tries to handle all the

inputs in a unique algorithm (WOŹNIAK; GRAÑA; CORCHADO, 2014). In this sense, Curiac

& Volosencu (2012) used several classifiers to determine if the readings of sensors in a WSN are

faulty or normal. For each sensor, the ensemble uses its historical readings and from the nearest

neighbor nodes as input. All classifiers run on the gateway, in a centralized way. The outputs

of the classifiers are then joined in a single decision and an estimated value, using weighted

majority voting.

A centralized approach, using Kalman filter data fusion to train models on the gateway

with faulty patterns in data is proposed by Biswas et al. (2019). In addition, an implementa-

tion of an Extreme Learning Machine (ELM) is used as a classifier, obtaining high prediction

rates with low communication overhead. Data is considered correct or incorrect based on the

distance between the read value and the predicted value, compared with a threshold χ defined

by the user. The use of Non-Negative Matrix Factorization (NMF) applied to the spectral rep-

resentation of data in an agricultural context was proposed by Ludeña-Choez, Choquehuanca-
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Zevallos & Mayhua-López (2019). This allowed getting a good representation of data with a

reduced number of features. The NMF method is applied to sensors’ data at the gateway, in a

centralized approach. On a hierarchical approach, Dao et al. (2020) applied Improved Multi-

verse Optimizer (IMVO) and Feedforward Neural Network (FNN) on the Cluster Heads of a

WSN to detect data faults.

A pure formal method, based on Timed Petri Nets was proposed by Wang, Wang &

Chen (2019), using trust factor values as valid communication, data similarity, clock synchro-

nization, history data, and remaining energy to determine the firing probability of transitions in

Petri Nets built to model the network. The model is able to predict faults in the WSN, running

at the gateway or at the application level.

The belief function-based decision fusion approach was proposed by Javaid et al.

(2019), with the enhancements of four classification algorithms: K-Nearest Neighbor, Extreme

Learning Machine, Support Vector Machine, and Recurrent Extreme Learning Machine. All

classifiers were enhanced by belief functions. At the sensor nodes, the Basic Belief Assignment

is made, and some belief and plausibility parameters are computed using belief function theory.

The local decision and the reliability measures are sent to the fusion center, to make global de-

cisions by merging results from different sensors, using the enhanced classifiers. This solution

configures a hybrid approach, with local and centralized steps in the fault detection process.

The use of a nature-inspired approach called Improved Fault Detection Crow Search

Algorithm (IFDCSA) was proposed by Gupta et al. (2019), and also evaluated Decision Trees,

Random Forest, and K-Nearest Neighbor algorithms to classify the results, with better results

obtained with the Random Forest algorithm. The algorithm is applied to homogeneous sensors

and executed in a centralized way.

The use of the Grey Wolf Optimization Support-Vector Machine was proposed by Kar-

markar, Chanak & Kumar (2020). The optimization is based on the hunting and preying of the

grey wolf, to find the best position particle in the SVN algorithm. The classifier runs at Cluster

Heads, to avoid communication overhead, in a hierarchical architecture. Fuzzy Logic was used

to verify data faults on heterogeneous WSN by Masdari & Özdemir (2020). The coverage of

the sensors is taken into account, to avoid that isolated nodes make incorrect classifications.

Messages with sensor data are broadcast to neighbors in a sensing range. Each node checks

the local value using a fuzzifier, taking into account the value difference, the distance of the

data’s node, and the number of coverage points. The next step is to apply the fuzzy rules and

the defuzzier, which produces a score of the local value. Then a voting-based fault detection is

used to determine the sensor node status.

Discussion

Most of the presented solutions for data fault detection on sensors use a model that

demands a dense deployment of sensors of the same type, comparing values that should be

very similar. Table 1 shows the main characteristics of the reviewed solutions, in terms of
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detection technique used, the architecture of the solution, the diagnostic strategy, and the type

of the deployed sensors. The main difference between them is the prediction model, varying

from statistical analysis, probability tables (mainly Bayesian methods), to predictors built using

different approaches. The main characteristic of them – except for the solution proposed by

Panda & Khilar (2012) that uses the 3σ test – use extra packet exchange in voting or diagnostic

rounds. Even the method proposed by Jia, Ma & Qin (2019) uses statistical data that must be

exchanged with the neighbor nodes to make the local diagnosis, and assumes homogeneous

sensors.

The need for communication between nodes to diagnose a faulty node comes from the

fact that when a test of the actual sensor’s value reports a difference, there is always the possi-

bility that the error is not from the sensor but the evaluation model. Extra packet transmissions

in diagnostic phases, as in the work of Shao, Guo & Qiu (2017), exchanging test results like in

the proposal of Li et al. (2015) and Jia, Ma & Qin (2019), or even in voting rounds as presented

by Masdari & Özdemir (2020) result in communication overhead and introduce delays every

time a node’s failure occurs.

The majority of the fault detection techniques are built on WSN composed by the de-

ployment of sensors of the same type. Although it is a possible and realistic WSN configuration,

these models are not applicable when sensing a variety of values. Replication is essential to en-

sure reliability, but it also raises costs and can cause communication interference and network

overload.

Once fully-reactive geographical protocols do not have cluster heads in their architec-

ture, they can only use distributed or centralized architectures for fault detection. The time to

send data to the sink and wait for the response can lead to problems, for example, when the

WSN is employed in a CPS that needs to make a local decision and react to some event. There

is a need for a solution that can make a local diagnostic better than an outlier test like the 3σ or

any similar, but without requiring extra diagnostic or voting messages.

The fault detection scheme proposed by Titouna, Aliouat & Gueroui (2016) and Titouna

et al. (2017) uses a hybrid algorithm, with a step carried out on the node, and another performed

on the cluster head, which has higher processing and memory capabilities. In opposition to the

work of Swain & Khilar (2017), the proposal of this work is not to automatically disconnect

faulty nodes, but allow each node to determine its confidence in the sensed value. This can be

used to identify a faulty node, as well as to detect data corruption by intermediate nodes. Never-

theless, the application can also cancel the interest in faulty nodes through specific commands,

making them stop sensing until they can get maintenance.

Despite avoiding extra messages is an important feature for a distributed data fault

detection algorithm, a complete isolated node is unable to determine the correctness of the

sensed data. Some comparison or confirmation mechanism is needed, so even more complex

algorithms, as the one proposed by Jia, Ma & Qin (2019) or the one proposed by Masdari &

Özdemir (2020) relay on neighbors’ data to decide on the status of the data read by a sensor.

The approach used by Jia, Ma & Qin (2019) seems to be the most suitable, as data from closer
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Table 1 – Sensor’s Fault Detection Algorithms

Author Technique Architecture Diagnostic
Sensor

Type

Moustapha (2008)
Recurrent Neural
Network

Distributed Group / Voting Hom.

Panda (2012) 3-sigma test Distributed Local Hom.
Ngyen (2013) Statistical (ARIMA) Distributed Voting Hom.

Li (2015) Statistical (Group Test) Distributed
Broadcast /
Compare

Hom.

Shao (2017)
Statistical
(Variance Analysis)

Distributed
Local /
Diagnostic Msgs.

Het.

Bae (2019) Statistical (Variation) Centralized Gateway Hom.
Jia (2019) Statistical (Variation) Distributed Local / Neighbors’ Data Hom.
Yuan (2015) Distributed Bayesian Distributed Diagnostic msgs. Hom.

Saihi (2015) Hidden Markov Model Distributed
Broadcast /
Compare

Hom.

Liu (2015) Bayesian Distributed
Group /
Weighted Voting

Hom.

Titouna (2016) Bayesian Network Hierarchical Cluster Head Hom.
Dao (2020) IMVO and FNN Hierarchical Cluster Head Hom.

Volosencu (2012)
Classifier
Ensembles (5)

Centralized
Ensemble
Weighted Voting

Hom.

Zhang (2017) Logistic Regression Distributed Classification Het.

Swain (2017)
ANN / Genetic
Algorithms

Hierarchical
Local /
Cluster Head

Het.

Karmarkar (2020) GWO-SVM Hierarchical Cluster Head Hom.
Masdari (2020) Fuzzy Logic Group Voting Het.

nodes can be obtained in ’passively’ manner, just by listening to the neighbors’ communication.
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4 FAULT TOLERANCE AT THE COMMUNICATION LAYER

Parts of this chapter appeared earlier in Byzantine Resilient Protocol for the IoT

(FRöHLICH et al., 2018) and FT-TSTP: A Multi-Gateway Fully Reactive Geographical Rout-

ing Protocol to Improve WSN Reliability (SCHEFFEL; Fröhlich, 2018)

This chapter describes the proposed architecture, whose objective is to improve net-

work fault-tolerance on WSN, providing a more reliable communication layer for the IoT or

CPS. A multi-sink routing protocol named Fault-Tolerant Trustful Space-Time Protocol (FT-

TSTP) is presented, addressing the problems of node failures in packet forwarding on a fully

reactive geographical routing protocol. By delivering messages simultaneously to redundant

gateways, the problem of a single point of failure, represented by a single gateway on common

architectures, is addressed. When running an agreement protocol between the sinks, intercon-

nected by a reliable fast network, the proposed architecture also provides a solution against the

intrusion of nodes and sinks.

The FT-TSTP protocol is an extension of the Trustful Space-Time Protocol (TSTP)

proposed by Resner & Fröhlich (2015), and both protocols are based on the SmartData con-

struct presented by Fröhlich et al. (2013). The new protocol is the result of a collaboration

between the Software/Hardware Integration Lab (UFSC/LISHA) and the Interdisciplinary Cen-

tre for Security, Reliability, and Trust from the University of Luxembourg.

The chapter is organized as follows: first, the context and motivation are discussed in

Section 4.1. Next, Section 4.2 describes the proposed protocol, followed by the evaluation on

different scenarios in Section 4.3. Finally, Section 4.4 presents an evaluation and discussion of

the results.

4.1 INTRODUCTION

More and more Cyber-Physical Systems (CPS) are being interconnected, particularly

in the realm of Wireless Sensor Networks (WSN), Industry 4.0, and the Internet of Things (IoT).

However, due to cost constraints, these systems are often being built around old Internet tech-

nology that was not designed considering requirements such as timeliness, positioning, security,

fault-tolerance, and trustfulness, which are essential for the CPS domain. The proposed solution

aims to provide higher data availability for CPS applications by specifically enhancing fault and

intrusion tolerance of WSN architectures.

WSN architectures can exhibit failures of benign or malicious nature, occurring either

at the level of individual devices (e.g. sensor, actuator, machine) or at the level of gateways that

connect such devices to the traditional Information Technology (IT) infrastructure (e.g. servers,

Cloud, Internet). For example, many battery-operated sensors in a WSN are deployed in areas

that are physically hard to reach and maintain. As a result, many sensors and actuators e.g.,

in ambiental monitoring, are often left unattended. Moreover, many devices in an industrial

environment are subjected to extreme conditions. Consequently, such devices are subject to
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failures, and even some are likely to be exploited by motivated attackers. Similar threats can also

jeopardize gateways. Gateways are typically implemented on computers running an ordinary

operating system such as Linux, usually connected to the Internet. Hence, a gateway is at an

even higher risk of being attacked compared to individual devices.

Adding to that, typical WSN architectures, on top of which CPS applications are es-

tablished, suffer from centralization. Namely, such architectures often rely on a single gateway

(or sink) that connects all system devices or parts of them to the IT infrastructure. A single

gateway is a component that hinders the system’s availability. A failure or a spurious behavior

of this gateway, relative to malicious attacks, may compromise the data from the entire sensor

network.

This work addresses the above threats by presenting a fully established solution, en-

compassing architectural and algorithmic contributions. First, it proposes redundancy at the

deployment level of both sensor nodes (devices in general) as well as gateways/sinks. Hence,

the increased distribution of all network components aims to eliminate centralization.

As already presented in section 3.2, the use of multiple gateways was mainly proposed

to achieve performance scalability, minimized energy consumption, and to deal with network/-

gateway failures. However, messages are delivered to just one of the available gateways consid-

ering, for example, the route that provides better energy balance or the fastest delivery. In case

of communication interruptions or gateway unavailability, these solutions re-route their traffic

to an alternative gateway.

In brief, these solutions fall short in terms of resiliency: they do not provide any data

guarantees when a gateway is compromised by an attacker, in which case an attacker can tamper

with data before delivering it to the application. The objective of this work, unlike these existing

solutions, is to enhance the system’s resiliency to faults and intrusions which yields in turn better

system and data availability.

To provide system robustness and resilience, this work proposes protocols that make

use of the proposed sensor and gateway architectural redundancy. First, at the level of the WSN

devices (sensor nodes, actuators, etc.), a routing algorithm is proposed, named FT-TSTP, which

uses the SmartData concept. The routing protocol aims to achieve data transfer resiliency to

void regions formed by interferences, malfunctioning, or displaced nodes in the WSN. FT-TSTP

utilizes geographic routing to forward packets towards multiple sinks, without relying on route

building techniques, announcement packets, or routing tables in the node’s memory. As stated

before, the FT-TSTP algorithm is built on top of the Trustful Space-Time Protocol (TSTP) pro-

posed by Resner & Fröhlich (2015), which achieves energy-efficient and timely data transfers

in single-gateway WSN architectures.

Second, at the level of gateways, which might receive different data, the proposal is the

use of an intrusion-tolerant synchronization protocol. Initially, the ByzCast protocol presented

in Fröhlich et al. (2018) was used. Any other agreement protocol can be used to verify data

integrity among the several gateways. This architecture allows correct and timely actuation sig-

nals to be dispatched to actuators despite having some gateways crashed or even compromised
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by malicious attackers, as they can be isolated by the agreement.

4.2 FAULT-TOLERANT TRUSTFUL SPACE-TIME PROTOCOL (FT-TSTP)

FT-TSTP is a communication protocol that transports data from devices in the WSN

(e.g. sensors, actuators, machines) to gateways connected to an IT infrastructure. FT-TSTP is

Byzantine-resilient, i.e., it can transport data despite device and gateway failures (benign and

malicious). Redundancy of nodes in a WSN is a major strategy to achieve high data availability

and FT-TSTP certainly also depends on node redundancy in this sense. Nevertheless, node

redundancy is not enough if the data produced on the WSN is meant to be used for network-

wide CPS applications running in the Cloud or over the Internet. WSN sinks (or IoT gateways)

must also be replicated to avoid being single points of failure. Therefore, FT-TSTP assumes

multiple sinks and defines a novel algorithm to forward SmartData messages.

FT-TSTP’s Multi-Sink Greedy Forwarding Algorithm (1) requires a bootstrapping slightly

different from that of the original TSTP. Instead of providing newcomer nodes with the coor-

dinates of a single sink, an array of sinks S is given. The number of sinks in this array is

configurable and depends on the desired level of fault tolerance. For example, at least 3 f + 1

sinks are needed to be able to tolerate f compromised sinks. So, f designates the maximum

number of faulty (Byzantine) sinks that can be tolerated while still being able to reach any form

of agreement on the data delivered by sinks (DOLEV, 1981). The sinks are ordered at deploy-

ment and that order is not modified during a cycle of operation, so all nodes agree on the sinks’

array order. Special commands can be used to disable/enable specific gateways, and also to

add new gateways to the network. However, dynamic configurations would likely be hard to be

validated in terms of the network capacity dimensioning. For example, an upper limit for the

number of sinks can be determined, to correctly dimension the network, and some sinks can be

enabled or disabled dynamically by special commands broadcasted to the nodes, yet with the

guarantee that time requirements will be met. However, in this work, we only evaluated static

networks with a fixed number of sinks.

Besides modifying the bootstrap procedures, the original format of microframes and

messages from TSTP was also modified. Microframes now carry the coordinates of the last

hop, and therefore messages no longer need to carry the distance from the last hop to the sink,

as now there are several sinks and, consequently, several distances. They now also feature a

bitmap (Sinks) designating the sinks to which the following message is to be delivered. This

bitmap has one bit for each of the NS sinks defined at deployment-time. The resulting formats

are depicted in Figures 3 and 4 (the number of bits in spatial (sb) and temporal (tb) coordinates

are defined by the Spatial Scale field in the microframe and the Temporal Scale field).

With these modifications, Algorithm 1 is able to implement a greedy, fully-reactive,

geographic routing policy similar to the one in the original TSTP, but with multiple destination

sinks. Each node that hears any of the microframes that precedes a message m decides whether

or not to wake up to listen to it after calculating its distance to ALL the destination sinks whose
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Algorithm 1 FT-TSTP Multi-Sink Greedy Forwarding

1: procedure MultiSink_Greedy_Forward(m)
2: for each s ∈ S∩m.Sinks do

3: queued← f alse

4: isNew← true

5: toACK← f alse

6: for each eF ∈ Fs
i do

7: if eF .id = m.id and eF .Origin = m.Origin then

8: if m.LastHop = ∞ and eF .LastHop 6= ∞ then

9: // m entered recovery mode and must be removed from Fs
i

10: // and reinserted into Qs
i (line 35)

11: delete Fs
i .remove(eF )

12: isNew← f alse

13: else

14: // m was already relayed
15: queued← true

16: if m.LastHop 6= ∞ then

17: As
i .insert(m)

18: toACK← true

19: end if

20: end if

21: end if

22: end for

23: if not queued then

24: for each eQ ∈ Qs
i do

25: if eQ.id = m.id and eQ.Origin = m.Origin then

26: // m is being relayed
27: queued← true

28: if distance(m.LastHop,s)≤ distance(here(),s) then

29: // m already made progress in this direction
30: Fs

i .insert(Qs
i .remove(eQ))

31: end if

32: end if

33: end for

34: end if

35: if not queued and distance(m.LastHop,s)> distance(here(),s) then

36: // enqueue m for relay in this direction
37: if m.LastHop 6= ∞ or isNew then

38: // m is not in recovery mode
39: m.LastHop← here()
40: end if

41: m.Retries = β
42: Qs

i .insert(m)
43: else

44: // m will not make progress in this direction or is already in Qi or Fi

45: if not toACK then

46: delete m

47: end if

48: end if

49: end for

50: end procedure
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Bits: 1 11 12 NS 2 3*sb 16

All Listen Count Id Sinks
Spatial

Scale

Last Hop

(x,y,z)
CRC

Figure 3 – FT-TSTP microframe format

Bits: 3 1 2 8 64 3*sb + tb 64 0 or 32

Message

Type

Time

Request

Temporal

Scale

Location

Confidence

Last Hop

Timestamp

Origin

(x,y,z, t)
Expiry

Location

Deviation

Figure 4 – FT-TSTP message header format.

bits in Sinks are set. If it can make the message progress toward ANY of those sinks, then it

wakes up to receive m and becomes one of its potential relay nodes. The queues of messages

waiting to be forwarded by each node have now a second dimension, corresponding to each of

the sinks ∈ S and is designated Qs
i .

When a new message m is produced, its Sinks attribute is initialized at the origin node

with all bits set, so Algorithm 1 (line 2) initially tries to forward the message to all sinks. Sub-

sequently, relay nodes only include m in the Qs
i corresponding to the sink for which they are

relaying the message (lines 35-42), clearing the bits of m.Sinks associated with the other sinks.

This way, messages get forwarded directionally, avoiding flooding the network with unneces-

sary replicas of m. The behavior of the All Listen bit is unaltered, so control messages and

messages whose destination is not a sink are routed using TSTP’s routing algorithm.

In order to avoid bounces, which may occur when a previous relay node hears a mes-

sage that was already forwarded to a sink in the past and therefore was removed from the

corresponding Qs
i queue, a second bidimensional queue of recently forwarded messages, Fs

i , is

kept at each node i. Messages are kept in this queue until they expire. These queues are updated

at the beginning of each transmission cycle by Algorithm 2.

TSTP does not handle geographic voids. A message m is retransmitted towards its

destinations until it expires. Voids can result from poor sensor placement, sensor failures, or

from sensor nodes that get compromised and refuse to forward messages. Therefore, in order

to achieve the availability property, FT-TSTP must handle voids natively. The acknowledgment

mechanism in Algorithm 1 enables voids to be easily detected by Algorithm 2: If m is not

overheard after a certain number of transmission slots (m.Retries, Algorithm 2, lines 23-24),

then it is safe to assume that node i has no (sane) neighbors that are closer to the destination

than itself. The β coefficient is also applied in this sense, so m is expected to be acknowledged

(i.e. retransmitted) by a neighbor in each of the designated directions after β transmissions.

If a message m is not acknowledged after m.Retries retransmissions (Algorithm 2,

lines 25-37), then the recovery routing mode is enabled by making m.LastHop← ∞ and reset-

ting the retransmission counter (lines 30-32). By putting the last hop position at ∞, the node

triggers a reverse flooding routing strategy, since it will always be more distant from the des-

tination than any other node. This reverse routing is exited when a node that has not heard m

before (i.e. the conditions of lines 7 and 25 of Algorithm 1 do not verify) restores a real last
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hop (Algorithm 1, line 40).

Algorithm 2 FT-TSTP Multi-Sink Queue Update

1: procedure Update_Queues

2: for each s ∈ S do

3: for each eQ ∈ Qs
i do

4: if (eQ.Expiry− τ(eQ))< now() then

5: // eQ expired without making progress
6: // in this direction
7: m← Qs

i .remove(eQ)
8: delete m

9: end if

10: end for

11: for each eF ∈ Fs
i do

12: if eF .Expiry < now() then

13: // eF was relayed long ago and can be forgotten
14: m← Fs

i .remove(eF )
15: delete m
16: end if

17: end for

18: end for

19: done← f alse

20: while |Qi| 6= 0 and not done do

21: // the element at the head of Qi is the next to be transmitted
22: s← Qi.next_to_expire()
23: m← Qs

i .head()
24: m.Retries← m.Retries−1
25: if m.Retries < 0 then

26: if m.LastHop = ∞ then

27: m← Qs
i .remove(m)

28: Fs
i .insert(m)

29: else

30: // m in eQ reached a void, set recovery mode
31: m.LastHop← ∞

32: m.Retries = β −1
33: done← true

34: end if

35: else

36: done← true

37: end if

38: end while

39: end procedure

False voids can be detected if a message takes two different paths simultaneously, e.g.,

on the edge of a previous void. The message will later converge to nodes close to a sink, and the

last arriving copy will be ignored, as the algorithm doesn’t forward previously seen messages.

The lack of an implicit ACK will initiate the void detour algorithm, making the message be

retransmitted in recovery mode and start unnecessary reverse flooding. To handle this, when a

node receives a message already forwarded, the preamble of microframes will be transmitted

to send the ACK. For that, the message is inserted in another queue Ai (Algorithm 1, line 16-

18), which must be processed in the transmission cycle. The TSTP does not use explicit ACK

messages, except for the sink nodes. In the TSTP protocol, the consequence of lacking an ACK
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message is that the node will retransmit it until it expires. But at the FT-TSTP protocol, the

consequence would cause message flooding, overloading the WSN with unnecessary messages.

4.3 PROTOCOL EVALUATION

In order to evaluate the Fault-Tolerant Trustful Space-Time Protocol (FT-TSTP) a set

of experiments was designed, focusing on the protocol’s impact on the WSN message delivery

rate, latency, and energy consumption.

The communication performance of the protocols proposed here was evaluated through

a set of simulations on the OMNet++ 4.6 (OPENSIM, 2017) simulator using the Castalia 3.3

framework (BOULIS, 2017). The quality of the simulation models is assessed by comparing

the simulation results with those obtained in the field on the Solar Smart Building, which is

automated using the Embedded Parallel Operating System (EPOS) (LAB, 2017) and the origi-

nal TSTP (RESNER; FRöHLICH, 2016) on EPOSMote III devices (LAB, 2017). Indeed, the

source code used for the simulations is basically the same used in the real deployment, but the

comparison between the real scenario and the simulated model allowed us to adjust the model’s

parameters to obtain realistic results.

Simulation Parameters

Table 2 – Simulation parameters.

Scenario
Grid

Size (m)
Node Placement

Radio

Range

(m)

TX Power
Period

(s)

Expiry

(s)

1-Building 70x70 32 nodes, 6x6, regular 20 -10 dBm 60 60

2-Building 150x175 55 nodes, 7x9, regular 45 -5 dBm 60 60

3-Field 500x500 81 nodes, irregular 80 0 dBm 120 120

A set of WSNs was evaluated, each with different node placements and void configu-

rations, to evaluate the impact of delivering messages simultaneously to multiple sinks and void

detouring over the delivery rate, the end-to-end transmission time, and energy consumption.

Three WSNs were modeled on top of the CC2420 IEEE 802.15.4 physical layer available in

Castalia. Table 2 summarizes the parameters used in these simulations. Each WSN was simu-

lated using TSTP and FT-TSTP for a simulation period of one hour (3600s), with the presence

of the voids represented in Figure 5. For FT-TSTP, the β parameter (retries) was set to 1, to

diminish the time overhead of retries and, consequently, diminish the risk of message expiring.

FT-TSTP was also simulated with different numbers of sinks, from 1 to 4. Each simulation

was executed 10 times with different random number seeds, and the results presented are the

average values.
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Scenarios

The scenarios were modeled to evaluate the FT-TSTP behavior under different aspects

of WSN deployments, such as nodes distance and placement, radio TX power, and void config-

urations. The objective was to verify that the void detour algorithm can handle different void

types while measuring the latency and energy overheads since there is a trade-off between reli-

ability obtained through multi-sink transmissions and latency/power consumption. Scenarios 1

and 2 can be applied in monitoring air quality in large indoor areas, as the temperature in shop-

ping malls or dust in big industrial sheds. Scenario 3 is typical of environmental monitoring

or smart agriculture, like soil moisture in irrigation systems, or temperature/humidity in field-

monitoring. In all scenarios, the data periods are not too tight, but fault tolerance is justified by

economic loss on the lack of correct measurements and actuation.

The voids are modeled as concave regions (Scenarios 2 and 3), and a section on the bor-

der, causing a semi-partition in the field (Scenario 1). These layouts are similar to the presented

in other works, like Ozen & Oktug (2014) and Zhang & Dong (2015). In the simulations, one

SmartData update was produced by every operational node at each data period, and the message

had the same time to reach the sinks before expiry. The data generation instant was randomly

chosen in the first period, and from that on a new SmartData was generated in exact periodic

cycles.

Table 3 – Delivery Rate

TSTP FT-TSTP
Scenario 1 Sink 1 Sink 2 Sinks 3 Sinks 4 Sinks
Scenario 1 46.8434% 0.0000% 0.0000% 0.3921% 99.6079%
Scenario 2 66.4279% 0.0036% 0.5624% 9.3647% 90.0692%
Scenario 3 82.7258% 0.0119% 0.0655% 0.7917% 99.1310%

A comparison between TSTP and FT-TSTP delivery ratio in the three modeled scenar-

ios is shown in Table 3 and Figure 6. Table 3 shows the percentage of messages that reach each

number of sinks. As all scenarios have four sinks, the columns represent the number of mes-

sages that reached only that number of sinks. For example, in Scenario 1 all messages reached

three or four sinks, with no messages reaching only one or two sinks. On Scenario 2, around

9.3% of messages reached three sink, and a very small number of messages arrived only at one

sink. The numbers show that, even in the presence of faulty nodes that create a void region,

FT-TSTP was able to deliver more than 99% messages to at least three sinks in all scenarios,

which is enough for the ByzCast algorithm to come to an agreement about the received values.

All messages were delivered to at least one sink by the FT-TSTP protocol. TSTP has delivered

less than half of the messages in scenario 1, a bit more than 66% of the messages in scenario

2, and more than 82% of the messages in scenario 3. In scenario 2, as the number of nodes is

larger and the data period is the same as in scenario 1, the number of messages that reached all

sinks is the smallest. It happens because messages expire due to the transmission queue sizes,
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Figure 12 – Delivery Rates in voids A and B with 3 Sinks

Figure 13 – Delivery Rates in voids A and B with 4 Sinks

Table 4 – Delivery Rates in different scenarios

FT-TSTP
Scenario TSTP 1 Sink 2 Sinks 3 Sinks 4 Sinks
No Void 100% 100% 100% 99.88% 99.25%
Void A 77.38% 100% 100% 99.73% 95.01%
Void B 71.96% 99.47% 99.87% 97.78% 93.17%

from the one shown in Table 3 and Figure 6. However, the results are consistent with those

obtained in the previous experiment, as this one aimed to verify the delivery rate under different

number of sinks, that imply in different network configurations and message traffic. In the first

two scenarios – without void and with Void A – every message was delivered to two gateways

without loss. On the scenario of Void B (see Figure 11(b)) the delivery rates showed a little

decrease. This can be corrected by increasing the value of the Duty Cycle, as shown in Fig-

ure 13. It can be depicted from that figure that duty cycles over 20% show deliver rates very
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close to 100% for different numbers of retries. If considering the use of a consensus algorithm

between the sinks, Table 4 shows that more than 97% of the messages were delivered to at least

three sinks, the minimum of sinks needed to reach a consensus. As expected, TSTP showed a

considerable decrease in the delivery rate in the presence of failed nodes.

Energy Consumption

As each message is delivered to N sinks and the main objective is to improve data

availability and reliability, an increased power demand by nodes was expected. The expectation

was that the energy consumption grows linearly when the number of gateways increases, instead

of growing exponentially. Figure 14 shows the average power consumption by nodes running

for 60 minutes. For both protocols the duty cycle was set to 5%, and the β parameter was set to 3

in FT-TSTP. The difference on the No Void scenario between TSTP and FT-TSTP (from 18.35J

Figure 14 – Average node power consumption / 1 hour - TSTP x FT-TSTP 1-4 sinks.

to 31.33J) is due to the increment of the microframe’s size from 9 to 18 bytes, demanding more

energy for transmission. The increase from 1-Sink to the 2-Sinks scenarios can be justified

by the gateways’ positions. As they are in opposite directions, packets rarely show progress

towards both gateways, splitting the message most of the time. In the 2-Sinks scenario, the

energy spent when voids are present is lower than when all are operational because there are

fewer sender nodes. In the Void B scenario, the void format does not represent an obstacle for

most of the messages. So, the mean energy for all (active) nodes is lesser than the No Void

scenario because there are less packets to forward, rarely using the void detour mechanism.

The energy increases in the 3-Sinks and 4-Sinks scenarios were as expected. The void

detour algorithm consumed more energy than the 2-Sinks scenario because the gateways’ posi-

tions are now ’behind’ the voids for many nodes, demanding more retransmissions in recovery

mode. But the difference between the two last scenarios (3 and 4 sinks) is low because the

routing algorithm tries to give preference to the relay candidate that makes progress to more





71

To overcome this limitation, in this chapter an extension of the TSTP protocol is pre-

sented. It is named FT-TSTP, and increases the original protocol with two new features that

provide fault-tolerance at the network level. The fist is the ability to perform void-detour when

reaching a local minimum while routing a message to a specific coordinate. Like any other

fully-reactive geographical routing protocol, the TSTP is already able to find alternative routes

when the network provides enough node density. But, depending on the shape and the size of

the void, it is frequently impossible to overcome the black hole. The main idea is that a node,

when trying to transmit a message, assumes that it is on the border of a void area if it does not

receive an ACK after β retries. Then it assumes a fake infinity position and starts to transmit

the message that will be relayed by any other node that did not see that message from infinite

before. This causes a controlled backward flooding until progress upon the destination can be

made.

As the protocol uses neither void-discovery nor route-building packets, when facing

a void area, immediately it starts to route packets through alternative relay nodes, by entering

the recovery mode. When the missing nodes come back to the original route, by a positioning

correction or by recovering from a transient failure, the original routing recovers instantly. This

configures the protocol as highly adaptive and resilient to transient failures.

The second feature is the support of multiple sinks by the routing protocol. It provides

an important fault-tolerance upgrade, by requiring that every message sent by a node must be

delivered to every sink. The routing algorithm is enhanced to make a message be relayed by the

node that can provide progress to more sinks, instead of only to the nearest sink. This avoids

that a message is split into N messages, each progressing to a specific sink, and helps to control

the number of messages competing for the radio signal.

In addition to the elimination of the architectural single point of failure, the FT-TSTP

increases the security against intruders on the gateways and the nodes. At the gateway level,

running different operating systems and using different tools reduces the exposure to known

vulnerabilities explored by intruders. If, even so, a sink or node is compromised, the solution

improves security against message forging by malicious code. At the level of the sinks, the ap-

plication can require a consensus between the sinks, through an agreement protocol, before the

data is accepted. So, the intruder would have to take over the majority of sinks to successfully

forge messages at the sinks.

On the energy consumption aspect, there is the obvious trade-off between delivering

messages to several sinks and energy consumption. The results showed that the energy con-

sumption increases to one limit if the sinks are well-positioned. It happens because the protocol

makes a node that makes progress to more sinks on the same message will wait less time to start

transmission. Nodes that are at the border of voids can also decide to wait more time before

relaying messages, given to other nodes the chance to collaborate with the message progression.

This time shrinking or stretching mechanism is inherited from the TSTP protocol.

Another possible situation is the intruder to take over the identity of a WSN node,

despite the protocol’s authentication and security mechanisms. If the intruder has success, there
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are two possible situations. If the sender node is compromised and sends forged data, then

nothing can be done, as all sinks will receive the same forged data. If the compromised node

tries to change data from other nodes while acting as a relay, it has to change a message with

the majority of the sinks bits set, to win the agreement protocol. However, in the proposed

protocol, messages make progress through several concurrent paths and are dropped when they

reach nodes that already retransmitted successfully the same message. So, it is unlikely that the

forged message will reach the sinks before all other messages containing the original data. The

intruder will have success only when it is the unique relay between a border node and the WSN.



73

5 SENSORS’ DATA CONFIDENCE ATTRIBUTION

Parts of this chapter appeared earlier in WSN Data Confidence Attribution Using

Predictors (SCHEFFEL; Fröhlich, 2018) and Increasing sensor reliability through confidence

attribution (SCHEFFEL; FRÖHLICH, 2019).

In this chapter, the problem of identifying data faults in a WSN is addressed. As

a sensor fault can encompass a range of problems, the term data fault is used to denote the

specific problem of a sensor producing incorrect data. The chapter is organized as follows:

first, the context and motivation are discussed in Section 5.1. Next, Section 5.2 describes the

proposed mechanism. The concept drift aspect is discussed in Section 5.3. Some case studies,

with the evaluations of the proposed solutions are presented in Section 5.4. Section 5.5 makes

a discussion of the obtained results and the conclusion.

5.1 INTRODUCTION

Several modern applications of WSN are getting deployed in different application ar-

eas. It is essential that they operate in a reliable and trustful manner. Many times, these appli-

cations must operate in harsh environments and are susceptible to interference in sensing and

communication. Therefore, as in any other application that uses sensors, fault tolerance mech-

anisms are essential to ensure correct readings and actuations by the WSN elements. Faults in

a WSN can range from incorrect sensor readings, communication failure caused by environ-

mental or intentional interference, to nodes and gateways intrusion by attackers to forge sensor

readings or send incorrect commands to actuators.

As in centralized applications, the use of redundant sensors increases the fault tolerance

in sensed data, as comparison with values from other sensors is crucial to get data to confirm

a diagnostic about the state of a suspicious sensor. When applied in the context of a WSN, the

fault detection must use some strategy that allows nodes to access raw data or some diagnosis

information from other nodes. Several solutions were proposed in the literature, as presented

in Section 2.1. The majority of these proposals use special messages to decide if there was

an error and to determine the source. This leads to overhead in terms of latency, bandwidth,

and energy consumption in the WSN. Hierarchical or centralized architectures try to minimize

this overhead but are subject to errors if the data received is altered by malicious or defective

nodes while it is transmitted. It also avoids safe local decisions that must be made in a short

time interval and must rely on correct data. Wait for the decision from voting rounds, or for

the response of a central node about the data correctness can lead to the timeout of the needed

reaction.

The solution proposed in this work provides self-diagnosis capabilities to the sensor

nodes, based on data gathered from correlated neighbors, incurring little communication over-

head. To accomplish this, a predictor is built off-line for every type of sensor node in an interest

area, based on the readings from other correlated sensors in the same area. This model is trans-
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ferred to the sensor. At runtime, each sensor listens to the data transmitted by other nodes in

the interest area and uses the model to predict its own value. Comparing the sensed value with

the predicted one, each node can calculate its confidence level and is also able to determine if

the error is caused by the local sensor or by a faulty neighbor. Extra messages are avoided by

transmitting the sensed value, the prediction result, and the confidence level of every node as

normal data, thus providing information about its current state to the application and the other

correlated nodes.

Although applied to WSN in this work, the proposed solution can be used in any

context, with different types of sensors monitoring correlated data. Data can arrive from direct

connections, from a standard network, or recovered from a database. The assumptions that

make this solution fit to WSN are two. The first is the use of correlated data, originated from

close nodes inside a region of interest, even with nodes having more than one sensor. So, nodes

can obtain the needed input just by extracting data from neighbors’ packets in the network. The

second assumption is that data has a constant periodicity, which is needed to create model that

predict values of a round T based on data from the previous round T − 1. This periodicity is

guaranteed by the protocol defined in Chapter 4, but the proposed solution can also be applied

to any other protocol that meets this requirement.

5.2 CONFIDENCE ATTRIBUTION USING PREDICTORS

Decentralized fault detection approaches try to minimize the message and time over-

head inherent to centralized approaches. On the other hand, they have to deal with limited input

sets and less computational power to perform their work. Therefore, models used to perform

fault detection at the sensor level have to take into account the resource constraints. The current

solutions do this by statistical analysis, mainly watching the variance of the sensor’s readings.

It works well on sensors that show slow variations in their readings. Domains in which sudden

data changes can be observed can lead the algorithm to classify abrupt variation as faulty. The

only way to verify if the variation is a correct reading is to compare it with the readings of other

sensors, incurring in communication overhead.

Fault detection with no need to make extra packet transmissions, as in voting and

checking protocols, is desirable on a WSN. This is because radio communication is the most

power-consuming resource in such systems. Also, packet collision is a problem to be addressed

in WSNs with a large number of sensors or with high sampling rates. In such scenarios, ex-

tra messages for diagnosis or voting in fault detection algorithms should be avoided, as some

failures can lead to a network communication overload.

Regarding the architecture of fault-diagnosis schema, in the WSN perspective, a good

solution would be distributed and use a self-diagnosis approach, with all nodes being able to

autonomously determine the correctness of their sensors’ values. As some comparisons are

required to ensure the correctness of sensed values, group detection approaches are also an

alternative, but with a minimum communication overhead. The adoption of a "speculative
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mode", with no specific diagnosis or control messages, using only messages that are already

transmitted by the WSN, provides a solution with enhanced data confidence with a very little

communication overhead.

The assumption made in this work is that the network is composed of different types of

sensors, monitoring several aspects of the same phenomenon or different interconnected phe-

nomena. This assumption ensures that each node produces data with some correlation with the

data produced by some other nodes. The network has to be designed in a way that different

interest areas contain a set of sensors producing correlated values. The size of this set is not

fixed and can vary concerning the correlation between the sensed physical quantities. Another

assumption is that every node can read the data transmitted by the other nodes. If the com-

munication is ciphered, some global or group key schema has to be used. Messages encrypted

with a group key allow other authenticated nodes to read the transmitted data. For authenticity,

messages can be signed with the node’s private key, avoiding the message content from being

altered by other nodes.

Thus, the proposed solution aims to provide nodes with self-diagnosis capabilities,

based on data gathered from correlated neighbors, without exchanging extra messages, causing

minimal communication overhead. For every node type in an interest area, a predictor model is

built off-line, based on historical data from the different types of sensors in this area. This work

makes use of Artificial Neural Networks, but any other type of predictor could be used. The

only requirement is that the model has to be able to be transmitted over the network and demand

a limited amount of memory and processing capabilities. This model (or the new parameters,

when updating a model) is then transmitted to the sensors, where it is stored and executed.

At runtime, each sensor listens to the data transmitted by other nodes and uses the

model to predict its value. Each node calculates its confidence level — or probability of cor-

rectness — comparing the sensed value with the predicted one. When the confidence reaches

a lower bound, a second step is performed in order to determine the source of the fault. This

step is necessary to determine the cause of the discrepancy: if it is an erroneous reading, or if

it is caused by an incorrect input from another faulty sensor. To accomplish this, every node

transmits the read value, the predicted value, and the confidence level, to provide information

about its current state to the application and the other nodes. There is no extra packet trans-

mission, only an increment in the size of the transmitted packet. Assuming a 64-bit value as a

sensor reading, the increase is 9 bytes: the predicted value plus one byte for the confidence (a

value between 0 and 100). If more confidence levels are needed, more bytes can be added to

the packet. It’s a design decision whether more granularity in the confidence levels is worth the

increment on the network packet size.

The whole process is depicted in Figure 16. The firsts steps, namely Feature Selection

and Model Building and Training are performed off-line, using historical data from the sensors

of an interest region stored in a database. This implies that a new WSN will not have a reliable

predictor on its first deployment. Therefore, the WSN has to run without confidence attribution

at the beginning. After some time running, the data collected by the sensors can be used to
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created. The most common type of embedded feature selection methods are the regularization

methods. Regularization methods — also called penalization methods — introduce additional

constraints into the optimization of a predictive algorithm (such as a regression algorithm) that

bias the model toward lower complexity (fewer coefficients). Examples of regularization al-

gorithms are the Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, and

Ridge Regression.

There are many machine learning tools available that can efficiently execute this task,

as the Weka tool (FRANK; HALL; WITTEN, 2016) or scikit-learn machine learning toolkit (PE-

DREGOSA et al., 2011). Different techniques for feature selection can be used, as a filter

method or a wrapper method. As communication is costly in WSN s, it is necessary to impose

an extra restriction: the input set must be selected from the sensors close to the target sensor.

The notion of close can vary, based on the communication layer. In a single-gateway architec-

ture, it can denote nodes inside the radio range, so the node can listen to their transmissions.

In multi-gateway architectures, close can mean nodes two or three hops away, once the routing

makes their packets be re-transmitted by a neighbor that can be listened to. TSTP and FT-TSTP,

discussed in chapter 4, have mechanisms that make a message reach all nodes inside an interest

region. In this context, close is a node whose data can be observed by the current node, which

needs the values as its predictor input. This also implies that the application has to know the

location of the sensors, which is a requirement of many routing protocols.

After identifying the set of sensors that are more correlated to the target sensor, a

model for each node can be built automatically. In the experiments carried out in this work,

Multilayer Perceptrons were used. The number of layers and neurons in each layer can be

determined by heuristics and by rules. The input layer has one neuron for each input value.

An extra input can be used for backpropagation or bias. The output layer has one neuron,

corresponding to the predicted value. Rules like the proposed by Trenn (2008) can determine

the number of neurons in the hidden layer. Pruning methods shown by Thomas & Suhner (2015)

can determine the optimal number of neurons in the hidden layer. Once built and trained, the

models are transmitted to the respective nodes.

When the predictor is received, sensors can start to evaluate the confidence of their

readings. The confidence level C of a node’s value is a function C = f (v, v̂) that evaluates the

difference between the sensed value v and predicted value v̂, as described in equation 5.1. In

this work, the Mean Absolute Error (MAE) (see equation 5.2) obtained in the training process

is used to calculate the result of the function. Comparing it to the Root Square Mean Error

(RSME), Willmott & Matsuura (2005) state that MAE is a natural measure of average error and

is unambiguous, being widely used for model-performance evaluation.

f (v, v̂) =







1, if |v− v̂| ≤ β ×MAE

1− |v−v̂|−β×MAE
α×MAE

, otherwise
(5.1)

MAE =
1
n

n

∑
i=1
|vi− v̂i| (5.2)
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Since a ANN can be used as a universal approximator for any function, and the ap-

proximation theorem defined by Hornik et al. (1989), it is expected that, for a set of well fitted

ANNs, the value of every sensor i being predicted shall not be greater than εi. The starting value

for ε can be the MAE calculated on the training phase. But as the MAE is a mean, if the values

being sensed do not present a "smooth" behavior, this value can be too restrictive. To allow a

fine-grained tuning, the value can be multiplied by a factor β . Therefore, for every sensor Si, it

is expected that:

|vi− v̂i|< β ×MAEi (5.3)

where vi, v̂i and MAEi are the read value, the predicted value and the MAE of the sensor i,

and β is a predefined constant, that acts as a calibration factor used to adjust the sensitivity

of the confidence attribution function. The interval [v̂− β ×MAE, v̂+ β ×MAE] defines the

full confidence interval, that means that the sensor read value can be considered 100% correct,

and it takes in consideration the implicit error of the ANN approximation denoted by MAE. If

the model has a good accuracy, the MAE value is expected to be small, and also a small value

of β can be used to detect little variations in the readings. Otherwise, if the monitored value

presents high variability, larger values can be assigned to this constant in order to accommodate

the variations.

When evaluating the correctness of sensor values, a discrete binary classification as

correct or incorrect for each value can lead to ambiguous situations, as two similar values can

be labeled in opposite ways if they lay around the line that divides the classes. Therefore, this

work opted to define a confidence level to be assigned to sensors’ values, taking in account

how distant they are from the expected values in the current context. Using another factor,

called α , it is possible to define a tolerance range in which the read value loses its confidence

level, which decreases from 100% to 0%. This tolerance range is also defined in terms of the

calculated MAE for every sensor, in order to capture the characteristics of every measured unit.

The α factor defines the velocity at which a value loses its confidence level as it gets away from

the expected value. The smaller the value of α , the faster the confidence level decreases. If the

predicted and read values are too distant from each other, function 5.1 may result in a negative

value, in which case the confidence assumes 0 (zero).

The intervals around the correct value, defined by the parameters β and α and are

illustrated in Figure 17. The black line denotes the correct sensor’s values. The green area

around the correct values denote the tolerance region, defined by the model’s MAE and the β

parameter. If the read value is inside this area, its confidence level is maximum, 100%. The

red area around the green region is the area in which values loose their confidence. A value

right next the green area has a confidence level of 99%, and it decreases to 0 is it moves away.

The smaller this area, determined by the parameter α , the faster the sensor’s readings lose their

confidence.

The prediction models will show circular references (the model to predict variable

S j depends on variable Sk, and the model to predict Sk depends on S j) since the correlation





80

that use it as model input. The magnitude of this interference is determined by the correlation

strength and by the number of features used as inputs by the predictor. As a result, there will be

several sensors that will classify their values as faulty, without a clear identification of the fault’s

source. To solve this problem, many fault detection algorithms use voting or joint probability

tables to identify the fault source. This kind of solution leads to extra message exchange.

To solve this problem, this work proposes proposes the use of three values, to be trans-

mitted by every node i: the sensed value vi, the value v̂i predicted by its model, and the con-

fidence level ci, assigned by the issuing node. By knowing these three values, received from

every correlated sensor node, each node can autonomously verify the correctness of its readings,

without extra messages. The process is explained next.

On every node i, when an input value vk arrives from a correlated node k it checks

the confidence lower against a predefined threshold γ . If it is greater than the required limit

(i.e. ck > γ), then the local predictor will use the read value vk as input to calculate its own v̂i and

to calculate its confidence level ci. Otherwise (i.e. ck < γ), the current node will use the predicted

value v̂k to do its computations. The fact that ck < γ means that a significant difference between

the sensed and the predicted values was detected by the node where the data was originated.

Assuming that all inputs of this sensor are sane, it is reasonable to assume that the validated

model has produced a accurate prediction, and it can be used as a good approximation of the

correct value. So, by replacing the low confidence sensor’s value by its predicted value, the

sensor’s failure will no longer affect the results of other sane sensors and, consequently, not

interfere in their confidence level. It also enables the identification of the faulty node, as it will

be only one to show lower confidence. At every node, the confidence attribution process, as

shown in the highlighted circle in figure 16, is described in algorithm 3.

As stated earlier, the proposed solution assumes that a correlation between the values

of a set of sensors S exists. As they are not independent, it is possible to build a predictor

Pi(s1,s2, . . . ,s j) for every sensor si ∈ S. This predictor is able to calculate an accurate approx-

imation of the actual value of si based on the most recent values of other j correlated sensors.

During the training process, the MAE is calculated for every sensor. The MAE is used to define

a threshold εi, for every sensor: εi = βi×MAE. Therefore:

∀si, v̂i = Pi(s1,s2, . . . ,s j) =⇒ |v̂i− vi| ≤ εi

This assumption must be evaluated for the domain in which the solution will be ap-

plied. If no accurate models can be found, with acceptable values for the threshold ε , the

proposed solution does not fit. Take as an example some sensors that measure unrelated phe-

nomena, and therefore have completely independent readings.

Let us consider that each sensor si reads its value vi, and knows only the values

of the other nodes on the previous period of time, then it can calculate a prediction v̂i =

Pi(s1,s2, . . . ,sn). The following situations can occur:

• The error is less than the threshold: |vi− v̂i| ≤ εi. The node assumes that the reading is

correct.
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Algorithm 3 Confidence Attribution Routine

1: procedure Confidence_Attribution

2: // Calculates the predicted value and confidence
3: v̂o← model(values)
4: di f f ← |y− v̂o|
5: if di f f ≤ (β ∗MAE) then

6: con fo← 100
7: else

8: con fo← (|y− v̂o|−β ×MAE)/(α×MAE)×100
9: if con fo < 0 then

10: con fo← 0
11: end if

12: end if

13: // Changes low confidence readings to the predicted values
14: for each ci ∈ con f idences do

15: if (ci < γ) then

16: values[i]← predictions[i]
17: end if

18: end for

19: v̂p← model(values)
20: di f f ← |y− v̂p|
21: if di f f ≤ (β ∗MAE) then

22: con fp← 100
23: else

24: con fp← (|y− v̂p|−β ×MAE)/(α×MAE)×100
25: if con fp < 0 then

26: con fp← 0
27: end if

28: end if

29: if (con fo > con fp) then

30: return (v, v̂o,con fo)
31: else

32: return (v, v̂p,con fp)
33: end if

34: end procedure

• The error is greater than the threshold: |vi− v̂i| > εi. Nothing can be stated about the

correctness of the read value, because the error can be due to a faulty value received from

a correlated sensor, used as the predictor’s input.

• Assuming that all model’s inputs are correct, then a large error indicates that the current

node is really faulty. But in the next round – data period – the node’s incorrect value vi

will be used as input by some other sensors’ predictors. This probably will impact every

predicted value v̂ j, making |v̂ j− v j|> ε j for every node v j that uses vi as input.

For some nodes, the weight of vi in the predictor can be very small, so an error causes

just a slight deviation on the predicted value, keeping the prediction error bounded. By using

just the local predictor’s output and the thresholds ε fol all sensors, an error will rapidly prop-

agate to the sensors that rely on the faulty sensor’s value as input. This makes it impossible to

distinguish the faulty sensor from the sane ones. The only information available at each node is

that there is a noticeable difference between the predicted value v̂ and the read value v.
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If the nodes transmit their predicted value v̂ and their confidence level c along with the

read value v, then all nodes get enough information to improve the decision about their own

data. Lets us now consider that each sensor si, that now knows v j, v̂ j and c j of every correlated

sensor s j, reads its value vi and calculates a prediction v̂i = Pi(s1,s2, . . . ,sn). The following

situations can occur:

• All input values have high confidence assigned by their origin nodes: ∀s j ∈ S | c j > γ . As

all inputs have high confidence assigned to their values, then the confidence level assigned

by the equation 5.1 can be trusted. The local node si can assume that its sensed value is

correct if the ci ≤ β ×MAEi. If the read value is faulty, it is expected that the confidence

assigned will decrease, as the model’s inputs are all correct.

• Some input values have low confidence assigned by their origin nodes: ∃s j ∈ S | c j < γ .

The local node uses discards the read values v j and uses the predicted values v̂ j to calcu-

late its own prediction. This will lead to a better prediction, isolating the low confidence

only to the nodes that are really faulty.

The interference problem and the solution proposed is illustrated in figure 18. The

figure 18a shows how the use of the raw sensor values as the predictor’s input, leads to an

error propagation through the models. Deviant data in the first sensor (ambient temperature)

makes the predictor of the second sensor (relative humidity) show also a deviant result, making

the difference between the read value and the predicted value be large. The direction and the

amplitude of the prediction errors show clearly that there is a strong inverse correlation between

these two variables. Both sensors have their confidence level drop to zero, as it is impossible,

using only the raw data read from the sensors, to determine the error source. Each node only

detects a large difference between the read and the predicted value, and the confidence of both

drops to zero.

Figure 18b shows how the proposed algorithm can identify and isolate the error of a

specific sensor. When the first model calculates its prediction with correct inputs, the result

will be distant from the (wrong) reading, getting a low confidence level. It then searches for

low confidence values in the model input, without success. When the second model makes its

prediction with a wrong input, it also gets a low confidence level. It then finds an input (from the

first sensor) with low confidence. It replaces this input with its prediction, the new prediction

will be near to the read value, and the node’s confidence is recomposed. As the substitution

begins only when the confidence falls below the γ parameter, when the sensor deviates slowly

from the correct readings, the confidence level starts to decrease on both sensors, as it can see

on the lower graphs, between samples 150 and 200. But as soon as the confidence level goes

under γ , set to 40 in this example, substitutions are made and the confidence level of the correct

sensor is promptly restored.

It is assumed that only one sensor, or at least a small set of sensors, will be faulty at

any time. If several correlated nodes are faulty at the same time and in the same region, the
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such conditions, composed of five sub-processes, enumerated below:

1. Change detection: achieved through data monitoring to detect changes in the data distri-

bution. If a significant change occurs, then a model update must be performed.

2. Training set formation: the data vector for model construction and training is formed

using sliding windows techniques, discarding n oldest samples and adding n new samples

to the training set.

3. Model selection: the optimal parameter set is determined for the new training dataset.

4. Model construction: with the parameters determined in the previous step, a new model is

constructed. It can be done in batch mode, discarding the model(t−1), and then building

a new model(t) from scratch, or in an incremental mode, where the model(t− 1) and n

new data vectors are used to build the model(t).

5. Anomaly detection: the new model(t) is used as the new anomaly detector for fresh data

Xt+1,Xt+2,. . ..

The learning framework proposed by Ditzler et al. (2015) shown in figure 19 applies to

such environments. When a change is detected, the model is updated and sent to the classifier.

When applying this framework to WSN s, the Feature Extraction, Change Detector and Adap-

tation processes can run on a dedicated server or the Cloud, in a centralized approach. Once

the model is built or updated, it can be transmitted to the WSN nodes and used to assign confi-

dence to their readings. It can be the sensor node itself or intermediate nodes, in a hierarchical

architecture.

As the environment changes, the Change Detector process presented in figure 19 has

to detect the changes and trigger the Adaptation process. Change detection methods can be

grouped into four main families (DITZLER et al., 2015):

• Hypothesis Test: uses statistical techniques to verify the classification error of a fixed-

length set of readings. The variation of the classification error is compared to the error of

the training dataset.

• Change-Point Methods: also uses a fixed-length data sequence, analyzing all partitions

of the data sequence to identify the instant when the data changes its statistical behav-

ior, called change-point. The main drawback of this method is the high computational

complexity.

• Sequential Hypothesis Test: instead of analyzing a fixed-length window of data, this

method inspects each incoming sample, until they have enough evidence that a change

has occurred or not.

• Change Detection Tests: are specifically designed to analyze the statistical behavior of

data streams sequentially. Most of them operate by comparing the prediction of absolute
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outputs of all the different detection mechanisms and build and train a classifier to verify if the

data streams should be considered errors or concept drifts. The algorithm then has to decide if

a set of deviations, occurring for a long enough period of time, is an error or a concept drift.

As the predictors’ models are expected to reflect well the correlation between the sen-

sors’ data, it is expected that, if they change due to a Concept Drift, then all – or at least the

majority – of the predictors will change the confidence assigned to the sensors’ values. So, the

confidence level assigned by the algorithm can also be a valuable source of information for the

Change Detector algorithms.

5.4 CASE STUDIES

In this section, a set of real datasets were used to evaluate the proposed solution for

fault detection on the data. When the dataset is labeled, with good and faulty samples cor-

rectly identified, they are used in the evaluation. Otherwise, it is assumed that data is correct,

reinforcing this assumption with manual inspection of the dataset.

The evaluations were made using Python3 scripts, using the scikit-learn (PEDREGOSA

et al., 2011), Theano (BERGSTRA et al., 2010; AL-RFOU et al., 2016), Tensorflow (ABADI

et al., 2016) and Keras (CHOLLET, 2015) frameworks.

For every test case, the number of features (input set) was chosen in an exploratory

way, starting from a limited number of sensors (5) and increasing the number of sensors while

evaluating the MAE on a restricted training/test data set. Some manual inspection on graphs

comparing real/predicted values was also carried out. As the objective was to evaluate the whole

mechanism’s efficiency, it was assumed that all sensors were close enough to others, and could

be used. However, some corrections had to be made, making evident that the feature selection

had to be made with more sophisticated algorithms, which was not the main objective of this

work. The methods used in this work were the SelectKBest selector, from the scikit-learn

framework, and Pearson’s Correlation Coefficient analysis, to group the sensors with data with

stronger correlation coefficients.

The model building and training phases were done with a subset of data, of a repre-

sentative period. The training and test procedure followed the standard procedure for machine

learning algorithms: around 80% of data was randomly chosen for training and the other 20%

for the test. Usually, 5 rounds were made, with new train/test datasets chosen at every round. In

the end, the models were applied to the entire selected dataset, to calculate the MAE for every

sensor data.

Photovoltaic Solar Energy

The first experiment used data from one year of readings from nine environment mon-

itoring sensors from a photovoltaic solar energy plant. All data had the timestamp of the read-

ings, taken in a 1-minute interval. In the experiment, the data from the first 15 days of January
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was used to perform the features selection using the SelectKBest selector from the scikit-learn

framework, simulating the first data obtained by a new deployed WSN.

For each sensor, four other sensors with the highest correlation were selected to be

the predictor’s input. The sensors and the output of the feature selection process for each are

shown in Table 5. Along with the selected sensors, the hour and minute of each reading instant

were selected as relevant inputs for the predictors. It is assumed that date and time can always

be used as predictors’ input, as they are available from the device’s internal clock. It is also

assumed that the WSN devices are running some protocol to keep their clocks synchronized at

a reasonable level.

Table 5 – Feature Selection Result

Target Selected Predictor Inputs

Diffuse Solar Irradiation
Direct Solar Irradiation, Global Solar Irradiation,
Barometric Pressure, Datalog Internal Temperature

Direct Solar Irradiation
Diffuse Solar Irradiation, Global Solar Irradiation,
Ambient Temperature, Datalog Internal Temperature

Global Solar Irradiation
Diffuse Solar Irradiation, Direct Solar Irradiation,
Barometric Pressure, Datalog Internal Temperature

Barometric Pressure
Diffuse Solar Irradiation, Global Solar Irradiation,
Ambient Temperature, Datalog Internal Temperature

Rainfall Index
Diffuse Solar Irradiation, Barometric Pressure,
Ambient Temperature, Datalog Internal Temperature

Wind Direction
Diffuse Solar Irradiation, Barometric Pressure,
Ambient Temperature, Datalog Internal Temperature

Ambient Temperature
Global Solar Irradiation, Barometric Pressure,
Datalog Internal Temperature, Relative Humidity

Datalog Internal Temperature
Global Solar Irradiation, Barometric Pressure,
Ambient Temperature, Relative Humidity

Relative Humidity
Global Solar Irradiation, Barometric Pressure,
Ambient Temperature, Datalog Internal Temperature

After the feature selection, an Artificial Neural Network (ANN) was built for every

sensor, using the Multilayer Perceptron architecture. All ANNs have the same structure, with

six neurons in the input layer (hour, minute and the four selected sensors), five neurons in the

hidden layer and one neuron in the output layer. The Keras API (CHOLLET, 2015) and the

Theano library (AL-RFOU et al., 2016) were used to build, train and evaluate the ANNs. The

small size of the model makes it suitable to be transmitted to the sensor nodes and executed

locally to make the sensed value predictions. After the ANNs were built, the Mean Absolute

Error (MAE) was calculated for every sensor, and the values are shown in Table 6. To illustrate

again the meaning of MAE in the confidence formula, the MAE value for the ambient tempera-

ture, if β = 1.0, makes a sensor reading v be considered having 100% confidence if it lies in the

range [v̂−0.41697, v̂+0.41697], where v̂ is the predicted value.



89

Figure 21 – Error injection for evaluation of algorithm 3.

Once the model building phase was finished, several simulations were carried out to

verify the accuracy of the proposed confidence attribution scheme. Five different data chunks

were extracted from the original data set left out of the training process, each one with 1440

samples (one-day sampling). The evaluation was then carried out in 2 steps. First, to evaluate

the model’s efficiency in identifying and isolating errors in the defective sensor (its origin), sev-

eral errors of the outlier type (SHARMA; GOLUBCHIK; GOVINDAN, 2010) were injected.

An outlier is a single reading that shows a value distant from the real value, with the sensor re-

turning to normal values in the next readings. Figure 21 shows the error injection result for the
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Figure 22 – Error injection reflected on other sensors.

Ambient Temperature and the Datalog Internal Temperature sensors. The green lines show the

sensor data, with the errors visible as the peaks in the graph. The blue lines show the predicted

value. It can be seen that at some point also the predicted values show a small peak, meaning

that the prediction was affected by other sensors’ values, but not enough to make the confidence

decrease as much as needed to perform substitution of the read value by the predicted one.

The algorithm 3 was executed on the data chunks, measuring the detection and false positives

rates. Several experiments were carried out, combining different values of the three algorithm

parameters - namely β , α , and γ - in order to verify their influence on the algorithm efficiency.
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Table 6 – MAEs calculated for predictors.

Sensor Model’s MAE

Diffuse Solar Irradiation 2.5799

Direct Solar Irradiation 15.8076

Global Solar Irradiation 16.2823

Barometric Pressure 0.7605

Rainfall Index 0.0017

Wind Direction 28.9098

Ambient Temperature 0.41697

Datalog Internal Temperature 0.7318

Relative Humidity 3.3265

In the second set of experiments, the other three types of error defined by (SHARMA;

GOLUBCHIK; GOVINDAN, 2010) — peaks, "stuck-at" and noise — were injected in the

sensors in order to verify the algorithm’s sensitiveness to each type of error. The errors were

randomly injected in sequences of 15 values showing one type of error, in one or in two sensors.

The sequences are injected in random positions of the dataset until reaching the desired number

of errors. It is important to make the remark that the objectives of this work do not include

error classification, only to identify the point where a sensor reports a faulty value. Therefore,

when different types of error appear, causing a significant difference between the read and the

predicted value, the algorithm will only assign low confidence to the data, no matter what kind

of error occurred.

Algorithm Parameters Evaluation

To evaluate how the algorithm parameters’ influence on the results, several errors of

outlier type were randomly injected in each data chunk. The amplitude of the error was also

randomly defined. So, it is expected that not every error is detected with confidence below γ , as

some generated values can fall inside the range of acceptable values. The Ambient Temperature

and the Datalog Internal Temperature sequences were chosen to have their values changed, as

they are input for all other predictors, and also show high interdependence. The errors were

injected as described previously. The process was repeated ten times with each data chunk, and

the mean values of the detection and false positive rates were calculated.

The Error Detection Rate (EDR) (Equation 5.5) is the percentage of the injected errors

that are correctly identified by the proposed algorithm. An Interference Error occurs when a

node with no error injection presents a confidence level below the γ parameter (algorithm 3, line

15), at the next period where an error was injected in another sensor. As explained in formula 5.4
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the next period is when each read value is used as input of the predictors. This implies that low

confidence on this sensor results from a wrong prediction caused by the injected error, which

is unexpected and the algorithm tries to eliminate or, at least, to minimize. As some errors

may occur in the sample data – as it is data from real sensors –, the confidence of all sensors

before the error injection was calculated and stored. For each low confidence found after the

error injection, it was compared with the recorded value. Therefore, it is possible to correctly

identify the interference errors. The Interference Error Rate (IER - Equation 5.6) is calculated

based on the number of injected errors, making it possible to compare the results of experiments

made with different sizes of input set and different numbers of injected errors. The formulas

are defined below.

EDR =
detected_errors×100

in jected_errors
(5.5)

IER =
inter f erence_errors×100

in jected_errors
. (5.6)

The experiment’s results are shown on Tables 17 and 18, varying the minimum confi-

dence (γ) from 90 down to 20 in intervals of 10, and α and β varying from 1.0 to 4.0 in a step

of 0.5, making a total of 392 evaluated combinations. Due to the table size, it was moved to the

appendix A. The data is also plotted in figure 23. As stated before, small values of β means that

the current reading can show only a little discrepancy from the predicted one to be considered

100% correct. The opposite is true for larger values of β . The α parameter determines the width

of a range of values where the confidence decreases from 100% to 0%. The wider the range,

the slower the confidence decreases. So, small values of α make the algorithm drop confidence

very fast, and vice versa. Finally, the γ parameter defines the confidence level below which the

algorithm tries to replace the read values by the predicted ones, searching for a possible sensing

error. The lower the value of this parameter is, the more "lenient" is the algorithm with the

investigation of possible errors.

As the objective is to maximize the number of detected errors and, at the same time,

to minimize the number of injected false positives, the best combination of parameters will be

the one who gets the biggest difference between these two results. To show this relation, the

difference (Diff ) between the EDR and the IER was added to the table, as an additional column

for each combination of parameters. The highest EDRs were obtained using the most restrictive

combination of parameters (β = 1.0, α = 1.0 and γ = 90), detecting 94.2% of the injected

errors. But this combination also shows the highest IER, as high as 79.5% of the injected errors.

This is expected because any reading that deviates a bit more than the MAE (Mean Absolute

Error) from the model will be considered an error and tested against the predicted value. The

IER decreases as the value of γ decreases, and also decreases from left to right in the tables,

as β increases, and in each test group of γ , from upper to lower lines, as α increases. On the

right side of the table, where β is bigger, the EDR and IER values show a noticeable decrease,
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highly varying readings, the parameters can also be set individually for some sensors.

Error Type Coverage

A second set of evaluations was executed in order to identify the algorithm’s effective-

ness on detecting the other three types of errors defined by Sharma, Golubchik & Govindan

(2010): peak, stuck-at and noise. The error injections mechanism was adjusted to generate

several sequences of errors in the same data chunks used in the previous evaluation. Examples

of the injected errors and their correspondent confidence levels are illustrated in figure 24. In

these graphs, each type of error was injected twice. The different error types are marked on the

graphs with the letters: S for stuck-at errors, P for peak errors and V for variance (or noise)

errors. The parameters used to create the graphs of figure 24 were α = 2.5, β = 2.5 and γ = 50.

The peak errors are very similar to the outlier errors, used in the first evaluation. So, the

confidence level drops as soon as the sensor’s values deviate enough from the usual (predicted)

readings. A remarkable situation occurs when some difference exists between the predicted

values and sensor readings. In this situation, a peak can make the sensor’s readings go into

the directions of the predictions. It makes the values remain in the range with confidence high

enough, and the sequence may not be classified as an error. The second peak of the first graph

in Figure 24 illustrates this, as the sensor readings get various confidence levels, from 0 to 100,

when the peak error is occurring (around sample 300).

The proposed solution does not identify directly the noise error, as the readings do not

exceed the "thresholds" defined by the α and β parameters. The graphs of figure 24 shows that

high variance errors (V marks) around the normal value are not detected as an error. Only when

the noise is too high, the sensor’s confidence starts to decrease. If the noise makes the sensed

values fall too far from the expected ones, the proposed solution will detect them as it does with

the outliers. The noise can be an indicator of a malfunction of the sensor or some interference,

but while it does not cause readings too distant from real values, the confidence attribution

scheme will ignore this kind of behavior, as they are not in the scope of this work. Simple

solutions of variance analysis can be used at the server to indicate sensors with noise in their

readings, indicating the need for some maintenance. Noise errors can also be detected if they

produce readings outside the β ×MAE threshold, and the sensor starts to produce sequences of

readings with different levels of confidence. Again, this sensitiveness can be adjusted by setting

the α and β parameters. The stuck-at is an error type that can show a different impact on the

sensor’s confidence, depending on when it occurs and how long it lasts. When the readings of

the sensor freezes on a value where the normal readings do not show variations, the error is

not detected. This is a situation similar to the noise error and is illustrated in the first graph

of figure 24. But when the sensor’s normal readings are ascending or descending – like the

temperature in a heating or in a cooling process – then readings of a constant value will occur in

an interval, making the deviation to be detected. This will make the sensor’s confidence fall as

the expected (predicted) readings vary. This is well illustrated in the second graph of figure 24.
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Table 7 – Parameters Evaluation Results
Outlier Peak Stuck-At Noise

γ α β EDR IER Diff EDR IER Diff EDR IER Diff EDR IER Diff

20

1.0 1.0 90.59 40.99 49.60 61.72 27.24 34.48 19.56 14.21 5.34 17.27 14.37 2.90
1.0 4.0 73.30 2.60 70.70 57.59 7.02 50.57 12.91 1.96 10.94 2.62 0.83 1.80
2.0 2.0 80.32 6.87 73.45 64.16 12.97 51.19 15.61 5.18 10.43 6.95 3.29 3.66
3.0 3.0 69.81 1.63 68.19 54.30 4.61 49.70 11.62 1.32 10.30 1.85 0.55 1.30
4.0 1.0 76.70 4.30 72.40 61.21 10.41 50.80 14.75 3.72 11.03 4.73 2.56 2.17
4.0 4.0 58.38 0.67 57.70 42.86 2.50 40.36 8.16 0.43 7.73 0.41 0.10 0.31

50

1.0 1.0 92.12 55.03 37.09 64.07 33.91 30.16 22.09 20.10 1.99 22.91 19.24 3.67
1.0 4.0 75.10 3.30 71.80 59.53 8.75 50.79 13.86 2.73 11.13 3.57 1.48 2.09
2.0 2.0 84.24 11.24 73.00 68.03 19.89 48.13 18.21 10.21 8.01 10.91 7.74 3.17
3.0 3.0 75.10 3.35 71.75 60.07 9.07 51.00 14.62 2.84 11.78 4.23 1.89 2.34
4.0 1.0 84.2 11.20 73.00 69.07 21.49 47.58 19.29 11.17 8.12 11.51 9.35 2.16
4.0 4.0 65.79 0.99 64.81 50.53 3.21 47.32 10.76 0.97 9.79 1.36 0.38 0.98

90

1.0 1.0 94.16 79.54 14.62 66.61 44.54 22.06 25.49 29.03 — 31.24 26.80 4.44
1.0 4.0 77.30 4.60 72.70 61.78 10.97 50.81 14.91 4.07 10.84 5.14 2.96 2.18
2.0 2.0 88.56 25.84 62.72 72.63 33.54 39.09 22,82 22.39 0.43 18.22 18.89 —
3.0 3.0 82.26 8.64 73.62 67.50 18.14 49.36 18.73 7.97 10.76 10.03 7.09 2.94
4.0 1.0 92.70 60.50 32.20 79.61 51.20 28.42 30.60 38.34 — 31.68 33.83 —
4.0 4.0 75.63 3.63 71.99 60.83 9.57 51.27 15.37 3.19 12.18 4.81 2.33 2.48

impact than one outlier that does the same. If the simulation is adjusted to produce only large

deviations when generating peak errors, the results would be very close to those obtained with

the outlier errors. But this would artificially inflate the EDR, and would not follow the original

definition of the error type. The stuck-at and noise errors show much lower EDRs, as the error

values were mainly too close to the predicted values.

The results’ analysis showed that the algorithm can identify sensors’ errors that are

greater than some threshold, and ignores errors that do not deviate too much from the "normal"

sensor readings. It does not detect noise and stuck-at errors when they lay around the normal

readings. These types of errors are easily detected by algorithms that use statistical analysis on

a window of the N last readings. These types of detection and classification are out of the scope

of this work. We are interested in identifying errors – from failures or intentionally injected by

an intruder – that could lead to wrong decisions, e.g. in a Cyber-Physical System.

The proposed algorithm labels every reading with a confidence level, adjustable by

the parameters. So, even if not classified as an error by the algorithm (falling below γ), every

variation in the sensors’ readings can reflect in a variation in the confidence level assigned to

them. A small (or even 0) value of β and a reasonable value of α labels different readings with

different confidence levels, that can be used to identify noise errors, for example.

Grand Saint Bernard SensorScope Dataset

The public dataset from the SensorScope project (BARRENETXEA et al., 2008) was

also used to evaluate the proposed solution. It was chosen because it is a public dataset, and

allows the comparison to another fault detection technique. The dataset consists of environ-

mental data collected at the Grand Saint Bernard pass between Switzerland and Italy in 2007.

It contains samples of temperature, humidity, and solar irradiation collected over 43 days with

a temporal resolution of 2 minutes. The results obtained by applying the confidence attribu-
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tion schema on this dataset and the results are compared to the results obtained by the Hybrid

Fault Detection method proposed by Nguyen et al. (2013). They selected 10 sensors among the

most faulty ones to evaluate the accuracy of fault detection and classification, and also applied

time-series analysis and neighbor voting algorithms to detect four types of failure.

In the first step, the data samples were aligned in time. Two sensors that failed to

produce data (their work focus was on sensor failure, this work focus is on data confidence) were

excluded from the comparison. The resulting dataset contains 20180 samples. Subsequently,

discrepant data points were manually tagged as faulty, in ranges. After that, sequences with only

good data were selected at five different periods of the time series, resulting in a training set of

6800 records. The feature selection procedure was applied next, identifying the relationship

between the variables across different sensors.

The ANNs were built following the process described in Section 5.4, determining, this

way, the MAE for every sensor. The models were then evaluated for every sensor with average

values: γ = 50, α = 2.5, and β = 2.5. A node was considered faulty when the confidence reached

0. In their evaluation, Nguyen et al. (2013) counted errors by occurrence in each test interval

T of 30 minutes, no matter how long the error remained. As our proposed algorithm evaluates

each data point individually, a direct comparison of error counts is meaningless. So, the Error

Detection Rate (which is called Success Ratio in their work) will be used for comparison. In

their work, Neighbour Voting (NV) and Time Series Analysis (TS) were combined to achieve the

best results (NV ∪T S), which is the basis for the comparison with our mechanism summarized

in Table 8.

Table 8 – Compared Algorithm Evaluation

Sensor NV ∪ TS
Confidence

Attribution

Sensor 6 97.4% 75.1%

Sensor 7 93.3% 99.8%

Sensor 9 94.1% 90.7%

Sensor 15 93.1% 96.7%

Sensor 17 91.8% 93.4%

Sensor 18 92.5% 74.1%

Sensor 19 92.5% 83.9%

Sensor 20 97.6% 74.2%

The results show that for some sensors the EDR is significantly lower than the com-

pared technique. Inspecting the data, it is possible to verify that the causes explained in Sections

5.4 are present in the evaluated dataset. Taking as example sensor 18 it is visible that the errors

are mainly of the suck-at type, as shown in Figure 25. For a matter of clarity, confidence (red

crosses) is only marked at 100 (no error) and 0 (error) to not hide data lines on the graph. The
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if not deviating from the expected values, can make the algorithm report high confidence for

the data. It is also determined by the predictor’s accuracy, that can report a large MAE for a

given sensor, making the error range with high confidence be larger than expected. This can

happen due to lack of model training, a weakness of the model to represent the relation between

the inputs, or even the lack of a deterministic relationship between the inputs and the target,

predicted value (HORNIK et al., 1989). A stuck-at error will be detected much easier when

the sensor’s data shows a certain degree of variation. As opposite, noise error will be easier to

detect if the sensor’s data shows mostly a stable behavior.

Hydraulic Test Rig Instrumentation

Other public available dataset used to evaluate the proposed solution was the sensors’

data of a hydraulic test rig. It consists of a primary working and a secondary cooling-filtration

circuit, connected via an oil tank (HELWIG; PIGNANELLI; SCHÜTZE, 2015). The system

cyclically repeats constant load cycles of 60 seconds, and measures the process values, while

the conditions of four hydraulic components (cooler, valve, pump and accumulator) are quan-

titatively varied. The dataset is composed of six pressure sensors, four temperature sensors,

two volume flow sensors, one vibration sensor, two cooling indicators (power and efficiency),

the motor power indicator, and a efficiency factor indicator. The 17 sensors are described in

Table 9, along with the unit of measure and sampling frequencies.

Table 9 – Hydraulic Test Rig Sensors

Sensor Physical Quantity Unit Sampling rate

PS1 Pressure bar 100 Hz
PS2 Pressure bar 100 Hz
PS3 Pressure bar 100 Hz
PS4 Pressure bar 100 Hz
PS5 Pressure bar 100 Hz
PS6 Pressure bar 100 Hz

MPW Motor power W 100 Hz
FS1 Volume flow l/min 10 Hz
FS2 Volume flow l/min 10 Hz
TS1 Temperature ◦C 1 Hz
TS2 Temperature ◦C 1 Hz
TS3 Temperature ◦C 1 Hz
TS4 Temperature ◦C 1 Hz
VS1 Vibration mm/s 1 Hz
CE Cooling efficiency (virtual) % 1 Hz
CP Cooling power (virtual) kW 1 Hz
SE Efficiency factor % 1 Hz

The dataset consists of 13,230,000 data samples, obtained under different conditions
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in this experiment the stuck-at errors were simulated with the sensor reporting 0 (zero).

Table 10 – Hydraulic Test Rig Sensors MAEs

Sensor MAE Sensor MAE

PS1 0.20585 PS4 0.00045
PS2 0.26896 PS5 0.01813
PS3 0.03950 PS6 0.01256
MPW 3.68210 FS2 0.00622
FS1 0.03328 TS1 0.03749

TS2 0.02540
TS3 0.02303
TS4 0.02289
VS1 0.00165
CE 0.02794
CP 0.00110
SE 0.00095

In this experiment, the variations of the three parameters were made in a slightly differ-

ent manner. The γ parameter was evaluated with the values 100% (not evaluated in the previous

experiments), 90%, 80%, 60% and 40%. The γ value was included to evaluate the behavior of

the proposed solution if no deviation from the tolerance range defined by β was allowed. Other

values were omitted because the curve’s tendency is the same as the obtained in the previous

experiment.

The results are shown in Figure 28 and in Tables 19 and 20 in Appendix A. As ex-

pected, the highest EDR were obtained with this value of γ , but also the number of false pos-

itives was very high. With values of β and α close to 1.0, very little variation around the

expected value was allowed, dropping the confidence level for any value that deviates very little

from the prediction. But the number of false positives is also very high. The injected errors

produced the same amount of low confidence on other sensors. With β value of 1.0, only when

γ lowers to 80% and α is greater than 2.5 the number of false positives is lower than the number

of injected errors. For values of β greater than 1.0, the Interference Error Rate (IER) decreases

fast. Once again, the values of β and α around 2.0 and 2.5 show a good relation between the

EDR and the IER.

The evaluation, as mentioned before, was made with the stuck-at errors reporting the

sensor’s value as 0. This makes the EDR raise, as they do not show the behavior reported in

Section 5.4. The tests made with the stuck-at errors repeating the last valid value resulted in a

nearly zero detection of these errors. And a stuck-at error with an arbitrary value is equivalent

to a peak error. Therefore, this type of error was removed from Table 11, showing only the

EDRs for the peak (P) and noise (N). As expected, the greater the values of β , the lower is the

value of EDR. The peak errors consistently show lower detection rates, while the noise error

got a good detection rate, with a lower decrease when the values of α and β increase. This can
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Figure 28 – EDR and IER for different γ values - Hydraulic Test Rig

be explained by the fact that the peak errors can displace the read data in the direction of the

predicted values, making them not be detected. On the other side, noise errors, as they vary in

both directions, will increase the error at least when the variation goes in one direction.

In this experiment the False Positive Rate (FPR) of the confidence attribution algorithm

was also evaluated, being considered a False Positive any sensor that reported a confidence

level under the limit defined by γ , when no error was injected at that point. As in the previous

experiments, all combinations of α and β values, between 1 and 4, where used, and also varying

γ in the set {100,90,80,60,40}, and the results are shown in Table 12. When the γ parameter

assumes the value 100, all the FPR values are the same for all values of α , as any variation of

the confidence level will be detected as a positive value. The FPR decreases fast when the β

value increases, meaning that a larger variation around the predicted value is accepted.

However, values of β greater than 2.5 show a lower decrease of the confidence level

when β increases. This means that fewer readings are more than 2.5×MAE away from the

predicted value. As previously stated, the data reinforces that the best start values for α and β

are around 2.0 and 2.5, and for γ is around 60 and 50. The trade-off between EDR and IER/FPR

is a matter of decision by the application, as well as it is dependent on the prediction model’s

accuracy.
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Table 11 – Peak (P) and Noise (N) EDR - Hydraulic Test Rig

β

1.0 1.5 2.0 2.5 3.0 3.5 4.0

γ α P N P N P N P N P N P N P N

100

1.0 72.5 93.0 63.8 94.0 55.0 93.0 51.3 88.0 33.8 85.0 30.0 81.0 28.8 79.0

1.5 72.5 93.0 63.8 94.0 55.0 93.0 51.3 88.0 33.8 85.0 30.0 81.0 28.8 79.0

2.0 72.5 93.0 63.8 94.0 55.0 93.0 51.3 88.0 33.8 85.0 30.0 81.0 28.8 79.0

2.5 72.5 93.0 63.8 94.0 55.0 93.0 51.3 88.0 33.8 85.0 30.0 81.0 28.8 79.0

3.0 72.5 93.0 63.8 94.0 55.0 93.0 51.3 88.0 33.8 85.0 30.0 81.0 28.8 79.0

3.5 72.5 93.0 63.8 94.0 55.0 93.0 51.3 88.0 33.8 85.0 30.0 81.0 28.8 79.0

4.0 72.5 93.0 63.8 94.0 53.8 90.0 35.0 88.0 33.8 83.0 30.0 80.0 46.3 85.0

90

1.0 71.3 94.0 57.5 94.0 53.8 93.0 46.3 88.0 31.3 84.0 30.0 81.0 28.8 78.0

1.5 70.0 95.0 58.8 93.0 52.5 90.0 40.0 86.0 31.3 82.0 30.0 80.0 28.8 77.0

2.0 67.5 95.0 57.5 93.0 52.5 90.0 32.5 86.0 31.3 82.0 30.0 80.0 27.5 76.0

2.5 67.5 95.0 57.5 93.0 52.5 90.0 32.5 86.0 30.0 82.0 28.8 80.0 27.5 76.0

3.0 67.5 95.0 57.5 93.0 52.5 89.0 32.5 86.0 30.0 81.0 28.8 79.0 26.3 76.0

3.5 66.3 95.0 56.3 93.0 52.5 88.0 32.5 86.0 30.0 81.0 28.8 79.0 26.3 76.0

4.0 66.3 95.0 56.3 93.0 52.5 88.0 32.5 86.0 30.0 81.0 28.8 79.0 43.8 82.0

80

1.0 67.5 95.0 57.5 93.0 52.5 90.0 32.5 86.0 31.3 82.0 30.0 80.0 27.5 76.0

1.5 67.5 95.0 57.5 93.0 52.5 89.0 32.5 86.0 30.0 81.0 28.8 79.0 26.3 76.0

2.0 66.3 95.0 56.3 93.0 52.5 88.0 32.5 86.0 30.0 81.0 28.8 79.0 26.3 75.0

2.5 63.8 94.0 55.0 93.0 51.3 88.0 33.8 85.0 30.0 81.0 28.8 79.0 25.0 75.0

3.0 57.5 94.0 53.8 90.0 40.0 88.0 31.3 82.0 30.0 80.0 28.8 78.0 25.0 75.0

3.5 57.5 93.0 52.5 90.0 32.5 86.0 31.3 82.0 30.0 80.0 27.5 76.0 25.0 75.0

4.0 57.5 93.0 52.5 89.0 37.5 86.0 30.0 81.0 28.8 79.0 26.3 76.0 43.8 81.0

60

1.0 66.3 95.0 56.3 93.0 52.5 88.0 32.5 86.0 30.0 81.0 28.8 79.0 25.0 75.0

1.5 57.5 94.0 53.8 90.0 35.0 88.0 31.3 82.0 30.0 80.0 28.8 78.0 25.0 75.0

2.0 57.5 93.0 52.5 89.0 32.5 86.0 30.0 81.0 28.8 79.0 26.3 75.0 23.8 72.0

2.5 53.8 90.0 40.0 88.0 33.8 83.0 30.0 80.0 28.8 79.0 25.0 75.0 21.3 66.0

3.0 52.5 90.0 32.5 86.0 31.3 82.0 30.0 80.0 27.5 76.0 25.0 75.0 21.3 64.0

3.5 52.5 88.0 32.5 86.0 30.0 81.0 28.8 79.0 25.0 75.0 22.5 71.0 17.5 64.0

4.0 52.5 91.0 47.5 84.0 30.0 83.0 28.8 79.0 26.3 76.0 25.0 74.0 41.3 76.0

40

1.0 57.5 94.0 53.8 90.0 35.0 88.0 31.3 82.0 30.0 80.0 28.8 78.0 25.0 75.0

1.5 55.0 90.0 41.3 88.0 32.5 84.0 30.0 80.0 28.8 79.0 25.0 75.0 22.5 66.0

2.0 52.5 90.0 32.5 86.0 31.3 82.0 30.0 80.0 27.5 75.0 23.8 73.0 21.3 64.0

2.5 35.0 88.0 33.8 83.0 30.0 80.0 28.8 79.0 25.0 75.0 21.3 66.0 15.0 63.0

3.0 32.5 86.0 30.0 81.0 28.8 79.0 25.0 75.0 22.5 72.0 17.5 64.0 8.8 62.0

3.5 31.3 82.0 30.0 80.0 28.8 78.0 25.0 75.0 21.3 66.0 12.5 62.0 6.3 60.0

4.0 47.5 86.0 45.0 82.0 26.3 79.0 26.3 75.0 25.0 72.0 21.3 68.0 2.5 29.0

3D Printer Monitoring

The proposed algorithm for faulty sensor detections was also applied in the context

of the CAPES-PRINT INCANTO project, in order to monitor the sensors that report different

variables on a 3D Printer, while some object is being built. To achieve this objective, a 3D

Printer was built at the University of Parma - Italy. It was then equipped with accelerometers

monitoring the vibrations on different points, that are able to capture the movement patterns

while the printer process goes on. Three EPOSMote III (LAB, 2017) devices, equipped with

ST’LSM330 3-axis accelerometer, were employed to do this task. A set of encoders was also
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Table 12 – False Positive Rate (FPR) - Hydraulic Test Rig

β

γ α 1.0 1.5 2.0 2.5 3.0 3.5 4.0

100

1.0 37,53 20,58 11,02 6,93 5,48 4,01 2,81

1.5 37.53 20.58 11.02 6.93 5.48 4.01 2.81

2.0 37.53 20.58 11.02 6.93 5.48 4.01 2.81

2.5 37.53 20.58 11.02 6.93 5.48 4.01 2.81

3.0 37.53 20.58 11.02 6.93 5.48 4.01 2.81

3.5 37.53 20.58 11.02 6.93 5.48 4.01 2.81

4.0 37.53 20.58 11.02 6.93 5.48 4.01 2.81

90

1.0 31.52 18.28 9.68 6.55 5.20 3.70 2.68

1.5 29.95 17.08 9.10 6.34 5.05 3.54 2.67

2.0 28.49 15.81 8.73 6.24 4.93 3.35 2.66

2.5 27.13 14.93 8.36 6.12 4.75 3.27 2.58

3.0 25.87 14.13 7.98 6.00 4.59 3.12 2.53

3.5 24.49 13.33 7.62 5.89 4.46 3.04 2.51

4.0 23.20 12.68 7.37 5.72 4.29 2.98 2.48

80

1.0 28.49 15.81 8.73 6.24 4.93 3.35 2.66

1.5 25.87 14.13 7.98 6.00 4.59 3.12 2.53

2.0 23.20 12.68 7.37 5.72 4.29 2.98 2.48

2.5 20.58 11.02 6.93 5.48 4.01 2.81 2.44

3.0 18.28 9.68 6.55 5.20 3.70 2.68 2.36

3.5 15.81 8.73 6.24 4.93 3.35 2.66 2.28

4.0 14.13 7.98 6.00 4.59 3.12 2.53 2.27

60

1.0 23.20 12.68 7.37 5.72 4.29 2.98 2.48

1.5 18.28 9.68 6.55 5.20 3.70 2.68 2.36

2.0 14.13 7.98 6.00 4.59 3.12 2.53 2.27

2.5 11.02 6.93 5.48 4.01 2.81 2.44 2.25

3.0 8.73 6.24 4.93 3.35 2.66 2.28 2.21

3.5 7.37 5.72 4.29 2.98 2.48 2.26 2.14

4.0 6.55 5.20 3.70 2.68 2.36 2.25 2.06

40

1.0 18.28 9.68 6.55 5.20 3.70 2.68 2.36

1.5 12.68 7.37 5.72 4.29 2.98 2.48 2.26

2.0 8.73 6.24 4.93 3.35 2.66 2.28 2.21

2.5 6.93 5.48 4.01 2.81 2.44 2.25 2.10

3.0 6.00 4.59 3.12 2.53 2.27 2.17 1.97

3.5 5.20 3.70 2.68 2.36 2.25 2.06 1.89

4.0 4.29 2.98 2.48 2.26 2.14 1.95 1.80

integrated in the printer, allowing to determine the exact place where the moving components

are at each moment. The temperatures at the injection nozzle and at the printing table are also

monitored. Therefore, there are 15 data points available, with different sensing frequencies,

as shown in Table 13. The EPOSMote used to capture the printing’s vibrations are installed at

specific points: at the printer head, to capture its moves, at the printer frame, and under the table

to capture the structure vibrations while printing. A simplified schema representing the printer

structure and the point at which the sensors are installed are shown in Figure 30. Pictures of the

sensors installed on the printer head and the printer frame are also shown in Figure 31.

Once instrumented, the data collected by the sensors were transmitted to the Hard-

ware/Software Integration Laboratory (LISHA) IoT Platform, where they are stored and avail-
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Table 13 – Sensors on 3D Printer

Sensor Sensed Value Unit Frequency

Printer Head - X axis Gravity Accel. g 200Hz
Printer Head - Y axis Gravity Accel. g 200Hz
Printer Head - Z axis Gravity Accel. g 200Hz
Printer Frame - X axis Gravity Accel. g 200Hz
Printer Frame - Y axis Gravity Accel. g 200Hz
Printer Frame - Z axis Gravity Accel. g 200Hz
Printer Bed - X axis Gravity Accel. g 200Hz
Printer Bed - Y axis Gravity Accel. g 200Hz
Printer Bed - Z axis Gravity Accel. g 200Hz
Position Encoder - X axis Encoder value Position 30Hz
Position Encoder - Y axis Encoder value Position 30Hz
Position Encoder - Z axis Encoder value Position 30Hz
Extruder Encoder Encoder value Position 30Hz
Printer Nozzle Temperature ◦C 10Hz
Printer Bed (Table) Temperature ◦C 10Hz

Table 14 – Models’ features and MAEs - 3D Printer

Device Name Predictor’s Inputs MAE

0 Bed X axis 0, 3, 4, 5, 7, 8, 10 0.00270
1 Bed Y axis 1, 3, 4, 5, 8, 10, 11 0.00767
2 Bed Z axis 2, 5, 6, 7, 8, 10, 11 0.00401
3 Head X axis 1, 3, 6, 7, 8, 10, 11 0.00718
4 Head Y axis 0, 1, 4, 6, 8, 10, 11 0.03290
5 Head Z axis 1, 2, 5, 7, 8, 10, 11 0.01945
6 Frame X axis 1, 3, 4, 5, 6, 10, 11 0.00639
7 Frame Y axis 2, 3, 4, 5, 7, 10, 11 0.00741
8 Frame Z axis 1, 3, 4, 5, 8, 10, 11 0.00533
9 Encoder – X axis 1, 2, 4, 5, 7, 9, 10 13.21807

10 Encoder – Y axis 2, 4, 5, 7, 9, 10, 11 8.25537
11 Encoder – Z axis 1, 2, 4, 5, 7, 10, 11 4.13072

able to be accessed at any time through the LISHA’s API for SmartData. The platform also

offers a graphical interface for visualizing the stored data, as shown in figure 29.

When analyzing the collected data, it was found that there is no strong correlation be-

tween the values of the different sensors, as shown in figure 32. The feature selection was made

through the built-in SelectKBest function, using the mutual_info_regression method. As

the extruder only measures the material consumption, and the temperatures are completely inde-

pendent of the printer movement, these sensors were excluded from the evaluation. Therefore,

in the experiment, only the values from the accelerometers and the axis positions were con-

sidered. The number of features selected for each sensor was seven, as more sensors did not
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Figure 31 – INCANTO Project Printer - EPOS-Mote installed on printing head and Frame.

print job, and then running against the data of other printing of the same object, the models

performed better, as they learned the movement patterns of that printing.

The second characteristic observed in this experiment was the fact that some models,

even presenting very good MAE values at the training set, do not perform well when making

their predictions. This happened with the encoders’ positions. They were selected as input

on every accelerometer, and it can be explained by the fact that their movement will cause

the accelerometers’ variations. But the reverse predictions do not work well, and the confidence

level assigned was always low. This caused the substitution by the predicted value, which makes

the other sensors lose their confidence. In the end, the error propagation caused a general failure

of the proposed solution.

Removing the encoders from the model was not possible because, as said before, their

position sequences determine the accelerometers’ behaviors. So, they are kept as models’ in-

puts, but their data was always considered correct. Doing so, the models recovered their normal

function, and the model stabilized in the expected behavior. In the context of the INCANTO

Project it was viable, as the printer’s head position is constantly monitored, via encoders’ val-

ues, by another software. By comparing the encoders’ readings with the expected trajectory

obtained from the commands sent to the printer, any deviation can be signalized by that soft-

ware.

After these adaptations, the proposed model was then applied to the sensors’ data, and

the results are shown in Table 21 and 22 in Appendix A.

The results are also shown in Figure 33. The EDR presented higher values with higher

values of γ and stricter values of β and γ . As in the other experiments, the stuck-at errors

showed a low detection rate, once the accelerometers’ values always oscillate around a subset

of values. With the most restrictive values (γ = 100, β = 1.0, γ = 1.0) the EDR for stuck-at

errors reached at most 54%, and for more relaxed conditions the EDR dropped fast to zero. As

it can be seen on Table 15, the EDR for the most restrictive configuration, without the stuck-at

error would be around 93%, while the general EDR with the same configuration dropped to

around 83% when including the stuck-at error in the statistics.
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Table 15 – Peak and Noise EDR - 3D Printer

β

1.0 1.5 2.0 2.5 3.0 3.5 4.0

γ α P N P N P N P N P N P N P N

100

1.0 95.6 100 90.0 97.5 87.8 95.8 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5

1.5 95.6 100 90.0 97.5 87.8 95.8 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5

2.0 95.6 100 90.0 97.5 87.8 95.8 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5

2.5 95.6 100 90.0 97.5 87.8 95.8 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5

3.0 95.6 100 90.0 97.5 87.8 95.8 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5

3.5 95.6 100 90.0 97.5 87.8 95.8 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5

4.0 95.6 100 90.0 97.5 87.8 95.8 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5

90

1.0 95.6 99.2 87.8 97.5 87.8 95.0 78.9 90.0 73.3 85.8 73.3 76.7 68.9 70.8

1.5 94.4 98.3 87.8 96.7 87.8 95.0 77.8 90.0 73.3 85.0 73.3 75.8 68.9 68.3

2.0 93.3 98.3 87.8 96.7 85.6 95.0 77.8 89.2 73.3 84.2 71.1 75.8 68.9 67.5

2.5 93.3 98.3 87.8 96.7 85.6 94.2 76.7 89.2 73.3 80.8 71.1 75.0 68.9 66.7

3.0 92.2 97.5 87.8 96.7 85.6 93.3 75.6 89.2 73.3 80.0 71.1 74.2 68.9 65.8

3.5 91.1 97.5 87.8 96.7 85.6 90.8 74.4 88.3 73.3 79.2 71.1 73.3 67.8 65.8

4.0 91.1 97.5 87.8 96.7 83.3 90.8 73.3 88.3 73.3 77.5 70.0 73.3 66.7 65.8

80

1.0 93.3 98.3 87.8 96.7 85.6 95.0 77.8 89.2 73.3 84.2 71.1 75.8 68.9 67.5

1.5 92.2 97.5 87.8 96.7 85.6 93.3 75.6 89.2 73.3 80.0 71.1 74.2 68.9 65.8

2.0 91.1 97.5 87.8 96.7 83.3 90.8 73.3 88.3 73.3 78.3 70.0 73.3 66.7 65.8

2.5 90.0 97.5 87.8 95.8 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5 66.7 65.8

3.0 87.8 97.5 85.6 95.0 78.9 90.0 73.3 85.8 73.3 76.7 68.9 70.8 66.7 65.0

3.5 87.8 96.7 85.6 95.0 77.8 89.2 73.3 84.2 71.1 75.8 68.9 67.5 66.7 64.2

4.0 87.8 96.7 85.6 93.3 75.6 89.2 73.3 80.0 71.1 74.2 68.9 65.8 66.7 63.3

60

1.0 91.1 97.5 87.8 96.7 83.3 90.8 73.3 88.3 73.3 78.3 70.0 73.3 66.7 65.8

1.5 87.8 97.5 87.8 95.0 78.9 90.0 73.3 85.8 73.3 76.7 68.9 70.8 66.7 65.8

2.0 87.8 96.7 85.6 93.3 75.6 89.2 73.3 80.0 71.1 74.2 68.9 65.8 66.7 63.3

2.5 87.8 95.8 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5 66.7 65.8 66.7 62.5

3.0 85.6 95.0 77.8 89.2 73.3 84.2 71.1 75.8 68.9 67.5 66.7 64.2 66.7 61.7

3.5 83.3 90.8 73.3 88.3 73.3 78.3 70.0 73.3 66.7 65.8 66.7 62.5 66.7 56.7

4.0 78.9 90.0 73.3 85.8 73.3 76.7 68.9 70.8 66.7 65.8 66.7 61.7 64.4 54.2

40

1.0 87.8 97.5 87.8 95.0 78.9 90.0 73.3 85.8 73.3 76.7 68.9 70.8 66.7 65.8

1.5 87.8 96.7 83.3 90.8 73.3 88.3 73.3 78.3 70.0 73.3 66.7 65.8 66.7 62.5

2.0 86.7 95.0 77.8 89.2 73.3 84.2 71.1 75.8 68.9 67.5 66.7 64.2 66.7 61.7

2.5 81.1 90.8 73.3 86.7 73.3 77.5 68.9 72.5 66.7 65.8 66.7 62.5 66.7 55.8

3.0 75.6 89.2 73.3 80.0 71.1 74.2 68.9 65.8 66.7 63.3 66.7 60.0 64.4 51.7

3.5 73.3 85.8 73.3 76.7 68.9 70.8 66.7 65.8 66.7 61.7 64.4 54.2 64.4 46.7

4.0 73.3 78.3 70.0 73.3 66.7 65.8 66.7 62.5 66.7 56.7 64.4 50.0 64.4 43.3

results. But the α parameter showed an opposite effect over the IER as in the previous exper-

iments. The value of the IER increased for larger values of α . This can be explained as an

effect over the other sensors’ models that make their confidence drop faster as the confidence

of the sensor where the error is injected. So, a larger value of α makes the algorithm classify

the output where the error is injected as good. But, in another model where the input causes an

important impact on the confidence level, the confidence can drop faster and cause a false pos-

itive. It is also noticeable that the increment of the IER is not very huge, being always around

5% to 10%, while dropping around 40% in several cases in the Photovoltaic Solar Energy case

study.



110

Table 16 – False Positive Rate (FPR) - 3D Printer

β

γ α 1.0 1.5 2.0 2.5 3.0 3.5 4.0

100

1.0 31.98 22.77 18.81 8.81 6.48 5.38 4.77

1.5 31.98 22.77 18.81 8.81 6.48 5.38 4.77

2.0 31.98 22.77 18.81 8.81 6.48 5.38 4.77

2.5 31.98 22.77 18.81 8.81 6.48 5.38 4.77

3.0 31.98 22.77 18.81 8.81 6.48 5.38 4.77

3.5 31.98 22.77 18.81 8.81 6.48 5.38 4.77

4.0 31.98 22.77 18.81 8.81 6.48 5.38 4.77

90

1.0 28.67 21.75 17.19 7.88 6.19 5.17 4.65

1.5 27.50 21.25 16.56 7.65 6.17 5.13 4.54

2.0 26.67 20.79 15.98 7.46 6.04 5.06 4.50

2.5 25.92 20.54 14.96 7.23 5.98 4.98 4.46

3.0 25.29 20.21 14.02 7.15 5.73 4.96 4.44

3.5 24.48 19.79 12.65 6.98 5.65 4.88 4.40

4.0 23.73 19.54 11.56 6.81 5.56 4.88 4.31

80

1.0 26.67 20.79 15.98 7.46 6.04 5.06 4.50

1.5 25.29 20.21 14.02 7.15 5.73 4.96 4.44

2.0 23.73 19.54 11.56 6.81 5.56 4.88 4.31

2.5 22.77 18.81 8.81 6.48 5.38 4.77 4.23

3.0 21.75 17.19 7.88 6.19 5.17 4.65 4.19

3.5 20.79 15.98 7.46 6.04 5.06 4.50 4.15

4.0 20.21 14.02 7.15 5.73 4.96 4.44 4.10

60

1.0 23.73 19.54 11.56 6.81 5.56 4.88 4.31

1.5 21.75 17.19 7.88 6.19 5.17 4.65 4.19

2.0 20.21 14.02 7.15 5.73 4.96 4.44 4.10

2.5 18.81 8.81 6.48 5.38 4.77 4.23 4.00

3.0 15.98 7.46 6.04 5.06 4.50 4.15 3.98

3.5 11.56 6.81 5.56 4.88 4.31 4.04 3.81

4.0 7.88 6.19 5.17 4.65 4.19 3.98 3.65

40

1.0 21.75 17.19 7.88 6.19 5.17 4.65 4.19

1.5 19.54 11.56 6.81 5.56 4.88 4.31 4.04

2.0 15.98 7.46 6.04 5.06 4.50 4.15 3.98

2.5 8.81 6.48 5.38 4.77 4.23 4.00 3.73

3.0 7.15 5.73 4.96 4.44 4.10 3.92 3.50

3.5 6.19 5.17 4.65 4.19 3.98 3.65 3.17

4.0 5.56 4.88 4.31 4.04 3.81 3.48 2.88

The FPR was also evaluated for this experiment, with the results shown in Table 16.

The FPR is a bit lower when the algorithm is applied with the more restrictive values of γ (100

and 90), when compared to the values obtained in the Hydraulic Test Rig experiment. However,

the values do not decrease as much as the previous experiment when the values of γ decrease to

60 or 40, for example. This can be explained by the nature of the data. Vibration data show high

variability, and therefore the predictor then to be less exact. This implies more false positives,

as wrong predictions can cause the confidence of the data points to get lowered. As also stated

in other analysis, the use of more restrictive values for the parameters will result in higher false

positives, as less variation in data is accepted by the algorithm before the confidence is lowered

when β is small, and the confidence drops faster when the value of α is small.
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Another aspect to be taken into account is that a data point is classified as a False Pos-

itive if it shows a confidence below γ , but not necessarily this means that the data is faulty. The

final decision can be taken by the application, analyzing how far from γ the actual confidence

is, how fast it dropped from the last reading, and how other sensors’ data is behaving.

5.5 DISCUSSION

Most of the solutions proposed in the related works (Section 2.1) rely on extra mes-

sages between nodes to do voting rounds, or exchange diagnostic requests and responses, to

confirm if the data of a suspicious node is correct or not. Other solutions use centralized ap-

proaches, making the fault detection at the CH, at the WSN sink or even at another centralized

node running extensive data analysis algorithms.

The solution in this work tries to overcome the need for extra special messages, per-

forming a distributed fault detection. To do this, each node labeling its data with a confidence

level allows other nodes and the application, without extra message exchange, to know "how

much" the sender node relies on the sensor’s reading.

The first assumption is that there are several sensors collecting data that show some

correlation. It means that a prediction model can be built for every sensor, taking as input

the readings of a set of other sensors. This is coherent with the other solutions proposed in

the related works. Some of them require that there are other sensors of the same type, like

Moustapha & Selmic (2008), Yuan, Zhao & Yu (2015), Saihi et al. (2015), Jia, Ma & Qin

(2019), and Karmarkar, Chanak & Kumar (2020). Others also use data from heterogeneous

sensors, like Zhang, Zhao & Nakamoto (2017), Shao, Guo & Qiu (2017), Swain & Khilar

(2017) and Curiac & Volosencu (2012), but on hierarchical or centralized architectures. This

work assumes that sensors can listen to the data from close sensors when the protocol can

"broadcast" messages inside small "interest regions" and the WSN design provides it. The

authenticity and confidentiality can be ensured by the use of group-based cipher mechanisms.

Therefore, it can be assumed that the required data to run the predictors will be available when

needed.

The second assumption is that the model will produce predictions within a bounded

error. As a unique value would be hard to be defined, the proposed solution makes use of

the MAE obtained in the training process to define it, in conjunction with a multiplier factor

called β . As shown in the experiments, different models will produce different MAEs. So,

instead of defining several thresholds, the β parameter will define a tolerance interval for every

sensor, that is proportional to the data behavior in its domain, as well as to the model’s accuracy.

The experiments’ results also presented a consistent behavior on the error detection and false-

positive ratios over the values of β , showing that a reasonable value for it can be found, no

matter the specific data domain on which the proposed solution is applied.

The parameter α defines a "transition area" where the confidence level of the sensor’s

data degrades from 100% to zero. It avoids the binary classification of correct and incorrect
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values and shows the error behavior while the read and predictor values start to get away from

each other. The experiments’ results show that varying α has almost the same effect over the

EDR and IER than varying β . This is because they determine the point at which the confidence

level goes under the limit defined by the third parameter γ , that defines when, in the experiments,

the data is considered faulty.

The use of the two parameters, instead of just one, can be justified by the flexibility

they provide to the algorithm’s output. If an application wants to do a binary classification

with a given threshold around the expected value, it can define a reasonable specific value to

β and a very little (or even zero) value to α . Otherwise, if an application wants to observe the

"degradation" of the sensors’ data under certain circumstances, it can set β to a value close (or

equal) to zero, and set α to a larger value. This will show the difference between the predicted

and read values as a variation of the confidence level assigned to it.

The error type detection was also an aspect evaluated at the experiments. The results

showed that the behavior of the data at each type of error is not a feature that determines its

detection. The only aspect the algorithm takes into account is the error’s amplitude: how far

is the sensor reading from the value that the model predicts. Therefore, if an error does not

make the sensor’s value exceed the threshold defined by the γ , β and α values, it will not be

detected by the proposed solution. But with the correct combination of β and α parameters,

the data’s confidence level will show how the read values is deviating from the value expected

by the predictor. The objective of this work is only to identify the occurrence of errors, with no

classification.

The error type analysis showed that the stuck-at error is hard to detect when the sensor

freezes on a valid value. If the data, in its domain, changes smoothly or remains around a

specific value for an extended period, the solution proposed in this work hardly can identify it.

This kind of behavior was also detected by other authors, like Shao, Guo & Qiu (2017), that

suggested the use of a watchdog that marks a sensor as suspicious if its state does not change

over a predefined time. Statistical analysis can also identify periods with zero variance. Such a

type of mechanism can be easily integrated in the proposed solution without impact, as it does

not require extra messages and is based only on the analysis of a window with the N most recent

readings from the sensor.

The influence of one sensor over others can also introduce some undesired conse-

quences, as an increase in the IER, as shown in the 3D Printer case study. This happens when

the error on a sensor’s value drops the confidence of other sensors – by modifying the model

output – faster than its confidence drops. This can be a consequence of the model chosen in this

work (ANN), a specificity of the domain, or due to a lack of better tuning the training process.

To overcome this, one possible solution could be a restriction like "no model can deviate its pre-

diction in a rate greater than the variation of any input". But it can be too restrictive and would

be very hard to verify. At this point, when applying the proposed model, it must be observed

that an increment on α can lower or raise the IER. The former is usual in a model with several

sensors with strong correlation coefficients.
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However, not directly signaling an error when variations do not exceed the minimum

confidence level does not restrict the use of the proposed solution to make some advanced

analysis. For example, when some variation on a given sensor occurs, the confidence level

assigned to it and to the correlated sensors can provide useful information. If the value and

confidence levels of one sensor show some variations, and the other sensors show only smaller

confidence variations, it can be a signal that the sensor is going through some interference

or other kind of problem that affects its readings. Otherwise, if all sensors show variations,

the models are expected to reflect these variations and do not show relevant changes in the

confidence levels.

This chapter described a confidence assignment mechanism able to stamp every data

produced by the sensors of a WSN with a confidence level. This information determines how

much the node believes the data is correct, based on the output of a predictor running on the

node. In this work, the prediction model employed was Artificial Neural Networks. The use of

this specific type of predictor is not obligatory. Any other prediction model could be used if it is

able to make predictions based on the data from the previous data period defined by the WSN.

The measurement error should also be available after the training phase, to allow the calculation

of the MAE, which is used in formula 5.1 to assign the confidence level on each sensor node.

The experiments’ results demonstrated that the proposed solution is viable, with good

sensitivity to the readings’ variations and also a good resilience to the interference problem.

Failures of an individual sensor and failures in pairs of sensors were evaluated, with coherent

results. Of course, if several sensors fail together, all sensors will inevitably face a confidence

level drop, which is inevitable in any solution. But the proposed solution will still present a

signal that something wrong is happening with the sensors, yet not being able to identify exactly

which sensors are facing problems. When the correlation coefficient between the sensors’ data

is not very strong, the variation of a sensor can cause interference on other sensors, increasing

the number of false positive results. This reinforces the requirement of strong correlations

between the sensors’ to get better results from the proposed solution.

A mechanism for fine-tuning specific types of sensors, or even sensors under specific

conditions, is provided by the three parameters β , α , and γ . They can be used to specify dif-

ferent levels of sensitivity for the confidence attribution mechanism, as well as the information

level about the sensors’ behavior under different conditions. The models’ behavior

The confidence level assigned by the solution proposed in this work does more than just

classify sensors’ readings as correct or incorrect. It provides valuable additional information to

the node, allowing a self-diagnosis mechanism that can be useful when taking local decisions,

as well as in analysis carried out at the application level.
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6 CONCLUSIONS

Several application fields have been employing sensors for monitoring purposes over

decades. Sensor failures, either due to malfunction, interference, or intrusion, is a relevant

concern to fault-tolerant systems. Use several sensors to provide redundancy and diversity is one

of the main strategies to deal with failures. By comparing distinct measurements from sensors

that are observing the same phenomenon, systems can achieve a desired level of confirmation.

Nevertheless, fault-tolerant systems often address the problem, with static models, based on

physics laws or statistics about sensor operation. These models are specific, and do not adapt

well to dynamic environments in which sensors are expected to be dynamically added to the

system, either to replace failing ones or to acquire additional data about its behaviour.

In this work, a mechanism that makes confidence attribution to data produced by sen-

sors is proposed. It can operate in a distributed way without complex voting or diagnose algo-

rithms. It is based on a predictor, trained on historical data that captures the correlation between

different sensors. The predictor’s output is used, along with the Mean Absolute Error (MAE)

obtained in the train process and three sensitivity parameters (α , β and γ), to calculate the con-

fidence level of each value. Instead of labeling values as healthy or faulty, given a confidence

level to the values reported by a sensor allows a much more detailed analysis of the sensor

behavior by the application.

The proposed solution is independent from the infrastructure used to acquire sensor’s

data. However, it’s characteristics make it fit to the Wireless Sensor Network (WSN) application

field. As the inputs are expected to be from correlated sensors, and there is no need for extra

messages for fault diagnose, the proposed solution will have a very little impact at the commu-

nication level. A careful design, deploying correlated sensors in a close region, will make all

input available only by listening to the current communication between neighbor nodes.

Therefore, in this work, WSN was used as the application field to study the proposed

solution. WSN is the underlying infrastructure for a variety of systems that integrate low-cost

devices, in fields where the current Internet infrastructure is not available. But the WSN’s lack

of fault-tolerance mechanisms brings several problems and restrictions. The structure of mesh

networks is characterized by no hierarchy among the nodes, and each node cooperates with the

others to transmit data and commands. However, the lack of routing tables and void-detour

algorithms to fully-reactive geographical protocols make this kind of protocol susceptible to

failures or attacks that produce black holes in the network. Moreover, most architectures and

protocols employ only one sink to control the nodes and collect data, in a scenario that offers a

single point of failure, in the connection and intrusion vulnerability aspects.

Operational conditions and hardware aspects also make sensors a kind of device sus-

ceptible to reading errors. This aspect, named here data fault to explicitly separate it from node

faults in the aspect of communication or hardware failures, is the subject of several studies over

the last years. The approaches that try to make data fault detection on the nodes are restricted to

statistical analysis or time series analysis, which brings some restrictions. The approaches that



116

use data from several sensors use hierarchical or centralized architectures, leaving the decision

about data correctness to the cluster heads or the sinks. Others, finally, use special messages in

diagnostic requests or voting mechanisms when suspicious data is read from the sensors. The

majority also relies on the premise that several sensors of the same type are available.

This work presents a proposal to increase the fault tolerance of WSN in these two

aspects. In the network layer, the enhancement of a fully-reactive geographical routing protocol

to support several sinks proposes a solution to the single point of failure problem. By delivering

data to all sinks, instead of to just one of them, the protocol also enhances the resilience against

data tampering, by enabling the network architecture to support an agreement protocol between

the sinks before delivering data from the WSN to the application. At the nodes’ level, the

protocol also provides a void-detour schema, allowing nodes to circumvent black holes. This

is obtained by entering a "recovery mode" when messages are unable to make progress to their

destination. It is not a simple flooding mechanism, as it returns to normal routing behavior when

a node that offers an alternative route is found. Transient failures are well handled, restoring

normal routing as soon the nodes come back to service.

The approach proposed by this work for data fault identification is the use of a predictor

on each node, that uses as input the data that is already being sent by the WSN nodes, increased

by two data pieces: the predictor’s result and the confidence level assigned by the node where

data is originated. Allowing nodes to inspect messages through the use of group ciphering keys,

there is no need to exchange diagnosis or voting messages to allow nodes to get a decision about

the correctness of their data. This "passive" exchange of information, allied to the proposed

confidence attribution algorithm presented in this work, allows the faulty sensors to make a

self-diagnosis. It is also possible, at the application level, to perform an analysis of the sensors’

behavior using the confidence levels reported by them.

Taking together these two contributions, the research questions brought in the Intro-

duction are answered by this work, as it follows:

(a) How can the single point of failure problem, represented by the WSN gateway, be

avoided in terms of failure and data integrity?

This question was answered in Section 4.2 and 4.4, with the definition of the FT-TSTP

multi-gateway protocol. The protocol’s characteristic of delivering messages to all gateways

makes data available to the application even in the case of some sinks’ failure. In terms of

data integrity, the use of an agreement protocol also permits data integrity checking, making the

solution bizantine resilient under certain circumstances.

(b) How can the void-detour problem in a fully-reactive geographical routing protocol

be addressed, with little or no need for control and routing messages?

The FT-TSTP protocol, as discussed in Section 4.2, answers this question. By dynam-

ically entering and leaving the rescue mode, it can circumvent different types of voids, as the

analysis and simulations demonstrated.

(c) How to identify a faulty or malicious node, producing incorrect data, with minimum

overhead in terms of data exchange and control messages between nodes?
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This question was answered in Chapter 5, that described the use of predictors running

on the nodes, that uses the data from close nodes to calculate the node’s confidence level on its

data. The data availability can be provided by the WSN design, with correlated sensors deployed

in groups, or by a protocol that can provide messages to be spread in restricted regions, like

TSTP or FT-TSTP. The overhead in each message is only of some bytes, as the predicted value

and the confidence level have to be added to the message. As most of the time and energy is

spent in getting access to the channel, a little increment in a message payload is much cheaper

to the overall protocol than using additional messages, that are not required in the proposed

solution.

(d) How can the application perform the correctness verification of the data received

from the WSN without complex protocols?

The answer to this question is the use of the combination of the multi-sink protocol

with an agreement protocol between the nodes, and the use of the confidence attribution mech-

anism. As the application has access to all data from the WSN sensors, it can replay the same

algorithms that were executed at each node. If a node or a sink tries to do data tampering while

it is in transit, it can try to put some wrong value with a high confidence level, or assign low

confidence to a good value to make it be discarded. Due to the interdependence of the models,

it is likely this will cause inconsistency in the confidence level calculated by some other nodes

that used the original data. This verification can be done at the application when data arrives. If

an intruder takes over a sensor, sending values with wrong confidence, other sensors will drop

their confidence levels, possibly raising an alarm at the application.

The overall structure of the proposed solution has been demonstrated to be feasible.

The model used in this work, namely the Artificial Neural Networks, was chosen due to its

simplicity. But it is also sensible to new data combinations, as well as to strong interference

from one input variable. The feature selection and the model building are also under the subject

of human supervision and need some domain knowledge to be well designed.

As suggestions for future works, some automated model building and evaluation mech-

anisms can be used in the process, to increase the speed and quality of the process. The inves-

tigation of other types of predictors can also bring valuable contributions. As the memory and

processing restrictions on WSN nodes will be overcome by hardware improvements, more so-

phisticated models can be employed in the proposed solution. Models that use more historical

data from the sensors can also be evaluated, as they are theoretically more resilient to local

changes and to the interference problem. The investigation and evaluation of rules that can re-

inforce the protection against strong interferences of a single sensor on the model’s prediction

would be also a good contribution to the proposed solution.





119

BIBLIOGRAPHY

ABADI, M. et al. Tensorflow: A system for large-scale machine learning. In: 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). [S.l.: s.n.],
2016. p. 265–283.

AISSANI, M. et al. A novel approach for void avoidance in wireless sensor networks.
International Journal of Communication Systems, Wiley Online Library, v. 23, n. 8, p.
945–962, 2010.

AKHAVAN, M. R.; WATTEYNE, T.; AGHVAMI, A. H. Enhancing the performance of RPL
using a Receiver-Based MAC protocol in lossy WSNs. In: IEEE ICT. Ayia Napa, Cyprus:
[s.n.], 2011. p. 191–194.

AL-KARAKI, J. N.; KAMAL, A. E. Routing techniques in wireless sensor networks: a survey.
IEEE wireless communications, IEEE, v. 11, n. 6, p. 6–28, 2004.

AL-RFOU, R. et al. Theano: A python framework for fast computation of mathematical
expressions. arXiv preprint arXiv:1605.02688, e-print, v. 472, p. 473, 2016.

AWADALLAH, S.; MOURE, D.; TORRES-GONZÁLEZ, P. An internet of things (iot)
application on volcano monitoring. Sensors, Multidisciplinary Digital Publishing Institute,
v. 19, n. 21, p. 4651, 2019.

BAE, J.; LEE, M.; SHIN, C. A data-based fault-detection model for wireless sensor networks.
Sustainability, Multidisciplinary Digital Publishing Institute, v. 11, n. 21, p. 6171, 2019.

BARRENETXEA, G. et al. Sensorscope: Out-of-the-box environmental monitoring. In: IEEE
COMPUTER SOCIETY. Proceedings of the 7th international conference on Information

processing in sensor networks. [S.l.], 2008. p. 332–343.

BERGSTRA, J. et al. Theano: A cpu and gpu math compiler in python. In: Proc. 9th Python

in Science Conf. [S.l.: s.n.], 2010. v. 1, p. 3–10.

BERNSTEIN, D. J. The poly1305-aes message authentication code. In: Proc. of Fast

Software Encryption. Paris, France: [s.n.], 2005. p. 32–49.

BISWAS, P. et al. Fault detection using hybrid of kf-elm for wireless sensor networks. In:
IEEE. 2019 3rd International Conference on Trends in Electronics and Informatics

(ICOEI). [S.l.], 2019. p. 746–750.

BOULIS, A. Castalia A simulator for Wireless Sensor Networks and Body Area Networks.
2017. Disponível em: https://github.com/boulis/Castalia.

CARLOS-MANCILLA, M.; LOPEZ-MELLADO, E.; SILLER-GONZALEZ, M. A localized
multi-sink multi-hop algorithm for wireless sensor networking. In: IEEE. Global Information

Infrastructure and Networking Symposium (GIIS), 2015. [S.l.], 2015. p. 1–6.

CARLOS-MANCILLA, M.; LÓPEZ-MELLADO, E.; SILLER, M. A reconfiguration
framework for multi-sink wireless sensor networks. In: IEEE. 2019 Global Information

Infrastructure and Networking Symposium (GIIS). [S.l.], 2019. p. 1–7.



120

CARLOS-MANCILLA, M. A.; LOPEZ-MELLADO, E.; SILLER, M. Distributed methods for
multi-sink wireless sensor networks formation. In: Encyclopedia of Information Science and

Technology, Fourth Edition. [S.l.]: IGI Global, 2018. p. 6522–6535.

CHOLLET, F. Keras: The Python Deep Learning library. 2015. Disponível em:
https://keras.io.

CSÁJI, B. C. et al. Approximation with artificial neural networks. Faculty of Sciences, Etvs

Lornd University, Hungary, Citeseer, v. 24, n. 48, p. 7, 2001.

CURIAC, D.-I.; VOLOSENCU, C. Ensemble based sensing anomaly detection in wireless
sensor networks. Expert Systems with Applications, Elsevier, v. 39, n. 10, p. 9087–9096,
2012.

DAO, T.-K. et al. A hybrid improved mvo and fnn for identifying collected data failure in
cluster heads in wsn. IEEE Access, IEEE, v. 8, p. 124311–124322, 2020.

DITZLER, G. et al. Learning in nonstationary environments: A survey. IEEE Computational

Intelligence Mag., IEEE, v. 10, n. 4, p. 12–25, 2015.

DOLEV, D. The Byzantine Generals Strike Again. Stanford, CA, USA, 1981.

DREYFUS, G. Neural networks: methodology and applications. [S.l.]: Springer Science &
Business Media, 2005.

FAN, X.; DU, F. An efficient bypassing void routing algorithm for wireless sensor network.
Journal of Sensors, Hindawi, v. 2015, 2015.

FRANK, E.; HALL, M. A.; WITTEN, I. H. The WEKA Workbench. Online Appendix for

Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2016.
Disponível em: https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf.

FRöHLICH, A. A. et al. A cross-layer approach to trustfulness in the internet of
things. In: 9th Workshop on Software Technologies for Embedded and Ubiqui-

tous Systems (SEUS). Paderborn, Germany: [s.n.], 2013. p. 1–8. Disponível em:
http://www.lisha.ufsc.br/pub/Frohlich_SEUS_2013.pdf.

FRöHLICH, A. A. et al. Byzantine resilient protocol for the iot. IEEE Internet of Things

Journal, IEEE, 2018.

GAMA, J. et al. A survey on concept drift adaptation. ACM computing surveys (CSUR),
ACM, v. 46, n. 4, p. 44, 2014.

GANGWAR, D. S.; TYAGI, S.; SONI, S. K. The impact of deployment pattern and
routing scheme on the lifetime in multi-sink wireless sensor network. Wireless Personal

Communications, Springer, p. 1–15, 2020.

GLORIA, A. et al. Wsn application for sustainable water management in irrigation systems.
In: IEEE. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). [S.l.], 2019. p.
833–836.

GUPTA, D. et al. An improved fault detection crow search algorithm for wireless sensor
network. International Journal of Communication Systems, Wiley Online Library, p. e4136,
2019.



121

HE, T. et al. Speed: A stateless protocol for real-time communication in sensor networks. In:
IEEE. Distributed Computing Systems, 2003. Proceedings. 23rd International Conference

on. [S.l.], 2003. p. 46–55.

HELWIG, N.; PIGNANELLI, E.; SCHÜTZE, A. Condition monitoring of a complex hydraulic
system using multivariate statistics. In: IEEE. 2015 IEEE International Instrumentation

and Measurement Technology Conference (I2MTC) Proceedings. [S.l.], 2015. p. 210–215.

HORNIK, K. Approximation capabilities of multilayer feedforward networks. Neural

networks, Elsevier, v. 4, n. 2, p. 251–257, 1991.

HORNIK, K. et al. Multilayer feedforward networks are universal approximators. Neural

networks, v. 2, n. 5, p. 359–366, 1989.

HU, C.-L.; SOSORBURAM, C. Enhanced geographic routing with two-hop neighborhood
information in sparse manets. Wireless Personal Communications, Springer, v. 107, n. 1, p.
417–436, 2019.

IEEE 1451.0. Standard for a Smart Transducer Interface for Sensors and Actuators -

Common Functions, Communication Protocols, and Transducer Electronic Data Sheet

(TEDS) Formats. [S.l.], 2007. 335 p.

JAVAID, A. et al. Machine learning algorithms and fault detection for improved belief
function based decision fusion in wireless sensor networks. Sensors, Multidisciplinary Digital
Publishing Institute, v. 19, n. 6, p. 1334, 2019.

JIA, S.; MA, L.; QIN, D. Research on low energy consumption distributed fault detection
mechanism in wireless sensor network. China Communications, IEEE, v. 16, n. 3, p.
179–189, 2019.

JULIE, E. G.; SARAVANAN, K.; ROBINSON, Y. H. Soft computing-based void recovery
protocol for mobile wireless sensor networks. In: Computational Intelligence and

Sustainable Systems. [S.l.]: Springer, 2019. p. 17–42.

KANTHIMATHI, N. et al. Void handling using geo-opportunistic routing in underwater
wireless sensor networks. Computers & Electrical Engineering, Elsevier, v. 64, p. 365–379,
2017.

KARMARKAR, A.; CHANAK, P.; KUMAR, N. An optimized svm based fault diagnosis
scheme for wireless sensor networks. In: IEEE. 2020 IEEE International Students’

Conference on Electrical, Electronics and Computer Science (SCEECS). [S.l.], 2020.
p. 1–7.

KARP, B.; KUNG, H. T. Gpsr: Greedy perimeter stateless routing for wireless networks.
In: Proceedings of the 6th Annual International Conference on Mobile Computing

and Networking. New York, NY, USA: ACM, 2000. (MobiCom ’00), p. 243–254. ISBN
1-58113-197-6. Disponível em: http://doi.acm.org/10.1145/345910.345953.

Kassim, M. R. M.; Harun, A. N. Applications of wsn in agricultural environment monitoring
systems. In: 2016 International Conference on Information and Communication

Technology Convergence (ICTC). [S.l.: s.n.], 2016. p. 344–349.

KHAN, M. Z. Fault management in wireless sensor networks. Computer Science &

Telecommunications, v. 37, n. 1, 2013.



122

KHOUFI, I.; MINET, P.; LAOUITI, A. Fault-tolerant and constrained relay node placement
in wireless sensor networks. In: 2016 IEEE 13th International Conference on Mobile

Ad Hoc and Sensor Systems (MASS). IEEE, 2016. p. 127–135. Disponível em:
https://doi.org/10.1109/mass.2016.026.

KOUSHANFAR, F.; POTKONJAK, M.; SANGIOVANNI-VINCENTELL, A. Fault tolerance
techniques for wireless ad hoc sensor networks. In: IEEE. Sensors, 2002. Proceedings of

IEEE. [S.l.], 2002. v. 2, p. 1491–1496.

KUMAR, A. et al. Location-based routing protocols for wireless sensor networks: A survey.
Wireless Sensor Network, Scientific Research Publishing, v. 9, n. 01, p. 25, 2017.

LAB, S. I. EPOS - Embedded Parallel Operating System. 2017. Disponível em:
https://epos.lisha.ufsc.br/.

LAPRIE, J.-C. Dependable computing and fault-tolerance. Digest of Papers FTCS-15, p.
2–11, 1985.

LI, W. et al. Low-complexity distributed fault detection for wireless sensor networks. In:
IEEE. Communications (ICC), 2015 IEEE International Conference on. [S.l.], 2015. p.
6712–6718.

LIMA, M. M. et al. Geographic routing and hole bypass using long range sinks for wireless
sensor networks. Ad Hoc Networks, Elsevier, 2017.

LIU, K. et al. Spatiotemporal correlation based fault-tolerant event detection in wireless sensor
networks. Intl. Journal of Distributed Sensor Networks, SAGE Publications UK: London,
England, v. 11, n. 10, p. 643570, 2015.

LUDEÑA-CHOEZ, J.; CHOQUEHUANCA-ZEVALLOS, J. J.; MAYHUA-LÓPEZ, E. Sensor
nodes fault detection for agricultural wireless sensor networks based on nmf. Computers and

Electronics in Agriculture, Elsevier, v. 161, p. 214–224, 2019.

MASDARI, M.; ÖZDEMIR, S. Towards coverage-aware fuzzy logic-based faulty node
detection in heterogeneous wireless sensor networks. Wireless Personal Communications,
Springer, v. 111, n. 1, p. 581–610, 2020.

MISRA, S.; BHATTARAI, K.; XUE, G. Bambi: Blackhole attacks mitigation with
multiple base stations in wireless sensor networks. In: 2011 IEEE Intl. Conference on

Communications. [S.l.: s.n.], 2011. p. 1–5.

MOHAMED, R. E. et al. Survey on wireless sensor network applications and energy efficient
routing protocols. Wireless Personal Communications, Springer, v. 101, n. 2, p. 1019–1055,
2018.

MOUSTAPHA, A. I.; SELMIC, R. R. Wireless sensor network modeling using modified
recurrent neural networks: Application to fault detection. IEEE Trans. on Instrumentation

and Measurement, v. 57, n. 5, p. 981–988, 2008.

MUKHERJEE, S.; AMIN, R.; BISWAS, G. Design of routing protocol for multi-sink based
wireless sensor networks. Wireless Networks, Springer, v. 25, n. 7, p. 4331–4347, 2019.

MURTAGH, F. Multilayer perceptrons for classification and regression. Neurocomputing,
Elsevier, v. 2, n. 5-6, p. 183–197, 1991.



123

NGUYEN, T. A. et al. Applying time series analysis and neighbourhood voting in a
decentralised approach for fault detection and classification in wsns. In: ACM. Proceedings of

the Fourth Symposium on Information and Communication Technology. [S.l.], 2013. p.
234–241.

NI, K. et al. Sensor network data fault types. ACM Transactions on Sensor Networks

(TOSN), ACM, v. 5, n. 3, p. 25, 2009.

OKAZAKI, A. M.; FRÖHLICH, A. A. Ant-based dynamic hop optimization protocol: A
routing algorithm for mobile wireless sensor networks. In: IEEE. 2011 IEEE GLOBECOM

Workshops (GC Wkshps). [S.l.], 2011. p. 1139–1143.

OPENSIM. OMNeT++ - Objective Modular Network Testbed in C++. 2017. Disponível
em: https://omnetpp.org/.

O’REILLY, C. et al. Anomaly detection in wireless sensor networks in a non-stationary
environment. IEEE Communications Surveys & Tutorials, IEEE, v. 16, n. 3, p. 1413–1432,
2014.

OZEN, S.; OKTUG, S. Adaptive sink selection for wsns using forwarder set based dynamic
duty cycling. In: IEEE. Sensing, Communication, and Networking Workshops (SECON

Workshops), 2014 Eleventh Annual IEEE International Conference on. [S.l.], 2014. p.
7–12.

PANDA, M.; KHILAR, P. M. Distributed soft fault detection algorithm in wireless sensor
networks using statistical test. In: IEEE. Parallel Distributed and Grid Computing (PDGC),

2012 2nd IEEE International Conference on. [S.l.], 2012. p. 195–198.

PANDA, M.; KHILAR, P. M. Distributed self fault diagnosis algorithm for large scale wireless
sensor networks using modified three sigma edit test. Ad Hoc Networks, Elsevier, v. 25, p.
170–184, 2015.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in python. Journal of machine

learning research, v. 12, n. Oct, p. 2825–2830, 2011.

Polavarapu, S. C.; Panda, S. K. A survey on industrial applications using mems and wsn. In:
2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and

Cloud) (I-SMAC). [S.l.: s.n.], 2020. p. 982–986.

QIAN, Z.; ZHANG, F. An reactive void handling algorithm in sensor networks and iot
emergency management. Computer Communications, Elsevier, v. 150, p. 254–261, 2020.

RAJPUT, A.; KUMARAVELU, V. B. Fuzzy-based clustering scheme with sink selection
algorithm for monitoring applications of wireless sensor networks. ARABIAN JOURNAL

FOR SCIENCE AND ENGINEERING, Springer, 2020.

RAMADAN, R. A.; ALRESHIDI, E. J.; SHARIF, M. H. Energy efficient framework for fog
network based on multisink wireless sensor networks. In: IEEE. 2020 2nd International

Conference on Computer and Information Sciences (ICCIS). [S.l.], 2020. p. 1–5.

RASO, O. et al. Implementation of elliptic curve diffie hellman in ultra-low power
microcontroller. In: 2015 38th International Conference on Telecommunications and Signal

Processing (TSP). IEEE, 2015. Disponível em: https://doi.org/10.1109%2Ftsp.2015.7296346.



124

REGHELIN, R.; FRöHLICH, A. A. A decentralized location system for sensor networks
using cooperative calibration and heuristics. In: 9th ACM/IEEE International Symposium

on Modeling, Analysis and Simulation of Wireless and Mobile Systems. Torremolinos,
Malaga, Spain.: [s.n.], 2006. p. 139–146. ISBN 1-59593-477-4.

RESNER, D.; FRöHLICH, A. A. Design rationale of a cross-layer, trustful space-time protocol
for wireless sensor networks. In: 20th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA). Luxembourg, Luxembourg: [s.n.], 2015.
p. 1–8. Disponível em: http://www.lisha.ufsc.br/pub/Resner_ETFA_2015.pdf.

RESNER, D.; FRöHLICH, A. A. Tstp mac: A foundation for the trustful space-time protocol.
In: 14th IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

(EUC). Paris, France: [s.n.], 2016.

RESNER, D.; FRöHLICH, A. A.; WANNER, L. F. Speculative precision time protocol:
submicrosecond clock synchronization for the iot. In: 21th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA). Berlin, Germany: [s.n.], 2016.

ROSS, G. J. et al. Exponentially weighted moving average charts for detecting concept drift.
Pattern recognition letters, Elsevier, v. 33, n. 2, p. 191–198, 2012.

SABOR, N. et al. A comprehensive survey on hierarchical-based routing protocols for
mobile wireless sensor networks: Review, taxonomy, and future directions. Wireless

Communications and Mobile Computing, Hindawi, v. 2017, 2017.

SAIHI, M. et al. Distributed fault detection based on hmm for wireless sensor networks. In:
IEEE. Systems and Control (ICSC), 2015 4th International Conference on. [S.l.], 2015. p.
189–193.

SCHEFFEL, R. M.; FRÖHLICH, A. A. Increasing sensor reliability through confidence
attribution. Journal of the Brazilian Computer Society, SpringerOpen, v. 25, n. 1, p. 1–20,
2019.

SCHEFFEL, R. M.; Fröhlich, A. A. FT-TSTP: a Multi-Gateway fully reactive geographical
routing protocol to improve WSN reliability. In: 2018 IEEE Intl. Conference on Advanced

Networks and Telecommunications Systems (ANTS) (IEEE ANTS 2018). Indore, India:
[s.n.], 2018.

SHAO, S.; GUO, S.; QIU, X. Distributed fault detection based on credibility and cooperation
for wsns in smart grids. Sensors, Multidisciplinary Digital Publishing Institute, v. 17, n. 5,
p. 983, 2017.

SHARMA, A. B.; GOLUBCHIK, L.; GOVINDAN, R. Sensor faults: Detection methods and
prevalence in real-world datasets. ACM Transactions on Sensor Networks (TOSN), ACM,
v. 6, n. 3, p. 23, 2010.

SOUZA, L. M. S. D.; VOGT, H.; BEIGL, M. A survey on fault tolerance in wireless sensor
networks. Interner Bericht. Fakultät für Informatik, Universität Karlsruhe, 2007.

SUN, Y.; GUO, J.; YAO, Y. Speed up-greedy perimeter stateless routing protocol for wireless
sensor networks (su-gpsr). In: IEEE. 2017 IEEE 18th International Conference on High

Performance Switching and Routing (HPSR). [S.l.], 2017. p. 1–6.



125

SWAIN, R. R.; KHILAR, P. M. Composite fault diagnosis in wireless sensor networks using
neural networks. Wireless Personal Communications, Springer, v. 95, n. 3, p. 2507–2548,
2017.

TANENBAUM, A. S.; STEEN, M. V. Distributed systems: principles and paradigms. [S.l.]:
Prentice-Hall, 2007.

THEOLEYRE, F.; SCHILLER, E.; DUDA, A. Efficient greedy geographical non-planar
routing with reactive deflection. In: IEEE. 2009 IEEE International Conference on

Communications. [S.l.], 2009. p. 1–5.

THOMAS, P.; SUHNER, M.-C. A new multilayer perceptron pruning algorithm for
classification and regression applications. Neural Processing Letters, Springer, v. 42, n. 2, p.
437–458, 2015.

TITOUNA, C.; ALIOUAT, M.; GUEROUI, M. Fds: fault detection scheme for wireless sensor
networks. Wireless Personal Communications, Springer, v. 86, n. 2, p. 549–562, 2016.

TITOUNA, C. et al. Distributed fault-tolerant algorithm for wireless sensor network.
International Journal of Communication Networks and Information Security, Kohat
University of Science and Technology (KUST), v. 9, n. 2, p. 241, 2017.

TRENN, S. Multilayer perceptrons: Approximation order and necessary number of hidden
units. IEEE Transactions on Neural Networks, IEEE, v. 19, n. 5, p. 836–844, 2008.

VASAVADA, T.; SRIVASTAVA, S. Algorithm for fairness in schedule lengths of sink-rooted
trees in multi-sink heterogeneous wireless sensor networks. International Journal of

Information Technology, Springer, v. 12, n. 4, p. 1117–1132, 2020.

VISALAKSHI, S.; RADHA, V. A literature review of feature selection techniques and
applications: Review of feature selection in data mining. In: IEEE. Computational

Intelligence and Computing Research (ICCIC), 2014 IEEE International Conference on.
[S.l.], 2014. p. 1–6.

WALCZAK, S. Artificial neural networks. In: Advanced Methodologies and Technologies in

Artificial Intelligence, Computer Simulation, and Human-Computer Interaction. [S.l.]:
IGI Global, 2019. p. 40–53.

WANG, N.; WANG, J.; CHEN, X. A trust-based formal model for fault detection in wireless
sensor networks. Sensors, Multidisciplinary Digital Publishing Institute, v. 19, n. 8, p. 1916,
2019.

WEBB, G. I. et al. Characterizing concept drift. Data Mining and Knowledge

Discovery, v. 30, n. 4, p. 964–994, Jul 2016. ISSN 1573-756X. Disponível em:
https://doi.org/10.1007/s10618-015-0448-4/.

WEI, W. et al. Multi-sink distributed power control algorithm for cyber-physical-systems in
coal mine tunnels. Computer Networks, Elsevier, v. 161, p. 210–219, 2019.

WEI, W.; YANG, Z. H. Increasing packet delivery ratio in gpsr using buffer zone based greedy
forwarding strategy. In: IEEE. 2010 International Conference on Data Storage and Data

Engineering. [S.l.], 2010. p. 178–182.



126

WIDROW, B.; WINTER, R. G.; BAXTER, R. A. Layered neural nets for pattern recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing, IEEE, v. 36, n. 7, p.
1109–1118, 1988.

WILLMOTT, C. J.; MATSUURA, K. Advantages of the mean absolute error (mae) over the
root mean square error (rmse) in assessing average model performance. Climate research,
JSTOR, v. 30, n. 1, p. 79–82, 2005.
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Table 17 – Parameters Evaluation - Photovoltaic Solar Energy

β

1 1.5 2 2.5 3 3.5 4

γ α EDR IER Diff EDR IER Diff EDR IER Diff EDR IER Diff EDR IER Diff EDR IER Diff EDR IER Diff

90

1 94.16 79.54 14.62 91.53 50.24 41.28 89.19 29.03 60.16 86.47 16.94 69.53 83.60 10.37 73.23 80.32 6.87 73.45 77.28 4.62 72.66

1.5 93.91 75.85 18.06 91.29 47.70 43.59 88.89 27.23 61.66 86.22 15.97 70.24 83.33 9.87 73.46 80.03 6.61 73.42 76.98 4.51 72.47

2 93.74 72.81 20.94 91.08 45.30 45.78 88.56 25.84 62.72 85.95 15.30 70.65 82.95 9.35 73.60 79.70 6.37 73.33 76.74 4.32 72.42

2.5 93.43 69.15 24.28 90.76 43.30 47.46 88.38 24.35 64.03 85.67 14.60 71.08 82.60 9.01 73.59 79.47 6.12 73.35 76.44 4.17 72.26

3 93.09 66.05 27.04 90.59 40.99 49.60 88.06 23.11 64.95 85.35 13.83 71.53 82.26 8.64 73.62 79.10 5.90 73.19 76.13 4.03 72.10

3.5 92.94 63.34 29.60 90.38 38.52 51.85 87.75 22.19 65.56 85.06 13.19 71.88 81.85 8.35 73.49 78.77 5.68 73.09 75.88 3.85 72.03

4 92.67 60.52 32.15 90.26 36.47 53.79 87.52 20.65 66.87 84.77 12.56 72.22 81.61 8.04 73.57 78.53 5.47 73.06 75.63 3.63 71.99

80

1 93.74 72.81 20.94 91.08 45.30 45.78 88.56 25.84 62.72 85.95 15.30 70.65 82.95 9.35 73.60 79.70 6.37 73.33 76.74 4.32 72.42

1.5 93.09 66.05 27.04 90.59 40.99 49.60 88.06 23.11 64.95 85.35 13.83 71.53 82.26 8.64 73.62 79.10 5.90 73.19 76.13 4.03 72.10

2 92.67 60.52 32.15 90.26 36.47 53.79 87.52 20.65 66.87 84.77 12.56 72.22 81.61 8.04 73.57 78.53 5.47 73.06 75.63 3.63 71.99

2.5 92.12 55.03 37.09 89.81 32.42 57.38 86.90 18.57 68.33 84.24 11.24 73.00 80.88 7.42 73.45 77.89 5.07 72.82 75.10 3.35 71.75

3 91.53 50.24 41.28 89.19 29.03 60.16 86.47 16.94 69.53 83.60 10.37 73.23 80.32 6.87 73.45 77.28 4.62 72.66 74.54 3.09 71.45

3.5 91.08 45.30 45.78 88.56 25.84 62.72 85.95 15.30 70.65 82.95 9.35 73.60 79.70 6.37 73.33 76.74 4.32 72.42 73.92 2.81 71.12

4 90.59 40.99 49.60 88.06 23.11 64.95 85.35 13.83 71.53 82.26 8.64 73.62 79.10 5.90 73.19 76.13 4.03 72.10 73.31 2.65 70.66

70

1 93.09 66.05 27.04 90.59 40.99 49.60 88.06 23.11 64.95 85.35 13.83 71.53 82.26 8.64 73.62 79.10 5.90 73.19 76.13 4.03 72.10

1.5 92.47 57.67 34.79 90.07 34.38 55.69 87.18 19.68 67.50 84.53 11.97 72.56 81.23 7.72 73.51 78.24 5.28 72.96 75.38 3.47 71.91

2 91.53 50.24 41.28 89.19 29.03 60.16 86.47 16.94 69.53 83.60 10.37 73.23 80.32 6.87 73.45 77.28 4.62 72.66 74.54 3.09 71.45

2.5 90.76 43.30 47.46 88.38 24.35 64.03 85.67 14.60 71.08 82.60 9.01 73.59 79.47 6.12 73.35 76.44 4.17 72.26 73.60 2.71 70.90

3 90.26 36.47 53.79 87.52 20.65 66.87 84.77 12.56 72.22 81.61 8.04 73.57 78.53 5.47 73.06 75.63 3.63 71.99 72.74 2.49 70.24

3.5 89.54 30.48 59.06 86.60 17.83 68.78 83.89 10.78 73.10 80.61 7.10 73.51 77.53 4.85 72.67 74.80 3.22 71.58 71.76 2.25 69.51

4 88.56 25.84 62.72 85.95 15.30 70.65 82.95 9.35 73.60 79.70 6.37 73.33 76.74 4.32 72.42 73.92 2.81 71.12 70.88 1.98 68.90

60

1 92.67 60.52 32.15 90.26 36.47 53.79 87.52 20.65 66.87 84.77 12.56 72.22 81.61 8.04 73.57 78.53 5.47 73.06 75.63 3.63 71.99

1.5 91.53 50.24 41.28 89.19 29.03 60.16 86.47 16.94 69.53 83.60 10.37 73.23 80.32 6.87 73.45 77.28 4.62 72.66 74.54 3.09 71.45

2 90.59 40.99 49.60 88.06 23.11 64.95 85.35 13.83 71.53 82.26 8.64 73.62 79.10 5.90 73.19 76.13 4.03 72.10 73.31 2.65 70.66

2.5 89.81 32.42 57.38 86.90 18.57 68.33 84.24 11.24 73.00 80.88 7.42 73.45 77.89 5.07 72.82 75.10 3.35 71.75 72.11 2.27 69.84

3 88.56 25.84 62.72 85.95 15.30 70.65 82.95 9.35 73.60 79.70 6.37 73.33 76.74 4.32 72.42 73.92 2.81 71.12 70.88 1.98 68.90

3.5 87.52 20.65 66.87 84.77 12.56 72.22 81.61 8.04 73.57 78.53 5.47 73.06 75.63 3.63 71.99 72.74 2.49 70.24 69.81 1.63 68.19

4 86.47 16.94 69.53 83.60 10.37 73.23 80.32 6.87 73.45 77.28 4.62 72.66 74.54 3.09 71.45 71.44 2.17 69.27 68.39 1.33 67.06
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Table 18 – Parameters Evaluation - Photovoltaic Solar Energy (cont.)

β

1 1.5 2 2.5 3 3.5 4

γ α EDR IER Diff EDR IER Diff EDR IER Diff EDR IER Diff EDR IER Diff EDR IER Diff EDR IER Diff

50

1 92.12 55.03 37.09 89.81 32.42 57.38 86.90 18.57 68.33 84.24 11.24 73.00 80.88 7.42 73.45 77.89 5.07 72.82 75.10 3.35 71.75

1.5 90.76 43.30 47.46 88.38 24.35 64.03 85.67 14.60 71.08 82.60 9.01 73.59 79.47 6.12 73.35 76.44 4.17 72.26 73.60 2.71 70.90

2 89.81 32.42 57.38 86.90 18.57 68.33 84.24 11.24 73.00 80.88 7.42 73.45 77.89 5.07 72.82 75.10 3.35 71.75 72.11 2.27 69.84

2.5 88.38 24.35 64.03 85.67 14.60 71.08 82.60 9.01 73.59 79.47 6.12 73.35 76.44 4.17 72.26 73.60 2.71 70.90 70.62 1.89 68.73

3 86.90 18.57 68.33 84.24 11.24 73.00 80.88 7.42 73.45 77.89 5.07 72.82 75.10 3.35 71.75 72.11 2.27 69.84 69.11 1.41 67.70

3.5 85.67 14.60 71.08 82.60 9.01 73.59 79.47 6.12 73.35 76.44 4.17 72.26 73.60 2.71 70.90 70.62 1.89 68.73 67.40 1.13 66.26

4 84.24 11.24 73.00 80.88 7.42 73.45 77.89 5.07 72.82 75.10 3.35 71.75 72.11 2.27 69.84 69.11 1.41 67.70 65.79 0.99 64.81

40

1 91.53 50.24 41.28 89.19 29.03 60.16 86.47 16.94 69.53 83.60 10.37 73.23 80.32 6.87 73.45 77.28 4.62 72.66 74.54 3.09 71.45

1.5 90.26 36.47 53.79 87.52 20.65 66.87 84.77 12.56 72.22 81.61 8.04 73.57 78.53 5.47 73.06 75.63 3.63 71.99 72.74 2.49 70.24

2 88.56 25.84 62.72 85.95 15.30 70.65 82.95 9.35 73.60 79.70 6.37 73.33 76.74 4.32 72.42 73.92 2.81 71.12 70.88 1.98 68.90

2.5 86.90 18.57 68.33 84.24 11.24 73.00 80.88 7.42 73.45 77.89 5.07 72.82 75.10 3.35 71.75 72.11 2.27 69.84 69.11 1.41 67.70

3 85.35 13.83 71.53 82.26 8.64 73.62 79.10 5.90 73.19 76.13 4.03 72.10 73.31 2.65 70.66 70.33 1.79 68.54 67.10 1.11 65.99

3.5 83.60 10.37 73.23 80.32 6.87 73.45 77.28 4.62 72.66 74.54 3.09 71.45 71.44 2.17 69.27 68.39 1.33 67.06 65.27 0.94 64.33

4 81.61 8.04 73.57 78.53 5.47 73.06 75.63 3.63 71.99 72.74 2.49 70.24 69.81 1.63 68.19 66.42 1.05 65.37 63.41 0.82 62.59

30

1 91.08 45.30 45.78 88.56 25.84 62.72 85.95 15.30 70.65 82.95 9.35 73.60 79.70 6.37 73.33 76.74 4.32 72.42 73.92 2.81 71.12

1.5 89.54 30.48 59.06 86.60 17.83 68.78 83.89 10.78 73.10 80.61 7.10 73.51 77.53 4.85 72.67 74.80 3.22 71.58 71.76 2.25 69.51

2 87.52 20.65 66.87 84.77 12.56 72.22 81.61 8.04 73.57 78.53 5.47 73.06 75.63 3.63 71.99 72.74 2.49 70.24 69.81 1.63 68.19

2.5 85.67 14.60 71.08 82.60 9.01 73.59 79.47 6.12 73.35 76.44 4.17 72.26 73.60 2.71 70.90 70.62 1.89 68.73 67.40 1.13 66.26

3 83.60 10.37 73.23 80.32 6.87 73.45 77.28 4.62 72.66 74.54 3.09 71.45 71.44 2.17 69.27 68.39 1.33 67.06 65.27 0.94 64.33

3.5 81.23 7.72 73.51 78.24 5.28 72.96 75.38 3.47 71.91 72.40 2.40 69.99 69.44 1.51 67.92 66.09 1.01 65.08 63.11 0.81 62.30

4 79.10 5.90 73.19 76.13 4.03 72.10 73.31 2.65 70.66 70.33 1.79 68.54 67.10 1.11 65.99 63.97 0.86 63.10 60.74 0.72 60.02

20

1 90.59 40.99 49.60 88.06 23.11 64.95 85.35 13.83 71.53 82.26 8.64 73.62 79.10 5.90 73.19 76.13 4.03 72.10 73.31 2.65 70.66

1.5 88.56 25.84 62.72 85.95 15.30 70.65 82.95 9.35 73.60 79.70 6.37 73.33 76.74 4.32 72.42 73.92 2.81 71.12 70.88 1.98 68.90

2 86.47 16.94 69.53 83.60 10.37 73.23 80.32 6.87 73.45 77.28 4.62 72.66 74.54 3.09 71.45 71.44 2.17 69.27 68.39 1.33 67.06

2.5 84.24 11.24 73.00 80.88 7.42 73.45 77.89 5.07 72.82 75.10 3.35 71.75 72.11 2.27 69.84 69.11 1.41 67.70 65.79 0.99 64.81

3 81.61 8.04 73.57 78.53 5.47 73.06 75.63 3.63 71.99 72.74 2.49 70.24 69.81 1.63 68.19 66.42 1.05 65.37 63.41 0.82 62.59

3.5 79.10 5.90 73.19 76.13 4.03 72.10 73.31 2.65 70.66 70.33 1.79 68.54 67.10 1.11 65.99 63.97 0.86 63.10 60.74 0.72 60.02

4 76.74 4.32 72.42 73.92 2.81 71.12 70.88 1.98 68.90 67.78 1.21 66.57 64.52 0.88 63.64 61.41 0.72 60.69 58.38 0.67 57.70
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Table 19 – Parameters Evaluation - Hydraulic Test Rig

β

1 1.5 2 2.5 3 3.5 4

γ α EDR IER EDR IER EDR IER EDR IER EDR IER EDR IER EDR IER

100

1 86.67 20.79 84.31 8.68 81.18 3.11 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07

1.5 86.67 21.46 84.31 8.68 81.18 3.18 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07

2 86.67 21.54 84.31 8.75 81.18 3.21 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07

2.5 86.67 21.71 84.31 8.93 81.18 3.21 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07

3 86.67 22.29 84.31 0.00 81.18 3.21 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07

3.5 86.67 22.57 84.31 0.00 81.18 3.21 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07

4 86.67 22.57 84.31 0.00 81.18 3.21 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07

90

1 86.67 16.68 82.35 7.14 81.18 2.11 78.04 0.29 70.20 0.07 68.63 0.07 67.06 0.07

1.5 86.67 15.82 82.35 6.50 80.39 1.71 75.69 0.32 70.20 0.07 68.63 0.07 66.67 0.07

2 85.88 15.21 81.96 6.43 70.22 1.46 72.94 0.25 60.41 0.07 68.24 0.07 65.88 0.07

2.5 85.88 14.32 81.96 6.14 70.22 0.89 71.37 0.21 60.02 0.07 67.84 0.07 65.88 0.07

3 85.88 13.54 81.96 5.32 78.82 0.82 71.37 0.14 68.63 0.07 67.45 0.07 65.49 0.07

3.5 85.49 12.89 81.57 4.71 78.43 0.68 71.37 0.11 68.63 0.07 67.45 0.07 65.49 0.07

4 85.49 11.75 81.57 4.07 78.43 0.57 71.37 0.11 68.63 0.07 67.45 0.07 65.49 0.07

80

1 85.88 14.54 81.96 6.36 70.22 1.43 72.94 0.25 60.41 0.07 68.24 0.07 65.88 0.07

1.5 85.88 13.11 81.96 5.14 78.82 0.82 71.37 0.14 68.63 0.07 67.45 0.07 65.49 0.07

2 85.49 11.32 81.57 3.96 78.43 0.57 71.37 0.11 68.63 0.07 67.45 0.07 65.49 0.07

2.5 84.31 8.75 81.18 3.21 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07 65.10 0.07

3 82.35 7.32 81.18 2.14 78.04 0.29 70.20 0.07 68.63 0.07 67.06 0.07 64.71 0.07

3.5 81.96 6.54 70.22 1.46 72.94 0.25 60.41 0.07 68.24 0.07 65.88 0.07 64.71 0.07

4 81.96 5.32 78.82 0.82 71.37 0.14 68.63 0.07 67.45 0.07 65.49 0.07 64.31 0.07
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Table 20 – Parameters Evaluation - Hydraulic Test Rig (cont.)

β

1 1.5 2 2.5 3 3.5 4

γ α EDR IER EDR IER EDR IER EDR IER EDR IER EDR IER EDR IER

60

1 85.49 10.64 81.57 3.89 78.43 0.54 71.37 0.11 68.63 0.07 67.45 0.07 65.49 0.07

1.5 82.35 7.14 81.18 2.11 78.04 0.29 70.20 0.07 68.63 0.07 67.06 0.07 64.71 0.07

2 81.96 5.14 78.82 0.82 71.37 0.14 68.63 0.07 67.45 0.07 65.49 0.07 64.31 0.07

2.5 81.18 3.18 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07 65.10 0.07 62.35 0.04

3 70.22 1.46 72.94 0.25 60.41 0.07 68.24 0.07 65.88 0.07 64.71 0.07 50.22 0.04

3.5 78.43 0.57 71.37 0.11 68.63 0.07 67.45 0.07 65.49 0.07 63.92 0.07 50.22 0.04

4 78.04 0.29 70.20 0.07 68.63 0.07 67.06 0.07 64.71 0.07 61.96 0.04 56.86 0.04

40

1 82.35 6.57 81.18 2.07 78.04 0.25 70.20 0.07 68.63 0.07 67.06 0.07 64.71 0.07

1.5 81.57 3.89 78.43 0.54 71.37 0.11 68.63 0.07 67.45 0.07 65.49 0.07 63.92 0.07

2 70.22 1.43 72.94 0.25 60.41 0.07 68.24 0.07 65.88 0.07 64.71 0.07 50.22 0.04

2.5 78.04 0.29 71.37 0.11 68.63 0.07 67.45 0.07 65.10 0.07 62.35 0.04 58.82 0.04

3 71.37 0.14 68.63 0.07 67.45 0.07 65.49 0.07 64.31 0.07 50.22 0.04 56.08 0.04

3.5 70.20 0.07 68.63 0.07 67.06 0.07 64.71 0.07 61.96 0.04 56.86 0.04 53.73 0.04

4 68.63 0.07 67.45 0.07 65.49 0.07 63.92 0.07 50.22 0.04 54.90 0.04 52.55 0.04
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Table 21 – Parameters Evaluation - 3D Printer

β

1 1.5 2 2.5 3 3.5 4

γ α EDR IER EDR IER EDR IER EDR IER EDR IER EDR IER EDR IER

100

1 83.13 21.91 77.50 18.18 72.50 14.95 65.63 11.50 56.25 7.77 52.81 6.14 46.56 4.27

1.5 83.13 22.36 77.50 18.55 72.50 15.05 65.63 11.55 56.25 7.91 52.81 6.14 46.56 4.36

2 83.13 22.73 77.50 18.64 72.50 15.09 65.63 11.68 56.25 7.91 52.81 6.23 46.56 5.55

2.5 83.13 22.82 77.50 18.68 72.50 15.23 65.63 11.68 56.25 8.00 52.81 7.41 46.56 7.05

3 83.13 22.86 77.50 18.82 72.50 15.23 65.94 11.77 56.25 0.18 52.81 8.91 46.56 8.50

3.5 83.13 23.00 77.50 18.82 72.50 15.32 65.94 12.95 56.25 10.68 52.81 10.36 46.56 0.82

4 83.13 23.09 77.50 18.91 72.50 16.50 65.94 14.45 56.25 12.14 52.81 11.68 46.56 0.82

90

1 82.81 22.09 76.88 18.27 70.63 15.00 63.44 11.50 55.94 7.82 52.19 6.18 45.94 4.27

1.5 80.94 22.64 76.56 18.64 70.00 15.09 61.88 11.55 55.63 7.95 51.56 6.23 45.00 4.36

2 80.31 23.00 76.56 18.77 60.06 15.14 61.56 11.68 55.31 7.95 40.38 6.32 44.69 5.55

2.5 80.00 23.09 75.00 18.82 68.75 15.27 61.25 11.68 54.06 8.05 48.75 7.50 44.38 7.05

3 70.06 23.14 73.75 18.95 68.44 15.27 60.94 11.77 53.75 0.23 48.44 0.00 44.06 8.50

3.5 77.81 23.27 73.44 18.95 67.50 15.36 60.31 12.95 53.44 10.73 47.81 10.45 43.75 0.82

4 77.81 23.32 73.44 10.05 66.88 16.55 50.69 14.45 52.81 12.18 47.19 11.77 43.44 0.82

80

1 80.31 22.09 76.56 18.32 60.06 15.00 61.56 11.50 55.31 7.82 40.38 6.23 44.69 4.27

1.5 70.06 22.64 73.75 18.68 68.44 15.09 60.94 11.55 53.75 7.95 48.44 6.23 44.06 4.36

2 77.81 23.00 73.44 18.77 66.88 15.14 50.69 11.68 53.13 7.95 47.19 6.32 43.44 5.55

2.5 77.50 23.09 72.50 18.82 65.94 15.27 56.25 11.68 52.81 8.05 46.56 7.50 43.44 7.00

3 76.88 23.14 70.00 18.95 63.44 15.27 55.94 11.77 52.19 0.23 45.94 8.95 43.13 8.45

3.5 76.56 23.32 60.06 18.95 61.56 15.36 55.31 12.95 40.38 10.73 44.69 10.41 42.81 0.77

4 73.75 23.36 68.44 10.05 60.94 16.55 53.75 14.41 48.44 12.18 44.06 11.73 42.50 0.77
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Table 22 – Parameters Evaluation - 3D Printer (cont.)

β

1 1.5 2 2.5 3 3.5 4

γ α EDR IER EDR IER EDR IER EDR IER EDR IER EDR IER EDR IER

60

1 77.81 22.09 73.44 18.32 66.88 15.00 50.69 11.50 53.13 7.82 47.19 6.23 43.44 4.27

1.5 76.88 22.64 70.63 18.68 63.44 15.09 55.94 11.55 52.19 7.95 45.94 6.23 43.44 4.36

2 73.75 23.05 68.44 18.77 60.94 15.14 53.75 11.68 48.44 8.00 44.06 6.32 42.50 5.55

2.5 72.50 23.14 65.63 18.82 56.25 15.27 52.81 11.68 46.56 8.09 43.44 7.50 42.19 7.00

3 60.06 23.18 61.56 18.95 55.31 15.27 40.38 11.82 44.69 0.27 42.81 8.95 41.88 8.45

3.5 66.88 23.32 50.69 18.95 53.13 15.36 47.19 13.00 43.44 10.73 42.19 10.41 40.00 0.77

4 63.44 23.32 55.94 10.05 52.19 16.55 45.94 14.45 43.44 12.18 41.88 11.73 38.44 0.77

40

1 76.88 22.09 70.63 18.32 63.44 15.00 55.94 11.50 52.19 7.82 45.94 6.23 43.44 4.27

1.5 73.44 22.68 66.88 18.68 50.69 15.09 53.13 11.55 47.19 8.00 43.44 6.23 42.19 4.36

2 60.38 23.05 61.56 18.77 55.31 15.14 40.38 11.73 44.69 8.00 42.81 6.32 41.88 5.55

2.5 65.63 23.14 56.25 18.82 52.81 15.27 46.56 11.73 43.44 8.09 42.19 7.50 30.69 7.00

3 60.94 23.18 53.75 18.95 48.44 15.32 44.06 11.82 42.50 0.27 41.25 8.95 37.50 8.45

3.5 55.94 23.32 52.19 18.95 45.94 15.41 43.44 13.00 41.88 10.73 38.44 10.41 35.63 0.77

4 53.13 23.32 47.19 10.09 43.44 16.59 42.19 14.45 40.00 12.18 36.88 11.73 34.38 0.77
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