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RESUMO

A extração de petróleo de reservatórios não convencionais requer a compreensão da
dinâmica do deslocamento imisćıvel em meios porosos. Este é um fenômeno complexo
na mecânica dos flúıdos, e geralmente é investigado com a utilização de experimentos em
laboratório e simulações computacionais. Eles fornecem informações importantes para a
avaliação das permeabilidades relativas e da saturação das fases existentes em um escoa-
mento imisćıvel, o qual é predominantemente governado por forças capilares e viscosas
relacionadas pelo número capilar.
Contribuições da comunidade cient́ıfica mostram que o aumento do número capilar tem
um efeito positivo na eficiência da recuperação. No entanto, este efeito pode ser senśıvel
a vários parâmetros, tais como a razão de viscosidade, a molhabilidade e a geometria e
heterogeneidade do meio.
O presente trabalho investiga o efeito do número capilar na saturação residual das fases
molhante e não molhante durante processos de drenagem. Um modelo imisćıvel de Lattice
Boltzman baseado no modelo de gradiente de cor é utilizado para simular o escoamento
em modelos porosos 2D e 3D de rochas porosas. As razões de densidade e viscosidade e a
condição de molhabilidade são fixas para todos os casos. Os valores da viscosidade e da
tensão interfacial são consistentes com o modelo e garantem estabilidade computacional
das simulações. O número capilar é variado ao se definir diferentes valores de velocidade
na entrada do domı́nio computacional.
Os resultados mostram a evolução da drenagem nos modelos à medida que a fase não
molhante invade os poros estreitos, forçando o fluido molhante a deixar o meio poroso
através da sáıda. Diferentes padrões são observados dependendo do valor do número
capilar e do grau de porosidade e heterogeneidade dos meios porosos. Eventos em escala
de poro, como os saltos de Haines, são observados e desempenham um papel importante
no aprisionamento do fluido molhante.
A saturação da fase molhante é medida nos estados de ruptura e quase permanente e
plotada em função do número capilar. Nos modelos 2D, o efeito da baixa velocidade
do fluido com Ca baixo fornece uma melhor condição para a redistribuição do fluido,
causando uma menor saturação residual do fluido molhante. Nos modelos 3D, um valor
mais baixo de Ca leva ao aprisionamento do fluido molhante principalmente por causa
da geometria do meio. Em todos os casos, a faixa mais alta de Ca resultou na menor
saturação residual do fluido molhante. Observa-se também que o grau de heterogeneidade
nos modelos 3D tem um efeito importante na saturação residual após a drenagem, e parece
ser mais significativo que a porosidade ou permeabilidade intŕınseca dos modelos.
A permeabilidade relativa no ponto de saturação irredut́ıvel da fase molhante é calculada
para cada valor de Ca utilizado. À medida que a saturação irredut́ıvel do fluido molhante
aumenta, a permeabilidade relativa do fluido molhante também aumenta, enquanto o
oposto ocorre com a permeabilidade relativa do fluido não molhante.
Os resultados encontrados contribuem para a compreensão do escoamento imisćıvel em
meios porosos e para a avaliação de curvas completas de permeabilidade relativa e dessaturação
capilar de rochas porosas.

Palavras-chave: meios porosos, número capilar, saturação residual, drenagem, Lattice
Boltzmann





RESUMO EXPANDIDO

Introdução
A recuperação aprimorada de petróleo de reservatórios não convencionais requer a com-
preensão da dinâmica do deslocamento de fluidos imisćıveis em meios porosos. Este é
um fenômeno muito complexo devido a inúmeros fatores que influenciam o escoamento,
incluindo caracteŕısticas dos fluidos como densidade, viscosidade, tensão interfacial, mol-
habilidade, e caracteŕısticas dos meios porosos como geometria de poros, distribuição de
tamanho de poros, heterogeneidade, rugosidade da superf́ıcie, etc. Em geral, os métodos
aprimorados de recuperação de óleo são projetados com o objetivo de aumentar o número
capilar, que representa a razão entre as forças viscosas e forças capilares no sistema mul-
tifásico.
O fenômeno do escoamento imisćıvel em meios porosos geralmente é investigado com
a utilização de experimentos em laboratório e simulações computacionais. Enquanto o
primeiro método pode se tornar caro e geralmente é limitado, o segundo método se vê
cada vez mais viável tecnicamente e financeiramente devido ao rápido aprimoramento
de técnicas computacionais visto nos últimos anos. Em especial, o Método de Lattice
Boltzmann (LBM) fornece várias vantagens distintas dentro dos métodos computacionais
dispońıveis, como a relativa facilidade de lidar com geometrias complicadas e a adaptação
a uma programação paralela eficiente.
Tanto os métodos experimentais como computacionais são capazes de fornecer os dados
necessários para análise do efeito de diferentes parâmetros, incluindo o número capilar,
na investigação das permeabilidades relativas e da saturação das fases existentes. Estes
dados fornecem a informação sobre a capacidade da rocha do reservatório em deixar os
fluidos passarem através da mesma e a quantidade de fluido que fica aprisionado dentro
do reservatório ao final de processos de drenagem ou embebição. Estes processos se
caracterizam pelo fluido que é deslocado ou deslocante.
Grande parte das contribuições da comunidade cient́ıfica mostra que o aumento do número
capilar tem um efeito positivo na eficiência de deslocamento de drenagem, isto é, a
saturação do fluido deslocado (fluido molhante) é menor ao final do processo quando
o número capilar é maior. No entanto, este efeito pode ser senśıvel a vários parâmetros,
tais como a razão de viscosidade entre fluidos, a condição de molhabilidade e a geometria
e heterogeneidade do meio. Outro fator importante é o momento de medição da saturação
final. Em muitos trabalhos da literatura é utilizado como momento de medição o ponto
de ruptura, isto é, o ponto onde o fluido não molhante alcança a sáıda do meio poroso.
Em outros casos, as medições são realizadas em estado permanente, quando não há mais
variação da saturação de fluido não molhante com o tempo. Este momento pode ocorrer
muito depois do ponto de ruptura e essa diferença pode representar uma grande variação
no valor de saturação final dos fluidos.

Objetivos
O principal objetivo deste trabalho é avaliar a influência do número capilar na saturação
residual das fases molhante e não molhante após processos de drenagem em meios porosos.
Um modelo multicomponente de Lattice Boltzmann (LB) é utilizado para simular os pro-
cessos de drenagem com diferentes valores de número capilar em modelos digitais 2D e 3D
de meios porosos. As simulações são realizadas até o estado quase permanente, e várias
caracteŕısticas são capturadas e medidas durante os processos de drenagem. A saturação
irredut́ıvel do fluido molhante é alcançada, que é basicamente o volume de fluido mol-



hante aprisionado dentro do meio poroso. No estado quase permanente, são calculadas as
permeabilidades relativas para as fases molhante e não molhante. Somente a drenagem
é simulada devido à capacidade computacional dispońıvel. Os modelos digitais utiliza-
dos são relativamente grandes, e a simulação de processos subsequentes de embebição é
inviável no momento. No entanto, os resultados serão válidos para trabalhos futuros que
possam investigar outros fenômenos do escoamento imisćıvel em meios porosos.

Metodologia
Um modelo Lattice-Boltzmann multicomponente baseado no modelo de gradiente de cor
é utilizado, incluindo um esquema de dois tempos de relaxação para o operador de colisão.
Um termo de força adicional é inclúıdo no operador de colisão para simular a dinâmica da
interface entre os fluidos. Ele é formulado com base em uma perturbação de tensão viscosa
que promove um degrau de pressão entre os fluidos na região interfacial. Uma regra de
segregação é inclúıda no processo de evolução de part́ıculas em uma etapa pós-colisão,
pré propagação, e finalmente a etapa de propagação é executada com um algoritmo de
permutação. Para implementar a condição de molhabilidade em uma parede sólida, supõe-
se que a parede sólida seja uma mistura de dois fluidos com proporções constantes com
tempo.
O modelo LB é utilizado para simular drenagem em dois modelos porosos 2D e dois mod-
elos 3D. O primeiro é um modelo 2D homogêneo produzido manualmente, composto por
grãos circulares de diâmetros iguais, distribúıdos espacialmente para obter razão entre
garganta e poro constante no meio. O segundo modelo 2D consiste em uma fatia de uma
imagem digital de um rocha do tipo arenito chamada LV60A, que também é utilizada
para os modelos 3D. Os modelos digitais 3D são obtidos a partir de arquivos brutos de
imagens de microtomografia computadorizada de um arenito Berea e do arenito LV60A,
para os quais estão dispońıveis na literatura dados experimentais de porosidade, perme-
abilidade intŕınseca e relativa e saturação residual. A porosidade absoluta e a permeabil-
idade intŕınseca de todos os modelos são obtidos por meio de simulações de escoamento
monofásico.
As razões de viscosidade e densidade são iguais para todas as simulações. Os valores
individuais de viscosidades, densidades e tensão interfacial foram escolhidos considerando
três critérios: atingir o número capilar desejado, garantir a estabilidade das simulações e
obter tempo prático para as simulações. O ângulo de contato é definido para obter uma
condição fortemente não molhante do fluido invasor em relação ao sólido.
O número capilar é variado ao se definir diferentes valores para velocidade constante na
entrada no meio. Cada simulação é realizada individualmente, com as mesmas condições
iniciais e com número capilar fixo calculado usando a velocidade de entrada. Seis proces-
sos de drenagem individuais com diferentes Ca são realizados em cada meio poroso. O
intervalo do Ca está entre 5 × 10−6 e 1 × 10−3. Os valores mais baixos de Ca estão na
faixa de fingering capilar, onde as forças capilares são a principal força, e os valores mais
altos de Ca estão na zona de transição entre o fingering capilar e o deslocamento estável.
A condição de anti escorregamento é imposta em todos os nós sólidos, e nas laterais e
nas faces superior e inferior é imposta a condição de contorno periódica. Na entrada, é
imposta uma velocidade constante do fluido não molhante, e na sáıda é aplicada uma
condição de contorno convectiva. Inicialmente, o meio poroso é totalmente saturado com
fluido molhante. O fluido não molhante invade o meio poroso a partir da entrada. As
simulações são executadas até o estado quase permanente, que é alcançado quando a
saturação do fluido não molhante se torna praticamente constante ao longo do tempo.



Resultados e Discussão
O modelo multicomponente de Lattice Boltzmann foi aplicado em testes de preenchimento
capilar e teste de bolha. A força interfacial e a condição de contorno de molhabilidade
mostraram boa consistência com os efeitos esperados de molhabilidade e capilaridade. A
condição de contorno convectiva implementada fornece similaridade f́ısica razoável e esta-
bilidade de fronteira. Nos processos de drenagem nos meios porosos, o modelo multicom-
ponente foi capaz de recuperar com qualidade a dinâmica dos fluidos durante a drenagem.
Vários aspectos foram observados, como os padrões de deslocamento e os mecanismos em
escala de poro, que são semelhantes às observações encontradas na literatura.
Os eventos em escala de poro no regime capilar, como os saltos de Haines, são um impor-
tante mecanismo de aprisionamento durante a drenagem. Em todos os casos simulados,
eles ocorrem com frequência, especialmente com baixos valores do Ca, e são mais intensos
em geometrias com maior razão entre tamanhos de garganta e poro. Nos modelos 2D,
esses mecanismos podem levar a uma maior saturação residual de fluido molhante em
valores intermediários de Ca, devido à alta velocidade do fluido. Nos modelos 3D, o efeito
depende da conectividade dos poros e do grau de heterogeneidade.
Caminhos preferenciais para o escoamento são observados durante a drenagem nos mod-
elos 2D e 3D. Eles fornecem a pressão capilar mais baixa necessária para o fluido não
molhante escoar até a sáıda. Nos modelos 3D, é posśıvel encontrar mais de um caminho,
dependendo da conectividade dos poros. Em meios de baixa conectividade, como a rocha
Berea, o caminho preferencial é mais claro e tem mais efeito sobre a saturação no ponto
de ruptura. Além disso, durante a drenagem, o caminho preferencial pode ser afetado
pelos mecanismos em escala de poro, e isso leva a diferentes caminhos preferenciais entre
regimes de escoamento distintos.
A saturação residual de fluido molhante (Sw) no estado de ruptura e quase permanente
é altamente dependente do número capilar. Um valor mais baixo do Ca leva a um maior
aprisionamento de fluido molhante nos modelos 3D, principalmente por causa das geome-
trias dos meios. Nos modelos 2D, a baixa velocidade do fluido a baixo Ca forneceu uma
melhor condição para a redistribuição do fluido, causando uma menor saturação residual
do fluido molhante. Em todos os casos, os maiores valores do Ca resultaram em uma
menor Sw.
O grau de heterogeneidade nos modelos 3D tem um efeito importante na saturação resid-
ual após a drenagem. A rocha LV60A possui uma ampla distribuição de tamanho dos
poros, com mais poros sem sáıda e poros e gargantas pequenos, o que aumenta a quan-
tidade de aprisionamento de fluido molhante. A rocha da Berea tem menor porosidade
e permeabilidade intŕınseca, mas o grau de heterogeneidade é menor que na LV60A. Isso
leva a uma maior eficiência de varredura da drenagem e maior permeabilidade relativa
no mesmo valor de Ca usado na drenagem. A rocha LV60A possui maior porosidade e
permeabilidade intŕınseca, o que resulta em maior permeabilidade relativa para o mesmo
ńıvel de saturação.
No alto ńıvel de saturação de fluido não molhante atingido no estado quase permanente
com modelos 3D, as permeabilidades relativas para os fluidos molhante e não molhante
têm uma relação linear com a saturação. À medida que a saturação irredut́ıvel do fluido
molhante aumenta, a permeabilidade relativa para o fluido molhante também aumenta,
enquanto o oposto ocorre com a permeabilidade relativa para o fluido não molhante.

Considerações Finais
A investigação realizada no presente trabalho é um primeiro passo no estudo da eficiência



de recuperação em meios porosos reais. Trabalhos futuros podem se beneficiar dos resul-
tados e condições finais do presente trabalho. Por exemplo, deslocamentos de embebição
e subsequentes processos de drenagem podem ser simulados usando as distribuições de
fluido obtidas no estado final. Isso permite o cálculo de curvas completas de permeabili-
dade relativa e curvas de dessaturação capilar, que são os principais insumos para decisões
na indústria de recuperação de petróleo.
Além disso, este trabalho mostrou o potencial do LBM para o cálculo de escoamento
imisćıvel em geometrias complexas. O método é uma ferramenta importante para a
avaliação de propriedades relevantes de deslocamento imisćıvel em meios porosos. De-
vido à capacidade computacional, não foi posśıvel simular valores adicionais do Ca ou
investigar outros parâmetros relevantes. Entretanto, a metodologia apresentada neste
trabalho fornece uma ferramenta eficiente para calcular curvas completas de permeabil-
idade relativa e curvas de dessaturação capilar para drenagem e embebição usando uma
variedade de parâmetros. Com o atual desenvolvimento da tecnologia computacional
e das técnicas de modelagem, o estudo do deslocamento imisćıvel é consideravelmente
beneficiado. Eventualmente, trabalhos futuros podem introduzir novos detalhes sobre a
recuperação de petróleo, simulando a rocha completo do reservatório com propriedades
reais medidas no local.

Palavras-chave: meios porosos, número capilar, saturação residual, drenagem, Lattice
Boltzmann



ABSTRACT

Oil recovery from unconventional reservoirs relies on the comprehension of the dynam-
ics of immiscible displacement in porous media. This is a complex phenomenon in fluid
mechanics, and it is usually investigated with laboratory experiments and computational
simulations. They provide important information for the evaluation of relative perme-
abilities and saturation of existing phases in a immiscible flow, which is predominantly
governed by viscous and capillary forces related by the capillary number.
Contributions of the scientific community show that the increase in capillary number
has a positive effect on fluid recovery efficiency. However, this effect can be sensitive
to several parameters such as viscosity ratio, wettabillity and the medium geometry and
heterogeneity.
The present work investigates the effect of the capillary number on the residual saturation
of wetting and nonwetting phases during processes of drainage. A multiphase Lattice
Boltzmann model based on the color gradient model is used to simulate the flow in 2D and
3D digital models of porous rocks. Density and viscosity ratios and wettability condition
are fixed for all cases. The values of viscosity and interfacial tension are consistent with the
model and ensure computationally stable simulations. The capillary number is varied by
setting different values of the inlet velocity at the entrance of the computational domain.
The results show the evolution of drainage in the models as the nonwetting phase invades
the narrow pores, forcing the wetting fluid to leave the porous medium through the outlet.
Different patterns are observed depending on the value of capillary number and the degree
of porosity and heterogeneity of the porous media. Pore-scale events such as Haines jumps
are observed and play an important role in the trapping of wetting fluid.
The wetting phase saturation is measured at breakthrough and quasi-steady states and
plotted as a function of the capillary number. In 2D models, the effect of the low velocity
of the fluid at low Ca provides a better condition for fluid redistribution, causing a lower
residual wetting fluid saturation. In 3D models, a lower value of Ca leads to more trapped
wetting fluid mainly because of the media geometries. In all cases, the highest Ca range
resulted in the lowest residual wetting fluid saturation. It is observed that the degree
of heterogeneity in 3D models has an important effect on the residual saturation after
drainage, which seems to be more significant than porosity or intrinsic permeability of
the models.
The relative permeability at the point of irreducible wetting phase saturation is calculated
for all Ca cases. As the irreducible wetting fluid saturation increases the relative perme-
ability for the wetting fluid also increases, while the opposite occurs with the relative
permeability for the nonwetting fluid.
Those findings contribute for the comprehension of two phase flow in porous media and
for the evaluation of complete curves of relative permeability and capillary desaturation
of porous rocks.

Keywords: porous media, capillary number, residual saturation, drainage, Lattice Boltz-
mann
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1 INTRODUCTION

In the past 10-20 years, unconventional oil and gas sources have become a large
supplier of energy worldwide. Moreover, it is predicted that in the next 20-50 years these
sources will increase in prominence and play a significant and vital role in the energy
budget (HONGJUN et al., 2016).

Unconventional reservoirs usually consist of porous rocks with complex geometry,
low porosity and low permeabilities. The pore structure is characterized by a large range
in pore sizes from the order of nanometres to microns (YEKEEN et al., 2019). Enhanced oil
recovery (EOR) methods are specially designed to increase oil recovery during secondary
and tertiary stages, and depend on the comprehension of the dynamics of fluid flow
inside these complex structures. The scientific challenge lies in the physics of multiphase
immiscible flow in porous media. This is a common environmental phenomenon and
it is important for many industrial problems, such as enhanced oil recovery, geological
carbon dioxide sequestration, fuel cells, groundwater supply and remediation and catalytic
processing in fixed bed reactors.

An immiscible system of a reservoir usually consists of water and hydrocarbons in
liquid and/or gaseous phase enclosed in a solid porous media (BEAR, 1972). The dynamics
of this multiphase system is very complicated due to numerous factors influencing the flow,
including fluid characteristics such as density, viscosity, interfacial tension, wettability, and
porous media characteristics such as pore geometry, pore size distribution, heterogeneity,
surface roughness, etc.

EOR methods often aim to increase the capillary number, which represents the
balance between viscous and capillary forces in the multiphase fluid-rock system, either
by decreasing the interfacial tension between phases (surfactant injection) or by increasing
the viscosity of the injected phase (polymer injection). The impact of a particular EOR
approach on sweep efficiency can be observed in a capillary desaturation curve (CDC),
which shows the influence of the capillary number on remaining phases and hence help to
reduce uncertainty during the planning and execution of a project (XU et al., 2018).

A traditional method for analysis of flow in porous media is the Darcy’s law and its
modifications for multiphase flows. Basically, Darcy’s law allows the calculation of the
medium permeability (or relative permeability for multiphase flow), which indicates, in
general terms, the ability of the porous medium to transmit fluids. Another parameter
of great importance is the volume of residual oil trapped in the porous medium after the
processes of displacement of oil and/or water (usually the nonwetting and wetting phases,
respectively). This is influenced by the characteristics of the porous medium and the flow
dynamics, and can result in a significant loss of oil during the extraction in a reservoir.

Darcy’s law does not allow the evaluation of important parameters, such as capillary
number, viscosity ratio and wettability, and their effects on the relative permeability and
residual oil saturation. To investigate those effects, advanced methods with pore-scale
view capacity are required, such as laboratory experiments with rock samples, microfluidic
(MF) technology or computational simulations, which can yield the relationship between
phase saturation, fluid pressure and relative permeability.

Accurate determination of those relationships for petroleum reservoirs is a difficult
and expensive process, which usually involves performing laboratory experiments on rock
cores that are specially cut during the drilling process of the well. The cores must be care-
fully selected to provide an accurate representation of the entire reservoir rock. Retrieval
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of such cores is expensive and usually limited. Moreover, the laboratory experiments may
not always reflect the actual subsurface conditions (WARDA et al., 2017).

An alternative approach to analyze the multiphase flow in such systems is the use
of advanced simulation tools such as computational fluid dynamics (CFD) and pore-scale
modelling techniques. Conventional CFD methods based on Navier-Stokes equations and
the classical continuum approach require a highly refined grid and huge computational
resources to capture the underlying flow physics in porous media. To overcome these lim-
itations, a considerable development in non-conventional techniques, such as the Lattice
Boltzmann Method (LBM), has been observed in recent years.

LBM is based on a mesoscopic scale approach, which allows the method to capture
physical phenomena on the microscopic scale and translate them into macroscopic scale
parameters, within manageable and efficient use of computer resources. Unlike conven-
tional CFD methods, LBM focuses on solving the Boltzmann transport equation, which is
known to be equivalent to the Navier-Stokes equation (SUCCI, 2001). LBM provides sev-
eral distinct advantages, such as the relative ease of handling complicated geometries and
adaptation to efficient parallel programming, and it is now commonly applied to analyze
multiphase flow in complex porous media. The inputs for these computations are digital
representations of the porous medium which usually comes from computed tomography
(CT) scans (MOHAMAD, 2011).

In this work, a Lattice Boltzmann (LB) multiphase model is used to simulate the
drainage displacements with different values of capillary number in 2D and 3D digital
models of porous media. Simulations are carried out until quasi-steady state, and several
characteristics are captured and measured during the drainage processes. The irreducible
saturation of wetting fluid is achieved, which is basically the volume of wetting fluid
trapped inside the porous medium. At quasi-steady state, the relative permeabilities for
the wetting and nonwetting phases are calculated.

Only drainage is simulated due to computational capacity available. The digital
models used are relatively big, and simulate subsequent processes of imbibition is unfeasi-
ble at this time. However, the results will be valid for future works which may investigate
other phenomena of multiphase flow in porous media.

1.1 OBJECTIVES

1.1.1 General Objective

The main objective of this work is to evaluate the influence of the capillary number
on the residual saturation of wetting and nonwetting phases after drainage processes in
porous media, using a computational method based on a Lattice Bolztmann multiphase
model.

1.1.2 Specific objectives

The following specific objectives were established to develop and present the current
work in the best possible way:

(i) review the classical literature on relevant topics of porous media and multiphase
flow with the support of recognized references;
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(ii) study and compile the basic concepts of the Lattice Boltzmann Method and well-
known single and multiphase models;

(iii) investigate and discuss the state of the art, addressing recent publications on mul-
tiphase flow in porous media, with special attention to publications on pore-scale
mechanisms and residual saturation during drainage;

(iv) define, analyze and explain the novel LB multiphase model, the rules for collision
and streaming and the implementation of interfacial tension and wettability;

(v) verify the consistency of the LB multiphase model in reproducing wettability, cap-
illarity and boundary physics using well-known tests;

(vi) produce and/or select and examine digital models of porous media, and compute
the porosities and intrinsic permeabilities;

(vii) carry out simulations of drainage in the selected digital models at different capillary
numbers with the LB model;

(viii) analyze and discuss the results, confronting with expected physical phenomena
and/or literature observations;

(ix) validate the results with the objectives and premises of the work;

(x) review the main contributions of this work for the development of the subject in the
scientific community, provide a lessons-learned and indicate possible future works
to be developed with the methodology and contributions of this work.
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2 LITERATURE REVIEW

This chapter is dedicated to a literature review on the fundamental topics required
for fully understanding of the work and the state of the art on the main subjects addressed
in the next chapters.

Section 2.1 outlines the aspects of the fluid flow in porous media: the character-
ization of the porous media and relevant parameters, the concepts of fluid mechanics
governing the flow and important aspects of immiscible displacement regarding capillary
mechanisms and phase saturation inside a porous medium.

Section 2.2 introduces the Lattice Boltzmann Method: the concepts of particle dis-
tribution function, the main equations for collision and propagation, implementation of
boundary conditions, and an introduction on multiphase models.

The last section presents a review of the state of the art on the main subject of this
work, providing an insight on recent publications that apply the LBM or experimental
methods to evaluate the influence of capillary number on the immiscible displacement in
a porous medium.

2.1 FLUID FLOW IN POROUS MEDIA

This section covers the main characteristics of fluid flow in porous media, specially
for immiscible displacement in capillary systems. The porous medium is characterized and
the relevant parameters for fluid flow are explained. In the following, the basic aspects of
multiphase flow such as wettability and capillarity are described. Finally, the mechanisms
of immiscible displacement are explained focusing on the relationship of phase saturation
and capillarity.

2.1.1 The porous medium

Porous materials can be found in everyday life, in technology and in nature. With
the exception of metals, some dense rocks, and some plastics, virtually all solid and semi-
solid materials are porous to varying degrees. A material or structure must have these
two characteristics to be qualified as a porous medium (DULLIEN, 1992):

(i) it must contain spaces, so-called voids or pores, free of solids, embedded in the solid
or semi-solid matrix. The pores usually contain some fluid, such as air, water, oil
or a mixture of different fluids;

(ii) it must be permeable to a variety of fluids, i.e., fluids should be able to penetrate
through one face of a sample of material and emerge on the other side.

Fluid flow in porous media is strongly influenced by pore structure parameters.
Macroscopic pore structure parameters represent average behaviour over a representative
elementary volume (REV), which is the smallest volume over which a measurement can
be made that yields a value representative of the whole sample (BEAR; BACHMAT, 2012).

A basic pore structure parameter is the porosity (φ). From the standpoint of flow
through porous media, it is possible to define two distinct types of porosity: absolute



32

(φa) and effective (φe) porosity. The absolute porosity is defined as the ratio between the
volume occupied by pores or void spaces (VV ) and the total bulk volume (VT ). However,
many of the void spaces are not interconnected and do not contribute effectively to the
flow. Thus, it is more common to use the concept of effective porosity, which is the ratio
between the volume occupied by interconnected void spaces (VC) and the total bulk vol-
ume (VT ). Both types of porosity can be determined by several established experimental
methods.

An important porous media parameter is the permeability (k), also called specific
or intrinsic permeability since it is an intensive property of the porous medium. It is a
measure that indicates the ability of a porous medium to allow fluids to pass through it.
The permeability of a medium is influenced by the material, the porosity, the shapes of the
pores in the medium and their level of connectivity. It was first defined mathematically by
Henry Darcy in 1856. In steady unidirectional flow and at low Reynolds number, Darcy’s
law is written as

Q =
kA

µ

(

∆p

L

)

, (2.1)

where Q is the volumetric flow rate (discharge), A is the normal cross-sectional area of the
medium, µ is the fluid dynamic viscosity, L is the length of the medium in the macroscopic
flow direction and ∆p ≡ p1 − p2 is the hydrostatic pressure drop (BEAR, 1972).

Although Darcy’s law is simple and efficient, it is valid essentially for single compo-
nent, steady and incompressible flow at low Reynolds number. Many improvements using
mathematical and empirical approaches were proposed trying to overcome the limitations
of Darcy’s law (INGHAM; POP, 1998).

There are several other macroscopic and microscopic pore structure parameters such
as specific surface area, pore size distribution and compressibility, which are important
to related studies in porous media. Dullien (1992) and Bear (1972) are two outstanding
works that provide detailed descriptions of porous media characteristics.

2.1.2 Multiphase flow in porous media

In the previous section, the relevant parameters of porous media were defined in
terms of a single-component system. Simultaneous presence of two or more fluids in the
porous medium requires defining new properties such as interfacial tension, wettability
and capillarity.

2.1.2.1 Interfacial tension and wettability

When two immiscible fluids are in contact, they are separated by a thin layer or
transition zone of small thickness called interface (when two liquids) or surface (when
liquid and gas) (DULLIEN, 1992). In this interface, a tension arises from the difference of
intermolecular forces acting on molecules at the interface. In the bulk of the fluid, each
molecule is pulled equally in every direction by neighbouring-like molecules, resulting in
zero net force. The molecules at the surface do not have neighbouring-like molecules on
all sides and therefore are pulled inwards. This creates internal pressure and forces fluid
surfaces to contract to a minimal area. The unbalanced attraction force between the





34

and wetting phases (BEAR; BACHMAT, 2012). For the case of an immiscible system in a
capillary tube illustrated in Figure 1(b), the capillary pressure can be calculated by the
Young-Laplace equation (BEAR, 1972):

pc = pnw − pw =
2σ cos θ

R
, (2.3)

where σ is the interfacial tension, θ is the contact angle and R is the capillary tube radius.
pnw and pw are the pressure of the nonwetting and the wetting fluids, respectively.

The capillary pressure depends on the geometry of the void spaces within the porous
medium, the nature of fluids and solids and the degree of phases saturation. Due to the
irregular geometry of real porous media, the problem is more complex and cannot be
described analytically. Idealized models of the pore space such as capillary tubes, pack-
ing spheres or parallel circular rods are adopted in order to obtain analytical solutions
for the capillary pressure curves as a function of phase saturations. Laboratory experi-
ments or computational methods can be employed to obtain those curves for immiscible
displacement in complex porous media (BEAR, 1972).

The displacement of one fluid by another in the pores of a porous medium is either
aided or opposed by the capillary pressure. In order to maintain a porous medium partially
saturated with nonwetting fluid while the medium is also exposed to wetting fluid, it is
necessary to maintain the pressure of the nonwetting fluid at a value greater than that
in the wetting fluid. Moreover, Equation 2.3 shows that capillary pressure is inversely
proportional to the capillary tube diameter. This means that the nonwetting fluid pressure
must be higher in thinner capillary tubes in order to maintain an equilibrium state. This
condition has important consequences in the dynamics of immiscible displacement, as will
be seen in section 2.3.

Considering the immiscible displacement in thin capillary tubes inside porous media
without the action of gravity, two forces play major roles: capillary and viscous forces.
It is possible to relate these forces by a nondimensional parameter called the capillary
number, which is defined as the ratio between viscous forces and capillary forces (GENNES;

BROCHARD-WYART; QUÉRÉ, 2013):

Ca =
µV

σ
, (2.4)

where µ is the dynamic viscosity of the displacing fluid, V is a characteristic velocity and
σ is the interfacial tension between the fluids. A high value of Ca means that the flow
is dominated by viscous forces, while low values indicate the predominance of capillary
forces. The crossover value usually lies within 10−5 and 10−4 (CHATZIS; MORROW, 1984).

Another important dimensionless number is the ratio M between injected fluid vis-
cosity and displaced fluid viscosity. For certain values of Ca and M , either viscous or
capillary forces dominate the flow, and phenomena of viscous and capillary fingering may
occur (see section 2.3).

2.1.2.3 Two-phase immiscible displacement

In the two phase immiscible system illustrated in Figure 2, it is possible to distinguish
three saturation states depending on the saturation of the wetting phase (Sw). At very
low wetting phase saturation, wetting fluid forms rings called pendular rings around the
grain contact points. At this state, the rings are isolated and do not form a continuous
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(i) Length: the lattice unit space, ∆x, is the basic length unit and represents the space
between two neighboring nodes. By assigning a linear dimension l to N lattice
nodes, the physical equivalent δx is

δx ≡ ∆x =
l

N
. (2.18)

(ii) Time: the timestep ∆t is the basic time unit in lattice units and represents the
time required for a particle to move between two neighbouring nodes. The physical
correspondent is obtained by equalizing the capillary number in lattice units and
the capillary number in physical units. Thus,

δt ≡ ∆t =
µF

µLB

σLB

σF

δx, (2.19)

where the index F indicates a physical unit and LB a lattice unit.

(iii) Mass: the number of particles per lattice nodes ρ is the basic specific mass unit in
lattice units. The physical specific mass is ρF = ρδm/∆x3. Thus

δm =
ρF
ρ
∆x3. (2.20)

δm represents the product between the mass of a fluid molecule and the number of
molecules that each LB particle represents, which is evident when ρ = 1 (WOLF,
2006).

2.2.5 Multiphase and multicomponent models

Microscopically, the segregation of a multicomponent fluid system is due to the
interparticle forces. While these particle-particle interactions are difficult to implement
in traditional methods, they can be naturally taken into account in numerical methods
based on the simulation of the motion of particles or particle distributions, such as the
LBM (HOU et al., 1997).

The application of LBM for multiphase and multicomponent flow analysis has been
discussed since the emergence of the method. Several models have been introduced during
the last two decades and the development is in constant growth. Among the popular
models are the color-gradient model, the inter-particle potential model, the free-energy
model and the mean-field theory model. They have distinct characteristics, mainly in the
calculation of the interface between phases and fluids during the evolution of the particle
distribution functions. The characteristics of the studied phenomena must be considered
during the model selection.

The earliest model is the color-gradient model proposed by Gunstensen et al. (1991),
which is based on the Rothman-Keller (RK) multiphase lattice gas model (ROTHMAN;

KELLER, 1988). In the two-component model, one component is red-colored fluid and
the other is blue-colored fluid. Two distribution functions are used to represent the two
fluids. In addition to the common collision step in the LBM, there is an extra collision
term and a recoloring step that promotes the phase segregation. One advantage of the RK
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model is that the surface tension and the ratio of viscosities can be adjusted independently
(HUANG; SUKOP; LU, 2015).

The Shan-Chen (SC) or inter-particle potential model (SHAN; CHEN, 1993) appeared
soon after the color-gradient model. In the single-component multiphase (SCMP) SC
model, incorporating a forcing term into the corresponding LB equation replaces the ideal
gas equation of state (EOS) by a nonideal nonmonotonic EOS. In the multicomponent
multiphase (MCMP) SC model, each component is represented by its own distribution
function.

Swift et al. (1996) introduced the free-energy (FE) model. It is built upon the
phase-field theory, in which a free-energy functional is used to account for the interfacial
tension effects and describes the evolution of interface dynamics in a thermodynamically
consistent manner (LIU et al., 2016).

In the mean-field theory or HCZ model proposed by He, Chen and Zhang (1999),
two distribution functions and two corresponding LBEs are used: a pressure distribution
function is introduced to replace the single-particle density distribution function and an
index function is used to track interfaces between different phases.

Many derivations of the popular models are available in literature. The objectives
of these improvements are to increase density and viscosity ratios, specify the wetting
condition and increase the discretization order of kinetic equations. Huang, Sukop and
Lu (2015) and Philippi et al. (2016) provide a detailed insight on the models presented
in this section and further improvements.

Recently, Spencer, Halliday and Care (2010) introduced a novel fluid segregation
scheme and interface-forcing method with flexibility to multi-relaxation times schemes
based on the color-gradient model. This model is used as a basis for the LBM code used
in this work and it will be detailed in chapter 3.

2.3 STATE OF THE ART

This section is dedicated to the review of recent publications which refer to the
main topic of this work – the influence of capillary number on the residual saturation
of wetting phase during drainage. The capillary number (Equation 2.4) is the ratio of
viscous to capillary forces and depends on the fluid viscosity, the velocity (or rate) of
displacement and the interfacial tension between fluids. Therefore, the effect of capillary
number may be evaluated by changing these three parameters individually or mutually.

The variation in capillary number (Ca) in an immiscible displacement may produce
different phenomena depending on the set of parameters that are changed and the range
of variation. Moreover, the effect of Ca can be influenced by distinct porous media
geometries, wettabillity characteristics, high heterogeneity, fluid rheology, etc. The very
form of capillary number equation (Equation 2.4) can be written in different versions
and it is subject of discussion on time and length scale of acting forces (JAMALOEI;

ASGHARI; KHARRAT, 2012; ARMSTRONG et al., 2014). The extensive available literature on
immiscible displacement attests to the complexity of this subject. The following discussion
attempts to resume relevant phenomena with recent contributions available in scientific
literature.
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invades smaller and smaller pore throats in an “invasion percolation” process (WILKINSON;

WILLEMSEN, 1983) as nonwetting phase pressure increases. The fingers spread across the
network and grow in all directions, even backward (towards the entrance). They form
loops which trap the displaced fluid and the size of the trapped clusters ranges from the
pore size to big clusters (at core sample scales).

Morphologically, capillary fingering patterns approach a fractal shape and are char-
acterized by many trapped fluid clusters, whereas viscous fingering patterns exhibit thin,
branching fingers, with fewer interconnections and, hence, reduced trapping (BORGMAN

et al., 2019).
Sukop and Or (2003) used a Shan-Chen LBM multiphase model to analyze the

invasion percolation during drainage in simple porous media consisting of a random net-
works of pores generated by sparse distributions of solid disks and squares. Their results
are simple, but demonstrate the invading fluid’s selectivity for the largest available pore
and the effect of Ca. Capillary and viscous fingering are also exhibited even though no
discussion is carried out on the subject.

A number of recent numerical and experimental studies have been conducted to
understand and characterize the drainage patterns described by Lenormand, Touboul
and Zarcone (1988). Yiotis et al. (2007) used HCZ LBM multiphase model to investigate
viscous coupling in co-current flow and described the lubricating effect and its influence
on relative permeability and saturation. Dong et al. (2010) and Dong, Yan and Li (2011)
run simulations with a SC multiphase model to investigate the effect of several parameters
(including Ca) on viscous fingering in capillary tube and 2D homogeneous porous media.
Zhao and Mohanty (2019) conducted experiments on different oil-wet cores under low
Ca and found that as flow rate decreases fewer fingers are created. The experiments
also showed that under similar conditions, viscous fingering is more severe in drainage
compared to imbibition.

The three displacement regimes described by Lenormand, Touboul and Zarcone
(1988) were plotted on a Ca−M phase diagram (Figure 13), separated by zone boundaries
that indicate the crossover region (white) between the regimes. Liu et al. (2013) and
Huang, Huang and Lu (2014) used different LBM models to evaluate the regime patterns
under different Ca and M . Both works demonstrate that LBM is capable of simulating
fingering phenomena in heterogeneous 2D media. Moreover, different zone boundaries of
the phase diagram were found to be caused by distinct media geometries, leading to larger
crossover regions where more than one regime is found. Based on percolation theory, Liu
et al. (2013) stated that the difference is resulted mainly from heterogeneity, which is an
additional factor that affects the fingering patterns. In fact, by using a more homogeneous
medium, Zhang et al. (2011) found a smaller crossover zone and stated that the Ca−M
diagram is system-dependent: “if the same Ca was imposed on our micromodel and a
similar micromodel with different post and pore-throat sizes, the dominant displacement
mechanism (viscous versus capillary fingering and unstable versus stable displacement)
would not necessarily be the same” (ZHANG et al., 2011).

Tsuji, Jiang and Christensen (2016) used the color-gradient model to analyze the
drainage patterns in a 3D digital model constructed from CT scans of a natural rock
sample. Capillary and viscous fingering regimes were observed and highlighted in a phase
diagram. However, clear stable displacement was not observed. Instead, an unstable
displacement close to capillary fingering was found mainly due to heterogeneity. The
natural rock embodies a wide variety of pores (from narrow to wide throats). Thus, high
threshold capillary pressure is required when the nonwetting phase passes through the





49

generic displacement patterns: flat frontal advance, dendritic frontal advance, bond perco-
lation, compact cluster growth, and ramified cluster growth. These patterns are strongly
influenced by capillary number, viscosity ratio, contact angle and initial wetting satu-
ration. At pore-scale, they can be characterized by different mechanisms: piston-like
advance in throats and pores, snap-off and cooperative pore-body-filling.

Piston-like advance refers to the displacement of nonwetting phase from a throat
by an invading interface initially located in an adjoining wetting phase filled pore-body.
The invading wetting phase preferentially fills the narrowest regions of the pore space.
Piston-like displacement in throats is favoured while wetting phase advance is impeded
by the larger pore-bodies.

Snap-off refers to the invasion of a nonwetting phase filled throat by arc menisci
or wetting layers initially present in corners, crevices and rough surfaces of the pore
space. For small injection velocities, wetting layers will swell and thicken ahead of the
bulk wetting phase invasion in pores and throats. At a critical capillary pressure, the arc
menisci fuse and the center of the throat spontaneously fills with wetting phase, sometimes
trapping the nonwetting phase on a pore.

Cooperative pore-body filling refers to cases where wetting phase displaces nonwet-
ting phase from a pore-body when one or more of the connecting throats are filled with
nonwetting phase (RUSPINI; ØREN, 2017).

2.3.2 Capillary number effect on residual saturation

Displacement patterns are associated with different pore-scale mechanisms and are
influenced by several parameters, Ca being one of the most relevant. These are important
information to understand how capillary number affects the residual wetting and nonwet-
ting saturation during drainage and imbibition, since the final phase distribution inside
the porous medium is strongly influenced by events occurring during the process. The
following discussion addresses first the drainage process and then the imbibition, while
some referenced works investigated both processes.

Typical field reservoirs are in a Ca range of 10−8 to 10−2 (SATTER; IQBAL, 2016).
The lower values of Ca in typical field reservoir are very difficult to simulate because of
low rates of fluid injection. However, they are important in the evaluation of capillary
desaturation curves (CDC), which describe the relationship between Ca and the residual
phase saturation for different wettability system (Figure 14). The CDC allows the analysis
of the critical Ca, which is a value that indicates the point where increasing Ca effectively
decreases the residual saturation of the displaced fluid. Below critical Ca, the variation
of Ca does not affect the residual saturation (LAKE, 1989).

Lenormand, Touboul and Zarcone (1988) introduced the Ca − M diagram and
showed the different patterns during drainage. They measured the wetting phase satu-
ration when the displacing nonwetting fluid reached the outlet, characterizing the break-
through (BT). At this stage, the effect of Ca on wetting phase saturation depends highly
on M . If M < 1, Sw increases with increasing Ca. The opposite trend is found when
M > 1. However, the effect of Ca on Sw can be different if measured at breakthrough of
at quasi-steady state, were irreducible wetting saturation is reached.

Cottin, Bodiguel and Colin (2010) and (ZHANG et al., 2011) reported experimental
results of drainage in micromodels for Ca ranging between 10−7 and 10−1 and different
values of M . At a quasi-steady (QS) state, they found that increasing Ca leads to a
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simulations are conducted, each with the same initial fluid distribution but at different
capillary numbers. Remaining phase saturation at steady state is then measured for each
simulation. In the discontinuous CDC method an initially small capillary number is simu-
lated until remaining phase saturation is achieved. Then the capillary number is increased
in a step-wise fashion (bumped) and a new saturation is measured for each ”bump” in
capillary number (XU et al., 2018).

Their results confirm that the critical capillary number is larger for the discontinuous
CDC method, indicating a less efficient displacement process. Moreover, the critical
capillary number tends to be higher in drainage than for imbibition, and the residual
phase saturation in drainage tends to be lower than in imbibition at low capillary numbers
(XU et al., 2018). This is consistent with the CDC example shown in Figure 14.

It is important to note that the CDC curves are obtained with drainage and imbibi-
tion in partially saturated rocks. This is usually done by carrying out initial drainage and
imbibition processes to achieve the desired saturation of nonwetting and wetting fluids.

Patel, Kuipers and Peters (2019) analyzed drainage in a repeated single-pore and
in a random multi-pore network with a VOF (volume of fluid) method. They found
that in a single-pore domain, increasing Ca leads to higher residual wetting saturation at
breakthrough, in opposite to multi-pore arrangement where residual wetting saturation
decreases at higher Ca. This is because in a viscous fingering regime in the single-pore the
nonwetting fluid will travel one path, leaving most of other pores full of trapped wetting
phase. Ca values in the simulations were relatively high compared to typical field values.

Zhao and Mohanty (2019) conducted drainage and imbibition experiments in natural
cores using typical reservoir low Ca range. They found that fluid recovery at breakthrough
and after injection of 1 PV (pore volume) depends on the geometry used, and in majority
of the cases the residual Sw increases with increasing Ca.

Wang et al. (2019) performed simulations using a VOF method and digital models
constructed with CT scans, showing that oil recovery increases with increasing Ca for oil-
wet and water-wet models. They found also that critical Ca in the CDC for drainage is
higher than imbibition and range from 10−5 to 10−6, which is in agreement with laboratory
experiments. However, the critical Ca is dependent on wettability, viscosity ratio and
heterogeneity, which makes the estimation of the CDC more challenging (LAKE, 1989).

Wang et al. (2019) also calculated the residual saturation as function of a “macro-
scopic” capillary number. They found that for the considered form of macroscopic Ca,
the critical Ca is about 1. This method allows the analysis of the effect of up-scaling Ca
by considering the size of clusters during displacement (GEORGIADIS et al., 2013; ARM-

STRONG et al., 2014).
Imbibition shows a similar trend as drainage in the Snwr − Ca relationship. As Ca

increases, the residual saturation of nonwetting fluid decreases (HAZLETT; CHEN; SOLL,
1998).

Nguyen et al. (2006) used a pore-network model to analyze the effect of displacement
rate, contact angle and pore geometry on residual saturation during imbibition. At low
Ca, snap-off events are visualized leading to more trapping and higher Snwr. At high
displacement rates, snap-off is suppressed and lower residual saturation is achieved. The
results also showed that the effect of Ca is sensitive to pore-throat aspect ratio and pore
shape. This proves that heterogeneity is an important factor on residual saturation and
critical Ca for imbibition.

Other forms of evaluating the effect Ca on residual saturation during imbibition
were studied. Nilsson et al. (2013) carried out imbibition experiments in micromodels,
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and varied Ca by changing flow rate and interfacial tension between fluids. Both methods
show that with higher Ca tends to decrease Snwr. Khishvand, Akbarabadi and Piri (2016)
conducted drainage-imbibition cycles on rock samples and found that as capillary number
increases, imbibition produces smaller trapped oil globules, i.e., the volume of individual
trapped oil globules decreased at higher flow rates, resulting in lower residual saturation.
Critical Ca is found to be between 10−6 and 10−5.

Ansarinasab and Jamialahmadi (2017) run imbibition simulations with a LB model
in a 2D heterogeneous model created by Yiotis et al. (2007). They found that increasing
Ca leads to an increase in residual saturations. This is a different trend than those
observed in previous works. Difference in structure and size of porous media, density of
phases and a high Ca range considered (10−2 < Ca < 10−1) are the main reasons for
observed discrepancies.

Recently, Pereira (2019) used a “gray-scale” LB model to run drainage and imbi-
bition displacements in a 3D heterogeneous model constructed from CT scans of a rock
sample with low porosity (0.11) and permeability (57.03 mD). Wettability was changed to
simulate cases of wetting and nonwetting invasion and one case with neutral wettability.
It was found that residual saturation at breakthrough decreases with increasing Ca for all
cases. However, in neutral wetting, at the highest capillary number the residual saturation
is significantly higher. At a higher capillary number the invading fluid tends to take the
most direct path to the outlet (similar to viscous fingering). It does not invade as much
of the porous medium as with slightly lower capillary numbers. The flood at the lower
Ca ensembles a capillary fingering pattern – a meandering path ensues and consequently
reduces residual saturation.

In drainage, the capillary pressure head required for the nonwetting fluid to invade
is much larger than for the neutral wetting case, resulting in higher residual saturation.
For a wetting fluid invasion, the residual saturation decreases more than other cases. The
fluid tends to wet as many as the accessible pores as possible, yielding more efficient sweep
of the porous domain. However, the residual saturation is still high indicating a highly
disconnected pore structure and very low permeability (PEREIRA, 2019).

An important point observed was the time required to reach maximum residual
saturation for the three different wetting cases. The longest time corresponds to the
wetting invading fluid and indicates that the flood is mainly driven by preference of wetting
fluid to be adsorbed to the substrate. The neutral wetting case took the shortest time,
indicating the flow was driven by pressure difference between fluids. In the nonwetting
invading fluid case, the flow is also driven by pressure difference, but it is inhibited by the
additional capillary pressure required by the nonwetting fluid to enter pores. However,
since nonwetting fluid tends to take the most direct path to the outlet, it takes a shorter
time to reach breakthrough than the wetting invading flood (PEREIRA, 2019).

2.3.3 Conclusions

The discussion showed relevant results and contributions for the analysis of the effect
of capillary number on immiscible displacement and residual saturation. Table 1 gives a
summary of the main conclusions from the referenced works. It is interesting to observe
the diversity of parameters and methods used. The conclusions are also different mainly
because of different times of measure (breakthrough or quasi-steady state). At a quasi-
steady state, increase of capillary number appears to have a positive effect on recovery
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efficiency. However, this effect can be sensitive to other parameters such as viscosity ratio,
wettabillity, and more important, the medium geometry and heterogeneity. Natural rocks
present complex geometries with a large range of pore sizes and shapes which can change
in the extension of the rock. Moreover, they can present surface roughness, contamination,
and heterogeneous wettabillity conditions that can even change with time. Thus, for any
new rock to be explored, it is necessary to evaluate its extraction efficiency taking into
account the specific characteristics of the rock and the fluids contained therein. All theses
aspects introduce challenges for the real evaluation of residual saturation, which is the
main objective of the present work.



54Table 1: Main parameters and conclusions of referenced works. BT = breakthrough; QS = quasi-steady; UNK = unknown.

Reference Method Dim Geometry Ca M θ Time Conclusion

Lenormand, Touboul
and Zarcone (1988)

pore network model 2D homogeneous 10−11 − 100 2× 10−5 and 79 UNK BT
Ca effect on Sw

depends on M

Cottin, Bodiguel and
Colin (2010)

MF experiments 3D homogeneous 10−7 − 10−2 0.7, 3.4 and 10 110◦−160◦ QS
Swi decreases with

increasing Ca

Zhang et al. (2011) MF experiments 3D homogeneous 10−6 − 10−1 10−2 − 102 105◦−128◦ QS
Swi decreases with

increasing Ca

Liu et al. (2013) LBM 2D homogeneous 9× 10−5 − 9× 10−3 0.05 120◦ BT
Sw decreases with
increasing Ca

Huang, Huang and
Lu (2014)

LBM 2D heterogeneous 10−3 − 103 10−2 − 102.7 180◦ BT
Sw decreases with
increasing Ca

Tsuji, Jiang and
Christensen (2016)

LBM 3D heterogeneous 10−5 − 10−1 10−1 − 101 180◦ BT
Sw increases with
increasing Ca

Huang, Xiao and Yin
(2017)

LBM 3D
nearly

homogeneous
1.5×10−4−2×10−1 1 and 10 120◦ QS

Swi decreases with
increasing Ca

Jiang et al. (2018) MF experiments 3D heterogeneous 5× 10−9 − 10−7 0.03 and 0.3 UNK QS
Swi decreases with

decreasing Ca

Xu et al. (2018) LBM 3D heterogeneous 2×10−5−3.5×10−4 UNK 150◦ QS
Swi decreases with

increasing Ca

Borgman et al.
(2019)

pore network model
and MF experiments

2D
nearly

homogeneous
2×10−6−3.7×10−5 0.018 163◦ BT

Sw decreases with
decreasing Ca

Hejazi, Shah and
Pini (2019)

natural rocks
experiments

3D heterogeneous 10−8 − 10−7 0.02 UNK QS
Swi decreases with

increasing Ca

Patel, Kuipers and
Peters (2019)

VOF 3D heterogeneous 0.01− 1 20 120◦ QS
Swi decreases with

increasing Ca

Pereira (2019) LBM 3D heterogeneous 5× 10−6 − 5× 10−4 1 UNK BT
Sw decreases with
increasing Ca

Wang et al. (2019) VOF 3D heterogeneous 10−8 − 10−2 0.08 170◦ QS
Swi decreases with

increasing Ca

Zhao and Mohanty
(2019)

natural rocks and
MF experiments

3D heterogeneous 5×10−9−2.4×10−7 10−3 − 0.04 150◦ BT
Ca effect on Sw

depends on geometry
Source: elaborated by the author.
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3 METHODOLOGY

In this chapter, the methods and steps applied to carry out the computational
simulations of drainage in digital rock models using LBM are explained. In the first
section, the novel multiphase Lattice Boltzmann model used for simulations is explained.
Section two shows the relevant characteristics of the different digital models used to
simulate the porous medium, including 2D homogeneous and heterogeneous models and
the 3D natural rock models. Section three describes the setup of simulations, i.e., initial
and boundary conditions, computational domain, fluid parameters and simulation process.

3.1 TWO-PHASE LATTICE BOLTZMANN MODEL

A three-dimensional color gradient multicomponent LB model is used based on the
work of Spencer, Halliday and Care (2010) and Spencer, Halliday and Care (2011). The
present work introduces a new feature for this model by including a two-relaxation time
scheme for the collision operator. The method will be explained in a succinct version since
the mathematical description is too extensive to be shown in this work. The references
following each part provide further details.

In this model, two fluids, designated as red and blue, which occupy lattice link i at
nodal position x and time t are described by two colors distribution functions Ri and Bi,
respectively, and

fi(x, t) = Ri(x, t) + Bi(x, t). (3.1)

The nodal density and momentum of the red and blue fluids are calculated with
Equation 2.7 using each individual distribution function (Ri and Bi). Density and velocity
of the single sum lattice fluid are defined by Equation 2.7 using distribution fi.

As the fluids mix in an interfacial region, they define a single mixed fluid which
evolves according to evolution equation (Equation 2.9). To distinguish individual fluids
in a lattice node, a fluid component index, or phase field, is used:

ρN(x, t) ≡
ρR(x, t)− ρB(x, t)

ρR(x, t) + ρB(x, t)
, −1 < ρN(x, t) < 1, (3.2)

where surfaces of constant value define the interface, with the surface ρN = 0 taken
to define its center (HALLIDAY; HOLLIS; CARE, 2007). In practical terms, this is equivalent
to calculate the concentration of each fluid in a lattice node. By distinguishing the fluids
in each lattice node with the phase field, it is possible to define which parameters (density
and viscosity) will be used to apply the collision rule in each lattice node.

The two-relaxation time scheme of Ginzburg (2005) is implemented for the collision
operator. This model relays on the concept of decomposition of the distribution function
in a symmetric (fs) and an antisymmetric (fa) part. Then, the collision is performed
using a BGK operator (Equation 2.11) for each part:

Ωi =
fs,i − f eq

s,i

τs
+

fa,i − f eq
a,i

τa
, (3.3)

where f eq
s,i and f eq

a,i are the equilibrium distribution for the symmetric and antisymmetric
part, respectively, each part having an individual method for calculation (GINZBURG,
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2005). In this model, viscosity is calculated by Equation 2.16 using the relaxation time
of the symmetric part τs for each fluid. The τa is a function of τs in order to vanish high
order spurious terms.

An additional force term is included in the collision operator to apply the interface
dynamics, and it is formulated based on a viscous stress perturbation that promotes a
Laplace pressure step between the fluids in the interfacial region (SPENCER; HALLIDAY;
CARE, 2010). In Einstein notation, the force term is given by:

Fi = ρwi

(

α|∇wr|

c2sτ

)

(nmnn − δmn)(ci,mci,n − c2sδmn), (3.4)

where wi is a directional-dependent weight as shown in Equation 2.12 for the D2Q19
lattice, ∇wr is the gradient of red fluid saturation for each direction of a lattice node, n
is the unit vector normal to the interface between phases, ci is the lattice velocity, δmn is
the Kronecker delta, and α is a coefficient proportional to the emerging interfacial tension
between phases. Using this force term, the interfacial tension will be given by

σ = 2ρc2sα. (3.5)

A segregation rule is included in the particle evolution process in a post-collision,
pre-streaming step, and is defined by the following recolouring scheme:

Ri(x+ ci, t+ 1) =
ρR

ρR + ρB
fi(x, t+ 1) + βwi

ρRρB
(ρR + ρB)2

nmci,m, (3.6)

Bi(x+ ci, t+ 1) =
ρB

ρR + ρB
fi(x, t+ 1)− βwi

ρRρB
(ρR + ρB)2

nmci,m, (3.7)

where ρR and ρB are, respectively, the red and blue fluid densities at a node x in timestep
t, and β is a recolouring coefficient that controls the interface width. Together with α,
they control the interface characteristics and their values must be carefully chosen to
ensure simulation stability.

The streaming stage is carried out with a swap algorithm proposed by Mattila et
al. (2007). Its main assets are the possibility of using only one lattice and its ability to
fuse the collision and streaming steps at the implementation level by exploiting only a
few temporal variables. The lattice nodes in the domain are iterated starting from the
node having the smallest enumeration number up to the node with the largest number.
For each fluid node, the distribution values with defined velocity index are exchanged
with the appropriate distribution values of the neighbouring node. Immediately after
the swapping of distribution values, the collision procedure is performed for the node in
question. Special attention must be given to the locations of distribution values after the
collision and for initialization of boundary nodes (MATTILA et al., 2007, 2008).

To implement wettability on a solid wall, it is assumed that the solid wall is a
mixture of two fluids with constant proportions, i.e., solid nodes have a certain value of
the phase field ρN . This is controlled by a parameter called concentration of red fluid at
the wall wwr. If the contact angle to the red component is θr, then

wwr =
cos θr − 1

2
, 0 ≤ wwr ≤ 1. (3.8)

If θr = 180, then wwr is 0 and ρN at the wall is -1, and the red fluid will be strongly
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nonwetting. If wwr = 1, the red fluid is strongly wetting, and for intermediate values the
wetting condition is mixed.

Finally, the algorithm steps used in the simulation consist in:

(i) create the distribution functions Ri and Bi in the fluid nodes of the computational
domain according to the initial saturation condition chosen;

(ii) apply the boundary conditions, including wetting condition on solid walls;

(iii) collide according to the two-relaxation time collision operator with the interfacial
forcing term;

(iv) determine and apply the segregation rule;

(v) swap the distribution values with the appropriate distribution values of the neigh-
bouring nodes (streaming).

It should be noted that it is difficult to consider a significant density contrast of two-
phase fluids using the present model, and such conditions require the use of other more
appropriate models, such as Shan-Chen and free-energy models (SPENCER; HALLIDAY;

CARE, 2010).
Regarding the boundary conditions, four different types are used in the simulations:

periodic, half-way bounce-back, constant inlet velocity and convective condition. The
first two are simply implemented in the algorithm by properly allocation of distribution
functions during the streaming step (see subsection 2.2.3).

The constant velocity boundary condition is based on the work of Zou and He
(1997), where the mass and momentum equations (Equation 2.7) are used to calculate
the distribution functions specified velocity value and direction.

The convective boundary condition proposed by Lou, Guo and Shi (2013) is also
used, where a zero velocity gradient is constrained at the boundary. In the x axis:

∂tfi + ux∂xfi = 0, (3.9)

or in the discrete form

fi(x, t+ 1) =
fi(x, t) + uxfi(x+∆x, t+ 1)

1 + ux

. (3.10)

To define the velocity ux it is necessary to take the average value of the velocities
in the x direction on nodes located in the first and second neighbouring layers. This
condition is used at the outlet of the computational domain, and provides a stable and
physically accurate option for the simulation.

The application of those boundary conditions in the computational domain is further
explained in section 3.3.

3.2 DIGITAL POROUS MEDIA MODELS

The LB multiphase model is used to simulate drainage in 2D and 3D models. For
2D models, two types are used (Figure 15). The first is a homogeneous model manually
produced consisted of circular grains of diameter equal to 20 pixels, spatially distributed
to obtain throats with 5 pixels of width and pores in the order of 10 pixels. The image
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has 4002 pixels. Porosity and absolute permeability, calculated with a single phase LB
model, are 42.0% and 0.84 Darcy, respectively.

The second 2D model consists of a slice of a micro-CT image from a sandpack called
LV60A (IMPERIAL COLLEGE CONSORTIUM ON PORE-SCALE MODELLING, 2014b), which
is also used for the 3D models. The physical size of the image is 4500.92 µm2 and the
digital image size is 4502 pixels, resulting in a scale of 10.002 µm/pixel. The absolute
porosity is obtained from ImageJ software which shows a value of 37.5%. The calculated
absolute permeability is 4.04 Darcy.

Figure 15: 2D porous media models: (a) homogeneous produced model and (b) slice of
the sandpack LV60A.

(a) (b)

Source: elaborated by the author.

The 3D digital models are obtained from raw files of micro-CT images of a Berea
sandstone (IMPERIAL COLLEGE CONSORTIUM ON PORE-SCALE MODELLING, 2014a) and
the sandpack LV60A (IMPERIAL COLLEGE CONSORTIUM ON PORE-SCALE MODELLING,
2014b), for which experimental data of porosity, intrinsic and relative permeabilities and
residual saturation are available (RAEINI; BLUNT; BIJELJIC, 2014; MOSTAGHIMI; BLUNT;

BIJELJIC, 2013; DONG; BLUNT, 2009; TALABI et al., 2008; RAEINI; BIJELJIC; BLUNT, 2015).
Figure 16 shows the 3D representation of the rock models. Berea sandstone is a standard
material consisting of quartz with minor amounts of feldspar, dolomite, and clays, which
is also widely used for core analysis due to its fine-grained, well-sorted characteristics with
closely spaced planar bedding (DONG; BLUNT, 2009). The sandpack LV60A (Leavenseat
LV 60) is an industrial sand consisted mainly of quartz and presents broader grain size
distribution with more large grains (SAYARI, 2009).

The physical size of the Berea image is 21383 µm3, and the digital image size is
4003 voxels, resulting in a scale of 5.345 µm/voxel. The LV60A image has a physical size
of 4500.93 µm3 and a digital size of 4503 voxels, resulting in a scale of 10.002 µm/voxel.
Both images were sliced to obtain models with 3003 voxels.

The raw images of the samples are treated using ImageJ software, where a segmen-
tation process is carried out to find an absolute porosity of 19.8% and 39.4%, respectively
for Berea and LV60A. This is similar to porosity levels found by Raeini, Bijeljic and Blunt
(2015) and Mostaghimi, Blunt and Bijeljic (2013). The raw files are then used as input
for the LBM simulations. Single phase displacements are carried out to obtain the abso-
lute permeability of each sample, resulting in 1.55 Darcy and 36.58 Darcy for Berea and
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most robust and stable case which can be studied.
Individual values of viscosities, densities and interfacial tension were chosen con-

sidering three criteria: to achieve the desired capillary number, to assure the stability
of simulations and to obtain practical time for simulations. If low values of interfacial
tension were chosen, for example, the inlet velocity should be lower and total time of
simulation would be impracticable. A low value of viscosity would increase the required
inlet velocity, however simulation stability would be jeopardized. Several simulations were
run to find the best match for the three parameters. Final values of viscosities, densities
and interfacial tension were defined, in lattice units, as 0.133 lu2/ts, 1 mu/lu3 and 0.0667
mu/ts2, respectively. This is obtained by setting τs = 0.9, α = 0.1 and β = 0.9.

The contact angle is set to 180◦ (wwr = 0), characterizing strong nonwetting con-
dition of red fluid in relation to the solid. Different wetting conditions can affect the
displacement process and change the residual saturation during drainage. Thus, only one
contact angle is considered to focus on the effect of Ca.

Capillary number is varied by setting different values for constant velocity at the in-
let. The continuous displacement method (CHATZIS; MORROW, 1984; MORROW; CHATZIS;

TABER, 1988) is used since it is a more practical method for the extensive simulations
considered in this work. Each simulation is carried out individually, with same initial
conditions and with fixed capillary number calculated using the inlet velocity.

Six individual drainage processes with different Ca are carried out in each porous
medium. The Ca range lies between 5× 10−6 to 1× 10−3. Comparing these values with
referenced works in the Ca−M diagram, the lowest Ca values are in the range of capillary
fingering, where capillary forces are the main driving force, and the highest Ca values are
in the transition zone between capillary fingering and stable displacement. Table 3 gives
a summary of the fluid parameters used in the simulations.

Table 3: Fluid parameters used in the simulations in lattice units.

Parameter Value (lattice units)

Densities 1

Viscosities 0.133

Interfacial tension 0.0667

τs 0.9

α 0.1

β 0.9

θr 180◦

wwr 0

uinlet 2.5× 10−6 − 5× 10−4

Ca 5× 10−6 − 1× 10−3

Source: elaborated by the author.

An attempt to simulate higher and lower ranges of Ca was made with 2D porous
models. However, at lower Ca ranges, the time taken by simulation to reach breakthrough
and quasi-steady states is very long because of low velocity, which makes the condition not
feasible. This is even more critical when using 3D porous models. In simulations where
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4 RESULTS AND DISCUSSION

This chapter presents the results of simulations in which the methodology proposed
in the last chapter was applied. It is divided in three sections.

The fist section shows the results of cases usually applied to verify the LB multi-
phase model and its capacity to accurately reproduce wettabillity and capillary effects
and boundary conditions physical similarity.

Section 2 presents the results using the homogeneous and heterogeneous 2D im-
ages. Saturation curves and further results are presented and discussed, comparing with
available results in literature.

Section 3 shows the results of simulations using 3D digital rock models and discusses
the various phenomena observed, including residual saturation effects caused by different
capillary number considered and relative permeability of samples.

4.1 MODEL VERIFICATION

The first case used to verify the proposed LB model is the injection of a nonwetting
fluid through two parallel capillary tubes, a case that is used to assess whether the model
is able to capture capillary effect and reproduce correct displacement behavior. The
lattice domain consists of 200 × 60 nodes and the widths of two capillary tubes are
R1 = 10 and R2 = 20 lattices. pc1 and pc2 are the corresponding capillary pressures. A
uniform pressure is imposed at the inlet and at the outlet (pin and pout, respectively).
Initially, the invading nonwetting fluid is located at the entrance of the domain. The
displacement behavior is determined by the pressure difference between the inlet and the
outlet, ∆p = pin − pout, and the capillary pressures. The simulation parameters are set,
in lattice units, as ρw = ρnw = 1.0, νw = νnw = 1/3, σ = 0.0667 and θnw = 180◦. α
and β values are 0.1 and 0.9, respectively. With those parameters, the capillary pressures
can be calculated by Young-Laplace equation (2.3), and their values, in lattice units, are
pc1 = 0.01333 and pc2 = 0.00667. Three different pressure differences are simulated in this
test case: ∆p = 0.005, 0.01 and 0.015. The corresponding simulation results are shown
in Figure 18, where red fluid is nonwetting and blue fluid is wetting. When ∆p is smaller
than pc2, the invading fluid cannot enter both capillary tubes. When ∆p is between pc2
and pc1, the nonwetting fluid only flows into the larger capillary tube. When the pressure
difference is increased to ∆p > pc1, the invading fluid flows into both capillary tubes, but
the displacement is much faster in the larger capillary tube.

A second test is conducted to check the ability of the model in relating the pressure
difference, radius of curvature and interfacial tension in the situation that a droplet of
one fluid is immersed in another fluid. The pressure difference in this case is given by
Laplace law for a 2D droplet:

∆p =
σ

r
, (4.1)

where r is the droplet radius.
Initially, a square droplet of nonwetting fluid is created in the center of a 100× 100

lu2 system filled with wetting fluid. All boundaries are periodic. Density and viscosity
ratios are 1 and β = 0.9. The system is left to relax until a steady circle of nonwetting fluid
appears. The pressure difference between fluids and the droplet diameter are measured.
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Figure 18: Injection of nonwetting fluid into two parallel capillary tubes: (a)
∆p = 0.005, (b) ∆p = 0.01 and (c) ∆p = 0.015.

(a)

(b)

(c)

Source: elaborated by the author.

It should be noted that in the present model, at a site predominately occupied by one of
the fluids, there can be a small amount of dissolved component of another fluid. In the
present case, a threshold is applied at Snw = 0.5 to define the interface between fluids.
Furthermore, due to the discrete characteristic of the method, the droplet diameter is
determined in integer values. Thus, small variations of the droplet radius caused by
different interfacial forces, for example, are difficult to capture.

The results of tests considering different initial droplet sizes and different α are
presented in Figure 19. The pressure difference inside and outside of the droplet is pro-
portional to the reciprocal of the droplet radius for all α values as expected by Laplace law.
It is also clear that the slope of fitted lines (interfacial tension) increases for increasing α.
This is expected since the interfacial tension is proportional to α as shown in Equation
3.5. The solid lines represent linear fitting curves with the coefficient of determination
R2 > 0.998 for all cases.

A third test is used to verify the wettability conditions of the model by evaluating
the equilibrium contact angle of a 2D droplet placed on a solid wall. A 200 × 100 lu2

lattice domain is created where a 40 × 40 lu2 square of red fluid is placed in contact
with the bottom solid boundary, while the rest of the domain is filled with blue fluid.
Periodic boundary condition is imposed at top, left and right boundaries. Density ratio
is 1.0, τred = τblue = 0.9, α = 0.1 and β = 0.9. Simulation is carried out until steady
state. As shown in Figure 20, different contact angles can be achieved by adjusting the
concentration of red fluid at the wall wwr according to Equation 3.8. In simulations with
porous media, wwr = 0 resulting in strongly nonwetting condition as shown in Figure
20(a).

The last test is carried out to verify qualitatively the implemented convective bound-
ary condition based on Lou, Guo and Shi (2013). A droplet of nonwetting fluid is created
in a channel with length L = 400 and height H = 80 lattice nodes. Solid nodes are
created at top and bottom boundaries, Neumann constant velocity boundary condition
is imposed at the left inlet and the convective boundary condition at the right outlet.
Then, the droplet is moved by imposing a constant and low velocity of wetting fluid at
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Figure 19: Relationship between pressure difference between fluids and droplet radius
for the bubble tests.
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Figure 20: Droplet on a solid surface with different values of concentration of red fluid
at the wall: wwr = 0.0 (a), 0.25 (b), 0.5 (c), 0.75 (d) and 1.0 (e).

(a) (b) (c)

(d) (e)

Source: elaborated by the author.

the channel inlet. The droplet moves toward the outlet and leaves the channel. Figure
21 shows the resulting phenomenon. Similar result is demonstrated by Lou, Guo and
Shi (2013), who compared the physical behavior with other types of outflow boundary
condition, and showed that the convective boundary condition gives a more reasonable
prediction of interface behavior.

4.2 RESULTS WITH 2D POROUS MODELS

This section presents and discuss the results of drainage displacements in the 2D
porous models shown in section 3.2, starting with the homogeneous model manually
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Figure 21: Snapshots of the droplet with the outlet convective boundary condition at
different times.

(a) (b) (c) (d) (e)

Source: elaborated by the author.

produced and following the heterogeneous model consisted of a slice of the LV60A digital
rock model. Parameters and setup of simulations are defined in section 3.3.

4.2.1 Drainage in the homogeneous model

The first case analyzed is the drainage in the homogeneous 2D model manually
produced. Figure 22 shows snapshots of the displacement process with Ca = 5.0 × 10−5

at different times, where red is the nonwetting fluid, blue is the wetting fluid and gray
represents the solid grains. The nonwetting fluid starts to enter the domain from inlet
and invades the narrow spaces occupied by the wetting fluid, creating the first fingers by
selecting paths where required capillary pressure is lower. As time increases, more space is
occupied by the nonwetting fluid, while part of the wetting fluid leaves the porous medium
through the outlet and other part is trapped inside the pores. The fingers grow towards
the outlet of the domain reaching the breakthrough (BT). After BT, the nonwetting fluid
invades pores in other areas creating new fingers until final quasi-steady (QS) state is
reached. This aspect is not exactly the same in cases with different Ca.

Figure 22: Snapshots of drainage in the homogeneous 2D model with Ca = 5.0× 10−5 at
different timesteps:(a) 20,0000, (b) 1,640,000, (c) 2,670,000 and (d) 4,560,000.

(a) (b) (c) (d)

Source: elaborated by the author.

In Figure 23, snapshots at half breakthrough time, breakthrough and quasi-steady
state of four simulated cases are compared. Two displacement patterns characterized by
Lenormand, Touboul and Zarcone (1988) are found, which are dependent on the value of
Ca. When Ca is high (Figures 23(a)-(c)), stable displacement is achieved due to higher
inertial and viscous forces of the invading fluid. The nonwetting fluid has a uniform
frontal flow, sweeping a broad area the porous medium at the same time and leaving a
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low amount of trapped wetting fluid behind the nonwetting fluid front. There is a small
difference on saturation condition between BT and QS states.

An intermediate crossover pattern is observed when Ca = 5.0× 10−4 (Figure 23(d)-
(f)), where it is not possible to determine between capillary fingering and stable displace-
ment. The displacement is nearly uniform and a few fingers grow ahead of the nonwetting
fluid front, leading to a higher amount of trapped wetting fluid than in stable displace-
ment.

Capillary fingering occurs when Ca decreases (Figures 23(g)-(i) and (j)-(l)). Nonwet-
ting fluid flows through preferential paths which provide less resistance to flow, creating
fingers that spread across the network and grow in all directions. After reaching BT, the
nonwetting fluid slowly invades further pores and saturation increases imperceptible until
simulation reaches QS state. There is practically no difference between BT and QS state.

Although Figures 23(g)-(i) and (j)-(l) are characterized as capillary fingering because
of similar invasion mechanisms during drainage, the final conditions are very different.
This occurs because of the velocity of pore filling events and the geometry of the medium,
which affect the trapping mechanisms during the process and hence the residual wetting
saturation. In the following, this phenomenon is explained in more details.

Viscous fingering is not observed in present cases since viscosity ratio is 1. As
seen in section 2.3, the viscosity of wetting fluid should be higher than the viscosity of
nonwetting fluid to achieve viscous fingering. Furthermore, when creating the model of a
homogeneous porous medium, Lenormand, Touboul and Zarcone (1988) produced small
geometric perturbations to facilitate the development of preferential paths for the fluid.
In the present case, the homogeneous model was created with regular sizes of pores and
throats. However, the periodic condition that connects the upper and lower boundaries
provide a small perturbation since circular grains at those boundaries are not similar as
the rest of the geometry. This is similar to what occurs in microfluidic experiments where
periodic boundaries are difficult to implement and the model solid boundaries always
represent a perturbation in the medium.

Figure 24 shows the relationship between Snw and normalized frontal location of
nonwetting fluid during drainage in the homogeneous model. This refers to the distance
from the inlet to the most deeply penetrated nonwetting fluid in the porous medium. The
color of each curve represents the pattern observed in the snapshots: stable displacement
is represented in blue, crossover in green and capillary fingering in red.

In stable displacement and crossover patterns, the frontal location of nonwetting
fluid increases in a uniform step-like behavior, which indicates a linear increase of satura-
tion and position of frontal fingers with time. The steps occur due to the identical shape
of the grains uniformly spaced in the medium, and in the case of the crossover pattern
they occur also due to localized capillary fingering mechanisms.

Capillary fingering curves present also step-like behavior, but the steps are larger,
suggesting that the saturation of the nonwetting phase increases considerable while the
most advanced finger remains stationary. This is caused by side or backward movements
of the nonwetting phase, which increases the Snw behind the front line, and reflects the
domination of localized pore-scale capillary forces in this fingering regime. Furthermore,
the effect of different flow patterns of Figures 23(g)-(i) caused by the pore filling events
can be seen in Figure 24. The capillary fingering curves with a more uniform step-like
behavior are relative to the lowest Ca range, while the cases with intermediate Ca present
more disordered step-like behavior and lower Snw for the same value of the frontal location.

The step-like behavior of capillary fingering pattern in Figure 24 is better explained
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Figure 23: Snapshots of drainage in the homogeneous 2D model at half breakthrough
time, breakthrough and quasi-steady state with four different Ca: (a)-(c) 1.0× 10−3,

(d)-(f) 5.0× 10−4, (g)-(i) 1.0× 10−4 and (j)-(l) 1.0× 10−5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Source: elaborated by the author.

by looking into the pore-scale events during drainage. Figure 25 shows snapshots of pore
filling events at the most advanced finger during drainage with Ca = 5.0 × 10−5. The
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Figure 24: Relationship between normalized frontal location and saturation of
nonwetting fluid for drainage in the homogeneous 2D model. The color of each curve

represents the pattern observed in the snapshots.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

normalized frontal location of nonwetting fluid

S
n
w

1× 10−3

5× 10−4

1× 10−4

5× 10−5

1× 10−5

5× 10−6

Source: elaborated by the author.

timesteps in which the snapshots are taken are around the same timestep of Figure 22(c),
where the finger is visible. The location of the events is relative to the considerable
increase in Snw curve at about 0.65 of the normalized frontal location for the capillary
fingering curves in Figure 24. Two Haines jumps are observed: the first forward and the
second backward.

During the Haines jumps, the nonwetting fluid front at the entrance of a thin throat
reaches the required pressure to enter the throat, and moves slowly until it finds the throat
exit. At this point, the fluid reaches the entrance of a pore, which has a bigger size and
lower required capillary pressure. This causes the nonwetting fluid to increase its velocity,
immediately invading the pore, while an instantaneous drop in the concentrated pressure
occurs. The movement stops once the nonwetting fluid finds other throats at the exit of
the pore (HAINES, 1930; SUN; SANTAMARINA, 2019).

To demonstrate the relative high velocity of the pore filling event, the time gap
between each snapshot was measured. For example, the time gap between Figures 25(c)
and (d) is around 20 times higher than between Figures 25(e) and (f). This shows that
the pore filling events and migration of fingers are governed by local flow dynamics and
that inertial effects at pore-scale might play an important role in the capillary fingering
regime (TSUJI; JIANG; CHRISTENSEN, 2016).

A subtle imbibition in surrounding pores occurs during the Haines jumps due to
the fluid redistribution. Although this imbibition is almost negligible at the pore-scale,
it happens in various pores across the medium at the same time. One Haines jump can
affect the fluid distribution in pores located far from where it occurs, and the combined
effect causes significant trapping of wetting fluid. Comparing the location of this finger
in Figures 22(c) and (d), it is possible to observe that the finger stops to move forward
after the backward Haines jump. It is surpassed by fingers growing in other areas. This
is probably caused by subsequent fluid redistribution, i.e., Haines jumps occurring in



70

Figure 25: Snapshots of pore filling events during drainage in the homogeneous 2D
model with Ca = 5.0× 10−5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Source: elaborated by the author.

surrounding areas redistribute the fluid in such way that the pressure in the finger front
does not reach the required value to enter further throats. Furthermore, as shown Figure
25(h), the wetting fluid is trapped behind this nonwetting fluid finger and remains until
quasi-steady state is reached.

The increase of nonwetting fluid saturation with time is shown in Figure 26, where
timestep is normalized. The red markers represent the time when breakthrough occurs
for each case. In some cases, the rate of increase in Snw decreases considerably after BT.
As shown in Figure 23, the nonwetting fluid creates fingers that grow towards the outlet
creating preferential paths. Considerable part of the fluid flows through those paths after
BT avoiding enter further pores and throats because a higher pressure is necessary. The
increase in Snw at this stage is due to the slow invasion in other areas of the porous
medium which are not connected with the preferential path.

In some cases the QS state is reached right after BT. In this 2D model, individual
stop criterion for each case had to be defined to achieve consistent results. The stop
criterion is defined in the present work as the relative difference of Snw measured each 100
timesteps. At high Ca, if the stop criterion was low, the simulation would run considerable
time after breakthrough. The nonwetting fluid would keep invading further pores by the
continuously increase in pressure, reaching higher values of Snw. However, simulations
could diverge because of high density ratios (ρR/ρB > 10) related to the increase in
pressure.

At low Ca, a high stop criterion would inhibit the simulation to reach breakthrough
because of the low invasion rate. Furthermore, if stop criterion is too low, simulations
would take a long time to finish but high values of Snw could be achieved. This is the
reason that final state in present simulations is called quasi-steady state and that several
works referenced in section 2.3 use only the breakthrough point to evaluate the saturation
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Figure 26: Nonwetting fluid saturation as a function of normalized timestep during
drainage in the homogeneous 2D model. The red marker indicates the breakthrough

point.
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during drainage. In the present work, the stop criterion of 2D cases was set after several
trials to assure stability and feasibility of simulations, and to assure that breakthrough
and further quasi-steady states were achieved.

In Figure 27, the total time to reach BT and QS state is plotted in a log-log chart as
a function of Ca. At both moments, the total time of simulation increases considerably as
Ca decreases because of lower velocity of nonwetting fluid invasion. Furthermore, for low
Ca cases, the time to reach QS is practically the same as BT time. As explained earlier,
after BT, the nonwetting fluid avoids to enter further pores and throats and flows mainly
through the preferential path created, and stop criterion is found quickly.

Time in Figure 27 is the lattice timestep in simulations. The equivalent physical
time of the drainage process can be calculated with Equation 2.19 by using usual values
of viscosity and interfacial tension of water (wetting fluid) and oil (nonwetting fluid).
Those values vary considerably between different reservoirs, but the order of magnitude
is usually similar. Therefore, the calculated order of magnitude of the physical time of
the process is about 1 s and 1000 s for the highest and lowest Ca cases, respectively.

Figure 28 shows the wetting fluid saturation at breakthrough and quasi-steady state
as a function of Ca in the 2D homogeneous model. The two cases with the highest Ca
values yield the lowest amount of residual wetting fluid saturation at both BT and QS.
By comparing the snapshots in Figure 23, it is clear that the stable displacement pattern
had a more efficient sweeping effect. The viscous forces of the invading fluid play an
important role in this process.

The cases with Ca = 1.0 × 10−4 and Ca = 5.0 × 10−5 yield a higher Sw at BT
and QS. This is explained by analyzing Figures 22(d) and 23(i). At this Ca range, the
nonwetting fluid creates fingers which grow quickly towards the outlet because of fast pore
filling events. This causes a high amount of trapped wetting fluid behind the finger front.
Furthermore, after the BT, the fingers stop to grow in other directions and nonwetting
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Figure 27: Timestep at breakthrough and quasi-steady state as a function of the Ca for
drainage in the homogeneous 2D model.
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fluid flows mainly through the preferential path created. This results in a high amount
of wetting fluid remaining in the outlet area.

Figure 28: Wetting fluid saturation as a function of Ca at breakthrough and
quasi-steady state for drainage in the homogeneous 2D model.
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The low values of Sw in the cases with Ca = 5.0 × 10−6 and Ca = 1.0 × 10−5

are explained by looking at the pore filling mechanisms during drainage, which produce
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the pattern observed in Figures 23(j)-(l). At this Ca range, the drainage is consisted of
consecutive Haines jumps at low rate. This provides more time for the fluid to redistribute
in the surrounding areas and hence reduces the trapping of wetting fluid. To compare the
velocity of pore filling events, with Ca = 1.0×10−5 the time of each Haines jumps is around
five times longer than with Ca = 5.0 × 10−5. Furthermore, the intrinsic characteristic
of the present homogeneous model, with similar sizes of grains uniformly distributed and
without dead-end pores, provides a better condition for a uniform redistribution of the
fluid during the pore filling events. This prevents the trapping of wetting fluid behind
the nonwetting fluid front, which occurs frequently in intermediate Ca cases. However, a
considerable amount of wetting fluid still remains in the outlet area caused by the early
breakthrough of the fingers, resulting in higher residual wetting saturation than with high
Ca values.

4.2.2 Drainage in the heterogeneous model

An example of drainage in the 2D slice of LV60A is illustrated in Figure 29 for the
case with Ca = 5.0 × 10−5 at different timesteps. As the nonwetting fluid invades the
porous medium, the fingers grow by selecting the path with less resistance, i.e., the path
where pores and throats are bigger and yield lower capillary pressure. Furthermore, in this
case the medium is heterogeneous. The geometry of pores and throats is very irregular,
which creates various dead-end pores where fluid gets trapped and do not contribute to
the flow. Those characteristics lead to finger growing in various directions at the same
time, resulting in a higher amount of trapped wetting fluid. This is more clear when
Figures 29 and 22 are compared.

Figure 29: Snapshots of drainage in the LV60A 2D model with Ca = 5.0× 10−5 at
different timesteps:(a) 770,000, (b) 2,300,000, (c) 3,280,000 and (d) 3,610,000.

(a) (b) (c) (d)

Source: elaborated by the author.

In Figure 30, snapshots at half breakthrough time, breakthrough and quasi-steady
state are compared for four simulated cases. In this case, stable displacement at high
Ca is not observed, mainly because of the medium heterogeneity. Dead-end pores and
thin throats break the uniform advance of the flow and causes an unstable displacement,
where the fluid usually selects bigger pores and throats as in capillary fingering, but it
is also capable to flow through the thin throats because of the momentum provided by
viscous forces. This creates larger fingers and leads to higher fluid connectivity as the
fluid continues to invade further areas after BT. By decreasing the Ca, capillary fingering
is achieved where the main characteristic is the selectivity of the fluid for paths with lower
capillary pressure.
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In the snapshots at breakthrough, one clear preferential path through the outlet is
found in all cases, i.e., the fluid flows through the same path with the lowest capillary
pressure despite the difference in flow rate. This is an important characteristic for oil
recovery, specially because Ca ranges are usually lower in typical reservoirs. If the prefer-
ential paths of a reservoir are identified, it would be possible to decide the location of the
extraction wells that would yield lower fluid trapping. However, the real process is much
more complex and must be verified with subsequent imbibition and drainage processes in
3D models considering the importance of the dimensionality and of a reliable REV.

The cases with higher Ca show less trapped wetting fluid at QS state. Big clusters
of wetting fluid are found in the same areas in all cases because of dead-end pores. For
example, near the inlet, where a big cluster remains trapped at QS state even in high Ca
cases.

Figure 31 shows the relationship between normalized frontal location of nonwetting
fluid and Snw during drainage. The unstable displacement is represented in green and
capillary fingering in red. In unstable displacement, the frontal location of nonwetting
fluid increases smoothly with a few instabilities at some points caused by local capillary
fingering mechanisms. As in the homogeneous model, capillary fingering presents a step-
like behavior, suggesting side or backward movements of the nonwetting phase while the
most advanced finger remains at the same location. However, the steps are not regular
as in the homogeneous model. When the fluid finds an obstruction provided by dead-
end pores or thin throats, the saturation increases constantly until a new path is found.
This is highly dependent on the geometry of pores and throats, which in this case is
very irregular compared to the homogeneous model. Furthermore, the subtle increases in
Snw occur nearly at the same location in all cases of unstable displacement and capillary
fingering regimes, which confirms the presence of a preferential path even at different Ca.

Figure 32 shows snapshots of a fluid’s selectivity event during drainage with Ca =
5.0×10−5. The timesteps in which the snapshots are taken are around the same timestep
of Figure 29(b), and the event is occurring in the second most advanced finger. This
location is relative to the step at about 0.57 of the normalized frontal location curve for
the capillary fingering case in Figure 31. The step occurs because the most advanced
finger is blocked while the events are happening in the second most advanced finger.

In the beginning, two fronts of the nonwetting fluid are observed (Figure 32(a)).
The front A is obstructed by a thin throat while front B is invading two throats. The
first movement observed (Figure 32(b)) is the breakthrough of front A while front B
selects a preferential throat to flow, enters a dead-end pore and is disconnected front the
main flow. In the next moment, front A moves in two directions, backward and forward,
to the entrance of two opposite pores (Figure 32(c)). The backward pore has a larger
size entrance, which would provide less resistance. However, when front A reaches the
entrance of the forward pore, it finds a path with lower required capillary pressure and
moves towards this pore (Figure 32(d)). Part of the fluid that is invading the backward
throat moves to the opposite side accompanying the flow. This occurs because the pore
in the backward direction is a dead-end pore which its only exit is already filled by
nonwetting fluid. This shows that the fluid’s selectivity is also influenced by surrounding
fluid fronts. The main cause is still the capillary force: the two fronts of nonwetting fluid
pushes the wetting fluid inside the dead-end pore, increasing wetting fluid pressure and
consequently increasing the required capillary pressure. Once front A tries to enter this
pore, it finds a higher resistance and selects the opposite pore.

Front A and B continue to move in the selected direction (Figures 32(e) and (f)).
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Figure 30: Snapshots of drainage in the LV60A slice model at half breakthrough time,
breakthrough and quasi-steady state with four different Ca: (a)-(c) 1.0× 10−3, (d)-(f)

5.0× 10−4, (g)-(i) 1.0× 10−4 and (j)-(l) 1.0× 10−5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Source: elaborated by the author.

However, since front B is disconnected front the main flow, it gets trapped inside a dead-
end pore. The flow behind the front B selects a different path, towards front A (Figure
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Figure 31: Relationship between normalized frontal location and saturation of
nonwetting fluid for drainage in the LV60A slice model. The color of each curve

represents the pattern observed in the snapshots.
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32(g)).
This type of event is frequent during the entire drainage and causes considerable

amount of trapping of nonwetting and wetting fluid inside dead-end pores. It illustrates
how invading fluid selects the direction of migration similar to the phenomena during
drainage in a pore doublet (CHATZIS; DULLIEN, 1983; WOLF; SANTOS; PHILIPPI, 2008),
but in a higher scale and including several pores. Furthermore, in the capillary fingering
regime frequent Haines jumps as those showed in Figure 25 occur, and can be more intense
due to higher pore-throat size ratio.

Figure 32(h) shows the final saturation condition at this location. The flow selected
a different path to move forward. The fluid clusters located in the surrounding areas of
the main path are very disconnected because of the thin throats and dead-end pores.

The increase of nonwetting fluid saturation with time is shown in Figure 33, where
timestep is normalized. In this case, the definition of stop criteria followed the same
considerations as in the homogeneous model. Each case had to be treated individually to
achieve consistent and practical simulations. Although in some cases the rate of increase
of Snw seems high at final timesteps, the QS state is found because of the quick drop
in the rate at the last timesteps. When Ca = 5.0 × 10−5, for example, the QS state is
reached right after BT. Once the nonwetting fluid finds the preferential path, it avoids
enter further pores or throats. The viscous forces are small and do not contribute for
further pore invasion as in higher Ca cases. This causes a subtle decrease in the rate of
increase of saturation after BT and stop criterion is found quickly. At high Ca, the fluid
finds a preferential path faster due to the viscous forces, and BT is reached earlier. The
fluid keeps invading the porous medium and the saturation increases considerable before
reaching QS state.

This characteristic is also shown in Figure 34, where the wetting fluid saturation at
breakthrough and quasi-steady state are plotted as a function of the Ca. The cases with
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sweeps a larger area of the porous medium and Sw at BT is close to saturation at QS state.
The Sw difference between BT and QS state is higher in the heterogeneous medium at
high Ca. The irregular geometry of pores and throats produces an unstable displacement,
where the fluid finds a preferential path and do not sweeps a considerable area of the
medium. This leads to an early BT, with lower wetting fluid saturation. However, due
to the viscous forces the fluid keeps invading further pores, and Sw at QS state is much
lower. This shows the importance of evaluating the quasi-steady state because the effect
of Ca on residual saturation can be different at BT in distinct media.

As in the homogeneous medium, the residual Sw at BT and QS state with Ca =
5.0 × 10−5 and Ca = 1.0 × 10−4 are higher. This is caused by the same effect found in
the homogeneous medium. Faster pore filling events in the capillary regime prevent the
nonwetting fluid to redistribute equally in the pores, leading to a higher amount of trapped
wetting fluid. Lower values of Ca provide more time for fluid to redistribute. Furthermore,
fluid’s selectivity events are also slower in cases with lower Ca, which contributes for a
lower residual wetting saturation. For example, the event illustrated in Figure 32 for the
case with Ca = 5.0 × 10−5 is not similar as in the case with Ca = 1.0 × 10−5. In the
lowest Ca case, by the time that the front A reaches breakthrough in the thin throath,
the nonwetting fluid still did not reach the location of front B. Thus, after breakthrough,
front A selects the backward pore, invading all pore and moving backward instead of
forward as in the case presented in Figure 32.

However, the difference in residual Sw between the low and intermediate Ca ranges
in this case is lower than in the homogeneous medium. The geometry of pores and throats
of the homogeneous model contributes more for the fluid redistribution.

Figure 34: Wetting fluid saturation as a function of the Ca at breakthrough and
quasi-steady state for drainage in the LV60A slice model.
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4.3 RESULTS WITH 3D POROUS ROCK IMAGES

This section presents and discuss the results of drainage in the 3D digital rock
models shown in section 3.2. Parameters and setup of simulations are defined in section
3.3. The same Ca range used for drainage in the 2D models were used in 3D models.
However, the two cases with lowest Ca did not reach breakthrough and quasi-steady
state. The simulation takes a long time because of the relative large porous media used
and low displacement rate. Thus, the results in those cases will be shown at the time
where simulations were stopped, which will be properly indicated.

4.3.1 Drainage in the LV60A rock model

Figure 35 shows snapshots of drainage in the LV60A digital rock model with Ca =
5.0 × 10−5 at different times. Only the nonwetting fluid is represented in red. Although
it is difficult to analyze the flow behavior in the snapshots of 3D models, two aspects can
be seen: the connectivity of the fluid is greater than in the 2D heterogeneous model, and
nonwetting fluid seems to occupy a considerable space of the porous medium. In 3D mod-
els the pores have a higher coordination number, i.e., they are interconnected with several
other pores and the fluid is allowed to flow in various directions at the same time. Thus, a
preferential path through the outlet is not clear, and the fluid creates various fingers that
spread across the porous medium. This shows the importance of dimensionality and of a
reliable representative elementary volume, i.e., the intrinsic characteristic of the geometry
grants the 3D models a more consistent representation of the whole porous media than
2D models.

In Figure 36, snapshots of a slice of the 3D model at half breakthrough time, break-
through and quasi-steady states are compared for the four simulated cases where BT and
QS state were achieved. The cases with high Ca present an unstable displacement. The
fluid is able to sweep a large are of the medium due to the viscous forces. They also play
an important role after BT, since the nonwetting fluid keeps invading further areas and
saturation increases. This is observed comparing Figures 36(b) and (c), for example.

The intermediate Ca are in the capillary fingering regime. One evidence is the lower
connectivity of the fluid even at QS state. The viscous forces are low and do not contribute
for invasion in thin pores and throats. A high amount of wetting fluid is trapped and BT
and QS state are practically similar.

The slice refer to the location where breakthrough occurs in the intermediate Ca
values. The BT in cases with high Ca occurs in a different location. This shows that
opposite to the 2D heterogeneous model, there is not a similar preferential path for un-
stable displacement and capillary fingering. The high connectivity of pores provides more
directions for the fluid to move in the unstable displacement and breakthrough occurs in
a different point.

Although the preferential paths are different between different regimes, they are
still similar within the same regime. This can also be seen in Figure 37, which shows
the relationship between normalized frontal location of nonwetting fluid and Snw during
drainage. As in the 2D slice model of the LV60A rock, the two displacement patterns
observed in the snapshots are represented with different coloured curves. The curves
within each regime exhibit steps in similar locations, which indicates preferential paths
for each Ca range. However, it is more difficult to determine those paths because of the



80

Figure 35: Snapshots of drainage in the LV60A digital rock model with Ca = 5.0× 10−5

at different timesteps:(a) 120,000, (b) 800,000, (c) 1,580,000 and (d) 1,773,200.

(a) (b)

(c) (d)

Source: elaborated by the author.

complexity of the geometry. In this case, the breakthrough point indicates one possible
path, but since the geometry is three-dimensional other paths exist and might be clear
only when QS state is reached. Furthermore, it is not possible to conclude that the
curves within the lowest Ca range present similar steps in similar locations as other in
the capillary regime, since simulations did no reach BT.

In unstable displacement, the frontal location of nonwetting fluid increases more
smoothly, and the small steps occur due local capillary fingering mechanisms. Capillary
fingering presents a disordered step-like behavior due to the increase in nonwetting satu-
ration in several directions while the most advanced finger remains at the same location.
The disordered behavior is due the heterogeneity of the model, which is evident when
Figures 24 and 31 are compared.

The cases in the lower Ca range did not reach breakthrough and the stop point is
indicated with a cross marker. The amount of nonwetting fluid saturation for the same
value of the frontal location is lower than in other Ca ranges. This indicates a possible
lower value of Snw at BT and QS. In the 2D models, the lower Ca cases showed a higher
increase of Snw with frontal location than intermediate Ca cases, and final Snw was also
higher. This might occur also in the 3D models, but in this case the Snw would be lower.

The increase of nonwetting fluid saturation with time is shown in Figure 38, where
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Figure 36: Snapshots of drainage in the LV60A digital rock model at half breakthrough
time, breakthrough and quasi-steady state with four different Ca: (a)-(c) 1.0× 10−3,

(d)-(f) 5.0× 10−4, (g)-(i) 1.0× 10−4 and (j)-(l) 5.0× 10−5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Source: elaborated by the author.

timestep is normalized. In the drainage with 3D porous models, the same stop criterion
was used for all simulations. Opposite to the 2D models, it is not necessary to set different
stop criterion to assure that simulation will achieve breakthrough and quasi-states. The
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Figure 37: Relationship between normalized frontal location and saturation of
nonwetting fluid for drainage in the LV60A digital rock model. The color of each curve
represents the pattern observed in the snapshots, and the cross marker represents the

location where simulation stopped in low Ca cases.
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3D geometries have more interconnected pores that allow a more stable simulation (lower
density ratio during displacement) and that provide several paths for the fluid to reach
breakthrough. However, the total computational time required for simulations is much
higher. This was an obstacle for simulations at low Ca to reach breakthrough.

The simulations in which BT and QS state was reached present a smooth increase
of Snw with time. As in the 2D models, after BT the rate of increase of Snw decreases
considerably. However, in this case, QS state takes longer to be achieved. The high
connectivity of the model allows considerable invasion of nonwetting fluid after BT even
at low Ca.

Total physical time of drainage is lower in 3D cases than in 2D cases. The total
timesteps in the simulations with 2D slice of LV60A rock is three times higher than with
the 3D image for the same values of Ca.

In Figure 34, the wetting fluid saturation at breakthrough and quasi-steady state are
plotted as a function of the Ca. In both BT and QS state moments, the residual saturation
of wetting fluid increases with decreasing Ca. This shows that capillary fingering regime
leads to a higher amount of trapped wetting fluid as also shown in Figure 36. The values
of Sw for the lower Ca range were measured at the moment in which simulations were
stopped. As seen earlier, it is possible that final values are lower, since the increase of
Snw with frontal location of nonwetting fluid is slower.

The difference between the values of Sw at BT and QS state is larger in the high
Ca range. The presence of viscous forces and high pore connectivity leads to an early
breakthrough, but also to a considerable invasion of nonwetting fluid after BT.

The solid and discontinuous lines in the plot represent logarithm fitting curves with
coefficients of determination R2 = 0.99383 and R2 = 0.99274 for breakthrough and quasi-
steady state, respectively. This shows that in this case the effect of Ca in the residual
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Figure 38: Nonwetting fluid saturation as a function of normalized timestep during
drainage in the LV60A digital rock model. The red marker indicates the breakthrough

point.
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saturation might be determined by a logarithm relationship.
Figures 39 and 34 show also the importance of evaluating the residual saturation

at quasi-steady state because the effect of Ca can be different in distinct media. In 3D
models, Snw can increase considerably after BT even in drainage with low Ca.

The residual wetting fluid is illustrated in Figure 40, which shows snapshots at quasi-
steady state in the high and intermediate Ca ranges and at the time in which simulations
were stopped in the lower Ca range. In lower Ca cases a high amount of wetting fluid
remains trapped inside the porous media.

4.3.2 Drainage in Berea rock model

Figure 41 shows snapshots of drainage in the Berea digital rock model with Ca =
5.0×10−5 at different times. Only the nonwetting fluid is represented in red. As shown in
section 3.2, the Berea rock has a lower porosity and permeability compared to the LV60A
rock. This has important effects in the saturation condition during drainage. Comparing
Figures 41 and 35, it is possible to see that in this case the amount of nonwetting fluid is
lower, since a considerable part of the porous medium is consisted of solid grains.

The volume occupied by solid grains decreases the fluid connectivity inside the
porous medium. This can be seen in Figure 42, where snapshots of a slice of the 3D
model at half breakthrough time, breakthrough and quasi-steady states are compared for
the four simulated cases where BT and QS state were achieved. Unstable displacement
occurs in the high Ca cases and capillary fingering regime in the low Ca cases. In the
first regime, the invasion is more efficient and saturation of nonwetting fluid at QS state
is higher. However, the fluid connectivity is low in all cases. The difference between the
regimes is mainly after BT, where the unstable displacement regime leads to fluid invasion
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Figure 39: Wetting fluid saturation as a function of Ca at breakthrough and
quasi-steady state for drainage in the LV60A digital rock model. The solid and
discontinuous lines represent logarithm fitting curves with R2 = 0.99383 and

R2 = 0.99274 for breakthrough and quasi-steady state, respectively.
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in small pores and throats.
In all cases it is not possible to determine the paths through the outlet because the

additional dimension of this model is critical for the flow. In the 3D snapshots of Figure
41 it is possible to see the points where breakthrough occur. The flow in this model is
more affected by side and backward movements, and if preferential paths exist it will
necessarily consist of tortuous ways toward the outlet.

Figure 43 shows the relationship between normalized frontal location of nonwetting
fluid and Snw during drainage. As in the LV60A rock, the two displacement patterns
observed in the snapshots are represented with different coloured curves and exhibit steps
in similar locations, which indicates preferential paths for each Ca range. The steps in
the capillary fingering regime are considerable higher, which indicates a high amount of
side and backward movements, as expected for this model. The steps in this case occur
near the outlet of the porous medium.

The cases in the lower Ca range did not reach breakthrough and the stop point is
indicated with a cross marker. In those cases, the amount of nonwetting fluid saturation
is similar with other capillary fingering curves near the outlet. This indicates that the
values of Snw at BT and QS might be similar using different Ca values within the capillary
fingering regime.

The drainage with Ca = 1.0×10−5 stopped when nonwetting fluid was close to BT.
This is evidenced by the cross marker near the outlet. The saturation level is higher than
in other cases, which indicated that Snw at BT would probably be higher. However, it
is not possible to conclude if final Snw at QS state would also be higher. Nevertheless,
this shows that saturation history is highly dependent of the geometry used, since the
drainage in LV60A rock model resulted in different curves (Figure 37).

Figure 44 shows the increase of nonwetting fluid saturation with time, where timestep
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Figure 40: Snapshots at final state showing residual wetting fluid trapped for drainage
in the LV60A digital rock model with Ca = 1.0× 10−3 (a), 5.0× 10−4 (b), 1.0× 10−4

(c), 5.0× 10−5 (d), 1.0× 10−5 (e) and 5.0× 10−6 (f).

(a) (b)

(c) (d)

(e) (f)

Source: elaborated by the author.

is normalized. The simulations in which BT and QS state was reached exhibit a smooth
increase of Snw with time. The rate of increase of Snw is still high after BT, and decreases
only a considerable time after BT. Furthermore, intermediate Ca cases reach BT earlier
than in the LV60A 3D rock model. This shows that a preferential path is more likely to
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Figure 41: Snapshots of drainage in the Berea digital rock model with Ca = 5.0× 10−5

at different timesteps:(a) 120,000, (b) 500,000, (c) 1,000,000 and (d) 1,670,000.

(a) (b)

(c) (d)

Source: elaborated by the author.

exist in this rock since pore connectivity is lower. This effect was also observed in the
slice of the LV60A rock model (Figure 30).

Total time of simulation and physical time of drainage in this case are slightly lower
than in the LV60A 3D rock model, since the amount of fluid spaces is lower.

The earlier BT in intermediary Ca cases is also observed in Figure 45, where wetting
fluid saturation at breakthrough and quasi-steady state are plotted as a function of the Ca.
The difference in Sw between BT and QS state is higher than in the LV60A rock model.
In the high Ca range, this difference is even greater. The high velocity of displacement
leads to an early breakthrough, but also to a considerable invasion of nonwetting fluid
after BT.

Capillary fingering regime in this case also leads to higher residual Sw at QS state
as in the LV60A rock model. However, in the present case the value of Sw at BT is similar
in all Ca ranges. As seen in Figure 43, the simulation with Ca = 1.0× 10−5 almost reach
BT, and in Figure 45 it is clear that Sw value at BT would be similar or lower than with
higher Ca. This proves that a preferential path exist in this rock and high displacement
rate leads to early BT through this path. At low Ca values, the fluid also flows through
the preferential path, but since displacement rate is lower, the fluid invades other pores
at the same time, leading to a high Sw at BT. This is highly dependent on the geometry
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Figure 42: Snapshots of drainage in the Berea digital rock model at half breakthrough
time, breakthrough and quasi-steady state with four different Ca: (a)-(c) 1.0× 10−3,

(d)-(f) 5.0× 10−4, (g)-(i) 1.0× 10−4 and (j)-(l) 5.0× 10−5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Source: elaborated by the author.

of pores and throats inside the medium.
Furthermore, it is not possible to conclude that at QS state the wetting fluid satu-

ration would be lower in the low Ca range. Once the preferential path is found and BT
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Figure 43: Relationship between normalized frontal location and saturation of
nonwetting fluid for drainage in the Berea digital rock model. The color of each curve
represents the pattern observed in the snapshots, and the cross marker represents the

location where simulation stopped in low Ca cases.
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Figure 44: Nonwetting fluid saturation as a function of normalized timestep during
drainage in the Berea digital rock model. The red marker indicates the breakthrough

point.
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occurs, it is possible that the fluid avoids to invade further pores inside the medium since
a higher pressure would be necessary. The QS state in this case would be reached right
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after BT, similar to what occurs with the slice of LV60A rock model (Figure 34).
The solid and discontinuous lines in the plot represent logarithm fitting curves with

coefficients of determination R2 = 0.44754 and R2 = 0.95685 for breakthrough and quasi-
steady state, respectively. This shows that the effect of Ca in the residual saturation at
QS state might be determined by a logarithm relationship, but not at BT. Furthermore,
Figures 45 and 39 show that the decrease in Ca leads to higher residual Sw at BT and
QS state. The individual values of Sw are highly dependent on the medium geometry and
degree of heterogeneity and connectivity. Also, the effect of lower Ca is not clear since
simulations did not reach BT and QS state.

Figure 45: Wetting fluid saturation as a function of Ca at breakthrough and
quasi-steady state for drainage in the Berea digital rock model. The solid and
discontinuous lines represents logarithm fitting curves with R2 = 0.44754 and

R2 = 0.95685 for breakthrough and quasi-steady state, respectively.
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Figure 46 shows the final wetting fluid trapped in the Berea rock model. The lower
Ca cases present a high amount of wetting fluid inside the porous medium. The amount,
however, is lower than in the LV60A rock model. The solid grains occupy more space in
this rock. Furthermore, final wetting fluid saturation values are lower in the Berea rock
model in all displacement regimes. Although pore connectivity, porosity and intrinsic
permeability are lower, the sweeping efficiency is higher in the Berea rock. As explained
in section 3.2, the sandpack LV60A presents broader grain size distribution with more large
grains. This leads to a broad pore size distribution and larger degree of heterogeneity.
The rock exhibits more dead-end pores and thin pores and throats, which increases the
amount of trapping.
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Figure 46: Snapshots at final state showing residual wetting fluid trapped for drainage
in the Berea digital rock model with Ca = 1.0× 10−3 (a), 5.0× 10−4 (b), 1.0× 10−4 (c),

5.0× 10−5 (d), 1.0× 10−5 (e), 5.0× 10−6 (f).

(a) (b)

(c) (d)

(e) (f)

Source: elaborated by the author.

4.3.3 Relative permeability

The fluid distributions obtained at quasi-steady state after drainage in the 3D porous
models were used to calculate the relative permeability for the wetting and nonwetting
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fluid. A constant pressure difference was applied in the fluids and simulations were run
until the relative difference of relative permeability measured each 100 timesteps reached
0.0001.

The relative permeability is calculated with Equation 2.5 for each fluid using the
intrinsic permeability of each rock as shown in section 3.2 and the applied pressure dif-
ference. The flow rate Qj is obtained with the following equation for the x direction
(considering that the pressure difference is applied in the x direction):

Qj =
∑

i

uxiSij, (4.2)

where i indicates a lattice position and j the fluid considered.
Figures 47 and 48 show the relative permeability of nonwetting and wetting phases as

a function of the capillary number during drainage and as a function of the residual wetting
fluid saturation, respectively. As Ca decreases, saturation of wetting fluid increases and
thus the relative permeability for the wetting fluid, while the relative permeability for the
nonwetting fluid decreases considerably.

The solid and discontinuous lines in the plot represent logarithm fitting curves in
Figure 47 and a linear fitting curve in Figure 48. The coefficient of determination in
all cases is higher than 0.95, which indicates that at this saturation level the relative
permeabilities have a linear relationship with residual saturation. Since the wetting fluid
saturation exhibits a logarithm relationship with Ca (Figure 39), the same occurs with
the relative permeability (Figure 47).

In Figure 47, it is possible to see that the relative permeability for the nonwetting
fluid in the Berea rock is higher than in the LV60A rock for the same level of Ca. This
is caused by the higher nonwetting fluid saturation reached at final state achieved in the
Berea rock, i.e., the drainage process is more efficient in terms of saturation level in the
rock with lower degree of heterogeneity.

A different perspective is found in Figure 48. For the same value of saturation,
the relative permeability for the nonwetting fluid is slightly higher in the LV60A rock.
The relative permeability for the wetting fluid is practically similar. This means that the
capability of fluid transmission in the multiphase flow is slightly better in the rock with
higher porosity and intrinsic permeability.

Those characteristics show the great influence of medium geometry in the sweeping
process in a porous rock. On one hand, a lower degree of heterogeneity provides lower
amount of trapped wetting fluid. On the other hand, a higher porosity and intrinsic
permeability results in higher relative permeability for the same saturation level. Those
characteristics might be present together in one single rock, but it is not the case with the
Berea and LV60A rocks. This information is extremely useful to define the best method
for extraction in the oil recovery industry.
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Figure 47: Relative permeability of wetting and nonwetting phases as a function of the
capillary number in drainage in the LV60A and Berea rock models. The solid and

discontinuous lines represent logarithm fitting curves with R2 > 0.95.
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Figure 48: Relative permeability of wetting and nonwetting phases as a function of the
residual wetting saturation after drainage in the LV60A and Berea rock models. The

solid and discontinuous lines represent linear fitting curves with R2 > 0.95.
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5 CONCLUSIONS

Drainage was carried out in 2D and 3D digital models of porous media using a
multicomponent Lattice Boltzmann model based on a color gradient model with a two-
relaxation collision scheme. The range of capillary number in simulations is within the
capillary fingering and unstable displacement regimes. Viscosity, density and interfacial
tension were fixed in all cases and inlet velocity was varied to reach the desired capillary
number. Strongly nonwetting condition of the invading fluid was set as the wetting
condition at the solid boundaries.

The model was applied in a few test cases of capillary filling and bubble tests. The
interface inducing force and the wetting boundary condition showed good consistency with
expected wetting and capillary effects. The implemented convective boundary condition
gives reasonable physical similarity and boundary stability. The verification of these test
cases was important to define properly the parameters for simulations in real porous media
and to give confidence about the model.

The porous media used allowed the comparison of homogeneous and heterogeneous
geometries, as well as the effect of additional dimensionality. The following conclusion
remarks can be achieved from the discussion of the drainage processes:

(i) The applied multicomponent LB model was able to recover with quality the fluid
dynamics during drainage in the porous media used in this work. Several aspects
were observed such as the displacement patterns and pore-scale mechanisms, which
are similar with observations in literature shown in section 2.3.

(ii) Pore-scale events in the capillary fingering regime such as Haines jumps are an
important mechanism of trapping during drainage. In all cases their occur with
frequency, specially at low Ca values, and are more intense in geometries with higher
pore-throat size ratio. In 2D models, those mechanisms can lead to higher residual
wetting saturation at intermediate values of Ca because of the high fluid velocity.
In 3D models, the effect depends on pore connectivity and degree of heterogeneity.
The inertial forces at pore-scale play an important role in those events even at low
Ca.

(iii) Preferential paths for the flow are observed in the 2D and 3D models. They provide
the lowest required capillary pressure for the nonwetting fluid through the outlet. In
3D models, more than one path can be found depending on the pore connectivity.
In low pore connectivity media such as the Berea rock, the preferential path is
more clear and has more effect on the saturation at breakthrough. Furthermore,
during drainage the preferential path can be affected by the pore-scale mechanisms
and surrounding fluid fronts and fingers. This leads to different preferential paths
between distinct flow regimes.

(iv) Residual wetting fluid at breakthrough and quasi-steady state is highly dependent
on the capillary number. A lower value of Ca leads to more trapped wetting fluid
in 3D models mainly because of the media geometries. In the 2D models, the low
velocity of the fluid at low Ca provided a better condition for fluid redistribution,
causing a lower residual wetting fluid saturation. In all cases, the highest Ca range
resulted in the lowest Sw.
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(v) The degree of heterogeneity in 3D models has an important effect on residual sat-
uration after drainage. The LV60A rock has a broad pore size distribution, with
more dead-end pores and thin pores and throats, which increases the amount of
trapping. The Berea rock has lower porosity and intrinsic permeability, but the
degree of heterogeneity is lower than the LV60A. This leads to higher sweeping ef-
ficiency of drainage and higher relative permeability for the same Ca value used in
drainage. The LV60A rock has a higher porosity and intrinsic permeability, which
results in higher relative permeability for the same saturation level.

(vi) In the high level of nonwetting fluid saturation reached at quasi-steady state with
3D models, the relative permeabilities for the wetting and nonwetting fluids have
a linear relationship with saturation. As the irreducible wetting fluid saturation
increases the relative permeability for the wetting fluid also increases, while the
opposite occurs with relative permeability for the nonwetting fluid.

As a lessons-learned, a few points might be summarized. The boundary conditions
must be properly selected and implemented in the computational domain. In the present
case, the inlet and outlet sections were determinant for the simulation stability. Further-
more, in simulations with 2D models the stop criteria had to be defined for each case
individually. The main cause is the density ratio during the drainage. Specially in the
heterogeneous models, the density ratio increases quickly due to the constant injection of
nonwetting fluid in the small spaces of the media. As explained in section 3.1, the LB
model used is not capable of calculating high density ratio (ρR/ρB > 10), and simulations
diverge because of interface instabilities. Another possible solution could be to find the
optimum stop criterion for the lowest Ca case and use the same criterion for cases with
higher Ca. This would allow a more consistent comparison of results. An important point
of using the present model is to maintain the value of α lower than 0.1 and β higher than
0.9 to achieve stable and consistent simulations.

The investigation carried out in the present work is a first step in the study of
recovery efficiency in real porous media. Future works can benefit from results and fi-
nal conditions of the present work. For example, imbibition displacements and further
drainage processes can be simulated by using the fluid distributions achieved at final state.
This allows the calculation of complete curves of relative permeability and capillary de-
saturation curves, which are the main inputs for decisions in the oil recovery industry.
Furthermore, other possible investigations can be summarized:

(i) use lower ranges of Ca consistent with real reservoir values, with the request of
higher computational resources;

(ii) set different viscosity ratio and wettability conditions, which are known to have an
important effect on saturation and permeability;

(iii) use a different inlet boundary condition, such as pressure boundary condition or a
defined velocity field at inlet, in order to accomplish a more realistic condition, and
measure the gradient of Ca inside the rock;

(iv) use a near 2D model instead of 2D model, by creating more slices of the same
2D image in the third dimension, in order to create a similarity with micromodel
experiments;

(v) mirror the digital rock image to create perfect periodic boundary conditions;
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(vi) parametric study on the geometry of 3D porous images to investigate quantitatively
the influence of the degree of heterogeneity and the porosity, by setting different
pore-throat size ratios and other possible geometric parameters.

Finally, this work showed the potential of LBM in calculating multicomponent flow
in complex geometries. The method is a strong tool for the evaluation of relevant prop-
erties of immiscible displacement in porous media. Due to computational capacity it was
not possible to simulate further ranges of Ca or investigate other relevant parameters.
However, the methodology presented in this work provides an efficient tool to calculate
complete curves of relative permeability and capillary desaturation curves for drainage
and imbibition using a variety of parameters. With the current improvement of com-
putational technology and modelling techniques, the study of immiscible displacement is
strongly benefited. Hopefully, future works may introduce new details about oil recovery
by simulating the entire reservoir rock with real properties measured in site.



96



97

BIBLIOGRAPHY

ANDREW, M. et al. The imaging of dynamic multiphase fluid flow using
synchrotron-based x-ray microtomography at reservoir conditions. Transport in
Porous Media, Springer, v. 110, n. 1, p. 1–24, 2015.

ANSARINASAB, J.; JAMIALAHMADI, M. Pore-scale investigation of some effective
parameters on immiscible displacement efficiency using free energy model of lattice
boltzmann method. Journal of Petroleum Science and Engineering, Elsevier,
v. 156, p. 748–762, 2017.

ARMSTRONG, R. et al. Modeling the velocity field during haines jumps in porous
media. Advances in Water Resources, Elsevier, v. 77, p. 57–68, 2015.

ARMSTRONG, R. T. et al. Critical capillary number: Desaturation studied with fast
x-ray computed microtomography. Geophysical Research Letters, Wiley Online
Library, v. 41, n. 1, p. 55–60, 2014.

BEAR, J. Dynamics of fluids in porous media. New York: Dover Publications,
1972.

BEAR, J.; BACHMAT, Y. Introduction to modeling of transport phenomena in
porous media. [S.l.]: Springer Science & Business Media, 2012.

BEAR, J.; BUCHLIN, J. Modelling and applications of transport phenomena in
porous media. [S.l.]: Springer, 1991.

BORGMAN, O. et al. Immiscible fluid displacement in porous media with spatially
correlated particle sizes. Advances in Water Resources, Elsevier, v. 128, p. 158–167,
2019.

CHATZIS, I.; DULLIEN, F. Dynamic immiscible displacement mechanisms in pore
doublets: theory versus experiment. Journal of Colloid and Interface Science,
Elsevier, v. 91, n. 1, p. 199–222, 1983.

CHATZIS, I.; MORROW, N. Correlation of capillary number relationships for
sandstone. Society of Petroleum Engineers Journal, Society of Petroleum
Engineers, v. 24, n. 05, p. 555–562, 1984.

CHEN, H.; CHEN, S.; MATTHAEUS, W. H. Recovery of the Navier-Stokes equations
using a lattice-gas Boltzmann method. Physical Review A, APS, v. 45, n. 8, p.
R5339, 1992.

COTTIN, C.; BODIGUEL, H.; COLIN, A. Drainage in two-dimensional porous media:
From capillary fingering to viscous flow. Physical Review E, APS, v. 82, n. 4, p.
046315, 2010.

DONG, B.; YAN, Y.; LI, W. Lbm simulation of viscous fingering phenomenon in
immiscible displacement of two fluids in porous media. Transport in porous media,
Springer, v. 88, n. 2, p. 293–314, 2011.



98

DONG, B. et al. Lattice boltzmann simulation of viscous fingering phenomenon of
immiscible fluids displacement in a channel. Computers & Fluids, Elsevier, v. 39,
n. 5, p. 768–779, 2010.

DONG, H.; BLUNT, M. Pore-network extraction from micro-computerized-tomography
images. Physical review E, APS, v. 80, n. 3, p. 036307, 2009.

DULLIEN, F. Porous media: fluid transport and pore structure. [S.l.]: Academic
press, 1992.

GENNES, P.-G. D.; BROCHARD-WYART, F.; QUÉRÉ, D. Capillarity and wetting
phenomena: drops, bubbles, pearls, waves. [S.l.]: Springer Science & Business
Media, 2013.

GEORGIADIS, A. et al. Pore-scale micro-computed-tomography imaging:
Nonwetting-phase cluster-size distribution during drainage and imbibition. Physical
Review E, APS, v. 88, n. 3, p. 033002, 2013.

GINZBURG, I. Equilibrium-type and link-type lattice boltzmann models for generic
advection and anisotropic-dispersion equation. Advances in Water resources,
Elsevier, v. 28, n. 11, p. 1171–1195, 2005.

GUNSTENSEN, A. K. et al. Lattice Boltzmann model of immiscible fluids. Physical
Review A, APS, v. 43, n. 8, p. 4320, 1991.

HAINES, W. Studies in the physical properties of soil. v. the hysteresis effect in capillary
properties, and the modes of moisture distribution associated therewith. The Journal
of Agricultural Science, Cambridge University Press, v. 20, n. 1, p. 97–116, 1930.

HALLIDAY, I.; HOLLIS, A.; CARE, C. Lattice boltzmann algorithm for continuum
multicomponent flow. Physical Review E, APS, v. 76, n. 2, p. 026708, 2007.

HAZLETT, R.; CHEN, S.; SOLL, W. Wettability and rate effects on immiscible
displacement: Lattice boltzmann simulation in microtomographic images of reservoir
rocks. Journal of Petroleum Science and Engineering, Elsevier, v. 20, n. 3-4, p.
167–175, 1998.

HE, X.; CHEN, S.; ZHANG, R. A lattice Boltzmann scheme for incompressible
multiphase flow and its application in simulation of rayleigh–taylor instability. Journal
of Computational Physics, Elsevier, v. 152, n. 2, p. 642–663, 1999.

HEJAZI, S.; SHAH, S.; PINI, R. Dynamic measurements of drainage capillary pressure
curves in carbonate rocks. Chemical Engineering Science, Elsevier, v. 200, p.
268–284, 2019.

HERRING, A. et al. Observations of nonwetting phase snap-off during drainage.
Advances in water resources, Elsevier, v. 121, p. 32–43, 2018.

HIGUERA, F.; SUCCI, S.; BENZI, R. Lattice gas dynamics with enhanced collisions.
EPL (Europhysics Letters), IOP Publishing, v. 9, n. 4, p. 345, 1989.

HIGUERA, F. J.; JIMENEZ, J. Boltzmann approach to lattice gas simulations.
Europhys. Lett., v. 9, p. 663, 1989.



99

HONGJUN, W. et al. Assessment of global unconventional oil and gas resources.
Petroleum Exploration and Development, Elsevier, v. 43, n. 6, p. 925–940, 2016.

HOU, S. et al. Evaluation of two lattice Boltzmann models for multiphase flows.
Journal of Computational Physics, Elsevier, v. 138, n. 2, p. 695–713, 1997.

HUANG, H.; HUANG, J.-J.; LU, X.-Y. Study of immiscible displacements in porous
media using a color-gradient-based multiphase lattice boltzmann method. Computers
& Fluids, Elsevier, v. 93, p. 164–172, 2014.

HUANG, H.; SUKOP, M.; LU, X. Multiphase lattice Boltzmann methods:
Theory and application. [S.l.]: John Wiley & Sons, 2015.

HUANG, J.; XIAO, F.; YIN, X. Lattice boltzmann simulation of pressure-driven
two-phase flows in capillary tube and porous medium. Computers & Fluids, Elsevier,
v. 155, p. 134–145, 2017.

HUGHES, R.; BLUNT, M. Pore scale modeling of rate effects in imbibition. Transport
in Porous Media, Springer, v. 40, n. 3, p. 295–322, 2000.

IMPERIAL COLLEGE CONSORTIUM ON PORE-SCALE MODELLING. Berea
Sandstone. figshare, Oct 2014. Dispońıvel em:
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