

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BIOQUÍMICA

Caio Marcos Massari Leite

A interação de guanosina com os receptores A1 e A2A de adenosina e sua implicação em modelos da doença de Parkinson

> Florianópolis 2020

Caio Marcos Massari Leite

A interação de guanosina com os receptores A1 e A2A de adenosina e sua implicação em modelos da doença de Parkinson

> Tese submetida ao Programa de Pós-graduação em Bioquímica da Universidade Federal de Santa Catarina para a obtenção do título de doutor em Bioquímica.

Orientadora: Prof^a. Dr^a. Carla Inês Tasca

Florianópolis 2020 Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Massari Leite, Caio Marcos

A interação de guanosina com os receptores Al e A2A de adenosina e sua implicação em modelos da doença de Parkinson / Caio Marcos Massari Leite ; orientador, Carla Inês Tasca, 2020.
105 p.

Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Programa de Pós Graduação em Bioquímica, Florianópolis, 2020.
Inclui referências.
1. Bioquímica. 2. Doença de Parkinson. 3. Guanosina. 4.
Neuroproteção. 5. Receptores de Adenosina. I. Tasca, Carla Inês. II. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Bioquímica. III. Título.

Caio Marcos Massari Leite

Título: A interação da guanosina com os receptores A1 e A2A de adenosina e sua modulação em modelos experimentais da doença de Parkinson

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca examinadora composta pelos seguintes membros:

Prof.(a) Manuella Kaster Pinto, Dr.(a) Universidade Federal de Santa Catarina

Prof. Diogo Onofre Souza, Dr. Universidade Federal do Rio Grande do Sul

Prof. Roberto Farina de Almeida, Dr. Universidade Federal de Ouro Preto

Certificamos que esta é a **versão original e final** do trabalho de conclusão que foi julgado adequado para obtenção do título de doutor em bioquimica.

Coordenação do Programa de Pós-Graduação

Prof.(a) Carla I. Tasca, Dr.(a) Orientador(a)

Florianopolis, 2020.

AGRADECIMENTOS

À UFSC, ao CNPq e à CAPES pelo suporte estrutural e financeiro durante o período de realização do presente estudo, essencial para a execução do trabalho. À minha orientadora, Carla Inês Tasca, pela oportunidade oferecida e por todos os ensinamentos adquiridos.

A toda a equipe do Laboratório de Neuroquímica 4 (e agregados), que me aguentaram esse tempo, tiverem paciência e disponibilidade em ajudar; Carol, Dé, Flavinha, Gabriela, Lê, Luísa, Karen, Naiani, Victor, Tet, Bea, Daniel, Anderson, João, Wagner e Gianni.

Agradeço à minha família, principalmente minha mãe Suze e minhas tias, Neide e Teresa, que tenho como segundas mães, tanto pelo incentivo, pelo amor e carinho, por tornarem possível essa realização, mesmo distanciando-me delas. E ao meu avô Francisco Massari pelo conhecimento e admiração que me proporcionou desde cedo.

Agradeço a todo pessoal que conheci em Barcelona durante meu doutoradosanduíche. Principalmente aos professores Francisco Ciruela e Víctor Fernández-Dueñas por me acolher, sempre incentivar novos experimentos e por tudo que aprendi nessa estadia. Ao pessoal do laboratório, Marta, Marc, Xavi, Hector, Josep, Jordi, e todos os viajantes como eu, Carolina, Maria, Kristoffer, e principalmente o grande amigo que fiz, Rene.

Aos amigos que tive a oportunidade de conhecer e conviver durante o doutorado, e todos outros que me acompanharam durante essa jornada, pelo suporte e por serem uma válvula de escape sempre que a pressão foi muita.

RESUMO

A doença de Parkinson (PD) é a segunda doença neurodegenerativa de maior mundial, caracterizada pela perda progressiva prevalência dos neurônios dopaminérgicos na parte compacta da substância negra. Os principais sintomas da PD são: tremor, bradicinesia, instabilidade postural e rigidez muscular. Apesar dos tratamentos atuais serem efetivos para esses sintomas motores, os mesmos apresentam efeitos colaterais severos e não impedem a progressão da doença. Diante disso, se faz necessária a busca por novas estratégias terapêuticas. A guanosina, um nucleosídeo endógeno com ação neuromodulatória, já demonstrou eficácia como um agente antiparkinsoniano em modelos animais de indução de sintomas motores da PD, além de apresentar efeitos neuroprotetores em protocolos in vitro. No entanto, ainda não existe um receptor clonado e sequenciado específico para esse nucleosídeo e seus mecanismos de ação ainda não estão totalmente compreendidos. Sendo assim, o objetivo desse trabalho foi avaliar o efeito antiparkinsoniano da guanosina e a sua relação com os receptores A1 e A2A de adenosina (A1R e A2AR). Em um protocolo in vivo com a administração de reserpina em camundongos, o aumento de tremores orofaciais foi revertido pela guanosina e dependente da ativação do A₁R e independente da expressão do A_{2A}R. O bloqueio farmacológico do A₁R também impediu que a guanosina diminuísse os níveis de espécies reativas de oxigênio (EROs) no estriado desses animais. Em um protocolo in vitro que mimetiza eventos celulares iniciais da PD com a toxina 6-hidróxi-dopamina (6-OHDA) em fatias estriatais, observamos que a guanosina preveniu o aumento da geração de EROs, alteração do potencial de membrana mitocondrial, e a depleção dos níveis de ATP. Estes efeitos da guanosina foram abolidos pelo bloqueio farmacológico dos A1R e a ativação dos A2AR. Também in vitro, foi investigado a possível interação da guanosina com o heterômero A₁R-A_{2A}R através do uso de transfecção heteróloga desses receptores em células HEK293. Guanosina não alterou a união e sinalização celular em células transfectadas somente com A1R ou $A_{2A}R$. Porém, em células co-transfectadas com A_1R e $A_{2A}R$ a guanosina não exerceu efeito sobre a funcionalidade do A_1R , mas reduziu a união e a ativação do $A_{2A}R$, e reduziu a impedância celular aumentada por um agonista do A2AR. Em síntese, concluímos que: (i) o efeito da guanosina em diminuir tremores orofaciais em um modelo da PD é dependente do A_1R ; (ii) a guanosina exerce efeito neuroprotetor frente a danos oxidativos e mitocondriais através da modulação dos A1R e A2AR; (ii) a guanosina interage com os heterômeros A1R-A2AR, potencial alvo molecular responsável pelo seu mecanismo de neuroproteção.

Palavras chave: Doença de Parkinson, guanosina, reserpina, 6-OHDA, receptores de adenosina, oligomerização, heterômeros.

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the world, characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. The main symptoms of PD are tremor, bradykinesia, postural instability and muscle stiffness. Although the current treatments are effective for these motor symptoms, they have severe side effects and do not stop the progression of the disease. Therefore, the search for new therapeutic strategies is necessary. Guanosine, an endogenous nucleoside with neuromodulatory action, has already demonstrated efficacy an antiparkinsonian agent in animal models of PD, besides presenting as neuroprotective effects in *in vitro* protocols. However, there is not yet a specific receptor characterized for this nucleoside and its mechanisms of action are not yet fully understood. Therefore, the objective of this study was to evaluate the antiparkinsonian effect of guanosine and its relationship with adenosine A_1 and A_{2A} receptors (A_1R and A_{2A}R). In an *in vivo* protocol with reserpine administration in mice, the increase in orofacial tremors was reversed by guanosine and dependent on activation of A₁R and independent of A_{2A}R expression. The pharmacological blockage of A₁R also prevented guanosine from decreasing the levels of reactive oxygen species (ROS) in the striatum of these animals. In an in vitro protocol with 6-hydroxydopamine (6-OHDA) that mimics initial PD cellular events in striated slices, we observed that guanosine prevented the increase in ROS generation, alteration on mitochondrial membrane potential, and depletion of ATP levels. These effects of guanosine were abolished by the pharmacological blockade of A₁R and activation of A_{2A}R. Also *in vitro*, the possible interaction of guanosine with the A1R- A2AR heteromer through the use of heterologous transfection in HEK293 cells was investigated. Guanosine did not alter the binding affinity and cellular signaling in cells transfected only with A_1R or $A_{2A}R$. However, in cells co-transfected with A1R and A2AR, while guanosine had no effect on the functionality of A_1R , it reduced the binding and activation of $A_{2A}R$, and reduced increased cell impedance by an A_{2A}R agonist. In summary, we conclude that: (i) the effect of guanosine on reducing orofacial tremors in a PD model is dependent on A1R; (ii) guanosine exerts a neuroprotective effect against oxidative and mitochondrial damage through modulation of A_1R and $A_{2A}R$; (ii) guanosine interacts with A_1R - $A_{2A}R$ heteromer, the potential molecular target responsible for its neuroprotective mechanism.

Keywords: Parkinson's disease, guanosine, reserpine, 6-OHDA, adenosine receptors, GPCR oligomerization, heteromers.

LISTA DE ABREVIATURAS

6-OHDA 6-hidróxi-dopamina A₁R Receptor de adenosina 1 $A_{2A}R$ Receptor de adenosina 2A **ADA** Adenosina desaminase ADP Adenosina-5'-difosfato Akt Proteína cinase B AMP Adenosina-5'-monofosfato AMPc Adenosina-5'-monofosfato cíclico **ATP** Adenosina-5'-trifosfato BK Canal de Potássio de alta condutância dependente de Cálcio D1R Receptor de dopamina tipo 1 D2R Receptor de dopamina tipo 2 **DAT** Transportador de dopamina **DBS** do inglês, *Deep brain stimulation* DG Derivados da guanina **DPCPX** 8-Ciclopentil-1,3-dipropilxantina **EROs** Espécies reativas de oxigênio GABA Ácido gama-aminobutírico GDP Guanosina-5'-difosfato Gi Proteína G do tipo inibitória GMP Guanosina-5'-monofosfato **GPCR** G protein-coupled receptors GTP Guanosina-5'-trifosfato iNOS Óxido nítrico sintase induzível L-DOPA L-diidroxifenilalanina LID do inglês, L-DOPA-Induced Dyskinesia LPA Ácido lisofosfatídico LRRK2 do inglês, Leucine-rich repeat kinase 2 MAO-B Monoamina oxidase B MPP+1-metil-4-fenilpiridinio **MPTP** 1-metil-4-fenil-1,2,3,6-tetrahidropiridina NMDA N-metil-D-aspartato NST Núcleo subtalâmico **PD** Doença de Parkinson PGO Privação de glicose e oxigênio PINK1 do inglês, PTEN-induced kinase 1 **PTx** Toxina Pertussis SNC Sistema nervoso central SNpc Parte compacta da substância negra **TJM** Tremoulus jaw movements TMs Domínios transmembrana **TNF** Fator necrose tumoral VMAT-2 Transportador vesicular de monoaminas 2

SUMÁRIO

1 INTRODUÇÃO	
1.1 DOENÇA DE PARKINSON	
1.2 TRANSMISSÃO PURINÉRGICA	
2 JUSTIFICATIVA	
3 OBJETIVOS	
3.1 OBJETIVO GERAL	
3.2 OBJETIVOS ESPECÍFICOS	
4 MATERIAL E MÉTODOS	
5 RESULTADOS	
CAPÍTULO I	
CAPÍTULO II	
CAPÍTULO III	
6 DISCUSSÃO	
7 CONLCUSÕES	
8 PERSPECTIVAS	
REFERÊNCIAS	

1 INTRODUÇÃO

1.1 DOENÇA DE PARKINSON

Histórico e características

A doença de Parkinson (*do inglês* Parkinson's disease, PD) é caracterizada pela perda progressiva dos neurônios dopaminérgicos na parte compacta da substância negra (SNpc), região cerebral mesencefálica envolvida no controle dos movimentos (Hirsch, et al. 1992). Essa perda neuronal na SNpc resulta na diminuição dos níveis de dopamina na região do estriado (via nigroestriatal dopaminérgica). A primeira descrição da PD foi há pouco mais de 200 anos, quando James Parkinson publicou a clássica monografia intitulada "Essay on the Shaking Palsy" em 1817. Posteriormente, Jean-Martin Charcot adicionou importantes detalhes às observações de Parkinson, descrevendo os quatro principais sinais cardinais da PD: tremor de repouso, bradicinesia (lentidão em iniciar o movimento), instabilidade postural e rigidez muscular. Charcot também foi o responsável por nomear a doença em homenagem a James Parkinson (Goetz 2002).

Em 1912, Fritz Henrich Lewy identificou agregados proteicos que até hoje são a principal característica histopatológica da PD (Przedborski 2017). Lewy identificou os agregados no cérebro, e em 1919, Konstantin Nikolaevich Tretiakoff foi o primeiro a identificar essas alterações neuropatológicas na SNpc de pacientes com PD, sendo resposável por nomear esses agregados em homenagem a Lewy. Os corpos de Lewy, então, são inclusões citoplasmáticas eosinofílicas compostos de agregados fibrilares com grande presença da proteína α -sinucleína. A α -sinucleína é altamente expressa em terminais pré-sinápticos e sua função biológica ainda não está totalmente clara, mas acredita-se que sua função esteja associada à sua incorporação nas membranas de vesículas sinápticas (Burré, Sharma, and Südhof 2018). O dobramento incorreto dessa proteína leva a formação oligômeros e agregados que podem ser tóxicos e são

relacionados a doenças neurodegenerativas. Sabe-se também que, à medida que a PD progride e ocorre degeneração neuronal, os corpos de Lewy se aglomeram em grande quantidade nos neurônios e em diversas regiões cerebrais (Markesbery, et al. 2009; Braak, et al. 2004).

Porém, só no final da década de 1950 que foi identificado o papel da dopamina na PD. Carlsson e colaboradores (1957) demonstraram o papel da dopamina utilizando a administração de reserpina, um inibidor do transportador vesicular de monoaminas 2 (VMAT-2). Neste, foi demonstrado que a administração de L-diidroxifenilalanina (L-DOPA), um precursor da dopamina, revertia a redução dos níveis de dopamina e da atividade motora induzida pela reserpina (Carlsson, Lindqvist, and Magnusson 1957). Essas evidências foram cruciais para elucidar o papel da dopamina na sinalização dos gânglios basais e no controle motor.

A PD é normalmente caracterizada como um distúrbio motor, uma vez que a região cerebral afetada está diretamente relacionada a esta função, sendo assim, seu diagnóstico médico é baseado pela presença de dois ou mais sinais motores: rigidez muscular, bradicinesia, tremor de repouso e instabilidade postural (Yamanouchi and Nagura 1997; Cutsuridis and Perantonis 2006; Hirsch, et al. 1992; van der Burg, et al. 2006). Porém, tais sinais motores somente aparecem quando aproximadamente 60–70% dos neurônios da substância negra já se encontram degenerados (Carvey, Punati, and Newman 2006). Atualmente, há consideráveis evidências demonstrando que o processo neurodegenerativo que leva à PD começa anos antes do aparecimento dos sintomas motores, não estando somente restrito aos neurônios dopaminérgicos da via nigroestriatal. Outras áreas cerebrais também estão envolvidas, como as estruturas olfatórias anteriores, núcleo motor dorsal do vago, núcleo caudal da *raphe, locus coeruleus*, sistema nervoso autônomo, hipocampo e córtex cerebral (Braak, et al. 2004).

De acordo, neurônios colinérgicos, adrenérgicos e serotoninérgicos também sofrem degeneração, e parecem ser os principais responsáveis pelos sintomas não-motores da PD, incluindo prejuízos olfativo e de memória, distúrbios de sono, ansiedade e depressão (Chaudhuri, et al. 2006). Por essa evolução da PD, Braak e colaboradores desenvolveram um sistema de estagiamento para a PD de causa idiopática (Braak, et al. 2004). Esse estudo também demonstrou que a presença de agregados de α -sinucleína primeiramente acontece no núcleo dorsal motor e então ocorre a progressão para outras regiões como a SNpc.

Etiologia e epidemiologia

A etiologia da PD ainda é tida como idiopática, sendo heterogênea, multifatorial e complexa, mas estudos sugerem que a PD pode ser decorrente de um conjunto de fatores, sejam eles genéticos, toxinas ambientais, estresse oxidativo, anormalidades mitocondriais e/ou alterações do envelhecimento (Pereira and Garrett 2010). Os principais mecanismos bioquímicos evidenciados como possíveis responsáveis pela neurodegeneração na PD são o estresse oxidativo, o dano mitocondrial, uma resposta inflamatória exacerbada e a excitotoxicidade glutamatérgica (Dexter and Jenner 2013). Todos os dias, humanos são expostos a milhares de xenobióticos no ar, água e comida, incluindo agentes químicos de roupas, tintas, plásticos, perfumes, cosméticos, comidas, bebidas, pesticidas, herbicidas e emissões gasosas de veículos e indústrias. Tais químicos podem estar envolvidos na etiologia da PD (Uversky 2004). Em relação aos casos genéticos, algumas mutações são consideradas de grande risco para desenvolvimento da PD, porém tais mutações são responsáveis somente por 5–10% dos casos da doença (Lesage and Brice 2009). Entre as mutações, as mais comuns são as presentes nos genes que codificam para as proteínas LRRK2 (*do inglês*, leucine-rich

repeat kinase 2), Parkina, PINK1 (*do inglês*, PTEN-induced kinase 1), DJ1 (do inglês, protein deglycase DJ-1, ou Parkinson disease protein 7) - sendo que estas mutações estão relacionadas a danos/disfunções mitocondriais - e α -sinucleína (Kim and Alcalay 2017).

A PD é o segundo transtorno neurodegenerativo de maior prevalência (estando atrás da doença de Alzheimer) e seu início raramente se dá antes dos 50 anos de idade, sendo observado um aumento acentuado na sua incidência a partir dos 60 anos, afetando 1 - 2% da população (de Lau and Breteler 2006). Estimou-se que, em 2016, 6.1 milhões de pessoas ao redor do mundo tinham PD, das quais mulheres e homens representavam 2.9 milhões e 3.2 milhões, respectivamente, e mais de 200 mil mortes ocorridas pela doença (Global Burden Disease Collaborators 2018). No mesmo ano, no Brasil, foi estimado 128 mil casos e mais de 4 mil mortes pela PD (Global Burden Disease Collaborators 2018). Como a incidência da doença aumenta com a idade (fator de risco mais importante), e levando em consideração o aumento da expectativa de vida da sociedade atual, é provável que o número de pessoas que sofrem da PD tenda a aumentar constantemente no futuro.

Tratamentos

Embora ainda não exista cura para a PD, existem estratégias para atenuar os sintomas, porém esses tratamentos apresentam limitações. A droga mais utilizada como tratamento na PD é a mesma desde os anos 60, a L-DOPA, um precursor da dopamina, que tem como objetivo restabelecer os níveis de dopamina, porém sua eficácia diminui com os anos de tratamento e altas doses podem levam às discinesias (Hardie, Lees, and Stern 1984).

Uma outra abordagem que trouxe um avanço importante para o tratamento da PD foi a implantação da técnica de DBS, do inglês "deep brain stimulation". Em 1994, Benabid demonstrou os efeitos benéficos da estimulação de alta frequência no núcleo subtalâmico (NST) de pacientes com PD (Benabid, et al. 1994). A cirurgia de DBS já foi realizada em milhares de pessoas ao redor do mundo e os resultados mostraram a eficácia e segurança do método. Entretanto, a cirurgia de DBS é bem invasiva e de alto custo, além de não reverter ou mesmo parar a neurodegeneração, mesmo assim é uma importante estratégia terapêutica no tratamento paliativo de sintoma motores na PD.

Limitações no tratamento farmacológico atual para a PD têm levado a uma crescente investigação sobre drogas que possam promover um tratamento alternativo para sintomas motores e não motores, reduzindo os efeitos colaterais, para assim modificar o curso da doença (Schapira, et al. 2006; Obeso, et al. 2010). Testes clínicos estão avaliando novas drogas com potencial neuroprotetor frente à PD. Estes testes incluem principalmente agonistas de receptores dopaminérgicos, inibidores da monoamina oxidase B (MAO-B), antioxidantes, agentes anti-apoptóticos e antagonistas de receptores A_{2A} de adenosina (A_{2A}R) e de receptores N-metil-D-aspartato (NMDA) de glutamato (Schapira, et al. 2006; Obeso, et al. 2010; Dawson and Dawson 2002).

Modelos da PD

O estudo e o desenvolvimento de novas terapias para a PD dependem da existência de modelos animais que apresentem características comportamentais e/ou histopatológicas da enfermidade, bem como modelos celulares, com respectivas alterações bioquímicas similares à doença, permitindo a avaliação de novas drogas e estratégias terapêuticas (Gerlach, Foley, and Riederer 2003). Consideráveis evidências demonstram que diversas drogas podem ser utilizadas para induzir sintomas e as características bioquímicas do parkinsonismo, entre eles o tratamento com as toxinas 6hidróxi-dopamina (6-OHDA) e com 1-metil-4-fenil-1,2,3,6-tetrahidropiridina (MPTP) ou seu metabólito ativo 1-metil-4-fenilpiridinio (MPP+), utilização de pesticidas como Paraquat e Rotenona, e depleção ou antagonismo de dopamina com a reserpina e o haloperidol, respectivamente (Duty and Jenner 2011).

A 6-OHDA é a toxina mais utilizada em modelos experimentais da PD *in vivo* (Gomez-Lazaro, et al. 2008; Ikeda, et al. 2008; Mu, et al. 2009). A primeira demonstração dos efeitos biológicos da 6-OHDA foi relatada há mais de 40 anos, demonstrando que esse agente era capaz de induzir depleção de noradrenalina em nervos simpáticos do coração de camundongos (PORTER, TOTARO, and STONE 1963). Anos depois, Ungerstedt demonstrou que uma injeção de 6-OHDA na SNpc era capaz de causar degeneração dopaminérgica do sistema nigroestriatal, gerando assim o primeiro modelo animal da PD (Ungerstedt 1968).

Devido a sua estrutura similar à da dopamina, ela apresenta grande afinidade com o transportador de dopamina e por essa razão seletivamente destrói neurônios dopaminérgicos e monoaminérgicos (Fig 1) (Lehmensiek, et al. 2006). Uma vez dentro do neurônio, a 6-OHDA é acumulada e sofre uma auto-oxidação não enzimática e produz radicais livres (Blandini, Armentero, and Martignoni 2008). Um efeito inibitório sobre a atividade do complexo I da mitocôndria também já foi demonstrado, o que pode ser responsável pela geração de espécies reativas de oxigênio (EROs) ocasionada por essa neurotoxina (Chin, et al. 2008; Inden, et al. 2006; Lehmensiek, et al. 2006). A alteração mitocondrial é apontada como um dos mecanismos responsáveis pela neurodegeneração dopaminérgica na PD. Uma conexão entre a disfunção mitocondrial e o estresse oxidativo em doenças neurodegenerativas já vem sendo postulada há tempos (Przedborski and Ischiropoulos 2005). A excessiva geração de espécies reativas de oxigênio e nitrogênio ativam sinalizações celulares acarretando em danos celulares e morte (Beal 2005).

Figura 1. Mecanismo de ação da 6-OHDA em neurônios dopaminérgicos

A estrutura da 6-OHDA é muito similar à da dopamina, sendo assim ela tem grande afinidade com o transportador de dopamina. Molécula da dopamina (A). Molécula da 6-OHDA (B). Sem o armazenamento da dopamina, sua metabolização no citoplasma é aumentada, gerando EROs e quinonas reativas, e assim, resultando em estresse oxidativo (C).

Neste estudo foi utilizado um protocolo de toxicidade *in vitro* induzida pela 6-OHDA. Apesar de a 6-OHDA ser classicamente utilizada *in vivo* para estudo dos efeitos motores da PD, nosso grupo em 2016 padronizou um protocolo *in vitro* para avaliar possíveis estratégias de neuroproteção (Massari, et al. 2016). Já foi visto que a incubação com 6-OHDA causa redução na viabilidade celular de fatias estriatais, além induzir o aumento de geração de EROs e diminui o potencial de membrana mitocondrial nessa mesma região (Massari, et al. 2016). Além disso, também foi visto no estriado uma permeabilização de membrana celular e uma diminuição do consumo de oxigênio pela mitocôndria (Marques, Massari, and Tasca 2019; Gonçalves, et al. 2019). Sendo assim, ao estabelecer essa relação da toxicidade da 6-OHDA em fatias estriatais com danos acometidos na PD, esse protocolo tem sido usado para avaliação de moléculas com potencial neuroprotetor e propicia estudo dos mecanismos relacionados à patologia da PD.

Como mencionado acima, um protocolo largamente utilizado in vivo é a administração de reserpina, como um modelo para a indução de discinesias orofaciais e outros déficits motores relacionados à PD. Este é um protocolo agudo de alta reprodutibilidade, de baixa toxicidade e que abrange importantes características da PD (Leão, et al. 2015). A reserpina é um alcalóide isolado das raízes da planta Rauwolfia serpentina e atua como inibidor do VMAT-2 no sistema nervoso central (Figura 2). Ela foi utilizada inicialmente como uma potente droga anti-hipertensiva, devido a sua capacidade em depletar o conteúdo monoaminérgico (FREIS and ARI 1954; McQUEEN, DOYLE, and SMIRK 1954). Seu uso clínico para esse fim levou a observações de letargia, depressão e discinesias em pacientes que a utilizavam cronicamente, demonstrando, assim, o papel do sistema monoaminérgico em distúrbios afetivos e motores (FREIS 1954; Kane and Smith 1982). Após essa constatação ela foi rapidamente introduzida como um modelo animal para mimetizar os efeitos motores e não-motores da PD. A alta afinidade da reserpina pelo VMAT-2 impede a ligação das monoaminas ao sítio de interação com este transportador, inibindo o seu armazenamento vesicular e impossibilitando a liberação dessas moléculas na fenda sináptica através do processo de exocitose. Desta forma, a reserpina leva à depleção destes neurotransmissores nos terminais nervosos e, como consequência, induz hipolocomoção, rigidez muscular transitória e movimentos involuntários, sendo estas respostas dependentes da dose e tempo de tratamentos utilizados (Gerlach and Riederer 1996; Dawson, et al. 2000). Atualmente, a reserpina não é mais utilizada clinicamente

devido aos seus efeitos colaterais, como cansaço, hipotensão, impotência sexual e depressão.

De acordo com a literatura, o estresse oxidativo está envolvido na patofisiologia das discinesias orofaciais (Abílio, et al. 2003; Burger, et al. 2003; Faria, et al. 2005; Leão, et al. 2015). Na depleção de monoaminas pelo tratamento com reserpina há aumento de EROs e de nitrogênio (Spina and Cohen 1989). Nesse sentido, sabe-se que o metabolismo das catecolaminas resulta na formação de EROs, o que pode ser aumentado pelo tratamento com a reserpina, com a presença de mais catecolaminas livres no citoplasma. Assim, o estresse oxidativo se soma à depleção de monoaminas prejudicando o desempenho motor.

A depleção de dopamina resulta do efeito inibitório da reserpina no transportador vesicular. Molécula da reserpina (A). Sem o armazenamento da dopamina, sua metabolização no citoplasma é aumentada, gerando EROs e quinonas reativas, e assim, resultando em estresse oxidativo (B). TH, tirosina hidroxilase; AADC, L-aminoácidos aromáticos descarboxilase; VMAT-2, transportador vesicular de monoaminas 2.

Como já dito, a relação entre a reserpina e a PD foi primeiramente elucidada em 1957 por Carlsson e colaboradores, relatando que o estado acinético (ou seja, ausência de movimento) induzido pela reserpina em roedores, era aliviado pela L-DOPA. A administração aguda da reserpina em roedores, além de mimetizar padrões bioquímicos da PD (depleção de dopamina, estresse oxidativo), induz um comportamento chamado de 'tremoulus jaw movements' - movimentos de tremores de mandíbula, na tradução literal - (TJM) (Steinpreis and Salamone 1993). Os TJMs são caracterizados como movimentos produzidos por uma deflexão vertical rápida do maxilar inferior que se assemelha à mastigação, porém não é uma resposta a nenhum estímulo específico (Salamone, et al. 1998). Consideráveis evidências apontam que esses movimentos em roedores, induzidos pela reserpina, compartilham diversas características com os tremores observados em pacientes acometidos pela PD. Salamone e Baskin (1996) demonstraram, ao analisar a inter-resposta dos movimentos (ou seja, o tempo entre cada movimento do maxilar), que o tratamento com reserpina gerava tremores com os picos de frequência entre 3-7 Hz, semelhante à frequência dos tremores registrados na PD. Por conta dessa semelhança entre os tremores, este modelo é considerado de extrema importância para estudar esse distúrbio motor relacionado à PD (Salamone, et al. 1998).

Discinesias

Os mecanismos envolvidos nos sintomas motores são complexos, abrangendo diversos sistemas de neurotransmissão. Normalmente, o controle dos movimentos pela dopamina é realizado através da ativação dos neurônios GABAérgicos da via direta, que expressam receptores dopaminérgicos do tipo D1 (D1R) e pela inibição dos neurônios GABAérgicos da via indireta, que expressam receptores dopaminérgicos do tipo D2 (D2R) (Heiman, et al. 2014) (figura 3). Na PD há alterações na coordenação do

movimento devido à falta de projeções dopaminérgicas da SNpc, aumentando assim a desinibição da via indireta sob o núcleo subtalâmico, inibindo o tálamo e consequentemente o movimento.

Discinesia é um termo amplo para caracterizar diversos movimentos involuntários, tendo como base um desbalanço neuroquímico do circuito motor que envolve os gânglios da base. As discinesias podem ser classificadas em tremores, coreia, distonia, de acordo com sua frequência e abrangência. Diversas doenças neurológicas podem apresentar discinesias, incluindo a discinesia tardia, PD, Huntington (Aquino and Lang 2014; Kobylecki, et al. 2014; Aquino and Fox 2015). Na PD, as discinesias, aparecem como resultado de uma hiperativação da via direta pelos D1R, desinibindo o tálamo e resultando em movimentos involuntários. As discinesias também podem ser induzidas através da administração de várias classes de fármacos, de antagonistas dopaminérgicos, como o haloperidol, de depletores de dopamina, como a reserpina, de colinomiméticos e de agentes anticolinesterásicos, como a pilocarpina e a tacrina, respectivamente (Steinpreis and Salamone 1993; Mayorga, et al. 1997; Collins, et al. 2010).

De grande importância, ainda, o uso crônico da L-DOPA, o principal fármaco usado para aliviar os sintomas motores em pacientes com a PD, pode induzir essas flutuações motoras, mais conhecidas como discinesias induzida por L-DOPA, do inglês *L-DOPA-Induced Dyskinesias* (LID) (Bhide, et al. 2013). Por essa limitação no tratamento com a L-DOPA é interessante investigar, não só opções terapêuticas para a PD, como substâncias que diminuam as discinesias para serem usadas concomitantes à L-DOPA, a fim de prolongar seu uso.

Figura 3. Os circuitos neurais dos gânglios basais responsáveis pela movimentação.

Normal (A), na PD (B) e nas discinesias (C). Gpe, globo pálido externo; NST, núcleo subtlâmico; GPi, globo pálido interno; SNr, substância negra parte reticulada; SNc substância negra parte compacta; D1, receptor de dopamina D1R; D2, receptor de dopamina D2R. Flechas azuis = via Dopaminérgica. Flechas pretas = via Glutamatérgica. Flechas vermelhas = via GABAérgica. Adaptado de (Bravo et al., 2014).

Como comentado anteriormente, a PD não envolve somente a transmissão dopaminérgica, e a modulação do sistema adenosinérgico foi recentemente apontada como uma potencial estratégia de atenuação dos sintomas parkinsonianos. Uma explicação para esse potencial terapêutico baseia-se na distribuição cerebral dos receptores do nucleosídeo adenosina, A₁ e A_{2A}, que são amplamente expressos no estriado (Palmer and Stiles 1995) e na capacidade desses receptores em formar oligômeros entre si e entre receptores de outros neurotransmissores, como os de dopamina e os de glutamato (Fuxe, et al. 2005; Ciruela, et al. 2006; Fernández-Dueñas, et al. 2012). Os receptores A₁R e A_{2A}R modulam antagonisticamente a união dos ligantes e características funcionais dos receptores dopaminérgicos D1R e D2R, respectivamente (Ferré, et al. 1992; Ferre, et al. 1996). Os receptores A_{2A}R estão colocalizados com os receptores D2R nos neurônios GABAérgico da via indireta enquanto os A₁R e o receptor D1R são co-localizdos nos neurônios GABAérgicos da via direta (figura 4) (Ferre, et al. 1996).

Figura 4. Co-localização dos receptores de adenosina e dopamina.

Os receptores de dopamina e adenosina encontram-se co-localizados no estriado onde podem modular respostas motoras. A₁, receptor de adenosina A₁; A_{2A}, receptor de adenosina A_{2A}; D1, receptor de dopamina D1; D2, receptor de dopamina D2; DA, dopamina; ENK, encefalina; GABA, ácido gamma-aminobutírico; Glu, glutamato; GPe, globo pálido externo; GPi, globo pálido interno; SP, substânica P. Adaptado de (Blum et al., 2003).

Sendo assim, crescentes evidências demonstram que o desbalanço entre esses receptores está intimamente ligado ao desenvolvimento de algumas enfermidades, como a doença de Parkinson e a esquizofrenia. Dessa forma, o estudo da interação dos receptores de adenosina constitui uma nova oportunidade no desenvolvimento farmacológico para intervenção terapêutica.

1.2 TRANSMISSÃO PURINÉRGICA

As purinas são uma classe de moléculas orgânicas essenciais para as células e são constituídas pelas bases nitrogenadas adenina e guanina. Compõem a estrutura das purinas, um acúcar de cinco carbonos, a ribose, desta forma constituindo um nucleosídeo (base nitrogenada e ribose) e um, dois ou três fosfatos, constituindo então os nucleotídeos. Portanto, as purinas compreendem os nucleotídeos adenosina-5'trifosfato (ATP), adenosina-5'-difosfato (ADP), adenosina-5'-monofosfato (AMP), guanosina-5'-trifosfato (GTP), guanosina-5'-difosfato (GDP), guanosina-5'monofosfato (GMP), os nucleosídeos adenosina, inosina e guanosina, as bases nitrogenadas adenina, guanina, hipoxantina e ainda seus metabólitos xantina e ácido úrico. São moléculas amplamente encontradas dentro das células de animais e plantas. Os nucleotídeos purínicos intracelulares foram identificados primeiramente como componentes estruturais dos ácidos nucléicos, mas também apresentam funções importantes no metabolismo energético, na biossíntese de macromoléculas e na constituição de coenzimas. Além disso, os nucleotídeos cíclicos desempenham papeis como segundos-mensageiros (Lippman 1941).

As purinas também apresentam efeitos extracelulares e no cérebro já foram evidenciadas por ter ação como neurotransmissores e neuromoduladores. Ainda que existam evidências sobre os efeitos extracelulares das purinas derivadas da guanina (DG), mecanismos de captação e liberação, e metabolização extracelular das DG, não há receptores identificados para as DG (detalhado a seguir). Por outro lado, os efeitos extracelulares e os alvos moleculares das purinas derivadas da adenina estão bem estabelecidos e caracterizados. Para as purinas derivadas da adenina já estão descritas duas famílias de receptores, os do tipo P1 e P2. Os receptores pertencentes à família P2 são receptores de ATP e ADP, e são subdivididos em P2X (receptores ionotrópicos) e

P2Y (receptores metabotrópicos acoplados às proteínas G) (Burnstock 2007). Neste estudo, iremos abordar com mais detalhes as funções e modulação dos receptores P1.

Os receptores da família P1 são receptores metabotrópicos para adenosina, e são divididos em quatro subtipos: A₁, A_{2A}, A_{2B} e A₃ (Fredholm, et al. 2005). Os receptores A₁ são acoplados à proteína Gi levando a uma diminuição da atividade da adenilato ciclase e consequente diminuição nos níveis de AMP cíclico intracelular e são expressos em todo o Sistema Nervoso Central (SNC), com grande densidade no estriado, hipocampo, córtex cerebral e tálamo, enquanto que os receptores A_{2A} são acoplados à proteína Gs, levando ao aumento dos níveis de AMP cíclico. São principalmente expressos no estriado, núcleo accumbens, hipocampo e córtex cerebral. Os receptores A_{2B} também são acoplados à proteína Gs, mas são pouco expressos no cérebro, enquanto os receptores A₃ são moderadamente expressos no cerebelo e hipocampo (Palmer and Stiles 1995; Burnstock 2007).

Dos receptores de adenosina conhecidos, os receptores A_1 e A_{2A} são os principais responsáveis pelos efeitos centrais da adenosina (Dunwiddie and Masino 2001). A estimulação do A_1R pré-sináptico diminui a excitabilidade neuronal e a atividade sináptica, além de diminuir a probabilidade de liberação de neurotransmissores como o glutamato, dopamina, serotonina, noradrenalina e acetilcolina. Por outro lado, o $A_{2A}R$ é um receptor excitatório e está expresso principalmente em regiões dopaminérgicas. Alguns estudos prévios demonstraram evidências de uma interação antagônica entre o A_1R e o $A_{2A}R$ ao modular a liberação de glutamato no estriado e hipocampo (O'Kane and Stone 1998; Lopes, et al. 2002; Quarta, et al. 2004).

Oligomerização dos receptores de adenosina

O entendimento sobre a fisiologia e farmacologia dos receptores acoplados à proteína G (do inglês, *G protein-coupled receptors*, GPCR) tem mudado nas últimas duas décadas. Isso se deve às crescentes evidências de que eles formam homômeros (homo-oligomerização, de mesmo GPCRs) e heterômeros (hetero-oligmerização de GPCRs diferentes). Essa oligomerização induz mudanças nas propriedades bioquímicas dos GPCRs. Já está bem estabelecido que os receptores de adenosina podem formar oligômeros entre si e com receptores para outros neurotransmissores, como receptores de dopamina (Agnati, et al. 2005; Fuxe, et al. 2013; Ciruela, et al. 2006). Sabe-se que os receptores A₁ e A_{2A} formam oligômeros funcionais entre si, e esse heterômero A₁R-A_{2A}R tem um papel importante modulando o controle da função córtico-estriatal (Ciruela, et al. 2006). Esse controle se dá através da ativação dos A₁R ou A_{2A}R présinápticos, que depende da concentração de adenosina, sendo que uma concentração baixa ativaria o A₁R enquanto uma concentração alta ativaria o A_{2A}R, resultando em uma menor ou maior liberação de glutamato, respectivamente (Ciruela, et al. 2006).

Entretanto, o heterômero mais estudado é o que envolve os receptores A_{2A} e os receptores D2 de dopamina. Existem evidências que indicam que o oligômero $A_{2A}R$ -D2R possui a estrutura de um heterotetrâmero, formado por dois homômeros de $A_{2A}R$ e dois homômeros de D2R. GPCRS contém estruturalmente 7 domínios transmembrana (TMs), e já foi demonstrado que peptídeos que se ligam nos TMs acabam interferindo na formação de oligômeros. Dessa forma, foi demonstrado que homodímeros de $A_{2A}R$ e D2R interagem entre si pelo TM6, enquanto o heteromêro $A_{2A}R$ -D2R apresentam uma interação simétrica com os TM4-5/TM5-4 (Navarro, et al. 2018). Essa formação explicaria porque tanto agonistas como antagonistas de $A_{2A}R$ além de afetar alostericamente a união (*binding*), também modulam a eficácia intrínseca (capacidade

de um agonista de induzir resposta, independente da afinidade do receptor) de um agonista D2R (Bonaventura, et al. 2015).

Por essa interação com os D2R, antagonistas de $A_{2A}R$, principalmente, têm sido sugeridos como um potencial tratamento para os danos motores relacionados à PD. Diversos estudos pré-clínicos demonstraram a eficácia de antagonistas $A_{2A}R$ em variados modelos *in vitro* e *in vivo* da PD (Vallano, et al. 2011; Jenner 2014; Pinna 2014). Além disso, estudos utilizando modelos animais que mimetizam tremores relacionados à PD demonstram que a utilização farmacológica de antagonistas de receptores de adenosina provocam melhoras nesse aspecto motor (Gandía, et al. 2015; Salamone, et al. 2013). Dentre os antagonistas $A_{2A}R$, a Istradefilina (KW6002) já foi aprovada para uso clínico no Japão e, recentemente, nos Estados Unidos da América, após resultados de ensaios clínicos até a fase III (Kondo, Mizuno, and Group 2015; Mizuno, et al. 2010; Hussar 2020; Dungo and Deeks 2013).

Guanosina

As purinas derivadas da guanina também foram inicialmente identificadas pelos seus papeis intracelulares como a constituição de estrutura de ácidos nucleicos e participação no metabolismo energético. No entanto, grande destaque ao papel dos DG foi devido à identificação de sua função como moduladores da atividade das proteínas-G. As proteínas-G desempenham um papel fundamental na transdução de sinal, acoplando receptores transmembrana, ou GPCR aos seus efetores intracelulares. Além das proteínas-G heterotriméricas, os nucleotídeos GTP e GDP modulam também a atividade das proteínas-G monoméricas (*small G-proteins*).

Além desta importante função intracelular, foi identificado principalmente no SNC, que também os nucleosídeos e os nucleotídeos derivados da guanina poderiam

23

exercer uma função extracelular, atuando como mediadores da sinalização intercelular. Sobre as purinas DG, apesar da guanina também apresentar efeitos como um neuromodulador (Di Liberto, et al. 2016), muita atenção tem sido dada ao efeito biológico da guanosina (Lanznaster, et al. 2016; Tasca, et al. 2018). Ainda que não tenha sido completamente caracterizado um possível receptor específico para a guanosina, são notáveis as evidências que demonstram os efeitos neuroprotetores dessa molécula.

Diversos estudos vêm descrevendo efeito protetor da guanosina em modelos de neurotoxicidade e de doenças neurológicas, tanto in vitro quanto in vivo. A guanosina é considerada um neuromodulador e tem ação sobre a excitotoxicidade glutamatérgica, já que uma das suas ações bem evidenciadas é promover o aumento da captação de glutamato, desta forma reduzindo os níveis excitotóxicos de glutamato na fenda sináptica (para revisão, (Schmidt, et al. 2010; Lanznaster, et al. 2016; Tasca, et al. 2018). Estudos in vivo, demonstram a guanosina exercendo efeitos anti-convulsivante, antinociceptivo, ansiolítico e antidepressivo (Lara, et al. 2001; Bettio, et al. 2012; Bettio, et al. 2014; Almeida, et al. 2016). Os estudos in vitro contribuíram para a demonstração dos mecanismos pelos quais a guanosina exerce suas ações, como o aumento da captação de glutamato (Frizzo, et al. 2005), a redução do dano oxidativo causados pelo peptídeo β-amiloide (Tarozzi, et al. 2010) e pelo bloqueio da atividade dos complexos da cadeia respiratória mitocondrial (Dal-Cim, et al. 2012). Além disso, a guanosina apresenta efeitos anti-inflamatórios, exercidos pela inibição da expressão do fator nuclear kappa B (NFk-B) e da óxido nítrico sintase induzível (iNOS) (Dal-Cim, et al. 2013). A guanosina não apresenta toxicidade às células neurais mesmo quando em altas concentrações (Molz, Dal-Cim, and Tasca 2009). Interessantemente, os principais efeitos neuroprotetores e tróficos da guanosina não são afetados por uma prévia incubação de bloqueadores do transporte de nucleosídeos, mostrando que o efeito não depende do transporte ou do acúmulo intracelular desse nucleosídeo (Giuliani, et al. 2015; Decker, et al. 2019; Oleskovicz, et al. 2008), ou seja, que a guanosina exerce suas ações protetoras e tróficas através da interação com alvos moleculares com um sítio de interação extracelular.

Guanosina e os receptores de adenosina

Mesmo com crescente evidência dos efeitos extracelulares e neuroprotetores da guanosina, ainda não existe um receptor clonado e sequenciado específico para essa purina e seus mecanismos de ação ainda não estão totalmente compreendidos. Estudos de união de guanosina a proteínas em preparações de membrana de cérebro de ratos sugeriram que a guanosina interage com um receptor diferente dos conhecidos receptores de adenosina (Traversa, et al. 2002; Traversa, et al. 2003). No entanto, diversos efeitos biológicos da guanosina são afetados por ligantes seletivos dos receptores de adenosina.

Em cultura de neuroblastoma SH-SY5Y, demonstrou-se que o efeito da guanosina frente ao estresse oxidativo mitocondrial é dependente da ativação dos receptores purinergicos A_1 e A_{2A} , uma vez que os antagonistas destes receptores, DPCPX (8-Ciclopentil-1,3-dipropilxantina) e ZM241385, respectivamente, aboliram o efeito protetor observado (Dal-Cim, et al. 2012). Em estudo avaliando o efeito neuroprotetor da guanosina em fatias hipocampais submetidas à privação de glicose e oxigênio (PGO), foi observado que o bloqueio de A_1R com o antagonista DPCPX reverteu o efeito da guanosina em diminuir a produção de EROs e manter o potencial de membrana mitocondrial, porém não teve efeito sobre a captação de glutamato recuperada pela guanosina (Dal-Cim, et al. 2013). Recentemente, em um modelo de

traumatismo encefálico em ratos, foi demonstrado que a guanosina protege a disfunção mitocondrial, e que esse efeito é abolido com um pré-tratamento com DPCPX (Gerbatin, et al. 2019). Interessantemente, quando o pré-tratamento é feito com SCH58261, um antagonista $A_{2A}R$, o efeito da guanosina não é alterado. Esses resultados sugerem que o A_1R , e não o $A_{2A}R$ estaria relacionado ao efeito da guanosina. Como ainda há controvérsias entre os efeitos da guanosina e os receptores de adenosina, e os mesmos estão implicados em abordagens terapêuticas na PD, é de grande importância investigar essa interação. Além disso, outra forma de encarar esses resultados seria através da possibilidade da guanosina modular os oligomêros dos receptores de adenosina (Tasca, et al. 2018), principalmente no heterômero A_1R-A_2A . De fato, já foi proposto que o heterômero A_1R-A_2A pode ser um alvo terapêutico em potencial para a PD (Fernández-Dueñas, et al. 2017).

Guanosina e modelos da PD

Em relação a estudos abordando os efeitos da guanosina sobre modelos da PD, Giuliani e colaboradores (2012) mostraram um efeito neuroprotetor da guanosina, *in vitro*, frente à toxicidade induzida pela 6-OHDA em células SH-SY5Y, porém sem evidenciar os mecanismos envolvidos. Em outro estudo *in vitro*, utilizando células neuronais PC12, a guanosina reverteu a disfunção mitocondrial causada pelo MPP+, metabólito ativo do MPTP, uma neurotoxina amplamente utilizada em modelos de PD (Li, et al. 2014). Dados do nosso laboratório também mostraram evidências do papel neuroprotetor da guanosina em um modelo *in vitro* da PD. A incubação de fatias de estriado com 6-OHDA induz à redução da viabilidade celular, aumento de EROs, perda do potencial de membrana mitocondrial e diminuição dos níveis de ATP, parâmetros estes que foram prevenidos com a co-incubação de guanosina (Marques, Massari, and Tasca 2019).

Porém, ainda há poucos estudos mostrando um potencial in vivo da guanosina frente a modelos da PD. Su e colaboradores foram os primeiros a demonstrar que a guanosina teria efeito em um modelo de parkinsonismo. Neste estudo, usaram como modelo de PD a administração de um inibidor de proteassoma, e trataram os ratos diariamente com guanosina (8 mg/kg) durante 8 semanas. Após o tratamento a guanosina foi capaz de melhorar a bradiscinesia e aumentar as células positivas para tirosina hidroxilase (marcador de células dopaminérgicas) no estriado (Su, et al. 2009). Em 2017 nosso grupo também evidenciou efeitos da guanosina in vivo em distintos modelos de parkinsonismo. No modelo de indução de discinesias orofaciais pela reserpina, a guanosina administrada oral e agudamente (7,5 mg/kg), reverteu os tremores orofaciais e o estado cataléptico induzido pela reserpina (Massari et al., 2017). Com o mesmo protocolo de tratamento, a guanosina também foi capaz de exercer uma significante atenuação das discinesias provocadas pelo tratamento com L-DOPA em animais injetados unilateralmente com 6-OHDA na região estriatal (Massari, et al. 2017). E no protocolo de infusão estriatal unilateral de 6-OHDA, a administração de guanosina aumentou de forma dependente de dose as contracões contralaterais induzidas por doses sub-ativas de L-DOPA, ou seja, guanosina potencializou os efeitos da L-DOPA, indicando uma ação pró-dopaminérgica sem aumentar os efeitos colaterais da L-DOPA (Massari et al., 2017). Além disso, em um protocolo para estudo de sintomas não-motores da PD, nosso grupo demonstrou que o tratamento com guanosina (7,5 mg/kg) previne o comportamento tipo-antidepressivo em ratos infundidos com 6-OHDA no estriado dorsolateral (Margues, et al. 2019).

Desta forma, considerando o potencial da guanosina em atenuar danos que estão bem caracterizados na PD e a possível interação da guanosina com os receptores A_1 e A_{2A} , pretendemos com este estudo contribuir para a compreensão dos mecanismos relacionados a esta purina e seus efeitos neuroprotetores e antiparkinsonianos.

2 JUSTIFICATIVA

Com um grande índice de prevalência da PD em toda população mundial e maior ainda na população acima de 60 anos, tendo em vista que a incidência da doença aumenta com a idade (fator de risco mais importante), a projeção é que o número de pessoas que sofrem dessa doença vá aumentar constantemente no futuro. A terapia dominante para PD se dá através da reposição de dopamina (L-DOPA), utilizada desde os anos 60. Apesar de apresentar alívio dos prejuízos motores, sua eficácia é gradualmente perdida, além de apresentar um grande número de efeitos colaterais como desenvolvimento de movimentos involuntários (discinesias), distúrbios psíquicos e comportamentais, o que justifica a busca por novos alvos e novos fármacos para o tratamento.

Considerando a alta incidência da PD e os debilitantes efeitos colaterais impostos pelo tratamento de escolha, é de grande importância o estudo de uma possível estratégia terapêutica de atenuação dos distúrbios motores e dos processos neurodegenerativos referente aos mecanismos patológicos da PD. Nesse contexto, sabese que a guanosina tem demonstrado efeito neuroprotetor em modelos experimentais de diversas doenças neurodegenerativas. Em modelos da PD, a guanosina já demonstrou diminuir sintomas motores induzidos pela reserpina ou contra a discinesia induzida por L-DOPA, além de mostrar proteção contra danos celulares induzidos por toxinas como a 6-OHDA e o MPTP. Apesar desse potencial antiparkinsoniano da guanosina em modelos experimentais da PD, ainda não há um estudo que avalie o(s) alvo(s) molecular(es) dos efeitos da guanosina nessa doença.

Sendo assim, neste tese foi utilizado o modelo de indução de tremores orofaciais para avaliar o papel dos receptores $A_1 e A_{2A}$ de adenosina no efeito motor da guanosina *in vivo* e a incubação com 6-OHDA em fatias de estriado para avaliar, *in vitro*, o envolvimento desses receptores no efeito neuroprotetor da guanosina. Além disto, esta Tese utilizou um protocolo de transfecção heteróloga dos receptores de interesse para estudar a interação dos oligômeros de receptores de adenosina. A compreensão de como a guanosina interage com o os receptores de adenosina e com o heterômero A₁R-A_{2A}R contribui para o entendimento dos mecanismos de desenvolvimento da PD e a indicação de um possível alvo farmacológico.

3 OBJETIVOS

3.1 OBJETIVO GERAL

Estudar os efeitos da guanosina sobre alterações comportamentais e bioquímicas em modelos experimentais que mimetizam eventos celulares e sintomas motores da doença de Parkinson, avaliando a participação dos receptores de adenosina $A_1R e A_{2A}R$ e a interação da guanosina com o heterômero A_1R - $A_{2A}R$.

3.2 OBJETIVOS ESPECÍFICOS

3.2.1 Investigar o papel dos A_1R e $A_{2A}R$ nos efeitos antiparkinsonianos da guanosina no modelo de tremor orofacial induzida pela reserpina;

3.2.2 Avaliar o papel dos A_1R e $A_{2A}R$ no efeito neuroprotetor da guanosina no protocolo *in vitro* de toxicidade da 6-OHDA em fatias estriatais de rato;

3.2.3 Avaliar a modulação da união e/ou sinalização celular dos A_1R e/ou $A_{2A}R$ e do heterômero A_1R - $A_{2A}R$ como possível sítio de interação da guanosina, em um sistema de transfecção heteróloga de receptores.

4 MATERIAL E MÉTODOS

Os materiais e métodos utilizados para realização dos experimentos contidos nesta tese encontram-se nos respectivos capítulos da mesma, descritos na sessão dos resultados.

5 RESULTADOS

Os resultados desta tese estão divididos na forma de capítulos e serão apresentados na forma de 3 artigos científicos, seguindo a distribuição abaixo:

•Capítulo I: "O papel dos receptores A_1 e A_{2A} de adenosina na redução de tremores orofacias pela guanosina em animais tratados com reserpina";

•Capítulo II: "Os receptores A_1 e A_{2A} de adenosina estão envolvidos na proteção pela guanosina contra o dano oxidativo e a disfunção mitocondrial induzida pela 6-OHDA em fatias de estriado";

•Capítulo III: "Avaliação do heterômero dos receptores $A_1 e A_{2A}$ de adenosina como o alvo molecular para a guanosina".

CAPÍTULO I

O papel dos receptores de adenosina na redução de tremores orofacias pela guanosina em animais tratados com reserpina

Este capítulo apresenta os resultados relacionados ao objetivo específico I desta tese. Avaliamos o papel dos receptores de adenosina no efeito neuroprotetor e anti-tremor da guanosina em um modelo *in vivo* da PD. Parte deste capítulo (resultados com os animais geneticamente modificados A_{2A}R-KO) foi desenvolvido durante o estágio de doutorado sanduíche (PDSE - CAPES) realizado no *Neuropharmacology and Pain Research Group,* na *Universitat de Barcelona*, em Barcelona – Espanha, sob orientação do Prof. Dr. Francisco Ciruela.

Os resultados estão apresentados em forma de artigo científico intitulado "Involvement of adenosine A1 and A2A receptors on guanosine-mediated anti-tremor effects in reserpinized mice" aceito para publicação no periódico Purinergic Signalling.
ORIGINAL ARTICLE

Involvement of adenosine A₁ and A_{2A} receptors on guanosine-mediated anti-tremor effects in reserpinized mice

C. M. Massari^{1,2} • L. C. Constantino^{2,3} • N. F. Marques^{1,2} • L. B. Binder^{2,3} • M. Valle-León^{4,5} • M. López-Cano^{4,5} •

8 V. Fernández-Dueñas^{4,5} · F. Ciruela^{4,5} · C. I. Tasca^{1,2,3}

10 Received: 24 April 2020 / Accepted: 16 July 2020

11 $$\odot$$ Springer Nature B.V. 2020

12 Abstract

 $\frac{3}{2}$

4

5

6

 $\overline{7}$

9

Parkinson's disease (PD) signs and symptoms regularly include tremor. Interestingly, the nucleoside guanosine (GUO) has 13already proven to be effective in reducing reserpine-induced tremulous jaw movements (TJMs) in rodent models, thus becoming 1415a promising antiparkinsonian drug. Here, we aimed at revealing the mechanism behind GUO antiparkinsonian efficacy by 16assessing the role of adenosine A_1 and A_{2A} receptors (A_1R and $A_{2A}R$) on GUO-mediated anti-tremor effects in the reserpinized mouse model of PD. Reserpinized mice showed elevated reactive oxygen species (ROS) production and cellular membrane 17damage in striatal slices assessed ex vivo and GUO treatment reversed ROS production. Interestingly, while the simultaneous 18administration of sub-effective doses of GUO (5 mg/kg) and SCH58261 (0.01 mg/kg), an A_{2A}R antagonist, precluded reserpine-19 20induced TJMs, these were ineffective on reverting ROS production in ex vivo experiments. Importantly, GUO was able to reduce TJM and ROS production in reserpinized mouse lacking the $A_{2A}R$, thus suggesting an $A_{2A}R$ -independent mechanism of GUO-21mediated effects. Conversely, the administration of DPCPX (0.75 mg/kg), an A1R antagonist, completely abolished both GUO-22mediated anti-tremor effects and blockade of ROS production. Overall, these results indicated that GUO anti-tremor and 23antioxidant effects in reserpinized mice were A_1R dependent but $A_{2A}R$ independent, thus suggesting a differential participation 24of adenosine receptors in GUO-mediated effects. 25

26 Keywords Guanosine · Tremor · Reserpine · Adenosine receptors

2728 Introduction

01

29 Parkinson's disease (PD) is the second most common neurode-30 generative disorder worldwide. It is mainly characterized by the

> C. I. Tasca carla.tasca@ufsc.br

- ¹ Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
 - ² Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
 - ³ Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
 - ⁴ Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultatde Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
 - ⁵ Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain

progressive loss of dopaminergic neurons within the 31nigrostriatal pathway, which leads to a debilitating motor dys-32 function [1]. The cardinal motor symptoms of Parkinsonism 33 include akinesia, bradykinesia, rigidity, and a resting tremor 34 [1]. Tremor can be defined as "a rhythmic and involuntary 35oscillation of a body part, caused by reciprocal innervations 36 of a muscle, which leads to repetitive, stereotyped contractions 37 with regular frequency and amplitude" [2]. The tremulous jaw 38 movement (TJM) behavior is an extensively validated rodent 39model of tremor [3]. TJM is characterized by rapid vertical 40 deflections of the lower jaw that resemble chewing but are 41 not directed at any particular stimulus [4]. TJMs are induced 42by conditions that also lead to parkinsonism in humans (i.e., 43striatal dopamine depletion, dopamine antagonism, and 44 cholinomimetic activity) [5]. Among them, reserpine, an inhib-45itor of vesicular monoamine transporter (VMAT-2) that causes 46monoamine neurotransmitters depletion, induces motor distur-47bances as hypolocomotion, muscle rigidity, and TJM. 48 Therefore, reserpine administration can be used as a model 49for screening drugs with potential antiparkinsonian effect [6]. 50

The purine nucleoside guanosine (GUO), which is able to 51cross the blood-brain-barrier [7], is an important extracellular 52signaling molecule at the central nervous system [8]. 5354Accordingly, GUO has been shown to display trophic effects in neural cells and significant neuroprotective effects [9]. 55Nonetheless, GUO also exerts some behavioral effects in ro-5657dents. In line with this, it has been reported that GUO can display anticonvulsive [10], antinociceptive [11], anxiolytic-58like [12], and antidepressant-like effects [13]. For these rea-5960 sons, we have investigated the potential effect of GUO in 61animal models of parkinsonism. Interestingly, in unilaterally 62 6-hydroxidopamine-(6-OHDA)-lesioned rats, GUO increased 63L-DOPA sub-maximal response and decreased L-DOPAinduced dyskinesia (LID). Similarly, GUO also reversed 64 reserpine-induced TJM and catalepsy in mice [14], showing 65it may be effective for reversing parkinsonian motor impair-66 67 ments. Besides that, GUO also showed protective effects 68 against in vitro cellular models of PD [15–17].

69 Although the antiparkinsonian-like effects of GUO have been already evaluated, the mechanism of action of this mol-70ecule is still unknown. Based on some data reporting anti-71ischemic effects of GUO in hippocampal slices and cortical 7273astrocytes, a possible role for adenosine receptors has been suggested [18, 19]. In fact, adenosinergic transmission has 74been pointed out as a promising therapeutic strategy for motor 7576symptoms of PD [20, 21]. This therapeutic potential is mainly due to the fact that adenosine A1 and A2A receptors (A1R and 77A_{2A}R) are largely expressed in the striatum and have a key 7879role in modulating dopaminergic neurotransmission [22-28].

Here, we aimed to investigate the potential role of A_1R and A_{2A}R mediating GUO effects in the reserpinized mice by evaluating the behavioral and biochemical effects of GUO in the presence of selective A_1R and $A_{2A}R$ antagonists.

84 Materials and methods

85 Animals

86 Male Swiss mice (central animal facility of Federal University of Santa Catarina) and A_{2A}R knock-out (A_{2A}R^{-/-}) mice de-87 veloped in a CD-1 genetic background (animal facility of 88 89 University of Barcelona) (30-50 g) were used. Animals were housed and tested in compliance with the guidelines described 90 in the Guide for the Care and Use of Laboratory Animals [29] 9192and following the European Union directives (2010/63/EU), FELASA and ARRIVE guidelines. The animals were conven-93 tionally housed in groups of 4 or 5 in a temperature-controlled 94(22 °C) and humidity-controlled (66%) environment under a 9596 12-h/12-h light/dark cycle, where food and water intake was ad libitum. The study protocol was approved by the Ethical 97 Committee on Animal Use and Care of the University of 98

Barcelona (CEEA/UB) and Federal University of Santa99Catarina (CEUA/UFSC, Protocol PP00955).100

Drugs

Reserpine, guanosine (GUO), 1,3-dipropyl-8-102cyclopentylxanthine (DPCPX) - A_1R antagonist, 5-amino-1037-(2-phenylethyl)-2-(2-furyl)-pyrazolo(4,3-e)-1,2,4-104triazolo(1,5-c)pyrimidine (SCH58261) - $A_{2A}R$ antagonist,105were from Sigma Chemical, St. Louis, MO.106

Reserpine treatment

To induce the TJM behavior, we use a previous standardized108protocol [30, 31], where mice were injected twice (every other109day) with reserpine (1.0 mg/kg) subcutaneously (s.c.).110Reserpine was dissolved in glacial acetic acid and then diluted111to a final concentration of 0.1% acetic acid with saline (NaCl1120.9%). Controls were injected with a saline in 0.1% acetic acid113solution.114

- Pharmacological treatment 115
- **Guanosine treatment**

GUO was dissolved in saline (NaCl 0.9%) and administered117in effective or sub-effective doses (7.5 or 5 mg/kg, respective-118ly; [14]) by oral route (p.o.) 20 min prior the behavioral tests119and 24 h after the last injection of reserpine. GUO doses were120selected from our own group experience [14]. Controls were121treated with saline (p.o.).122

A2AR experiments

To evaluate the involvement of A2AR on GUO-induced 124125antidyskinetic effect, a dose response of SCH58261 was initially performed. SCH58261 was dissolved in 126dimethylsulfoxide (DMSO) then in saline to the final desired 127concentrations, and the behavioral analysis was carried out 128after 30 min. To analyze a putative potentiation effect with 129GUO and SCH58261 treatment, they were administered in 130their sub-effective doses (5 mg/kg p.o. and 0.01 mg/kg i.p., 131respectively) with 10 min treatment interval. Behavioral tests 132were conducted 30 min after SCH58261 and 20 min after 133GUO treatments and 24 h after the last injection of reserpine. 134

In the $A_{2A}R$ -KO mice protocol, mice were treated with 135 GUO (5 or 7.5 mg/kg) 20 min prior the tests and 24 h after 136 the last injection of reserpine. 137

A₁R experiments

To evaluate the involvement of A_1R on GUO-induced 139 antidyskinetic effect, DPCPX (0.75 mg/kg; dissolved in 140

107

116

123

138

187

197

205

218

225

226

DMSO then in saline) was injected via intraperitoneal (i.p.)
30 min prior the GUO active dose administration (7.5 mg/kg,

p.o.). The dose of DPCPX was selected on the basis of liter-

+5 p.o.j. The dose of DTCTA was selected on u

ature data on oral tremor [32].

145 Tremulous jaw movements

Tremulous jaw movements (TJMs) were defined as rapid ver-146tical deflections of the lower jaw that resembled chewing but 147148were not directed at any particular stimulus [4]. This protocol was initially standardized to rats [4, 33] and we adapted the 149protocol to mice based on previous published studies [30, 31]. 150151To quantify the occurrence of this orofacial dyskinesia, mice 152were placed individually in a glass cylinder (13 cm diameter) and hand-operated counters were employed to score TJM fre-153154quencies. Mirrors were placed under the floor and behind the back wall of the cylinder to allow observation when the ani-155mal was faced away from the observer. If TJM occurred dur-156157ing a period of grooming, they were not taken into account. 158The incidence of these oral movements was measured contin-159uously for 10 min.

160 Brain slices

161Animals were euthanized by decapitation and brains were quickly removed and the cerebral cortex, hippocampus, and 162striatum were rapidly dissected in ice-cold KREBS ringer 163164buffer (KRB) (122 mM NaCl, 3 mM KCl, 1.2 mM MgSO₄, 1651.3 mM CaCl₂, 0.4 mM KH₂PO₄, 25 mM NaHCO₃, and 10 mM D-glucose, bubbled with 95% O₂/5% CO₂ up to 166167pH 7.4) [19]. For the biochemical assays, slices (0.4 mm) were prepared using a Mcllwain Tissue Chopper (The Mickle 168 169Laboratory Engineering Co. ltd., England) and separated in 170KRB at 4 °C. After sectioning, slices were incubated in KRB 171for 30 min, at 37 °C, for recovery.

172 ROS levels

ROS production was measured by using the molecular probe 1731742,7-dichlorofluorescein diacetate (H₂DCFDA, Sigma Chemical, St. Louis, MO.). H₂DCFDA diffuses through the 175cell membrane and is hydrolyzed by intracellular esterases to 176177the non-fluorescent form 2',7'-dichlorofluorescein (DCFH). DCFH reacts with intracellular ROS (such as H₂O₂) to form 178179dichlorofluorescein (DCF), a green fluorescent dye. DCF 180fluorescence intensity is proportional to the amount of ROS. Brain slices were incubated with 80 µM of H₂DCFDA for 18130 min at 37 °C and then washed in KRB. Fluorescence was 182read with the multifunctional microplate reader Infinite M200 183184(Tecan Group Ltd., Mannedorf, Switzerland), using excitation and emission wavelengths of 480 and 525 nm, respectively 185[19]. 186

Membrane integrity evaluation

Membrane integrity was assessed by evaluating the uptake of 188 the fluorescent exclusion dye, propidium iodide (PI, Sigma 189Aldrich, St Louis, MO, USA), which is a polar compound that 190 enters only in cells with damaged membranes. Once inside the 191 cells, PI complexes with DNA and emits an intense red fluo-192rescence (630 nm) when excited by green light (495 nm) [34]. 193Slices were incubated with PI (7 µg/mL) for 30 min at 37 °C, 194and then washed with KRB for analysis on fluorescence mi-195croplate reader Infinite M200 from Tecan®. 196

Mitochondrial membrane potential

Mitochondrial membrane potential was measured by using the198molecular probe tetramethylrhodamine ethyl ester (TMRE,199Sigma Chemical, St. Louis, MO.) 100ηM for 30 min at20037 °C. Fluorescence was measured with the multifunctional201microplate reader Infinite M200 from Tecan®, using wave-202lengths of excitation and emission of 550 and 590 ηm, respec-203tively [35].204

MTT reduction assay

Cellular viability in slices was quantified by measuring the 206 reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-207zolium bromide (MTT, Sigma Chemical, St. Louis, MO.) to 208a dark violet formazan product by dehydrogenases. Slices 209were incubated with MTT (0.5 mg/mL) in KRB buffer for 21020 min at 37 °C, the formazan produced was solubilized by 211replacing the medium with 200 µL of DMSO, resulting in a 212colored compound which was quantified spectrophotometri-213cally at a wavelength of 550 nm. Absorbance was measured 214with the multifunctional microplate reader Infinite M200 from 215Tecan®. The results are expressed and normalized as percent-216ages relative to the control conditions. 217

Data analysis

Data are represented as means \pm S.E.M. Normalized data from219multiple experiments were averaged and statistical analysis220was carried out as described in the figure legends. Data with221two groups were analyzed by Student's t test, and other data222used one-way or two-way ANOVA followed by Tukey's post223hoc. Statistical difference was accepted when P < 0.05.224

Results

Guanosine effects on the reserpinized mice

Initially, cortical, hippocampal, and striatal slices were 227 used to biochemical evaluations, as cellular viability of 228

slices. ROS production, mitochondrial membrane poten-229tial, and cell membrane permeabilization. Reserpine ad-230ministration caused no alteration in cortical or hippocam-231pal slices (Fig. 1a-d). In striatal slices, reserpine admin-232233 istration did not alter cellular viability and mitochondrial membrane potential (Fig. 1a, c). However, striatal slices 234235showed an increase of 50% in ROS production (P =0.017) and an increase of 58% in PI incorporation 236(P = 0.046) by reserpine treatment as compared with 237 238control (Fig. 1b, d).

Accordingly, we obtained striatal slices and assessed GUO 239240 effects reversing reserpine-induced ROS production, and PI incorporation. The dose of 7.5 mg/kg of GUO was used based 241on a previous study, in which we described that GUO 242(7.5 mg/kg) decreased TJM frequency in reserpinized mice 243[14]. Interestingly, we could observe that GUO totally re-244 versed reserpine-induced ROS production in striatal slices 245246(P = 0.031), while it failed to block PI incorporation (P =2470.982) (Fig. 2a, b).

Involvement of adenosine A_{2A}R on guanosinemediated TJM and ROS decrease 249

It is known that A_{2A}R antagonism has effects on motor 250disturbances related to PD [32, 36-38]. Therefore, we 251aimed to see if GUO effect of reducing TJM and ROS 252generation in the striatum could be related to antagonism 253of A_{2A}R. Firstly, a *dose-response curve* was performed 254with SCH58261 (Fig. 3a). The highest dose of 255SCH58261 (0.1 mg/kg) fully reversed the TJM by reser-256pine (P = 0.042) while the lowest dose (0.001 mg/kg)257had no effect (P = 0.893). The 0.01 mg/kg dose was 258sub-effective (i.e., presented statistical difference either 259from control or to reserpine group). Then, we evaluated 260the effect of co-treatment of SCH58261 and GUO sub-261effective doses. We previously showed that 5 mg/kg 262 GUO presented a sub-effective effect on reserpine-263induced TJM [14]. The co-administration of sub-264effective doses of SCH58261 (0.01 mg/kg) and GUO 265

b

Q2

Fig. 1 Evaluation of reserpine (Res, 1 mg/kg) neurotoxicity in cortical, hippocampal, and striatal slices. **a** Cellular viability measured by MTT reduction, expressed as percentage of control. **b** ROS measurement through fluorescence of DCF dye. **c** Evaluation of mitochondrial

membrane potential with TMRE fluorescent dye. **d** Membrane integrity evaluation due to PI incorporation. Fluorescence data are shown as arbitrary fluorescent unit. Results are presented as means \pm SEM (**P* < 0.05 vs control; Student's *t* test; *n* = 7)

Fig. 2 Guanosine protective ex vivo effect in reserpinized mice. **a** GUO (7.5 mg/kg) effect on ROS production and **b** cellular membrane permeability through PI incorporation in striatal slices of mice treated

266(5 mg/kg) completely reversed the reserpine-induced orofacial tremor (P = 0.004) (Fig. 3b). Regarding ROS 267generation, treatment with sub-effective dose of 268SCH58261 (0.01 mg/kg), or with sub-effective GUO 269270dose (5 mg/kg), displayed no statistically significant effect of decreasing ROS production (P = 0.111 and 0.553, 271respectively). Co-administration of SCH58261 and GUO 272also showed no significant difference from reserpine-273274treated animals (P = 0.287) (Fig. 3c).

To clarify the role of A_{2A}R on GUO effect in the 275reserpine-induced TJM and striatal ROS production, 276277genetic-modified mice A_{2A}R deficient (A_{2A}R-KO) were used. Animals were subjected to the same protocol of 278reserpine and GUO treatment. The sub-effective GUO 279280dose (5 mg/kg) had no effect against reserpine in these 281 animals, both in the TJM quantification (P = 0.362) and 282 ROS measurement (P = 0.807) (Fig. 4a). On the other hand, GUO at 7.5 mg/kg dose presented an effect of 283284reversing the reserpine induction of TJM (P = 0.017) and ROS increase (P = 0.040) (Fig. 4b), indicating that 285286presence of A2AR is not necessary to GUO effect in reserpinized mice. 287

with reserpine. Results are presented as means \pm SEM.; ${}^{#}P < 0.05$ vs reserpine (two-way ANOVA with Tukey's post hoc test; n = 5)

Involvement of adenosine A₁R on guanosinemediated TJM and ROS decrease 289

To test the involvement of A_1R , 24 h after the last reserpine 290 administration, mice were treated with the A_1R antagonist 291 DPCPX (0.75 mg/kg i.p. [32], 30 min prior the GUO administration. DPCPX treatment did not alter reserpine-induced 293 TJM (P = 0.999), but it completely blocked the effect of 294 GUO on TJM frequency (P = 0.0003) (Fig. 5a). 295

As GUO (7.5 mg/kg) showed effect through reverting ROS 296increase by reserpine, we aimed to see if this effect is related to 297 A_1R . Prior treatment with the A_1R antagonist DPCPX 298 (0.75 mg/kg) did not significantly alter ROS increase induced 299by reserptine (P = 0.383) but it prevented the reversion of 300 GUO (P = 0.912) (Fig. 5b). These data suggest a strong de-301pendence of A1R for GUO behavioral and biochemical 302 effects. 303

Discussion

GUO treatment shows a promising effect on animal models of 305 motor disorders. We already shown that in unilaterally 6-306

Fig. 3 Involvement of $A_{2A}R$ on reserpine-induced TJM and ROS production. **a** Dose-response curve of $A_{2A}R$ antagonist SCH58261 (0.001; 0.01 and 0.1 mg/kg) in reserpine-induced oral tremor (TJM). **b** SCH58261 (0.01 mg/kg) plus GUO (5 mg/kg) effect on reserpine-

induced TJM. **c** SCH58261 (0.01 mg/kg) and GUO (5 mg/kg) effect on ROS increase in striatal slices of reserpinized mice. Results are presented as means \pm SEM (*P < 0.05 vs control; *P < 0.05 vs reserpine; one-way ANOVA with Tukey's post hoc test; n = 8–10)

+

Fig. 4 Effect of guanosine on reserpine-induced TJM and ROS production in $A_{2A}R$ -deficient ($A_{2A}R$ -KO) mice. **a** TJM in mice treated with GUO sub-effective (5 mg/kg) or effective (7.5 mg/kg) doses (n = 6). **b** ROS production in striatal slices of mice treated GUO (5 mg/kg or

307 hydroxidopamine-(6-OHDA)-lesioned rats, GUO increased 308 L-DOPA sub-maximal response and decreased LID. Also, GUO reversed reserpine-induced TJM and catalepsy in mice 309 310[14]. In this study, we investigated the mechanisms behind this GUO effect of reducing the orofacial tremor and the 311 312 striatal oxidative damage evoked by reserpine, by assessing 313 the possible involvement of adenosine receptors in the GUO 314effects.

The mechanism related to the induction of oral tremor is multifaceted, with multiple neurotransmitters, including GABA, serotonin, adenosine, and acetylcholine, interacting with dopamine in the regulation of basal ganglia motor functions [4, 39–43]. In this study, we focused in a possible therapeutic approach towards adenosinergic transmission.

A_{2A}R antagonists have emerged as a potential treatment of
 parkinsonian motor impairments as they can exert allosteric
 modulations upon D2R ligands [44]. Also, A_{2A}R is highly

Fig. 5 Effect of A₁R blockade on reserpine-induced TJM and ROS production in mouse striatal slices. **a** Effect of A1R antagonist DPCPX (0.75 mg/kg i.p.) plus GUO (7.5 mg/kg) on TJM of mice. **b** Evaluation of GUO (7.5 mg/kg) plus DPCPX (0.75 mg/kg) effect on ROS increase in

7.5 mg/kg, n = 3). Results are presented as means ±SEM (*P < 0.05 vs control; $^{\#}P < 0.05$ vs reserpine; one-way ANOVA with Tukey's post hoc test)

expressed in the striatum and it was shown that its antagonism 324 reduces oral tremor in different rodent models [32, 36, 45-48]. 325 Accordingly, SCH58261, the A2AR antagonist tested in this 326 study, exhibited effect in the reserpine-induced TJM in mice. 327 Moreover, SCH58261 and GUO sub-effective doses potenti-328ated each other's effect on TJM behavior. Despite the poten-329 tiated effect observed with SCH58261 and GUO co-treatment 330 on reserpine-induced TJM, when GUO was tested in genetic-331modified animals lacking adenosine A2A receptors (A2AR-332 KO), it was observed that this receptor is not essentially in-333 volved in the GUO antidyskinetic effect. Therefore, we decid-334 ed to test the participation of A1R on behavioral and biochem-335ical GUO effects. 336

It is known that adenosine A_1R can antagonistically modulate D1R responses and that the stimulation of A_1R could inhibit the D1R stimulation [25, 49–51]. Interestingly, rats treated with reserpine (1 mg/kg; s.c.) for 5 days showed an 340

striatal slices of reserpinized mice. Results are presented as means \pm SEM (*P < 0.05 vs control; "P < 0.05 vs reserpine; one-way ANOVA with Tukey's post hoc test; n = 5-6)

+

+

+

+

DCF - Fluorescence intensity **G**

Reserpine

DPCPX

GUO

(% of control)

200-

150

100

341increase in the responsiveness of adenvlate cvclase after D1R stimulation [52]. Also, rats treated with one single dose of 342 reserpine (1 mg/kg; i.p.) showed upregulation of the transduc-343 tion mechanism associated with D1R, without changing the 344 activity of D2R [53]. Evidence from our results suggests that 345GUO motor effect could be through A1R stimulation. In fact, 346 347 as results with A₁R stimulation for oral tremor are lacking in the literature, we tested reserpinized mice with 2-chloro-N-6-348 cyclopentyladenosine (CCPA), an A1R agonist, and a potent 349 350antidyskinetic effect was observed (in the doses 0.0125, 3510.025, and 0.05 mg/kg). However, we also observed that 352 CCPA promotes an important sedative response in these ani-353mals (data not shown) that precludes its use as a treatment against motor impairments. In this sense, A1R stimulation 354promoted by GUO could be inhibiting the overstimulation 355356 of D1R in reserpinized mice, and then decreasing the oral tremor. 357

358 Besides the motor disturbance, we also investigated bio-359chemical changes in reserpinized mice in different cerebral structures (i.e., cerebrocortex, hippocampus, and striatum). It 360 is well known that the inhibition of dopamine vesicular stor-361age leads to an increase in ROS; this occurs because dopamine 362 363 metabolism intrinsically results in ROS formation [54]. The major area affected was the striatum, where it was seen an 364increase in ROS production and permeabilization of the cel-365 366 lular membrane. Thus, oxidative and cell membrane damage in the striatum might sum up to the monoamine depletion to 367 impair motor performance. This increase in ROS nearby the 368 cell membrane could cause its oxidation and lead to an injury 369 370 in the membrane lipids as it was seen on incorporation of PI. In fact, some studies with the same reserpine protocol have 371372 already shown an increase on lipid peroxidation in striatum [30, 55]. This increase in ROS production and cell membrane 373 374 permeabilization may reflect early events of toxicity by reserpine but surprisingly, we did not see alteration in the cell 375 376 reductive capacity, assessed by MTT reduction method. 377 Accordingly, the reserpine toxicity in this protocol does not 378affect the mitochondrial membrane potential. More important, 379GUO acutely administrated was able to reverse ROS increase 380 induced by reserpine, and this effect was dependent on A₁R 381 and not $A_{2A}R$.

To our knowledge, our previous study was the first to iden-382 tify GUO treatment as an antiparkinsonian agent in a rodent 383 384model of orofacial tremor [14]. Although other studies have shown the protective effect of GUO in cellular models of PD 385[15, 17] or in vivo rodent models of PD [56], none of them has 386 387 assessed the molecular targets related to GUO effects. Despite this, evidence from other brain disease models has pointed to 388 GUO effect via adenosine receptor modulation. In an in vitro 389 ischemia model, hippocampal slices subjected to oxygen/ 390 391 glucose deprivation presented increased ROS production 392 prevented by GUO, but this effect is abolished by preincubation with DPCPX [19]. These data corroborate with 393

the idea that GUO effect of preventing an oxidative damage 394is A₁R dependent. Notwithstanding, in the same ischemia 395 protocol, not only DPCPX but also an A2AR agonist 396 (CGS21680) blunted the protective effect of GUO in hippo-397 campal slices [19] and in cortical astrocytes [18]. Likewise, 398 the ischemia model in A2AR-KO animals implies GUO-399 protective effects upon $A_{2A}R$ in the hippocampus [57]. As 400 different results obtained with A2AR-KO mice may be depen-401 dent on the cerebral area analyzed, there is still controversy 402 regarding GUO effects via adenosine A1R or A2AR interac-403 tion, and additionally, the possibility of GUO interaction with 404 adenosine receptor heteromers. More important, a recent 405 study from our group shed some light on this issue of GUO 406 interaction on A1R and/or A2AR. We showed that GUO-407 induced effects may require both A1R and A2AR co-408 expression in transfected HEK293 cells, indicating that 409 GUO acts on adenosine receptors in an oligomeric conforma-410 tion, i.e., the A₁R-A_{2A}R heteromer [57]. Once GUO acts upon 411 A1R-A2AR heteromer formation, its effects on other receptor 412 oligomeric organization of A1R and/or A2AR are possible and 413were still not evaluated. Thus, it is feasible to speculate that in 414the striatum, GUO can interact with A1R and then modulated 415D1R or A₁R-D1R heteromer interaction, and further investi-416 gations are necessary to clarify GUO mechanism on motor 417control. 418

In conclusion, our results strengthen the demonstration of 419 extracellular actions of GUO and the dependence of adenosine 420 A_1R activation to the motor-related effect of GUO. 421 Considering the GUO-mediated motor improvement differs 422 mechanistically from classic adenosine receptor modulators, 423 it is important to understand the mechanisms behind GUO 424 effects. 425

Funding information The research performed at the Universidade 426Federal de Santa Catarina was supported by the Brazilian funding agen-427cies, CAPES (CAPES/PAJT), CNPg (INCT-EN for Excitotoxicity and 428429Neuroprotection), and FAPESC (NENASC/PRONEX) to C.I.T. The research performed at the Universitat de Barcelona was supported by 430FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia 431Estatal de Investigación (SAF2017-87349-R) and ISCIII (PIE14/ 43200034), the Catalan government (2017 SGR 1604), Fundació la Marató 433de TV3 (Grant 20152031), and FWO (SBO-140028) to F.C. Also, 434CAPES-PDSE (47/2017) provided doctoral fellowship to C.M.M. We 435thank LAMEB/UFSC team work for experimental support. 436

Compliance with ethical standards

Conflict of interestThe authors declare no conflict of interest. The438funders had no role in the design of the study; in the collection, analyses,439or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.440

Ethical approvalThe study protocol was approved by the Ethical442Q3Committee on Animal Use and Care of the University of Barcelona443(CEEA/UB) and Federal University of Santa Catarina (CEUA/UFSC,444Protocol PP00955).445

446 **References**

- 447 1. Hirsch EC, Mouatt A, Faucheux B, Bonnet AM, Javoy-Agid F,
 448 Graybiel AM, Agid Y (1992) Dopamine, tremor, and Parkinson's
 449 disease. Lancet 340:125–126
- 450
 450
 451
 451
 452
 452
 452
 453
 454
 454
 454
 455
 455
 455
 455
 456
 457
 457
 457
 458
 458
 459
 459
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
- 453
 453
 Collins-Praino LE, Paul NE, Rychalsky KL, Hinman JR, Chrobak
 454
 454
 455
 455
 456
 456
 457
 457
 457
 458
 459
 459
 459
- 4. Salamone JD, Mayorga AJ, Trevitt JT, Cousins MS, Conlan A,
 459
 4. Nawab A (1998) Tremulous jaw movements in rats: a model of
 460 parkinsonian tremor. Prog Neurobiol 56:591–611
- 461 5. Duma SR, Fung VS (2019) Drug-induced movement disorders.
 462 Aust Prescr 42:56–61
- 463
 6. Colpaert FC (1987) Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology 26:1431–1440
- 466
 47. Jiang S, Ballerini P, Buccella S, Giuliani P, Jiang C, Huang X, 467
 468
 469
 469
 469
 469
 470
 470
 471
- 471 8. Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guaninebased purinergic system in the mammalian central nervous system.
 473 Pharmacol Ther 116:401–416
- 474
 9. Lanznaster D, Mack JM, Coelho V, Ganzella M, Almeida RF, Dal-Cim T, Hansel G, Zimmer ER, Souza DO, Prediger RD, Tasca CI
 476
 476
 477
 478
 40 administration in mice. Mol Neurobiol
- 479 10. Lara DR, Schmidt AP, Frizzo ME, Burgos JS, Ramírez G, Souza
 480 DO (2001) Effect of orally administered guanosine on seizures and
 481 death induced by glutamatergic agents. Brain Res 912:176–180
- Schmidt AP, Böhmer AE, Schallenberger C, Antunes C, Tavares
 RG, Wofchuk ST, Elisabetsky E, Souza DO (2010) Mechanisms
 involved in the antinociception induced by systemic administration
 of guanosine in mice. Br J Pharmacol 159:1247–1263
- 486
 486
 487
 487
 488
 488
 488
 489
 489
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
- 490
 13. Bettio LE, Freitas AE, Neis VB, Santos DB, Ribeiro CM, Rosa PB,
 491
 492
 493
 493
 494
 494
 494
 495
 495
 496
 497
 497
 498
 499
 499
 490
 490
 490
 490
 491
 491
 491
 492
 493
 494
 494
 494
 494
 494
 494
 495
 494
 494
 494
 495
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 495
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 494
 <
- 495 14. Massari CM, López-Cano M, Núñez F, Fernández-Dueñas V,
 496 Tasca CI, Ciruela F (2017) Antiparkinsonian efficacy of guanosine
 497 in rodent models of movement disorder. Front Pharmacol 8:700
- 498 15. Marques NF, Massari CM, Tasca CI (2019) Guanosine protects
 499 striatal slices against 6-OHDA-induced oxidative damage, mito 500 chondrial dysfunction, and ATP depletion. Neurotox Res 35:475–
 501 483
- 502 16. Giuliani P, Ballerini P, Buccella S, Ciccarelli R, Rathbone MP,
 503 Romano S, D'Alimonte I, Caciagli F, Di Iorio P, Pokorski M
 504 (2015) Guanosine protects glial cells against 6-hydroxydopamine
 505 toxicity. Adv Exp Med Biol 837:23–33
- 506 17. Giuliani P, Romano S, Ballerini P, Ciccarelli R, Petragnani N,
 507 Cicchitti S, Zuccarini M, Jiang S, Rathbone MP, Caciagli F, Di
 508 Iorio P (2012) Protective activity of guanosine in an in vitro model
 509 of Parkinson's disease. Panminerva Med 54:43–51

- Dal-Cim T, Poluceno GG, Lanznaster D, de Oliveira KA, Nedel 510 CB, Tasca CI (2019) Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A. Purinergic 513 Signal 514
- Dal-Cim T, Ludka FK, Martins WC, Reginato C, Parada E, Egea J, López MG, Tasca CI (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126: 437–450
 515 518 519
- 20. Yabe I, Kitagawa M, Takahashi I, Matsushima M, Sasaki H (2017)520The efficacy of istradefylline for treating mild wearing-off in
Parkinson disease. Clin Neuropharmacol 40:261–263521
- Suzuki K, Miyamoto T, Miyamoto M, Uchiyama T, Hirata K (2018) Could istradefylline be a treatment option for postural abnormalities in mid-stage Parkinson's disease? J Neurol Sci 385: 131–133 526
- 22. T. M. Palmer and G. L. Stiles, "Adenosine receptors," 527 Neuropharmacology, vol. 34, pp. 683–694, 1995 528
- Krügel U, Kittner H, Franke H, Illes P (2003) Purinergic modulation of neuronal activity in the mesolimbic dopaminergic system in vivo. Synapse 47:134–142
- 24. Ferré S, Fuxe K, von Euler G, Johansson B, Fredholm BB (1992)
 532 Adenosine-dopamine interactions in the brain. Neuroscience 51:
 533 501–512
 534
- 25. Popoli P, Giménez-Llort L, Pezzola A, Reggio R, Martínez E, Fuxe
 K, Ferré S (1996) Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 218:209–213
 538
- Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino
 D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, Woods AS, Agnati LF, Franco R (2005) Adenosine A2A and dopamine D2
 heteromeric receptor complexes and their function. J Mol Neurosci 26:209–220
- 27. Fernández-Dueñas V, Gómez-Soler M, Valle-León M, Watanabe
 M, Ferrer I, Ciruela F (2019) Revealing adenosine A. Int J Mol Sci
 20
- Ferré S, Ciruela F (2019) Functional and neuroprotective role of striatal adenosine a. J Caffeine Adenosine Res 9:89–97 548
- Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF (1997) 549
 Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48 551
- Burger ME, Alves A, Callegari L, Athayde FR, Nogueira CW, Zeni
 G, Rocha JB (2003) Ebselen attenuates reserpine-induced orofacial
 dyskinesia and oxidative stress in rat striatum. Prog Neuro Psychopharmacol Biol Psychiatry 27:135–140
- Collins LE, Galtieri DJ, Brennum LT, Sager TN, Hockemeyer J, Müller CE, Hinman JR, Chrobak JJ, Salamone JD (2010) Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX. Pharmacol Biochem Behav 94:561–569
 S66
- 33. Salamone J, Baskin P (1996) Vacuous jaw movements induced by acute reserpine and low-dose apomorphine: possible model of parkinsonian tremor. Pharmacol Biochem Behav 53:179–183
 550
- Ludka FK, Cunha MP, Dal-Cim T, Binder LB, Constantino LC, 571 Massari CM, Martins WC, Rodrigues AL, Tasca CI (2016) 572 Atorvastatin protects from Aβ1–40-induced cell damage and depressive-like behavior via ProBDNF cleavage. Mol Neurobiol 574

- 575 35. Ludka FK, Dal-Cim T, Binder LB, Constantino LC, Massari C,
 576 Tasca CI (2016) Atorvastatin and fluoxetine prevent oxidative
 577 stress and mitochondrial dysfunction evoked by glutamate toxicity
 578 in hippocampal slices. Mol Neurobiol
- 579 36. Pinna A, Ko WK, Costa G, Tronci E, Fidalgo C, Simola N, Li Q,
 580 Tabrizi MA, Bezard E, Carta M, Morelli M (2016) Antidyskinetic
 581 effect of A2A and 5HT1A/1B receptor ligands in two animal
 582 models of Parkinson's disease. Mov Disord 31:501–511
- 583 37. Kondo T, Mizuno Y, J. I. S. Group (2015) A long-term study of istradefylline safety and efficacy in patients with Parkinson disease.
 585 Clin Neuropharmacol 38:41–46
- 38. Gandía J, Morató X, Stagljar I, Fernández-Dueñas V, Ciruela F
 (2015) Adenosine A2A receptor-mediated control of pilocarpineinduced tremulous jaw movements is Parkinson's diseaseassociated GPR37 receptor-dependent. Behav Brain Res 288:
 103–106
- Mayorga AJ, Carriero DL, Cousins MS, Gianutsos G, Salamone JD
 (1997) Tremulous jaw movements produced by acute tacrine ad ministration: possible relation to parkinsonian side effects.
 Pharmacol Biochem Behav 56:273–279
- 40. Mayorga AJ, Trevitt JT, Conlan A, Gianutsos G, Salamone JD
 (1999) Striatal and nigral D1 mechanisms involved in the antiparkinsonian effects of SKF 82958 (APB): studies of tremulous jaw movements in rats. Psychopharmacology (Berl) 143:72–81
- 599 41. Trevitt J, Kawa K, Jalali A, Larsen C (2009) Differential effects of adenosine antagonists in two models of parkinsonian tremor.
 601 Pharmacol Biochem Behav 94:24–29
- Carlson BB, Behrstock S, Tobin AJ, Salamone JD (2003) Brain
 implantations of engineered GABA-releasing cells suppress tremor
 in an animal model of Parkinsonism. Neuroscience 119:927–932
- Carlson BB, Wisniecki A, Salamone JD (2003) Local injections of
 the 5-hydroxytryptamine antagonist mianserin into substantia nigra
 pars reticulata block tremulous jaw movements in rats: studies with
 a putative model of Parkinsonian tremor. Psychopharmacology
 (Berl) 165:229–237
- 610 44. Ferré S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortés A,
 611 Lluís C, Casadó V, Volkow ND (2016) Allosteric mechanisms
 612 within the adenosine A2A-dopamine D2 receptor heterotetramer.
 613 Neuropharmacology 104:154–160
- 614
 615
 615
 616
 617
 618
 618
 61997) Cellular expression of adenosine A2A receptor messenger RNA in the rat central nervous system with special reference to dopamine innervated areas. Neuroscience 80:1171–1185
- 619 46. Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman
 620 TC (1996) Tissue distribution of adenosine receptor mRNAs in the
 621 rat. Br J Pharmacol 118:1461–1468
- 622 47. Salamone JD, Collins-Praino LE, Pardo M, Podurgiel SJ, Baqi Y,
 623 Müller CE, Schwarzschild MA, Correa M (2013) Conditional
 669

neural knockout of the adenosine A(2A) receptor and pharmaco-
logical A(2A) antagonism reduce pilocarpine-induced tremulous
jaw movements: studies with a mouse model of parkinsonian trem-
or. Eur Neuropsychopharmacol 23:972–977624
626

- 48. Collins-Praino LE, Paul NE, Ledgard F, Podurgiel SJ, Kovner R, Baqi Y, Müller CE, Senatus PB, Salamone JD (2013) Deep brain stimulation of the subthalamic nucleus reverses oral tremor in pharmacological models of parkinsonism: interaction with the effects of adenosine A2A antagonism. Eur J Neurosci 38:2183–2191 632
- 49. Ferré S, Popoli P, Giménez-Llort L, Finnman UB, Martínez E, 633
 Scotti de Carolis A, Fuxe K (1994) Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 6:73–76
- Ferre S, Popoli P, Tinner-Staines B, Fuxe K (1996) Adenosine A1 637 receptor-dopamine D1 receptor interaction in the rat limbic system: 638 modulation of dopamine D1 receptor antagonist binding sites. 639 Neurosci Lett 208:109–112 640
- Ismayilova N, Crossman A, Verkhratsky A, Brotchie J (2004)
 Effects of adenosine A1, dopamine D1 and metabotropic glutamate
 5 receptors-modulating agents on locomotion of the reserpinised
 643
 rats. Eur J Pharmacol 497:187–195
 644
- 52. Missale C, Nisoli E, Liberini P, Rizzonelli P, Memo M, Buonamici 645 M, Rossi A, Spano P (1989) Repeated reserpine administration upregulates the transduction mechanisms of D1 receptors without changing the density of [3H]SCH 23390 binding. Brain Res 483: 648 117–122 649
- 53. Liberini P, Nisoli E, Missale C, Memo M, Buonamici M, Rossi A,
 Spano PF (1989) Differential effect of acute reserpine administration on D-1 and D-2 dopaminergic receptor density and function in rat striatum. Neurochem Int 14:61–64
 653
- 54. Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11:34
- Teixeira AM, Reckziegel P, Müller L, Pereira RP, Roos DH, Rocha
 JB, Bürger ME (2009) Intense exercise potentiates oxidative stress
 in striatum of reserpine-treated animals. Pharmacol Biochem Behav
 92:231–235
- 56. Su C, Elfeki N, Ballerini P, D'Alimonte I, Bau C, Ciccarelli R, 660
 Caciagli F, Gabriele J, Jiang S (2009) Guanosine improves motor behavior, reduces apoptosis, and stimulates neurogenesis in rats with parkinsonism. J Neurosci Res 87:617–625
- Lanznaster D, Massari CM, Marková V, Šimková T, Duroux R, Jacobson KA, Fernández-Dueñas V, Tasca CI, Ciruela F (2019)
 Adenosine A. Cells 8

Publisher's noteSpringer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.667

654

CAPÍTULO II

Os receptores A₁ e A_{2A} de adenosina estão envolvidos na proteção pela guanosina contra o dano oxidativo e a disfunção mitocondrial induzida pela 6-OHDA em fatias de estriado

Este capítulo apresenta os resultados relacionados ao objetivo específicos II desta tese. Avaliamos o efeito neuroprotetor da guanosina em um modelo *in vitro* que foi padronizado em nosso laboratório como objetivo de identificar possíveis agentes neuroprotetores para os eventos celulares relacionados a PD. Os resultados referente ao efeito da guanosina em fatias de estriado de ratos expostos à 6-OHDA *in vitro* e estão apresentados como o artigo científico intitulado "*Adenosine A*₁ and A_{2A} receptors are *involved on guanosine protective effects against oxidative burst and mitochondrial dysfunction induced by 6-OHDA in striatal slices*".

Adenosine A₁ and A_{2A} receptors are involved on guanosine protective effects against oxidative burst and mitochondrial dysfunction induced by 6-OHDA in striatal slices

Massari, C.M.¹; Constantino, L.C.²; Tasca, C.I.^{1,2,3}

 ¹Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
 ²Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
 ³Laboratório de Neuroquímica-4, Departamento de Bioquímica, Centro de Ciências

Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.

Running title: Guanosine prevents striatal damage via A1R and A2AR

<u>Corresponding author</u>: Carla Inês Tasca Departamento de Bioquímica, CCB, UFSC Trindade, 88040-900 Florianópolis, SC, Brasil Telephone number: +55-48 3721-5046 E-mail address: carla.tasca@ufsc.br

Abstract

6-Hydroxydopamine (6-OHDA) is the most used toxin in experimental Parkinson's disease (PD) models. 6-OHDA shows high affinity for the dopamine transporter and once inside the neuron, it accumulates and undergoes non-enzymatic auto-oxidation, promoting reactive oxygen species (ROS) formation and selective damage of catecholaminergic neurons. In this way, our group has established a 6-OHDA in vitro protocol with rat striatal slices as a rapid and effective model for screening of new drugs with protective effects against PD. We have shown that co-incubation with guanosine (GUO, 100 µM) prevented the 6-OHDA-induced damage in striatal slices. The exactly GUO mechanism of action remains unknown. The aim of this study was to investigate if adenosine A1 (A1R) and/or A2A receptors (A2AR) are involved on GUO protective effects on striatal slices. Pre-incubation with DPCPX, an A₁R antagonist, prevented guanosine effects on 6-OHDA-induced ROS formation and mitochondrial membrane potential depolarization, while CCPA, an A1R agonist, did not alter GUO effects. Regarding $A_{2A}R$, the antagonist SCH58261 had similar protective effect as GUO in ROS formation and mitochondrial membrane potential. Additionally, SCH58261 did not affect GUO protective effects. The A_{2A}R agonist CGS21680, although, completely blocked GUO effects. Finally, the A1R antagonist DPCPX, and the A2AR agonist CGS21680 also abolished the preventive guanosine effect on 6-OHDA-induced ATP levels decrease. These results clearly indicate a dependence on adenosine receptors modulation to GUO protective effects and also point to a putative interaction with A1R-A_{2A}R heteromer as its molecular target.

Introduction

Parkinson's disease (PD) is a neurodegenerative disorder characterized by bradykinesia, tremor and rigidity, caused by the progressive loss of the dopaminergic neurons in the nigrostriatal pathway (Hirsch et al. 1992). Although the etiology of PD is considered idiopathic, it can be related to other factors as genetics, environmental toxins, oxidative stress or mitochondrial abnormalities (Pereira and Garrett 2010). The main therapeutic approach is based on dopamine replacement to promote motor symptoms relief, however it do not stop the progression of the disease (Poewe 2009). The molecular trigger to neuronal degeneration may involve the oxidative burst, mitochondrial dysfunction and bioenergetics impairment (Beal 2005, Lin and Beal 2006, Johri and Beal 2012), thus new strategies of treatment aiming protection of dopaminergic neurons are necessary.

The experimental study of PD relies, mainly, in the use of animal models administered with toxins to mimic the neurodegeneration in the nigrostriatal pathway. 6-hydroxydopamine (6-OHDA) was the first discovered drug that has specific toxicity for dopaminergic neurons (Ungerstedt 1968) and, it is the most used toxin in experimental PD models (Blandini, Armentero, and Martignoni 2008, Gomez-Lazaro et al. 2008, Mu et al. 2009). Because of the similar structure, 6-OHDA also shows affinity for the dopamine transporters (Lehmensiek et al. 2006) and it accumulates inside the neurons, where undergoes an auto-oxidation, promoting selective damage of catecholaminergic neurons (Lehmensiek et al. 2006, Blandini, Armentero, and Martignoni 2008).

In this way, our group has established a 6-OHDA *in vitro* model with rat brain slices, showing that *in vitro* incubation with 6-OHDA induced a decrease in cellular viability, increase in ROS production and a disruption in mitochondrial membrane

potential in striatal slices (Massari et al. 2016). Moreover, we have shown that coincubation with guanosine (GUO) prevented the 6-OHDA-induced damage in striatal slices (Marques, Massari, and Tasca 2019). GUO is a purine nucleoside, which has demonstrated neuroprotective effects in several animal and cellular models of neurotoxic conditions and neurodegenerative diseases (Lanznaster et al. 2016).

Regarding PD, it is already known that GUO exerts protective effects against *in vitro* 6-OHDA toxicity in two cell lines (C6 glioma and dopaminergic human SH-SY5Y neuroblastoma cells) (Giuliani et al. 2015, Giuliani et al. 2012). Besides that, GUO also have effects on *in vivo* PD models. In unilaterally 6-OHDA-lesioned rats, GUO acutely administered increased L-DOPA sub-maximal response and decreased L-DOPA-induced dyskinesia, i.e. GUO potentialized the L-DOPA effects diminishing its side effects. In the same way, GUO also reversed reserpine-induced motor disturbance in mice (Massari et al. 2017). In search for the molecular target of GUO, our group has already implied adenosine receptors modulation with GUO effects in an ischemic-like damage, in hippocampal slices and cortical astrocytes (Dal-Cim et al. 2019, Dal-Cim et al. 2013). In fact, adenosinergic transmission has been pointed out as a promising therapeutic strategy for motor symptoms of PD (Yabe et al. 2017, Suzuki et al. 2018). This therapeutic potential is mainly due the fact that adenosine A₁ and A_{2A} receptors (A₁R and A_{2A}R) are largely expressed in the striatum and have a key role in modulation of dopaminergic transmission (Palmer and Stiles 1995, Krügel et al. 2003).

Since the GUO mechanism of action it is still not clearly identified, it is of great interest to understand the signaling behind its effects acting as neuroprotective agent. Therefore, the aim of this study was to investigate if adenosine A_1R and/or $A_{2A}R$ are involved on GUO protective effects on striatal slices against oxidative damage, mitochondrial dysfunction and ATP depletion due to 6-OHDA-induced toxicity *in vitro*.

Materials and methods

Animals

Male Wistar rats (3 months old, 350–400 g) were obtained from our local colony, maintained in a 12-h dark/light cycle, at constant room temperature at 23 ± 1 °C and with food and water *ad libitum*. Experiments followed the ARRIVE Guidelines published in 2010 and were approved by the local Ethical Committee for Animal Research (CEUA/UFSC PP00955).

Brain slices

Animals were euthanized by decapitation and the whole brain were quickly removed and the striatum was rapidly dissected in ice-cold Krebs Ringer buffer (KRB) (122 mM NaCl, 3 mM KCl, 1.2 mM MgSO₄, 1.3 mM CaCl₂, 0.4 mM KH₂PO₄, 25 mM NaHCO₃, and 10 mM D-glucose, bubbled with 95% O₂/ 5% CO₂ up to pH 7.4). Slices (0.4 mm) were prepared using a McIlwain Tissue Chopper (The Mickle Laboratory Engineering Co. ltd., England) and separated in KRB at 4°C. After sectioning, slices were randomly selected (3 slices per group) and incubated in 24-well cell culture plate with KRB (1 mL) for 30 minutes, at 37°C, for metabolic recovery from slicing procedure.

Slices treatment

6-OHDA (Sigma, St. Louis, MO, USA) was solubilized in water at 0.1% sodium metabisulfite and stored at -20 °C. For the experiment, 6-OHDA was diluted to 100 μ M in KRB. To investigate 6-OHDA-induced damage, slices from the striatum were selected and exposed to 6-OHDA (100 μ M) during 1 h (Massari et al. 2016). GUO (Sigma, St. Louis,MO, USA) was freshly prepared and diluted in KRB (100 μ M) and co-incubated with 6-OHDA for 1 h to determine its neuroprotective effect. To

investigate the role of A_1R or $A_{2A}R$ in the GUO neuroprotective effect, slices were preincubated with agonists or antagonists of A_1R (CCPA and DPCPX, respectively) and $A_{2A}R$ (CGS21680 and SCH58261) 15 min prior to the incubation with 6-OHDA and/or GUO (Fig. 1A). Concentrations of adenosine receptors ligands were selected based on previous studies (Dal-Cim et al. 2013, Almeida et al. 2016). Slices of control group were incubated in a physiological KRB. All experimental groups were assayed in triplicates. After the 1 h of co-incubation with 6-OHDA and GUO, ROS production, mitochondrial membrane potential, or intracellular ATP levels were evaluated.

ROS levels

ROS production was measured by using the molecular probe 2,7dichlorofluorescein diacetate (H₂DCFDA, Sigma Aldrich, St Louis, MO, USA). H₂DCFDA diffuses through the cell membrane and is hydrolyzed by intracellular esterases to the non-fluorescent form 2',7'-dichlorofluorescein (DCFH). DCFH reacts with intracellular ROS (such as H₂O₂) to form dichlorofluorescein (DCF), a green fluorescent dye. DCF fluorescence intensity is proportional to the amount of ROS. Striatal slices were incubated with 80 μ M of H₂DCFDA diluted in KRB (1 mL) for 30 min at 37°C. Slices were then washed with and maintained in KRB (1 mL) for fluorescence measurement. Fluorescence was read using excitation and emission wavelengths of 480 and 525 nm, respectively in a fluorescence and were expressed in percentage related to control levels.

Mitochondrial membrane potential

Mitochondrial membrane potential ($\Delta\Psi$) was measured by using the molecular probe tetramethylrhodamine ethyl ester (TMRE, Sigma Aldrich, St Louis, MO, USA). TMRE is a cell-permeant, cationic, red-orange fluorescent dye that is readily sequestered by active mitochondria. Slices were incubated with 10 nM TMRE diluted in KRB (1 mL) for 30 min at 37°C. Slices were then washed with and maintained in KRB (1 mL) for fluorescence measurement. Fluorescence was measured using wavelengths of excitation and emission of 550 and 590 nm, respectively. The results are expressed and normalized as percentages relative to the control conditions. Results were obtained as arbitrary unit of fluorescence and were expressed in percentage related to control levels.

ATP levels

After GUO and 6-OHDA treatment brains slices from striatum were homogenized in trichloroacetic acid (TCA) 2% aqueous solution (350 μ L). The homogenates were centrifuged at 14000 rpm at 4°C for 3 minutes. The supernatants (100 μ L) were used for determination of ATP levels, using bioluminescent assay kit according to the manufacturer's recommendations (#FLAA, Sigma Aldrich, St Louis, MO, USA). The amount of protein in each sample was measured using the method of (LOWRY et al. 1951) and the results are expressed in μ mol ATP/ μ g of protein in each sample (3 slices for group).

Statistical Analysis

Results are expressed as means \pm standard error (SEM). Comparisons among experimental and control groups were performed by one-way ANOVA followed by the Tukey post hoc test. Statistical difference was accepted when p < 0.05.

Results

A₁R modulation

As we previously shown, GUO (100 μ M) protects striatal slices against *in vitro* 6-OHDA-induced mitochondrial membrane depolarization and increased ROS generation (Marques, Massari, and Tasca 2019). So, we aimed to investigate whether these effects were related to A₁R modulation. Slices incubated with 6-OHDA (100 μ M) showed a decrease in the florescence of the TMRE dye, that is related to a mitochondrial membrane depolarization, as the same effect was observed when slices were incubated with carbonyl-cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP, 10 μ M), a mitochondrial oxidative phosphorylation uncoupler (Massari et al. 2016). Interestingly, when slices were pre-incubated with the A₁R agonist, CCPA (100 nM), it prevented the 6-OHDA-induced mitochondrial membrane depolarization (Fig. 1A). However, the pre-incubation with CCPA did not affect the GUO protective effect on mitochondrial membrane potential (Δ Ψ). Regarding ROS levels, CCPA pre-incubation had no effect on 6-OHDA-induced ROS increase and did not alter the protective effect of GUO. These results suggest that activation of A₁R does not counteract the GUO effects.

On the other hand, pre-incubation with DPCPX (250 nM), an A_1R antagonist, showed to be ineffective in preventing the mitochondrial membrane depolarization and ROS increase caused by 6-OHDA (Fig. 2C, D). Besides that, DPCPX pre-incubation totally abolished GUO effects on 6-OHDA-induced mitochondrial membrane depolarization and ROS increase. These experiments indicate that blocking A_1R also blocks the GUO effects, showing an A_1R dependence on GUO protective effects.

Figure 1. Effects of A₁R modulation on 6-OHDA-induced toxicity in striatal slices. Experimental design is describe in (A). Striatal slices were pre-incubated with A₁R agonist CCPA (100 nM; **B**, **C**) and A₁R antagonist DPCPX (250 nM; **D**, **E**). Evaluation of 6-OHDA (100 μ M) incubation and co-incubation with GUO (100 μ M) on mitochondrial membrane potential ($\Delta\Psi$) (**B**, **D**) and ROS levels (**C**, **E**). Data are expressed as percentage of controls normalized among individual experiments and represent means with SEM (n = 6). (*) when p < 0.05 compared with control or (#) compared to 6-OHDA group (one-way ANOVA followed by Tukey's test).

A_{2A}R modulation

A putative $A_{2A}R$ dependence on the GUO protective effects in the 6-OHDA *in vitro* protocol was also assessed in striatal slices (Fig. 2A). The pre-incubation with the $A_{2A}R$ agonist CGS 21680 (30 nM) exerted no effect on 6-OHDA-induced mitochondrial membrane potential ($\Delta\Psi$) depolarization and ROS levels increase, however it completely blocked the GUO protective effect in both $\Delta\Psi$ and ROS levels (Fig. 2 B, C). These results indicate that $A_{2A}R$ activation can affect GUO effects. The blockade of $A_{2A}R$ is already seen as an anti-parkinsonian strategy, as it has protective effects on many PD models. In this way, pre-incubation of SCH58261 (50 nM), an $A_{2A}R$ antagonist, presented a protective effect upon OHDA-induced $\Delta\Psi$ depolarization and ROS levels increase (Fig 2 C, D). Moreover, this protective effect of SCH58261 does not affect GUO effects.

Figure 2. Effects of A_{2A} **R modulation on 6-OHDA-induced toxicity in striatal slices.** Experimental design is describe in (**A**). Striatal slices were pre-incubated with of A_{2A} R agonist CGS 21680 (CGS, 30 nM; **B**, **C**) and A_{2A} R antagonist SCH 58261 (SCH, 50 nM; **D**, **E**). Slices were incubated with 6-OHDA (100 µM) and/or co-incubated with GUO (100 µM). 6-OHDA-induced mitochondrial membrane depolarization (**B**, **D**) and ROS levels increase (**C**, **E**). Data are expressed as percentage of controls normalized among individual experiments and represent means with SEM (n = 6). (*) when p < 0.05 compared with control or (#) compared to 6-OHDA group (one-way ANOVA followed by Tukey's test).

ATP levels

As mitochondrial depolarization might cause ATP depletion and 6-OHDA also causes changes in the cellular energetic balance (Marques, Massari, and Tasca 2019) we evaluate the effects of adenosine receptors ligands on 6-OHDA and/or GUO incubation, by measuring ATP levels in striatal slices. Since the blockade of A_1R or activation of $A_{2A}R$ interfered on the GUO neuroprotective effect, we performed ATP measurements with DPCPX and CGS21680. As expected, 6-OHDA incubation decreased the ATP levels and GUO co-incubation prevented this decrease (Fig. 3). Although neither DPCPX nor CGS21680 presented effect on ATP levels decrease by 6-OHDA, both ligands impaired the capability of GUO to prevent it. These results are in line with the observed for $\Delta\Psi$ and ROS levels, indicating that GUO effects are related to both A_1R and $A_{2A}R$.

Figure 3. A₁R and A_{2A}R modulation on ATP levels in striatal slices. Experimental design is describe in (A). Effect of pre-incubation of A₁R antagonist, DPCPX (250 nM) (B) and A_{2A}R agonist, CGS21680 (CGS, 30 nM) (C) on 6-OHDA-induced ATP depletion. Data are expressed as μ mol ATP/ μ g of protein of each sample and represent means with SEM (n = 3). (*) when p < 0.05 compared with control or (#) compared to 6-OHDA group (one-way ANOVA followed by Tukey's test)

Discussion

In this study, we investigated the modulation of A_1R and $A_{2A}R$ upon GUO effects against the cellular damage caused by *in vitro* incubation with 6-OHDA in *ex vivo* slices obtained from rat striatum. This *in vitro* protocol of 6-OHDA-induced toxicity is a simple and sensitive protocol that completely suits our goal of evaluating the mechanism of neuroprotection afforded by GUO. We have already shown that co-incubation with GUO (100 μ M) prevented the striatal slices against oxidative damage, mitochondrial dysfunction and ATP depletion caused by 6-OHDA (Marques, Massari, and Tasca 2019). GUO is a naturally occurring guanine-based purine that has been pointed out to act as a neuromodulator and a neuroprotective agent (Tasca et al. 2018, Lanznaster et al. 2016). Other studies have already shown the protective effect of GUO in models of PD, both *in vitro* (Giuliani et al. 2015, Giuliani et al. 2012, Li et al. 2014) and *in vivo* rodent models of PD (Su et al. 2009, Massari et al. 2017), but none of them have assessed the molecular targets related to GUO effect.

Among the new classes of drugs developed to improve the clinical features of PD, $A_{2A}R$ antagonists appear to be the most promising. $A_{2A}R$ blockade has been demonstrated to be effective in both preclinical and clinical PD studies (Vallano et al. 2011, Pinna 2014, Jenner 2014). Indeed, istradefylline (KW6002), an $A_{2A}R$ antagonist, was already approved for clinical use in Japan, and recently, in USA (Kondo, Mizuno, and Group 2015, Hussar 2020, Dungo and Deeks 2013). Interestingly, the mechanism behind $A_{2A}R$ antagonists in PD may rely in part to the existing functional and molecular interaction (i.e., heteromerization) of $A_{2A}R$ and D_2R within postsynaptic striatal neurons (Fuxe et al. 2005, Fernández-Dueñas et al. 2015). Moreover, a mutual trans-inhibition between these two receptors has been described (Ferré et al. 2016). Corroborating with this, in our results the $A_{2A}R$ antagonist SCH58261 was effective in both parameters

analyzed. More important, the protective effect of SCH58261 does not affect GUO effects, suggesting that they do not interfere in each other mechanism.

In addition to this postsynaptic site of action, $A_{2A}R$ can also form heteromeric complexes with A_1R in presynaptic neurons of the basal ganglia, where they can control glutamate release (Ciruela et al. 2006) and striatal circuits independently of dopaminergic signaling (Schiffmann et al. 2007). Regarding PD, rare mutations on A_1R gene could lead to PD (Blauwendraat et al. 2017). Also, some studies show that A_1R modulation could control and improve motor function associated with PD (Mango et al. 2014, Rivera-Oliver et al. 2019, Cortés et al. 2019). In fact, a lot of data show that A_1R stimulation is neuroprotective (Mitchell et al. 1995, Kawamura, Ruskin, and Masino 2019, Cunha 2016, Duarte, Cunha, and Carvalho 2016). Surprisingly, CCPA was unable to prevent the ROS increase induced by 6-OHDA, but it did protected mitochondrial function. Nevertheless, the potential use of A_1R -based therapies, by using A_1R agonists, could lead to deleterious peripheral side-effects, once A_1R is also expressed in the vascular system.

In relation to GUO, evidences from other disease models have pointed to its effect via adenosine receptors modulation. In an *in vitro* brain ischemia model, hippocampal slices subjected to oxygen/glucose deprivation presented increased ROS production prevented by GUO, but this effect is abolished by pre-incubation with DPCPX (Dal-Cim et al. 2013). Notwithstanding, in the same protocol, not only DPCPX but also CGS21680 blunted the protective effect of GUO in hippocampal slices (Dal-Cim et al. 2013) and in cortical astrocytes (Dal-Cim et al. 2019). The same pattern of results was seen in our study that used an *in vitro* PD model and evaluated other brain area. Moreover, in the ischemia model, hippocampal slices of $A_{2A}R$ -knockout animals subjected to oxygen/glucose privation, the GUO-protective effects is abolished,

evidencing the importance of this receptor for GUO effects. Taken together, these observations strengths the possible mechanism of GUO-effects through the dependence of adenosine A_1 and A_{2A} receptors modulation.

Unfortunately, there is still controversy data regarding GUO effect via A_1R or A_{2A}R interaction, and the possibility of GUO interaction with adenosine receptor heteromers appears to be the most likely scenario to explain this debate (Ciruela 2013). In fact, we recently showed that GUO-induced effects require both A_1R and $A_{2A}R$ coexpression in transfected HEK293 cells (Lanznaster et al. 2019). Only in cells expressing both A1R and A2AR, GUO was able to decrease A2AR binding affinity and cAMP response evoked by a selective $A_{2A}R$ ligand. Also, GUO had no effect on A_1R signaling through intracellular calcium increase, even in the presence or absence of A_{2A}R co-expression (Lanznaster et al. 2019). Considering all these evidences, our working hypothesis is that we need to interpret GUO interaction with adenosine receptors results not as separated receptors but as a heteromeric entity. GUO could be acting as a negative modulator of $A_{2A}R$, but only in the presence of A_1R . It is feasible that the physical interaction between A_1R and $A_{2A}R$ could lead to an increase in affinity for GUO. This could explain why GUO effects are blocked by CGS21680 and DPCPX (by causing allosteric modulation of GUO A_{2A}R affinity) and not by SCH58261 and CCPA. Indeed, GUO modulation over A1R-A2AR heteromer or A1R or A2AR individual entities could vary among brain structures, once that it may depend on receptors expression. Therefore, we also cannot exclude the possibility of GUO acting through other heteromer, that could modulate or be associated with A_1R or $A_{2A}R$, and further investigations are necessary to detail GUO mechanism of action.

In conclusion, we demonstrated that GUO protective effects on oxidative damage, mitochondrial dysfunction and ATP depletion caused by 6-OHDA in rat striatal slices are sensitive of both A_1R and $A_{2A}R$ modulation. These results indicated another GUO action through the A_1R - $A_{2A}R$ heteromer and highlight its importance as a neuroprotective agent in PD.

References

- Almeida, R. F., D. D. Comasseto, D. B. Ramos, G. Hansel, E. R. Zimmer, S. O. Loureiro, M. Ganzella, and D. O. Souza. 2016. "Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems." *Mol Neurobiol*. doi: 10.1007/s12035-015-9660-x.
- Beal, M. F. 2005. "Mitochondria take center stage in aging and neurodegeneration." *Ann Neurol* 58 (4):495-505. doi: 10.1002/ana.20624.
- Blandini, F., M. T. Armentero, and E. Martignoni. 2008. "The 6-hydroxydopamine model: news from the past." *Parkinsonism Relat Disord* 14 Suppl 2:S124-9. doi: 10.1016/j.parkreldis.2008.04.015.
- Blauwendraat, C., M. A. Nalls, M. Federoff, O. Pletnikova, J. Ding, C. Letson, J. T. Geiger, J. R. Gibbs, D. G. Hernandez, J. C. Troncoso, J. Simón-Sánchez, S. W. Scholz, and International Parkinson's Disease Genomics Consortium. 2017. "ADORA1 mutations are not a common cause of Parkinson's disease and dementia with Lewy bodies." *Mov Disord* 32 (2):298-299. doi: 10.1002/mds.26886.
- Ciruela, F. 2013. "Guanosine behind the scene." J Neurochem 126 (4):425-7. doi: 10.1111/jnc.12328.
- Ciruela, F., V. Casadó, R. J. Rodrigues, R. Luján, J. Burgueño, M. Canals, J. Borycz, N. Rebola, S. R. Goldberg, J. Mallol, A. Cortés, E. I. Canela, J. F. López-Giménez, G. Milligan, C. Lluis, R. A. Cunha, S. Ferré, and R. Franco. 2006. "Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers." *J Neurosci* 26 (7):2080-7. doi: 10.1523/JNEUROSCI.3574-05.2006.
- Cortés, A., V. Casadó-Anguera, E. Moreno, and V. Casadó. 2019. "The heterotetrameric structure of the adenosine A." Adv Pharmacol 84:37-78. doi: 10.1016/bs.apha.2019.01.001.
- Cunha, R. A. 2016. "How does adenosine control neuronal dysfunction and neurodegeneration?" J Neurochem 139 (6):1019-1055. doi: 10.1111/jnc.13724.
- Dal-Cim, T., F. K. Ludka, W. C. Martins, C. Reginato, E. Parada, J. Egea, M. G. López, and C. I. Tasca. 2013. "Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions." *J Neurochem* 126 (4):437-50. doi: 10.1111/jnc.12324.
- Dal-Cim, T., G. G. Poluceno, D. Lanznaster, K. A. de Oliveira, C. B. Nedel, and C. I. Tasca. 2019. "Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A." *Purinergic Signal*. doi: 10.1007/s11302-019-09679-w.
- Duarte, J. M., R. A. Cunha, and R. A. Carvalho. 2016. "Adenosine A₁ receptors control the metabolic recovery after hypoxia in rat hippocampal slices." *J Neurochem* 136 (5):947-57. doi: 10.1111/jnc.13512.
- Dungo, R., and E. D. Deeks. 2013. "Istradefylline: first global approval." *Drugs* 73 (8):875-82. doi: 10.1007/s40265-013-0066-7.
- Fernández-Dueñas, V., J. J. Taura, M. Cottet, M. Gómez-Soler, M. López-Cano, C. Ledent, M. Watanabe, E. Trinquet, J. P. Pin, R. Luján, T. Durroux, and F. Ciruela. 2015. "Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats." *Dis Model Mech* 8 (1):57-63. doi: 10.1242/dmm.018143.
- Ferré, S., J. Bonaventura, D. Tomasi, G. Navarro, E. Moreno, A. Cortés, C. Lluís, V. Casadó, and N. D. Volkow. 2016. "Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer." *Neuropharmacology* 104:154-60. doi: 10.1016/j.neuropharm.2015.05.028.
- Fuxe, K., S. Ferré, M. Canals, M. Torvinen, A. Terasmaa, D. Marcellino, S. R. Goldberg, W. Staines, K. X. Jacobsen, C. Lluis, A. S. Woods, L. F. Agnati, and R. Franco. 2005. "Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function." *J Mol Neurosci* 26 (2-3):209-20. doi: 10.1385/JMN:26:2-3:209.
- Giuliani, P., P. Ballerini, S. Buccella, R. Ciccarelli, M. P. Rathbone, S. Romano, I. D'Alimonte, F. Caciagli, P. Di Iorio, and M. Pokorski. 2015. "Guanosine protects glial cells against 6-hydroxydopamine toxicity." *Adv Exp Med Biol* 837:23-33. doi: 10.1007/5584_2014_73.
 Giuliani, P., S. Romano, P. Ballerini, R. Ciccarelli, N. Petragnani, S. Cicchitti, M. Zuccarini, S. Jiang, M.
- Giuliani, P., S. Romano, P. Ballerini, R. Ciccarelli, N. Petragnani, S. Cicchitti, M. Zuccarini, S. Jiang, M. P. Rathbone, F. Caciagli, and P. Di Iorio. 2012. "Protective activity of guanosine in an in vitro model of Parkinson's disease." *Panminerva Med* 54 (1 Suppl 4):43-51.
- Gomez-Lazaro, M., N. A. Bonekamp, M. F. Galindo, J. Jordán, and M. Schrader. 2008. "6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells." *Free Radic Biol Med* 44 (11):1960-9. doi: 10.1016/j.freeradbiomed.2008.03.009.
- Hirsch, E. C., A. Mouatt, B. Faucheux, A. M. Bonnet, F. Javoy-Agid, A. M. Graybiel, and Y. Agid. 1992. "Dopamine, tremor, and Parkinson's disease." *Lancet* 340 (8811):125-6.

- Hussar, D. A. 2020. "New Drugs 2020, part 1." Nursing 50 (2):31-38. doi:
 - 10.1097/01.NURSE.0000651608.77613.29.
- Jenner, P. 2014. "An overview of adenosine A2A receptor antagonists in Parkinson's disease." *Int Rev Neurobiol* 119:71-86. doi: 10.1016/B978-0-12-801022-8.00003-9.
- Johri, A., and M. F. Beal. 2012. "Mitochondrial dysfunction in neurodegenerative diseases." J Pharmacol Exp Ther 342 (3):619-30. doi: 10.1124/jpet.112.192138.
- Kawamura, M., D. N. Ruskin, and S. A. Masino. 2019. "Adenosine A." J Neurophysiol 122 (2):721-728. doi: 10.1152/jn.00813.2018.
- Kondo, T., Y. Mizuno, and Japanese Istradefylline Study Group. 2015. "A long-term study of istradefylline safety and efficacy in patients with Parkinson disease." *Clin Neuropharmacol* 38 (2):41-6. doi: 10.1097/WNF.00000000000073.
- Krügel, U., H. Kittner, H. Franke, and P. Illes. 2003. "Purinergic modulation of neuronal activity in the mesolimbic dopaminergic system in vivo." *Synapse* 47 (2):134-42. doi: 10.1002/syn.10162.
- Lanznaster, D., T. Dal-Cim, T. C. Piermartiri, and C. I. Tasca. 2016. "Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders." Aging Dis 7 (5):657-679. doi: 10.14336/AD.2016.0208.
- Lanznaster, D., C. M. Massari, V. Marková, T. Šimková, R. Duroux, K. A. Jacobson, V. Fernández-Dueñas, C. I. Tasca, and F. Ciruela. 2019. "Adenosine A." *Cells* 8 (12). doi: 10.3390/cells8121630.
- Lehmensiek, V., E. M. Tan, S. Liebau, T. Lenk, H. Zettlmeisl, J. Schwarz, and A. Storch. 2006. "Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant alpha-synucleins related to Parkinson's disease." *Neurochem Int* 48 (5):329-40. doi: 10.1016/j.neuint.2005.11.008.
- Li, D. W., M. Yao, Y. H. Dong, M. N. Tang, W. Chen, G. R. Li, and B. Q. Sun. 2014. "Guanosine exerts neuroprotective effects by reversing mitochondrial dysfunction in a cellular model of Parkinson's disease." *Int J Mol Med* 34 (5):1358-64. doi: 10.3892/ijmm.2014.1904.
- Lin, M. T., and M. F. Beal. 2006. "Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases." *Nature* 443 (7113):787-95. doi: 10.1038/nature05292.
- LOWRY, O. H., N. J. ROSEBROUGH, A. L. FARR, and R. J. RANDALL. 1951. "Protein measurement with the Folin phenol reagent." *J Biol Chem* 193 (1):265-75.
- Mango, D., A. Bonito-Oliva, A. Ledonne, L. Cappellacci, R. Petrelli, R. Nisticò, N. Berretta, G. Fisone, and N. B. Mercuri. 2014. "Adenosine A1 receptor stimulation reduces D1 receptor-mediated GABAergic transmission from striato-nigral terminals and attenuates 1-DOPA-induced dyskinesia in dopamine-denervated mice." *Exp Neurol* 261:733-43. doi: 10.1016/j.expneurol.2014.08.022.
- Marques, N. F., C. M. Massari, and C. I. Tasca. 2019. "Guanosine Protects Striatal Slices Against 6-OHDA-Induced Oxidative Damage, Mitochondrial Dysfunction, and ATP Depletion." *Neurotox Res* 35 (2):475-483. doi: 10.1007/s12640-018-9976-1.
- Massari, C. M., A. A. Castro, T. Dal-Cim, D. Lanznaster, and C. I. Tasca. 2016. "In vitro 6hydroxydopamine-induced toxicity in striatal, cerebrocortical and hippocampal slices is attenuated by atorvastatin and MK-801." *Toxicol In Vitro* 37:162-168. doi: 10.1016/j.tiv.2016.09.015.
- Massari, C. M., M. López-Cano, F. Núñez, V. Fernández-Dueñas, C. I. Tasca, and F. Ciruela. 2017. "Antiparkinsonian Efficacy of Guanosine in Rodent Models of Movement Disorder." Front Pharmacol 8:700. doi: 10.3389/fphar.2017.00700.
- Mitchell, H. L., W. A. Frisella, R. W. Brooker, and K. W. Yoon. 1995. "Attenuation of traumatic cell death by an adenosine A1 agonist in rat hippocampal cells." *Neurosurgery* 36 (5):1003-7; discussion 1007-8. doi: 10.1227/00006123-199505000-00017.
- Mu, X., G. He, Y. Cheng, X. Li, B. Xu, and G. Du. 2009. "Baicalein exerts neuroprotective effects in 6hydroxydopamine-induced experimental parkinsonism in vivo and in vitro." *Pharmacol Biochem Behav* 92 (4):642-8. doi: 10.1016/j.pbb.2009.03.008.
- Palmer, T. M., and G. L. Stiles. 1995. "Adenosine receptors." Neuropharmacology 34 (7):683-94.
- Pereira, D., and C. Garrett. 2010. "[Risk factors for Parkinson disease: an epidemiologic study]." Acta Med Port 23 (1):15-24.
- Pinna, A. 2014. "Adenosine A2A receptor antagonists in Parkinson's disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued." CNS Drugs 28 (5):455-74. doi: 10.1007/s40263-014-0161-7.
- Poewe, W. 2009. "Treatments for Parkinson disease--past achievements and current clinical needs." *Neurology* 72 (7 Suppl):S65-73. doi: 10.1212/WNL.0b013e31819908ce.

- Rivera-Oliver, M., E. Moreno, Y. Álvarez-Bagnarol, C. Ayala-Santiago, N. Cruz-Reyes, G. C. Molina-Castro, S. Clemens, E. I. Canela, S. Ferré, V. Casadó, and M. Díaz-Ríos. 2019. "Adenosine A." *Mol Neurobiol* 56 (2):797-811. doi: 10.1007/s12035-018-1120-y.
- Schiffmann, S. N., G. Fisone, R. Moresco, R. A. Cunha, and S. Ferré. 2007. "Adenosine A2A receptors and basal ganglia physiology." *Prog Neurobiol* 83 (5):277-92. doi: 10.1016/j.pneurobio.2007.05.001.
- Su, C., N. Elfeki, P. Ballerini, I. D'Alimonte, C. Bau, R. Ciccarelli, F. Caciagli, J. Gabriele, and S. Jiang. 2009. "Guanosine improves motor behavior, reduces apoptosis, and stimulates neurogenesis in rats with parkinsonism." *J Neurosci Res* 87 (3):617-25. doi: 10.1002/jnr.21883.
- Suzuki, K., T. Miyamoto, M. Miyamoto, T. Uchiyama, and K. Hirata. 2018. "Could istradefylline be a treatment option for postural abnormalities in mid-stage Parkinson's disease?" J Neurol Sci 385:131-133. doi: 10.1016/j.jns.2017.12.027.
- Tasca, C. I., D. Lanznaster, K. A. Oliveira, V. Fernández-Dueñas, and F. Ciruela. 2018. "Neuromodulatory Effects of Guanine-Based Purines in Health and Disease." *Front Cell Neurosci* 12:376. doi: 10.3389/fncel.2018.00376.
- Ungerstedt, U. 1968. "6-Hydroxy-dopamine induced degeneration of central monoamine neurons." *Eur J Pharmacol* 5 (1):107-10.
- Vallano, A., V. Fernandez-Duenas, C. Pedros, J. M. Arnau, and F. Ciruela. 2011. "An update on adenosine A2A receptors as drug target in Parkinson's disease." CNS Neurol Disord Drug Targets 10 (6):659-69.
- Yabe, I., M. Kitagawa, I. Takahashi, M. Matsushima, and H. Sasaki. 2017. "The Efficacy of Istradefylline for Treating Mild Wearing-Off in Parkinson Disease." *Clin Neuropharmacol* 40 (6):261-263. doi: 10.1097/WNF.0000000000249.

CAPÍTULO III

Avaliação do heterômero dos receptores A₁ e A_{2A} de adenosina como o alvo molecular para a guanosina

Este capítulo apresenta os resultados relacionados ao objetivo específicos III desta tese. Em um modelo *in vitro*, com expressão heteróloga do A_1R e/ou $A_{2A}R$ e do heterômero $A_1R-A_{2A}R$, avaliamos o efeito de união e sinalização da guanosina em relação a esses receptores. Este capítulo foi desenvolvido durante o estágio de doutorado sanduíche (PDSE - CAPES) realizado no *Neuropharmacology and Pain Research Group*, na *Universitat de Barcelona*, em Barcelona – Espanha, sob orientação do Prof. Dr. Francisco Ciruela. Os resultados estão apresentados como o artigo científico intitulado *"Adenosine A*₁-*A*₂*A receptor heteromer: contribution to guanosine-mediated effects"* publicado no periódico *Cells*.

Cabe salientar que os resultados da Figura 1 deste artigo são relativos à tese de Doutorado da Dr^a. Débora Lanznaster pelo programa de Pós-Graduação em Neurociências em 2016, também em colaboração com o Prof. Dr. Francisco Ciruela.

Article

Adenosine A₁-A_{2A} Receptor-Receptor Interaction: Contribution to Guanosine-Mediated Effects

Débora Lanznaster ^{1,†}, Caio M. Massari ^{2,†}, Vendula Marková ^{3,4}, Tereza Šimková ^{3,4}, Romain Duroux ⁵, Kenneth A. Jacobson ⁵, Víctor Fernández-Dueñas ^{3,4,*}, Carla I. Tasca ^{1,6,*} and Francisco Ciruela ^{3,4,*}

- ¹ Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil; de_lanz@hotmail.com
- ² Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil; caio.massari@gmail.com
- ³ Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Vendy.Markova@seznam.cz (V.M.); simkovat@gmail.com (T.Š.)
- ⁴ Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
- ⁵ Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Romain.Duroux@niddk.nih.gov (R.D.); kennethj@niddk.nih.gov (K.A.J.)
- ⁶ Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
- * Correspondence: vfernandez@ub.edu (V.F.-D.); carla.tasca@ufsc.br (C.I.T.); fciruela@ub.edu (F.C.); Tel.: +34-934-024-280 (F.C.)
- + These authors contributed equally to this work.

Received: 6 November 2019; Accepted: 11 December 2019; Published: 13 December 2019

Abstract: Guanosine, a guanine-based purine nucleoside, has been described as a neuromodulator that exerts neuroprotective effects in animal and cellular ischemia models. However, guanosine's exact mechanism of action and molecular targets have not yet been identified. Here, we aimed to elucidate a role of adenosine receptors (ARs) in mediating guanosine effects. We investigated the neuroprotective effects of guanosine in hippocampal slices from $A_{2A}R$ -deficient mice $(A_{2A}R^{-/-})$ subjected to oxygen/glucose deprivation (OGD). Next, we assessed guanosine binding at ARs taking advantage of a fluorescent-selective A2AR antagonist (MRS7396) which could engage in a bioluminescence resonance energy transfer (BRET) process with NanoLuc-tagged A_{2A}R. Next, we evaluated functional AR activation by determining cAMP and calcium accumulation. Finally, we assessed the impact of A1R and A2AR co-expression in guanosine-mediated impedance responses in living cells. Guanosine prevented the reduction of cellular viability and increased reactive oxygen species generation induced by OGD in hippocampal slices from wild-type, but not from A_{2A}R^{-/-} mice. Notably, while guanosine was not able to modify MRS7396 binding to A2AR-expressing cells, a partial blockade was observed in cells co-expressing A_1R and $A_{2A}R$. The relevance of the A_1R and $A_{2A}R$ interaction in guanosine effects was further substantiated by means of functional assays (i.e., cAMP and calcium determinations), since guanosine only blocked A_{2A}R agonist-mediated effects in doubly expressing A1R and A2AR cells. Interestingly, while guanosine did not affect $A_1R/A_{2A}R$ heteromer formation, it reduced $A_{2A}R$ agonist-mediated cell impedance responses. Our results indicate that guanosine-induced effects may require both A1R and A2AR co-expression, thus identifying a molecular substrate that may allow fine tuning of guanosine-mediated responses.

Keywords: guanosine; neuroprotection; oxygen/glucose deprivation; NanoBRET; A1R/A2AR heteromer

1. Introduction

Guanosine is a guanine-based purine nucleoside that has been shown to exert neuroprotective and neurotrophic effects in both in vitro and in vivo studies (for review, see [1]). Thus, it has been postulated as a good candidate for the management of several central nervous system (CNS) disorders, including neurodegenerative diseases (i.e., Parkinson's, Alzheimer's) or ischemia [1,2]. Brain ischemia is one of the major health disability conditions worldwide [3]. It occurs after a blood supply collapse that leads to a reduced level of oxygen and glucose within the affected brain area. Similarly, upon excitotoxicity and oxidative stress a failure of cellular bioenergetics occurs [4]. Importantly, a neuroprotective role of guanosine has been extensively investigated in animal and cellular models of ischemia, excitotoxicity and oxidative stress [5–10]. Indeed, we have demonstrated that guanosine prevents reactive oxygen species (ROS) generation and cell death in hippocampal slices subjected to the oxygen/glucose deprivation (OGD) [11].

The mechanism by which guanosine exerts its neuroprotective effects is still intriguing. Despite the identification of a putative guanosine binding site in rat brain membranes [12], a specific guanosine receptor has not yet been discovered. Importantly, it has been hypothesized that adenosine receptors (ARs) may play a role in mediating guanosine effects, although with some controversy. For instance, it has been reported that AR selective ligands do not compete for guanosine binding to rat brain membranes [13,14], whereas AR ligands were able to block some of the guanosine-dependent neuroprotective effects [15]. In line with this, a selective adenosine A₁ receptor (A₁R) antagonist (DPCPX, 8-cyclopentyl-1,3-dipropylxanthine) and a selective A_{2A} receptor (A_{2A}R) agonist (CGS21680, 2-(4-(2-carboxyethyl)phenethylamino)-5'-*N*-ethylcarboxamidoadenosine) inhibited guanosine-mediated neuroprotection in hippocampal slices subjected to OGD [11]. Overall, these findings, including those using multimodal A₁R and A_{2A}R ligand treatments, supported the notion that both A₁R and A_{2A}R would participate in guanosine-mediated effects.

Interestingly, it has been hypothesized that adenosine A_1 and A_{2A} receptor-receptor interactions (i.e., heteromerization) might be behind some of the guanosine-mediated effects, thus pointing to the $A_1R/A_{2A}R$ heteromer as a putative molecular target for guanosine [16]. Indeed, the existence of $A_1R/A_{2A}R$ heteromers has been demonstrated in presynaptic terminals of striatal neurons controlling glutamate release [17], thus acting as an adenosine concentration-dependent switch [18]. Consequently, low to moderate concentrations of adenosine predominantly activate A_1R within the $A_1R/A_{2A}R$ heteromer (i.e., inhibiting glutamate release), whereas moderate to high concentrations of adenosine also activate $A_{2A}R$, which, by means of the $A_1R-A_{2A}R$ intramembrane negative allosteric interaction, antagonizes A_1R function, therefore facilitating glutamate release. Altogether, in view of the already known experimental indications, the $A_1R/A_{2A}R$ heteromer might be viewed as a potential target for guanosine, thus deserving further attention. Here, we aimed to assess the role of A_1R and $A_{2A}R$ interaction in guanosine-mediated effects. First, we studied the neuroprotective effects of guanosine in an ex vivo model of brain ischemia, both in wild-type and $A_{2A}R$ deficient ($A_{2A}R^{-/-}$) mice; subsequently, we aimed to elucidate, in vitro, both the putative guanosine binding and activation of the $A_1R/A_{2A}R$ heteromer.

2. Materials and Methods

2.1. Chemicals

The ligands used were: adenosine and guanosine from Sigma-Aldrich (St. Louis, MO, USA); CGS21680 and SCH442416 (2-(2-furyl)-7-[3-(4-methoxyphenyl)propyl]-7*H*-pyrazolo [4,3-*e*]-[1,2,4]triazolo [1,5-*c*]pyrimidin-5-amine) from Tocris Bioscience (Ellisville, MI, USA). Adenosine deaminase (ADA) was purchased from Roche Diagnostics (GmbH, Mannheim, Germany) and zardaverine from Calbiochem (San Diego, CA, USA). MRS7396, which is a selective fluorescent antagonist at the A_{2A}R derived from SCH442416, was previously described [19].

2.2. Animals

Wild-type and $A_{2A}R^{-/-}$ CD-1 male and female mice [20] weighing 25–50 g were used at 2–3 months of age. The University of Barcelona Committee on Animal Use and Care (CEEA-UB) approved the protocol (Code 10033, 04/02/2018). Animals were housed and tested in compliance with the guidelines described in the Guide for the Care and Use of Laboratory Animals [21] and following the European Union directives (2010/63/EU), FELASA and ARRIVE guidelines. Mice were housed in groups of five in standard cages with ad libitum access to food and water and maintained under a 12-h dark/light cycle (starting at 7:30 AM), 22 °C temperature, and 66% humidity (standard conditions).

2.3. OGD Protocol

Mice were euthanized by cervical dislocation and hippocampi rapidly removed and placed in an ice-cold Krebs-Ringer bicarbonate buffer (KRB) (composition in mM: 122 NaCl, 3 KCl, 1.2 MgSO₄, 1.3 CaCl₂, 0.4 KH₂PO₄, 25 NaHCO₃ and 10 p-glucose). The buffer was bubbled with 95% O₂/5% CO₂ up to pH 7.4. Slices (0.3 mm) were prepared using a Leica VT1200 vibrating blade microtome (Leica, Wetzlar, Germany) in KRB at 4 °C, and one slice per tube was allowed to recover for 30 min in KRB at 37 °C. Control hippocampal slices were incubated until the end of the experiment (15 min plus 2 h) in oxygenated KRB. OGD was induced by incubating the slices for a 15 min period in an OGD buffer in Hank's balanced salt solution (HBSS; composition in mM: 1.3 CaCl₂, 137 NaCl, 5 KCl, 0.65 MgSO₄, 0.3 Na₂HPO₄, 1.1 KH₂PO₄, and 5 HEPES), where 10 mM p-glucose was replaced by 10 mM 2-deoxy-glucose and equilibrated with a 95% N₂/5% CO₂ gas mixture, as described previously [5] After 15 min of OGD the media of the slices was replaced by oxygenated KRB and maintained for 2 h for evaluation of cellular viability and ROS generation. Guanosine (100 µM), when present, was added 15 min before (in KRB) and during OGD (in OGD buffer), and maintained in the re-oxygenation period (2 h), when the OGD buffer was replaced by physiological KRB.

2.4. Cellular Viability Evaluation

For cellular viability assessment, slices were incubated in 0.5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich) for 20 min at 37 °C, as previously described [22]. In brief, the tetrazolium ring of MTT is first cleaved by active dehydrogenases to produce a precipitated formazan. Then, precipitated formazan can be solubilized with 200 μ L of dimethyl sulfoxide (DMSO) and cellular viability quantified spectrophotometrically at a wavelength of 550 nm by means of a POLARstarplate-reader (BMG Labtech, Durham, NC, USA).

2.5. Measurement of ROS Production

For evaluating ROS generation, slices were incubated with 80 μ M 2',7'-dichlorofluorescein diacetate (DCFH-DA; Sigma-Aldrich) for 30 min [23]. Then, subsequent to the OGD/reoxygenation protocol, slices were washed twice with KRB and maintained for 15 min before adding DCFH-DA. H₂DCFDA diffuses through the cell membrane, and it is hydrolyzed by intracellular esterases to the non-fluorescent form dichlorofluorescin (DCFH). Afterwards, DCFH can react with intracellular H₂O₂ to form dichlorofluorescein (DCF), a green fluorescent dye. Slices were then transferred to a 96-well black plate containing 200 μ L of KRB, and fluorescence was read (excitation 480 nm, emission 525 nm) using a POLARStar plate reader (BMG Labtech).

2.6. Plasmid Constructs

The cDNA encoding the human A₁R tagged at its N-terminal tail with the O6-alkylguanine-DNA alkyltransferase (i.e., A_1R^{SNAP}) cloned in pRK5 vector (BD PharMingen, San Jose, CA, USA) was a gift from Prof. Jean-Philippe Pin (CNRS, Montpellier, France). Thus, to perform functional assays $A_{2A}R^{SNAP}$ [24] and A_1R^{SNAP} were used. Also, $A_{2A}R^{RLuc}$ and A_1R^{YFP} constructs [17] were used to perform classical BRET (Bioluminescence Resonance Energy Transfer) assays. Finally, to perform

NanoBRET experiments with the MRS7396 fluorescent antagonist, we created an $A_{2A}R$ NanoLuc sensor $(A_{2A}R^{NL})$. To this end, the cDNA encoding the human $A_{2A}R$ was amplified by polymerase chain reaction from the pECFP- $A_{2A}R$ vector using the primers: FA2AEco (5'-GCCG**GAATTC**CCCATCATGGGCTCC TCGGTGTAC-3') and RA2ANot (5'-CGCG**GCGGCCGC**tcaggacactcctgctccatcctggg-3'). The amplified $A_{2A}R$ insert was then cloned into the *Eco*RI/*Not*I sites of pNLF1-secN vector (Promega, Stockholm, Sweden) containing a hemagglutinin (HA) epitope tag. All the constructs were verified by DNA sequencing.

2.7. Cell Culture and Transfection

Human embryonic kidney (HEK)-293T cells were grown in Dulbecco's modified Eagle's medium (DMEM) (Sigma-Aldrich), supplemented with 1 mM sodium pyruvate, 2 mM L-glutamine, 100 U/mL streptomycin, 100 mg/mL penicillin and 5% (v/v) fetal bovine serum at 37 °C and in an atmosphere of 5% CO₂. HEK-293T cells growing in 60 cm² plates were transfected with the cDNA encoding the different plasmids using linear PolyEthylenImine reagent (PEI) (Polysciences Inc., USA).

2.8. NanoBRET Experiments

The NanoBRET assay was performed on stably expressing ($A_{2A}R^{NL}$) HEK-293T cells, transiently transfected (or not) with A_1R^{SNAP} , according to [25]. In brief, cells were re-suspended in HBSS, and seeded into poly ornithine coated white 96-well plates. After 24 h, cells were challenged with/without the non-labelled $A_{2A}R$ antagonist (SCH442416) or guanosine and incubated for 1 h at 37 °C. Subsequently, the fluorescent ligand (MRS7396) was added and the plate and returned to 37 °C for 1 h. Finally, coelenterazine-h (Life Technologies Corp.) was added at a final concentration of 5 μ M, and readings were performed after 5 min using a CLARIOStar plate reader (BMG Labtech). The donor and acceptor emissions were measured at 490–510 nm and 650–680 nm, respectively. The raw NanoBRET ratio was calculated by dividing the 650 nm emission by the 490 nm emission. In competition studies, results were expressed as a percentage of the maximum signal obtained (mBU; milliBRET Units).

2.9. cAMP Assay

cAMP accumulation was measured using the LANCE[®] Ultra cAMP Kit (PerkinElmer, Waltham, MA, USA) as previously described [26]. In brief, transfected ($A_{2A}R^{SNAP}$ or $A_{2A}R^{SNAP} + A_1R^{SNAP}$) HEK-293T cells were firstly incubated for 1 h at 37 °C with stimulation buffer (BSA 0.1%, ADA 0.5 units/mL, zardaverine 2 μ M; in serum-free DMEM) and later on with CGS21680 for 30 min at 37 °C. Thereafter, cells were transferred to a 384-well plate in which reagents were added following manufacturer's instructions. After 1 h at room temperature, Time-Resolved-Fluorescence Resonance Energy Transfer (TR-FRET) was determined by measuring light emission at 620 nm and 665 nm by means of a CLARIOstar plate reader (BMG Labtech).

2.10. Intracellular Calcium Determinations

The A₁R-mediated intracellular Ca²⁺ accumulation was assessed by means of a luciferase reporter assay based on the expression of the nuclear factor of activated T-cells (NFAT), as previously described [27]. In brief, cells were transfected with the cDNA encoding the A₁R, the NFAT-luciferase reporter (pGL4-NFAT-RE/luc2p; Promega) and the yellow fluorescent protein (pEYFP-N1; Promega). After 36 h post-transfection, cells were incubated with the indicated drugs for 6 h. Subsequently, cells were harvested with passive lysis buffer (Promega), and the luciferase activity of cell extracts was determined using a luciferase Bright-GloTMassay (Promega) in a POLARStar plate-reader (BMG Labtech) using a 30-nm bandwidth excitation filter at 535 nm.

2.11. Label-Free Cellular Impedance Assay

The xCELLigence Real-Time Cell Analyzer (RTCA) system (ACEA Biosciences, San Diego, CA, USA) was employed to measure changes in cellular impedance correlating with cell spreading and tightness, thus being widely accepted as a morphological and functional biosensor of cell status [28–30]. Thus, 16-well E-plates (ACEA Biosciences) were coated with 50 μ L fibronectin (10 μ g/mL) at 37 °C for 1 h before being washed three times with 100 μ L MilliQ-water before use. The background index for each well was determined with 90 μ L of stimulation buffer (supplemented DMEM with ADA 0.5 U/mL and zardaverine 10 μ M) in the absence of cells. Data from each well were normalized to the time point just before compound addition using the RTCA software providing the normalized cell index (NCI). Subsequently, HEK-293T cells permanently expressing the A_{2A}R^{SNAP} construct [31] in the absence or presence of A₁R^{SNAP} (90 μ L resuspended in stimulation buffer) were then plated at a cell density of 40,000 cells/well and grown for 18 h in the RTCA SP device station (ACEA Biosciences) at 37 °C and in an atmosphere of 5% CO₂ before ligand (i.e., CGS21680 and/or guanosine) addition. Cell index values were obtained immediately following ligand stimulation every 15 s for a total time of at least 50 min. For data analysis, the area under the curve (AUC) for each NCI trace response was quantified and normalized to the basal.

2.12. Statistics

Data are represented as mean \pm standard error of mean (SEM). The number of samples/animals (*n*) in each experimental condition is indicated in the corresponding figure legend. Comparisons among experimental groups were performed by Student's *t*-test and ANOVA, using GraphPad Prism 6.01 (San Diego, CA, USA), as indicated. Statistical difference was accepted when *p* < 0.05.

3. Results

3.1. Guanosine-Mediated Neuroprotection in Hippocampal Slices Depends on A_{2A}R Expression

It has been postulated that ARs might be involved in guanosine-mediated responses in vivo [16]. Within this line of inquiry, we first interrogated whether $A_{2A}R$ expression is necessary for guanosine-mediated neuroprotection, a well-known guanosine effect in vivo [1]. To this end, we subjected hippocampal slices from wild-type (i.e., $A_{2A}R^{+/+}$) and $A_{2A}R^{-/-}$ mice to an OGD protocol in the presence or absence of guanosine. Indeed, significant cell death (p < 0.001) and ROS production (p = 0.0359) were observed in $A_{2A}R^{+/+}$ hippocampal slices subjected to the OGD protocol (Figure 1A,B). Interestingly, guanosine (100 µM) was able to prevent these effects, thus cellular viability significantly increased (p = 0.0012) and ROS production decreased (p = 0.0389) (Figure 1A,B), as previously reported [5,11]. Importantly, under the same experimental conditions, in hippocampal slices obtained from $A_{2A}R^{-/-}$ mice, guanosine failed to prevent OGD-mediated cell death (p = 0.005) and ROS production (p = 0.0279) (Figure 1A,B), thus losing its neuroprotective effect. Overall, these results suggested that $A_{2A}R$ expression was necessary for guanosine-mediated neuroprotection.

Figure 1. Guanosine-mediated neuroprotection in mouse hippocampal slices. Hippocampal slices from $A_{2A}R^{+/+}$ and $A_{2A}R^{-/-}$ mice were subjected to oxygen/glucose deprivation (OGD) in the absence or presence of guanosine (100 µM) for 15 min before, and during OGD and re-oxygenation. The cellular viability (**A**) was assessed by MTT reduction whereas ROS levels (**B**) were measured after incorporation of the DCFDA fluorescent probe. Results were normalized to the control slices (vehicle-treated slices, dashed line) and expressed as mean ± SEM of three independent experiments performed in triplicate. The asterisks indicate statistically significant differences (* p < 0.05, ** p < 0.01 and *** p < 0.001; one-way ANOVA with Tukey's post-hoc test).

3.2. A_{2A}R Ligand Binding is Affected by Guanosine upon A₁R Coexpression

Once we demonstrated that the neuroprotective effect of guanosine was A2AR-dependent, we aimed to assess the putative direct interaction of guanosine with A2AR through ligand binding studies. To this end, we engineered a fluorescent ligand BRET-based assay to assess A2AR ligand binding in living cells (Figure 2A). We used a fluorescent $A_{2A}R$ antagonist (MRS7396) that is able to engage in a BRET process upon interacting with a cell surface A2AR tagged with the NanoLuciferase (NL) at its N-terminus (i.e., A_{2A}R^{NL}) (Figure 2A). MRS7396 is a BODIPY630/650 derivative of SCH442416 [19], which upon A2AR binding can act as an acceptor chromophore for NanoLuciferase emission (490 nm) in a BRET process. Thus, we challenged stable A2AR^{NL}-expressing cells with increasing concentrations of MRS7396, in the presence/absence of non-labelled SCH442416. Interestingly, a bell-shaped binding saturation hyperbola, with a $K_D = 4.8 \pm 2.7$ nM, was obtained for MRS7396, while in the presence of a saturating concentration of SCH442416 (1 μ M) the binding was displaced (Figure 2B). Our results showed that the NanoBRET binding assay was a robust and reliable way to assess A_{2A}R ligand binding. Accordingly, we next assessed possible guanosine effects on $A_{2A}R$ orthosteric binding by performing a competition assay with a fixed concentration of MRS7396 (10 nM) (occupying ~80% of receptors at equilibrium) and increasing concentrations of guanosine. Interestingly, under these experimental conditions, guanosine was unable to alter MRS7396 binding to A2AR^{NL} (Figure 2C), thus indicating that guanosine does not orthosterically bind to A_{2A}R, as previously reported [12,13].

Since $A_{2A}R$ heteromerizes with A_1R [17], and some of the physiological effects of guanosine were modulated by A_1R ligands [32,33], we investigated whether $A_1R/A_{2A}R$ heteromer formation affected AR-related guanosine-dependent effects. To this end, we first recreated the formation of $A_1R/A_{2A}R$ heteromers in HEK-293T cells by transfecting $A_{2A}R^{RLuc}$ and A_1R^{YFP} constructs and monitoring $A_{2A}R/A_1R$ heteromerization by a classical BRET approach (Figure A1). Interestingly, neither adenosine nor guanosine incubation altered $A_1R/A_{2A}R$ heteromer formation (Figure A1). Subsequently, we assessed the impact of A_1R co-expression in $A_{2A}R$ binding of MRS7396 using our NanoBRET binding assay. Notably, in $A_1R-A_{2A}R$ doubly expressing cells, guanosine (100 μ M) was able to significantly reduce by $19 \pm 4\%$ (p = 0.0138) the binding of MRS7396 to the $A_{2A}R^{NL}$, thus indicating that the $A_1R/A_{2A}R$ heteromer might play a potential role in AR-related guanosine-dependent effects (Figure 2C).

Figure 2. NanoBRET-based $A_{2A}R$ binding determinations. (A) Schematic representation of the NanoBRET-based assay using $A_{2A}R^{NL}$ stably expressing cells and the fluorescent MRS7396 ligand (red triangle). When the coelenterazine (Clz) substrate is metabolized by NanoLuciferase (NL), its 475 nm light emission may engage in a BRET process with MRS7396 given the close proximity (i.e., bound to $A_{2A}R^{NL}$). (B) NanoBRET signal for $A_{2A}R^{NL}$ with increasing MRS7396 concentrations in the absence (solid line) and presence (dotted line) of 1 μ M SCH442416. (C) Guanosine (Guo) effects on MRS7396 binding to cells expressing $A_{2A}R^{NL}$ (blue bars) or $A_{2A}R^{NL}$ plus A_1R^{SNAP} (red dashed bars). Cells were incubated with MRS7396 (10 nM) and increasing guanosine concentrations (1–100 μ M) in the presence or absence of 1 μ MSCH442416 to allow specific binding calculations. Results were normalized to the MRS7396 specific binding in the absence of guanosine for each transfection set and expressed as mean \pm SEM of four independent experiments performed in triplicate. The asterisks indicate statistically significant differences * p < 0.05, one-way ANOVA followed by Dunnett's post-hoc testwhile compared to control (dashed line).

3.3. $A_{2A}R$ Signalling, but Not A_1R , is Modulated by Guanosine in an A_1R Coexpression-Dependent Manner

Given that guanosine reduced $A_{2A}R$ binding in an A_1R -expression-dependent manner, we next aimed to determine whether guanosine also impinged into $A_{2A}R$ signaling. Accordingly, we determined the effects of guanosine in $A_{2A}R$ -mediated cAMP accumulation upon agonist incubation. In $A_{2A}R$ -expressing cells, the selective $A_{2A}R$ full agonist CGS21680 induced a concentration-dependent cAMP accumulation (pEC₅₀ = 7.98 ± 0.08), indicating that the receptor was expressed and functional at the plasma membrane (Figure 3A). Subsequently, we challenged cells with a fixed concentration of CGS21680 (200 nM) and evaluated the effects of increasing concentrations of guanosine in $A_{2A}R$ -dependent cAMP accumulation. As shown in Figure 3B, guanosine did not preclude $A_{2A}R$ -mediated cAMP accumulation. Conversely, in cells doubly expressing A_1R and $A_{2A}R$, guanosine (100 µM) was able to significantly reduce, by 19 ± 3% (p = 0.0460), the $A_{2A}R$ -mediated cAMP accumulation (Figure 3B). These results supported the hypothesis that the effects of guanosine might be dependent on an A_1R - $A_{2A}R$ interaction.

Interestingly, our NanoBRET-based binding results and cAMP determinations in the absence and presence of A_1R suggested a direct involvement of this receptor in guanosine-mediated blockade of $A_{2A}R$ ligand binding and signaling. Thus, to ascertain whether guanosine would directly interact with A_1R we assessed its impact on A_1R -dependent signaling. To this end, A_1R -mediated calcium responses in HEK-293T cells were determined through a homogenous bioluminescence reporter assay system using a NFAT response element controlling luciferase gene expression. While the activation of A_1R , via application of the agonist N⁶-*R*-phenylisopropyladenosine (*R*-PIA, 50 nM), increased intracellular Ca²⁺, the incubation with guanosine (100 μ M) did not promote intracellular Ca²⁺ mobilization (Figure 4A). Similarly, when A_1R -expressing cells were treated with R-PIA in the presence of increasing concentrations of guanosine, A_1R -dependent intracellular Ca²⁺ mobilization was not affected, as observed in doubly A_1R and $A_{2A}R$ transfected cells (Figure 4B). Overall, these results
indicated that guanosine did not interact with A_1R , thus ruling out any orthosteric A_1R -dependent trans-inhibition of $A_{2A}R$ function in A_1R - $A_{2A}R$ expressing cells.

Figure 3. $A_{2A}R$ -dependent cAMP accumulation. (**A**) Concentration-dependent effects of CGS21680 in cAMP accumulation in singly $A_{2A}R$ expressing cells. The signal was normalized by assigning the 100% to the maximum signal obtained and 0% to cells without ligand. The data are expressed as the mean ± SD of a representative experiment performed in triplicate. (**B**) Guanosine effects on CGS21680-mediated cAMP accumulation in cells expressing $A_{2A}R^{SNAP}$ (blue bars) or $A_{2A}R^{SNAP}$ plus $A_{1}R^{SNAP}$ (red dashed bars). Results were normalized to the specific cAMP accumulation in the absence of guanosine for each transfection set and are expressed as mean ± SEM of four independent experiments performed in triplicate. The asterisks indicate statistically significant differences * *p* < 0.05, one-way ANOVA followed by Dunnett's post-hoc testwhile compared to control (dashed line).

Finally, we assessed the functional activity of guanosine using the label-free technology. To this end, the whole-cell guanosine-mediated impedance responses were monitored in living cells expressing A_{2A}R in the absence or presence of A₁R using a biosensor method, as previously reported [34]. First, we tested CGS21680-mediated changes in morphology (i.e., impedance) of A_{2A}R^{SNAP} expressing HEK-293T cells, which were recorded in real-time. Interestingly, addition of CGS21680 resulted in a significant (p = 0.015) increase of impedance, which was blocked by incubation with the selective A_{2A}R antagonist ZM241385 (Figure 5A,B). In addition, guanosine did not affect the cell basal morphology (p = 0.6105) nor its CGS218680-mediated changes (p = 0.1217) (Figure 5B). However, in doubly expressing A₁R/A_{2A}R cells guanosine significantly reduced (p < 0.0106) cell basal morphology and precluded (p < 0.0001) the CGS218680-induced increase in cellular impedance (Figure 5B). Again, these results indicated that the A₁R-A_{2A}R co-expression may play a potential role in AR-related guanosine-dependent cellular effects.

Figure 4. A₁R-dependent intracellular Ca²⁺mobilization. (**A**) Determination of A₁R-mediated intracellular calcium accumulation by means of a luciferase reporter assay system. HEK-293T cells were transiently transfected with the firefly luciferase-encoding plasmid (pGL4-NFAT-luc2p) and the cDNAs encoding the A₁R^{SNAP} and the YFP. Thirty-six hours after transfection, cells were treated 6 h with the A₁R agonist R-PIA (PIA, 50 nM) in the absence or presence of DPCPX (500 nM) or guanosine (Guo, 100 μ M). Light emission is presented as the percentage increase over basal levels. The data are expressed as the mean ± SEM of three independent experiments performed in triplicate. The asterisks indicate statistically significant differences *** *p* < 0.001, one-way ANOVA followed by Dunnett's post-hoc test when compared to control. (**B**) Guanosine modulation of R-PIA-mediated intracellular Ca²⁺mobilization (PIA-mediated NFAT-Luc induction) in cells expressing A₁R^{SNAP} (red bars) or A₁R^{SNAP} plus A_{2A}R^{SNAP} (blue dashed bars). The dotted line represents the Ca²⁺ mobilization induced by R-PIA in the absence of guanosine within each cell transfection group. The data are expressed as the mean ± SEM of three independent experiments performed in triplicate.

Figure 5. A_{2A}R-mediated whole-cell label-free responses. (**A**) Real-time cellular impedance changes upon CGS21680 (200 nM) incubation in the absence or presence of ZM241385 (1 μ M). The signal was normalized when the ligand was added. (**B**) Guanosine (100 μ M) effects on CGS21680-mediated cellular impedance changes in cells expressing A_{2A}R^{SNAP} (blue bars) or A_{2A}R^{SNAP} plus A₁R^{SNAP} (dashed red bars). Results are presented as area under the cure (AUC) and normalized to the AUC in the basal condition (i.e., absence of any drug) for each transfection set and expressed as mean ± SEM of three independent experiments performed in duplicate. * *p* < 0.05 and ** *p* < 0.01, one-way ANOVA followed by Dunnett's post-hoc test while compared to control (dashed line).

4. Discussion

Guanosine is a purine nucleoside with widely demonstrated extracellular neuromodulatory effects in the CNS, but so far without an identified receptor. Based on the use of selective ligands, ARs have been proposed as possible targets to explain guanosine-mediated effects in animal and cellular models of ischemia. However, at present, the mechanism of action of guanosine is not clear. Here, we show that $A_{2A}R$ expression was crucial for guanosine-mediated protective effects in an ex vivo model of brain ischemia. In addition, when examining guanosine effects in a controlled heterologous system, we were able to reveal the importance of a proposed A_1R - $A_{2A}R$ interaction mediating guanosine effects, both in $A_{2A}R$ -ligand binding and in receptor function.

In the OGD ischemia model in hippocampal slices, we previously showed that guanosine induced a neuroprotective effect (increase of glutamate uptake) that was inhibited by activation of $A_{2A}R$ by CGS2180 [11]. This effect of CGS21680 in abolishing a guanosine-evoked increase in glutamate uptake in an OGD protocol was also observed in cultured astrocytes expressing the astrocytic glutamate transporter Glt-1 [15]. Therefore, here we evaluated guanosine's neuroprotective effects in $A_{2A}R^{-/-}$ mice and revealed an important role for this receptor. Thus, in $A_{2A}R^{-/-}$ hippocampal slices, we observed a loss of the neuroprotective effects of guanosine (increasing viability and controlling ROS production in OGD conditions) that were observed in slices from wild-type mice (Figure 6A). This result, consistent with previous data, pointed to ARs as possible targets for guanosine [35,36], prompting us to further explore the mechanism by which guanosine might act.

Figure 6. Schematic summary of the overall findings. (**A**) Guanosine-mediated neuroprotection in mouse is dependent on $A_{2A}R$ expression. Thus, guanosine fails to neuroprotect from OGD damage in $A_{2A}R^{-/-}$ mouse hippocampal slices. (**B**) Guanosine modulates $A_{2A}R$ functionality in living cells in an A_1R -dependent manner. While guanosine does not interfere with A_1R -dependent signaling, it modulates $A_{2A}R$ binding and intracellular signaling (i.e., cAMP accumulation and cellular morphology) only in A_1R - $A_{2A}R$ co-expressing cells. Therefore, A_1R and $A_{2A}R$ may constitute a molecular substrate involved in guanosine-mediated effects, but the precise mechanism of action of guanosine involving ARs is still lacking.

Our NanoBRET-based sensor data suggested that, as previously reported [13], guanosine apparently does not bind directly to the $A_{2A}R$. However, in $A_1R/A_{2A}R$ cells, it was possible to observe a guanosine-mediated partial displacement of $A_{2A}R$ -ligand binding (Figure 6B). Together with the ex vivo data, this result would indicate that the mechanism of action of guanosine would be mediated by this receptor–receptor entity. Indeed, previous data showing both DPCPX- and pertussis toxin-dependent blockade of protective effects of guanosine in hippocampal slices subjected

to OGD [11], supported the dependence on functional A_1Rs coupled to a G-protein to mediate guanosine effects.

We found that guanosine reduced $A_{2A}R$ orthosteric binding only in $A_1R-A_{2A}R$ expressing cells. Thus, we evaluated whether guanosine could modulate $A_{2A}R$ -dependent signaling under the same experimental conditions. Interestingly, while guanosine did not preclude CGS21680-induced cAMP accumulation in $A_{2A}R$ -expressing cells, it reduced $A_{2A}R$ -mediated cAMP accumulation in doubly $A_1R-A_{2A}R$ transfected cells, as observed in the ligand-binding assay (Figure 6B). Additionally, the evaluation of guanosine effects on the functional activity of ARs using the label-free technology confirmed that guanosine-mediated cell impedance responses were dependent on $A_1R-A_{2A}R$ co-expression. Hence, our results indicate that guanosine could attenuate $A_{2A}R$ signaling (i.e., agonist-mediated cAMP accumulation and cell impedance responses) in an A_1R -dependent manner (Figure 6B). On the other hand, when the A_1R -dependent signaling (i.e., intracellular Ca²⁺ mobilization) was assessed, guanosine was unable to modulate receptor's function both in singly and doubly $A_1R-A_{2A}R$ transfected cells. Taken together, our results suggest that while guanosine did not signal through A_1R , it requires this receptor to exert its $A_{2A}R$ modulatory effect, which could indicate that the $A_1R/A_{2A}R$ heteromer might be a molecular substrate for guanosine.

The $A_1R/A_{2A}R$ heteromer displays some functional characteristics similar to that reported for other AR-containing oligomers, for instance $A_{2A}R$ combined with the dopamine D_2 receptor (D_2R) or the cannabinoid CB_1 receptor (CB_1R) [37]. Interestingly, these receptor heteromers have been shown to exert reciprocal receptor-receptor allosteric antagonistic interactions [38]. Precisely, an $A_1R/A_{2A}R$ heteromer-mediated transmembrane-dependent negative allosteric interaction at the ligand-receptor binding level has been described [39]. In addition, co-activation of both receptors led to a canonical protein Gs-Gi antagonistic interaction at the level of the adenylyl cyclase [40]. This situation makes it difficult to conclude whether an effect in a given signaling pathway is caused by either the allosteric or the canonical interaction. Thus, our data showing that guanosine was able to modulate AR functioning (i.e., cAMP assay) only in cells expressing A₁R and A_{2A}R do not permit a clear determination of the interaction at the intracellular level (i.e., canonical protein Gs-Gi antagonistic interaction). However, considering the whole picture, it seems likely that guanosine effects in the physiological context may depend on the co-expression of both receptors and their and interaction. Indeed, guanosine did not disrupt the A₁R/A_{2A}R heteromer, as observed by a saturable BRET signal, similar to that obtained following adenosine treatment, and by membrane co-localization of A1R and A2AR in guanosine-treated cells (Figure A1).

Overall, our data suggest an important role for the A_1 - A_{2A} receptor-receptor interaction in guanosine-mediated effects. Thus, while our results seem to rule out an eventual guanosine-mediated A_1R - $A_{2A}R$ canonical antagonistic interaction, further investigation is needed to ascertain whether guanosine may either modulate the well-known A_1R - $A_{2A}R$ allosteric interaction or an indirect mechanism of action yet to be discovered.

5. Conclusions

In summary, our results revealed that certain AR-related guanosine-mediated effects rely on A_1R and $A_{2A}R$ co-expression. Indeed, in ex vivo experiments, the well-known guanosine-mediated neuroprotective effect depends on $A_{2A}R$ expression. Thus, guanosine failed to protect $A_{2A}R^{-/-}$ mouse hippocampal slices from ischemia-induced damage. In addition, while guanosine did not interfere with A_1R -mediated signaling, it modulated $A_{2A}R$ binding and intracellular signaling only in A_1R - $A_{2A}R$ co-expressing cells. Overall, our results suggest that A_1R and $A_{2A}R$ may constitute a molecular substrate involved in guanosine effects, but the precise mechanism of action of guanosine involving ARs still is intriguing.

Author Contributions: D.L., C.M.M., V.M. and T.Š. performed experiments and analyzed results. R.D. and K.A.J. synthesized the fluorescent ligand and analyzed results. V.F.-D. performed experiments, analyzed results and

wrote the paper. C.I.T. and F.C. conceived the project, analyzed results and wrote the paper. All authors read and approved the final manuscript.

Funding: This work was supported by Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación/FEDER (SAF2017-87349-R) and ISCIII/FEDER (PIE14/00034), Generalitat de Catalunya (2017 SGR 1604, 2017SGR595), Fundació la Marató de TV3 (Grant 20152031) and FWO (SBO-140028). to F.C. Also, this work was funded by CAPES/PVE 052/2012 and CNPq process 207161/2014-3, who provided doctoral fellowships for D.L. CAPES-PDSE provided doctoral fellowship to C.M. In addition, funding from NIDDK Intramural Research Program (ZIADK031117) to K.J.

Acknowledgments: We thank the LAMEB/UFSC team for experimental support. D.L. thanks A. Áurea and D. Mansur for generously providing HEK-293T cells for the experiments performed at UFSC. We also thank Esther Castaño and Benjamín Torrejón, from the CCiT-Bellvitge Campus of the University of Barcelona, for the technical assistance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Appendix A

Appendix A.1 Materials and Methods

Appendix A.1.1 Immunocytochemistry

Transfected HEK-293T cells growing on coverslips were fixed in 4% paraformaldehyde for 15 min and exposed to goat anti-A_{2A}R antibody (1 µg/mL; Santa Cruz Biotechnology Inc., Dallas, TX, USA) plus a rabbit anti-A₁R antibody (1 µg/mL; Millipore, Billerica, MA, USA). Primary antibodies were detected using a Cy3-conjugated donkey anti-goat antibody (1/200; Jackson ImmunoResearch Laboratories Inc., West Grove, PA, USA) and Cy2-conjugated donkey anti-rabbit antibody (1/200; Jackson ImmunoResearch Laboratories Inc.). Coverslips were rinsed for 30 min, mounted with Vectashield immunofluorescence medium (Vector Laboratories, Peterborough, UK) and examined using a Leica TCS 4D confocal scanning laser microscope (Leica Lasertechnik GmbH, Heidelberg, Germany).

Appendix A.1.2 BRET

BRET saturation experiments were performed as previously described [41]. In brief, HEK-293T cells were transiently transfected with a constant amount of the $A_{2A}R^{Rluc}$ and increasing amounts of A_1R^{YFP} . After 48 h, cells were rapidly washed twice in PBS, detached and resuspended in Hank's balanced salt solution buffer (137 mM NaCl, 5.4 mM KCl, 0.25 mM Na₂HPO₄, 0.44 mM KH₂PO₄, 1.3 mM CaCl₂, 1.0 mM MgSO₄, 4.2 mM NaHCO₃, pH 7.4), containing 10 mM glucose. Cell suspensions were distributed in triplicate into 96-well microplate black plates (Corning, Stockholm, Sweden) for fluorescence measurement or white plates (Corning 3600) for BRET determination. For BRET measurement, 5 μ M benzyl-coelenterazine (NanoLight Technology, Prolume Ltd., Pinetop, AZ, USA) was added, and readings were performed 1 min after substrate addition using the POLARstar Omega plate-reader (BMG Labtech, Durham,NC, USA), which allows the simultaneous integration of the signals detected with two filter settings [485 nm (440–500 nm) and 530 nm (510–560 nm)]. The BRET ratio was defined and represented as previously described [41].

Appendix A.2 Results

We aimed to assess whether guanosine treatment modulated the $A_1R/A_{2A}R$ heteromerization status. To this end, we performed immunocytochemistry analyses and constructed classical $A_1R-A_{2A}R$ heteromer-based BRET saturation curves (Figure A1). Our immunocytochemistry experiments revealed that $A_{2A}R$ and A_1R co-distributed in transiently transfected HEK-293T cell, as previously reported [17], and that 2 h incubation with guanosine did not alter their apparent co-distribution (Figure A1A). Subsequently, the close proximity of the two receptors was monitored through BRET saturation analysis in cells transiently expressing $A_{2A}R^{Rluc}$ and increasing concentrations of A_1R^{YFP} showing a bell-shaped BRET saturation curve (BRET₅₀ = 0.38 ± 0.07 and BRET_{max} = 90 ± 6), thus indicating the formation of constitutive A₁R-A_{2A}R complexes in living cells (Figure A1B). Importantly, under the same experimental conditions, the treatment with either adenosine (100 µM) or guanosine (100 µM) for 2 h did not alter the physical proximity of A₁R and A_{2A}R. Thus, neither the BRET₅₀ [F_(2,30) = 1.524, *p*-value = 0.2343] nor the BRET_{max} [F_(2,30) = 0.3135, *p*-value = 0.7333] was significantly affected by adenosine or guanosine incubation (Figure A1B). Overall, these results corroborated the formation of A₁R/A_{2A}R heterocomplexes in living cells, as previously described [17], and that these complexes were not affected by adenosine or guanosine, consistent with the general notion that GPCR homo- and heteromerization is often constitutive.

Figure A1. A₁R and A_{2A}R interaction in HEK-293T cells. (**A**) Co-distribution of A_{2A}R and A₁R in HEK-293T. Cells transiently transfected with A_{2A}R^{SNAP} and A₁R^{SNAP} and incubated with vehicle or guanosine (100 μ M) for 2 h. Cells were processed for immunocytochemical (ICC) detection of A_{2A}R (red) and A₁R (green) using specific antibodies (see Appendix A.1). Merged images reveal co-distribution of A_{2A}R^{SNAP} and A₁R^{SNAP} (yellow). Scale bar: 100 μ m. (**B**) BRET saturation curve between A_{2A}R and A₁R. BRET was measured in HEK-293T cells co-expressing A_{2A}R^{Rluc} and A₁R^{YFP} constructs and incubated with vehicle, adenosine (100 μ M) or guanosine (100 μ M) for 2 h. Cells were co-transfected with a fixed amount of A_{2A}R^{Rluc} and increasing amounts A₁R^{YFP}. Plotted on the X-axis is the fluorescence value obtained from the YFP, normalized with the luminescence value of the *R*luc constructs 10 min after coelenterazine h incubation and in the Y-axis the corresponding BRET ratio (×1000). mBU: mBRET units. Results are expressed as mean ± SEM of four independent experiments grouped as a function of the amount of acceptor fluorescence.

References

- 1. Lanznaster, D.; Dal-Cim, T.; Piermartiri, T.C.B.; Tasca, C.I. Guanosine: A Neuromodulator with Therapeutic Potential in Brain Disorders. *Aging Dis.* **2016**, *7*, 657–679. [CrossRef] [PubMed]
- 2. Di Liberto, V.; Mudò, G.; Garozzo, R.; Frinchi, M.; Fernandez-Dueñas, V.; Di Iorio, P.; Ciccarelli, R.; Caciagli, F.; Condorelli, D.F.; Ciruela, F.; et al. The guanine-based purinergic system: The tale of an orphan neuromodulation. *Front. Pharmacol.* **2016**, *7*, 158. [CrossRef] [PubMed]
- Durukan, A.; Tatlisumak, T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. *Pharmacol. Biochem. Behav.* 2007, 87, 179–197. [CrossRef] [PubMed]
- 4. Candelario-Jalil, E. Injury and repair mechanisms in ischemic stroke: Considerations for the development of novel neurotherapeutics. *Current Opin. Investig. Drugs (Lond. Engl. 2000)* **2009**, *10*, 644–654.
- Dal-Cim, T.; Martins, W.C.; Santos, A.R.S.; Tasca, C.I. Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca²+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. *Neuroscience* 2011, 183, 212–220. [CrossRef] [PubMed]

- Dal-Cim, T.; Molz, S.; Egea, J.; Parada, E.; Romero, A.; Budni, J.; Martín de Saavedra, M.D.; del Barrio, L.; Tasca, C.I.; López, M.G. Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway. *Neurochem. Int.* 2012, *61*, 397–404. [CrossRef]
- Ganzella, M.; de Oliveira, E.D.A.; Comassetto, D.D.; Cechetti, F.; Cereser, V.H.; Moreira, J.D.; Hansel, G.; Almeida, R.F.; Ramos, D.B.; Figueredo, Y.N.; et al. Effects of chronic guanosine treatment on hippocampal damage and cognitive impairment of rats submitted to chronic cerebral hypoperfusion. *Neurol. Sci.* 2012, 33, 985–997. [CrossRef]
- 8. Tasca, C.; Llorente, J.; Dal-Cim, T.; Fernandez-Duenas, V.; Gomez-Soler, M.; Gandia, J.; Ciruela, F. The neuroprotective agent Guanosine activates big conductance Ca2+-activated Potassium channels (BK) transfected to HEK-293 cells. *J. Neurochem.* **2013**, *125*, 273.
- Hansel, G.; Tonon, A.C.; Guella, F.L.; Pettenuzzo, L.F.; Duarte, T.; Duarte, M.M.M.F.; Oses, J.P.; Achaval, M.; Souza, D.O. Guanosine Protects Against Cortical Focal Ischemia. Involvement of Inflammatory Response. *Mol. Neurobiol.* 2015, 52, 1791–1803. [CrossRef]
- Dal-Cim, T.; Martins, W.C.; Thomaz, D.T.; Coelho, V.; Poluceno, G.G.; Lanznaster, D.; Vandresen-Filho, S.; Tasca, C.I. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation. *Neurotox. Res.* 2016, 29, 460–468. [CrossRef]
- 11. Dal-Cim, T.; Ludka, F.K.; Martins, W.C.; Reginato, C.; Parada, E.; Egea, J.; López, M.G.; Tasca, C.I. Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. *J. Neurochem.* **2013**, *126*, 437–450. [CrossRef] [PubMed]
- 12. Traversa, U.; Bombi, G.; Di Iorio, P.; Ciccarelli, R.; Werstiuk, E.S.; Rathbone, M.P. Specific [(3)H]-guanosine binding sites in rat brain membranes. *Br. J. Pharmacol.* **2002**, *135*, 969–976. [CrossRef] [PubMed]
- Traversa, U.; Bombi, G.; Camaioni, E.; Macchiarulo, A.; Costantino, G.; Palmieri, C.; Caciagli, F.; Pellicciari, R. Rat brain guanosine binding site. Biological studies and pseudo-receptor construction. *Bioorganic Med. Chem.* 2003, 11, 5417–5425. [CrossRef] [PubMed]
- 14. Volpini, R.; Marucci, G.; Buccioni, M.; Dal Ben, D.; Lambertucci, C.; Lammi, C.; Mishra, R.C.; Thomas, A.; Cristalli, G. Evidence for the existence of a specific g protein-coupled receptor activated by guanosine. *ChemMedChem* **2011**, *6*, 1074–1080. [CrossRef] [PubMed]
- Dal-Cim, T.; Poluceno, G.G.; Lanznaster, D.; de Oliveira, K.A.; Nedel, C.B.; Tasca, C.I. Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: Involvement of A1 and A2A adenosine receptors and PI3K, MEK, and PKC pathways. *Purinergic Signal.* 2019, in press. [CrossRef]
- 16. Ciruela, F. Guanosine behind the scene. J. Neurochem. 2013, 126, 425-427. [CrossRef]
- Ciruela, F.; Casadó, V.; Rodrigues, R.J.; Luján, R.; Burgueño, J.; Canals, M.; Borycz, J.; Rebola, N.; Goldberg, S.R.; Mallol, J.; et al. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2Areceptor heteromers. J. Neurosci. 2006, 26, 2080–2087. [CrossRef]
- Ciruela, F.; Ferre, S.; Casado, V.; Cortes, A.; Cunha, R.A.; Lluis, C.; Franco, R. Heterodimeric adenosine receptors: A device to regulate neurotransmitter release. *Cell. Mol. Life Sci.* 2006, 63, 2427–2431. [CrossRef]
- Duroux, R.; Ciancetta, A.; Mannes, P.; Yu, J.; Boyapati, S.; Gizewski, E.; Yous, S.; Ciruela, F.; Auchampach, J.A.; Gao, Z.-G.; et al. Bitopic fluorescent antagonists of the A2A adenosine receptor based on pyrazolo[4,3-: E] [1,2,4]triazolo[1,5- c] pyrimidin-5-amine functionalized congeners. *MedChemComm* 2017, *8*, 1659–1667. [CrossRef]
- 20. Ledent, C.; Vaugeois, J.M.; Schiffmann, S.N.; Pedrazzini, T.; El Yacoubi, M.; Vanderhaeghen, J.J.; Costentin, J.; Heath, J.K.; Vassart, G.; Parmentier, M. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. *Nature* **1997**, *388*, 674–678. [CrossRef]
- Clark, J.D.; Gebhart, G.F.; Gonder, J.C.; Keeling, M.E.; Kohn, D.F. Special report: The 1996 guide for the care and use of laboratory animals. *Ilar J. /Natl. Res. Counc. Inst. Lab. Anim. Resour.* 1997, 38, 41–48. [CrossRef] [PubMed]
- 22. Liu, Y.; Peterson, D.A.; Kimura, H.; Schubert, D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. *J. Neurochem.* **1997**, *69*, 581–593. [CrossRef] [PubMed]

- 23. Ferreira, A.G.K.; da Cunha, A.A.; Machado, F.R.; Pederzolli, C.D.; Dalazen, G.R.; de Assis, A.M.; Lamers, M.L.; dos Santos, M.F.; Dutra-Filho, C.S.; Wyse, A.T.S. Experimental hyperprolinemia induces mild oxidative stress, metabolic changes, and tissue adaptation in rat liver. *J. Cell. Biochem.* **2012**, *113*, 174–183. [CrossRef] [PubMed]
- 24. Fernandez-Duenas, V.; Gomez-Soler, M.; Jacobson, K.A.; Kumar, S.T.; Fuxe, K.; Borroto-Escuela, D.O.; Ciruela, F. Molecular determinants of A(2A) R-D(2) R allosterism: Role of the intracellular loop 3 of the D(2) R. *J. Neurochem.* **2012**, *123*, 373–384. [CrossRef]
- Stoddart, L.A.; Johnstone, E.K.M.; Wheal, A.J.; Goulding, J.; Robers, M.B.; Machleidt, T.; Wood, K.V.; Hill, S.J.; Pfleger, K.D.G. Application of BRET to monitor ligand binding to GPCRs. *Nat. Methods* 2015, *12*, 661–663. [CrossRef]
- 26. Taura, J.; Fernández-Dueñas, V.; Ciruela, F. Determination of GPCR-mediated cAMP accumulation in rat striatal synaptosomes. *Neuromethods* **2016**, *110*, 455–464.
- 27. Borroto-Escuela, D.O.; Romero-Fernandez, W.; Tarakanov, A.O.; Ciruela, F.; Agnati, L.F.; Fuxe, K. On the existence of a possible A2A-D2-beta-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced beta-arrestin2 recruitment. *J. Mol. Biol.* **2011**, *406*, 687–699. [CrossRef]
- 28. Xu, Y.; Xie, X.; Duan, Y.; Wang, L.; Cheng, Z.; Cheng, J. A review of impedance measurements of whole cells. *Biosens. Bioelectron.* **2016**, *77*, 824–836. [CrossRef]
- Hillger, J.M.; Schoop, J.; Boomsma, D.I.; Slagboom, P.E.; IJzerman, A.P.; Heitman, L.H. Whole-cell biosensor for label-free detection of GPCR-mediated drug responses in personal cell lines. *Biosens. Bioelectron.* 2015, 74, 233–242. [CrossRef]
- 30. Stallaert, W.; Dorn, J.F.; van der Westhuizen, E.; Audet, M.; Bouvier, M. Impedance responses reveal β₂-adrenergic receptor signaling pluridimensionality and allow classification of ligands with distinct signaling profiles. *PLoS ONE* **2012**, *7*, e29420. [CrossRef]
- 31. Fernández-Dueñas, V.; Taura, J.J.; Cottet, M.; Gómez-Soler, M.; López-Cano, M.; Ledent, C.; Watanabe, M.; Trinquet, E.; Pin, J.-P.; Luján, R.; et al. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats. *Dis. Models Mech.* **2015**, *8*, 57–63. [CrossRef] [PubMed]
- 32. Thomaz, D.T.; Dal-Cim, T.A.; Martins, W.C.; Cunha, M.P.; Lanznaster, D.; de Bem, A.F.; Tasca, C.I. Guanosine prevents nitroxidative stress and recovers mitochondrial membrane potential disruption in hippocampal slices subjected to oxygen/glucose deprivation. *Purinergic Signal.* **2016**, *12*, 707–718. [CrossRef] [PubMed]
- 33. Tasca, C.I.; Lanznaster, D.; Oliveira, K.A.; Fernández-Dueñas, V.; Ciruela, F. Neuromodulatory effects of guanine-based purines in health and disease. *Front. Cell. Neurosci.* **2018**, *12*, 376. [CrossRef] [PubMed]
- 34. Núñez, F.; Taura, J.; Camacho, J.; López-Cano, M.; Fernández-Dueñas, V.; Castro, N.; Castro, J.; Ciruela, F. PBF509, an Adenosine A2A Receptor Antagonist with Efficacy in Rodent Models of Movement Disorders. *Front. Pharmacol.* **2018**, *9*, 1200. [CrossRef]
- 35. Almeida, R.F.; Comasseto, D.D.; Ramos, D.B.; Hansel, G.; Zimmer, E.R.; Loureiro, S.O.; Ganzella, M.; Souza, D.O. Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems. *Mol. Neurobiol.* **2017**, *54*, 423–436. [CrossRef]
- Dobrachinski, F.; Gerbatin, R.R.; Sartori, G.; Golombieski, R.M.; Antoniazzi, A.; Nogueira, C.W.; Royes, L.F.; Fighera, M.R.; Porciúncula, L.O.; Cunha, R.A.; et al. Guanosine Attenuates Behavioral Deficits After Traumatic Brain Injury by Modulation of Adenosinergic Receptors. *Mol. Neurobiol.* 2019, *56*, 3145–3158. [CrossRef]
- 37. Ciruela, F.; Gómez-Soler, M.; Guidolin, D.; Borroto-Escuela, D.O.; Agnati, L.F.; Fuxe, K.; Fernández-Dueñas, V. Adenosine receptor containing oligomers: Their role in the control of dopamine and glutamate neurotransmission in the brain. *Biochim. Biophys. Acta Biomembr.* **2011**, *1808*, 1245–1255. [CrossRef]
- 38. Ferré, S.; Casadó, V.; Devi, L.A.; Filizola, M.; Jockers, R.; Lohse, M.J.; Milligan, G.; Pin, J.-P.; Guitart, X. G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. *Pharmacol. Rev.* 2014, 66, 413–434. [CrossRef]
- Orru, M.; Bakešová, J.; Brugarolas, M.; Quiroz, C.; Beaumont, V.; Goldberg, S.R.; Lluís, C.; Cortés, A.; Franco, R.; Casadó, V.; et al. Striatal pre- and postsynaptic profile of adenosine A2A receptor antagonists. *PLoS ONE* 2011, *6*, e16088. [CrossRef]

- 40. Navarro, G.; Cordomí, A.; Brugarolas, M.; Moreno, E.; Aguinaga, D.; Pérez-Benito, L.; Ferre, S.; Cortés, A.; Casadó, V.; Mallol, J.; et al. Cross-communication between G i and G s in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain. *BMC Biol.* **2018**, *16*, 24. [CrossRef]
- 41. Ciruela, F.; Fernández-Dueñas, V. GPCR oligomerization analysis by means of BRET and dFRAP. In *G Protein-Coupled Receptor Screening Assays*; Humana Press: New York, NY, USA, 2015.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

6 DISCUSSÃO

Os resultados obtidos no presente estudo demonstram que os efeitos da guanosina avaliados, *in vitro* e *in vivo*, estão relacionados, direta ou indiretamente, com os receptores de adenosina. Foram utilizadas três abordagens distintas para avaliar os efeitos da guanosina, sendo duas delas relativas à PD e uma especifica para estudar a interação da guanosina com o heterômero $A_1R-A_{2A}R$. O protocolo *in vivo* com a administração de reserpina evidenciou que o efeito da guanosina em diminuir o aumento de EROs no estriado e os tremores orofaciais em camundongos são dependentes do A_1R . Ao avaliar o efeito da toxicidade da 6-OHDA *in vitro* em fatias estriatias, foi constatado que a modulação tanto do A_1R quanto do $A_{2A}R$, interferem no efeito da guanosina em prevenir o aumento de EROs, a perda do potencial de membrana mitocondrial e o decréscimo nos níveis de ATP, induzidos pela 6-OHDA. Por fim, em um estudo com uma abordagem farmaco-genômica, com a transfecção heteróloga dos A_1R e $A_{2A}R$, ficou evidente que a guanosina atua sobre o heterômero $A_1R-A_{2A}R$, promovendo uma alteração na afinidade e funcionalidade do $A_{2A}R$, somente na presença concomitante do A_1R .

Como já descrito, a guanosina é uma molécula endógena com alto potencial terapêutico e, ainda, sem alvo molecular (receptor) e sinalização celular totalmente elucidados. Mesmo sem essa caracterização de receptores de membrana, tanto para guanosina quanto para os outros DG, existe a proposta de um sistema purinérgico dos DG, uma vez que os mecanismos de captação e liberação dos DG e sua metabolização extracelular já foram descritos (Schmidt, Lara, and Souza 2007). Já foi evidenciado que o GTP pode ser captado e armazenado em vesículas sinápticas, por um sistema de transporte dependente de gradiente eletroquímico como observado para outros neurotransmissores (Santos, Souza, and Tasca 2006), e com uma cinética de captação

similar ao do neurotransmissor ATP (Gualix, Pintor, and Miras-Portugal 1999). A presença de GTP co-acumulado com neurotransmissores em vesículas sinápticas também já havia sido previamente demonstrada (Wagner, Carlson, and Kelly 1978). Portanto, sugere-se que o GTP desempenhe um papel como co-transmissor e a sua liberação vesicular e posterior hidrólise pela atividade de ecto-nucleotidases, levará à formação do nucleosídeo guanosina no espaço sináptico, onde poderá desempenhar seu papel neuromodulador e neuroprotetor (Lanznaster, et al. 2016).

Em relação à metabolização dos DG, já foi descrita que ela pode ser tanto intracelular, quanto extracelular. As enzimas envolvidas no metabolismo extracelular dos nucleotídeos são chamadas de ectonucleotidases, que hidrolisam ATP e GTP a ADP e GDP, respectivamente, ou que hidrolisam tanto ATP/GTP ou ADP/GDP a AMP/GMP; e, por fim, hidrolisam AMP/GMP aos nucleosídeos adenosina/guanosina (Zimmermann 1996; Schadeck, et al. 1989). Em cultura de astrócitos, a inibição da atividade da ecto-5'-nucleotidase reduz significativamente o acúmulo extracelular de guanosina indicando que, assim como a adenosina, a guanosina extracelular também é derivada principalmente da hidrólise extracelular dos nucleotídeos (Ciccarelli, et al. 2001). Após a ocorrência de uma lesão cerebral, os nucleotídeos liberados podem ser hidrolisados aos seus respectivos nucleosídeos que por sua vez desempenham papéis protetores ou mesmo restaurativos. Por isso há a necessidade de estudos para identificar os alvos moleculares dos DG, e principalmente, da guanosina.

Estudos prévios indicam alguns prováveis alvos moleculares para a guanosina. Os primeiros estudos avaliando os efeitos dos DG como mediadores de sinalização intercelular, demonstraram que os DG são moduladores da transmissão glutamatérgica (Sharif and Roberts 1981). Foi observado que os nucleotídeos GTP, GDP e GMP podem se ligar na região N-terminal extracelular dos receptores de glutamato,

deslocando a interação do glutamato com seus receptores e inibindo as respostas intracelulares induzidas pelo glutamato (Paz, et al. 1994; Tasca, et al. 1995). No entanto, a guanosina não desloca a união do glutamato e seus análogos aos receptores glutamatérgicos (Souza and Ramirez 1991). Diversos estudos já demonstraram o efeito da guanosina sobre o transporte de glutamato (Dal-Cim et al., 2013; 2016), porém ainda não há evidência de interação direta da guanosina com os transportadores de glutamato. Outro possível candidato ao alvo de membrana para a guanosina foi identificado como sendo um receptor acoplado à proteína G (GPCR) de 23 kDa, o receptor GPR23. O GPR23 é um dos receptores para o ácido lisofosfatídico (LPA), identificado como LPA4. Uma comunicação em evento científico apresentou resultados em que o silenciamento gênico do GPR23 em culturas de glioma U87 diminuiu o efeito da guanosina em inibir a proliferação celular, enquanto que sua superexpressão aumentou o efeito anti-proliferativo da guanosina (Di Liberto, et al. 2012). Porém, a interação direta da guanosina com este receptor ainda não foi demonstrada, não descartando a possibilidade de que a guanosina interaja com outras proteínas de membrana (R. Volpini, et al. 2011). Além da possível interação com GPCRs, nosso grupo de pesquisa evidenciou que o efeito protetor da guanosina envolve a ativação de canais de potássio (K⁺) (Oleskovicz, et al. 2008). O uso de inibidores farmacológicos seletivos para diferentes canais de K⁺ sugeriu uma interação da guanosina com o canal de K⁺dependente de Ca⁺² de alta condutância (BK), pois o bloqueio deste canal abole os efeitos benéficos da guanosina sobre a redução da viabilidade celular e da captação de glutamato em um modelo de isquemia cerebral in vitro (Dal-Cim, et al. 2011; Oleskovicz, et al. 2008). Portanto, é possível que a guanosina interaja com o canal BK, ou promova a ativação do canal através da interação com algum GPCR. Outro estudo sugere a interação da guanosina com o receptor CD40, um membro da superfamília dos

receptores de fator necrose tumoral (TNF), em cultura primária de microglia, que participaria no processo inflamação em doenças neurodegenerativas (D'Alimonte, et al. 2007).

Apesar dos dados da interação com a guanosina com receptores já descritos, não se pode ignorar que existem resultados sugerindo sítios seletivos para a ligação da guanosina. Em membranas isoladas obtidas de cérebro de ratos foi demonstrado um suposto sítio de união seletiva (afinidade na ordem de nM) para guanosina (Traversa, et al. 2002; Traversa, et al. 2003). Essa seletividade também se baseia no resultado de que outras purinas, como adenosina, hipoxantina, xantina, GDP, GMP e ATP não deslocaram a união da guanosina, assim como os antagonistas não-seletivos dos receptores de adenosina, cafeína e teofilina (Traversa, et al. 2002). Em outro estudo, utilizando um ensaio de ligação de GTP à proteína-G, foi observada que a interação da guanosina seria um receptor da grande família dos GPCRs, e que seria diferente dos conhecidos receptores de adenosina, já que os agonistas dos receptores de adenosina não tiveram nenhum efeito sobre a ligação da guanosina (Rosaria Volpini, et al. 2011). De acordo, a incubação das membranas de cérebro de ratos com a toxina Pertussis (PTx), um inibidor da família das proteínas Gi, foi capaz de reduzir a capacidade de união da guanosina (Traversa, et al. 2003). Também nesse estudo, a guanosina induziu, de maneira dose-dependente, um aumento de AMPc intracelular em fatias corticais de ratos. Além disso, o pré-tratamento com a ADA (adenosina desaminase, enzima que converte adenosina em inosina), ou com antagonistas A1R e A2AR não modificaram o acúmulo de AMPc induzido pela guanosina (Traversa, et al. 2003).

Apesar das evidências supracitadas e os diversos possíveis alvos da guanosina, este estudo investigou o possível papel dos receptores de adenosina nos efeitos da guanosina. A identidade e estrutura dos receptores de adenosina estão bem estabelecidas e caracterizadas e crescentes evidências implicam uma possível interação da guanosina com estes receptores. A modulação dos A1R e dos A2R está relacionada a diversos efeitos demonstrados para a guanosina, como: anti-apoptótico (Di Iorio, et al. 2004); proliferativo (Jackson and Gillespie 2013; Decker, et al. 2019); tipo-ansiolítico (Almeida, et al. 2016; Almeida, et al. 2017); anticonvulsivante (Kovács, et al. 2015; Lakatos, et al. 2016); antinociceptivo (Schmidt, et al. 2010); neuroprotetor nos modelos de traumatismo crânio-encefálico (Gerbatin, et al. 2019) e de isquemia (Dal-Cim, et al. 2013; Dal-Cim, et al. 2019b); e até citotóxico em células tumorais em cultura (Oliveira et al., 2017). Além disso, há crescentes evidências da guanosina como potencial agente terapêutico na PD, demonstradas em melhoras motoras (Massari, et al. 2017; Su, et al. 2009) e em parâmetros bioquímicos relacionados a essa enfermidade (Giuliani, et al. 2012; Giuliani, et al. 2015; Margues, Massari, and Tasca 2019). Sendo assim, foi de interesse deste estudo entender se e como a modulação do A1R e do A2R poderia afetar os efeitos da guanosina em modelos da PD. Além disto, avaliamos os efeitos de união e sinalização da guanosina sobre os A1R e A2R em um modelo de expressão heteróloga desses receptores.

Como resultados de neuroproteção obtidos, tanto no protocolo *in vitro* de toxicidade estriatal da 6-OHDA, quanto no protocolo *in vivo* de indução de tremor associado à PD com a reserpina, foi demonstrado que o antagonismo do A₁R com DPCPX bloqueia o efeito protetor da guanosina frente à geração de EROs e perda do potencial de membrana mitocondrial. A capacidade da guanosina de atenuar os níves de EROs e manter o potencial de membrana mitocondrial já foi previamente demonstrada em outros estudos (Dal-Cim, et al. 2019a; Marques, Massari, and Tasca 2019; Dal-Cim, et al. 2012; Dal-Cim, et al. 2013), e já se excluiu a possibilidade desse efeito estar relacionado a um efeito de *scavenger* de espécies reativas pela guanosina (Thomaz, et

al. 2016). Corroborando com os resultados desta tese, também já se evidenciou que a diminuição de EROs pela guanosina foi abolida pelo DPCPX (Dal-Cim, et al. 2013). Sendo assim, a guanosina poderia atuar ativando o A1R. De fato, a estimulação do A1R tem efeito neuroprotetor em diversos protocolos de neurotoxoicidade (Mitchell, et al. 1995; Kawamura, Ruskin, and Masino 2019; Cunha 2016; Duarte, Cunha, and Carvalho 2016). De forma similar à guanosina, observamos que a incubação com CCPA, um agonista A₁R, também teve efeito em manter o potencial de membrana mitocondrial diminuído pela incubação com 6-OHDA, além de não afetar os efeitos da guanosina. Também já foi demonstrado que o uso PTx pode abolir os efeitos da guanosina (Traversa, et al. 2003; D'Alimonte, et al. 2007; Dal-Cim, et al. 2013; Di Iorio, et al. 2004). Uma vez que os A₁R são acoplados à proteína Gi isso contribuiria para fortalecer essa proposta. Porém, nesse estudo, o CCPA não teve um efeito semelhante ao da guanosina em relação aos níveis de EROs. No protocolo da 6-OHDA in vitro, o aumento dos níveis de EROs foi prevenido pela guanosina e não pelo CCPA, o que colocaria em dúvida se a guanosina atuaria por esse receptor, uma vez que a estimulação do A₁R não é capaz de produzir efeito similar ao da guanosina. Mais importante, nos resultados obtidos com células HEK293 transfectadas, somente com A₁R não foi visto uma mobilização de cálcio relativa à estimulação desse receptor, seja pela guanosina sozinha ou pela guanosina junto à estimulação com o CCPA.

Por outro lado, o papel do $A_{2A}R$ nos efeitos protetores da guanosina também é um pouco conflitante. Ficou evidenciado que a ativação do $A_{2A}R$, com o uso do CGS21680 - um agonista $A_{2A}R$, efetivamente bloqueia os efeitos da guanosina. No protocolo *in vitro* com 6-OHDA, a pré-incubação com CGS21680 foi capaz de impedir a prevenção dos níveis de EROs, do potencial de membrana mitocondrial e dos níveis intracelulares de ATP pela guanosina. Esse mesmo efeito do CGS21680 sobre efeitos da

guanosina já foi demonstrado em um modelo de isquemia, tanto em fatias de hipocampo, como em cultura cortical de astrócitos de ratos (Dal-Cim, et al. 2013; Dal-Cim, et al. 2019b). Enquanto isso, a pré-incubação com SCH58261, um antagonista do A_{2A}R, não causou interferência nos efeitos da guanosina sobre a toxicidade da 6-OHDA *in vitro*. Já se tem bem estabelecido na literatura que o antagonismo do A_{2A}R está ligado a efeitos benéficos em diversos modelos de PD (Vallano, et al. 2011; Jenner 2014; Preti, et al. 2015). De acordo, no protocolo in vitro, o SCH58261 também se mostrou efetivo em prevenir o dano causado pela 6-OHDA no estriado de ratos. Essa semelhança nos efeitos poderia demonstrar que a guanosina teria um papel antagonístico sobre o A_{2A}R. No entanto, no protocolo in vivo de administração da reserpina, o tratamento com doses sub-efetivas de SCH58261 e guanosina não apresentou um efeito somatório em reverter o aumento de EROs no estriado. Ademais, o efeito da guanosina em diminuir os níveis de EROs no estriado foi visto em camundongos que não expressam o A2AR (A2AR-KO). Contrastando diretamente com esse resultado, em fatias hipocampais de camundongos A2AR-KO submetidos ao protocolo de PGO, a guanosina perdeu seus efeitos, tanto de diminuição de EROs como de atenuação da viabilidade celular. Demonstrando assim que alguns efeitos da guanosina são dependentes da expressão do A2AR. Apesar dos resultados em animais A2AR-KO citados acima, é importante ressaltar que os experimentos refletem diferentes estruturas cerebrais, que apresentam diferentes níveis de expressões do receptor, bem como podem apresentar padrões de localizações neuronais distintas (isto é, pré- e pós-sináptico).

Além dos efeitos neuroprotetores, também foi feito um estudo da guanosina em relação a um dos principais sintomas motores da PD. Nosso grupo foi o primeiro a demonstrar um efeito anti-discinético da guanosina em modelos da PD (Massari, et al. 2017). Nesse estudo, seguimos com o protocolo da reserpina para tentar evidenciar

como a modulação dos receptores de adenosina afeta os efeitos da guanosina. Salamone e colaboradores (1998) defendem que as discinesias induzidas pela reserpina compartilham características com os tremores acometidos em pacientes com PD. Assim como nos resultados anteriores, vimos o mesmo padrão nos sintomas motores, em que o DPCPX também bloqueia o efeito da guanosina em diminuir os TJM induzidos pela reserpina. Sabe-se que o A_1R pode modular antagonisticamente as respostas do D1R (Ferré, et al. 1994; Ferre, et al. 1996; Popoli, et al. 1996; Ismayilova, et al. 2004). Além disso, ratos tratados com reserpina apresentaram um aumento da expressão e da resposta associada ao D1R (Missale, et al. 1989; Liberini, et al. 1989). Não há, até o presente momento, na literatura o uso de agonistas de A_1R para o tratamento de tremores relacionados à PD. Existem dois recentes estudos que mostram um efeito benéfico do agonista do A1R, 5'-Cloro-5'-Deoxi-(±)-ENBA, em modelos de tremor essencial em ratos (Kosmowska, et al. 2017; Kosmowska, et al. 2020), o que evidencia que esse receptor pode estar associado a este controle motor. Os poucos estudos relacionados ao estímulo do A₁R se devem, em parte, pela ampla expressão desse receptor, tanto no SNC como perifericamente, e aos possíveis efeitos colaterais (como sedação, bradicardia), o que inviabilizaria o uso de agonistas A1R. Neste estudo testamos o CCPA, e em doses muito baixas (0,0125 mg/kg), ele demonstrou efeito em diminuir os TJM induzidos pela reserpina (dados não mostrados). No entanto, os animais apresentavam uma visível sedação, o que claramente limitaria esta estratégia como uma boa alternativa terapêutica.

Nas últimas décadas, antagonistas do $A_{2A}R$ surgiram como um possível tratamento para os sintomas motores da PD, e parte desse potencial terapêutico se deve ao fato desses receptores poderem modular alostericamente os D2R (Ferré, et al. 2016). Os $A_{2A}R$ são altamente expressos no estriado e já foi demonstrado que seu antagonismo

é benéfico em modelos de tremor relacionado à PD (Svenningsson, et al. 1997; Dixon, et al. 1996; Pinna, et al. 2016; Salamone, et al. 2013; Collins, et al. 2010; Collins-Praino, et al. 2013). De acordo, neste estudo o antagonismo do $A_{2A}R$ com o SCH58261 teve efeito em diminuir os TJM induzidos pela reserpina. Foi feita uma curva de doses para estabelecer doses ativas e sub-ativas do SCH58261 nesse protocolo. Em uma associação farmacológica, foram testadas doses sub-ativas de guanosina e de SCH58261, e quando administradas juntas tiveram efetivo efeito em diminuir os TJM. Porém, utilizando o mesmo protocolo da reserpina em camundongos $A_{2A}R$ -KO foi demonstrado que esse efeito da guanosina é mantido mesmo sem a expressão desse receptor. Evidenciando assim, que o efeito motor da guanosina independe do receptor $A_{2A}R$.

Uma possível explicação para os dados conflitantes com os camundongos $A_{2A}R$ -KO pode estar relacionada a diferentes perfis de afinidade descritos para este receptor. Em 1996, (Cunha, et al.) demonstraram a existência de pelo menos dois sítios de interação de alta afinidade para o [³H]CGS21680 no SNC de ratos. Alguns anos depois, foi discutida a existência de dois $A_{2A}R$, que seriam farmacologicamente diferentes entre si (Cunha, Constantino, and Ribeiro 1999). Essa diferença também se encontraria em nível regional no cérebro, sendo que as propriedades de união do $A_{2A}R$ no hipocampo e córtex eram diferentes das propriedades do $A_{2A}R$ no estriado. Apesar de não existir muitos dados na literatura sobre essas diferentes propriedades do receptor A_{2A} , em 2010, um estudo confirmou esses perfis do receptor A_{2A} na região do hipocampo e na região do estriado, propondo que são resultados das interações heteroméricas entre os receptores A_{2A} , A_{2B} e A_1 nas diferentes regiões (Riccioni, Leonardi, and Borsini 2010). Nos camundongos $A_{2A}R$ -KO utilizados não sabemos precisar exatamente se existe uma deleção de ambos receptores ou sua prevalência, mas poderia explicar a diferença de resultados, e a dependência do $A_{2A}R$ no efeito da guanosina no hipocampo e não no estriado.

Mesmo com essas sugestões, nos experimentos pontuais que se analisou o papel de cada receptor de forma individual, os resultados não apontam uma conclusão nítida. Uma outra forma de olhar os resultados poderia ajudar a compreendê-los. Essa nova abordagem pode se basear no fato que os receptores A1R e A2AR formam heterômeros funcionais, e essa interação pode alterar a farmacologia dos receptores individuais. A investigação da possível modulação do heterômero A1R-A2AR pela guanosina representa uma abordagem interessante na identificação do possível sítio de interação da guanosina na membrana celular. Desta forma, experimentos foram planejados a fim de investigar a possível interação da guanosina com o heterômero A1R-A2AR através do uso de transfecção heteróloga em células HEK293. Utilizando a técnica de transferência de energia ressonante vimos que a guanosina reduz a união do MRS7396 (uma molécula fluorescente com ação antagonista sobre o A2AR) ao A2AR, porém essa diminuição só existe quando também há a presença do A₁R₂ indicando que a guanosina pode ter efeito sobre o heterômero A1R-A2AR. Também foi demonstrado, através da quantificação de AMPc intracelular que a guanosina só diminui os níveis de AMPc induzidos por CGS21680, em células co-transfectadas com A1R e A2AR. Esses resultados implicam em um papel antagônico da guanosina no A2AR, tanto de união quanto de funcionalidade, porém, somente em presença do A1R. Além disso, ao avaliar as mudanças na impedância elétrica das células induzidas pelo CGS21680, a guanosina foi capaz de bloquear essas respostas somente em células co-transfectadas com A1R e $A_{2A}R$. Para avaliar um possível efeito da guanosina sobre o A_1R , foi avaliado o aumento de cálcio intracelular nas células HEK. Foi visto que a guanosina não teve efeito em células transfectadas com A₁R ou co-transfectadas com A₁R e A_{2A}R. Esse conjunto de

dados demonstra que a guanosina tem efeito sobre os receptores de adenosina, porém somente quando há a presença dos dois receptores ($A_1R \ e \ A_{2A}R$) e provavelmente formando o heterômero. Além disto, a ação da guanosina sobre a interação A_1R - $A_{2A}R$ é evidenciada como a de antagonizar os efeitos do $A_{2A}R$.

Importante ressaltar as diferentes metodologias utilizadas no emprego deste estudo. Foi abordado um protocolo *in vivo* com o uso da reserpina, que age em neurônios monoaminérgicos, e vimos danos referentes à região do estriado, porém não podemos excluir totalmente efeitos de outras regiões, tanto pelo dano quanto pelos tratamentos, uma vez que eram administradas sistemicamente. Já no protocolo *in vitro*, tanto o dano com 6-OHDA quanto os tratamentos foram direcionados unicamente para a região do estriado, e obtivemos um resultado similar entre os protocolos. O uso de células HEK transfectadas com os receptores de interesse permite uma avaliação mais direta da sua interação com os ligantes, excluindo as diferenças estruturais, níveis de expressão e localização neuronal. Além disso, a técnica de *label free* permite o estudo de modulação de GPCRs através da análise de mudanças na impedância elétrica das células e sem o uso de nenhuma sonda ou artifício externo que possa interferir no resultado. Essa junção de métodos e complementação de possíveis vieses metodológicos nos permite uma maior credibilidade aos resultados obtidos neste estudo.

Considerando todas as informações descritas acima e os resultados obtidos neste estudo, não podemos precisar exatamente qual receptor é o responsável diretamente pelos efeitos da guanosina. Ainda, não podemos excluir a possibilidade de existir um receptor seletivo para guanosina ainda não conhecido e caracterizado e que poderia estar associado ou modular os A_1R ou $A_{2A}R$. Porém, neste estudo fica claro o envolvimento da modulação dos receptores de adenosina A_1 e/ou A_{2A} nos efeitos da guanosina. Mais importante, esse estudo traz à luz evidências de uma sinalização através da formação de heterômeros desses receptores. A sinalização celular partindo do princípio de hetêromeros como uma entidade funcional ainda é um tema recente, porém a guanosina emerge como uma molécula de interesse nesse campo e, sendo assim, mais estudos são necessários para elucidar seus mecanismos e transpô-los em medidas terapêuticas.

7 CONLCUSÕES

- O efeito da guanosina em reduzir o tremor orofacial induzida pela reserpina, assim como o aumento da produção de EROs no estriado, dependem da estimulação do A₁R;
- Guanosina previne o aumento de EROs, a alteração do potencial de membrana mitocondrial e a redução dos níveis de ATP induzidos por 6-OHDA em fatias de estriado e este efeito é abolido pelo bloqueio dos A₁R e pela ativação dos A_{2A}R;
- A guanosina não interfere com a sinalização celular (isto é, a ativação dos receptores) em células HEK239 que expressam somente A₁R ou A_{2A}R;
- Em células HEK239 co-transfectadas com A₁R e A_{2A}R a guanosina interfere na união e na ativação do A_{2A}R, bem como em mudanças na morfologia dessas células pela ativação farmacológica do A_{2A}R, demonstrando uma interação da guanosina com o heterômero A₁R-A_{2A}R.

8 PERSPECTIVAS

- Avaliar alterações na função mitocondrial causadas pela 6-OHDA, e a possível proteção da guanosina, através da técnica de respirometria de alta resolução, bem como o envolvimento dos A₁R e A_{2A}R;
- Avaliar a regulação da enzima tirosina hidroxilase no estriado após o tratamento com reserpina *in vivo* e a incubação com 6-OHDA *in vitro*;
- Estudar, *in silico*, a interação físico/química da guanosina com os A₁R e A_{2A}R;
- Estudar o possível efeito da guanosina sobre a formação e a sinalização do heterômero A_{2A}R- D₂R;

REFERÊNCIAS

- Abílio, V. C., et al. 2003. "Vitamin E Attenuates Reserpine-Induced Oral Dyskinesia and Striatal Oxidized Glutathione/Reduced Glutathione Ratio (Gssg/Gsh) Enhancement in Rats." Prog Neuropsychopharmacol Biol Psychiatry 27, no. 1 (Feb): 109-14.
- Agnati, L. F., et al. 2005. "Existence and Theoretical Aspects of Homomeric and Heteromeric Dopamine Receptor Complexes and Their Relevance for Neurological Diseases." *Neuromolecular Med* 7, no. 1-2: 61-78. <u>http://dx.doi.org/10.1385/NMM:7:1-2:061</u>.
- Almeida, R. F., et al. 2016. "Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems." *Mol Neurobiol* (Jan). <u>http://dx.doi.org/10.1007/s12035-015-9660-x</u>.
- Aquino, C. C., and S. H. Fox. 2015. "Clinical Spectrum of Levodopa-Induced Complications." Mov Disord 30, no. 1 (Jan): 80-9. <u>http://dx.doi.org/10.1002/mds.26125</u>.
- Aquino, C. C., and A. E. Lang. 2014. "Tardive Dyskinesia Syndromes: Current Concepts." Parkinsonism Relat Disord 20 Suppl 1 (Jan): S113-7. <u>http://dx.doi.org/10.1016/S1353-8020(13)70028-2</u>.
- Beal, M. F. 2005. "Mitochondria Take Center Stage in Aging and Neurodegeneration." Ann Neurol 58, no. 4 (Oct): 495-505. <u>http://dx.doi.org/10.1002/ana.20624</u>.
- Benabid, A. L., et al. 1994. "Acute and Long-Term Effects of Subthalamic Nucleus Stimulation in Parkinson's Disease." *Stereotact Funct Neurosurg* 62, no. 1-4: 76-84. <u>http://dx.doi.org/10.1159/000098600</u>.
- Bettio, L. E., et al. 2012. "Guanosine Produces an Antidepressant-Like Effect through the Modulation of Nmda Receptors, Nitric Oxide-Cgmp and Pi3k/Mtor Pathways." *Behav Brain Res* 234, no. 2 (Oct): 137-48. <u>http://dx.doi.org/10.1016/j.bbr.2012.06.021</u>.
- Bettio, L.E., et al. 2014. "Guanosine Prevents Behavioral Alterations in the Forced Swimming Test and Hippocampal Oxidative Damage Induced by Acute Restraint Stress." *Pharmacol Biochem Behav* 127 (Dec): 7-14. <u>http://dx.doi.org/10.1016/j.pbb.2014.10.002</u>.
- Bhide, N., et al. 2013. "The Effects of Bmy-14802 against L-Dopa- and Dopamine Agonist-Induced Dyskinesia in the Hemiparkinsonian Rat." *Psychopharmacology (Berl)* 227, no. 3 (Jun): 533-44. <u>http://dx.doi.org/10.1007/s00213-013-3001-4</u>.
- Blandini, F., M. T. Armentero, and E. Martignoni. 2008. "The 6-Hydroxydopamine Model: News from the Past." *Parkinsonism Relat Disord* 14 Suppl 2: S124-9. <u>http://dx.doi.org/10.1016/j.parkreldis.2008.04.015</u>.
- Bonaventura, J., et al. 2015. "Allosteric Interactions between Agonists and Antagonists within the Adenosine A2a Receptor-Dopamine D2 Receptor Heterotetramer." *Proc Natl Acad Sci U S A* 112, no. 27 (Jul): E3609-18. <u>http://dx.doi.org/10.1073/pnas.1507704112</u>.
- Braak, H., et al. 2004. "Stages in the Development of Parkinson's Disease-Related Pathology." *Cell Tissue Res* 318, no. 1 (Oct): 121-34. <u>http://dx.doi.org/10.1007/s00441-004-0956-9</u>.
- Burger, M. E., et al. 2003. "Ebselen Attenuates Reserpine-Induced Orofacial Dyskinesia and Oxidative Stress in Rat Striatum." Prog Neuropsychopharmacol Biol Psychiatry 27, no. 1 (Feb): 135-40.
- Burnstock, G. 2007. "Purine and Pyrimidine Receptors." *Cell Mol Life Sci* 64, no. 12 (Jun): 1471-83. http://dx.doi.org/10.1007/s00018-007-6497-0.
- Burré, J., M. Sharma, and T. C. Südhof. 2018. "Cell Biology and Pathophysiology of A-Synuclein." Cold Spring Harb Perspect Med 8, no. 3 (03). <u>http://dx.doi.org/10.1101/cshperspect.a024091</u>.
- CARLSSON, A., M. LINDQVIST, and T. MAGNUSSON. 1957. "3,4-Dihydroxyphenylalanine and 5-Hydroxytryptophan as Reserpine Antagonists." *Nature* 180, no. 4596 (Nov): 1200.

- Carvey, P. M., A. Punati, and M. B. Newman. 2006. "Progressive Dopamine Neuron Loss in Parkinson's Disease: The Multiple Hit Hypothesis." *Cell Transplant* 15, no. 3: 239-50.
- Chaudhuri, K. R., et al. 2006. "Non-Motor Symptoms of Parkinson's Disease: Diagnosis and Management." *Lancet Neurol* 5, no. 3 (Mar): 235-45. <u>http://dx.doi.org/10.1016/S1474-4422(06)70373-8</u>.
- Chin, M. H., et al. 2008. "Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis Revealed by Proteomic and Transcriptomic Analyses of the Striata in Two Mouse Models of Parkinson's Disease." J Proteome Res 7, no. 2 (Feb): 666-77. <u>http://dx.doi.org/10.1021/pr0705461</u>.
- Ciccarelli, R., et al. 2001. "Involvement of Astrocytes in Purine-Mediated Reparative Processes in the Brain." *Int J Dev Neurosci* 19, no. 4 (Jul): 395-414. <u>http://dx.doi.org/10.1016/s0736-5748(00)00084-8</u>.
- Ciruela, F., et al. 2006. "Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2a Receptor Heteromers." *J Neurosci* 26, no. 7 (Feb): 2080-7. http://dx.doi.org/10.1523/JNEUROSCI.3574-05.2006.
- Collaborators, GBD 2016 Parkinson's Disease. 2018. "Global, Regional, and National Burden of Parkinson's Disease, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016." *Lancet Neurol* 17, no. 11 (11): 939-953. <u>http://dx.doi.org/10.1016/S1474-4422(18)30295-3</u>.
- Collins, L. E., et al. 2010. "Oral Tremor Induced by the Muscarinic Agonist Pilocarpine Is Suppressed by the Adenosine A2a Antagonists Msx-3 and Sch58261, but Not the Adenosine A1 Antagonist Dpcpx." *Pharmacol Biochem Behav* 94, no. 4 (Feb): 561-9. http://dx.doi.org/10.1016/j.pbb.2009.11.011.
- Collins-Praino, L. E., et al. 2013. "Deep Brain Stimulation of the Subthalamic Nucleus Reverses Oral Tremor in Pharmacological Models of Parkinsonism: Interaction with the Effects of Adenosine A2a Antagonism." *Eur J Neurosci* 38, no. 1 (Jul): 2183-91. <u>http://dx.doi.org/10.1111/ejn.12212</u>.
- Cunha, R. A. 2016. "How Does Adenosine Control Neuronal Dysfunction and Neurodegeneration?" J Neurochem 139, no. 6 (12): 1019-1055. <u>http://dx.doi.org/10.1111/jnc.13724</u>.
- Cunha, R. A., M. D. Constantino, and J. A. Ribeiro. 1999. "G Protein Coupling of Cgs 21680 Binding Sites in the Rat Hippocampus and Cortex Is Different from That of Adenosine A1 and Striatal A2a Receptors." *Naunyn Schmiedebergs Arch Pharmacol* 359, no. 4 (Apr): 295-302.
- Cunha, R. A., et al. 1996. "Evidence for High-Affinity Binding Sites for the Adenosine A2a Receptor Agonist [3h] Cgs 21680 in the Rat Hippocampus and Cerebral Cortex That Are Different from Striatal A2a Receptors." *Naunyn Schmiedebergs Arch Pharmacol* 353, no. 3 (Feb): 261-71.
- Cutsuridis, V., and S. Perantonis. 2006. "A Neural Network Model of Parkinson's Disease Bradykinesia." *Neural Netw* 19, no. 4 (May): 354-74. <u>http://dx.doi.org/10.1016/j.neunet.2005.08.016</u>.
- D'Alimonte, I., et al. 2007. "Guanosine Inhibits Cd40 Receptor Expression and Function Induced by Cytokines and Beta Amyloid in Mouse Microglia Cells." *J Immunol* 178, no. 2 (Jan): 720-31. <u>http://dx.doi.org/10.4049/jimmunol.178.2.720</u>.
- Dal-Cim, T., et al. 2013. "Guanosine Controls Inflammatory Pathways to Afford Neuroprotection of Hippocampal Slices under Oxygen and Glucose Deprivation Conditions." *J Neurochem* 126, no. 4 (Aug): 437-50. <u>http://dx.doi.org/10.1111/jnc.12324</u>.
- Dal-Cim, T., et al. 2011. "Guanosine Is Neuroprotective against Oxygen/Glucose Deprivation in Hippocampal Slices Via Large Conductance Ca(2)+-Activated K+ Channels, Phosphatidilinositol-3 Kinase/Protein Kinase B Pathway Activation and Glutamate Uptake." *Neuroscience* 183 (Jun 2): 212-20. <u>http://dx.doi.org/10.1016/j.neuroscience.2011.03.022</u>.

- Dal-Cim, T., et al.. 2012. "Guanosine Protects Human Neuroblastoma Sh-Sy5y Cells against Mitochondrial Oxidative Stress by Inducing Heme Oxigenase-1 Via Pi3k/Akt/Gsk-3β Pathway." *Neurochem Int* 61, no. 3 (Aug): 397-404. <u>http://dx.doi.org/10.1016/j.neuint.2012.05.021</u>.
- Dal-Cim, T., et al. 2019. "Guanosine Prevents Oxidative Damage and Glutamate Uptake Impairment Induced by Oxygen/Glucose Deprivation in Cortical Astrocyte Cultures: Involvement of A." *Purinergic Signal* 15, no. 4 (12): 465-476. <u>http://dx.doi.org/10.1007/s11302-019-09679-w</u>.
- Dawson, L., et al. 2000. "The Group Ii Metabotropic Glutamate Receptor Agonist, Dcg-Iv, Alleviates Akinesia Following Intranigral or Intraventricular Administration in the Reserpine-Treated Rat." *Br J Pharmacol* 129, no. 3 (Feb): 541-6. <u>http://dx.doi.org/10.1038/sj.bjp.0703105</u>.
- Dawson, T. M., and V. L. Dawson. 2002. "Neuroprotective and Neurorestorative Strategies for Parkinson's Disease." *Nat Neurosci* 5 Suppl (Nov): 1058-61. <u>http://dx.doi.org/10.1038/nn941</u>.
- de Lau, L. M., and M. M. Breteler. 2006. "Epidemiology of Parkinson's Disease." Lancet Neurol 5, no. 6 (Jun): 525-35. <u>http://dx.doi.org/10.1016/S1474-4422(06)70471-9</u>.
- Decker, H., et al. 2019. "Guanosine and Gmp Increase the Number of Granular Cerebellar Neurons in Culture: Dependence on Adenosine A." *Purinergic Signal* 15, no. 4 (12): 439-450. http://dx.doi.org/10.1007/s11302-019-09677-y.
- Dexter, D. T., and P. Jenner. 2013. "Parkinson Disease: From Pathology to Molecular Disease Mechanisms." *Free Radic Biol Med* 62 (Sep): 132-44. <u>http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.018</u>.
- Di Iorio, P., et al. 2004. "The Antiapoptotic Effect of Guanosine Is Mediated by the Activation of the Pi 3-Kinase/Akt/Pkb Pathway in Cultured Rat Astrocytes." *Glia* 46, no. 4 (May): 356-68. <u>http://dx.doi.org/10.1002/glia.20002</u>.
- Di Liberto, V., et al. 2012. "Identification of Gpr23/Lpa4 as a Candidate G Protein-Coupled Receptor for Guanosine." *Acta Physiologica* 206, no. Supplement 692 O.16.
- Di Liberto, V., et al. 2016. "The Guanine-Based Purinergic System: The Tale of an Orphan Neuromodulation." *Front Pharmacol* 7: 158. <u>http://dx.doi.org/10.3389/fphar.2016.00158</u>.
- Dixon, A. K., et al. 1996. "Tissue Distribution of Adenosine Receptor Mrnas in the Rat." Br J Pharmacol 118, no. 6 (Jul): 1461-8.
- Duarte, J. M., R. A. Cunha, and R. A. Carvalho. 2016. "Adenosine a1 Receptors Control the Metabolic Recovery after Hypoxia in Rat Hippocampal Slices." J Neurochem 136, no. 5 (Mar): 947-57. <u>http://dx.doi.org/10.1111/jnc.13512</u>.
- Dungo, R., and E. D. Deeks. 2013. "Istradefylline: First Global Approval." *Drugs* 73, no. 8 (Jun): 875-82. http://dx.doi.org/10.1007/s40265-013-0066-7.
- Dunwiddie, T. V., and S. A. Masino. 2001. "The Role and Regulation of Adenosine in the Central Nervous System." Annu Rev Neurosci 24: 31-55. <u>http://dx.doi.org/10.1146/annurev.neuro.24.1.31</u>.
- Duty, S., and P. Jenner. 2011. "Animal Models of Parkinson's Disease: A Source of Novel Treatments and Clues to the Cause of the Disease." *Br J Pharmacol* 164, no. 4 (Oct): 1357-91. <u>http://dx.doi.org/10.1111/j.1476-5381.2011.01426.x</u>.
- Faria, R. R., et al. 2005. "Beneficial Effects of Vitamin C and Vitamin E on Reserpine-Induced Oral Dyskinesia in Rats: Critical Role of Striatal Catalase Activity." *Neuropharmacology* 48, no. 7 (Jun): 993-1001. <u>http://dx.doi.org/10.1016/j.neuropharm.2005.01.014</u>.
- Fernández-Dueñas, V., et al. 2012. "Fluorescence Resonance Energy Transfer-Based Technologies in the Study of Protein-Protein Interactions at the Cell Surface." *Methods* 57, no. 4 (Aug): 467-72. <u>http://dx.doi.org/10.1016/j.ymeth.2012.05.007</u>.

- Fernández-Dueñas, V., et al. 2017. "Adenosine A1-A2a Receptor Heteromer as a Possible Target for Early-Onset Parkinson's Disease." Front Neurosci 11: 652. http://dx.doi.org/10.3389/fnins.2017.00652.
- Ferre, S., et al. 1996. "Adenosine A1 Receptor-Dopamine D1 Receptor Interaction in the Rat Limbic System: Modulation of Dopamine D1 Receptor Antagonist Binding Sites." *Neurosci Lett* 208, no. 2 (Apr): 109-12.
- Ferré, S., et al. 2016. "Allosteric Mechanisms within the Adenosine A2a-Dopamine D2 Receptor Heterotetramer." *Neuropharmacology* 104 (05): 154-60. <u>http://dx.doi.org/10.1016/j.neuropharm.2015.05.028</u>.
- Ferré, S., et al. 1992. "Adenosine-Dopamine Interactions in the Brain." *Neuroscience* 51, no. 3 (Dec): 501-12.
- Ferré, S., et al. 1994. "Postsynaptic Antagonistic Interaction between Adenosine A1 and Dopamine D1 Receptors." *Neuroreport* 6, no. 1 (Dec): 73-6.
- Fredholm, B. B., et al. 2005. "Adenosine and Brain Function." *Int Rev Neurobiol* 63: 191-270. http://dx.doi.org/10.1016/S0074-7742(05)63007-3.
- FREIS, E. D. 1954. "Mental Depression in Hypertensive Patients Treated for Long Periods with Large Doses of Reserpine." N Engl J Med 251, no. 25 (Dec): 1006-8. <u>http://dx.doi.org/10.1056/NEJM195412162512504</u>.
- FREIS, E. D., and R. ARI. 1954. "Clinical and Experimental Effects of Reserpine in Patients with Essential Hypertension." *Ann N Y Acad Sci* 59, no. 1 (Apr): 45-53.
- Frizzo, M. E., et al. 2005. "Guanosine Enhances Glutamate Transport Capacity in Brain Cortical Slices." *Cell Mol Neurobiol* 25, no. 5 (Aug): 913-21. <u>http://dx.doi.org/10.1007/s10571-005-4939-5</u>.
- Fuxe, K., et al. 2005. "Adenosine A2a and Dopamine D2 Heteromeric Receptor Complexes and Their Function." J Mol Neurosci 26, no. 2-3: 209-20. <u>http://dx.doi.org/10.1385/JMN:26:2-3:209</u>.
- Fuxe, Kjell, et al. 2013. "Moonlighting Proteins and Protein–Protein Interactions as Neurotherapeutic Targets in the G Protein-Coupled Receptor Field." *Neuropsychopharmacology* 39: 131-155. <u>http://dx.doi.org/10.1038/npp.2013.242</u>.
- Gandía, J., et al. 2015. "Adenosine A2a Receptor-Mediated Control of Pilocarpine-Induced Tremulous Jaw Movements Is Parkinson's Disease-Associated Gpr37 Receptor-Dependent." *Behav Brain Res* 288 (Jul): 103-6. <u>http://dx.doi.org/10.1016/j.bbr.2015.04.001</u>.
- Gerbatin, R. R., et al. 2019. "A." *Neurosci Lett* 704 (06): 141-144. <u>http://dx.doi.org/10.1016/j.neulet.2019.04.014</u>.
- Gerlach, M., P. Foley, and P. Riederer. 2003. "The Relevance of Preclinical Studies for the Treatment of Parkinson's Disease." J Neurol 250 Suppl 1 (Feb): I31-4. <u>http://dx.doi.org/10.1007/s00415-003-1106-y</u>.
- Gerlach, M., and P. Riederer. 1996. "Animal Models of Parkinson's Disease: An Empirical Comparison with the Phenomenology of the Disease in Man." *J Neural Transm (Vienna)* 103, no. 8-9: 987-1041. <u>http://dx.doi.org/10.1007/BF01291788</u>.
- Giuliani, P., et al. 2015. "Guanosine Protects Glial Cells against 6-Hydroxydopamine Toxicity." *Adv Exp Med Biol* 837: 23-33. <u>http://dx.doi.org/10.1007/5584_2014_73</u>.
- Giuliani, P., et al. 2012. "Protective Activity of Guanosine in an in Vitro Model of Parkinson's Disease." *Panminerva Med* 54, no. 1 Suppl 4 (Dec): 43-51.
- Goetz, C. G. 2002. "Jean-Martin Charcot and the Aging Brain." *Arch Neurol* 59, no. 11 (Nov): 1821-4. http://dx.doi.org/10.1001/archneur.59.11.1821.

- Gomez-Lazaro, M., et al. 2008. "6-Hydroxydopamine (6-Ohda) Induces Drp1-Dependent Mitochondrial Fragmentation in Sh-Sy5y Cells." *Free Radic Biol Med* 44, no. 11 (Jun): 1960-9. http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.009.
- Gonçalves, D. F., et al. 2019. "6-Hydroxydopamine Induces Different Mitochondrial Bioenergetics Response in Brain Regions of Rat." *Neurotoxicology* 70 (01): 1-11. http://dx.doi.org/10.1016/j.neuro.2018.10.005.
- Gualix, J., J. Pintor, and M. T. Miras-Portugal. 1999. "Characterization of Nucleotide Transport into Rat Brain Synaptic Vesicles." J Neurochem 73, no. 3 (Sep): 1098-104.
- Hardie, R. J., A. J. Lees, and G. M. Stern. 1984. "On-Off Fluctuations in Parkinson's Disease. A Clinical and Neuropharmacological Study." *Brain* 107 (Pt 2) (Jun): 487-506.
- Heiman, M., et al. 2014. "Molecular Adaptations of Striatal Spiny Projection Neurons During Levodopa-Induced Dyskinesia." Proc Natl Acad Sci USA 111, no. 12 (Mar): 4578-83. <u>http://dx.doi.org/10.1073/pnas.1401819111</u>.
- Hirsch, E. C., et al. 1992. "Dopamine, Tremor, and Parkinson's Disease." *Lancet* 340, no. 8811 (Jul): 125-6.
- Hussar, D. A. 2020. "New Drugs 2020, Part 1." *Nursing* 50, no. 2 (Feb): 31-38. <u>http://dx.doi.org/10.1097/01.NURSE.0000651608.77613.29</u>.
- Ikeda, Y., et al. 2008. "Protective Effects of Astaxanthin on 6-Hydroxydopamine-Induced Apoptosis in Human Neuroblastoma Sh-Sy5y Cells." J Neurochem 107, no. 6 (Dec): 1730-40. <u>http://dx.doi.org/10.1111/j.1471-4159.2008.05743.x</u>.
- Inden, M., et al. 2006. "Park7 Dj-1 Protects against Degeneration of Nigral Dopaminergic Neurons in Parkinson's Disease Rat Model." *Neurobiol Dis* 24, no. 1 (Oct): 144-58. <u>http://dx.doi.org/10.1016/j.nbd.2006.06.004</u>.
- Ismayilova, N., et al. 2004. "Effects of Adenosine A1, Dopamine D1 and Metabotropic Glutamate 5 Receptors-Modulating Agents on Locomotion of the Reserpinised Rats." *Eur J Pharmacol* 497, no. 2 (Aug): 187-95. <u>http://dx.doi.org/10.1016/j.ejphar.2004.06.030</u>.
- Jackson, E. K., and D. G. Gillespie. 2013. "Regulation of Cell Proliferation by the Guanosine-Adenosine Mechanism: Role of Adenosine Receptors." *Physiol Rep* 1, no. 2 (Aug): e00024. <u>http://dx.doi.org/10.1002/phy2.24</u>.
- Jenner, P. 2014. "An Overview of Adenosine A2a Receptor Antagonists in Parkinson's Disease." *Int Rev Neurobiol* 119: 71-86. <u>http://dx.doi.org/10.1016/B978-0-12-801022-8.00003-9</u>.
- Kane, J. M., and J. M. Smith. 1982. "Tardive Dyskinesia: Prevalence and Risk Factors, 1959 to 1979." Arch Gen Psychiatry 39, no. 4 (Apr): 473-81.
- Kawamura, M., D. N. Ruskin, and S. A. Masino. 2019. "Adenosine A." J Neurophysiol 122, no. 2 (08): 721-728. <u>http://dx.doi.org/10.1152/jn.00813.2018</u>.
- Kim, C. Y., and R. N. Alcalay. 2017. "Genetic Forms of Parkinson's Disease." Semin Neurol 37, no. 2 (04): 135-146. <u>http://dx.doi.org/10.1055/s-0037-1601567</u>.
- Kobylecki, C., et al. 2014. "Randomized Clinical Trial of Topiramate for Levodopa-Induced Dyskinesia in Parkinson's Disease." *Parkinsonism Relat Disord* 20, no. 4 (Apr): 452-5. <u>http://dx.doi.org/10.1016/j.parkreldis.2014.01.016</u>.
- Kondo, T., Y. Mizuno, and Japanese Istradefylline Study Group. 2015. "A Long-Term Study of Istradefylline Safety and Efficacy in Patients with Parkinson Disease." *Clin Neuropharmacol* 38, no. 2 (2015 Mar-Apr): 41-6. <u>http://dx.doi.org/10.1097/WNF.000000000000073</u>.
- Kosmowska, B., et al. 2017. "Tremorolytic Effect of 5'-Chloro-5'-Deoxy-(±)-Enba, a Potent and Selective Adenosine A1 Receptor Agonist, Evaluated in the Harmaline-Induced Model in Rats." CNS Neurosci Ther 23, no. 5 (May): 438-446. <u>http://dx.doi.org/10.1111/cns.12692</u>.

- Kosmowska, B., et al. 2020. "Inhibition of Excessive Glutamatergic Transmission in the Ventral Thalamic Nuclei by a Selective Adenosine A1 Receptor Agonist, 5'-Chloro-5'-Deoxy-(±)-Enba Underlies Its Tremorolytic Effect in the Harmaline-Induced Model of Essential Tremor." *Neuroscience* 429 (Mar): 106-118. http://dx.doi.org/10.1016/j.neuroscience.2019.12.045.
- Kovács, Z., et al. 2015. "Absence Epileptic Activity Changing Effects of Non-Adenosine Nucleoside Inosine, Guanosine and Uridine in Wistar Albino Glaxo Rijswijk Rats." *Neuroscience* 300 (Aug): 593-608. <u>http://dx.doi.org/10.1016/j.neuroscience.2015.05.054</u>.
- Lakatos, R. K., et al. 2016. "Guanosine May Increase Absence Epileptic Activity by Means of A2a Adenosine Receptors in Wistar Albino Glaxo Rijswijk Rats." *Brain Res Bull* 124 (06): 172-81. http://dx.doi.org/10.1016/j.brainresbull.2016.05.001.
- Lanznaster, D., et al. 2016. "Guanosine: A Neuromodulator with Therapeutic Potential in Brain Disorders." Aging Dis 7, no. 5 (Oct): 657-679. <u>http://dx.doi.org/10.14336/AD.2016.0208</u>.
- Lara, D. R., et al. 2001. "Effect of Orally Administered Guanosine on Seizures and Death Induced by Glutamatergic Agents." *Brain Res* 912, no. 2 (Sep): 176-80.
- Lehmensiek, V., et al. 2006. "Dopamine Transporter-Mediated Cytotoxicity of 6-Hydroxydopamine in Vitro Depends on Expression of Mutant Alpha-Synucleins Related to Parkinson's Disease." *Neurochem Int* 48, no. 5 (Apr): 329-40. http://dx.doi.org/10.1016/j.neuint.2005.11.008.
- Lesage, S., and A. Brice. 2009. "Parkinson's Disease: From Monogenic Forms to Genetic Susceptibility Factors." *Hum Mol Genet* 18, no. R1 (Apr): R48-59. <u>http://dx.doi.org/10.1093/hmg/ddp012</u>.
- Leão, A. H., et al. 2015. "Molecular, Neurochemical, and Behavioral Hallmarks of Reserpine as a Model for Parkinson's Disease: New Perspectives to a Long-Standing Model." *Brain Pathol* 25, no. 4 (Jul): 377-90. <u>http://dx.doi.org/10.1111/bpa.12253</u>.
- Li, D. W., et al. 2014. "Guanosine Exerts Neuroprotective Effects by Reversing Mitochondrial Dysfunction in a Cellular Model of Parkinson's Disease." *Int J Mol Med* 34, no. 5 (Nov): 1358-64. <u>http://dx.doi.org/10.3892/ijmm.2014.1904</u>.
- Liberini, P., et al. 1989. "Differential Effect of Acute Reserpine Administration on D-1 and D-2 Dopaminergic Receptor Density and Function in Rat Striatum." *Neurochem Int* 14, no. 1: 61-4.
- Lippman, F. 1941. "Metabolic Generation and Utilization of Phosphate Bond Energy." Enzymology 1.
- Lopes, L. V., et al. 2002. "Adenosine a(2a) Receptor Facilitation of Hippocampal Synaptic Transmission Is Dependent on Tonic a(1) Receptor Inhibition." *Neuroscience* 112, no. 2: 319-329. <u>http://dx.doi.org/10.1016/S0306-4522(02)00080-5.</u>
- Markesbery, W. R., et al. 2009. "Lewy Body Pathology in Normal Elderly Subjects." J Neuropathol Exp Neurol 68, no. 7 (Jul): 816-22. <u>http://dx.doi.org/10.1097/NEN.0b013e3181ac10a7</u>.
- Marques, N. F., et al. 2019. "Guanosine Prevents Depressive-Like Behaviors in Rats Following Bilateral Dorsolateral Striatum Lesion Induced by 6-Hydroxydopamine." *Behav Brain Res* 372 (10): 112014. <u>http://dx.doi.org/10.1016/j.bbr.2019.112014</u>.
- Marques, N. F., C. M. Massari, and C. I. Tasca. 2019. "Guanosine Protects Striatal Slices against 6-Ohda-Induced Oxidative Damage, Mitochondrial Dysfunction, and Atp Depletion." *Neurotox Res* 35, no. 2 (Feb): 475-483. <u>http://dx.doi.org/10.1007/s12640-018-9976-1</u>.
- Massari, C. M., et al. 2016. "In Vitro 6-Hydroxydopamine-Induced Toxicity in Striatal, Cerebrocortical and Hippocampal Slices Is Attenuated by Atorvastatin and Mk-801." *Toxicol In Vitro* 37 (Dec): 162-168. <u>http://dx.doi.org/10.1016/j.tiv.2016.09.015</u>.
- Massari, C. M., et al. 2017. "Antiparkinsonian Efficacy of Guanosine in Rodent Models of Movement Disorder." *Front Pharmacol* 8: 700. <u>http://dx.doi.org/10.3389/fphar.2017.00700</u>.

- Mayorga, A. J., et al. 1997. "Tremulous Jaw Movements Produced by Acute Tacrine Administration: Possible Relation to Parkinsonian Side Effects." *Pharmacol Biochem Behav* 56, no. 2 (Feb): 273-9.
- McQUEEN, E. G., A. E. DOYLE, and F. H. SMIRK. 1954. "Mechanism of Hypotensive Action of Reserpine, an Alkaloid of Rauwolfia Serpentina." *Nature* 174, no. 4439 (Nov): 1015.
- Missale, C., et al. 1989. "Repeated Reserpine Administration up-Regulates the Transduction Mechanisms of D1 Receptors without Changing the Density of [3h]Sch 23390 Binding." *Brain Res* 483, no. 1 (Mar): 117-22.
- Mitchell, H. L., et al. 1995. "Attenuation of Traumatic Cell Death by an Adenosine A1 Agonist in Rat Hippocampal Cells." *Neurosurgery* 36, no. 5 (May): 1003-7; discussion 1007-8. <u>http://dx.doi.org/10.1227/00006123-199505000-00017</u>.
- Mizuno, Y., et al. 2010. "Clinical Efficacy of Istradefylline (Kw-6002) in Parkinson's Disease: A Randomized, Controlled Study." *Mov Disord* 25, no. 10 (Jul): 1437-43. <u>http://dx.doi.org/10.1002/mds.23107</u>.
- Molz, S., T. Dal-Cim, and C. I. Tasca. 2009. "Guanosine-5'-Monophosphate Induces Cell Death in Rat Hippocampal Slices Via Ionotropic Glutamate Receptors Activation and Glutamate Uptake Inhibition." *Neurochem Int* 55, no. 7 (Dec): 703-9. <u>http://dx.doi.org/10.1016/j.neuint.2009.06.015</u>.
- Mu, X., et al. 2009. "Baicalein Exerts Neuroprotective Effects in 6-Hydroxydopamine-Induced Experimental Parkinsonism in Vivo and in Vitro." *Pharmacol Biochem Behav* 92, no. 4 (Jun): 642-8. <u>http://dx.doi.org/10.1016/j.pbb.2009.03.008</u>.
- Navarro, G., et al. 2018. "Evidence for Functional Pre-Coupled Complexes of Receptor Heteromers and Adenylyl Cyclase." *Nat Commun* 9, no. 1 (03): 1242. <u>http://dx.doi.org/10.1038/s41467-018-03522-3</u>.
- O'Kane, E. M., and T. W. Stone. 1998. "Interaction between Adenosine a(1) and a(2) Receptor-Mediated Responses in the Rat Hippocampus in Vitro." *Eur J Pharmacol* 362, no. 1 (Nov 27): 17-25. <u>http://dx.doi.org/Doi</u> 10.1016/S0014-2999(98)00730-4.
- Obeso, J. A., et al. 2010. "Missing Pieces in the Parkinson's Disease Puzzle." *Nat Med* 16, no. 6 (Jun): 653-61. <u>http://dx.doi.org/10.1038/nm.2165</u>.
- Oleskovicz, S. P., et al. 2008. "Mechanism of Guanosine-Induced Neuroprotection in Rat Hippocampal Slices Submitted to Oxygen-Glucose Deprivation." *Neurochem Int* 52, no. 3 (Feb): 411-8. http://dx.doi.org/10.1016/j.neuint.2007.07.017.
- Palmer, T. M., and G. L. Stiles. 1995. "Adenosine Receptors." *Neuropharmacology* 34, no. 7 (Jul): 683-94.
- Paz, M. M., et al. 1994. "Differential Effects of Guanine Nucleotides on Kainic Acid Binding and on Adenylate Cyclase Activity in Chick Optic Tectum." FEBS Lett 355, no. 2 (Nov 28): 205-8.
- Pereira, D., and C. Garrett. 2010. "[Risk Factors for Parkinson Disease: An Epidemiologic Study]." Acta Med Port 23, no. 1 (2010 Jan-Feb): 15-24.
- Pinna, A. 2014. "Adenosine A2a Receptor Antagonists in Parkinson's Disease: Progress in Clinical Trials from the Newly Approved Istradefylline to Drugs in Early Development and Those Already Discontinued." CNS Drugs 28, no. 5 (May): 455-74. <u>http://dx.doi.org/10.1007/s40263-014-0161-</u> <u>7</u>.
- Pinna, A., et al. 2016. "Antidyskinetic Effect of A2a and 5ht1a/1b Receptor Ligands in Two Animal Models of Parkinson's Disease." *Mov Disord* 31, no. 4 (Apr): 501-11. <u>http://dx.doi.org/10.1002/mds.26475</u>.

- Popoli, P., et al. 1996. "Adenosine A1 Receptor Blockade Selectively Potentiates the Motor Effects Induced by Dopamine D1 Receptor Stimulation in Rodents." *Neurosci Lett* 218, no. 3 (Nov): 209-13.
- PORTER, C. C., J. A. TOTARO, and C. A. STONE. 1963. "Effect of 6-Hydroxydopamine and Some Other Compounds on the Concentration of Norepinephrine in the Hearts of Mice." J Pharmacol Exp Ther 140 (Jun): 308-16.
- Preti, D., et al. 2015. "History and Perspectives of A2a Adenosine Receptor Antagonists as Potential Therapeutic Agents." *Med Res Rev* 35, no. 4 (Jul): 790-848. <u>http://dx.doi.org/10.1002/med.21344</u>.
- Przedborski, S. 2017. "The Two-Century Journey of Parkinson Disease Research." Nat Rev Neurosci 18, no. 4 (03): 251-259. <u>http://dx.doi.org/10.1038/nrn.2017.25</u>.
- Przedborski, S., and H. Ischiropoulos. 2005. "Reactive Oxygen and Nitrogen Species: Weapons of Neuronal Destruction in Models of Parkinson's Disease." *Antioxid Redox Signal* 7, no. 5-6 (2005 May-Jun): 685-93. <u>http://dx.doi.org/10.1089/ars.2005.7.685</u>.
- Quarta, D., et al. 2004. "Adenosine Receptor-Mediated Modulation of Dopamine Release in the Nucleus Accumbens Depends on Glutamate Neurotransmission and N-Methyl-D-Aspartate Receptor Stimulation." *J Neurochem* 91, no. 4 (Nov): 873-80. <u>http://dx.doi.org/10.1111/j.1471-4159.2004.02761.x</u>.
- Riccioni, T., F. Leonardi, and F. Borsini. 2010. "Adenosine a(2a) Receptor Binding Profile of Two Antagonists, St1535 and Kw6002: Consideration on the Presence of Atypical Adenosine a(2a) Binding Sites." *Front Psychiatry* 1: 22. <u>http://dx.doi.org/10.3389/fpsyt.2010.00022</u>.
- Salamone, J., and P. Baskin. 1996. "Vacuous Jaw Movements Induced by Acute Reserpine and Low-Dose Apomorphine: Possible Model of Parkinsonian Tremor." *Pharmacol Biochem Behav* 53, no. 1 (Jan): 179-83.
- Salamone, J. D., et al. 2013. "Conditional Neural Knockout of the Adenosine a(2a) Receptor and Pharmacological a(2a) Antagonism Reduce Pilocarpine-Induced Tremulous Jaw Movements: Studies with a Mouse Model of Parkinsonian Tremor." *Eur Neuropsychopharmacol* 23, no. 8 (Aug): 972-7. <u>http://dx.doi.org/10.1016/j.euroneuro.2012.08.004</u>.
- Salamone, J. D., et al. 1998. "Tremulous Jaw Movements in Rats: A Model of Parkinsonian Tremor." *Prog Neurobiol* 56, no. 6 (Dec): 591-611.
- Santos, T. G., D. O. Souza, and C. I. Tasca. 2006. "Gtp Uptake into Rat Brain Synaptic Vesicles." *Brain Res* 1070, no. 1 (Jan 27): 71-6. <u>http://dx.doi.org/10.1016/j.brainres.2005.10.099</u>.
- Schadeck, R. J., et al. 1989. "Synaptosomal Apyrase in the Hypothalamus of Adult Rats." *Braz J Med Biol Res* 22, no. 3: 303-14.
- Schapira, A. H., et al. 2006. "Novel Pharmacological Targets for the Treatment of Parkinson's Disease." Nat Rev Drug Discov 5, no. 10 (Oct): 845-54. <u>http://dx.doi.org/10.1038/nrd2087</u>.
- Schmidt, A. P., et al. 2010. "Mechanisms Involved in the Antinociception Induced by Systemic Administration of Guanosine in Mice." *Br J Pharmacol* 159, no. 6 (Mar): 1247-63. http://dx.doi.org/10.1111/j.1476-5381.2009.00597.x.
- Schmidt, A. P., D. R. Lara, and D. O. Souza. 2007. "Proposal of a Guanine-Based Purinergic System in the Mammalian Central Nervous System." *Pharmacol Ther* 116, no. 3 (Dec): 401-16. <u>http://dx.doi.org/10.1016/j.pharmthera.2007.07.004</u>.
- Sharif, N. A., and P. J. Roberts. 1981. "Regulation of Cerebellar L-[3h]Glutamate Binding: Influence of Guanine Nucleotides and Na+ Ions." *Biochem Pharmacol* 30, no. 21 (Nov): 3019-22. http://dx.doi.org/10.1016/0006-2952(81)90273-2.

- Souza, D. O., and G. Ramirez. 1991. "Effects of Guanine Nucleotides on Kainic Acid Binding and on Adenylate Cyclase in Chick Optic Tectum and Cerebellum." *J Mol Neurosci* 3, no. 1: 39-45.
- Spina, M. B., and G. Cohen. 1989. "Dopamine Turnover and Glutathione Oxidation: Implications for Parkinson Disease." Proc Natl Acad Sci U S A 86, no. 4 (Feb): 1398-400.
- Steinpreis, R. E., and J. D. Salamone. 1993. "Effects of Acute Haloperidol and Reserpine Administration on Vacuous Jaw Movements in Three Different Age Groups of Rats." *Pharmacol Biochem Behav* 46, no. 2 (Oct): 405-9.
- Su, C., et al. 2009. "Guanosine Improves Motor Behavior, Reduces Apoptosis, and Stimulates Neurogenesis in Rats with Parkinsonism." J Neurosci Res 87, no. 3 (Feb): 617-25. <u>http://dx.doi.org/10.1002/jnr.21883</u>.
- Svenningsson, P., et al. 1997. "Cellular Expression of Adenosine A2a Receptor Messenger Rna in the Rat Central Nervous System with Special Reference to Dopamine Innervated Areas." *Neuroscience* 80, no. 4 (Oct): 1171-85.
- Tarozzi, A., et al. 2010. "Guanosine Protects Human Neuroblastoma Cells from Oxidative Stress and Toxicity Induced by Amyloid-Beta Peptide Oligomers." *J Biol Regul Homeost Agents* 24, no. 3 (2010 Jul-Sep): 297-306.
- Tasca, C. I., et al. 2018. "Neuromodulatory Effects of Guanine-Based Purines in Health and Disease." Front Cell Neurosci 12: 376. <u>http://dx.doi.org/10.3389/fncel.2018.00376</u>.
- Tasca, C. I., et al. 1995. "Guanine Nucleotides Inhibit the Stimulation of Gfap Phosphorylation by Glutamate." *Neuroreport* 6, no. 2 (Jan 26): 249-52.
- Thomaz, D. T., et al. 2016. "Guanosine Prevents Nitroxidative Stress and Recovers Mitochondrial Membrane Potential Disruption in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation." *Purinergic Signal* 12, no. 4 (Dec): 707-718. <u>http://dx.doi.org/10.1007/s11302-016-9534-3</u>.
- Traversa, U., et al. 2003. "Rat Brain Guanosine Binding Site. Biological Studies and Pseudo-Receptor Construction." *Bioorg Med Chem* 11, no. 24 (Dec): 5417-25.
- Traversa, U., et al. 2002. "Specific [(3)H]-Guanosine Binding Sites in Rat Brain Membranes." Br J Pharmacol 135, no. 4 (Feb): 969-76. <u>http://dx.doi.org/10.1038/sj.bjp.0704542</u>.
- Ungerstedt, U. 1968. "6-Hydroxy-Dopamine Induced Degeneration of Central Monoamine Neurons." *Eur J Pharmacol* 5, no. 1 (Dec): 107-10.
- Uversky, V. N. 2004. "Neurotoxicant-Induced Animal Models of Parkinson's Disease: Understanding the Role of Rotenone, Maneb and Paraquat in Neurodegeneration." *Cell Tissue Res* 318, no. 1 (Oct): 225-41. http://dx.doi.org/10.1007/s00441-004-0937-z.
- Vallano, A., et al. 2011. "An Update on Adenosine A2a Receptors as Drug Target in Parkinson's Disease." CNS Neurol Disord Drug Targets 10, no. 6 (Sep): 659-69.
- van der Burg, J. C., et al. 2006. "Postural Control of the Trunk During Unstable Sitting in Parkinson's Disease." *Parkinsonism Relat Disord* 12, no. 8 (Dec): 492-8. http://dx.doi.org/10.1016/j.parkreldis.2006.06.007.
- Volpini, R., et al. 2011. "Evidence for the Existence of a Specific G Protein-Coupled Receptor Activated by Guanosine." *ChemMedChem* 6, no. 6 (Jun): 1074-80. <u>http://dx.doi.org/10.1002/cmdc.201100100</u>.
- Volpini, Rosaria, et al. 2011. "Evidence for the Existence of a Specific G Protein-Coupled Receptor Activated by Guanosine." *ChemMedChem* 6: 1074-80. http://dx.doi.org/10.1002/cmdc.201100100.
- Wagner, J. A., S. S. Carlson, and R. B. Kelly. 1978. "Chemical and Physical Characterization of Cholinergic Synaptic Vesicles." *Biochemistry* 17, no. 7 (Apr 4): 1199-206.

- Yamanouchi, H., and H. Nagura. 1997. "Neurological Signs and Frontal White Matter Lesions in Vascular Parkinsonism. A Clinicopathologic Study." *Stroke* 28, no. 5 (May): 965-9.
- Zimmermann, H. 1996. "Biochemistry, Localization and Functional Roles of Ecto-Nucleotidases in the Nervous System." *Prog Neurobiol* 49, no. 6 (Aug): 589-618.