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Considerate la vostra semenza:

fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza.

Consider your origin;

you were not born to live like brutes,

but to follow virtue and knowledge.

(Dante Alighieri)



RESUMO

Selecionar os tipos de juntas é um dos maiores desafios na síntese de mecanismos. O
foco da presente tese é enumerar e selecionar mecanismos auto-alinhantes listando as
restrições de todas as combinações possíveis de juntas a partir de um mecanismo em-
brião. Esta tese apresenta um novo método de selecionar mecanismos auto-alinhantes
enumerados usando teoria de helicoides, método de Davies e teoria de matroides. O
método de Davies e teoria de helicoides são usados para modelar mecanismos em
termos de liberdades e restrições. Matroides são usados para enumerar mecanismos
autoalinhantes usando os modelos criados com o método de Davies como entrada.
Contração e deleção de matroides são então usadas para selecionar conjuntos de
mecanismos viáveis. Esta tese introduz uma notação para representar as operações
de matroides usadas na síntese de novos mecanismos. A presente tese também exibe
o conceito de juntas virtuais de Reshetov, uma estrutura com seis restrições e sem
liberdades, que pode ser usada com o método de Davies. Implementando as juntas
virtuais de Reshetov em mecanismos existentes, um novo método de enumerar mecan-
ismos auto-alinhantes é introduzido, permitindo projetistas criarem novas juntas para
receber liberdades e tornar o mecanismo embrião auto-alinhante. Um estudo de caso
é exibido, no qual a palma reconfigurável da mão antropomórfica KCL/TJU é avaliada.
Dois métodos de projeto de mecanismos auto-alinhantes são usados e comparados.
Finalmente, esta tese também apresenta um método de enumerar mecanismos auto-
alinhantes no qual os mecanismos embriões são constituidos apenas por juntas virtuais
de Reshetov, permitindo que os projetistas possam criar mecanismos com diferentes
propriedades cinemáticas. Usando o método de projeto a partir de mecanismos forma-
dos por juntas virtuais de Reshetov e o método de seleção de mecanismos usando
contração e deleção, dois estudos de caso foram apresentados: os mecanismos de
apoios das pernas e encosto para as costas de uma cama hospitalar.

Palavras-chave: Teoria de Helicoides. Método de Davies. Mecanismos Auto-Alinhantes.
Teoria de Matroides. Contração. Deleção.



RESUMO EXPANDIDO

Introdução
Selecionar os tipos de juntas é um dos maiores desafios na síntese de mecanismos.
As escolhas do projetista deve considerar requisitos de projeto, espaço de trabalho do
mecanismo, liberdades adicionais que uma união de juntas pode gerar, entre muitas
outras. Para um mecanismo simples, a tarefa pode não ser muito complicada para um
projetista experiente, porém um projetista inexperiente pode achar desafiador definir
quais juntas e por quê. O desafio de definir as juntas é ainda mais complexo quando se
considera mecanismos patenteados: o projetista deve buscar novos e diferentes mecan-
ismos para que um dispositivo inovador seja um possível resultado do seu trabalho. Em
uma linha de manufatura ou montagem, gerenciar as tolerâncias de fabricação é vital
para toda a linha de produção. Cada componente do sistema, como elos e juntas, tem
incertezas de fabricação. Durante a montagem, essas incertezas são somadas. Se a
precisão da manufatura é adequada para os requisitos de funcionamento do sistema,
não resultando em problemas. Contudo, se a precisão não é adequada, esses erros
podem impedir o correto funcionamento do sistema, gerando esforços internos nas
peças, diminuindo a confiabilidade do sistema podendo acarretar na impossibilidade da
montagem do mecanismo. Mecanismos e robôs geralmente possuem tolerâncias de
fabricação apertadas para garantir a remoção ou inclusão de mobilidades perigosas ou
restrições. Usando metodologias de projeto de mecanismos auto-alinhantes, que tem
como objetivo remover restrições redundantes, o projetista pode criar novos mecanis-
mos que são mais fáceis de fabricar e montar. Usando teoria de helicoides, teoria de
grafos e método de Davies, é possível criar tanto modelos cinemáticos quanto estáticos
de mecanismos. Usando um mecanismo com restrições redundantes como entrada,
usando as referidas teorias e o método de Davies é possível gerar novos mecanismos
auto-alinhantes. Grafos são usados para relacionar os esforços existentes entre juntas,
enquanto o método de Davies utiliza as leis de Kirchhoff para permitir calcular todos
os esforços presentes no mecanismo. A partir do modelo da estática criado segundo o
método de Davies para um mecanismo com restrições redundantes, matroides são us-
ados para enumerar todas as combinações possíveis de mecanismos auto-alinhantes
derivados do mecanismo original. Neste trabalho é proposto a utilização de operações
de matroides chamadas contração e deleção para auxiliar na seleção de mecanis-
mos enumerados com as técnicas mencionadas. Além de facilitar a seleção de bases,
usando contração e deleção nos matroides, o tamanho das bases também diminui,
diminuindo também o custo computacional necessário para enumerar as bases. Este
trabalho também introduz uma notação para identificar cada passo tomado durante a
seleção de mecanismos usando contração e deleção de matroides. Outra contribuição
do presente trabalho é a introdução das juntas virtuais de Reshetov, uma junta for-
mada apenas por forças e momentos e sem nenhuma liberdade. As juntas virtuais
de Reshetov são usadas para introduzir restrições redundantes em mecanismos ou
então gerar mecanismos sem liberdades, permitindo a utilização de grafos, método de
Davies e matroides para gerar novos mecanismos de maneira sistemática.

Objetivos
O principal objetivo deste trabalho é desenvolver um método gerar e selecionar novos
mecanismos durante a síntese do tipo. Os objetivos específicos desta tese são: desen-
volver ferramentas teóricas que auxiliem na síntese de novos mecanismos; desenvolver



ferramentas teóricas que auxiliem na enumeração e seleção de mecanismos; desen-
volver uma nova abordagem para a síntese de mecanismos auto-alinhantes. Com os
métodos e ferramentas apresentadas nesta tese, objetiva-se auxiliar projetistas no
desenvolvimento de novos mecanismos, facilitando a geração e seleção de mecanis-
mos inovadores a partir de conjuntos de requisitos de projeto através de ferramentas
matemáticas fáceis de utilizar em softwares abertos.

Metodologia
Este trabalho apresenta abordagens para síntese de mecanismos auto-alinhantes.
Em todas as abordagens utiliza-se teoria de helicoides, teoria de grafos e método
de Davies para criar o modelo estático de um mecanismo. Com o referido modelo
é possível avaliar a quantidade de restrições redundantes existentes no mecanismo.
Utilizando as juntas virtuais de Reshetov, é possível criar um mecanismo sem liber-
dades porém com restrições redundantes, ou então adicionar juntas a um mecanismo
existente que já possui restrições redundantes. Com os modelos estáticos dos mecan-
ismos, este trabalho apresenta duas abordagens para gerar novos mecanismos. A
primeira abordagem resume-se a remover colunas da matriz que representa o modelo
estático do mecanismo enquanto se verifica o posto da matriz. Ao retirar colunas da
matriz, restrições estão sendo eliminadas do mecanismo. Se, ao retirar uma coluna,
o posto do mecanismo não foi alterado, uma próxima coluna deve ser retirada. Este
processo é realizado até que o mecanismo esteja livre de restrições redundantes.
Outra abordagem utilizada nesta tese é utilizar matroides para enumerar todas as com-
binações possíveis de mecanismos auto-alinhantes a partir de um mecanismo com
restrições redundantes. Todas as bases dos matroides gerados utilizando as matrizes
do modelo estático são enumeradas. Cada base destes matroides correspondem a
um conjunto de restrições que formam um mecanismo auto-alinhante. O número de
bases dos matroides cresce consideravelmente com o aumento da complexidade dos
mecanismos, justificando-se então a utilização de métodos para seleção de mecanis-
mos enumerados utilizando matroides. Este trabalho introduz a utilização de contração
e deleção de matroides para selecionar as bases. Com a contração, o projetista con-
segue escolher quais restrições devem estar presente no mecanismo auto-alinhante,
enquanto usando deleção o projetista escolhe quais liberdades quer dar para o sistema.
As abordagens discutidas são apresentadas com diversos exemplos para apresentar
e discutir as contribuições desta tese.

Resultados e Discussão
Diversos estudos de caso são apresentados. Inicialmente, utilizam-se as juntas virtu-
ais de Reshetov, o método de Davies e cadeias cinemáticas com mobilidade igual a
zero (cadeias de Baranov) para gerar novas estruturas para mecanismos tipo grippers.
Uma cadeia sem mobilidade com nove juntas e doze elos, onde as nove juntas são
juntas virtuais de Reshetov, é utilizada para gerar um modelo estático de mecanismo
com restrições redundantes. Discutindo alguns requisitos de projeto, mostra-se como
quatro novos mecanismos tipo grippers podem ser gerados. A palma antropomórfica
reconfigurável da KCL/TJU, um mecanismo com restrições redundantes, é modelada e
avaliada seguindo duas abordagens diferentes. Na primeira abordagem utilizada, novos
mecanismos auto-alinhantes são gerados e selecionados usando contração e deleção
de matroides. Inicialmente foram enumerados 2066 mecanismos auto-alinhantes pos-
síveis a partir da palma reconfigurável. Utilizando contração e deleção chegou-se



em um conjunto de 45 mecanismos viáveis, representando 2,2% do total. A segunda
abordagem introduz três juntas virtuais de Reshetov no mecanismo da palma para
permitir maior flexibilidade na escolha dos tipos de juntas. O matroide gerado apre-
sentou 4242 bases diferentes, possibilitando 4242 novos mecanismos auto-alinhantes.
Utilizando os requisitos de projeto para fazer as contrações e deleções desejadas,
chegou-se a um conjunto de 33 novos mecanismos auto-alinhantes, representando
0,78% do total. Novos mecanismos para uma cama hospitalar foram desenvolvidos
utilizando as técnicas discutidas. Primeiro, um mecanismo para a seção das pernas
foi modelado utilizando uma cadeia com duas mobilidades e oito juntas virtuais de
Reshetov. O matroide referente ao modelo deste mecanismo apresentou 25566 bases,
porém utilizando as operações de contração e deleção foi possível atingir um con-
junto de 22 novos mecanismos viáveis, representando 0,086% do montante inicial. O
mecanismo da seção das costas de uma cama hospitalar também foi desenvolvido
seguindo a mesma abordagem de mecanismo formado apenas por juntas virtuais
de Reshetov, chegando em um matroide com 1344797 bases. Usando contração e
deleção, o número foi reduzido para 189 bases, representando 0,014%. Porém, como
189 bases ainda é um número considerável, utilizou-se as matrizes de cobases binárias
como um método de seleção adicional, selecionando 55 mecanismos viáveis.

Considerações Finais
As contribuições desta tese provaram-se úteis para geração de novos mecanismos
autoalinhantes. As juntas virtuais de Reshetov ajudam na abstração dos mecanismos
no método de Davies, podendo ser usada sem a necessidade de um mecanismo con-
hecido como entrada. A utilização das juntas virtuais de Reshetov garantiu uma grande
flexibilidade no desenvolvimento de novos mecanismos, podendo criar mecanismos
integralmente ou ser usada para auto-alinhar mecanismos existentes. As operações
de contração e deleção são eficientes para a selação de mecanismos. Primeiro, dev-
ido ao fato de diminuir a quantidade de elementos na base, as operações permitem
que o custo computacional para enumerar as bases seja diminuido consideravelmente.
Segundo, com a utilização de requisitos de projetos, as operações são facilmente
aplicadas utilizando bibliotecas já disponíveis no software aberto SageMath.

Palavras-chave: Teoria de Helicoides. Método de Davies. Mecanismos Auto-Alinhantes.
Teoria de Matroides. Contração. Deleção.



ABSTRACT

Selecting the joint types is one of the biggest challenges in mechanisms design. The
focus of this thesis is to enumerate and select self-aligning mechanisms by enumerating
the constraints of all possible combination of joints starting from a seed mechanism. Us-
ing screw theory, Davies’ method and matroid theory, this thesis presents a new method
to select self-aligning mechanisms enumerated by matroid theory. Davies’ method and
screw theory are used to model mechanisms in terms of freedoms and constraints. Ma-
troids are used to enumerate self-aligning mechanisms using the model created with
Davies’ method as input. Contraction and deletion of matroids are then applied to select
a set of feasible mechanisms. This thesis introduced a notation for representing matroid
operations when designing new mechanisms. This thesis also presents the concept of
Reshetov virtual joint, a structure with six constraints and without freedoms, which can
be used in Davies’ method. Implementing Reshetov virtual joints into existing mecha-
nisms, a new method to enumerate self-aligning mechanisms was introduced enabling
the designer to create new joints to receive freedoms making the overconstrained seed
mechanism self-aligning. A case study was presented, in which the reconfigurable palm
of the KCL/TJU anthropomorphic hand was evaluated. Two self-aligning mechanisms
design methodologies were used and compared. Finally, this thesis also presents a
method to enumerate self-aligning mechanisms starting from a seed mechanism con-
stituted solely by Reshetov virtual joints, enabling the designer to create mechanisms
with different kinematic properties. Using the mechanism design methodology of seed
mechanisms constituted by Reshetov virtual joints and the selection method by con-
traction and deletion, two case studies were presented: the leg rest and the backrest
mechanisms of a hospital bed.

Keywords: Screw Theory. Davies’ Method. Self-Aligning Mechanisms. Matroid Theory.
Contraction. Deletion.
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1 INTRODUCTION

Choosing the joints of a mechanism is one of the biggest challenges for a

mechanism designer. The designer’s choice must consider design requirements, the

workspace of the mechanism, additional freedoms that a set of joints together may pro-

vide, among many other issues. For a simple mechanism, this task may not prove very

challenging for an experienced designer, but an inexperienced designer may find quite

challenging defining why and how to select the joints. The definition of joints proves

yet more challenging when considering mechanisms already patented. The designer

should seek new and different mechanisms so a new device is a possible outcome of

the work.

For such work, designers can rely on mechanism design methodologies. These

methodologies consist of steps required in a design process to get from basic require-

ments to an innovative device. The mechanism design methodologies classification

proposed by Murai (2019) is used herein, in which the methodologies are classified as

building blocks-based methodology (BBBM), enumeration-based methodology (EBM)

or specialized methodology (SM). Building block-based methodologies (BBBM) use

atlases or databases as starting point in the design process by assembling structures

present in databases. Enumeration based methodologies (EBM) seek to enumerate

every possible mechanism with the same set of structural characteristics. Finally, spe-

cialized methodologies (SM) are those methodologies that do not belong to either of the

previous categories, using many different approaches and usually focusing on specific

mechanism structures or classes.

Screw theory is a powerful tool when analysing or designing mechanisms by the

possibility of modelling freedoms or constraints present in couplings. Screws are used

to represent forces, moments, linear or angular velocities of rigid bodies as a spatial

vector.

The multibody systems modelling proposed by Davies (1981) is an adaptation

of Kirchhoff’s laws and uses screw theory to model the interaction between the bodies,

as well as external forces. Davies’ method allows the modelling of complex systems as

matrices constituted by the freedoms or constraints present in the multibody system.

Through Davies’ method, every velocity, force or constraint present in a mechanism can

be calculated, thus creating either the static or kinematic models of said mechanism.

Davies’ method is usually used as a tool for analysing mechanisms, but it can

also be used when designing mechanisms. Carboni (2015) presented a method to enu-

merate every possible self-aligning mechanism from an overconstrained seed mecha-

nism using Davies’ method and matroid theory, first applying this method to enumer-

ate self-aligning mechanisms based on the Tripteron mechanism (RICHARD et al.,

2006). Later, the methodology proposed by Carboni was used for enumerating sev-
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eral self-aligning mechanisms: reconfigurable palm (BARRETO et al., 2018), leg-rest

of a hospital bed (ARTMANN et al., 2019a) and a clamping device (ARTMANN et al.,

2019b).

This thesis focuses on enumeration of mechanisms using Davies’ method and

matroid theory. The matrices created using Davies’ method for representing the static

model of the mechanisms are used alongside matroid theory to enumerate new mecha-

nisms. Herein a new approach is presented to select self-aligning mechanisms enumer-

ated by matroids using contraction and deletion of matroids. Moreover, a new approach

of enumerating self-aligning mechanisms is also proposed.

1.1 SYNTHESIS OF SELF-ALIGNING MECHANISMS

In a manufacturing or assembly line, tolerance management is vital to the whole

production line. Each piece of the system, such as links and joints, has manufacturing

uncertainties. During assembling, these uncertainties are added up. If manufacturing

precision is adequate for the system’s working characteristics, then no problems arise.

However, if the precision is not adequate these errors may prevent the system to

operate correctly and generate internal stress in the parts, decreasing reliability and

even preventing the assembly of the system (WHITNEY, D. E., 2004).

Mechanisms and robots generally need strict manufacturing and assembly tol-

erances, in order to avoid removing or adding unwanted freedoms and constraints.

By using self-aligning methodologies, i.e. eliminating redundant constraints, the de-

signer can create a new mechanism that will, essentially, be easier to manufacture and

assemble.

A mechanism without redundant constraints is known as self-aligning. A redun-

dant constraint is defined by Reshetov (1979) as a constraint whose elimination does

not change the mobility of the mechanisms. The elimination of redundant constraints,

i.e. turning the original mechanism into a self-aligning one, does not change the way

the mechanism works. In other words, the self-aligning derived mechanism has the

same mobility and workspace of the original mechanism.

On the other hand, self-aligning mechanisms present in general less stiffness

when compared to over-constrained ones (PASHKEVICH et al., 2009). Also, the cost of

manufacturing self-aligning mechanisms must be considered when compared with the

cost of manufacturing over-constrained mechanisms with stricter tolerances. It is up to

the designer to decide whether self-aligning is important to the mechanism or not.

1.1.1 Reshetov’s Method

Reshetov (1979) introduced a method for creating self-aligning mechanisms

based on a seed mechanism with overconstraints. A seed mechanism can be described
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user, which means a prior knowledge is required, including how the mechanism works

as well as matroid theory and greedy algorithm.

Using Carboni’s methodology, Barreto et al. (2018) evaluated the metamorphic

reconfigurable palm of the KCL/TJU hand. Barreto et al. (2018) introduced a new

approach for generating self-aligning mechanisms based on Reshetov (1979). Two

methods for generating self-aligning mechanisms were discussed: adding freedoms

to existing joints or adding new joints with the purpose of adding freedoms for the

self-aligning method.

Later, Artmann et al. (2019a) presented a method to filter mechanisms generated

by the methodology developed by Carboni (2015) and applied the methodology as well

as the filter to a hospital bed mechanism. Using the method proposed in Artmann

et al. (2019a), different mechanisms were created, from hospital bed mechanisms to

clamping devices.

All these works employed Davies’ method and matroid theory to enumerate

mechanisms; however, the enumeration has always been focused on spatial self-

aligning mechanisms. Furthermore, with the exception of the work by Barreto et al.

(2018), all of the works focused solely on changing the types of existing joints. Each

of these works also faced challenges due to the great number of results generated by

means of matroid theory, requiring a considerable computer time for enumeration and

mechanism selection.

1.2 A FIVE LEGGED TABLE

This section uses a simple example of the redesign of a five legged table to

introduce many concepts that will be used later on this work. Suppose a company

manufactures five legged tables; however, due to problems in the manufacturing the

legs do not have the same length. The assembled table always has a wobble. The

company then hires a designer to review the design of the table to solve the issue.

Since the table has five legs, and the minimal required number of legs for a table is

three, two legs can be removed and thus improve the stability of the table. It can be

said that two legs are redundant.

The designer studies the table and enumerates the legs according to Figure 2.
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or the maximal load supported by the table. Analogous considerations are valid for

mechanism with redundant constraints and for the removal of those constraints.

The enumeration of new mechanisms from an existing mechanism with redun-

dant constraints is similar to the five legged table example and is achieved using matroid

theory throughout this work.

The elements to the left written in bold on the list of combinations are legs

present in the possible new tables, while the elements to the right written in italic are

legs that must be removed.

The combinations of legs that would result in three legs in a straight line are

comparable to linearly dependent constraints. If those legs aligned were chosen, the

table would gain a mobility and would tumble. This is only true if the maximal set of

legs are aligned, i.e. the alignment of two legs do not cause problems in the design.

A mechanism with a set of constraints presenting linear dependence would cause

the mechanism to gain an additional unwanted freedom. One of the benefits of using

matroids for the enumeration of self-aligning mechanisms is the fact that the it ensures

the designer that every basis is a maximal set without linear dependence that would

cause an unwanted freedom.

The steps taken by the designer to ensure that the leg L3 is present in the new

table is similar to the matroid operation called contraction. In this work, the contraction

of matroids is used to select a desirable set of constraints, similar to what the designer

did, but instead of legs, constraints are chosen based on design requirements.

The dual of the contraction is the deletion. When defining that the leg L3 must be

removed, the designer selected the combinations that have the element L3 present to

the right inside the parenthesis. Then the element L3 was erased from the list because

it was present in every remaining combination. Using the deletion of matroid elements

the same property is achieved, thus selecting which constraints must be removed from

the mechanism.

Comparing the lists of legs obtained in the five legged table example with ma-

troids, the matroid bases consist of the remaining linearly independent elements which

are the elements to the left of the dividing symbol. The elements to the right of the

dividing symbol consist of the cobases of the matroid.

Table 1 presents a summary of the comparison between the concepts discussed

in the five legged table example and the tools related to matroids and mechanisms

that are used throughout this work. The column respective to the chapters indicates in

which the equivalent concept is used first in this thesis.
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Table 1 – Comparison between the five legged table example with matroid and mecha-
nisms.

Table example Matroids and mechanisms Chapter

Table with five legs Mechanism with redundant constraints Chapter 2
Table with three legs Self-Aligning Mechanism Chapter 2
Enumeration of stable legs Enumeration of matroid bases Chapter 5
Combination of legs written in bold Matroid basis Chapter 5
Combination of legs written in italic Matroid cobasis Chapter 5
Selection of legs to remain Matroid contraction Chapter 6
Selection of legs for removal Matroid deletion Chapter 6

Source – From the author.

1.3 THESIS OBJECTIVES

The objective of this thesis is to provide a type synthesis methodology for gener-

ating and selecting new mechanisms.

Specific objectives are listed below.

• To provide theoretical tools that aid the design of new mechanisms.

• To provide theoretical tools that aid the enumeration and selection of mechanisms.

• To provide a new approach for the synthesis of self-aligning mechanisms.

The methods and tools presented herein are expected to assist designers when

developing new mechanisms, facilitating in creating and selecting innovative mecha-

nisms from sets of design requirements with easy to use mathematical tools employing

open-source software.

1.4 THESIS CONTRIBUTIONS

This thesis contributes to the enumeration and selection of mechanisms enumer-

ated using Davies’ method and matroid theory. The self-aligning mechanisms enumer-

ation proposed by Carboni (2015) is extended for creating mechanisms with different

kinematic properties. A new method to select the enumerated self-aligning mecha-

nisms is also proposed, improving the translation of design requirements into filters.

The specific contribution are as follows.

1.4.1 Davies’ Method

Based on the formulation of Davies’ method, new approaches for analysing and

enumerating mechanisms are proposed. The specific contributions are:
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• The novel concept of Reshetov virtual joint is introduced in this thesis. This new

concept allows the designer to input a rigid structure inside the multibody for-

mulation proposed by Davies (1981). Reshetov virtual joints are used as means

of generating self-aligning mechanisms, receiving different freedoms and thus

creating different mechanisms.

• Using the proposed concept of Reshetov virtual joints, this work shows how re-

dundant constraints can be removed for creating new mechanisms with different

kinematic structures.

1.4.2 Self-Aligning Mechanisms Synthesis

Based on the enumeration of self-aligning mechanisms methodology by Carboni

(2015), a new tool for modelling mechanisms is applied. Furthermore, a new method

for selecting self-aligning mechanisms using matroid theory is discussed. The specific

contributions are:

• Reshetov virtual joints are used for designing new self-aligning mechanisms.

When creating new self-aligning mechanisms using Davies’ method, the designer

is required to modify existing joints, which could be undesirable. The new concept

of Reshetov virtual joints provides the designer more flexibility for creating new

mechanisms.

• Using contraction and deletion of matroids, a new method for selecting mech-

anisms enumerated by matroids is proposed. Unlike previous works where the

methods were hard to implement or to use design requirements as filters, contrac-

tion and deletion of matroids provide a user-friendly tool for selecting mechanisms

as well as a practical approach of using design requirements in the synthesis

process.

• A novel notation for representing matroid operations. Based on the joint types

according to Reshetov (1979), a representation of both contraction and deletion

of matroids applied to mechanisms synthesis is created. Furthermore, the repre-

sentation can be used as a list of matroid operations already finished.

1.5 THESIS OUTLINE

This thesis is organized in ten chapters.

Chapter 1 is an introduction to the research area of the thesis, presenting also

the objectives of this work.

In Chapter 2 mechanism design methodologies are discussed. An overview of

the main steps normally present in mechanisms design are discussed, focusing mainly
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in the type synthesis. Different enumeration based mechanism design methodologies

are introduced.

In Chapter 3 screw theory and Davies’ method are briefly discussed. Both kine-

matic and static model of mechanism using Davies’ method are demonstrated. Linear

dependence of freedoms and constraints are also discussed.

The concept of Reshetov virtual joints is proposed in Chapter 4. Using this

new concept, new Baranov gripper mechanisms are designed employing also Davies’

method and Baranov chains.

In Chapter 5 matroid theory is introduced. Throughout this chapter, linear and

graphical matroids are used to explain different properties and operations.

In Chapter 6 contraction and deletion of matroids are used to create a new

method to select self-aligning mechanism enumerated. A notation for representing the

matroid operations is also proposed.

In Chapter 7 a case study is presented. The anthropomorphic reconfigurable

palm of the KCL/TJU hand is used as a seed mechanism for generating new self-

aligning mechanisms.

In Chapter 8 a new methodology for enumerating mechanisms is proposed. In

this methodology, the new mechanisms are not kinematically equivalent to the seed

mechanism.

In Chapter 9 the new design methodology is used for generating hospital bed

mechanisms.

The conclusions of this thesis and future work are presented in Chapter 10.

Appendix A contains a deeper discussion of matroid theory, presenting proper-

ties and formulations.

Appendix B presents a deeper demonstration of contraction and deletion of

matroids.

Appendix C contains the lists of the mechanisms enumerated and selected

throughout the thesis.
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2 MECHANISM DESIGN TECHNIQUES AND METHODOLOGIES

The objective of this section is to introduce the different approaches of synthesis

commonly applied in the mechanisms design methodology. Initially the number syn-

thesis is presented, then the type synthesis, and finally the dimensional synthesis is

discussed. In the sequence, four different mechanism design enumeration methodolo-

gies are introduced.

2.1 NUMBER SYNTHESIS

Number synthesis is the procedure to enumerate kinematic chains with given

characteristics (TISCHLER et al., 1995a). In general, the mobility, screw system, num-

ber of joints, links and loops are used for the kinematic chain enumeration. The relation

between these characteristics are given by the Grübler-Kutzbach formulation (GOGU,

2005a), shown in Equation 1:

M = λ(n− j − 1) +

j
∑

i=1

fi (1)

where M is the mobility of the mechanism, λ is the screw system order, j is the number

of joints, n is the number of links and fi is the degrees of freedom of each kinematic

pair. Equation 1 can be written differently if only joints with one degree of freedom are

considered, resulting in Equation 2.

M = λ(n− j − 1) + j (2)

Equation 2 can be modified to include the number of independent loops ν, shown

in Equation 3.

M = j − λν (3)

Equation 1 is known to fail in certain conditions (MRUTHYUNJAYA, 2003; GOGU,

2005b), and thus Equations 2 and 3 also have limitations. Based on the work by Maly-

shev, Ozol and Shamaidenko, Reshetov (1979) presents an equation for the mobility of

mechanisms considering redundant constraints:

M = λ(n− j − 1) +

j
∑

i=1

fi + q (4)

where q is the number of redundant constraints present in the mechanism.

Tischler et al. (1995a) define the goal of the number synthesis as the discovery

of every possible arrangement using a given number of joints and links. It is important

to emphasize that the kinematic chains should be proper, as defined by Tischler et al.
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(1995a), or nondegenerate, as pointed out by Simoni and Martins (2007). Kinematic

chains which have M ≤ 0 are usually not of interest in the study of mechanisms. More

information and examples on number synthesis are available in Tischler et al. (1995a),

Tischler et al. (1995b), Simoni and Martins (2007), Simoni et al. (2009), Martins et al.

(2010). Different reviews of number synthesis are available in Mruthyunjaya (2003),

Simoni et al. (2011) and Yan and Chiu (2015).

2.2 TYPE SYNTHESIS

The main objective of the type synthesis is to determine which types of joints

are employable on the mechanism being developed. According to Hartenberg and

Denavit (1964), at this phase the types of links and joints used in the mechanism are

defined. Kong and Gosselin (2007) define type synthesis of parallel mechanisms as

the procedure of finding every possibility of leg combinations for parallel mechanisms

to perform a given movement.

The topological synthesis of mechanisms at times can be called the type synthe-

sis of mechanisms, while often it is a combination of the number synthesis and type

synthesis. Furthermore, depending on the author, type synthesis of mechanisms may

assume different meanings. For example, Sandor and Erdman (1984) place number

synthesis as a subcategory of the type synthesis. Tsai (2001) uses the term kinematic

structure when generating new mechanisms with his methodology. According to Tsai,

the term kinematic structure includes information from which links are connected by

what types of joints, thus including number and topological synthesis in one category.

This design phase requires special attention from the designer, because several

factors should be considered. More complex joints may prove troublesome in the pro-

duction as they usually cost more. In addition, mechanisms that are hard to assemble

considerably complicate the production and maintenance.

Considering the screw system used in a specific project, the possible types of

joints are defined. For example, in the planar space, the revolute joint, the prismatic

joint, cams and gears are available. Once the types of joints are defined, they are

associated with the mechanism, and every possible combination is listed. This step

commonly provides a high number of results, hence computer algorithms are frequently

used to list and possibly filter the different combinations.

During the type synthesis, approaches such as self-aligning mechanisms are

applicable. This approach enables the designer to create a mechanism easier to as-

semble which tolerates manufacturing flaws, facilitating also the maintenance of the

device. Further information on self-aligning mechanisms or minimum constraint designs

are available in Reshetov (1979), French (1985), Kamm (1990), Blanding (1999).

In this thesis, the preferred term is type synthesis when considering the phase

of defining the types of joints of mechanisms, although topological and type synthesis
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are considered synonyms. Furthermore, following the mechanism design procedures

presented later, the number synthesis is considered independent to the type synthesis.

Ye and Li (2019) proposed a classification dividing the type synthesis of parallel

mechanisms into three categories: motion-based methods, constraint-based methods

and other methods. The motion based methods consists of creating a motion of the

moving platform with the intersection of the allowed movements of each leg of the

parallel mechanism. The constraint-based methods create mechanisms by the union

of the constraints of the legs, thus forming the constraint space of the moving platform.

Finally, Ye and Li (2019) present two approaches as other methods, an enumeration

approach based on the Grübler-Kutzbach formula and a graph theory based method.

2.2.1 Motion-Based Methods

Ye and Li (2019) describe the motion-based methods for type synthesis of mech-

anisms as two different tasks. First, mathematical expressions are used to represent the

movements of the bodies. Then, a correlation between the motions and the topological

structures is created using mathematical tools.

Herve (1978) proposed a method for using Lie group theory in the synthesis of

parallel mechanisms, and since many works have been published using this concept

(KAROUIA; HERVE, 2000; LI et al., 2004, 2017; LEE; HERVE, 2010). The motion of the

moving platform of a parallel mechanism using Lie group theory based method consists

of the union of the motion set enabled by each leg of the mechanism. According to Ye

and Li (2019), the type synthesis using Lie group theory has two advantages: a finite

mobility is guaranteed and this method can be used with mixed rotations and transla-

tions whose sequence is specified. Despite these advantages, this method requires

mathematical foundation of the designer.

Another motion-based type synthesis is the method based on generalized func-

tion sets GF . The type synthesis process using the GF sets is similar to the method

based on Lie group theory. The GF sets are composed by three translations and three

rotations that represent the motion of the moving platform, and each of these elements

may be a specific symbol or zero, thus representing the presence or absence of the

motion. The GF sets of the moving platform are found by the intersection of the general-

ized sets of every limb. More information on GF is available in: Gao et al. (2002), Jialun

Yang et al. (2011), Gao et al. (2011), Jialun Yang et al. (2012) and He et al. (2015).

Type synthesis of parallel mechanisms may also be done using the linear transfor-

mation method. This approach is based on the linear transformation from joint velocity

in space to the output velocity in space. When using this method, conditions are iden-

tified so that they correspond to a desired motion, which generally is with no actuator

locked and in particular cases with one actuator locked, thus guaranteeing indepen-

dent mapping between input and output velocities. Then, limbs that comply with the
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conditions identified are designed. Several parallel mechanisms with different degrees

of freedom have been designed using this approach (GOGU, 2007, 2009, 2012).

Other synthesis methods are also available, such as finite screw method (YANG,

S. et al., 2016, 2017; SUN et al., 2018; SUN; HUO, 2018) and position and orientation

characteristic (POC) set method (YANG, T. et al., 2016).

2.2.2 Constraint-Based Methods

The synthesis of parallel mechanisms using constraint-based methods is es-

tablished on the notion that constraints are restrictions to motions. When the moving

platform has a specific constraint, that platform cannot perform a motion related to that

constraint.

Screw theory is used in constraint based methods relying on reciprocal screws

to design parallel mechanisms. Several different parallel mechanisms have been de-

signed using this approach (HUANG; LI, 2002, 2003; FANG; TSAI, 2002, 2004; GUO

et al., 2012; KONG; GOSSELIN, 2004a, 2004b). Ye and Li (2019) lists the steps re-

quired in this synthesis approach, placing as last step the requirement of checking the

synthesised structure to ensure full mobility.

Virtual chains are also used in the type synthesis of parallel mechanisms mainly

relying on screw theory. The main difference between this approach and the previous

one is the description of the motion pattern of the moving platform using virtual chains

(KONG; GOSSELIN, 2005a, 2005b, 2006, 2007).

A different constraint-based method used line geometry and line graphs (XIE

et al., 2013, 2014), which according to Ye and Li (2019) can be regarded as a visual

version of the screw theory methods.

Lastly, parallel mechanisms can also be generated using motion constraint gen-

erators, in which a limb with the desired constraints is used with several six degrees

of freedom limbs. Several papers have been published demonstrating the synthesis of

mechanisms using this method (ZHANG, D.; GOSSELIN, 2000; KUO; DAI, 2013; LU;

HU, 2007).

2.2.3 Other Methods

Different approaches are available when considering type synthesis of gen-

eral mechanisms, such as graph theory (LIU; CHOU, 1993; LU; LEINONEN, 2005;

PUCHETA; CARDONA, 2007; PUCHETA et al., 2012; LU et al., 2014), Assur groups

and virtual chains (CAMPOS et al., 2008; ZHANG, X. et al., 2019) and Davies’ method

together with matroid theory (CARBONI, 2015; CARBONI et al., 2017; BARRETO et al.,

2018; ARTMANN et al., 2019a). This work focuses on the type synthesis of mechanisms

using Davies’ method and matroid theory.
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2.2.4 Considerations About Type Synthesis

According to Ye and Li (2019), there are several methods for the type synthesis

for parallel mechanisms with one moving platform and parallel limbs; however, there is

a need for more methodologies that develop generalized parallel mechanisms, such as

parallel mechanisms with multiple moving platforms and hybrid links.

The majority of the methods presented in the previous subsections place the

synthesis of motion as the core of the synthesis methods; however, when designing

special application systems, sometimes the desired motion is a complex combination

of rotations and translations which increases considerably the challenge when using

the methods presented. If the type synthesis is not used as means of defining the

motion of the moving platform, new opportunities in synthesis methods arise. When

the designer is not constrained to selecting joints aligned mainly in the coordinated

axes, more complex movements are possible. Although challenging, the definition of

the motions of the moving platform can be done in a later stage of the mechanism

design process known as dimensional synthesis, thus making the type synthesis a

phase of enumerating possibilities disregarding motion.

2.3 DIMENSIONAL SYNTHESIS

Sandor and Erdman (1984) claim that the dimensional synthesis is used to de-

fine the dimensions, starting points and conditions of pre-determined mechanisms for

specific tasks and characteristics. These authors also assert that the most common

tasks for the dimensional synthesis are function, path and motion. The function gen-

eration requires a correlation between the input and output links. The dimensions of

the mechanism should satisfy the function that describes the relation between those

links. An optimization in this case compares the desired function with the calculated

correlation of the input and output of the dimensioned mechanism. The path generation

uses a point on a link that is not connected to the fixed link to trace the path of that link

using the fixed link as the reference. The path generation is demonstrated in Figure 13.
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desired but also the rotations of bodies. In the dimensional synthesis stage, optimiza-

tion routines are essential to guarantee a satisfactory performance of the developed

mechanism. In order to perform an optimization procedure, a mathematical model of

the mechanism is required.

2.4 MURAI’S MECHANISM DESIGN METHODOLOGY

The methodology proposed by Murai (2019) combines different characteristics of

the methodologies by Yan (1998) and Tsai (2001). The first step in Murai’s methodology

is the state of the art review, whose objective is to find existing mechanisms that fulfil

the project requirements. This is done to get a wider understanding of the project

area, analysing the key challenges. From the existing devices found in the state of the

art review, characteristics, such as mobility and number of loops, are analyzed. The

methodology presented by Murai (2019) requires a kinematic chains generator and

evaluator.

Murai (2019) determines the following steps for the methodology:

• State of the art survey. Mechanisms that performs the desired or similar functions

should be considered. In this step, customer requirements should also be listed.

• Identify the design and structural characteristics of the devices found in the state

of the art survey.

• Determine the structural and design requirements for the project in development.

• Select structural characteristics from the requirements as inputs to the generator.

• Generate all possible kinematic chains.

• Evaluate all kinematic chains and eliminate all the kinematic chains that do not

comply with the requirements. If after this step there is no kinematic chain re-

maining, the structural characteristics should be changed and the generator be

re-evaluated.

• Perform the type synthesis for the selected kinematic chains.

• Perform the dimensional synthesis from the mechanisms developed in the previ-

ous step.

• Create a prototype.

• Develop the documentation of the prototype.

• Start the production.
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exponentially. If enumerating bases is required for a selection method, the analysis of

complex systems may become unfeasible.

Another approach to select bases was proposed by Artmann (ARTMANN, 2019;

ARTMANN et al., 2019a) called the cobases binary matrix [N ]µ,C . After the creation of

the matroid on the network action matrix, every cobasis of the matroid is enumerated.

The number of rows of this matrix is the number of cobases µ of the matroid, while each

column refers to a constraint of the ground set. The elements n(i, j) of matrix [N ]µ,C

are defined by:

n(i,j) =

{

1 if the constraint j is in the cobasis i

0 otherwise
(6)

Using Equation 47, the presence of a constraint in the cobasis is translated into a

number 1 in the column of that constraint. If the constraint is not present in the cobasis,

the element is 0. Equation 7, extracted from Artmann (2019), shows an example of the

[N ]µ,C matrix.

[N ]112,20 =

. . . $̂a
bR

$̂a
bS

. . . $̂acW $̂a
dR

$̂a
dS

$̂a
dU

$̂a
dV

$̂a
dW







l1 . . . 1 1 . . . 0 0 0 0 0 1

l2 . . . 1 1 . . . 1 0 0 0 0 0

l3 . . . 0 0 . . . 0 1 1 0 0 1

...
. . .

...
...

. . .
...

...
...

...
...

...

(7)

Each of the li rows are different cobasis representing different mechanisms. The

columns with 1 are constraints present in the cobasis.

By creating the cobases binary matrix, the designer has a large yet simple list of

bases and constraints enumerated using matroid theory. The next step of the method

proposed by Artmann is using selection criteria as means of selection process. The

selection criteria are defined using project requirements, such as the requirement of

using only lower kinematic pairs. Each selection criterion Ki is formed by a list of

cobasis that comply with that criterion and the final group KF of cobases that comply

with all of the criterion is found by the intersection of the sets selected by each of the

Ki criterion. The set KF is the group of self-aligning mechanisms that comply with

every design requirement. The cobases binary matrix is a great technique to select

self-aligning mechanisms with different characteristics, as different boolean algebra

operators can be used. If the designer wishes, in one criterion multiple different types

of joints can be selected. The downside to this selection method is the requirement of

listing every basis of the matroid, which can be very time consuming or even unfeasible.
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3 INTRODUCTION TO SCREW THEORY AND DAVIES’ METHOD

In this chapter a brief review of screw theory is presented. Then, Davies’ method

is explained and redundant constraint in the method is discussed.

3.1 SCREW THEORY

Screw theory as is known today was first introduced by Ball (1900) and has

been extensively used in robotics and mechanisms (WALDRON, 1966; HUNT, 1978;

DAVIDSON; HUNT, 2004; DAVIES, 2006b; KONG; GOSSELIN, 2007).

Screws can be used both in kinematic and static modelling of rigid bodies. For

the kinematics, a screw represents the translation along a line coupled to a rotation

around the same line, hence we can define linear and angular velocities of a rigid body

in the spatial workspace using a screw.

A screw $ can be defined as a line, the screw axis, with a scalar pitch h, with the

pitch representing the ratio between the translational velocity and the angular velocity

h = ||τ ||/||ω||. The screw that represents a instantaneous motion of a rigid body is

called a motion screw, which is used in kinematics. Using screw coordinates $m =

[r s t u v w]T , the instantaneous motion is represented by a linear component as

the vector ~V = [Vx Vy Vz]
T = [u v w]T and an angular component as the vector

ω = [ωx ωy ωz]
T = [r s t]T , both relative to a fixed origin. A screw is also defined by

Equation 8.

$ =

[

S

S0 × S + hS

]

(8)

where S is the unit vector parallel to the screw axis, i.e. the direction of the screw. S0 is

a vector between any point of the screw axis and the fixed origin. For a screw with pitch

h = 0, i.e. a pure rotation, the screw is represented by Equation 9.

$ =

[

S

S0 × S

]

(9)

When the pitch h→ ∞, i.e. a pure translation, the screw will be represented by

Equation 10.

$ =

[

0

S

]

(10)

The static formulation using screw theory is similar to the kinematic formulation

shown, with minor differences. For the static, screws are called action screws and they

are used to model forces and moments acting on a rigid body. The pitch of the screw

is calculated by the relation between the moment and the force components of the



Chapter 3. Introduction to Screw Theory and Davies’ Method 50

screw. The screw coordinates are also different: $a = [R S T U V W ]T . The screw is a

composition of a force vector Q = [U V W ]T and a moment vector P = [R S T ]T . For

the static modelling, we use Equation 11.

$ =

[

S0 × S + hS

S

]

(11)

The screw used in static is inverted when considering the screw in kinematics, as

for the prior is used in the axis-coordinates and the latter in the ray-coordinates (HUNT,

1978).

From the kinematics, Huang et al. (2013) discuss the concept of screw system.

For a serial mechanism, the screw system is the composition of the motion screws of

each link. The screw system can also be defined as the set of linearly independent

screws that that can be used to describe the motion of a robot. A planar mechanism

in the x − y plane will present screws as combinations of t, u and v, while a spatial

mechanism will present screws as combinations of r, s, t, u, v and w.

This work uses Davies’ notation for constraints: $a = [R S T U V W ]T . Table 2

explains the Davies’ notation.

Table 2 – Explanation of the notation used in this work.

Constraint Equivalence

R Mx - moment in the x-axis
S My - moment in the y-axis
T Mz - moment in the z-axis
U Fx - force in the x-axis
V Fy - force in the y-axis
W Fz - force in the z-axis

Source – From the author.

Using Davies’ constraint notation as well as the joints name, lists with many

constraints are easier to distinguish, thus this combination is the preferred notation

throughout this work.

In Table 3, three examples of joints are listed and their constraints are described.

First, joint a is a revolute joint in the z-axis. Second, joint b is a universal joint in the x

and z-axes. Finally, joint c is a cylindrical joint in the y-axis.
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Table 3 – Comparison of Notations.

Joint Type Mx My Mz Fx Fy Fz

a revolute aR aS – aU aV aW
b universal – bS – bU bV bW
c cylindrical cR – cT cU – cW

Source – From the author.

The constraints not present in the joints are noted using "-" in Table 3.

3.2 LINEAR DEPENDENCE OF FREEDOMS AND CONSTRAINTS

In this section, screw theory is used to evaluate the linear dependence of free-

doms and constraints of joints of mechanisms. Joints are often called kinematic pairs,

as they are the coupling of two bodies enabling some freedoms while imposing some

constraints. Using screw theory, joints can be compared by the difference of the free-

doms and constraints. Some examples are shown in Table 4.

Table 4 – Freedoms and Constraints Screws of Joints.

Joint Freedoms Constraints

Revolute joint in the z axis $t $R, $S , $U , $V , $W
Prismatic joint in the x axis $u $R, $S , $T , $V , $W
Universal joint in the x and y axis $r, $s $T , $U , $V , $W
Spherical joint $r, $s, $t $U , $V , $W
Pin in slot joint with a revolute freedom in the z axis and a transla-
tional freedom in the y axis

$t, $v $R, $S , $U , $W

Cylindrical joint with a revolute freedom and a translational free-
dom in the y axis

$s, $v $R, $T , $U , $W

Source – From the author.

The freedoms and constraints shown in Table 4 are based on linear indepen-

dence of screws. For the revolute joint in the x axis, the screw axis, or the vector S

parallel to the screw axis, is aligned with the x axis. By aligning the motion screw of the

joint, the constraints can be found as shown in Table 4.

When the joints are not aligned with the x, y and z axis, the freedoms and

constrains are not so easily defined. Using the revolute joints again as an example, the

rotational freedom will have components in more than one axis, while maintaining only

one degree of freedom. The vector S is still a unit vector, but now with components in

multiple axes.
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When modelling static and kinematics of robots and mechanisms, the linear

dependence of screw axes are usually not a problem; however, when actually working

with the linear independence of freedoms and constraints, the dependence of axes

must be analyzed. Linear dependence between constraints can lead to singularities,

which induces unwanted freedoms to the mechanism. Although using joints perfectly

aligned with the coordinated axes facilitates the work of the designer, in real applications

not always the axes are aligned and linear dependence is frequently difficult to see.

Reshetov (1979), while presenting a method for enumerating self-aligning mechanisms

based on linear independence, discussed about the approach required when facing

joints not perfectly aligned with the coordinate axes. In his work, the mobilities of joints

are related to one of the axis where the mobility is usable, i.e. there is a small angle

between the joint axis and one of the coordinate axes. Therefore, when a joint is

not aligned with the coordinate axes, the designer must choose which is the main

independent axis. For example, a prismatic joint with an angle of 15o to the x- axis. This

joint is considered a prismatic joint in the x-axis even if it is not aligned with that axis.

Although Reshetov (1979) does not use screw theory, another important aspect

of linear dependence of freedoms is discussed. According to Reshetov (1979), a linear

mobility can be replaced by an angular mobility perpendicular to the translational free-

dom. By rotating a link around an axis, a linear mobility freedom perpendicular to the

rotating can be described.

3.3 DAVIES’ METHOD

The objective of this section is to briefly introduce the Davies’ method. This

method, proposed by Davies (DAVIES, 1981, 1995, 2006a, 2006b), consists of an

adaptation of Kirchhoff’s circulation and cutset laws to multibody systems. The Davies’

method also uses screw theory and graph theory to model the freedoms and constraints

of the joints. Several studies and applications for the Davies’ method have been ex-

plored (LAUS et al., 2012; MEJIA et al., 2015; MORENO et al., 2018; TOSCANO et al.,

2018).

3.3.1 Kinematic Model

The kinematic modelling in Davies’ method starts by finding the coupling graph

of the desired mechanism. Figure 22 shows a four-bar mechanism and its respective

coupling graph GC .
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Using the unit motion matrix (Equation 12) and the circuit matrix (Equation 13),

the network unit motion matrix is created, as shown in Equation 14.

[MN ]λν,F =













[MD][B1]

[MD][B2]
...

[MD][Bk]













(14)

where F is the gross degree of freedom of the system, ν is the number of loops and

[Bi] are diagonal matrices from each row i of the circuit matrix. The network unit motion

matrix is used to create a linear homogeneous system, analogous to Kirchhoff’s circuit

law:

[MN ][φ]F = [0]λν (15)

where φ is a vector with the unknown magnitudes of velocities. For the four-bar mech-

anism of the example, the linear homogeneous system that represents the kinematic

model is presented in Equation 16.

[

[MD][B1]
]













at

bt

ct

dt













=













0

0

0

0













(16)

By solving the linear system of Equation 16, the linear and angular velocities of

each joint is calculated.

3.3.2 Static Model

We begin the demonstration of the static modelling by Davies’ method with a

four-bar mechanism, which is shown in Figure 23.
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The columns of the [QA] matrix are the edges of the graphs which represent

each of the constraints in the coupling and each row represents a cutset. If a constraint

is contained in a cutset, the element receives the number 1, otherwise the number zero

is input. Furthermore, if the edge is in the same direction of the chord, then the sign

is positive; otherwise, the element receives a negative sign. For a simplification, the

constraints $ai,j are now called only by the joint and mode of constraint, e.g. aU .

The matrices [AD] and [QA] are now used to create the network unit action matrix

[AN ]. This matrix is presented in Equation 19.

[AN ]λk,C =













[AD][Q1]

[AD][Q2]
...

[AD][Qk]













(19)

In Equation 19, [Qi], i = 1, 2, ..., k, are diagonal matrices whose elements corre-

spond to the row i of the cutset matrix [QA], in this system k = 3. The matrix [AN ], as

well as the matrix [AD], has eight columns (C = 8), as there are four joints with two

constraints each. If we add external forces or actuation forces, these would be entered

as additional constraints and would increase the number of columns of matrix [AN ]. Us-

ing the [AN ], every force or moment of every joint is calculated using the fundamental

cutset law:

[AN ][ψ]C = [0]λk (20)

where ψ is the vector with unknown magnitudes of the action screws imposed by the

joints. Using Equation 20 as a linear homogeneous, system the static model of the

mechanism can be solved, as shown in Equation 21.







[AD][Q1]

[AD][Q2]

[AD][Q3]







































aU

aV

bU

bV

cU

cV

dU

dV

































=

































0

0

0

0

0

0

0

0

































(21)

Matrix [AN ] has λk rows and C columns. For the planar four-bar mechanism, the

screw system order is λ = 3 and from the action graph of Figure 23b three cutsets

k = 3 exist, hence matrix [AN ] has 9 rows. It was also shown that for the four-bar

mechanism, matrix [AN ] has 8 columns. Actuation forces can be used as constraints

to complete the static model of the four-bar mechanism, achieving a matrix [AN ] with
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9 rows and 9 columns. This step can be done because adding an actuation constraint

does not change the number of cutsets nor the screw system order. Furthermore, a

known exterior force imposed on the mechanism can be used as the primary variable

while the remaining 9 constraints (2 for each joint plus the actuation) are considered

secondary variables. If the actuation force is known and the designer wishes to calculate

the maximum external force supported by the mechanism, the actuation is defined as

the primary variable and the external force becomes a secondary variable. If matrix

[AN ] is a square matrix with full rank, it does not have redundant constraints and is

statically determinate.
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4 RESHETOV VIRTUAL JOINTS

In this Chapter, the novel concept of Reshetov virtual joints is introduced. This

new concept is presented using Baranov kinematic chains. Later, new gripper mecha-

nisms are created using Reshetov virtual joints, Baranov kinematic chains and Davies’

method.

The static model of the mechanism according to Davies’ method is used herein;

however, the kinematic model can also be used when evaluating redundant constraints.

After creating the static model of a mechanism, the linear homogeneous system is

solved using the matrix [AN ]. In case the mechanism is modelled and the number

of columns of matrix [AN ] is bigger than the rank of the same matrix, there are re-

dundant constraints present in the mechanism. Redundant constraints in mechanisms

pose some problems. For example, redundant constraints may hinder the assembly

of mechanisms when there are manufacturing problems, an issue that mechanisms

without redundant constraints do not have. Mechanisms without redundant constraints

are called self-aligning mechanisms. Previous work already discussed redundant con-

straints in Davies’ method: Carboni (2015), Carboni et al. (2017), Barreto et al. (2018),

Artmann et al. (2019a).

The number of redundant constraints q is calculated using Equation 22.

q = C − rank{[AN ]} (22)

where C is the number of constraints present in the mechanism.

Redundant constraints can also be evaluated using the kinematic modelling by

Davies’ method as proposed by Davies (2006b), shown in Equation 23 for multi-loop

mechanical networks:

q = λν − rank{[MN ]} (23)

and in Equation 24 for single loops mechanisms:

q = λν − rank{[MD]} (24)

Now, Baranov kinematic chains will be used to demonstrate the relevant con-

cepts of the chapter. Baranov kinematic chains are the chains that present mobility

M = 0 while every independent circuit present mobility M > 0. The Baranov chain from

Figure 24 will be used as example for the Davies’ method modelling.







Chapter 4. Reshetov Virtual Joints 61

this concept for Reshetov virtual joints, when constraints are removed the designer

is not obliged to align the joint with the desired axis; instead, the designer can make

adjustments to the joint axis as long as that axis is still closer to the initial coordinated

axis than the other axes. For example, a Reshetov virtual joint is given a translational

freedom along the x-axis. This does not mean that the derived joint must always remain

aligned with the x-axis, but actually this joint is only considered with the smallest angle

between the joint axis and the x-axis than the y or z axes. This concept is true not only

for Reshetov virtual joints, but for regular joints as well.

Using the novel concept of Reshetov virtual joints, a mechanism constituted

solely by these joints is created, with the corresponding [AD] matrix presented in Equa-

tion 26 for the Baranov chain from Figure 24. The subscripts T , U and V represents

the constraints in the planar screw system, a moment around the z-axis (T ) and forces

in the x and y-axes, U and V respectively.

[AD]6,52 = [

Coupling a
︷ ︸︸ ︷

aT aU aV

Coupling b
︷ ︸︸ ︷

bT bU bV

Coupling c
︷ ︸︸ ︷

cT cU cV

Coupling d
︷ ︸︸ ︷

dT dU dV

Coupling e
︷ ︸︸ ︷

eT eU eV

Coupling f
︷ ︸︸ ︷

fT fU fV ]

(26)

Table 6 presents the correlation between the constraints T , U and V with the

forces and moment present in the Reshetov virtual joint.

Table 6 – Examples of Couplings and the Constraints Correlations.

Coupling Mz Fx Fy

a aT aU aV
b bT bU bV
c cT cU cV

Source – From the author.

Figure 26 presents the action graph for the seed Baranov chain. There are three

edges representing each joint because every joint has three constraints, each of these

three constraints represent one of the constraints for the coupling from Equation 26.
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present in that matrix. After each column removal, the rank of the [AN ] matrix must be

checked to verify if the rank of that matrix was affected by the column removal.

Although the method proposed in this chapter appears to be a complicated man-

ner of choosing joint types of mechanisms, there are some important benefits. When

the joint types are defined using the proposed methodology, the designer has a math-

ematical guarantee that there are no redundant constraints or dangerous mobilities

present in the mechanism in the position analyzed. Another benefit of the proposed

method is on the static model of the mechanism. After eliminating the redundant con-

straints present in the network unit action matrix [AN ], the resulting matrix is the static

model for the mechanism, which can be used to solve Equation 20. In the next section,

the proposed method will be applied into the development of new gripper mechanisms.

4.1 NEW GRIPPER MECHANISMS

This section presents the development of new gripper mechanisms using the

method presented in this Chapter. Grippers are mechanical systems designed to grasp

and release objects by converting the actuator’s motion into a gripping action. There

are multiple ways to classify gripper mechanisms. A classification may rely, for example,

on the type of the kinematic pairs, since gears, cams, screws, revolute pairs, prismatic

pairs and belt-pulleys have been widely applied in the design of industrial gripping

devices (CHEN, 1982).

During the development of a gripper mechanism, it is convenient for the designer

to use a systematic approach to select the type of kinematic pairs, instead of randomly

assembling mechanical parts. Several researchers attempted to systematize this task.

In the mid-1980s, Erdman et al. (1986) outlined the importance of properly specifying

gripper joint types by suggesting a type synthesis technique for gripper mechanisms

based on graph theory and expert systems. The technique was applied in two examples

of gripper implementations, which are derived from the Stephenson and Watt six-bar

linkage. Later, Belfiore and Pennestri (1997) also proposed an algorithm for systematic

enumeration of grippers. The approach proceeds in accordance with a set of prescribed

structural and functional requirements, such as allowing only revolute and prismatic

joints. Thus, an atlas of 64 possible topologies of 1-DoF robotic grippers with up to six

links is provided. A more recent work by Xu et al. (2012) includes the type synthesis

of spatial forging manipulators based on the screw theory. The systematic method

was used to synthesize several configurations of non-overconstrained mechanisms

composed of a gripper connected to a moving platform, called the gripper-support.

Grippers are mechanisms whose objective is to hold objects. When using Bara-

nov chains for designing grippers, the object is considered as one of the links. As long

as the object is being held by the gripper, the zero mobility is maintained; however,

when the object is removed, the gripper mechanism will then possess mobility M > 0.
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5 BRIEF REVIEW OF MATROID THEORY

The objective of this sections is to introduce and explain the properties and char-

acteristics of matroids relevant to this work. Matroids were first introduced by Whitney

(WHITNEY, H., 1992) as an abstraction on linear independence. There are several dif-

ferent types of matroids, such as graph matroid, linear matroid and transversal matroids.

These matroids, and other formulations, are available in the literature: Murota (2009),

Neel and Neudauer (2009) and Oxley (2006).

A matroid is formed by a finite set E and a collection of subsets I of E, having

the following properties (RECSKI, 2013):

(1) ∅ ∈ I - the empty set belongs to I

(2) J ∈ I, andI ⊆ J ⇒ I ∈ I - a subset I, contained in the subset J , is contained in

the collection of subsets I if the subset J is contained in I

(3) I, J ∈ I, |I| < |J | ⇒ (I ∪ {v}) ∈ I for some ν ∈ J \ I - if a subset I is smaller than

the subset J , we can find an element from J that does not belong to I so that the

union of this element to I is contained in I

For this work, Property (2) is the most relevant, requiring that all subsets of an

independent set are also independent. We are looking for the independent sets of a

given matroid, so let us compare graphic and linear matroids to understand what the

independent sets are.

5.1 COMPARISON OF GRAPHIC AND LINEAR MATROIDS

Here we present briefly graphic and linear matroids.

Graphic Matroids: Graphic ma-

troid is a type of matroid formed by the

independent sets composed of the for-

est in a given undirected graph. Con-

sider the following graph G:

Linear Matroids: Linear matroid

is a type of matroid whose independent

sets are composed of columns of a ma-

trix. Consider the following matrix [M ]:
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increase exponentially which can be a nuisance when dealing with complex systems.

Algorithms for enumerating bases of matroids run in polynomial time poly(x), where x

is the cardinality of the ground set (UNO, 1999; KHACHIYAN et al., 2005).

We can evaluate this problem further using the combination equation (Equation

30):

(

k

b

)

=
k!

b!(k − b)!
(30)

This equation is used to determine the number of combinations of b sized ele-

ments from the total k elements where the order of the b elements does not matter.

Using Equation 30 we can calculate the theoretical maximum possible number of bases

of a linear matroid. For example, if a matrix has six columns and rank four, the number

of combinations would be fifteen, which means that a linear matroid created from this

matrix can have a maximum of fifteen independent bases. The example used in the

previous section (Eq. 53) has six columns and rank four and a total of twelve bases.

Although Equation 30 does not enable us to calculate the number of bases, it sets an

upper bound. For instance, a matrix with twelve columns and rank nine will present

220 possible bases. Table 8 presents some examples of maximum possible bases for

matrices with different number of columns and rank.

Table 8 – Comparison of Columns, Rank and Maximum Possible Bases for Different
Matrices.

Columns Rank Possible Bases

6 4 15
6 3 20
12 9 220
12 7 792
18 15 816
18 12 18564
22 19 1540
22 17 170544

Source – From the author.

From Table 8 it is evident that increasing the size of matrices and the difference

between the rank and the number of columns has a considerable impact in the number

of possible bases of a matroid from those matrices.

When we create a linear matroid using the network unit action matrix [AN ], each

basis from this matroid represents the set of constraints that constitute a self-aligning

mechanism. If we increase the size of the matrices and the difference between the

number of columns and the rank of that matrix, the number of possible bases for the

linear matroid increases considerably. This is a problem when using matroids to enumer-
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shown in Equation 33.

(M\T )∗ = M∗/T (33)

These relation means that the contraction of a subset T of the dual matroid is

equivalent to the dual of the deletion of the same subset T of the matroid. Due to the

relations between Equations 32 and 33, Recski affirms that contraction and deletion

are dual to each other; therefore, we can contract an element of the dual matroid in

order to delete the same element of the original matroid.

Although presenting contraction and deletion for both graphs and matrices, in

this work we use only the matrix formulation of these operations.

5.4 ANOTHER APPROACH INTO DELETION

In Section 5.3, deletion of matroids was briefly demonstrated. Using either graphs

or matrices, it was shown that deleting an element from a matroid resulted in decreasing

the groundset and the rank of the cobases; on the other hand, the rank of the bases

remained unaltered.

Let us take this explanation a little further. Oxley (2006) states that given a

matroid M on a groundset E and a subset T of E, a matroid can be created such that

M\T on E − T elements. In other words, we have a matroid and we are deleting T

elements from that matroid. Oxley (2006) also affirms that the independent sets of the

matroid M\T are contained in E − T . This affirmation can be explained differently. Let

us turn again to the matrix [M ]:

[M ]4,6 =

m1 m2 m3 m4 m5 m6




















1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 −1 −1

0 0 0 1 1 1

(34)

The bases from the matroid M[A] are shown in Table 9:



Chapter 5. Brief Review of Matroid Theory 77

Table 9 – List of bases and cobases from matroid M[M ].

Bases Cobases

{m1,m2,m3,m5} {m4,m6}
{m1,m2,m3,m6} {m4,m5}
{m1,m2,m4,m5} {m3,m6}
{m1,m2,m4,m6} {m3,m5}
{m1,m3,m4,m5} {m2,m6}
{m1,m3,m4,m6} {m2,m5}
{m1,m3,m5,m6} {m2,m4}
{m1,m4,m5,m6} {m2,m3}
{m2,m3,m4,m5} {m1,m6}
{m2,m3,m4,m6} {m1,m5}
{m2,m3,m5,m6} {m1,m4}
{m2,m4,m5,m6} {m1,m3}

Source – From the author.

In Table 9, on the left column we have the bases while their respective cobases

are on the right column. In Table 10 we show only the cobases that include element m5

and each respective basis.

Table 10 – List of cobases that include element m5 and their respective bases.

Bases Cobases

{m1,m2,m3,m6} {m4,m5}
{m1,m2,m4,m6} {m3,m5}
{m1,m3,m4,m6} {m2,m5}
{m2,m3,m4,m6} {m1,m5}

Source – From the author.

From the cobases of Table 10 we now remove the element m5, creating Table

11.

Table 11 – List of bases and cobases of matroid M[M\m5].

Bases Cobases

{m1,m2,m3,m6} {m4}
{m1,m2,m4,m6} {m3}
{m1,m3,m4,m6} {m2}
{m2,m3,m4,m6} {m1}

Source – From the author.
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After the operation done using element m5, the new matroid has only four bases.

This is equivalent to the deletion of element m5 of the matroid M(M).

5.5 ANOTHER APPROACH INTO CONTRACTION

In Section 5.3, contraction of matroids was briefly demonstrated. Using either

graphs or matrices, it was shown that contracting an element from a matroid resulted

in decreasing the ground set and the rank of the bases; on the other hand, the rank of

the cobases remained unaltered.

Let us demonstrate contraction similarly to the demonstration from deletion.

Once again we will use matrix [M]:

[M ]4,6 =

m1 m2 m3 m4 m5 m6




















1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 −1 −1

0 0 0 1 1 1

(35)

The bases from the matroid M[M ] are shown in Table 12:

Table 12 – List of bases and cobases from matroid M[M ].

Bases Cobases

{m1,m2,m3,m5} {m4,m6}
{m1,m2,m3,m6} {m4,m5}
{m1,m2,m4,m5} {m3,m6}
{m1,m2,m4,m6} {m3,m5}
{m1,m3,m4,m5} {m2,m6}
{m1,m3,m4,m6} {m2,m5}
{m1,m3,m5,m6} {m2,m4}
{m1,m4,m5,m6} {m2,m3}
{m2,m3,m4,m5} {m1,m6}
{m2,m3,m4,m6} {m1,m5}
{m2,m3,m5,m6} {m1,m4}
{m2,m4,m5,m6} {m1,m3}

Source – From the author.

Table 13 presents the bases from matroid M[M ] that contain the element m6 as

well as each respective cobasis.
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Table 13 – List of bases and cobases of matroid that include element m6 and their
respective cobases.

Bases Cobases

{m1,m2,m3,m6} {m4,m5}
{m1,m2,m4,m6} {m3,m5}
{m1,m3,m4,m6} {m2,m5}
{m1,m3,m5,m6} {m2,m4}
{m1,m4,m5,m6} {m2,m3}
{m2,m3,m4,m6} {m1,m5}
{m2,m3,m5,m6} {m1,m4}
{m2,m4,m5,m6} {m1,m3}

Source – From the author.

From the bases of Table 13, we remove the element m6, creating Table 14.

Table 14 – List of bases and cobases of matroid M[M/m6].

Bases Cobases

{m1,m2,m3} {m4,m5}
{m1,m2,m4} {m3,m5}
{m1,m3,m4} {m2,m5}
{m1,m3,m5} {m2,m4}
{m1,m4,m5} {m2,m3}
{m2,m3,m4} {m1,m5}
{m2,m3,m5} {m1,m4}
{m2,m4,m5} {m1,m3}

Source – From the author.

The bases enumerated in Table 14 are the same as the bases enumerated

using SageMath in Section 5.3, hence by selecting the bases as demonstrated we can

contract elements from the matroid M(M).

In Section 3.3, the deletion of columns of an [AN ] matrix with redundant con-

straints was used to demonstrate how to create mechanisms starting from that matrix.

As we demonstrated that the deletion and contraction of matroid elements are dual

to each other, we can conclude that the same principle applies to the enumeration

of mechanisms starting from matrix [AN ]. The dual of removing a constraint from the

mechanism can be described as guaranteeing that said constraint is present in the

desired mechanism. Therefore, when we wish to give a freedom to a joint, we delete

the constraint, while when we wish a certain constraint present in the mechanism, we

contract the desired constraint. In the next chapter this idea will be formalized and

applied to some examples.
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6 CONTRACTION AND DELETION APPLIED TO DAVIES’ METHOD

In this chapter, contraction and deletion of matroids are applied to matrices

generated according to Davies’ method. After creating the network action matrix [AN ],

we can create the linear matroid using this matrix. The bases from the matroid are self-

aligning mechanisms while the cobases are a set of redundant constraints (CARBONI

et al., 2017). However, as mentioned in the previous chapter, matroids have an inherent

difficulty with the size of the groundset. Systems modelled using Davies’ method can

pose a challenge when using matroids, therefore in this work it is proposed to use the

matroid operations contraction and deletion as means to select the results.

In Chapter 3.3 Davies’ method was introduced, it was discussed briefly how

the network action matrix [AN ] is constructed and how different mechanisms can be

derived from an overconstrained mechanism. According to Carboni et al. (2017), when

a matroid is created from a overconstrained mechanism from the network action ma-

trix [AN ], the bases of this matroid are the sets of constraints that form a self-aligning

mechanism, while the cobases are the sets of constraints eliminated from the overcon-

strained mechanism. It is by the removal of the sets of redundant constraints that an

overconstrained mechanism becomes a self-aligning mechanism. Carboni et al. (2017)

presented a method to use matroids for enumerating every possible combination of

self-aligning mechanism starting from an overconstrained mechanism.

Chapter 4 introduced the concept of Reshetov virtual joints, which are joints

without freedoms. These joints were then used to design new gripper mechanisms

based on Baranov chains. Reshetov virtual joints can be used in more ways than

the presented method in Chapter 4, including the selection of the columns. Figure 39

presents three approaches of modelling mechanisms with redundant constraints used

in this work, where Reshetov virtual joints are represented by a square with dashed

lines.
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A matrix with the action screws acting on the tabletop is shown in Equation 36.

[F ]6,5 =

F1 F2 F3 F4 F5








































3 3 2 1 1

−1 −5 −3 −1 −5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

(36)

The rank of the matrix from Equation 36 is three, and since it has five columns,

there are 2 linearly dependent columns. Employing SageMath, a matroid is created us-

ing the matrix with the action screws applied to the tabletop and the bases of that

matroid are enumerated using the same software: {F1, F2, F3}, {F1, F2, F4},

{F1, F2, F5}, {F1, F3, F4}, {F1, F4 F5}, {F2, F3, F5}, {F2, F4, F5} and

{F3, F4, F5}. These bases are identical to the combinations enumerated in Sec-

tion 1.2.

Once again using SageMath, the element F3 will be contracted. The bases are:

{F1, F2}, {F1, F4}, {F2, F5} and {F4, F5}. These bases are also identical to the

combinations remaining after the selection of the leg L3 to remain in the table.

Employing SageMath another time, the element F3 will be deleted from the matrix

[F ]. The bases are: {F1, F2, F4}, {F1, F2, F5}, {F1, F4 F5} and {F2, F4, F5}.

Again, the bases enumerated are identical to the bases from the table example after

removing the leg L3 from new table combinations.

In summary, the constraints acting on a body can be selected or eliminated in an

analogous form as the selection or removal of legs from a table. Section 6.2 discusses

the contraction of constraints while Section 6.3 addresses the deletion of constraints.

6.2 APPLYING CONTRACTION TO CONSTRAINTS

In Section 5.5 contraction was further explained using the effect that this oper-

ation has on the bases of a matroid. It is possible to deduce that when contraction of

an element e is applied to a matroid, we are selecting a group of bases in which that

element e is present. The bases where element e is not present, are removed from the

group. Instead of enumerating every basis of the matroid and then selecting the bases

with the desired element, using contraction the selection of bases happens without the

computational cost of the enumeration. After the contraction, a new matroid is created

from the original, formed by the desired bases and without the contracted element.

A selection process is derived from this logic: by selecting a group of bases with

a given element, it is possible to reduce the number of existing bases to only those
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bases with the desired element. Therefore, if we wish for a constraint to be present

in the final self-aligning mechanism, we can contract this constraint selecting only the

bases that had this constraint as viable bases, thus serving as a filter.

For example, we wish that a joint j is an actuated prismatic joint in the x axis.

We then contract the constraint $U (jU ), and select only the bases which contain this

constraint, removing unwanted bases. Through the contraction of the desired element,

the ground set decreases making the matroid bases enumeration a simpler task while

effectively imposing design constraints to the mechanism design process.

Returning to the five legged table example, the combinations with the leg se-

lected to remain in the new table were kept while the other combinations were elimi-

nated.

The tabletop will be stable with three forces, so two forces are redundant. The

same selection process that was used for the selection of leg combinations can be

done with their respective forces, thus the designer can select which forces remain in

the device and which redundant constraints are eliminated. The steps a designer is

required to take are: listing the linearly independent combinations of forces applied to

the tabletop; selecting a force that must remain; eliminate the forces combinations that

do not present the desired force; eliminate the force from the combinations.

Comparing the matroids and selection process with forces selection, the matroid

is the system with five forces, the bases are the combinations, the removal of undesired

combinations is the contraction. The last step was the removal of the force from the

combinations as it was known that the selected force was present in every combination.

For matroids, the contracted element is not present in the bases of the new matroid,

but it is known that the bases had the element. When finishing the selection process,

the designer must return the contracted element to the remaining bases for a full list of

constraints present in the new self-aligning mechanism.

6.3 APPLYING DELETION TO CONSTRAINTS

In Section 5.4 deletion was exemplified by means of the effect this operation has

on the cobases of a matroid. Using a similar logic for deletion as used previously for

contraction, by deleting an element e from the cobases, we are generating only the

group of cobases which contains that element e.

Using deletion, the selection process happens by selecting constraints that are

not desired in the final mechanism. For example, if a joint j is desired to present a

revolute motion around the z axis, we must delete the constraint $T (jT ), thus providing

the desired freedom for the joint j.

By deleting a constraint from the matroid, we are removing that constraint from

the mechanism, therefore we can say that we are adding a freedom to that mechanism.

The deletion of the desired element, decreases the number of elements in the ground
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set making the matroid bases enumeration a simpler task while using design constraints

to the help in the mechanism design process.

Returning to the example of the five legged table, the contracted constraint is no

longer present in the bases after contraction, however it is known by the designer that

it is part of the system.

Similar to the explanation for the contracted elements of a matroid, after the

deletion of constraints, the new cobases of the new matroid do not present the deleted

element. After the whole filtering process, the deleted elements should return for the

cobases for a full list of freedoms of the self-aligning mechanism created. The com-

parison between the contraction and deletion highlights the duality between these

operations. Contracted elements must be returned to the bases while deleted elements

must be returned to the cobases.

6.4 SUMMARY OF THE SELECTION PROCESS

After presenting how to select or remove constraints, we can summarize the

selection process as contracting or deleting constraints from the matroid. When, by

contraction, we remove unwanted bases, we also remove their respective cobases.

When, by deletion, we remove unfeasible cobases, we are removing their respective

bases as well.

After constructing a network action matrix [AN ], creating a matroid using that

matrix, we have deleted and contracted several constraints and we have found a set of

feasible bases and cobases. The next step is to add the contracted constraints to the

remaining bases. The bases formed by this addition are the bases of new self-aligning

mechanisms, in the same format as proposed by Carboni (2015). The steps involved in

the filtering process are shown in Figure 41.
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7 ENUMERATION OF SELF-ALIGNING MECHANISMS USING DAVIES’ METHOD

AND MATROID THEORY: CASE STUDY OF THE KCL/TJU HAND

This chapter presents the enumeration of self-aligning mechanisms based on the

reconfigurable palm of the anthropomorphic King’s College London (KCL)/Tianjin Uni-

versity (TJU) hand. Preliminary results presented in this chapter were already published

in Barreto et al. (2018).

The KCL/TJU anthropomorphic metamorphic robotic hand has been studied

in several papers, including studies of the reconfigurable palm and applications with

three, four and five fingers. Cui et al. (2009) analyzed the workspace of a metamorphic

hand with three fingers; in Wei et al. (2011) the kinematic analysis of a new hand

design was performed; in Wei et al. (2017) the prehension of the robotic hand was

studied using opposition space model. Chunsong Zhang and Dai (2016) presented

the inverse kinematics and kineto-statics of the metamorphic palm; an application

was reviewed in Wei et al. (2014) where the use of the anthropomorphic hand was

investigated for deboning operations in a human-robot co-working platform. Also for

deboning operations, Wei et al. (2013) presented a four-fingered metamorphic hand

with the same reconfigurable palm structure as the previously cited papers.

Despite the relevant contributions proposed for the KCL/TJU anthropomorphic

metamorphic robotic hand, no work focused on the design of a self-aligning reconfig-

urable palm.

The anthropomorphic reconfigurable palm analyzed in this work was first devel-

oped by Wei et al. (2011) based on previous hands developed and patented by Dai

(2008). This hand presents a reconfigurable palm, in order to increase the dexterity of

the whole hand, a thumb and four fingers. The thumb has four DOF while each of the

remaining fingers has three DOF. The different operation modes of the hand rely on the

orientation and positioning of the links in the reconfigurable palm. A CAD model, based

on Wei et al. (2011) and Wei et al. (2017), is presented in Figure 50.
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Figure 50 – CAD model of the anthropomorphic reconfigurable palm.

Source – From the author.

The anthropomorphic hand is able to perform several prehensile operations,

such as operating pliers and scissors, holding a bowl or a bottle, grasping a ball or

a cylinder, holding a key, pinching a coin, holding a card and even operating a comb

(WEI et al., 2017). Two of these prehensile actions, grasping a ball and a chalk, are

presented in Figure 51. The hand is also able to almost completely fold itself, which is

useful for saving space for storage (WEI et al., 2011).
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Figure 51 – Some prehensile actions of the anthropomorphic reconfigurable hand.

Source – From the author.

The screw system of the reconfigurable palm is presented in Figure 52.

Figure 52 – Screw system of the Reconfigurable Palm

Source – From the author.
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This is a spherical five-bar linkage, as the revolution axis of every joint intersect

each other in the same point. The angles corresponding to links 1 to 5, defined in Figure

52, are assigned to satisfy the condition (WEI et al., 2017):

α1 + α2 + α3 + α4 + α5 = 2π (38)

Thus, the angles of the links are assigned as: α1 = 25◦, α2 = 40◦, α3 = 70◦,

α4 = 112◦ and α5 = 113◦.

The motion screws associated with the joints a, b, c, d and e can be written in the

form:

$ma = [Pax Pay Paz 0 0 0]

$mb = [Pbx Pby Pbz 0 0 0]

$mc = [Pcx Pcy Pcz 0 0 0]

$md = [Pdx Pdy Pdz 0 0 0]

$me = [Pex Pey Pez 0 0 0] (39)

where the parameters of the mechanism are presented in the original Figure 53, ex-

tracted from Wei et al. (2011) where the points Pa, Pb, Pc, Pd and Pe are defined.

Figure 53 – Parameters of the reconfigurable palm

Source – Wei et al. (2011)

For a single-loop mechanism, as the anthropomorphic reconfigurable palm herein

analyzed, the number of redundant constraints of the mechanism can be found analyz-

ing the unit motion matrix [MD] = [$ma $mb $mc $md $me ] (CARBONI, 2015; CARBONI et al.,



Chapter 7. Enumeration of Self-Aligning Mechanisms Using Davies’ Method and Matroid Theory: Case

Study of the KCL/TJU Hand 98

2017). Each column of this matrix represents the motion screw associated with one

freedom of a specific joint.

[MD] = [$ma $mb $mc $md $me ] (40)

Rearranging the transpose of the matrix [MD]
T in the reduced row echelon form

(rref), the following matrix [MD]
T is obtained:

[MD]
T =

















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

















Recalling Equation 24 from Section 3.3, it is possible to calculate the number of

redundant constraints in the palm mechanism:

q = λν − rank{[MD]}. (41)

The rank of matrix [MD]
T is three, thus this mechanism has three redundant

constraints. Regard that this result is correct when the anthropomorphic reconfigurable

palm is not in a singular configuration. Thus, in order to obtain an equivalent self-aligning

anthropomorphic reconfigurable palm, these three constraints must be eliminated.

7.1 SELF-ALIGNING APPROACHES

Either the kinematics or statics analysis may be used to find the redundant

constraints of a given mechanism. However, statics analysis, based on Davies’ method-

ology (DAVIES, 2006c) and matroid theory (CARBONI et al., 2017), is interesting as it

enables the designer to quickly find all redundant constraint free mechanism possibili-

ties, derived from the initial mechanism.

Reshetov (RESHETOV, 1979) proposed a self-aligning approach based on find-

ing redundant constraints and adding freedom to the existing joints of the mechanism.

Thus, this approach increases the freedom of a joint eliminating some redundant con-

straints. Some examples of this approach can be considered:

• A rotation freedom is added to a revolute joint, turning it into a universal joint;

• A translation freedom is added to a revolute joint, turning it into a pin-in-slot joint

(a superior pair);

• Two distinct rotation freedoms are added to a revolute joint, turning it into a spher-

ical joint.
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The problem with this approach is that inferior kinematic pairs may be trans-

formed into superior pairs. Even though this is sometimes desired or acceptable, these

type of contacts between bodies increases the strain, decreasing the reliability and life

of the mechanism.

Reshetov (1979) also presented another approach to self-aligning mechanisms.

Instead of adding new freedoms to the joints and turning them into more complex

joints, other joints can be added to the mechanism, in order to eliminate the redundant

constraints without altering its kinematics.

Unlike the previous approach, which transforms inferior kinematic pairs into supe-

rior pairs, this approach allows the designer to add only inferior pairs to the mechanism.

The self-aligning mechanism will thus present more links and joints. Despite increasing

the complexity of the system, this approach helps the designer to create more reliable

and lasting mechanisms (RESHETOV, 1979).

7.2 METHOD I: INCREASING THE FREEDOM OF SPECIFIC JOINTS

First, the redundant constraints of the mechanism are analyzed. The metamor-

phic palm is a spherical mechanism composed by five revolute joints. The network

action matrix [ANpalmI
] is created, as described in Section 3.3, defined from the action

screws associated with the joints of the mechanism. A simplified cutset matrix is shown

in Equation 42 while the unit action matrix is shown in Equation 43.

[QAleg
] =

a b c d e




















1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

(42)

[ADpalmI
]6,25 = [$aaS $aaT $aaU $aaV $aaW . . . (a)

. . . $abS $abT $abU $abV $abW . . . (b)

. . . $acR $acS $acU $acV $acW . . . (c)

. . . $adR $adT $adU $adV $adW . . .( d)

. . . $aeR $aeS $aeU $aeV $aeW ] (e)

(43)

In Equation 42, each column represents all of the constraints of a joint, so in

order to create the complete cutset matrix each column must be repeated the number of

constraints each joint has. In this case, every joint has five constraints so every column
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Table 19 – Network Action Matrices Comparison Method I.

Rows Columns Rank

Seed Mechanism 24 25 22
Mechanism 5 24 22 22

Source – From the author.

7.3 METHOD II: INCREASING THE NUMBER OF JOINTS

In the previous section, self-aligning mechanisms were obtained adding proper

freedoms to the joints, in order to eliminate the redundant constraints.

However, joints with more than one freedom are more difficult to manufacture and

are more prone to imperfections and problems with joint clearance. To deal with these

issues, an alternative approach is herein proposed: adding new joints instead of replac-

ing existing ones. In other words, new joints and links are added to the mechanism, in

order to provide the missing freedoms and eliminate the redundant constraints.

First, Reshetov virtual joints, each one with six independent constraint and no

freedom, are added to the mechanism. In this way, there is no change in the static

analysis of the mechanism. The number of redundant constraints is the same, the only

difference is the rank and number of rows and columns of the network action matrix

[AN ].

As the metamorphic palm has three redundant constraints, three Reshetov vir-

tual joints can be added. In order to define the location where the new joints are placed,

a further analysis of the mechanism is performed. Link 2 is very small while link 3 has

the thumb actuation embedded. Link 5 has the coupling of three fingers and therefore

it lacks space. With these conditions, links 1 and 4 are the best candidates to receive

the additional joints. Furthermore, two joints are added to link 1 and one joint to link 4.

The new joints location is presented in Figure 59.
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A CAD model is presented for the self-aligning example mechanism described in

Figure 63. This model is shown in Figure 64. The proposed self-aligning metamorphic

palm model presents some differences from the seed KCL/TJU hand as it was designed

for 3D prototyping.

Figure 64 – New Self-Aligned Reconfigurable Anthropomorphic Hand

Source – From the author.

New joints have been added to links 1 and 4, more precisely each of the prismatic

joints added to link 1 were placed on either side of the wrist.

The main advantages of a self-aligning mechanism with respect to an over-

constrained one have been addressed in the previous sections. On the other hand, a

reduction in mechanism rigidity can be expected, when redundant constraints are re-

moved. The redundant constraints usually work as a stiffening force for over-constrained

mechanisms, thus mechanism specifications must be carefully examined in order to

design a proper mechanism.
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8 MECHANISM SYNTHESIS METHODOLOGY

The objective of this section is to present the steps required for the mechanism

synthesis methodology using the Davies’ method and matroids.

Carboni (2015) presented a methodology to enumerate self-aligning mecha-

nisms using the static modelling according to Davies’ method and matroid theory, where

the family of bases of this matroid corresponds to every combination possible of new

mechanisms created from the seed mechanism. Following the static modelling of mech-

anisms presented in Chapter 3.3 and from the matrix [AN ] creating a matroid over that

matrix, the bases of this matroid are self-aligning mechanisms. On the other hand, the

co-bases from said matroid are the constraints deleted from the seed overcontrained

mechanism.

In the present thesis the mechanism enumeration concept is extended, from

enumerating spatial self-aligning mechanisms to enumerating mechanisms in general.

Suppose a seed mechanism composed only by Reshetov virtual joints is modelled us-

ing Davies’ method. Using the matroid enumeration methodology proposed by Carboni

(2015), every self-aligning mechanism derived from that seed mechanism is enumer-

ated. Differently from the methodology proposed by Carboni, using Reshetov virtual

joints enables the designer to create any kind of mechanism in a given workspace, with-

out the limitation of the seed mechanism. The difference between the method proposed

in this thesis and the works of Carboni is basically the impact on the kinematics of

the mechanisms enumerated. Carboni enumerates mechanisms that are kinematically

equivalent to the seed mechanism; the method proposed in this thesis enables the

designer to create different kinematic structures for mechanisms.

The methodology starts by modelling a mechanism formed only by Reshetov vir-

tual joints, which means that such mechanism does not have any freedoms. By creating

a mechanism without freedoms and then creating a linear matroid on the static model of

that mechanism we can enumerate all the combinations of constraints that create new

mechanisms. The constraints that are removed from this overconstrained mechanism

are the freedoms of that mechanism. Hence, by starting with a seed mechanism without

freedoms we can enumerate all of the combinations of mechanisms possible for that

seed mechanism.

Each joint of the kinematic chain needs a position for the screw theory represen-

tation. If the designer knows approximately where each joint can be placed, he can use

those positions, but it is not required. The designer may use random positions with the

following restrictions:

• Screw system dimensions: if the mechanism is planar, all the joints needs to be

placed in the same plane;
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[AD]6,12 = [$aaT $aaU $aaV . . . (a)

. . . $abT $abU $abV . . . (b)

. . . $acT $acU $acV . . . (c)

. . . $adT $adU $adV ] (d) (45)

In Equation 45 is shown all of the constraints and the respective joints of the

mechanism being modelled, which means that this matrix has twelve columns. The

matrix [AD] has all of the constraints in the system.

In Figure 65b, the edges from joint d were chosen as chords. Applying Kirchhoff’s

cutset law to the action graph of 65b, the cutset matrix [QA] is created. Using the

matrices [AD] and [QA] we create the matrix [AN ].

Given the network unit matrix [AN ], we can find a linear matroid MAN
whose

groundset E is defined from the columns of matrix [AN ]. A basis B from the matroid

MAN
will represent the model of a mechanism without redundant constraints. For a

planar mechanism with four links and four joints, the rank of the matroid MAN
is nine,

which means that the rank of the dual matroid M∗

AN
is three. At a first glance, the rank

three of the dual matroid seems strange as there are four joints so one can deduce

that the rank should also be four; however, in the Davies’ method the actuation force or

moment is also considered in the static analysis of the mechanism. In fact, the actuation

of the joints are also constraints in Davies’ method. Therefore, each of the cobases

found for the dual matroid M∗

AN
will represent a different distribution of freedoms for

the joints, and each will represent a different mechanism.

The matroid MAN
for the planar mechanism with four links and four joints has

116 different bases. A method for filtering bases is beneficial for a designer, providing

assistance in choosing the best bases according to different design requirements. With

filters the designer is not required to review and evaluate every basis, only those that

seem viable according to a set of design requirements. For the current mechanism

some requirements are proposed:

• Joint a shall have 1 freedom and that freedom is actuated;

• Joint b shall be revolute;

Now we can begin the filtering procedure which will use contraction and deletion

of matroids. When contracting a constraint from matroid MAN
, the rank of this matroid

will decrease by one. The element contracted will no longer be present in the bases,

however in our mechanisms application it will mean that the contracted constraint will be

present in the mechanism. The deletion is a little different. When deleting a constraint

from the matroid MAN
, the rank of the matroid will not change, only the dual matroid
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one should be chosen for the dimensional synthesis. It is worth to mention that although

prismatic joints were defined in a specific axis, this is used only as a starting point for

the dimensional synthesis process.

The methodology presented in this section will now be applied in the mechanism

synthesis process of the development for new mechanisms of a hospital bed.
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Table 25 – Summary of the steps in the filtering process for the backrest mechanism.

Joint Operation Matroid operation Remaining
bases

all creation of linear matroid Mb = ([ANback
],Bb) 1344797

e contract U, V and T Mb1 = Mb/{eU , uV , eT } 529707
d and f delete T Mb2 = Mb1\{dT , fT } 81665
a, b, g and h delete T Mb3 = Mb2\{aT , bT , gT , hT } 885
a, b, g and h contract U and V Mb4 = Mb3/{aU , aV , bU , bV ,

gU , gV , hU , hV }
189

Source – From the author.

The cases selection method proposed by Artmann et al. (2019a) will now be

used to select a smaller number of bases from the remaining 189 bases. Two selection

criteria are proposed:

• Elimination of planar joints;

• Elimination of isomorphisms of prismatic joints on the x and y-axes;

• Elimination of joints with linear freedoms on the x and y-axes.

The first criterion is defined because planar joints, joint with three freedoms in

the plane, are not usually desirable in a planar mechanism. The second criterion is

defined in order to remove mechanisms with isomorphic solutions but with different

linear freedoms. For example, in the used method a joint with a linear freedom in the

x-axis is different from a joint with linear freedom in the y-axis. Using contraction and

deletion does not enable the elimination of such isomorphic results, thus the method

proposed by Artmann is applied. Finally, the third criterion seeks to avoid hard to

manufacture joints with two linear freedoms without planar freedoms. Recalling the

co-bases selection method by Artmann:

n(i,j) =

{

1 if the constraint j is in the cobasis i

0 otherwise
(47)

Although come constraints were removed using contraction and deletion, the

columns respective to these constraints will be considered in this step with null value

when contracted and equal to one when deleted in order to simplify the column number-

ing. This is done to define easily which column correlates to which constraint of which

joint as well as to return previously defined freedoms. As there were originally ten joints

and each joint had three constraints, the j column of the co-bases binary matrix n(i,j) is

easily correlated to a specific joint. From the contraction and deletion steps there were

189 remaining bases, each is related to a i row of the co-bases binary matrix.
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The first criterion stated that planar joints should be removed, therefore in the

co-bases it is not allowed three freedoms in the same joint. The criterion K1 is thus

defined:

{∀i = 1, 2, ..., 189|B∗

i ∈ K1 ⇔ {n(i, 3k+1)+n(i, 3k+2)+n(i, 3k+3) < 3}, k = 0, 1, 2, ..., 9}.

(48)

Applying criterion K1 returned 187 co-bases, which means there were two mech-

anisms with planar joints.

The second criterion is used to removed isomorphic co-bases when considering

linear freedoms in the x and y-axes. The verification for the second criterion is done

by comparing the n(i, 3k + 1) and n(i, 3k + 2) bases with every other n(r, 3k + 1) and

n(r, 3k + 2) bases, for r 6= i and k = 0, 1, 2, ..., 9. If a isomorphism is noticed, that basis

is removed from the criteria K2. After comparing the elements described, criterion K2

has a set of 78 co-bases.

The third criterion is used to remove joints with multiple linear freedoms. The

criterion K3 is thus defined:

{∀i = 1, 2, ..., 189|B∗

i ∈ K3 ⇔ {n(i, 3k + 2) + n(i, 3k + 3) < 2}, k = 0, 1, 2, ..., 9}. (49)

A set of 60 cobases comply with the criterion K3.

After applying the three criteria, the next step is intersecting the three sets to

check which cobases are present in both. The intersection resulted in a set of 55

mechanisms. The result means that there are 55 mechanisms which comply with both

criteria. The set of mechanisms is shown in Appendix D.5.

One of the selected mechanisms using Artmann’s method was chosen for fur-

ther manufacturing, shown in Figure 80, with the structural representation shown in

Figure 80a and the CAD model shown in Figure 80b.
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10 CONCLUSION

One of the biggest challenges in mechanism design is defining the types of

joints. Poor choices may lead to undesired singularities or manufacturing challenges.

Moreover, when defining the types of the joints for a mechanism, the designer must

also seek to develop new and patentable mechanisms; therefore, enumeration based

mechanism design methodologies are useful for achieving all of these requirements.

Screw theory, a powerful mathematical tool for representing forces moments

and velocities, is widely used when analysing mechanisms. Using screw theory, Davies

(1981) proposed a method for analysing multibody systems. Based on the formulation

by Davies, Carboni (2015) proposed a method for enumerating self-aligning mecha-

nisms using matroid theory.

This thesis proposed a method for selecting self-aligning mechanisms enumer-

ated using matroid theory. The proposed method is simple to use, relying on open-

source software and uses only already available libraries. The hardest tasks regarding

the proposed method is creating a model of a seed mechanism according to Davies’

method and listing design requirements.

The proposed method of selecting self-aligning mechanisms in fact is a method

of decreasing the existing possibilities by eliminating certain constraints from the ma-

troid. By decreasing the ground set of the matroid, the problem of the huge number of

results is solved, thus making solvable systems that would otherwise be impossible due

to the computer time required.

This thesis proposed a concept called Reshetov virtual joints for enumerating

self-aligning mechanisms. This concept was used with Davies’ method for modelling

a mechanism, then using matroid theory to enumerate every possible self-aligning

mechanism based on the seed mechanisms. The concept of Reshetov virtual joints

increases the flexibility of Davies’ method, providing the designer with another tool for

mechanism analysis and design.

Using Reshetov virtual joints, the self-aligning mechanisms methodology pro-

posed by Carboni (2015) and the mechanisms selection method applying contraction

and deletion of matroids, self-aligning mechanisms based on the anthropomorphic re-

configurable palm of the KCL/TJU hand were proposed. Two different methods were

compared, one using the actual palm mechanism as the seed mechanism, and the

other introducing Reshetov virtual joints for receiving freedoms. For the first method,

initially 2066 mechanisms were enumerated and after the selection steps a set of 45

mechanisms were listed, representing only 2,2% of the original set. For the second

method, there were 4242 mechanisms enumerated. The selection steps returned 33

new mechanisms, representing 0,78% of the original set.

This thesis proposed a method of enumerating self-aligning mechanisms by
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using Davies’ method, matroid theory and mechanisms constituted only by Reshetov

virtual joints. Using these tools, the designer can create mechanisms with different

kinematic structures, an improvement from the previous enumeration methodologies

that used Davies’ method and matroid theory.

Two hospital bed mechanisms were used as study case for the proposed self-

aligning mechanism design methodology. First, the leg rest of the hospital bed was

designed, initially returning 25566 mechanisms. Using the selection process, a set of

22 feasible mechanisms were found, representing 0,08% of the original set. For the

backrest of the hospital bed, there were 1344797 possible mechanisms, and after the

selection process a set of 189 mechanisms were found. The remaining mechanisms

represent 0,014% of the original set. CAD model examples for both mechanisms were

presented.

The self-aligning mechanisms enumeration method using Reshetov virtual joints

does have some drawbacks. The method returns many results that are equivalent and

sorting or selecting only one of these results are difficult. For improving the method,

one solution is using the binary cobases matrix (ARTMANN, 2019) after a few steps of

contraction and deletion. By using Artmann’s method, we can try to avoid isomorphisms.

10.1 SUGGESTIONS FOR FUTURE WORK

Suggestions for future work include:

• To create an algorithm to use both matroid contraction and deletion as well as the

binary cobases matrix proposed by Artmann (2019).

• To study and propose a method for selecting spatial self-aligning mechanisms

designed based on the method proposed in this thesis. The challenge with this

task is due to the huge number of mechanisms enumerated.

• To investigate different design requirements and how to apply these requirements

in the method proposed in this thesis.

• To investigate other applications for the Reshetov virtual joints. The use of Reshetov

virtual joints in Davies’ method is not limited for generating new self-aligning mech-

anisms. One possible application is using Reshetov virtual joints for calculating

forces and moments in a specific point of a rigid link.

• To investigate the matroid operation called union for mechanisms enumeration.

The mechanism enumeration method proposed in this thesis can be divided into

multiple analyses and then each of these analyses can be joined together using

matroid union.
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• To compare the kinematic and dynamic performance comparison between the

seed mechanism and the self-aligning counterpart.
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APPENDIX A – INPUTS USED IN DAVIES’ METHOD

This Appendix presents the information needed to reproduce the models created

according to Davies’ method throughout this work.

A.1 GRIPPER MECHANISMS

Table 26 shows the position for each joint of the gripper mechanisms.

Table 26 – Position for the joints for the Synthesis of the Gripper Mechanisms.

Joint x y

a 10 1
b 12 4
c 9 10
d 5 10
e 2 4
f 4 1
g 7 2
h 8 3
i 9 5
j 7 6
k 6 3
l 5 5

Source – From the author.

The simplified cutset matrix for the gripper mechanisms is shown in Equation 50.

[Qgripper]8,12 =

a b c d e f g h i j k l




























































−1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 1 0 0 0

0 0 −1 −1 0 0 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 1 0

0 0 −1 0 −1 0 0 0 0 0 0 1

(50)

A.2 LEG-REST MECHANISM

Table 27 shows the position for each joint of the leg-rest mechanisms.
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Table 27 – Position for the joints for the Synthesis of the Leg-rest Mechanisms.

Joint x y

a 3 1
b 4 2
c 6 0
d 2 7
e 5 5
f 7 8
g 0 3
h 1 4

Source – From the author.

The simplified cutset matrix for the leg-rest mechanisms is shown in Equation 51.

[Qleg]6,8 =

a b c d e f g h








































1 1 1 0 0 0 0 0

1 0 0 1 0 0 0 0

−1 0 −1 0 1 0 0 0

0 0 1 0 0 1 0 0

−1 0 0 0 0 0 1 0

−1 0 0 0 0 0 0 1

(51)

A.3 BACKREST MECHANISM

Table 28 shows the position for each joint of the backrest mechanisms.

Table 28 – Position for the joints for the Synthesis of the Backrest Mechanisms.

Joint x y

a 11,7 10,1
b 2,9 13,3
c 3,6 21,2
d 27,1 41,8
e 19,7 44,2
f -11,3 32,8
g -31,3 51,7
h 71,9 92,1
i -31,7 51,2
j -71,4 51,1

Source – From the author.



APPENDIX A. Inputs Used in Davies’ Method 143

The simplified cutset matrix for the backrest mechanisms is shown in Equa-

tion 52.

[Qback]7,10 =

a b c d e f g h i j




















































−1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 1

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0

1 0 0 0 0 1 1 0 0 1

−1 0 0 0 0 −1 0 1 0 −1

0 0 0 0 0 0 0 0 1 1

(52)
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APPENDIX B – INTRODUCTION TO MATROID THEORY

In this appendix, a review about matroid theory is presented. Let us begin by

reviewing what is a matroid, what are the family of bases, what is the rank of a matroid

and what is contraction and deletion of matroid elements. Take, for instance, the matrix

[M ]3,6 from Equation 53:

[M ]3,6 =

a b c d e f












1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 1 0 0

(53)

Matrix M has six columns, indexed by E = Col(M) = a, b, c, d, e, f . From this

matrix we create a linear matroid, Equation 54.

M = (E,B) (54)

The linear matroid M is created from matrix M on the groundset E. B is the

family of bases from the matroid M, presented in Equation 55.

B = {{a, b, c}, {a, b, d}, {a, c, e}, {a, d, e},

{b, c, e}, {b, c, f}, {b, d, e}, {b, d, f}, {c, e, f}, {d, e, f}} (55)

The bases from matroid M have three elements each, i.e., the rank of the bases

is three. This means that for matroid M there are a maximum of 3 linearly independent

elements.

Another important characteristic of matroids is the dual bases. Every matroid

has a dual matroid M∗ = (E,B∗). Each basis from the family B∗ is a complement of

another from the family B. The basis {a, b, c} from the matroid M has a dual basis

{d, e, f} ∈ B∗. The bases B∗ are shown in Equation 56.

B∗ = {{d, e, f}, {c, e, f}, {b, d, f}, {b, c, f},

{a, d, f}, {a, d, e}, {a, c, f}, {a, c, e}, {a, b, d}, {a, b, c}} (56)

Now we can introduce the operations called contraction and deletion, which

follows the formulation by Recski.

Take the matroid M = (E,B) and consider a X ⊆ E. We can define a new family

of bases B′ so that an Y ⊆ E −X exists so that Y ∈ B′ if and only if Y ∈ B. This new

family B′ is the bases of a new matroid M′ on E −X. The matroid M′ is denoted by

M\X and is called the deletion of X from M or the restriction of M to E −X.
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Let us use matroid M from matrix [M ]3,6 for an example. We wish to delete the

column d from the matroid. The new matroid M′ is defined as M\d, and the family of

bases is:

B′ = {{a, b, c}, {a, c, e}, {b, c, e}, {b, c, f}, {b, e, f}} (57)

The deletion of a single element of matroid M also means that the cardinality,

or rank, of the dual bases of matroid M′∗ decreases by one when compared to the

cardinality of the original dual bases. Thus, the bases from the matroid M′∗ are:

B′∗ = {{e, f}, {b, f}, {a, f}, {a, e}, {a, b}} (58)

Recski defines the operation called contraction by means of the rank function of

matroids. For a start, take r as the rank function of the matroid M=(E,B) and consider

a subset X ⊆ E. The rank function R of every subset Y of the matroid M is defined by

Equation 59.

R(Y ) = r(X ∪ Y )− r(X) (59)

Equation 59 is valid for any subset Y of the set E−X. The new matroid with rank

function R(Y ) on the set E −X is denoted by M/X and is known as the contraction of

M to E −X.

Let us turn again to matrix M from Equation 53. Element d now will be contracted

from the matroid M = (E,B). The new matroid M′′ = (E,B) is defined as M/d, and

the family of bases is:

B′′ = {{a, b}, {a, e}, {b, e}, {b, f}, {e, f}} (60)

The family of bases of the dual matroid M′′∗ is:

B′′∗ = {{c, e, f}, {b, c, f}, {a, c, f}, {a, c, e}, {a, b, c}} (61)

By contracting a single element from matroid M, the rank of the bases will

decrease by one, while the rank of the dual bases will remains unaltered.

B.1 OTHER MATROID FORMULATIONS

The matroid formulation was already shown in Chapter 5 is based on subsets

and their linear independence. In this case, a matroid formed by a finite set E and a

collection of subsets I of E and has the following properties (RECSKI, 2013):

(I1) ∅ ∈ I - the empty set belongs to I
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(R3) If X and Y are subsets of E, then r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Closure operators are also valuable when working with matroids. Let cl be the

function from 2E into 2E defined for every X ⊆ E by:

cl(X) = {x ∈ E : r(X ∪ x) = r(X)}. (64)

From Equation 64, the closure operator from a matroid can be defined as the

elements that can be added to a set without increasing the rank of the set. The closure

operator of a matroid presents the following properties (OXLEY, 2006):

(CL1) If X ⊆ E, then X ⊆ cl(X).

(CL2) If X ⊆ Y ⊆ E, then cl(X) ≤ cl(Y ).

(CL3) If X ⊆ Y ⊆ E, then cl(cl(X)) = cl(X).

(CL4) If X ⊆ E, x ∈ E, and y ∈ cl(X ∪ x)− cl(X), then x ∈ cl(X ∪ y).

The mathematical proof of all the properties presented can be seen in Oxley

(2006).
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APPENDIX C – CONTRACTION AND DELETION OF MATROIDS

Present here the step by step of contraction and deletion of matroids. Follow

Oxley‘s method to present contraction and deletion step by step, independently as well

as contraction by means of deletion.

C.1 CONTRACTION AND DELETION OF LINEAR MATROIDS

In this section we will demonstrate how to apply contraction and deletion to linear

matroids using their matrix representation. The matrix representation of the matroid M,

demonstrated by Oxley, is shown in Equation 65, while the dual matroid is represented

by the matrix in Equation 66.

[A] =

e1 e2 ... er er+1 er+1 ... en











Ir D (65)

[A∗] =

e1 e2 ... er er+1 er+1 ... en











−DT In−r

(66)

In Equations 65 and 66, I represents an identity matrix while D is a r × (n− r)

matrix over the groundset of [A]. Using these matrices, we will demonstrate how to

create a matrix representation of matroids by means of contraction and deletion. Let us

turn to matrix [A1], which is used by Oxley in some examples:

[A1]4,8 =

a b c d e f g h




















1 0 0 0 0 1 1 −1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 −1 1 1 0

(67)

The matroid created from matrix [A1] has rank 4 and 64 bases. The dual matroid

also has rank 4 and 64 bases.

We will start by demonstrating the deletion. From matrix [A1] we choose to delete

element h (column 8). To attain the matroid M\(h) all we are required is to eliminate
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the chosen column from matrix [A1]. Hence, we obtain matrix [A1\h], Equation 68.

[A1\h]4,7 =

a b c d e f g




















1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 −1 1 1

(68)

The matroid represented by matrix [A1\h] has rank 4 and 31 bases. The dual

matroid instead has rank 3, which previously also had rank 4. Hence, we can conclude

that the deletion of a single element decreases the rank of the dual matroid, making no

changes to the original matroid, only reducing the number of bases.

After presenting deletion, now we can move to contraction. Oxley (2006) states

that while deletion consists into removing a column of the matrix used to create the ma-

trix, contraction can be considered as removing a row from the matrix. Unlike deletion,

contraction requires some work with the matrix prior to removing the desired elements.

Let us return to the matrix A from the example. The element h must be contracted from

the matroid, therefore some row operations are required such that only one element

of the column is 1 while the remaining elements are 0. In this example, the element of

the third row was chosen as a pivot, so the remaining elements must be transformed

into zero. Row 3 is added to row 1 and row 3 is subtracted from row 2, achieving the

following matrix:

[A1]4,8 =

a b c d e f g h




















1 0 1 0 1 2 1 0

0 1 −1 0 0 −1 1 0

0 0 1 0 1 1 0 1

0 0 0 1 −1 1 1 0

(69)

Now row 3 and column h are removed from the matrix, resulting in a new matrix

[A1/h].

[A1/h]3,7 =

a b c d e f g












1 0 1 0 1 2 1

0 1 −1 0 0 −1 1

0 0 0 1 −1 1 1

(70)

The matroid represented by matrix [A1/h] has 33 bases and rank 3, while it’s dual

matroid has the same number of bases with rank 4. We can conclude that contracting

an element from a matroid decreases the rank of that matroid at the same time it
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reduces the number of bases. As for the dual matroid, contraction only reduces the

number of bases.

As mentioned in the previous section, deletion and contraction are dual to each

other. To demonstrate this operation, we need to turn once more to the relations be-

tween contraction and deletion, shown again in Equations 71 and 72. Hence, we can

contract an element from the matroid from matrix [A1], we can delete the same element

in the dual matroid from that matrix.

M/T = (M∗\T )∗ (71)

Recski (2013) also presents another relation between contraction and deletion,

shown in Equation 72.

(M\T )∗ = M∗/T (72)

From matrix [A1] we can create the representation from the dual matroid of this

matrix by using equations 65 and 66. This new matrix [A∗

1] is shown in Equation 73.

[A∗

1]4,8 =

a b c d e f g h




















0 −1 −1 1 1 0 0 0

−1 0 −1 −1 0 1 0 0

−1 −1 0 −1 0 0 1 0

1 −1 −1 0 0 0 0 1

(73)

We want to contract element h from the matroid of matrix [A1], therefore we

need to delete the same element from matrix [A∗

1]. After this operation we obtain matrix

[A∗

1\h]:

[A∗

1\h]4,7 =

a b c d e f g




















0 −1 −1 1 1 0 0

−1 0 −1 −1 0 1 0

−1 −1 0 −1 0 0 1

1 −1 −1 0 0 0 0

(74)

After attaining matrix [A∗

1\h], we use Equations 65 and 66 to find the dual of the

matroid represented by [A∗

1\h], which in turn is matrix [A1/h]:

[A1/h]3,7 =

a b c d e f g












1 0 1 0 1 2 1

0 1 −1 0 0 −1 1

0 0 0 1 −1 1 1

(75)
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APPENDIX D – SETS OF MECHANISMS ENUMERATED

In this appendix the sets of mechanisms enumerated throughout the thesis are

presented.

D.1 RECONFIGURABLE PALM MECHANISMS ENUMERATED BY METHOD I

The self-aligning mechanisms based on the KCL/TJU reconfigurable palm enu-

merated using method I are presented in this section. The method I eliminates redun-

dant constraints of the joints of a seed mechanism. Joints a and e were defined to

remain as revolute joints so no constraints are eliminated from these joints. Joint b was

defined as a cylindrical joint, so only the constraint U was eliminated.
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Table 31 – Eliminated constraints of the mechanisms enumerated by method I.

Joint b Joint c Joint d

Mechanism 1 U U , V none
Mechanism 2 U U , W none
Mechanism 3 U R, U none
Mechanism 4 U S, U none
Mechanism 5 U U U
Mechanism 6 U U V
Mechanism 7 U U W
Mechanism 8 U U S
Mechanism 9 U U T
Mechanism 10 U V , W none
Mechanism 11 U R, V none
Mechanism 12 U S, V none
Mechanism 13 U V U
Mechanism 14 U V V
Mechanism 15 U V W
Mechanism 16 U V R
Mechanism 17 U V T
Mechanism 18 U R, W none
Mechanism 19 U S, W none
Mechanism 20 U W U
Mechanism 21 U W V
Mechanism 22 U W W
Mechanism 23 U W R
Mechanism 24 U W T
Mechanism 25 U R, S none
Mechanism 26 U R U
Mechanism 27 U R V
Mechanism 28 U R W
Mechanism 29 U R R
Mechanism 30 U R T
Mechanism 31 U S U
Mechanism 32 U S V
Mechanism 33 U S W
Mechanism 34 U S R
Mechanism 35 U S T
Mechanism 36 U none U , V
Mechanism 37 U none U , W
Mechanism 38 U none R, U
Mechanism 39 U none T , U
Mechanism 40 U none V , W
Mechanism 41 U none R, V
Mechanism 42 U none T , V
Mechanism 43 U none R, W
Mechanism 44 U none T , W
Mechanism 45 U none R, T

Source – From the author.
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D.2 RECONFIGURABLE PALM MECHANISMS ENUMERATED BY METHOD II

The self-aligning mechanisms based on the KCL/TJU reconfigurable palm enu-

merated using method II are presented in this section. The method II creates Reshetov

virtual joints and uses these joints to create new self-aligning mechanisms, thus only

the Reshetov virtual joints f , g and h are shown, as the original five joints suffered no

impact on the selection process. Table 32 presents the constraint eliminated from the

Reshetov virtual joints for each of the 33 enumerated mechanisms. Reshetov virtual

joints that do not receive freedoms will be integrated back into the link. Joint f was

defined as a prismatic joint in the z-axis, therefore only W constraints are eliminated

from these joints.

Table 32 – Eliminated constraints of the mechanisms enumerated by method II.

Joint f Joint g Joint h

Mechanism 1 W U , V none
Mechanism 2 W R, U none
Mechanism 3 W T , U none
Mechanism 4 W U V
Mechanism 5 W U R
Mechanism 6 W U T
Mechanism 7 W S, V none
Mechanism 8 W V , V none
Mechanism 9 W V U
Mechanism 10 W V S
Mechanism 11 W V T
Mechanism 12 W R, S none
Mechanism 13 W R, T none
Mechanism 14 W R U
Mechanism 15 W R S
Mechanism 16 W R T
Mechanism 17 W S, T none
Mechanism 18 W S V
Mechanism 19 W S R
Mechanism 20 W S T
Mechanism 21 W T U
Mechanism 22 W T V
Mechanism 23 W T R
Mechanism 24 W T S
Mechanism 25 W T T
Mechanism 26 W none U , V
Mechanism 27 W none R, U
Mechanism 28 W none T , U
Mechanism 29 W none S, V
Mechanism 30 W none T , V
Mechanism 31 W none R, S
Mechanism 32 W none R, T
Mechanism 33 W none S, T

Source – From the author.
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D.3 MECHANISMS ENUMERATED BY THE TYPE SYNTHESIS METHOD

Using the method proposed in Chapter 8, a seed mechanism with four links and

four Reshetov virtual joints was used to enumerate new example mechanisms. Table 33

presents the enumerated mechanisms.

Table 33 – Eliminated constraints of the example mechanism enumerated by the type
synthesis method.

Joint a Joint b Joint c Joint d

Mechanism 1 T T U , V none
Mechanism 2 T T T U
Mechanism 3 T T U T
Mechanism 4 T T V T
Mechanism 5 T T T V
Mechanism 6 T T V U
Mechanism 7 T T U , T none
Mechanism 8 T T none V , T
Mechanism 9 T T V , T none
Mechanism 10 T T none U , V
Mechanism 11 T T U V
Mechanism 12 T T none U , T
Mechanism 13 T T T T

Source – From the author.
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D.4 LEG-REST MECHANISMS ENUMERATED BY THE TYPE SYNTHESIS METHOD

Using the method proposed in Chapter 8, a seed mechanism with seven links

and eight Reshetov virtual joints was used to enumerate new leg-rest mechanisms.

Table 34 presents the enumerated mechanisms.

Table 34 – Eliminated constraints of the leg-rest mechanisms enumerated by the type
synthesis method.

Joint a Joint b Joint c Joint d Joint f Joint h

Mechanism 1 T T , U , V none T none T
Mechanism 2 T T , U V T none T
Mechanism 3 T T , U T T none T
Mechanism 4 T T , U none T V T
Mechanism 5 T T , U none T T T
Mechanism 6 T T , V U T none T
Mechanism 7 T T , V T T none T
Mechanism 8 T T , V none T U T
Mechanism 9 T T , V none T T T
Mechanism 10 T T U , V T none T
Mechanism 11 T T T , U T none T
Mechanism 12 T T U T V T
Mechanism 13 T T U T T T
Mechanism 14 T T T , V T none T
Mechanism 15 T T V T U T
Mechanism 16 T T V T T T
Mechanism 17 T T T T U T
Mechanism 18 T T T T V T
Mechanism 19 T T T T T T
Mechanism 20 T T none T U , V T
Mechanism 21 T T none T T , U T
Mechanism 22 T T none T T , V T

Source – From the author.
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D.5 BACKREST MECHANISMS ENUMERATED BY THE TYPE SYNTHESIS METHOD

Using the method proposed in Chapter 8, a seed mechanism with eight links and

ten Reshetov virtual joints was used to enumerate new leg-rest mechanisms. Table 35

presents the enumerated mechanisms.

Table 35 – Eliminated constraints of the backrest mechanisms enumerated by the type
synthesis method.

Joint a Joint b Joint c Joint d Joint f Joint h Joint h Joint i Joint j

Mech 1 T T U T , V T T T V none
Mech 2 T T U T , V T T T none V
Mech 3 T T U T T , V T T V none
Mech 4 T T U T T , V T T none V
Mech 5 T T T , V T , V T T T none none
Mech 6 T T T , V T T , V T T none none
Mech 7 T T T , V T T T T V none
Mech 8 T T T , V T T T T T none
Mech 9 T T T , V T T T T none V
Mech 10 T T T , V T T T T none T
Mech 11 T T V T , V T T T U none
Mech 12 T T V T , V T T T T none
Mech 13 T T V T , V T T T none U
Mech 14 T T V T , V T T T none T
Mech 15 T T V T T , V T T U none
Mech 16 T T V T T , V T T T none
Mech 17 T T V T T , V T T none U
Mech 18 T T V T T , V T T none T
Mech 19 T T V T T T T U V
Mech 20 T T V T T T T V T
Mech 21 T T V T T T T V U
Mech 22 T T V T T T T V T
Mech 23 T T V T T T T T V
Mech 24 T T V T T T T T T
Mech 25 T T V T T T T none T , V
Mech 26 T T T T , V T T T V none
Mech 27 T T T T , V T T T T none
Mech 28 T T T T , V T T T none V
Mech 29 T T T T , V T T T none T
Mech 30 T T T T T , V T T V none

continued in the next page...
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Joint a Joint b Joint c Joint d Joint f Joint h Joint h Joint i Joint j

Mech 31 T T T T T , V T T T none
Mech 32 T T T T T , V T T none V
Mech 33 T T T T T , V T T none T
Mech 34 T T T T T T T U V
Mech 35 T T T T T T T T , V none
Mech 36 T T T T T T T V T
Mech 37 T T T T T T T T V
Mech 38 T T T T T T T T T
Mech 39 T T T T T T T none T , V
Mech 40 T T none T , V T T T U V
Mech 41 T T none T , V T T T T , V none
Mech 42 T T none T , V T T T V T
Mech 43 T T none T , V T T T T V
Mech 44 T T none T , V T T T T T
Mech 45 T T none T , V T T T none T , V
Mech 46 T T none T T , V T T U V
Mech 47 T T none T T , V T T T , V none
Mech 48 T T none T T , V T T V T
Mech 49 T T none T T , V T T T U
Mech 50 T T none T T , V T T T T
Mech 51 T T none T T , V T T none T , V
Mech 52 T T none T T T T T , U V
Mech 53 T T none T T T T U T , V
Mech 54 T T none T T T T T , V T
Mech 55 T T none T T T T T T , V

Source – From the author.
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