UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO TECNOLOGICO
PROGRAMA DE POS-GRADUACAO EM CIENCIAS DA COMPUTACAO

José Luis Conradi Hoffmann

Optimizing Energy Consumption of
Multicore Real-Time Embedded Systems
using Machine Learning

Florianopolis
2020

José Luis Conradi Hoffmann

Optimizing Energy Consumption of
Multicore Real-Time Embedded Systems
using Machine Learning

Dissertagao submetida ao Programa de Pds-Gradu-
acao em Ciéncias da Computacao da Universidade
Federal de Santa Catarina para a obtengéo do Grau
de Mestre em Ciéncia da Computacgéo.
Orientador: Prof. Anténio A. M. Fréhlich, PhD.

Florianopolis
2020

Ficha de identificacdo da obra elaborada pelo autor,
através do Programa de Geracdo Automética da Biblioteca Universitaria da UFSC.

Hof f mann, José Lui s Conradi

Optim zing Energy Consunption of Milticore Real -Tinme
Enbedded Systens using Machine Learning / José Luis
Conradi Hoffrmann ; orientador, Anténi o Augusto Medeiros
Frohl i ch, 2020.

128 p.

Di ssertacdo (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnol 6gi co, Programa de Pos- Graduagdo em
C énci a da Conputacgédo, Florianépolis, 2020.

Inclui referéncias.

1. G éncia da Conputacdo. 2. Sistemas Milticore
Enbar cados de Tenpo Real. 3. Qi m zacdo Energética. 4.
Aprendi zado de Maquina. 5. Monitoramento Ndo Intrusivo. |.
Froéhlich, Anténio Augusto Medeiros. I1. Universidade Federal
de Santa Catarina. Programa de Pés-G aduacdo em Ci éncia da
Conputagédo. I11l. Titulo.

José Luis Conradi Hoffmann

Optimizing Energy Consumption of Multicore Real-Time Embedded Systems
using Machine Learning

O presente trabalho em nivel de Mestrado foi avaliado e aprovado por banca
examinadora composta pelos seguintes membros:

Prof. Rafael de Santiago, PhD
Universidade Federal de Santa Catarina

Prof. Marcus Vélp, PhD
Université du Luxembourg

Prof. Nikil Dutt, PhD
University of California

Certificamos que esta € a versao original e final do trabalho de conclusao que foi
julgado adequado para obtencgéo do titulo de Mestre em Ciéncia da Computacao.

Documento assinado digitalmente

Vania Bogorny
Data: 11/01/2021 08:30:53-0300
CPF:684.586.570-15

Prof. Vania Bogorny, PhD.
Coordenadora do Programa de
Pés-Graduacao

Documento assinado digitalmente

Antonio Augusto Medeiros Frohlich
Data: 08/01/2021 16:12:31-0300
CPF: 500.696.400-68

Prof. Antonio A. M. Fréhlich, PhD.
Orientador

Florianépolis, 2020.

This work is dedicated to my dear parents, Cezar and
Ivonete, and my dear sister Munick.

ACKNOWLEDGEMENTS

First, | would like to thank my Father, Cezar Nilo Hoffmann, and my Mother,
Ivonete Terezinha Conradi Hoffmann, my sister, Munick Conradi Hoffmann, and my
brother in law and great friend, Leonardo do Nascimento, for all the emotional support
and encouragement provided.

| would like to thank my advisor Anténio Augusto Medeiros Fréhlich, for the
scientific support and helpful discussions that lead to this work conclusion and for
the opportunity to be a member of LISHA. | also would like to thank my dear friend,
Leonardo Passig Horstmann, for the scientific discussions that helped me during the
development of this work and the encouraging words. Many thanks also to all colleagues
at LISHA.

| am also grateful to Prof. Rafael de Santiago, Prof. Marcus Vélp, and Prof. Nikil
Dutt for serving on my thesis committee.

Last but not least, many thanks to CAPES for financial support during two years
in the graduate program.

ABSTRACT

Modern multicore processors must combine a large variety of architectural features
to cope with the growing demands imposed by applications, often featuring hetero-
geneous cores, SIMD units, and application-specific accelerators, all interconnected
by Network-on-Chip (NoC) technology. Such extreme variability usually requires some
level of self-adaptation to attain the expected performance of real-time scenarios while
managing energy consumption to fit with the constraints imposed by Embedded En-
vironments. In this way, this work combines a careful Non-intrusive Monitoring and a
Non-Intrusive energy optimizer design supported by Machine Learning techniques to
enable safe actuation by learning the system demands using the data such systems
produce as they operate. The Monitoring design proposed abstracts the available sen-
sors and actuators in such platforms through a lean, architecture-independent API. The
implementation focuses on non-intrusiveness, with a measured overhead of at most
0.0718% and maximum added jitter of less than 40us. The Non-intrusive Monitoring de-
sign is then used to explore the architectural behavior impact over performance aspects
in a multicore platform, enabling Machine Learning techniques to build awareness of
the current performance demands and the impact of the Dynamic Voltage-Frequency
Scaling regimen on critical tasks, thus, guiding the energy optimizer, voting and actua-
tion. To enable adaptation to the system variability, the energy optimizer encompasses
Online Learning capabilities, implemented through an Artificial Neural Network design.
The proposed ANN model is supported by feature selection, which provides the most
relevant variables to describe shared resource contention in the selected multicore ar-
chitecture. They are used at runtime to produce a performance trace that encompasses
sufficient information for the ANN model to predict the impact of a frequency change
on the performance of tasks. A migration heuristic encompassing a weighted activity
vector is combined with the ANN model to dynamically adjust frequencies and also to
trigger task migrations among cores, enabling further optimization by solving resource
contentions and balancing the load among cores. The proposed solution achieved
energy-savings of 24.97% on average when compared to the run-to-halt approach,
and it did it without compromising the criticality of any single task. The overhead in-
curred in terms of the execution time was 0.1791% on average. Each prediction added
15.3585us on average, and each retraining cycle triggered at frequency adjustments
was never larger than 100us.

Keywords: Real-time systems and embedded systems, Multi-core/single-chip multipro-
cessors, Scheduling and task partitioning, Machine learning, Energy-aware systems.

RESUMO

Os processadores multicore modernos devem combinar uma grande variedade de
recursos arquiteténicos para lidar com as demandas crescentes impostas pelos aplica-
tivos, muitas vezes apresentando nucleos heterogéneos, unidades SIMD e aceler-
adores especificos do aplicativo, todos interconectados pela tecnologia Network-on-
Chip (NoC). Essa extrema variabilidade geralmente requer algum nivel de autoad-
aptacao para suprir o desempenho esperado de cenarios em tempo real enquanto
gerencia o consumo de energia para se ajustar as restricdes impostas pelos ambi-
entes embarcados. Desta forma, este trabalho combina um monitoramento nao in-
trusivo cuidadoso e um otimizador de energia nao intrusivo apoiado por técnicas de
aprendizado de maquina para permitir uma atuacao segura, aprendendo as deman-
das do sistema usando os proprios dados que esses sistemas produzem enquanto
operam. O monitoramento proposto abstrai os sensores e atuadores disponiveis em
tais plataformas por meio de uma API enxuta e independente de arquitetura. A imple-
mentacéo é focada na n&o intrusdo, com um overhead medido de no maximo 0.0718%
e jitter adicionado maximo inferior a 40us. O design de monitoramento ndo intrusivo
€ entdo usado para explorar o impacto do comportamento arquitetural sobre os as-
pectos de desempenho em uma plataforma multicore, permitindo que as técnicas de
aprendizado de maquina criem consciéncia das demandas de desempenho atuais e
do impacto do regime Dynamic Voltage-Frequency Scaling em tarefas criticas, orien-
tando assim o votacao e atuacao do otimizador de energia. Além disso, para permitir
a adaptacao a variabilidade do sistema, o otimizador de energia engloba recursos de
Aprendizado Online, implementado por meio de um design de uma Artificial Neural
Network. O modelo ANN proposto é apoiado pela selecao de features, resultando nas
variaveis mais relevantes para descrever a contencao de recursos compartilhados na
arquitetura multicore selecionada. As variaveis sdo usadas em tempo de execucao
para produzir um trace de desempenho que engloba informacgdes suficientes para o
modelo ANN prever o impacto de uma mudanca de frequéncia no desempenho das
tarefas. Uma heuristica de migracao que abrange um vetor de atividade ponderada &
combinada com o modelo ANN para ajustar dinamicamente as frequéncias e também
para acionar migragdes de tarefas entre os nucleos, permitindo uma otimizacao adi-
cional resolvendo contencdes de recursos e balanceando a carga entre os nucleos. A
solucao proposta alcangou economia de energia média de 24,97% quando comparada
com a abordagem run-to-halt, e sem comprometer a criticidade de nenhuma tarefa. O
overhead incorrido em termos de tempo de execuc¢éao foi de 0.1791% em média. Cada
previsdo adiciona 15.3585 us em média e cada ciclo de retreinamento disparado nos
ajustes de frequéncia nunca foi maior que 100 ps.

Palavras-chave: Sistemas de Tempo-Real e Sistemas Embarcados, processadores
Multi-core/single-chip, Escalonamento e Migracao de tarefas, Aprendizado de Maquina,
Sistemas conscientes de energia.

RESUMO EXPANDIDO

Introducao

Em sistemas embarcados a expansao das funcionalidades exigidas por novos aplica-
tivos (SARMA et al., 2015), particularmente para ambientes criticos, como aqueles
que lidam com a visdo computacional em veiculos autbnomos, aumenta as demandas
de desempenho da plataforma embarcada destino para que seja capaz lidar com as
restricdes de tempo. No entanto, aumentar o desempenho de uma plataforma embar-
cada também aumenta seu consumo de energia, o que € um desafio considerando
as restricdes de energia de tais ambientes. Aumentar o nimero de ndcleos nessas
plataformas é uma solugéo para acomodar as crescentes demandas de tais aplicacdes.
Processadores embarcados multicore modernos combinam uma grande variedade de
recursos arquiteténicos, incluindo nucleos heterogéneos, unidades SIMD e aceler-
adores especificos de aplicagao, estes interconectados por uma tecnologia Network
on Chip. Todavia, essas arquiteturas complexas fazem uso intenso de paralelismo
e mecanismos de ocultacdo de laténcia que causam variacdes no desempenho das
tarefas em execucao (CRAEYNEST et al., 2012; KEDAR et al., 2017).

Essas plataformas, no entanto, sdo sistemas ciberfisicos altamente instrumentados
que podem ser monitorados e controlados com base nos dados que produzem durante
a operacdo (MUCK et al., 2018). Os contadores de desempenho de hardware (HPC)
foram introduzidos por fabricantes de chips de processador por meio do componente
Performance Monitoring Unit (PMU). PMUs sao usadas para amostrar ocorréncias de
eventos de desempenho durante a execucgao, fornecendo informagdes sobre 0 uso da
arquitetura, como Taxa de Instru¢des Finalizadas, Acesso a Memoria, Branches Exe-
cutados e Ciclos de Estagnacéo. Assim, para fornecer um nivel mais alto de confiabili-
dade, garantir a exatiddo do tempo de tarefas criticas e economizar energia, conjuntos
de tarefas especificas requerem que 0s aspectos arquitetdnicos sejam constantemente
avaliados para atingir o nivel esperado de determinismo, avaliando as necessidades
imediatas de recursos da execucéao das tarefas a fim de prever o impacto das medidas
de economia de energia em suas restricoes em tempo real.

No entanto, lidar com a otimizagao de energia em cenarios criticos em plataformas
multicore vai além de modelar o desempenho do sistema manualmente e garantir es-
timativas Worst Case-Execution Time. A complexidade de novas aplicagdes criticas,
com varias tarefas e varios nucleos, como € o caso dos veiculos autbnomos, exige con-
trole de desempenho, temperatura e consumo de energia de forma mais automatizada.
O problema de encontrar uma configuracao ideal, que fornega desempenho suficiente
com o0 menor consumo de energia possivel, geralmente requer conhecimento especial-
ista do conjunto de tarefas e da plataforma. Nesse sentido, o Aprendizado de Maquina

(ML) se destaca como uma alternativa para automatizar o processo de aquisicdo do
conhecimento necessario sobre os fendmenos arquitetdnicos expressos por rastrea-
mentos de desempenho e estatisticas de Sistemas Operacionais (OS).

Técnicas de aprendizado de maquina podem ser utilizadas para automatizar o pro-
cesso de mapear rastros da execucgao de tarefas obtidas através do uso arquitetural
em informacodes Uteis para suportar otimizagao de tempo de execucdo. Por exemplo,
em (LAHIRI et al., 2007; JUNG; PEDRAM, 2010) os autores usam modelos de Artificial
Neural Network (ANN) focando em estatisticas de tempo do conjuntos de tarefas para
otimizar a frequéncia da CPU. Outros trabalhos exploram modelos de Reinforcement
Learning para encontrar a melhor configuragdo Dynamic Voltage-Frequency Scaling
com base em caracteristicas temporais (ISLAM et al., 2018) e a contagem de ciclos
de processamento (DAS et al., 2015). Outros trabalhos (CHEN et al., 2018; JUNG;
PEDRAM, 2010; RAl et al., 2010) combinam caracteristicas temporais e contadores de
desempenho, como a taxa de instrucdes finalizadas e a taxa de acessos a elementos-
chave na hierarquia de memdéria para fornecer informagdes mais detalhadas para
algoritmos de aprendizado supervisionado a fim de prever o impacto das operacdes
de economia de energia no desempenho. No entanto, a realizagdo de otimizagdes
baseadas em aprendizado de maquina em tempo de execugdo junto com a execugao
de tarefas criticas requer que otimizadores garantam o mesmo nivel de determinismo
temporal definido para as tarefas. Portanto, eles devem coletar dados e executar algo-
ritmos sem interferir nas tarefas em execucgao, e as otimizagdes propostas, que podem
incluir ajustes de frequéncia e migracdes de tarefas, ndo devem prejudicar a execucao
de nenhuma tarefa critica.

Portanto, para que otimizagdes energéticas em sistemas embarcados em tempo real
sejam suportadas em uma plataforma multicore, eles devem ser capazes de con-
struir autoconsciéncia da utilizacdo atual e de garantir otimizagdes de forma a nao
prejudicar a execugao das tarefas, permitindo que o sistema alcance o equilibrio de
desempenho/poténcia esperado sem prejudicar nenhuma tarefa critica. Combinando
monitoramento de desempenho nao intrusivo e técnicas de aprendizado de maquina,
tal sistema deve ser capaz de aprender um comportamento de conjunto de tarefas,
gerando indicadores em tempo de execugao para o sistema se adaptar. Assim, um
sistema embarcado multicore em tempo real pode executar a atuagao guiada por
aprendizado de maquina seguindo uma margem de seguranga de reserva de recur-
sos, permitindo a execugao de forma segura de medidas de economia de energia (por
exemplo, ajuste de frequéncia, migracao de tarefa e gerenciamento de energia) para
atingir o nivel exigido de desempenho enquanto prové economia de energia.

Objetivos

Considerando em sistemas embarcados multicore em tempo real os desafios acima
mencionadas e as capacidades de aprendizagem das técnicas de aprendizado de
maquina, o objetivo principal deste trabalho é definido como para projetar, imple-
mentar e validar um otimizador de energia de tempo de execucao nao intru-
sivo, baseado em ANN que abrange a migracao de tarefas e Dynamic Voltage-
Frequency Scaling. O otimizador de energia é construido sobre 0 monitoramento de
desempenho, usando a ANN como um preditor para orientar a economia de energia
sem prejudicar a execucdo de qualquer tarefa critica. Isto é feito por meio dos seguintes
objetivos especificos:

* Realizar uma revisdo do estado da arte sobre os conceitos de Tempo Real e
Aprendizado de Maquina, com foco em plataformas multicore em tempo real e
Aprendizado de Maquina aplicado ao gerenciamento de energia.

 Projetar um sistema de monitoramento de desempenho n&o intrusivo e implementa-
lo para as arquiteturas Intel e ARM.

» Projetar uma colecédo de rastros de uso arquitetural por meio de conjuntos de
tarefas em tempo real, sintéticos e especificos a arquitetura, que incluem todos
os contadores de desempenho disponiveis e estatisticas do sistema operacional,
que também permita a analise de contencao de recursos compartilhados.

» Projetar uma selecao de features de forma off-line para filtrar o conjunto de recur-
S0s mais expressivo dos dados coletados em relacdo ao desempenho das tarefas
e contencédo de recursos compartilhados.

» Projetar uma estratégia de treinamento offline para um modelo inicial de ANN de
baixa intrusdo para prever o impacto das medidas de economia de energia no
desempenho da tarefa.

» Elaborar um treinamento incremental online nao intrusivo para o modelo ANN se
adaptar em tempo de execugéo ao conjunto de tarefas corrente.

» Projetar um algoritmo de migragao de tarefas baseado no monitoramento de
desempenho para equilibrio de atividades das CPUs.

* Projetar e implementar o processo de atuagao do otimizador de energia ndo intru-
sivo, baseado em ANN, permitindo que os sistemas embarcados em tempo real
atinjam uma configuracao de frequéncia e distribuicdo de tarefas otimizada sem
prejudicar o desempenho de tarefas criticas, incluindo otimizagdes de distribuicao
de carga e prevencao de contencao de recursos compartilhados.

Metodologia

A metodologia deste trabalho caracteriza-se como uma pesquisa aplicada de abor-
dagem quantitativa, implementada por meio de pesquisa exploratéria composta por
pesquisa bibliografica e procedimentos experimentais.

Para tal, uma colecdo de dados é executada a fim de extrair dados de uma plataforma
multicore embarcada de tempo real executando benchmarks sintéticos, especificos de
arquitetura (VENKATA et al., 2009; GRACIOLI et al., 2019) representando aplicativos
embarcados relevantes para estimular os fenémenos arquiteténicos da plataforma alvo
sob varias configuragdes. O conjunto de dados inclui todos os contadores de desem-
penho disponiveis na plataforma de destino e estatisticas Uteis do sistema operacional,
onde a coleta € realizada através de um sistema de monitoramento n&o intrusivo. Por
meio dos dados coletados, uma selecao de features é realizada para encontrar o con-
junto de features mais relevantes que sera usado para construir o preditor. O preditor
utilizado neste trabalho € um regressor ANN que toma como entrada as features sele-
cionadas e prevé a utilizagdo de uma tarefa em uma configuragéo de frequéncia mais
baixa. A ANN é inicialmente treinada offline, evitando assim problemas de cold start
e possibilitando o ajuste de sua topologia. Além disso, o treinamento offline da ANN
segue uma abordagem de aprendizado incremental, onde a métrica de avaliacdo de
desempenho utilizada para o processo de ajuste leva em consideragéo a quantidade,
em média, necessaria de treinamentos incrementais para a ANN se adaptar a um novo
cenario considerando um limite de desvio. O preditor é subseqUentemente treinado
em tempo de execucdo sempre que a frequéncia € ajustada ou uma tarefa é migrada,
assim, liberando-o do conjunto de tarefas sintéticas inicial. Por fim, para permitir ainda
mais otimizagdes de energia junto com o controle de frequéncia, uma heuristica de
migracao € proposta como um vetor de atividade ponderada com base nos mesmos
recursos usados pela ANN.

O otimizador de energia implementado € avaliado por meio de trés conjuntos de tarefas
diferentes, compostos por benchmarks relevantes. A avaliagdo se da pela analise do
overhead adicionado a execucao do sistema embarcado, a precisao e adaptabilidade
do modelo e a economia de energia proporcionada pela solu¢ao proposta.

Resultados e Discussao
Os principais resultados provenientes das analises de desempenho da implementacao
de prova de conceito do otimizador energético proposto sdo os seguintes:

» O otimizador energeético proposto é avaliado em questao de overhead adicionado
ao sistema, impacto no tempo de execucao das tarefas, adaptacdo em tempo de

execucao do preditor produzido, e economia de energia proporcionada, sendo
todos as analises apresentadas provindas de uma implementagdo de prova de
conceito sob uma plataforma multicore real, mais especificamente, um proces-
sador quadcore Cortex-A53.

» O otimizador energético proposto é avaliado inicialmente sobre trés diferentes
conjuntos de tarefas, sendo o primeiro um cendrio mais simples, o segundo, um
cenario com diferentes fases de execucao das tarefas, e o terceiro, um cenario
com alta taxa de contencéo por recursos compartilhados sobre as tarefas execu-
tadas em paralelo.

» A andlise de overhead é dividida em trés etapas:

— 0 sistema de monitoramento: sendo esta uma avaliagdo de sua implemen-
tagcdo em um processador Intel i7-2600, apresenta um baixo impacto no tempo
de ociosidade do sistema (cerca de 43 ms em 1 minuto, aproximadamente
0.0718%) e uma baixa intrusividade no tempo de ativacao das tarefas, apre-
sentado um jitter maximo menor que 40us.

— O otimizador energético em execucao: 0 mesmo apresenta um baixo nivel de
intrusdo no tempo ocioso do sistema, cerca de 15us por ativacao do sistema
de votacao e atuacao, e de no maximo 92us para ativacdes que envolvem o
treinamento online do preditor, onde tais ativagdes ocorrem de acordo com
a configuracdo de gatilho do otimizador energético, no caso dos cenarios
apresentados, o hyper-periodo do conjunto de tarefas.

— O impacto na execucdo das tarefas: tarefas de uso intenso de CPU néao
sofreram nenhum impacto no seu tempo de execugao, tarefas de uso médio
de CPU e Memodria sofreram, em média, um impacto préximo a 0.036% em
seu tempo de execucao, e tarefas de uso intenso de memdéria sofreram, em
média, um impacto proximo a 0.18%

» A economia de energia proporcionada pelo otimizador energético € comparada
com o consumo energético dos mesmos conjuntos de tarefas executando sobre
0 mesmo sistema operacional de tempo real (EPOS), o qual implementa uma
politica run-to-halt, onde a frequéncia da CPU é maximizada a fim de maximizar
o tempo ocioso do sistema, e também comparando os resultados obtidos em
relacdo ao sistema operacional Linux executando o0 mesmo conjunto de tarefas
sob trés politicas de otimizagé&o de energia distintas, run-to-halt, OnDemand, e
Conservative. O otimizador energético obteve sempre o melhor resultado quando
comparado com 0s cenarios citados, e o fez sem comprometer a execucao de
nenhuma tarefa critica, utilizando ambas as técnicas de DVFS e migracao de
tarefas. Os resultados obtidos foram os seguintes: 24.97% de reducdo, em média,
no consumo energético quando comparado ao EPOS sob a politica run-to-halt, e

68.91%, 64.70% e 65.13%, em média, quando comparado ao Linux executando
sob a politica run-to-halt, OnDemand, e Conservative, respectivamente.

» A avaliacao do otimizador energético proposto também inclui uma analise dos
desvios das predicbes em tempo de execucdao do modelo ANN proposto e os
resultados do respetivo retreinamento online do modelo. Tal avaliagdo é demon-
strado em uma analise de cendrios com alta variabilidade na execugéo das tarefas,
concluindo que o modelo é capaz de rapidamente se adaptar a novos cenarios
sem comprometer a execugao de tarefas criticas.

O projeto do otimizador de energia foi avaliado por meio de uma implementacao de
prova de conceito. A implementacao teve como foco o design néo intrusivo e os re-
cursos da APl de monitoramento e atuacao proposta neste trabalho. Quando aliado
a baixa intrusdo apresentada por um RTOS (Embedded Parallel Operating System
(EPQOS)), o design da API cria uma estrutura de um otimizador limpa e confiavel com
recursos poderosos de monitoramento e atuacao. Com o RTOS focado no manuseio
de um determinado conjunto de tarefas, o monitoramento de desempenho e o projeto
de atuacdo podem ser controlados sem prejudicar o determinismo da execucao de
qualquer tarefa.

Para implementar o otimizador de energia, primeiro, um preditor de utilizacdo é necessario
e, para cumprir 0 design proposto, um preditor com recursos de aprendizado online

€ desejado. Portanto, um modelo de ANN treinado incrementalmente é proposto jun-
tamente com a exploragéo de perfilamento de fendmenos arquitetébnicos por meio do
monitoramento de desempenho. Além disso, o projeto da ANN esta focado em dois
momentos de aprendizagem: Um treinamento off-line usando um conjunto de tarefas
sintéticas para ajuste de arquitetura e prevencao de problemas de inicializagéo a frio. E

o treinamento online, para tornar o modelo livre do conjunto de tarefas sintéticas usado
no treinamento offline, levando em conta a variabilidade de desempenho do conjunto
de tarefas, proveniente tanto das tarefas quanto dos fendmenos arquiteténicos.

A exploracao de features € realizada através de uma analise de contadores de desem-
penho disponiveis na arquitetura, com foco em identificar os mais relevantes no que se
diz a fendmenos arquiteturais relacionados ao desempenho das tarefas, especialmente
problemas decorrentes da contencao de recursos compartilhados gerados pela arquite-
tura multicore. Com o objetivo de tornar este processo completamente independente
de conhecimento especialista e analises manuais, uma abordagem de mineracao de
dados para selecao de features é implementada. O método proposto inclui um fluxo
de trabalho de pré-processamento juntamente com a combinacédo de trés diferentes
abordagens de selecao de features. Este processo é combinado com a remocéo de

redundancia para melhorar a cobertura do conjunto de features resultante. A cober-
tura do conjunto de features resultante inclui contadores de desempenho cobrindo o
uso de memoria e o uso da CPU de tarefas, no qual a memaria constitui o principal
recurso compartilhado na arquitetura alvo. As informacdes de desempenho extraidas
por meio de tais contadores foram suficientes para construir o modelo de aprendizado
de maquina previsto para controlar a atuagéo do DVFS e orientar a migragéo da tarefa,
0 que corroborou a eficacia da abordagem utilizada para extracao de features, o con-
junto de tarefas sintéticas utilizadas juntamente com o sistema de monitoramento néo
intrusivo e o processo de selecao de features.

Consideracoes Finais

Neste trabalho, um otimizador de energia nédo intrusivo baseado em uma Artificial Neu-
ral Network (ANN) para arquiteturas multicore de tempo-real embarcadas que atua em
tempo de execucéao é proposto. O otimizador de energia € capaz de prover otimizacoes
energéticas sem comprometer os rigorosos requisitos de tempo de tarefas criticas. Os
recursos do otimizador de energia incluem Dynamic Voltage-Frequency Scaling (DVFS)
e migracoes de tarefas, as quais atuam com base nas saidas do modelo ANN e de
uma heuristica baseada no conceito de vetor de atividades ponderado. A ANN é um
componente do otimizador de energia que visa fornecer previsdes sobre o impacto
que um ajuste da frequéncia de execucao de uma CPU tera no desempenho da tarefa,
usando contadores de desempenho como entrada. O otimizador de energia considera
cada tarefa em execugcdo em cada nucleo do processador para conceber uma atu-
acao, compondo uma predicao de tempo de ociosidade disponivel e uma margem de
seguranga de atuagao definida pelo usuario. O modelo ANN € construido sobre ras-
tros de execugéo coletados de contadores de desempenho de hardware e estatisticas
do sistema operacional, selecionados através de algoritmos de extragao de features
offline. O processo de extracdo de recursos visa expor as variaveis mais relevantes
relacionadas ao desempenho usando conjuntos de tarefas sintéticos especificos da
arquitetura. Os rastros de desempenho também s&o usados para construir um treina-
mento offline para ajustar a configuracao da ANN. O preditor é entao treinado em
tempo de execucao sempre que a frequéncia é ajustada, liberando-o do conjunto de
tarefas sintéticas inicial. A migracao da tarefa € baseada em um conceito de vetor de
atividade ponderado e usa os mesmos contadores de desempenho usados pela ANN.
O objetivo da migracao de tarefas € reduzir a variacao da atividade entre CPUs em um
estilo de balanceamento de carga, incluindo migracdo de tarefas e trocas de tarefas
entre CPUs para obter uma melhor distribuicao de carga e resolver contengdes sobre
recursos compartilhados . Os pesos usados pelo algoritmo séo tracados de antemao
através da técnica de Gradiente Descendente. Com isso, os resultados obtidos pela
implementacao de prova de conceito demonstram que a solugéo foi capaz de otimizar

o consumo da plataforma alvo eficientemente sem prejudicar o desempenho de nen-
huma tarefa critica através de um solugdo com suporte a adaptagao online do modelo
de aprendizado de maquina utilizado de forma nao intrusiva ao sistema.

Palavras-chave: Sistemas de Tempo-Real e Sistemas Embarcados, processadores
Multi-core/single-chip, Escalonamento e Migracao de tarefas, Aprendizado de Maquina,
Sistemas conscientes de energia.

LIST OF FIGURES

Figure 1 — Envisioned energy-optimizer solution overview.
Figure 2 — Rate Monotonic Scheduling for a task-set with 91.67% of usage, pre-

sentingadeadlinemiss.
Figure 3 — Earliest Deadline First Scheduling for a task-set with 91.67% of us-

age, without presenting deadline misses.
Figure 4 — Unicore Scheduling Queue.
Figure 5 — Multicore Scheduling Queue - Partitioned Configuration.
Figure 6 — Multicore Scheduling Queue - Global Configuration.
Figure 7 — Multicore Scheduling Queue - Clustered Configuration.
Figure 8 — A multilayer feedforward ANN fully connected with two hidden layers
Figure 9 — Scheduler Framework UML class diagram with the Monitoring API

extension.

Figure 10 — Thread state diagram and the associated methods of class Criterion.

Figure 11 — Example of run-time data collected by the Monitoring system.

Figure 12 — The Energy Optimizer Design Diagram. The green arrows represent
the execution flow for a task migration actuation, while the blue ar-
rows, the execution flow for a DVFS actuation, which also includes
anonline learning section. oo

Figure 13 — Committed Instructions trace of a task in three different scenarios:
T1 runs in a no contention scenario, T2 runs in a high contention
scenario, and T3 runs in a low contention scenario.

Figure 14 — Bus Access for Memory Write trace of a task in three different scenar-
ios: T1 runs in a no contention scenario, T2 runs in a high contention
scenario, and T3 runs in a low contention scenario.

Figure 15 — Ten most relevant features according to the feature selection tech-
niques used. L e
Figure 16 — Stalls due to Write Buffer Full and Read Alloc Mode performance
Counters trace (highly correlated counters following PCC): (a) Stalls
due to Write Buffer Full, (b) Read Alloc Mode, and (c) Enter Read
Alloc Mode. And Performance Counters trace of (d) L2D Writeback,
(e) CPU Cycles, (f) L1 Cache Hits, and (g) Immediate Branches.
Figure 17 — Artificial Neural Network final architecture.
Figure 18 — Task-sets energy consumption under different optimizers.
Figure 19 — Energy Optimizer actuationon Task-set1.
Figure 20 — Energy Optimizer actuation on Task-set2.

13

14
15
16
16
17
21

36
38
44

46

58

58

70

72
74
79
80

Figure 21 — Energy Optimizer actuationon Task-set3.
Figure 22 — Energy Optimizer actuation on Task-set 3 without predefined weights
for migrations. L
Figure 23 — Task-sets with reduced Bandwidth data-set energy consumption for
the RTOS and the Energy Optimizer running on the RTOS.
Figure 24 — Task-sets with Bandwidth configured with behavior variation data-set
energy consumption for the RTOS and the Energy Optimizer running

onthe RTOS.
Figure 25 — Energy Optimizer actuation on Task-set 1 with Low Contention Band-
width.
Figure 26 — Energy Optimizer actuation on Task-set 1 with variable contention
Bandwidth.
Figure 27 — Energy Optimizer actuation on Task-set 2 with Low Contention Band-
width. . . .
Figure 28 — Energy Optimizer actuation on Task-set 2 with variable contention
Bandwidth.
Figure 29 — Energy Optimizer actuation on Task-set 3 with Low Contention Band-
width. . . .

Figure 30 — Energy Optimizer actuation on Task-set 3 with variable contention
Bandwidth.

LIST OF TABLES

Table 1 — Qualitative Comparison to Related Works Over the Main Concepts
Addressed by ThisWork

Table 2 — Task-sets configuration.

1.1
1.1.1
1.2
1.3
1.4
1.5

2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.2
2.1.2.1
2.1.2.2
2.2
2.2.1
2.2.2
2.2.3
2.3

2.3.1
2.3.2
2.3.3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3

41

411
41.2
4.1.3

CONTENTS

INTRODUCTION e e e e e e e e e e e e 1
GOALS e 2
SpecificGoals 3
PREVIOUS RELATED WORKS BY THEGROUP 4
METHODOLOGY e 4
CONTRIBUTIONS e 5
OVERVIEW e 6
LITERATUREREVIEW i i e et e e e 7
BACKGROUND 8
Real-Time Scheduling 8
Unicore Real-Time Scheduling 12
Multicore Real-Time Scheduling 14
Machine Learning 18
Artificial Neural Networks 21
Feature Selection 23
RELATED WORKS 24
Real-time Multicore Scheduling 24
Contention-aware Task Allocation 25
Task Migration 26
MACHINE LEARNING FOR ENERGY OPTIMIZATION IN MULTICORE

SYSTEMS e 27

Supervised Learning approaches for Energy Optimization 27
Reinforcement Learning approaches for Energy Optimization . . 31

Summary of the Literature Review 33
NON-INTRUSIVE MONITORING 35
SCHEDULER FRAMEWORK 35
NON-INTRUSIVE MONITOR DESIGN 38
Non-Intrusiveness 39
Per Task Monitoring Functionality 40
ActuationDesign L 41
A Generalized Learning Strategy 41
SUMMARY OF THE NON-INTRUSIVE MONITOR 43
ENERGY OPTIMIZER« ¢ ittt iie e 45
ENERGY OPTIMIZERDESIGN 45
Collecting 47
Charging e 49
Actuation 51

41.3.1
4.2

4.2.1
4.2.2
4.2.3
4.3

5.1
5.1.1
5.1.2
513
5.1.3.1
5.2
5.2.1
5.2.2
5.3

6.1

Task Migration 52
LEARNING WORKFLOW: FEATURE EXPLORATION AND ONLINE

LEARNING ANN 56
Pre-processing 59
Feature Selection, 61
ANNDesign 63
SUMMARY OF THE RUN-TIME ENERGY OPTIMIZER DESIGN .. 65
PROOF OF CONCEPT IMPLEMENTATION 67
DATA COLLECTION 67
Benchmarks 68
Feature SelectionResults 70
ANN Configuration. 73
ANN Implementation Library 75
PROPOSAL EVALUATION o 75
Overhead Analysis 76
Experimental Results 78
DISCUSSION 90
CONCLUSION e e e e e e e e 95
FUTUREWORKS 96

REFERENCES et e e e 98

1 INTRODUCTION

In the realm of embedded systems, the expanding functionalities required by
new applications (SARMA et al., 2015), particularly for critical environments such as
those handling computer vision in autonomous vehicles, increases the performance
demands of the target embedded platform in order to cope with time constraints. Never-
theless, increasing the performance of an embedded platform also increases its energy
consumption, which is challenging considering the energy constraints of such environ-
ments. Increasing the number of cores in those platforms is a solution to accommodate
the growing application demands. Modern embedded multicore processors combine a
large variety of architectural features, including heterogeneous cores, SIMD units, and
application-specific accelerators interconnected by NoC technology. These complex ar-
chitectures make intense use of parallelism and latency hiding mechanisms that cause
variations in the performance of running tasks (CRAEYNEST et al., 2012; KEDAR et al.,
2017).

These platforms, however, are themselves highly instrumented cyber-physical
systems that can be monitored and controlled based on the data they produce during
operation (MUCK et al., 2018). Hardware Performance Counters (HPC) have been
introduced by processor chip manufacturers through a Performance Monitoring Unit
(PMU) component. PMUs are used to sample performance events occurrences during
execution, providing information regarding the architectural usage, such as Committed
Instructions Rate, Memory Access, Branches Executed, and Stalls Cycles. Thus, to
provide a higher level of reliability, guarantee the timing correctness of critical tasks,
and save energy, specific task-sets are often required to look after such architectural
aspects to attain the expected level of determinism, assessing the immediate resource
needs of running tasks and predicting the impact of power-saving measures on their
real-time constraints.

However, handling energy optimization in critical scenarios on multicore plat-
forms goes beyond modeling system performance manually and assuring Worst Case-
Execution Time (WCET) estimations. The complexity of new critical applications, with
several tasks and several cores, as is the case for autonomous vehicles, requires han-
dling performance, temperature, and energy consumption in a more automated way.
The problem of finding an optimal configuration, which provides sufficient performance
with the lowest energy consumption possible, often requires expert knowledge about the
task-set and the platform. In this sense, Machine Learning stands up as an alternative
to automate the process of acquiring the necessary knowledge about the architectural
phenomena expressed by performance traces and OS statistics.

Machine Learning (ML) techniques are being used to automate the process of
mapping performance traces provided by the architecture into useful information to

Chapter 1. Introduction 2

support runtime optimizations. For instance, works like (LAHIRI et al., 2007; JUNG;
PEDRAM, 2010) use ANN models in combination with timing specs of task-sets to opti-
mize the CPU frequency. Other works envision Reinforcement Learning (RL) models to
find the best Dynamic Voltage-Frequency Scaling configuration based on timing (ISLAM
et al., 2018) and cycle counting (DAS et al., 2015). Other works (CHEN et al., 2018;
JUNG; PEDRAM, 2010; RAI et al., 2010), combine with timing specs performance
counters, such as the rate of instructions committed and the rate of accesses to key
elements in the memory hierarchy to supply more detailed information for supervised
learning algorithms to predict the impact of energy-saving operations on performance.
However, performing ML-based optimizations at runtime along with the execution of
critical tasks requires optimizers to secure the same level of temporal determinism
defined for the tasks. Therefore, they must collect data and run algorithms without inter-
fering with running tasks, and the proposed optimizations, which may include frequency
scaling and task migrations, must not impair the execution of any critical task.

Therefore, for real-time embedded systems to endure in a multicore platform,
they must build self-awareness of the current performance and be able to ensure op-
timizations, enabling the system to reach the expected performance/power balance
without impairing any critical task. Combining non-intrusive performance monitoring
and ML techniques, the system is able to learn a task-set behavior, yielding indica-
tors at runtime for the system to adapt itself. Thus, a real-time multicore embedded
system can run the ML-guided actuation matching a safety margin of resource reser-
vation, enabling power-saving measures (e.g., frequency scaling, task migration, and
power management) to achieve the desired performance level while optimizing energy-
savings.

1.1 GOALS

Considering the aforementioned constraints of real-time multicore embedded
systems and the learning capabilities of ML-techniques, the main goal of this work is
defined as to design, implement and validate a non-intrusive, ANN-Based, run-
time energy optimizer that encompasses task migration and DVFS. The energy
optimizer is built upon performance monitoring, using the ANN as a predictor to guide
energy-savings without impairing the execution of any critical task.

A top-level depiction of the proposed system is presented in Figure 1. The ANN
model takes execution traces of individual tasks as input to predict their performance
in case the core where they are running is subjected to an energy-saving actuation.
Traces are built at runtime out of hardware performance counters, sensors, and OS
variables, selected by offline feature extraction algorithms. The predictor aims at initial
offline training using a synthetic task-set to tune its configuration and avoid cold start
issues, and is subsequently trained at runtime whenever the frequency is scaled or

Chapter 1. Introduction 3

a task is migrated, thus, setting it free from the initial synthetic task-set. Besides the
predictor, the optimizer makes use of a task migration heuristic that encompasses a
notion of resource reservation as an additional measure to avoid impairing critical tasks.

1.1.1

a Energy Optimizer
1. Non-Intrusive 2. Online 3. DVFS 4. Task
Monitoring Learning ANN Control Migration

I I i
Task's / / DVFS AskMigration

Performance Utilization Based on Based on/

\ Trace Prediction Prediction Perf. Trace

Figure 1 — Envisioned energy-optimizer solution overview.

il ii@-i

Specific Goals

The proposed energy optimizer is designed and implemented corroborating with

the following specific goals:

Perform a state-of-the-art review over Real-Time and Machine Learning concepts,
focused on real-time multicore platforms and Machine Learning applied for energy
management.

Design a non-intrusive performance monitoring system and implement it for Intel
and ARM architectures.

Design a performance trace collection through real-time, synthetic, architecture-
specific task-sets, that includes every performance counter available and OS
statistics, and also enables shared resource contention analysis.

Design an offline feature selection to filter the most expressive feature-set from
the collected data regarding tasks’ performance and shared resource contention.

Design an offline training strategy for an initial, low-intrusive, ANN model to predict
the impact of power-saving measures at task performance.

Design a non-intrusive online incremental training for the ANN model to adapt
itself at run time to the current task-set.

Design a task migration algorithm based on performance monitoring for activity
balance of CPUs.

Chapter 1. Introduction 4

1.2

Design and implement the non-intrusive, ANN-based, energy optimizer actuation
process, enabling the real-time embedded systems to achieve optimal frequency
configuration without impairing critical tasks, including load distribution optimiza-
tions and shared resource contention avoidance.

PREVIOUS RELATED WORKS BY THE GROUP

This master’s project was developed at the Software/Hardware Integration Lab-

oratory (LISHA) at the Federal University of Santa Catarina (UFSC). Over the last
decades, several research projects have been conducted in the group on the topic
of Real-Time Multicore Systems, Performance Monitoring, and Power Management.
These works granted the group the required perspective and experience that led to the
idea of the Online Learning Energy Optimizer. What follows is a list in chronological
order of the main past contributions with their main authors that directly influenced the
present work:

1.3

Anténio Augusto Fréhlich, Application-Oriented Operating Systems (FROHLICH,
A. A, 2001) - For the design of the Embedded Parallel Operating System (EPOS)
and the first version of the Scheduler Framework;

Arliones Stevert Hoeller Junior (JUNIOR, 2007), Application Oriented Power Man-
agement in Embedded Systems (free translation of "Geréncia do Consumo de
Energia Dirigida pela Aplicacdo em Sistemas Embarcados”) - For the perspective
and notions of Power Management in embedded systems;

Hugo Marcondes, A Hybrid Hardware and Software Component Architecture for
Embedded System Design (MARCONDES, 2009) - For the real-time implementa-
tion of the Scheduler Framework;

Gustavo Roberto Nardon Meira, Real-Time Dynamic Voltage and Frequency Scal-
ing on EPOS System (MEIRA, 2011) - For the perspective and notions of DVFS
in real-time systems;

Giovani Gracioli, Real-Time Operating System Support for Multicore Applica-
tions; (GRACIOLI, 2014) - For the perspective and notions of real-time multicore
systems, and the multicore implementation of the multicore Scheduler Design;

METHODOLOGY

The methodology of this work is characterized as applied research on a quanti-

tative approach, implemented through exploratory research composed of bibliographic
research and experimental procedures.

Chapter 1. Introduction 5

It includes the building of a database by extracting data from a real embedded
multicore platform running synthetic, architecture-specific, benchmarks (VENKATA et
al., 2009; GRACIOLI et al., 2019) representing embedded applications to stimulate the
architectural phenomena of the target embedded multicore platforms under several con-
figurations. The dataset will include every available performance counter in the target
platform and useful OS statistics, where the collection will be done using a non-intrusive
monitoring design. Through the collected, a feature selection will be performed to find
the most relevant feature-set that will be used to build the predictor. The predictor used
in this work is an ANN regressor that takes as input the selected features and predicts
the utilization of a task in a lower frequency configuration. The ANN is initially trained
offline, thus, avoiding cold start issues and enabling its topology tuning. Moreover, the
ANN offline training follows a incremental learning approach, where the performance
evaluation metric used for the tuning process takes into account the amount of incre-
mental retrains that are necessary on average for the ANN to adapt to a new scenario
considering a deviation threshold. The predictor is subsequently trained at runtime
whenever the frequency is scaled or a task is migrated, thus, setting it free from the
initial synthetic task-set. Lastly, to further enable energy optimizations alongside the
frequency control, a migration heuristic is proposed as a weighted activity vector based
on the very same features used by the ANN.

The implemented energy optimizer is evaluated through three different task-
sets composed of relevant benchmarks, where the added overhead to the embedded
system execution, model accuracy and adaptability, and energy consumption reductions
achieved are measured to evaluate the proposed solution.

1.4 CONTRIBUTIONS

This work contributes to the Computing Science area as it proposes a novel
solution for DVFS and Task migration on Multicore Real-Time Embedded Systems
through a lean and non-intrusive approach that builds on Machine Learning predictors.
Specifically to the aforementioned area, the following contributions are achieved by this
work:

 The design, implementation, and evaluation of a Non-intrusive Monitoring API.

 The design of collection and feature selection process that accounts for architec-
tural phenomenal that is agnostic of the target task-set.

» The usage of adaptable predictors to enable safe run-time actuation even in
unforeseen scenarios, thus, not disrupting the criticality of any task in the system
during actuation.

Chapter 1. Introduction 6

» The Energy Optimizer design that encompasses machine learning based DVFS
and Task migration control at run-time on a non-intrusive design.

» The proof of concept implementation and evaluation of the proposed non-intrusive
Energy optimizer.

1.5 OVERVIEW

Chapter 2 presents an overview of the state-of-the-art solutions for energy op-
timization in Multicore Scenarios, focusing on Machine Learning techniques for DVFS
and Task Migration. Chapter 3 presents the design of the non-intrusive Monitor API,
a lean and architecture-independent monitoring API that abstracts Performance Moni-
toring Unit counters, OS statistics, and Sensors. The Monitor API also provides tools
for run-time actuation based on monitored data. Chapter 4 presents the energy opti-
mizer design, including the modeling of data collection, predictor design and integration,
online training and actuation, and the DVFS voting system alongside the migration
heuristic proposed. Moreover, Chapter 4 also includes the design of the feature ex-
traction proposed, the offline Machine Learning Model design and its online learning
integration.

Chapter 5 presents the proof of concept implementation over a Cortex-A53 ar-
chitecture, including the implementation of the data analysis, online monitoring, and
actuation processes proposed in this work. The energy optimizer performance is then
evaluated over three aspects: (i) Energy-savings achieved, by measuring the energy
consumption on the platform used for the proof of concept implementation, and compar-
ing the results to a run-to-halt approach and Linux’s Ondemand and Conservative Power
Governors; (i) Machine learning capabilities, which includes evaluating the final DVFS
and Allocation configuration achieved for each scenario and measuring the predictions
deviations before and after online training; (iii) Non-intrusiveness, where the proposed
solution is evaluated regarding the added overhead and the impact on tasks’ execution
time. Moreover, a discussion covering the complete design and implementation and the
presented results concludes the Chapter 5.

The work is concluded in Chapter 6, with a recapitulation of the main contribu-
tions and the presentation of the final remarks for this work.

2 LITERATURE REVIEW

Real-time embedded systems manages tasks through a description of their
timeliness characteristics, often represented by periodicity and deadlines. Such charac-
teristics is used to create a notion of priority, which is a notion that varies according to
scheduling policies like Earliest Deadline First (EDF), Rate Monotonic (RM), and Dead-
line Monotonic (DM). Moreover, by assessing a task performance demands, like its
Worst Case-Execution Time (WCET) enables a offline feasibility analysis of the system
scheduling. However, the intense use of parallelism and latency hiding mechanisms
present in complex architectures, like modern multicore platforms, incurs into varia-
tions on the performance of running tasks (CRAEYNEST et al., 2012). Thus, offline
solutions, which can only assess timing specs of tasks (i.e., Worst-Case Execution
Time estimation through extensive profiling), must ensure a large resource reservation
to guarantee real-time constraints. Such a large reservation ensure performance by
wasting computational power and energy, requiring expensive multicore processors
running at high-frequency levels to cope with the requirements imposed by only relying
on offline estimations.

Several works have investigated the representativeness of PMU events moni-
toring on providing information of the current architectural usage, avoiding relying only
on worst-case estimation. For instance, Singh et al. (SINGH et al., 2009), aiming at
estimating power consumption, uses cache misses and hits, Committed Instructions
rate, and Stalls. Similarly, Eyerman et al. (EYERMAN; EECKHOUT, 2010) proposes a
profitability estimation of DVFS effects over a counter architecture to estimate energy
consumption given a power budget. The energy consumption estimation is achieved by
analyzing tasks’ pipe-lined time, which is affected by DVFS, and the non-pipe-lined time,
which is not. As a relevant trend, performance monitoring can lend essential information
from the current task’s demands. When combining meaningful performance counters
with OS statistics, a broader analysis can be achieved when estimating the performance
of tasks in the near future or a different configuration. In this sense, Machine Learning
stands up as an alternative to automate the process of acquiring the necessary knowl-
edge about the architectural phenomena expressed by performance traces and OS
statistics, that, when provided with sufficient information, result in a reliable prediction
of an outcome for actuation, and thus, enabling the definition of an actuation plan to
safely optimize the Multicore Real-Time embedded system at run-time.

Controlling the power consumption of a multicore processor is an essential step
to enable a balance between performance and energy. The Power Dissipation in a
CMOS chip can be approximated as Pcore = Pestatic + Paynamic (RABAEY; PEDRAM,
2012), where Pg4ic (also called leakage) is the power loss due to transistor leakage
currents, and Pgynamic is the dynamic power consumption based on the current config-

Chapter 2. Literature Review 8

uration of the processor core, which can be approximated as Pqynamic = CV2f, where
C is the capacitance, V is the Voltage, and f is the frequency of the processor core.
So, DVFS comes as a powerful and widespread actuation strategy to improve energy-
saving in a multicore platform, reducing the operating frequency and voltage of a core
to reduce its power consumption (HSU, 2003). Therefore, by monitoring the system’s
behavior, it is possible to apply DVFS safely, and reach a better performance and
energy ratio (DEHMELT, 2014). Similarly, Dynamic Power Management (DPM) mech-
anisms, implemented by the underlying OS, can also be used for optimizing energy
consumption. They consist of putting hardware components in low-power states when
they are idle (FROHLICH, A. A., 2011). Since bringing a component back to an opera-
tional state requires additional energy and time, this strategy must evaluate the overall
energy-saving and performance impact before actuating. Moreover, alongside DVFS,
an optimal task allocation can enhance both performance and energy-savings, by avoid-
ing shared resource contention between tasks running in parallel, and by achieving a
balanced load distribution between CPUs.

2.1 BACKGROUND

This section is dedicated to summarize the aspects that basis this work. It starts
with a discussion of relevant Real-Time concepts, including task definition and criticality,
and unicore and multicore scheduling. Next, relevant Machine Learning concepts for
this work are discussed, including supervised learning and feature selection.

2.1.1 Real-Time Scheduling

A Real-Time system is characterized by a set of tasks with timing constraints,
where the system behavior depends not only on the logical correctness of their execu-
tion but also on the time they are executed. A Real-Time task can be defined as a set
of related jobs that provide some system function, where each job is an instance of the
task that is scheduled according to the task requirements (LIU, J. W. S., 2000).

Real-Time tasks can be classified into three main task models (GRACIOLI, 2014):
periodic (LIU, C. L.; LAYLAND, 1973), sporadic (MOK, 1983), and aperiodic. A periodic
task model defines that each task T; € {T4, To, ..., Tn}, a set of tasks T, releases a job
at every period p;, thus, every job J; ;, the j1 job of task Tj, has a release time i ji
which can be expressed as r; j = p; * J. OS operations like reschedule, priority update,
and dispatch, are implemented in order to handle job scheduling, where job releases
can be triggered through device interrupts or timers (GRACIOLI, 2014). Sporadic tasks,
on the other hand, defines the period p; of a task T; as a lower bound on job separa-
tion (MOK, 1983). A Sporadic task model can be analyzed as a periodic task model if
pj is considered the minimum time interval between jobs. In the aperiodic task model,

Chapter 2. Literature Review 9

the tasks work in an event-driven fashion instead of a time-triggered one. Thus, they
can be released at any time without the specification of a period or a minimum period
interval (GRACIOLI, 2014).

Moreover, in this work, it is considered that a Real-Time system task can be
classified into two groups regarding their timing constraints: hard real-time and soft
real-time. Tasks that have a hard deadline must never miss a deadline to be considered
correct, thus, representing critical scenarios where the loss of a deadline can cause
catastrophic damage (i.e., loss of human lives and money). On the other hand, on
tasks that have a soft deadline, the loss of a deadline is tolerable, limited by a Quality
of Service (QoS) constraint, thus, representing non-critical scenarios where only the
QoS is affected, like on multimedia applications. In this way, the deadline of a task is a
parameter defined to represent it's correct behavior on the system and is extended to
each job j of the task T; according to its release time, providing an absolute deadline
notion. For instance, in a Periodic task model, the deadline of the j’h job of the task
Tj is defined as d;; = r;; + dj, thus, if the time the j1 job finishes its execution is
< d; j, the job meet its deadline. In a hard real-time scenario, the correctness of a task
can be expressed by R; < dj, where R; is the maximum response time of the task’s
jobs (BRANDENBURG, 2011).

As this work aims at handling energy optimizations on critical systems, the pe-
riodic task model is assumed, focusing on hard real-time scenarios. Thus, a complete
definition of the periodic task model is defined below.

+ Task: In a periodic task model, each task has three basic parameters p;, d;, c;.
p; is the period of T; and represents the distance in time between each job of
the task T;. Thus, at every p; units of time, a job of task T; is released by the
OS and inserted into the Scheduling Queue. The state of the job at its release is
defined by the scheduler according to the scheduling policy implemented. d; is the
relative deadline of the job and represents its timing constraint. ¢; represents the
Worst-Case Execution Time (WCET) estimation of T;, and provides a notion of
CPU time required by the task, where ¢; > 0. Worth mentioning that c; is a static
estimation and naturally depends on the hardware platform speed. Furthermore,
this measure is affected by DVFS. For the WCET estimation to be accurate, it
requires extensive profiling, especially for multicore platforms, where the parallel
access to share resources highly affects a job execution time (GRACIOLI, 2014).
On the other hand, p; and d; are machine-independent parameters, defined by
the application design itself (BRANDENBURG, 2011).

* Jobs: A job is considered to be in Ready state when is release time r; ; is reached,
and will be set to Running according to the scheduling policy implemented. In
a periodic task model, a job has an absolute deadline dj ; that must be met for

Chapter 2. Literature Review 10

its execution to be considered correct, taking at most ¢; time units to run. The
completion time f; ; defines its correctness, respecting both the task period, where
fij > rijlrij = pi*Jj,j > 0, and the task relative deadline f; ; < d; ;. The maximum
response time R; of a task 7; is obtained as follows: R; ; = f; ;- r;j ;, Rj = max(R; ;).

» Deadlines: The acceptable range of response times of a task T; is defined by
the task relative deadline d. If the job completion time f;; > d] ;, the absolute
deadline of a job, it means that the job has missed a deadline. A task deadline
can be defined as implicit, constrained. A implicit deadline is defined as d; = p;. A
constrained deadline means that d; < p;. Moreover, a task-set t is classified as
implicit if every task T; € tis implicit. The same is valid for constrained task-sets. If
a task-set is neither implicit nor constrained, it is classified as arbitrary (GRACIOLI,
2014).

« Utilization and Density: U; is the utilization of task T;, and is defined as %
representing the amount of time a periodic task keeps the processor busy (LIU,
J. W. S,, 2000). The utilization of the task-set can be approximated at design time

as the sum of each task utilization: U =) U,. Considering constrained task-
Tiet
sets, the density measure of a task-set is a useful information in the schedulability

analysis. The density §; corresponds to the rate of execution of a task, and is
obtained by normalizing the task utilization by its relative deadline. The density of

a task 7; is defined as §; = -#— (GRACIOLI, 2014).

» Deadline Definition Limitation: In this work, as the goal is to reduce the execu-
tion frequency of a task-set to achieve energy savings while still meeting every
deadline of critical tasks, it is assumed that the task-set has implicit deadlines,
as the metric used for voting and actuation is the very-own task-set measured
utilization.

Considering the aforementioned definitions, several scheduling policies have
been defined for real-time scenarios. Those algorithms are based on the task-set pa-
rameters of p;, d;, ¢; to provide a prioritization of tasks, enabling ordering the jobs dis-
patching in such a way that their timing constraints are met. In this way, a design-time
evaluation of the system correctness, at least when considering a static configuration
(e.g., a static processor speed, and for multicore platforms, a static task allocation), is a
concept presented by the literature as schedulability, where every scheduling algorithm
has a respective schedulability test that aims at evaluating if the task-set is schedulable
or not following its scheduling policy.

A task-set is considered schedulable under some policy if the scheduling algo-
rithm is capable of providing an ordering that meets every task’s jobs d; ;. A task-set is
said feasible if there exists a scheduling algorithm A such that t is schedulable under

Chapter 2. Literature Review 11

A (GRACIOLI, 2014). For instance, an easy and straightforward schedulability test is
that the total utilization of a task-set must fit in the computational power available (i.e.,
U < m, where m is the number of processors available). Moreover, a schedulability
test can be pessimistic and may state that a task-set is not schedulable, when in fact, it
is schedulable (BRANDENBURG, 2011).

Some common assumptions for real-time scheduling algorithms are the follow-
ing (BRANDENBURG, 2011):

- Tasks are independent: tasks do not share any kind of resources besides the
processor.

» Jobs do not self-suspend: jobs are always ready to execute when allocated to
a processor by the scheduler.

» Jobs are preemptive: at any time, the scheduler may replace the executing job
with a higher priority job.

 Jobs respects their periods: jobs release are separated by their period p;.

* Run-time overhead is negligible: the RTOS run-time overhead, such as the
time for context-switch between jobs is negligible.

In this sense, some of those assumptions somehow simplify the scheduling
problem, as its the case of run-time overhead being negligible and tasks being inde-
pendent. OS interference caused at run-time by I/O and timer interruptions, or even
the very own hardware accelerators impact (e.g., memory caches), and especially the
shared resource contention present on complex multicore platforms, can create ad-
ditional overhead that is complex to be modeled offline. The other assumptions are
safe to be assumed in a real-time scenario, like job releases respecting their periods,
self-suspension nonexistence, and jobs being preemptive.

In a non-real-time scenario, several algorithms have been proposed aiming at
keeping the CPU busy at all times and deliver acceptable response times for all pro-
grams. For instance, scheduling algorithms like Round-Robin (TANENBAUM; BOS,
2015) promotes a time-slicing of the CPU between tasks in the scheduling queue.
Round-Robin is a widespread scheduling algorithm that provides to the user interacting
with the system a notion of multitasking even in a unicore processor, which is achieved
by selecting a sufficient small slice size (called slot or quantum). Thus, at the end of a
quantum, if the task has not been completed yet, the scheduler under the round-robing
policy will preempt the task currently running to dispatch the next one at the head of the
scheduling queue, reinserting the preempted one at the end. Priority-based algorithms,
on the other hand, assigns priority to each task according to its policy and selects the
one with the highest priority in the system.

Chapter 2. Literature Review 12

In the realm of priority based-scheduling, scheduling algorithms can be classified
into two types: those that assign static priority and those that enable dynamic priority
assign. Real-time schedulers fit into the priority-based schedulers and can be either
static or dynamic. A static algorithm relies on a more predictable scenario, where tasks
priorities are assigned offline based on the task-set configuration, assuming release
and execution times for all jobs in the system. The extensive offline analysis and vali-
dation available for static priority algorithms is an advantage. However, they became
inflexible to variability into release and execution times (LIU, J. W. S., 2000), requiring
a deterministic behavior of the execution. Dynamic schedulers, on the other hand, en-
ables priority update at run-time at scheduling decisions. However, due to the priority
changes at run-time, reaching an optimal scheduling configuration is harder. For both
scenarios, a scheduling decision can be time-triggered or priority-driven, encompass-
ing reschedule, priority updates, periodically (time-triggered), job completion, and job
releases (priority-driven).

2.1.1.1 Unicore Real-Time Scheduling

Unicore architectures, due to the nonexistence of parallel executions, and the
shared resource contention caused by them, has a lower scheduling complexity than
multicore platforms, making an offline analysis of WCET more reliable as the only effect
caused by multiple tasks execution is reasonably represented by it. For instance, the
WCET of a task is often its first job execution, where the data and instruction caches are
loaded for the first time, or a job execution where additional overhead is generated by
cache lines eviction due to preemptions or the very own sequential execution of other
tasks.

In this way, unicore (or uniprocessor) real-time scheduling is a well studied and
formalized concept in the literature. The first work to address unicore real-time for a
periodic task model was proposed by Liu and Layland (LIU, C. L.; LAYLAND, 1973),
presenting scheduling policies for fixed priority and for job-level fixed priority, a class of
scheduling policies in which each job of a task can have different priorities. A priority-
based scheduler in a unicore scenario can be seen as a queue manager, where the
queue is sort descending. Whenever a job is released, it is inserted into the queue
in a position corresponding to its priority as follows: P(J;) < P(Ji_1andP(J;) > P(J;,1,
where J; ¢ is the highest priority job and will be selected as the next job to run at the
processor.

One of the fixed priority algorithms was rate monotonic (RM) (LIU, C. L.; LAY-
LAND, 1973), a widespread scheduling policy that assigns priority according to the
task period, in inverse relation, where the task with the shortest period has the high-
est priority. An example of Rate Monotonic scheduling is depicted in Figure 2. In this
scenario, the task-set is composed of three hard real-time tasks: T7 is a task that must

Chapter 2. Literature Review 13

run for 2 units of time every 6, T2 is a task that must run for 2 units of time every 8,
and T3 is a task that must run for 3 units of time every 9. This task-set presents a
total utilization U = 0.9167 (91.67%), and by following Rate Monotonic scheduling, the
highest priority task is T7, followed T2 and T3, respectively. In this way, whenever a
job of T1is released, it preempts any other job currently running, as it has the highest
priority on the system. In the example depicted in Figure 2, at time 0 every task has a
job released, and T7 is scheduled to run for 2 units of time consecutively, as it has the
highest priority. At time 2, when T7 job finishes its execution, T2 job is scheduled and
runs until it finishes at time 4. Then, T3 job, which requires 3 units of time for completion,
is scheduled and runs for until time 6, where a new job from T7 is released, incurring
into a context switch between 77 and T3, as T1 has a highest priority. In this way, T1
runs until it finishes at time 8, where a new job of task T2 is released and subsequently
scheduled to the CPU as it has a priority higher than 73. As T2 job runs for 2 units of
time, it ends at time 10, while the job of 73 misses a deadline at time 9, as it still needed
one unit of time of execution to finish. In this way, this task-set is not schedulable under
the RM scheduling policy.

Job Schedule
114 ¢ } Release

¢ Deadline

72 (4)

Deadline Miss

13|} |

0 1 2 3 4 5 6 7 8 9 10
Figure 2 — Rate Monotonic Scheduling for a task-set with 91.67% of usage, presenting
a deadline miss.

Liu and Layland (LIU, C. L.; LAYLAND, 1973) proposed a schedulability test
for RM, where for a given task-set t with size n and tasks with implicit deadline, T is
schedulable under RM if U; < n(21/”— 1). In this sense, considering the limit of this
function when n — oo, the upper bound converges to /In(2) ~ 0.69, restraining the
utilization to such limit of 69.00%. For the example depicted in the previous paragraph,
following the schedulability test proposed by Liu and Layland, the maximum utilization
RM will be capable to handle, following this schedulability test, with n = 3 will be
3% (2(118) —1) ~ 0.7798.

Earliest Deadline First (EDF) (LIU, C. L.; LAYLAND, 1973) is the most important
and widespread job-level priority fixed scheduling algorithm (GRACIOLI, 2014). On

Chapter 2. Literature Review 14

EDF, the priority of a job of a task is given by its absolute deadline d;;, and similarly
to RM, the priority is an inverse relation, where, as the scheduling algorithm name
suggest, the task with the earliest deadline has the highest priority. Moreover, EDF has
been proved to have maximum utilization of 100.00%. Thus, every periodic task-set
T with implicit deadlines is schedulable under EDF on a unicore system if and only if
Ur <1 (LIU, C. L.; LAYLAND, 1973). An example of the EDF scheduling with the same
task-set presented in Figure 2 for the RM scheduling policy is presented for EDF in
Figure 3. In this scenario, as EDF assigns priorities for jobs according to their absolute
deadlines d; ;, at time 6, when the second job of T7 is released, its priority is assigned
as 12 (d;j = pj = j + dj, with p; = 6, j = 1, and d; = 6), while T3 first job has a priority of 9
(dz,0 = 9%0+9), and finishes its execution at time 7, without missing any deadline. In this
scenario, as the utilization of this task-set is 0.9167 (< 1), through the schedulability test
proposed by Liu and Layland (LIU, C. L.; LAYLAND, 1973), the task-set is schedulable
under EDF scheduling policy.

Job Schedule
11} ¢ t } Release
| Deadline
2|4 |

T3 (4 }

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3 — Earliest Deadline First Scheduling for a task-set with 91.67% of usage, with-
out presenting deadline misses.

2.1.1.2 Multicore Real-Time Scheduling

Multicore architectures create a more complex scenario, with an increase of the
interference due to shared resource contention and the management of several CPUs
executions. As previously explained, an offline analysis over the schedulability of a task-
set assumes no interference between tasks, thus simplifying the analysis. In this way,
critical application designers must take into account the variability of multicore architec-
tures through WCET estimations and resource reservations, which requires extensive
profiling to achieve a measure closer to reality, especially for complex scenarios with
several tasks and several CPUs, as it is the case for autonomous vehicles handling
computer vision applications.

Considering a real-time scheduler as a queue manager, which orders such a
queue by using tasks (or jobs) priority, the scheduling policies described in the previous

Chapter 2. Literature Review 15

section can be extended for multicore scheduling by extending the queue design. In this
way, one can reduce the problem of multicore scheduling into a set of m simpler unicore
schedulers. The scheduling in a multicore platform can be classified into three queue
configurations: Global, Partitioned, and Clustered (CARPENTER et al., 2004). On a
unicore configuration, there is only one Ready queue and one Head element, where the
first element of the queue is the second element with the highest priority on the system,
currently awaiting for the resource, and the HEAD is the one with the highest priority,
currently using the target resource (also called running or chosen()). A depiction of the
Queue configuration for the unicore scenario is presented in Figure 4.

CPU
Head

Jn

Jo

h

Ayiond

)2

Jn

Scheduling Queue

Figure 4 — Unicore Scheduling Queue.

One of the extensions for multicore scenarios is to create a partitioned con-
figuration where every CPU in the multicore platform has its Ready queue and HEAD.
This scenario fits the aforementioned configuration where the problem of multicore
scheduling is reduced to a set of simpler unicore schedulers. A depiction of the Queue
configuration for the multicore partitioned scenario is presented in Figure 5. However,
this solution can only be applied if the problem of task allocation has been previously
solved. Task allocation will be addressed later in this section.

Global scheduling, on the other hand, does not require a task allocation algo-
rithm to take place at design time. Instead, in a Global scheduling scenario, one can
increase the number of HEADs a scheduling queue has, more specifically, one head
for each available CPU. In this way, the m highest priority jobs will run in parallel. A
depiction of the Queue configuration for the multicore global scenario is presented in
Figure 6. In this scenario, when a new job is released with a priority higher than one
of the m running jobs, and if the scheduling policy is preemptive, the lowest priority job
in the set of running jobs will be preempted for the new job with the highest priority to
run. The schedulability tests for Global scheduling depends on the scheduling policy
selected. One of the disadvantages of global scheduling is that the cache affinity of a

Chapter 2. Literature Review 16

CPU; CPU, CPU,,
Head Head Head

Jn Jn Jn

Jo Jo Jo
h

I I

Ayoud
Ajuond
Ajuond

J2 J2

J2

Jn Jn Jn

Scheduling Queue, Scheduling Queue, Scheduling Queue,,

Figure 5 — Multicore Scheduling Queue - Partitioned Configuration.

preempted job that is resumed in another CPU is broken, creating variability in the job
execution. The same is valid for job releases from the same task running on different
tasks. Moreover, shared resource contention avoidance requires more complex han-
dling as the jobs running in parallel can change from one task’s job to another, adding
more variability to the task behavior. This work focuses on partitioned scheduling, and
thus, the schedulability analysis of global scheduling is out of the scope. For a review
of global schedulability tests see the surveys from Davis and Burns (DAVIS; BURNS,
2011), Ismail et al. (ISMAIL et al., 2015), and Maiza et al. (MAIZA et al., 2019).

CPU, CPU, CPU,,

Headl Head2 Headm

Jn1 Jh2 e Jhm

Jo

h

Ayiold

J2

Jn
Scheduling Queue

Figure 6 — Multicore Scheduling Queue - Global Configuration.

Clustered scheduling consists of a mix of both partitioned and global schedul-
ing and is typically implemented to match the cache topology of a specific architec-
ture (GRACIOLI; FROHLICH, A. A., 2015). In this scenario, a set of scheduling queues

Chapter 2. Literature Review 17

(clusters) with multiple HEADs are used for scheduling. For instance, in a multicore ar-
chitecture with 8 logical CPUs and 4 physical CPUs (i.e., hyperthreading), a clustered
configuration can be composed of 4 queues, representing the 4 physical CPUs, where
every queue has 2 HEADs, thus encompassing the 8 CPUs. A depiction of the Queue con-
figuration for the multicore clustered scenario with a cluster size of 2 (number of HEADs
per cluster is 2, with m/2 clusters) is presented in Figure 7. As the clustered schedul-
ing still requires the definition of partitions, this scheduling approach also assumes a
pre-defined task allocation. The schedulability analysis for clustered scheduling has
no specific test and involves the partitioned and global tests. Thus, a task-set must
be partitioned through a task partitioning algorithm and pass in a global schedulability
test (GRACIOLI, 2014).

CPU, CPU, CPU; CPU, CPU,,.1 CPU,,
Headl Head?2 Headl Head?2 Headl Head?2
Jhl Jh2 Jhl Jh2 Jhl Jh2
Jo Jo Jo
X h 3 h 2 h
2 2)
<)2 < J2 <)2
Jn Jn Jn
Scheduling Queue, Scheduling Queue, Scheduling Queue,,,

Figure 7 — Multicore Scheduling Queue - Clustered Configuration.

Many works in the realm of multicore platforms have addressed optimal task allo-
cation and task migration. A task allocation algorithms, and also an online task migration,
could be thought of as a bin-packing problem. In this scenario, each bin represents
a CPU with a specific maximum capacity (e.g., 100% considering EDF schedulability
bound), and a set of tasks T with a pre-defined utilization is the set of elements that
must be allocated into the available bins without breaching their utilization capacity. If
there is a packing that fits such requirements, the task-set is feasible (BRANDENBURG,
2011). The best allocation is the one that better suits the system requirements. When
focusing on load balancing, the search approach must aim for the lowest standard
deviation between bins. When looking to reduce the number of active CPUs, the search
approach must look for the final configuration that yields the highest amount of empty
CPUs.

Searching for the best task allocation is a known high complexity problem (bin-
packing). Several heuristics aiming at solving the bin-packing problem with a lower
complexity have been explored in the literature, for instance, First-Fit, Best-Fit, and

Chapter 2. Literature Review 18

Worst-Fit, and their respective sorted versions, First-Fit Decreasing (FFD), Best-Fit De-
creasing (BFD), and Worst-Fit Decreasing (WFD). The literature of bin packing heuristic
is extensive and out of the scope of this work. Thus, only the ones most relevant in
the real-time community will be reviewed. Note that, as handling larger objects is more
difficult (smaller ones are more likely to fit the remaining capacity), the decreasing sort-
ing improves the performance of the heuristics, making their final results closer to the
optimal solution (GRACIOLI, 2014). Worth mentioning that Worst-Fit Decreasing is one
of the heuristics that achieves results more similar to the optimal (ALENAWY; AYDIN,
2005).

Whenever an element does not fit in any of the available bins, a new bin is
created. This assumption is valid for each of the three aforementioned heuristics. The
First-fit heuristic searches for the first bin in which the object fits into its capacity. Accord-
ing to Johnson (JOHNSON, 1973), the First fit heuristic requires not more than twice
the number of bins of the optimal solution. The Best-fit algorithm, on the other hand,
searches for the bin with minimal remaining capacity that fits the object, and thus, this
heuristic is more suitable for scenarios that aim to concentrate the load into a reduced
number of CPUs. Both FFD and BFD heuristics require at most 1.22 times the number
of bins in the optimal solution (1.5 if the number of bins is smaller than 4) (JOHNSON,
1973). The Worst-fit heuristic does the opposite of the Best-fit, searching for the bin
with the maximum remaining capacity that fits the object. Thus, the worst-fit heuristic is
more suitable for scenarios that aim for a more balanced distribution (GRACIOLI, 2014).
WEFD improves the Worst-fit heuristic, using at most 1.25 times the number of bins used
by the optimal solution (JOHNSON, 1973).

Lastly, such heuristics are limited for task-set with heavy tasks, as some task-
sets cannot be partitioned as a task load cannot be divided between two or more CPUs
in this scenarios (GRACIOLI, 2014). Another approach presented by the literature is
Semi-Partitioned scheduling, which extends partitioned scheduling by allowing a small
number of task jobs to migrate between ready queues, using a timeshare of multiple
partitions, thereby improving schedulability (BASTONI et al., 2011) but possibly increas-
ing variability due to caches and other resources affinity. Semi-Partitioned scheduling,
however, is out of the scope of this work. For more details over the schedulability of
semi-Partitioned scheduling algorithms, see Sheckar et al. (SHEKHAR et al., 2012)
work.

2.1.2 Machine Learning

Al techniques have been explored over the years in several scenarios, from
business intelligence to image recognition and embedded systems. They have been
conceived as a way to mimic human learning using computational resources. Machine
Learning methods are Al techniques concerned with automatically improve themselves

Chapter 2. Literature Review 19

with experience (MITCHELL, 1997). Moreover, to learn meaningful patterns from infor-
mation previously collected and adapt its structure to achieve better results. Machine
Learning methods have limitations, but for certain types of learning tasks, effective
algorithms have already been developed (MITCHELL, 1997).

According to Mitchell (MITCHELL, 1997), a learning problem can be specified
over three parameters: (i) The Task T, the goal of the learning problem. (ii) a Per-
formance measure P that defines how effective is the learning algorithm. (iii) The
Experience E, the training experience that will be provided to the algorithm.

Mitchell (MITCHELL, 1997) presents several examples of the learning problems
definitions, for instance, the problem of handwritten recognition, where T is recognizing
and classifying handwritten words within images, P is the percent of words correctly
classified, and E is a database of handwritten words with given classifications. In this
way, the approach selected in this work to implement the energy optimizer with machine
learning revolves around the following learning problem specification:

» Task T: predict the utilization of a task in a lower frequency configuration.
+ Performance measure P: the average deviation in a utilization prediction.

» Experience E: a database of performance traces of tasks in different frequency
configurations with given average utilization in a lower frequency.

This learning problem can be seen as a function approximation problem, more
specifically the approximation of an unknown function F(X) that maps the input X,
performance traces of task execution, into a value Y that represents its performance
demands in a new configuration, thus, approximating F(X) = Y or F : X — Y based on
the input X with corresponding label Y (PAGANI et al., 2020). Function approximation
problems can be split into two classes: classification and regression problems (NISSEN,
2007).

Classification problems are problems where the output is discrete (NISSEN,
2007). Algorithms focused on Classification problems aim at classifying an input into
one or more groups. For instance, an algorithm focused on Classification can learn
from a labeled data-set (i.e., one that maps inputs into classes) to differentiate each
class based on the patterns presented on the data-set, like decision trees (QUINLAN,
1986).

Regression problems are problems where the output is a real value (NISSEN,
2007). Algorithms focused on Regression problems works in a similar way to the Clas-
sification, learning to map an input into a correspondent output, but in this case, a
smooth real number. Artificial Neural Network (ANN) (MCCULLOCH; PITTS, 1943) is
an example of a machine learning algorithm for Regression problems. Moreover, ANNs

Chapter 2. Literature Review 20

are not limited to Regression problems and can be used for Classification too (NISSEN,
2007).

A classification problem is often implemented by the learning algorithm as a set
of binary outputs, one for each of the classes, determining if the input belongs to that
class or not. Such approximation can be done more aggressively, taking into account
only a few features of the input (NISSEN, 2007). On the other hand, regression prob-
lems usually require a more smooth approximation, for instance, fitting a mathematical
function for real values.

Following the presented specification, it is clear that the approach selected in this
work is classified as a Regression Problem and not a Classification problem. Moreover,
the envisioned learning specification assumes that training samples will be coupled with
a label, more specifically, with the measured utilization in a lower frequency configura-
tion obtained in a real platform. This assumption classifies the problem as supervised
training, where the learning algorithm learns the task T through labeled samples E.
Furthermore, other methods, like unsupervised learning (e.g., k-means), are focused
on defining a hidden structure for unlabeled data (ISLAM et al., 2018), which does not
fit our scope.

Learning the impact of performance losses, especially for non-specific solutions,
is not trivial, as it lends on several aspects of task-sets and multicore architecture. Thus,
due to the aforementioned complexity and variability of multicore architectures, the
machine learning solution envisioned here must account for model adaptability through
online learning capabilities. Thus, the Machine Learning Model can safely actuate in
unexplored scenarios.

In this way, reinforcement learning comes as a suitable solution for online adapt-
ability. RL techniques mimic the most conventional and natural learning for humans, a
trial-and-error approach that learns at run-time the effectiveness of actions based on a
reward function (NISSEN, 2007). In a RL solution, the system is described through a
State x Action mapping, where each element is ranked based on its previous rewards.
For instance, a widely-used RL implementation is Q-Learning (PAGANI et al., 2020).
Given a State set S and an Action set A, Q-Learning stores a Qmgp relating each state
s € Sto each action a € A with a rank, representing the effectiveness of the pair Q{s, a}.
Two methods can be used for selecting an action: (i) selecting the highest ranked action,
also called "winner takes it all" or (ii) randomize the selection considering a probability
of selection for each action. In the first case, the learning process will start selecting
at random or following a specific initial ranking, and the first mapping to present good
results will have the highest rank, which could not be optimal. The second approach
avoids stopping into a local optimal by applying a probability based on the rank for
each action, where the actions with the highest ranks are more commonly selected,
another action that may not have been tested yet has a chance to be selected and

Chapter 2. Literature Review 21

update their ranks. Such convergence towards the optimal solution is dependent on the
extrapolation and exploitation process, where during extrapolation, the model must try
different actions to avoid falling into a local optima (SUTTON; BARTO, 2018). Moreover,
Q-Learning has three main phases at each activation: (i) account for the reward for the
last action selected; (ii) update the system state; (iii) select the next action.
Nevertheless, reinforcement learning solutions suffer from cold start issues, re-
quiring a high convergence time until it learns a new behavior. Moreover, the lack of
information in the initial extrapolation phase can lead to severe damages in a critical
scenario. Thus, in this work, motivated by the non-linear regression capabilities of ANNSs,
their capability to extrapolate to unforeseen scenarios (PAGANI et al., 2020), and its
suitability to online learning (i.e., incremental training) without suffering from cold start
issues, we have selected ANN as our ML model. Moreover, ANNs are reliable and
widespread ML methods for performance tracing-based predictions (RAI et al., 2009;
CHEN et al., 2018; YE; XU, 2012; SHEN et al., 2013; MARINAKIS et al., 2019).

2.1.2.1 Artificial Neural Networks

One of the most remarkable Machine Learning techniques is Artificial Neural
Networks (ANN) (MCCULLOCH; PITTS, 1943), a widely used machine learning algo-
rithm for non-linear regression and classification (KRAWCZAK, 2013). The most used
kind of ANN is the multilayer feedforward ANN (NISSEN, 2007). They are composed of
layers of artificial neurons connected via connections that can only go forward between
layers. ANN architectures encompass three layers: the input layer, composed of the
input data, the hidden layer, which is often extended to a multilayer structure, and the
output layer, which provides the final ANN result, and can be composed of multiple
neurons. Figure 8 depicts an example of a multilayer feedforward ANN fully connected.

Input
Layer
4 neurons .
O L“;ggfg Hidden
3 neurons Layer 2

3 neurons

Output Layer

1 neuron

Bias Bias Bias

Figure 8 — A multilayer feedforward ANN fully connected with two hidden layers

Neurons are structures that assemble a set of connections X, a bias b, a weight

Chapter 2. Literature Review 22

vector W composed of the weights for each incoming connection, and a specific acti-
vation function o. Inputs are forwarded layer by layer according to the connectivity of
the ANN (e.g., every value from the previous layer is forwarded to every neuron in the
next layer if the ANN is fully connected). For each active connection, the neurons in the
next layer assemble the incoming data and the connection weight to the bias and apply
the activation function, creating a new piece of information composed of all previous
data, forwarding it to the next layer. This process can be expressed as a function of the
connections as represented in the following formula:

1XI
yX)=olb+) W= X) (M
i=1

The activation function o(x) is a function that smooths the neuron output based
on the sum of the input. An activation function can a threshold returning 0 or 1, or
another function that output values between 0 and 1 (or -1 and 1). Some examples
of widespread activation functions are threshold (i.e., 1ifx + t > 0else0), Sigmoid (i.e.
o(x) = W and Hyperbolic Tangent (i.e., o(x) = tanh(s(x + t)), where t is a value
that pushes the center of the activation function away from zero and s is a steepness
parameter (NISSEN, 2007). The bias b presented in (1), is a neuron that lies in every
layer connected to the next layer, and never to the previous, and it always emits 1, thus,
working as the t parameter present in the activation functions (NISSEN, 2007). Many
ANN implementations focused on reducing the model complexity (e.g., Fast Artificial
Neural Network - FANN - http://leenissen.dk/fann), provide a linear approximation of
activation functions, like Linear Sigmoid and Linear Hyperbolic Tangent, improving the
performance for training and run-time execution at the cost of accuracy.

In this way, the knowledge acquired by an ANN through training is stored at the
weights of its connections. Thus, ANN training focuses on minimizing the deviation from
the output layer to the desired output, more specifically, the regression or classification
error. The most used training algorithm for ANN is backpropagation (WERBQOS, 1974).
The backpropagation algorithm aims at propagating the error from the output layer to
the input layer, updating the weights of the connections accordingly.

Two popular backpropagation strategies are Incremental and Batch training. In-
cremental training updates the weights at each input pattern, which provides a simpler
training method and hardly sticks into local minima. However, global optimizations
available with batch approaches aren’t explored during Incremental training (NISSEN,
2007). In this scenario, to achieve continuous learning for online specialization to the
running task-set and further optimize the model accuracy, incremental training has been
selected as the backpropagation strategy, as the online training is naturally incremen-
tal learning. According to Steffen Nissen (NISSEN, 2007), the implementation of the
backpropagation algorithm can be described as follows:

Chapter 2. Literature Review 23

The input must be first propagated from the input layer to the output layer, and
thus, the error for this input prediction is e, = di — yk, where dj is the desired output
and yy is the calculated output of neuron k. The error value is used to calculate o4 as
follows:

S = k0’ (Yk) (2)

Where o’ is the derived activation function. Provided with &, the 6; values for preceding
layers can be calculated iteratively. The §; of the previous layer can be calculated as

follows:
K

8 =N (y) > 8 Wik (3)
k=0

Where K is the number of neurons in these layers, and A is the learning rate. The final
AW used for adjusting the weights can be calculated using these 6 values as follows:

AWk = 8y (4)
and the weights are adjusted by:
Wik = Wik + AW (5)

This process is repeated for the next inputs until the ANN error is sufficiently
small, usually expressed as a threshold of the measured mean squared error of the
training data. Other advanced approaches regarding batch training described in the
literature, like iIRPROP (IGEL; HUSKEN, 2000), and QuickPROP (FAHLMAN, 1989),
are not explored here and are out of the scope of this work.

2.1.2.2 Feature Selection

Feature selection techniques can help to improve the quality of machine learning
models. According to Mark A. Hall (HALL, 1999), the representation and quality of the
example data are the first and foremost factor that affects the success of machine learn-
ing of a given task. Moreover, multicore platforms often present limitations regarding the
number of Performance Counters that can be simultaneously monitored. To overcome
this restriction and to both improve the quality of the final model, a feature selection
can be performed to evaluate the expressiveness of each variable and select the most
relevant ones according to the learning task (i.e., utilization prediction).

The feature selection process encompasses relevance analysis and redundancy
removal, thus, reducing the dimensionality of the data-set and allowing the learning
algorithm to operate faster (HALL, 1999), corroborating with the non-intrusiveness and
the hardware limitations (i.e., number of PMU registers available). Statistical analysis of
a data-set has been extensively explored in the literature, for instance, the correlation
analysis of a data-set. Features that are correlated to the learning task are considered

Chapter 2. Literature Review 24

relevant features (GENNARI et al., 1989). Otherwise, it is considered irrelevant. Never-
theless, mutually correlated features, even though relevant to the learning task, only add
redundant information to the model. Thus, a feature set must contain highly correlated
features that are uncorrelated with each other (HALL, 1999). A widespread solution
to measure the correlation (linear correlation) between two features or a feature and
the learning task is Pearson’s Correlation Coefficient (PCC), which evaluates the cor-
relation between a pair of numerical features given a data-set containing both features
(see Section 4.2.2 for more a detailed description of PCC algorithm and correlation
analysis).

Feature selection techniques can be classified into three main models (BOLON-
CANEDO et al., 2012): Filter Methods, which executes as a preprocessing step relying
on the general characteristics of the training data (e.g., Pearson’s Correlation Coef-
ficient, Information Gain, and Relief). Wrapper Methods, which involves optimizing a
predictor as a part of the selection process (e.g., Wrapper C4.5, and Recursive Feature
Elimination). And Embedded Methods, which perform feature selection as a part of
the training process and are usually specific to a learning method (e.g., Lasso and
FS-Perceptron).

Moreover, there is not a so-called "best method" for feature selection (BOLON-
CANEDO et al., 2012), as there is a multitude of feature selection algorithms, and
their performance and the quality of their results, however, are strongly dependent on
the data-set characteristics and particularities. Thus, more reliable and no technique-
dependent solutions can be achieved by combining results from multiple feature se-
lection methods (MOLINA et al., 2002). In this way, we aim at using multiple feature
selection techniques to overcome technique specificities and acquire a more reliable
merged feature-set, composed of the most expressive features for the selected archi-
tecture using runtime collected data.

2.2 RELATED WORKS

In the following sections, we present the literature review regarding the state-
of-the-art solutions for real-time multicore scheduling and for energy and performance
management in multicore platforms, focusing on the combination of machine learning
and performance counter analysis. A table summarizing the main conceptual differ-
ences and advantages of the work proposed here to the most relevant state-of-art-
solutions is presented at the end of this Section (Table 1).

2.2.1 Real-time Multicore Scheduling

This section is mostly dedicated to the aspects of real-time multicore scheduling
that are more directly connected to the contributions of this work, task migration in

Chapter 2. Literature Review 25

particular.

In this work, to avoid unnecessary migrations and increase the cache-affinity
of tasks, partitioned scheduling is selected as a scheduling scheme. As the design
proposed here also accounts for DVFS actuation, which impacts the execution time of
tasks based on its CPU-boundness, the original allocation of tasks can become sub-
optimal. Thus, the approach breaches the partitioned scheduling regimen in a controlled
manner looking forward to improve the current system configuration. Furthermore, the
migration strategy proposed here does not account for job partitioning, as presented in
the Semi-Partitioned regimen. A full description of the migration algorithm proposed is
depicted in Section 4.1.3.1.

2.2.2 Contention-aware Task Allocation

Based on the classical best-fit bin-packing algorithm, Synchronized Partitioning
Algorithm (SPA) (LAKSHMANAN et al., 2009), Blocking-Aware Partitioning Algorithm
(BPA) (NEMATI et al., 2010), and Resource Oriented partitioning (ROP) (YANG et al.,
2019), are three popular approaches presented in the literature for static task alloca-
tion (AKRAM et al., 2019). Both SPA and BPA are priority based algorithms, where
SPA extends best-fit decreasing bin-packing algorithm, and BPA uses a heuristic that
weights tasks based on their utilization and then calculate cost of remote blocking based
on priority ceiling protocols. Both approaches group tasks sharing resources into macro
tasks. These macro-tasks are allocated on an available core based on their utilization.
Macro-tasks that are unable to fit entirely on a CPU are split into two parts and are
allocated accordingly. In BPA, a task attraction is calculated for each pair of tasks, and
the least attracted tasks are the ones split. ROP approach focuses on split tasks ac-
cording to its phase. A phase defines the periods a task accesses shared resources.
Task phases that access shared resources follow a priority ceiling protocol. Otherwise,
it follows a first-fit bin-packing algorithm. SRTA (AKRAM et al., 2019) algorithm differs
from SPA and BPA by considering inter-resource affinity of the shared resources on
tasks with multiple shared resources, and the used split algorithm is based on the
duration of shared resource sections. In a Page-coloring approach, Cache-Aware task
Partitioning (CAP) (GRACIOLI; FROHLICH, 2014) show that grouping tasks that share
the same cache line (same color) within the same core can increase the performance
and reduce inter-core interference. After grouping tasks that share at least one color,
CAP order groups by utilization and apply WFD partitioning, assuming the summed uti-
lization of tasks that share a color is lesser than 100% and that the sum of the memory
required by those tasks does not exceed a partition. However, such solutions assume
prior knowledge of tasks’ behavior.

Chapter 2. Literature Review 26

2.2.3 Task Migration

Considering energy constraints, one can combine frequency scaling and migra-
tions to achieve better results. In this way, task migrations aiming at load balance can be
useful to overcome hardware limitations like DVFS domain restrictions in homogeneous
scenarios. The usage of OS variables, like the idle time of CPUs and the execution time
of tasks, has been explored in in heterogeneous scenarios too. For instance, Kim et
al. (KIM et al., 2014) propose an optimization to Linux’s Load Balance algorithm focused
on big.LITTLE architectures. By monitoring the CPU idle time along with task’s priority
and utilization, they estimate the utilization in the near future, and evaluate the benefits
of migrations from big to LITTLE core, and vice-versa, regarding their current execution
frequency, which is controlled by the OnDemand Linux Power Governor. In an offline
analysis of the target task-set, Rupaneti et al. (RUPANETTI; SALAMY, 2019) proposes
an energy-efficient scheduling scheme, with an offline analysis consisting of a first-fit
algorithm that prioritizes core shutdown before DVFS and a Genetic Algorithms (GA)
to look for useful migrations assuming a semi-partitioned scheduling. Therefore, the
GA evaluates a possible migration regarding its energy consumption based on an esti-
mated power model. It considers that a task T; has a migratable portion §;, and builds
the initial set of possible configurations starting from the first-fit algorithm, allocating
the migratable portion of tasks into randomly select processors and randomly selected
speed rates. The algorithm assumes a EDF scheduling and discards configurations
where the Utilization of the target CPU is > 1. In their solution, the scheduling limit of
a CPU is assumed to be a ratio between the current utilization and the CPU frequency.
Moreover, the frequency scaling assumed affects only the migratable portions of a task,
where every migration and scaling are established offline. In complex scenarios, like
modern multicore critical systems, using only timing characteristics of a task to estimate
its performance in a different architecture requires extensive profiling of the task-set.
The very-own memory hierarchy, I/O, and Bus Access priority and configurations can
create performance variability. In this case, the techniques the authors proposes would
require indicators of performance loss/gain based on the task’s characteristic to better
estimate migration profitability.

In a non-ML approach, but combining OS statistics and performance counters,
Merkel et al. (MERKEL et al., 2010) proposes a co-scheduling approach considering
shared resources contention, implemented over Linux. The approach bases on monitor-
ing Memory Bus Access, L2 Cache Access, and Committed Instructions rate to build an
activity vector for each task. Their heuristic uses task migration aiming at increasing the
activity vector variance between cores, subsequently reducing the amount of shared
resource contention. Moreover, they merge the information acquired via the activity
vector to co-schedule tasks with different activities, a proposal with high computational
complexity according to the number of CPUs and a variety of tasks.

Chapter 2. Literature Review 27

Other works covering task migration while focusing on energy optimization, like
Run-DMC (MUCK et al., 2015) and SPARTA (DONYANAVARD et al., 2016), are covered
in the next section.

2.3 MACHINE LEARNING FOR ENERGY OPTIMIZATION IN MULTICORE SYS-
TEMS

This section is mostly dedicated to the aspects of multicore systems energy
optimizations guided by Machine Learning Techniques that are more directly connected
to the contributions of this work, performance prediction in particular.

2.3.1 Supervised Learning approaches for Energy Optimization

Many works have explored various supervised learning techniques to achieve
an optimal frequency configuration. For instance, Lahiri et al. (LAHIRI et al., 2007)
present a ANN model for frequency prediction on multicore environments, reducing
energy consumption up to 19% on video decoding benchmarks. The authors recognize
the importance of a performance counter analysis along with timing characteristics
to obtain a more refined model. However, they do not explore performance counters
in their ANN design. Similar to the approach proposed here, their solution accounts
for incremental training of the ANN, which promotes online learning, but they did not
evaluate such property. Their model is limited to OS statistics, namely average idle time,
current frequency, task periodicity, and two task’s ID, one from the preempted task,
and one from the task will be dispatched. The two tasks ID are used to represent the
different behaviors regarding the scheduling order in a CPU, however, this feature still
ignores the parallel execution impact. Nevertheless, only relying on the ID to depict the
performance impact of the sequential execution limits the model to a single behavior
expectation to each task, as only the task ID does not provide enough information when
considering the natural variability of multicore platforms and the very own variability
of tasks’ behavior. The approach proposed in this work, the energy optimizer design,
accounts for an analysis of performance counters to build a trace that depicts the current
performance of a task in more detail.

Jung et al. (JUNG; PEDRAM, 2010), on the other hand, present a Learning-
Based Power Management Framework using a Bayesian classifier for DVFS control.
Their classifier predicts the output class probability based on a set of discretized input,
where the classifier performance relies on the extensiveness of the training set to
map the probability of each output based on the input. The possible output classes
encompass three discretized levels of power dissipation and execution time, which
are predicted based on task type, queue occupancy, and job release rate. Given the
prediction for the arriving task at a CPU, a state-action mapping is evaluated to provide

Chapter 2. Literature Review 28

Performance =1 — PFjpgs = 1 — (M) (6)

7-fmax

Equation describing the performance of a task extracted from (CHEN et al., 2018).

the cheapest action. However, the paper does not address real-time scenarios and
relies on the user to define the task type. In their approach, a core runs faster when
high-priority tasks with medium or high job release rates arrive under low or medium
occupancy and slower for low-priority tasks. Other than the real-time support, the work
proposed here also accounts for performance counters to describe in more details a
task behavior in such complex scenarios, addressing task migration and frequency
control.

Focusing on performance counters to achieve a more detailed performance
description for an offline learning DVFS control, Chen et al. (CHEN et al., 2018) uses
a Counter Propagation Network (CPN) to predict the best CPU frequency regarding
energy consumption and a user-defined performance factor for non-real-time multicore
scenarios. Their actuation includes three levels of configuration: (i) per-chip DVFS,
where the DVFS affects all the CPUs in a chip; (ii) per-core DVFS, where the DVFS
decisions are taken individually; (iii) Cluster DVFS, where the DVFS decision affects
a set of CPUs. Similarly, the actuation design proposed here handles different DVFS
domains through a voting system, where the CPUs that share a DVFS domain must
accord an actuation decision for it to be executed, thus, controlling the actuation with no
restriction to the number of CPUs that compose different DVFS domains in the same
chip.

Chen et al. (CHEN et al., 2018) approach uses Committed Instructions, Cache
misses, and a user-defined performance score. As it does not address real-time, the
performance score is a computational performance factor based on a relation of in-
structions executed and memory access performed by the application in the highest
frequency. In simple terms, the author defines a measure of performance of a task as:
Timax 1S the execution time of the task at the maximum frequency available, where
by definition, the task has the highest performance, and Ty, is the execution time of
the task at a given frequency. As memory usage usually is not affected by frequency
scaling, there is a portion of the execution time of a task that is not affected by the CPU
frequency. In this sense, to obtain a more accurate measure of performance loss, the
authors propose a performance score w, ranging from 0%-100%, by approximating the
weights of Committed Instructions Count and Memory Access as p = p*Njngtr+0 % Nmem-
Therefore, the weights were approximated by profiling the target platform over a given
benchmark, and they observed that for some tests, a performance score of 100% was
achieved in lower frequencies, depending on the task memory access time.

From data sampled from a benchmark running on a real multicore platform, the

Chapter 2. Literature Review 29

authors couple each sample with both a performance score input and a profiled output
frequency to train the CPN model offline, thus, training the CPN model to correlate the
performance counters and the performance scores to the profiled output frequencies.
However, a fully offline learning solution lacks adaptability, requiring extensive execu-
tions to profile the best CPN configuration for accurate and expressive offline training
results. Moreover, the counter-set was limited to three counters selected by hand (In-
structions and Data Cache misses and Committed Instructions). The solution proposed
here, on the other hand, includes a relevance analysis of all available performance
counters through feature selection, and also differs by addressing task migration in
combination with DVFS. Additionally, their solution does not comprise a real-time sce-
nario, lending to the user the definition of the optimization limit. In this work, the energy
optimizer focuses on automatically finding such a limit through a combination of of-
fline and online learning, making the solution proposed here more adaptable to new
task-sets and requiring less extensive offline training.

Looking to improve the modeling of run-time and power consumption, and to
avoid limiting the analysis to expert knowledge, Wu and Taylor (WU; TAYLOR, 2016)
present a method to identify performance counters relevant for such models. The ap-
proach is composed of Spearman correlation and Principal Component Analysis (PCA),
applied on a data-set of performance counters acquired from a real platform running a
set of specific applications. In their work, the models are application-specific and are
used to guide code optimizations instead of DVFS. They use non-negative multivariable
regression analysis to generate the models based upon the counters relevance and
CPU frequency. In this work, we address the counter selection through a combination of
three different feature selection techniques. We also differ by using an ANN instead of
linear regression, where the ANN model is adapted online through incremental training
to fit the running task-set and address variability.

Run-DMC (MUCK et al., 2015) is a run-time dynamic performance and power es-
timator for Heterogeneous Multicore platforms. Run-DMC is designed for non-real-time
scenarios and is implemented over a Linux kernel. The method aims at thread-level pre-
diction for both Instructions per Cycle (IPC) and Dynamic Power (PD) based on Least
Square Method over performance counters, accounting for 10 performance counters,
namely: active cycles cy.4ive and Committed Instructions /;,44 (i.€., used to provide IPC

ti,Cj ,,C/ . . t,',Cj
measurements), share of memory (/.), branch (/..), floating-point (prshare),

branch predictor (mrg’rcf) L1 instruction cache (mrL"; /) L1 data cache (mrz’; L), instruc-
tion TLB (mr,TLB) and data TLB (mrDTLB) miss rates. In this sense, the Run-DMC
estimators can account for shared resources impact at thread performance, private
caches, and CPU usage. However, such an approach requires expertise knowledge
from the architecture as it does not provide an automate way to select the most rel-
evant performance counters. The Run-DMC IPC and Power estimators are shown in

Chapter 2. Literature Review 30

(7) and (8), respectively. The relation between every pair of heterogeneous core ¢, ¢;
is depicted by the set of coefficients in the linear regression expression, thus, every
combination of ¢, ¢; requires a individual training. Furthermore, the frequency ratio
between ¢, and ¢; is included in the estimation to evaluate frequency scaling.

Fe ti,C; ti,Cj .G .G
Cr _ Y i Gj i, Cj iy Cj
IPCt,- = X0+ X1 g + X mryj + X3 * M G+ X4 * Mg+ X5 % Mg g+

+X7>l</

7
ti,c; Ifi,Cj ti,)

ti,Cj Gj tici
X6*/ fpshare+X8* bshare+x9*mrBr +X10>I<IPC’ !

mshare

IPC estimator linear equation extracted from Run-DMC (MUCK et al., 2015).

PD = Yo +y1 % FOx (VO 4y 5 [0 4 8

t,C; t,C; tc
Y3 * Ifllasjhare + Y4 * lpshare + ¥5 % IPC "9

Power estimator linear equation extracted from Run-DMC (MUCK et al., 2015).

The Run-DMC thread mapping algorithm is implemented as a search algorithm
that aims at maximizing energy efficiency by maximizing the IPS/Power ratio. The
estimators train and evaluation is implemented over gem5 simulator (BINKERT et
al., 2011) and shows an average improvement of 51% in energy consumption when
compared to the unmodified Linux Kernel, and adding less than 1% of overhead to
the system execution (up to 869us every 100ms for a 16 threads scenario). As the
approach does not account for online adaptability, the performance of the estimator
relies on the extensiveness of the data-set used to build the predictor. In this scenario, if
the training data-set does not include shared resources contention examples, the model
will not be able to capture this relation at run-time and could mislead a decision-taking
process.

Donyanavard et al. (DONYANAVARD et al., 2016) addresses heterogeneous
manycore scenarios in a similar approach to Run-DMC and proposes SPARTA, a run-
time, throughput-aware, energy-efficient task allocation system integrated to the Linux
scheduler. SPARTA relies on a thread-level bin-based prediction of IPS and Power
consumption. The predictions are taken based on performance counters sampled at
the same rate as the Linux Scheduler. SPARTA accounts for a correlation analysis of
performance counters to IPS, using Pearson’s Correlation Coefficient. According to this
analysis, memory-boundness and compute-boundness metrics are built to implement
the bin-based predictor. In their implementation, the memory-boundness mb of a task
is given by the miss rates of the first and second level of caches (mb = mr; 1, + mri1p +
mr o), while the compute-boundness is represented in two levels: The first, cby, is

Chapter 2. Literature Review 31

given by branch misprediction (cby = mrg,), and the second level is the sampled IPS
(cby = mripg).

A bin-based predictor is created for all combinations of core types and frequen-
cies. The predictor training is done by creating bin-layers for each metric (mb, cb4, and
cbo), where at each layer, equally sized bins are created, splitting the training data
between the bins. At the last layer, the average value of each bin is taken as the final
prediction. The process is similar to a decision tree, but the tree architecture is built
manually by the authors. Even though supported by correlation analysis, the process of
defining the number of layers, and the metrics mb, cby, and cbo used at the respective
layers, is done manually, and can vary depending on the platform specification. Different
from Run-DMC, SPARTA assumes a target throughput for each task and limits the opti-
mization problem to the set of core configurations that achieve the throughput demands
of the task. The allocation algorithm prioritizes tasks with a partial subset of cores,
followed by unachievable target throughput, and then, achievable target throughput in
all cores. Tasks with achievable target throughput are allocated to a core with maximum
IPS/Watt that achieves target throughput. Tasks with unachievable target throughput are
allocated to cores that maximize throughput. The complexity of the allocation algorithm
is bound by O(| T| x| C]|), where T is the task-set, and C is the core-set. SPARTA focuses
on task migration and relies on Linux Power Governor to handle frequency scaling.
Due to the lack of runt-time adaptability, the modeled bin-based predictor quality relies
on the expressiveness of the training data-set. The energy optimizer proposed here,
on the other hand, uses the Machine Learning model with online learning support to
guide the DVFS actuation through a prediction of task utilization in a lower frequency
configuration, while relying on linear regression to weight the activity vector used for
task migration.

2.3.2 Reinforcement Learning approaches for Energy Optimization

Many works addressed DVFS control using RL. Islam et al. (ISLAM et al., 2018)
presented an Online RL (Q-Learning implementation) to select the best configuration of
voltage and frequency and also the best DVFS technique to be used regarding energy
consumption. Their RL is based on Core id ¢, System Utilization SU and Dynamic
Slack DS for the technique selection Q-Map, and Core id c, utilization of the scheduled
task on core p¢, and the frequency of the core ¢ f¢ for the Frequency selector Q-
Map. Both Q-Maps use a power model to define the learning reward. To accommodate
real-time constraints, a lowest frequency controller is required by this approach to
avoid selecting a frequency that would lead to a deadline miss. The authors implement
the lowest frequency controller based on scheduling information and the technique
selected, assuming that a frequency scaling factor will have a linear effect on the
execution time of tasks (i.e., if the frequency is reduced by 10% the execution time of

Chapter 2. Literature Review 32

tasks will increase by 10%). This assumption is not always true for every task-set when
considering complex modern multicore architectures, for instance, when facing shared
resource contention.

The proposed solution was only evaluated through simulations with an estimated
power-consumption, which might not endure the variability of modern out-of-order, spec-
ulative, multicore architectures under a strong DVFS regimen. Another design issue of
RL techniques described by the authors is the space complexity of the Q-Mapping. For
instance, in their model, the number of State x Action pairs in the first RL model, the one
focused on the technique selection, has a space complexity of O(|SU|x|DS|x|core|« N),
where N is the number of DVFS techniques available, and | x| indicates the number of
steps (or bins) for the values of the variable x. Adding performance counters to the state
description can exponentially increase the size of the system Q-Map, and subsequently
increase the length and complexity of the extrapolation phase (i.e., where the State x
Action pairs are evaluated according to the reward function). The same is valid for the
Frequency Q-Map.

Similarly, Anup Das et al. (DAS et al., 2015) modeled the RL algorithm in a
global fashion by using the sum of Cycle Count from all active CPUs. They actuate with
DVFS and shutting down CPUs considering global scheduling. Their solution achieves
an average reduction of 22% using utilization and power consumption estimation as
rewards for the learning. Biswas et al. (BISWAS et al., 2017) also presented a RL
(Q-Learning implementation) for DVFS application, achieving up to 16% better results
when compared with Linux on-demand governor. The authors used a Cycle Count
prediction to profile the task-set and improve the state/action selection. The learning is
achieved by evaluating the average scheduling slack on the CPU.

Zeppenfeld and Herkersdorf (ZEPPENFELD; HERKERSDORF, 2011) achieved
energy consumption reductions using a Learning Classifier Table, a very similar ap-
proach to RL, for workload management and DVFS application in an FPGA platform
implementation, using both hardware and software to control the autonomic behavior.
The learning in this approach is done through a rewarding action based on its effective-
ness regarding a predefined optimal system utilization measured by cycle count, that
aims at reducing the slack time of the cores through DVFS and migration. The work
presented here differs not only by the technique implemented but also by providing a
full software solution while considering a more detailed performance definition at each
decision step.

The main advantage of RL approaches when compared to supervised learning
solutions is that they do not require previous knowledge from the system. However, it
suffers from cold start issues, requiring a higher convergence time when compared
to an already trained Supervised Learning approach, especially for scenarios with a
large number of states and actions, usually requiring a heuristic to discard impossible or

Chapter 2. Literature Review 33

invalid configuration based on the problem domain (e.g., limiting the frequency scaling
based on tasks utilization).

2.3.3 Summary of the Literature Review

Table 1 — Qualitative Comparison to Related Works Over the Main Concepts Addressed
by This Work

Work DVFS | Task Mi-| Real- | Machine | PMU | Conten-| Online
Con- gration | Time | Learning | Coun- | tion Adapt-
trol ters Aware | ability
Eyerman et | v v
al.
Rupanetti et | v v v
al.

Kim et al.
Merkel et al.
Lahiri et al.
Jung et al.
Chen et al.
Wu and Tay- v
lor

Muck et al.
Donyanavard
et al.

Islam et al.
Das et al.
Biswas et al.
Zeppenfeld
et al.

This work

<

ANIAN

NAYAN

NN

AN
AN
AN

NASAYA YR YA SR S A NA AN

NAYAYA
NANAN
NAYANAN

v’

<
<

v’ v’

<

v’ v’

Table 1 presents a qualitative comparison between the present work and the re-
lated works presented in this section, highlighting the main concepts addressed by this
work, especially the criticality of the target scenario, represented by its real-time charac-
teristics, the Online Adaptability of the Machine Learning solution, and the combination
of DVFS and Task Migration to optimize the overall energy consumption of the platform.
Few works in the literature comprise all of the aforementioned concepts at the same
time, while the majority of related works only addresses a single optimization level, a
non-real-time scenario, or a non-adaptable model. Except for the Lahiri et al. work,
only Reinforcement Learning approaches address run-time adaptability, but they lack
initial knowledge, suffering from cold start issues, requiring warm-up rounds. Moreover,
most state-of-the-art approaches in Reinforcement learning narrows their approach to a
small set of features in order to avoid the technique space and extrapolation complexity.

Chapter 2. Literature Review 34

Lahiri et al. work comprises an incremental training of an ANN, enabling online learning.
However, their model is limited to OS statistics and soft real-time scenarios, and they
do not include performance counters in their analysis neither evaluate the model online
training capabilities. Chen et al., on the other hand, focus on extensive offline training
and on an user-defined threshold to optimize the system. They also do not address task
migration and DVFS at the same time. Rupanetti et al. encompasses both techniques
but relies only on an offline approach using timing characteristics, which might not en-
dure the real platform shared resources contention, thus, requiring such knowledge to
be acquired beforehand. Donyanavard et al. approach comprise DVFS optimizations
along with task migration, but the DVFS control is delegated to the Linux OnDemand
Power Governor, while in this work the energy optimizer itself handles the frequency
scaling to guarantee real-time constraints. Mlck et al. (Run-DMC) focus on a linear
regression solution, while Donyanavard et al. (SPARTA) focus on a bin-based approach,
both relying on extensive profiling of the architecture to create their models. Here, we ex-
plore the ANN incremental learning capabilities at run-time, setting it free from the initial
synthetic task-set. Moreover, the proposed approach enable the model to account for
variability without requiring extensive profiling in an offline analysis. Worth mentioning
that, from the works that included performance counters into their models, Wu and Tay-
lor and Donyanavard et al. included feature selection as one of their accomplishments,
an important step to improve the final model accuracy considering that it will provide
a more refined set of performance counters. However, Donyanavard et al’s work still
requires expert knowledge to build the metrics for their bin-based predictor, while in
this work, the feature selection process combines three different techniques results to
provide the final feature set in a process that does not require expert knowledge.

35

3 NON-INTRUSIVE MONITORING

In a multicore real-time embedded system, task-sets are meant to periodically
execute specific jobs that demand an amount of performance from the processor, rep-
resented by its deadline and capacity, where capacity is commonly expressed as a
worst-case scenario approximation. Such critical systems are handled by an Operating
System (OS), which manages the periodic job releases by timed control loop operations
like reschedule, priority update, and dispatch (for context-switches). Thus, to guarantee
criticality, those OS operations must not impair the execution of any critical task for the
generated overhead to be considered non-intrusive.

In this way, to build an adaptive embedded system capable of optimizing its
operation, especially to become mindful of performance variations while preserving
the criticality of tasks and the quality of captured data, a Non-Intrusive Monitoring API
design is proposed here. The Monitoring API builds on sensors and event counters
present in modern hardware platforms and on variables kept by the operating sys-
tem to capture run-time data that are subsequently subjected to ML tools to produce
scheduling heuristics targeting specific optimization goals. It provides non-intrusive
mechanisms to collect such data while the system runs task-sets, and it does with-
out impairing the execution of tasks. It abstracts Performance Monitoring Unit, thermal
sensing, energy monitoring, and Dynamic Voltage-Frequency Scaling available on such
platforms through a lean, architecture-independent API.

The Monitoring APl (HORSTMANN et al., 2019) is designed as an extension
of the Scheduler Framework first proposed by Fréhlich in EPOS design (FROHLICH,
A. A., 2001), and later extended by Marcondes et al. (MARCONDES et al., 2009), and
Gracioli et al. (GRACIOLI; FROHLICH, A. A., 2015). The Scheduler Framework is a
flexible, parameterized framework that can be used to instantiate virtually any kind
of scheduler!. Therefore, the scheduler framework is extended to include monitoring
capabilities in order to provide a clean and non-intrusive Monitoring API for scheduler
designers. An overview of the framework and the extensions proposed here is depicted
in Figure 9.

3.1 SCHEDULER FRAMEWORK

The Scheduler parameterized class models traditional scheduling operations in
a manner that is agnostic on the objects being scheduled (which are given as a param-
eter) and also to scheduling policies (provided by specializations of class Criterion).
For this discussion, threads are the objects of interest, and logical CPU cores are

' Previous versions of the framework, without clerk and monitor, have been used to produce a variety of
schedulers based on empirical knowledge about the underlying architecture, not taking into account
the run-time data used in this work (MARCONDES et al., 2009; GRACIOLI; FROHLICH, A. A., 2015).

Chapter 3. Non-Intrusive Monitoring 36

T: Event
Clerk 7T, 1
« System | PMU | Transducer » CPU
1
+ read() : Event PMU posemmmmeeeeeseeeeooee oo)
+ start() n 0T :
+ stop() : T::griterion::QIUEUIESb: inlt
; T::Criterion::global : boo '

+ reset() —'" System::Counter - onreronugionali hool

x Scheduling_Queue]

i

& i T:Thread |

Thread | Scheduler T
: + dispatch() Criterion + insert(obj: List_Link<T>)
+ idle() or Int0) - volatile Int + remove(obj: List_Link<T>) : T
: op:rat;))r int() : volatile in + resume(obj: List_Link<T>)
cotec + suspend(obj: List_Link<T>)
Periodic_Thread + charge() + chosen() : T
+ award() :

- semaphore : Semaphore + choose() : T
- alarm : Alarm T + choose_another(): T

+ wait_next() Priority
priority : volatile int
+ timed : bool = false

Monitor + preemptive : bool = true
+ global : bool = false
+ capture() + QUEUES : unsigned int = 1
P + time() : Time_Stamp
+ process_batch(): Data_Set + operator int() : volatile int
+ queue() : int
[I | I 1
Round_Robin FCFS RM EDF CPU_Affinity
+ timed : bool = true + timed : bool = false + deadline : Microsecond + deadline : Microsecond + affinity : volatile int
+ preemptive : bool = false A A + next_cpu : int_)
+ QUEUES : unsigned int = CPUS

+ current() : int
+ queue() : int

[1

PRM GRM GEDF PEDF
+ QUEUES : unsigned int = CPUS || + global : bool = true + global : bool = true + QUEUES : unsigned int = CPUS
+ current() : int + current() : int + current() : int + current() : int
\Y
T

Figure 9 — Scheduler Framework UML class diagram with the Monitoring API extension.

the relevant resources, but the framework could be used to schedule disks, networks,
energy, and any other kind of resource.

The Scheduler parameterized class owes its implementation to the powerful
parameterized class Scheduling_Queue (GRACIOLI; FROHLICH, A., 2013), which, be-
sides taking the object’s type as parameter, adapts its behaviour to handle scenarios in
which multiple ordered queues are needed. The choose () method triggers a scheduling
decision, while chosen() remembers that decision. In this way, objects never leave the
scheduler during normal operationz. The method choose_another () is used to imple-
ment operations such as Thread: :yield(), which forces choose () to select an object
that is not ranked highest in the queue.

Scheduling policies are modeled separately, outside the Scheduler class, by
the Criterion class. This class hierarchy provides Scheduling_Queue with a ranking
algorithm through operator int() so that queues are kept ordered considering the or-
dering of integer numbers. Scheduling policies are, therefore, implemented by providing
a mapping onto such ordered set through operator int().

2 This design decision, in combination with methods suspend () and resume (), which temporarily make
an object unschedulable, enables efficient hardware implementations of schedulers with High-Level
Synthesis tools.

Chapter 3. Non-Intrusive Monitoring 37

Considering Real-time Multicore scheduling, the framework groups policy-related
algorithms in two classes: global and partitioned (CARPENTER et al., 2004). In a global
scheduler, there is only one Ready queue (Priority::QUEUES in the figure), and the
scheduler assigns the highest-ranked thread to any available core. Conversely, parti-
tioned algorithms are individually applied to each partition, which can either correspond
to a single core or to a cluster of cores that are typically grouped to match the cache’s
topology (CALANDRINO et al., 2007; GRACIOLI; FROHLICH, A. A., 2015). Each parti-
tion has its own Ready queue (e.g. PRM: : QUEUES and CEDF: : QUEUES in the figure). This
design relies on the scheduling queue’s ability to adjust its behavior to mimic multiple
queues for partitioned algorithms and multi-head queues for global and clustered ones.
A multi-head scheduling queue is a queue that has more than one chosen object at
a time. For multicores, method chosen() will return a different thread for each core
on a global scheduling policy and a different thread for each partition on a clustered
scheduling policy.

In this architecture, real-time periodic threads (Periodic_Thread in Figure 9) are
modeled by endowing aperiodic threads (Thread) with timing (Alarm) and synchroniza-
tion (Semaphore) mechanisms. When a periodic thread is instantiated, the associated
semaphore is initialized with 0, and the associated alarm is configured to trigger a v ()
operation at each period. The constructor of Periodic_Thread is a variadic function
template and was omitted from Figure 9 for simplicity. It takes, among other parameters,
the thread'’s period, deadline, and, in some cases, worst-case execution time. A task’s
job is finished by invoking the method wait_next (), which implicitly calls p() on the
associated semaphore, thus causing the thread to block until the next period. Jobs
are, therefore, periodically released by this alarm, which is triggered by a high-priority
hardware interrupt.

Dynamic scheduling policies, like EDF, provide an update () method to update
the object’s priority every time a new job is released. This method is invoked before
releasing the job (i.e., unblocking the thread) through the invocation of v() on the as-
sociated semaphore by the alarm, so the corresponding thread is inserted in the Ready
queue considering the ordering defined by the updated rank (viz. priority). Scheduling
criteria can also provide specific methods to account for the resources consumed by
the thread that is leaving the CPU (Criterion::charge()) and adjust the resource
budget of the thread entering the CPU (Criterion: :award()). Figure 10 presents the
classic thread state transition diagram enriched with the actions taken on behalf of
the scheduler. Both charge () and award () are triggered by Thread: :dispatch() while
transitioning from Ready to Running. The other transitions shown in the figure will be
discussed later in this section.

Chapter 3. Non-Intrusive Monitoring 38

L "(Running

—— All Threads

- - - - Periodic Threads only

dispatch()
implicit
Criterion::Award()
and Criterion::Collect()

&
W
’éfee
%)

Criterion::Collect()
Criterion::Charge()

suspend(), I/O
implicit
Criterion::Collect() |

resume(),

Alarm_Handler() .
I/O Completion

implicit
Criterion::Update() .
and Semaphore::v()

wait_next()
implicit Criterion::Collect()
and Semaphore::p()

Figure 10 — Thread state diagram and the associated methods of class Criterion.

3.2 NON-INTRUSIVE MONITOR DESIGN

The constructs described in the previous section can be used to implement
virtually any scheduling policy, including those described as feedback scheduling al-
gorithms (STANKOVIC et al., 1999). However, some algorithms rely on data collected
at run-time to dynamically adjust the rank of objects in the scheduling queues. In this
context, the Monitoring APl aims at collecting such data and building historical series.
These series, besides being used for scheduling, can be used for profiling and Machine
Learning as well.

The Monitor class shown in Figure 9 cooperates with class Thread to deliver
a powerful run-time monitoring engine that can collect data from sensors, from the
CPU, the PMU, and the OS, and make them available as time-series to be used during
run-time or exported during idle time or at the end of the execution. The data of interest
for each policy is modeled within the specialization of Criterion, with the collect ()
method being used to sample them. This method is implicitly invoked by Thread when-
ever a thread leaves a CPU (transitions departing from Running in Figure 10), thus,
adding a little execution latency but limiting the interference on the running threads
(more about the non-intrusiveness of the monitor in Section 3.2.1).

The run-time monitor gathers data sampled by collect () whenever capture()
is speculatively called by the idle thread. Since idle has the lowest priority of all threads,
samples gathering only happens when no other threads are ready to run and therefore
has virtually no side-effect on the running system besides spoiling cache locality a bit.
The method process_batch() is used to externalize raw data, eventually saving them
to disk or sending them over the network. It can be called at the end of a task set

Chapter 3. Non-Intrusive Monitoring 39

execution or by the idle Thread on a best-effort principle during execution.

Looking forward to simplifying data acquisition, the Monitoring API framework
abstracts different sources through an entity called the Clerk. It provides methods
to configure, control, and sample variables of interest, independently of where they
have been produced (if by sensors, by the CPU, by the PMU, or by the OS). Track-
ing an event is achieved by instantiating the parameterized class Clerk with the event
type as a parameter and instantiating an object thereof with an event enumerator
as a parameter. For instance, Clerk<Transducer>: :Clerk (CPU_TEMPERATURE) creates
a clerk to keep track of the temperature of the CPU in which it was instantiated,
Clerk<PMU>: :Clerk (INSTRUCTIONS _RETIRED) gives access to the respective PMU
counter, and Clerk<0S>::Clerk(FREE _MEMORY) gives access to the respective OS
variable. The method read () is used to get immediate samples of data, while start (),
stop(), and reset () are used on a cumulative fashion. Clerks are hard to implement
by platform providers since they abstract a large variety of data sources, many of which
requiring specific low-level coding, but that very same code would have to be handled
by anyone designing a scheduler based on that source. Clerks provide an elegant API
and also guide the pursuit of such low-level coding. Figure 11 presents an example
of data extracted at run-time by the monitoring API during ten seconds of execution,
covering three instances of the same application running in three CPU cores of an
ARM Cortex-A53 architecture. Note that, for ARM Cortex-A53, the PMU is limited to
six events simultaneously monitored. Thus, two executions were required to collect the
seven events presented in the figure. The monitored events are: Committed Instruction
rate (b), Branches executed (c), Immediate Branches executed (d), Branch misses (e),
L1 Cache Hits (f), Unaligned Loads and Stores executed (g), Data Memory Access (h),
and L1 Cache Misses (i).

Due to its lean and simple design, the Clerk abstraction can be extended to any
available source of information in the system. For instance, a hardware accelerator
or from another processor chip like in a distributed system. However, heuristics that
required a more complex sampling must account for the different sampling rates and
other limitations from such sources.

3.2.1 Non-Intrusiveness

The primary goal of collecting run-time data from sensors, counters, and vari-
ables while designing a new scheduler is to detect patterns and produce models. If
the monitoring system itself disrupts such patterns, the confidence and the reliability of
the resulting models are compromised. Additionally, several hardware platforms have
limitations on accessing sensors and performance counters, making run-time data ac-
quisition even more complicated. The number of channels of a PMU, for example, limits
the number of events that can be monitored simultaneously, thus requiring the same

Chapter 3. Non-Intrusive Monitoring 40

application to be executed multiple times to collect a broader, meaningful set of vari-
ables. Therefore, the Monitor APl was conceived to be non-intrusive, incurring in as
little overhead and interference as possible.

Assuming that the target task set does not exceed the platform’s capacity, that is,
its per-core utilization does not exceed 100%, we address non-intrusiveness through
the following design decisions:

1. The monitoring system is initialized along with OS, before applications start,
adding on booting time, but not on applications’ execution time;

2. Clerk::read() acting on behalf of Criterion: :collect () uses polling instead of
interrupts, thus adding a little, constant latency to thread dispatching time only;

3. Data sampled by Criterion::collect() using Clerk: :read() are stored in con-
tention -free circular buffers of fixed size that are statically allocated as part of
each thread'’s context;

4. The data collected in the circular buffers are gathered by the idle thread (using
Monitor: :capture()) when no application threads are running;

5. Data gathered by Monitor: :capture() are packed and saved to disk or sent
over the network by the idle thread on a best-effort principle, eventually after the
completion of the task set execution.

In this way, data acquisition is mostly non-intrusive, and the quality of the ac-
quired data becomes a matter of the utilization imposed on the platform by application
tasks. If utilization is very high, then circular buffers will overflow, and the Monitor will
capture partial data, which might not be enough to produce accurate models.

3.2.2 Per Task Monitoring Functionality

For some scenarios, a specific sampling is required, as it is the case for some
Machine Learning approaches that depend upon data to be sampled per task and not
per CPU. The Monitor API functionalities can be extended to a per-task sampling by
splitting the circular buffers per task and by configuring Criterion::collect() to be
executed whenever a reschedule incurs in a context-switch.

In this way, when a job is scheduled, the Criterion: :collect () does not require
anymore checking for the sampling rate. Instead, it verifies if the running job will change.
In a positive case, the method samples the monitored clerks. The sampling is done by
accumulating the clerks for the task job leaving the CPU, capturing the clerks’ counter
growth during its execution. Moreover, the Criterion: :collect () can be personalized
as required by the scheduler design, for instance, accumulating the values per job
or following a secondary sampling rule (e.g., hyper period). Every other operation

Chapter 3. Non-Intrusive Monitoring 41

performed by the Monitor works in the same way as before, maintaining the low intrusive
design proposed. The data structures used for storing sampled data also remains the
same, but now in a different configuration (split per task). Moreover, in this configuration,
the sampling rate is adaptable to the very-own task-set context-switching, thus, adding
no interruption to the execution and performing the lowest amount of sampling as
possible to maintain the necessary accuracy in the current configuration.

3.2.3 Actuation Design

Schedulers designed using our framework will eventually actuate on the platform
to achieve fine-grained control over the resources at hand. The main actuation mecha-
nisms available in the framework are thread migration and suspension, DVFS, and DPM.
If used by a given scheduler, these mechanisms are typically executed before dispatch-
ing a thread to a CPU in method Criterion: :award(), after Criterion: :charge() has
already been applied to the thread leaving the CPU. They may, however, be also used
in Criterion::charge() and in Criterion: :update(), which updates a thread’s prior-
ity at each job release (transaction from Waiting to Ready in Figure 10) whenever a
dynamic priority policy is in force. These methods also have plain access to the data
collected by the monitor so they can base their actuation on the historical data available.

Thread suspension is attained with Thread: : suspend () and Thread: : resume ()
(not shown in Figure 9). Thread migration is done by invoking Scheduler: :remove (), ad-
justing the thread’s Criterion to designate the target CPU and then calling Scheduler: :
insert (). The core conducting the migration will automatically send an Inter-processor
Interrupt (IPI1) to the target CPU core, so a reevaluation of the scheduling policy is
conducted there. While thread suspension is usually only applicable to best-effort tasks,
thread migration yields a powerful mechanism to schedulers aiming to ensure timeli-
ness of critical tasks, either alleviating the load of the core where they are currently
running or moving them to a less loaded one.

DVFS is abstracted in our framework through the CPU: :clock() method (not
shown in Figure 9), which takes a target frequency in Hertz. Indeed, today’s proces-
sors use quite different strategies to implement DVFS that often cannot be directly
mapped into arbitrarily chosen frequencies. Therefore, scheduler designers are re-
quired to read back the actual CPU’s frequency after invoking clock (). Dynamic Power
Management (DPM) mechanisms implemented by the underlying OS can also be used
by schedulers aiming at optimizing energy consumption.

3.2.4 A Generalized Learning Strategy

The data collected by the Monitoring API can be used to profile task-sets while
they are executed, to assess the system’s behavior concerning specific metrics, and
also to support the design of novel scheduling heuristics. Concerning this last goal,

Chapter 3. Non-Intrusive Monitoring 42

a set of recurrent steps are here listed to model them as a workflow to learn from
collected data. The steps presented in this learning workflow are based on data mining
recurrent steps (MANNILA, 1996), like understanding the domain, preprocessing data,
discovering patterns, and putting results into use. It comprises the following:

1. Define the goal for the aimed heuristic and list a set of variables and events
related to it. For instance, a heuristic targeting the optimization of the energy
consumed by a task set would probably benefit from overall, per-core, and per-
task power consumption.

2. Collect the Data while running representative task sets to stimulate the events
related to the goal defined on the first step.

3. Preprocess the Data so they can be subjected to learning algorithms. Commonly
preprocessing tasks include:

a) Data alignment: as described in Section 3.2, the acquisition of some sorts of
data, such as PMU counters, is limited by the hardware to a small number
of events at a time. Therefore, task sets must be executed multiple times to
capture a meaningful data set. If the OS is a low interference one, simply
aligning the data by their time-stamps might be enough, but a Unix-like OS
might require more sophisticated alignment algorithms, such as hash-table
indexing (e.g., BLAST), suffixes/prefixes tries, and merge sorting (e.g., Slider
and Slider Il) (LI; HOMER, 2010).

b) Outlier detection and removal: even if the collected data comes mostly from
digital sensors and counters, errors and overflows might occur. In some
cases, the conditions that led to the outlier are very relevant to the heuristic.
For instance, a very low increment on the retired instructions counter can be
interpreted as an outlier, but it can also denote stalls and thus should not be
ignored by the analysis.

c) Redundancy and dependency handling: some events and variables may
represent the same feature under certain conditions. Eliminating them re-
duces processing time and, in some cases, prevent model corruption due to
overvaluing a feature (RADHA; MURALIDHARA, 2015). For instance, events
directly driven by the CPU’s clock become synonyms when the power man-
ager interrupts clock modulation.

d) Scaling: counters and sensed data may have different ranges. For instance,
the temperature will range in extreme conditions from -150°C to 150°C, while
the Committed Instructions rate is in the range of millions or billions for each
capture.

Chapter 3. Non-Intrusive Monitoring 43

e) Encoding: grouping ranges of values of interest variables in classes can
improve the results of classification algorithms such as decision trees. For
instance, deadline-misses can be grouped as true and false, or energy con-
sumption readings can be grouped as high, medium, and low for a power-cap
heuristic.

4. Select the features that best describe the behavior of an event of interest. If
the heuristic relies on a predictor, feature selection can considerably reduce the
working set on platforms with many accessible variables. It can also reduce the
number of resources needed to run the predictor within the scheduler by producing
the simplest, less accurate, yet effective models. Some useful algorithms at this
stage have been previously depicted in Section 2.1.2.2.

5. Learn from the Data by applying machine learning or data mining tools. Some of
the algorithms we use in this stage are Artificial Neural Networks (MCCULLOCH,;
PITTS, 1943), K-NN, the C4 Decision-Tree Generator, and Google’s TensorFlow.

6. Test the model while capturing data to corroborate it. Since the proposed monitor-
ing infrastructure is non-intrusive, collecting data during validation is fundamental
to make small adjustments.

The learning steps described above are applied in this work to achieve a predictor
for the task’s performance demands in a new frequency configuration, based on their
performance traces and the current frequency. Each of these steps is covered in the
next sections along with the description of the energy optimizer design.

3.3 SUMMARY OF THE NON-INTRUSIVE MONITOR

The proposed Monitor APl is carefully designed to achieve negligible intrusive-
ness. The non-intrusiveness of the Monitor API is evaluated in Section 5 alongside
the evaluation of the non-intrusiveness of the whole energy optimizer. The Monitor API
design enables capturing high-quality data for ML tools to detect patterns and produce
models. The data is captured within an architecture-independent API (Clerk), and the
framework infrastructure allows the implementation of several types of actuators like
DVFS and task migration. The framework defines a powerful mechanism to model
scheduling policies through the specification of an ordering scheme (Criterion) ele-
gantly interfaced via the operator int() in C++, making it simple to develop any new
policy or heuristic that uses data generated at run-time by the running tasks. Moreover,
the Clerk abstractions can also include data sources from hardware accelerators or
external to the processor chip, however, the complexity inherent to such data acquisition
must be accounted for at the scheduling policy or heuristic development.

Chapter 3. Non-Intrusive Monitoring

44

— Instructions —— |. Branches L1 Hits
—— Branches —— Branch M.]
.- Eg
» S 84
z o
S ol 58
o ° £
5= €8
23 2 &4
5 s 3
B s
© N 7 ot iy oy |y g ¥ —
A HARRHRHRRME
° j“(ﬁ HaEaN _F"L || ,,,ﬂ,,, = — CPUI — CPU2 —— GPU3
< T T T T T T T T T T T T
108000 110000 112000 114000 116000 1180¢ 400 500 600 700 800 900 1000
Execution Time (ms) Execution Time (ms)
(a) Sample of events (10s). (b) Committed Instruction rate.
o o
o o
(=] o
o o o o
~ & 7 &
9 = &
£ S
5§ g |
38 g3
g g -
:8 28
@ S o S
2g 82
2 2
IS €
@] — CPUI — CPU2 — CPU3 £ — CPU1 — CPU2 — CPU3
400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
Execution Time (ms) Execution Time (ms)
(c) Branches executed. (d) Immediate Branches executed.
8
S .
2 i
0 RS
5 1 Sg
= T 0
&8 37
g 2 |
8 Ig
= (0]
S o -‘::3 g’
£ g s
&8 5
ol — CPUl — GPU2 — CPU3 o — CPUI — CPU2 — CPU3
400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
Execution Time (ms) Execution Time (ms)
(e) Branch misses. (f) L1 Cache Hits.
7
g
S
b m
é %1 5 o
3 g
58 g¢
2 2
S8 g |
kel < o
3]
- © o O
37 §3
= — CPUI — CPU2 — CPU3 Z
E : ; ; ; ; : : % _ | — CPUI — CPU2 — GPU3
5 400 500 600 700 800 900 1000 a ‘ : : : : : :
Execution Time (ms) 400 500 600 700 800 900 1000
Execution Time (ms)
(9) Unaligned Loads and Stores exe-
(h) Data Memory Access.
cuted.
N
o
g
i (3]
2 © |
S o
= o
S S
: N
8o
s g
Z8
-8
— CPUI — CPU2 —— CPU3
o

T
400

Figure 11 — Example of run-time data collected by the Monitoring system.

T T T T T
500 600 700 800 900 1000
Execution Time (ms)

(i) L1 Cache Misses.

45

4 ENERGY OPTIMIZER

Handling energy optimizations in critical scenarios while guaranteeing that tasks
meet their deadlines is not trivial, requiring automation of the process and adaptability
to achieve the desired level of optimization. Actuate over such a critical platform is a
cautious process and requires safety margins to avoid failing timeliness. The complexity
of such architecture increases due to new functionalities and the increasing demand
for more performance, for instance, on autonomous vehicles handling computer vision
and several other critical tasks. Therefore, for such scenarios, profiling becomes a task
that demands too much experimentation to acquire a sufficient data-set in order to build
reliable models, which, for some scenarios is unfeasible due to project specificities
or budget limitations. Thus, such a critical system usually relies on an overestimated
safety margin, requiring more processors with more computational power to accom-
modate the system functionalities while disabling multicore features to increase the
execution determinism, increasing the hardware costs and the energy consumption of
the architecture. In this sense, the approach proposed here aims at automating such an
optimization process while attending to online adaptations. The design of the Energy
Optimizer is described in the next sections, taking as its main concerns the capabilities
of non-intrusiveness, system criticality awareness, and adaptability to new scenarios.

4.1 ENERGY OPTIMIZER DESIGN

The energy optimizer is a combination of three main components designed as
implementations to each one of the Criterion functions describe in Section 3.2, namely
(Criterion::collect()) for data collection, (Criterion: :charge()) for task utilization
prediction, and (Criterion: :award() for actuation. The energy optimizer assumes a
scenario where a task deadline is equal to its period and the scheduling algorithm is
assumed to be partitioned, avoiding unnecessary migration and increasing tasks cache
affinity (GRACIOLI; FROHLICH, A. A., 2015). A diagram depicting the Energy Optimizer
is presented in Figure 12.

Two actuation methods are implemented by the energy optimizer: DVFS and
Task migration. The DVFS actuation has priority over Task migration and is supported
by a predictor of task utilization when facing a frequency scaling. A frequency scaling
is considered suitable for the current task-set demands if, according to the predictions,
for every CPU; € DVFS_Domain the equation CPU,.idle_time > SM must be true,
where SM is the Safety Margin established for the task-set. The idle time of a CPU
is acquired as 1 — > t.prediction ¥V t € CPU,;.Scheduling_Queue. The design of the
predictions of task utilization is here implemented through the learning approach, more
specifically, an Online learning Artificial Neural Network, that, provided with a task’s
utilization, performance trace, and the current frequency, predicts the task utilization in

Chapter 4. Energy Optimizer 46

[c1][c2] - [ca] | ... |[€T][2] - [€n] | command ser Soma

Alarm DVFS Domain 1 DVFS Domain m{{<
Processor
? | Task Dispatch A
: mggeroncry, ENErgy Optimizer
= ?1Scheduler Context Switch
or HP reached
Highedt Phiority Criterion::collect()
sk
Account T Measured
Sched. Queues Task Trace Utilization Trigger on
. (Online Train)
Q::T1, T2, ..., T Monitor HP reached
Q2 Tit+1, - s Tit
Quermt Tit 1, 2o Titk Criterion::charge()
Task > - :
A T2k | [utiiization | LTFIN Predict|
Prediction
Predictor | 5.ine Traml CPU Utilization
Online Learning Prediction
ANN Criterion::award()
DOFnain_)Actuation
Voting Control
|Domain
Y Trigger when Y Vote
k . . no DVFS
— [Tas Mlgra_tlon DVES
Task Migration Heuristic — 3!
Command

Set Maximum Frequency
For safer Actuation

Figure 12 — The Energy Optimizer Design Diagram. The green arrows represent the
execution flow for a task migration actuation, while the blue arrows, the
execution flow for a DVFS actuation, which also includes an online learning
section.

a scenario after a frequency scaling. The performance trace is composed of the most
relevant performance counters for the architecture, enabling the ANN model to account
for shared resource contention and the system variability.

Embedded systems can benefit from load balanced task-set to overcome DVFS
limitations (e.g., when the voltage and frequency scaling applies to all CPUs at the
same time). To abstract the DVFS domain specificities of each processor-chip and
make the energy optimizer agnostic of a single configuration, the actuation performed
by the energy optimizer handles different DVFS domains through voting. CPUs that
share a DVFS domain must accord for the actuation to be executed (i.e., frequency
scaling), thus, controlling the actuation with no restriction to processor-chip DVFS do-
main restrictions, as depicted by the Criterion: :award() actuation in Figure 12. Thus,

Chapter 4. Energy Optimizer 47

the energy optimizer can handle different configurations of DVFS domains at the same
time inside a processor-chip, like individual cores DVFS and cluster DVFS.

The predictor output provides the capability of safely managing the DVFS actua-
tion. Furthermore, the DVFS energy-savings can be improved when the CPUs achieve
a balance of workload, as it helps to avoid temperature hot-spots, which due to the small
size of modern multicore processors chips, can influence the energy consumption of
the other CPUs and contributes to equal aging, enduring embedded environment life
time (PAGANI et al., 2020).

The ANN design and the performance counters selection will be discussed fur-
ther in the next section (Section 4.2). Furthermore, the energy optimizer design is not
limited to the ANN predictor and the Task migration described here, and can be ex-
tended to any technique that follows the non-intrusiveness and criticality awareness
requirements.

By following the Criterion design, no interruption is added to the system in any of
the aforementioned procedures, as each one of them is taken implicitly during ordinary
OS actuation. Moreover, the same idea of contention-free buffers used for storing the
monitored data is applied for handling the ANN infrastructure and the necessary data
structures used by the actuation, which is replicated for each CPU. In this sense, to
improve non-intrusiveness, the energy optimizer proposed here assumes that CPUO is
a CPU reserved for management operations only (e.g., Interrupt Handling) and does
not run any task from the tasks-set. Criterion: :charge(), the predictions handling,
remains as a per-CPU operation, while CPUO is the one that periodically checks if
every CPU inside a DVFS domain has finished voting at Criterion: :award (), issuing
the actuation commands regarding DVFS control and the task migration heuristic. The
main motivation to handle award partially at CPUO is to avoid the time complexity a
task migration heuristic could add to the system. Such algorithms often require iterating
over the tasks and CPUs, verifying suitable combinations of tasks in other CPUs. For
instance, a migration algorithm could check the performance of every task in every CPU,
evaluating the overall performance and selecting the best migration (i.e., one specific
task to one specific CPU) according to some metric. This procedure can be seen as
bound in time complexity by O(|T| x | C|).

4.1.1 Collecting

In a multicore scenario, different periods between tasks that share resources
can incur different execution times for each respective job from the same task. In
this sense, to correctly measure the behavior of a task, encompassing the variability
of performance in its jobs, the energy optimizer data collection must accumulate the
performance counters until a different behavior or a phase completion is found. Once
this trigger is reached, or after a certain amount of time of execution (e.g., a maximum

Chapter 4. Energy Optimizer 48

Algorithm 1 Data collection

1: procedure collect (t_prev, t_next, CPU,)

2 for each ¢ € Monitor::Clerks do

3 t_prev.clerks[c] += c.read() — t_prev.clerks_aux|c]
4: t_next.clerks_aux|c] = c.read()

5: end for
6
7
8

if time.now() > HP then
for each t € CPU,.Scheduling_Queue do
for each ¢ € Monitor::Clerks do

9: t.clerks _last _hp|c] = t.clerks]c]
10: t.clerks[c] =0
11: end for
12: end for
13: end if

14: end procedure

actuation period), the energy optimizer prediction and actuation are executed to analyze,
through the predictor, the collected data, thus, building awareness of the task demands
in a different configuration. On more traditional real-time system, the hyper-period of
a task-set can be used to trigger the energy optimizer predictor and actuator, more
specifically, the global hyper-period HP (hyper-period accounting for all CPUs hyper-
periods) can be used. A hyper-period is the smallest interval of time after which the
periodic patterns of all the tasks are repeated (RIPOLL; BALLESTER-RIPOLL, 2013).
The hyper-period of the ith CPU HP¢p, is calculated following (9), where LCM is the
least common multiple of HPgpyy, and t.period, Topy, is the set of tasks of the ith CPU
(CPU;), starting from 1.

HPcpy, = LCM(HPcpy,, t.period), vt € CPU;.Scheduling_Queue (9)

While for more dynamic real-time systems, the concept of phases of executions
can be used to trigger the energy optimizer. Thus, the OS can be configured to monitor
such behavior and trigger the energy optimizer accordingly.

Thus, for the energy optimizer to encompass sufficient information for prediction
and actuation, the Monitor comprises the PMU performance counters, task execution
time (represented as task utilization), and CPU idle time. They are sampled following the
Criterion ::collect() behavior described in Section 3.2.2, accumulating the Clerks’
growth during the task’s jobs execution inside a global hyper-period to provide a per-
task vision of the system. Algorithm 1 describes the data collection performed by the
energy optimizer.

Chapter 4. Energy Optimizer 49

Algorithm 2 Charging

1: procedure charge (CPU,, actuated, DT, TT)
2 if not actuated then
3 for each t € CPU,.Scheduling_Queue do
4: for each ¢ € Monitor::Clerks do
5: t.input[c] = t.clerks_last _hyper_period|c]
6: end for
7 t.prediction = Predictor.predict(t.input)
8 end for
9: else
10: to_train < ()
11: for each t € CPU,.Scheduling_Queue do
12 if |t.prediction - t.clerks_last_hp[Execution_Time]| > DT then
13: to_train + to_TrainuU't
14: end if
15: end for
16: done = false
17: while 7T > 0 and not done do
18: done = true
19: foreach t € to_train do
20: Predictor.train(t.input, t.clerks _last _hp[Execution_Time))
21: end for
22: foreach t € to_Train do
23: prediction = Predictor.predict(t.input)
24: done = done and
25: (prediction - t.clerks_last_hp[Execution_Time]| < DT)
26: end for
27: TT=TT -1
28: end while
29: end if

30: end procedure

4.1.2 Charging

The energy optimizer charge runs at each global hyper-period to account for the
whole task-set, and aims at providing an adaptable and accurate model for tasks’ utiliza-
tion prediction in a lower frequency scenario. Algorithm 2 depicts Criterion: : charge ()
functionalities in the energy optimizer.

When a global hyper-period HP is reached, each task accumulated clerk value in
the respective global hyper-period is accounted by Criterion: :collect() (described
in Section 4.1.1). With clerks data for each task available, each CPU runs Criterion
: :charge (). This method runs a predictor to provide an estimation of each task utiliza-
tion in a new configuration, more specifically, their estimated utilization if the frequency
of the CPU is decreased in one level. The utilization U; of a task t; is the ratio of
its execution time t.clerks_last_hp[Execution_Time] and the global hyper-period HP

Chapter 4. Energy Optimizer 50

(Uy, = Leler ks—'aSt—h‘;[,gxeC“tiO”—Time]), represented in the range {0,1}. The predictor is a

Learning-based algorithm that models the architectural phenomena through the perfor-
mance trace of a task and estimates the frequency scaling impact in the utilization of the
task. Thus, it is expected that the learning-based algorithm used is capable of building
awareness of such relation from both an initial offline model provided by a synthetic
task-set, and from online learning, which focuses on the model specialization to the
current task-set. This strategy avoids cold start issues at the same time it avoids exten-
sive offline training and profiling, reducing the model design complexity and making it
agnostic of a task-set. In this work, a Artificial Neural Network is used as a predictor,
enabled via backpropagation-based incremental training.

In this way, through a set of selected features, composed of OS statistics and
PMU counters, the offline training is expected to capture the relation between the
selected features and tasks utilization, a knowledge that will be enhanced at run-time
to better suit unforeseen scenarios other than the synthetic ones used to stimulate
the system more generically. So, as long as the same set of features used for offline
trained is continuously monitored in the target architecture, the online training can teach
the ANN to fit to new behaviors and architectural variability. For further adaptation, the
energy optimizer can be configured to also account for different contexts of execution
by reconfiguring the energy optimizer parameters, like the Safety Margin SM to be used
on more restrained phases or even a set of predictors specifically design for a set of
defined contexts.

Whenever a prediction is made, the pair input-output is stored in a historical
buffer. If a DVFS actuation is taken by Criterion::award(), a flag denoting it will be
raised. In the next Criterion: :charge () execution, instead of running a prediction, the
predictor accuracy will be evaluated, calculating its output deviations from the tasks’
measured utilization after actuation. If a prediction deviates from the measured utiliza-
tion for more than a configurable deviation threshold DT, the input from the last hyper
period is retrieved and the predictor is trained to match the measured utilization. For
the ANN predictor implemented here, the deviations are used for incremental training,
back-propagating the error accordingly for every train round. The online training is re-
peated until the predictor fits each input-output pair set or a limit of tries TT'is reached.
Even though the predictor already encompasses initial knowledge of the architectural
phenomena, it is not expected to present a remarkable accuracy in its initial form. In
this way, the process modeled here focuses on learning the task-set characteristics at
the highest frequencies to be able to safely actuate when the task-set gets closer to its
utilization Safety Margin SM threshold.

1

The amount of retrains the predictor can execute online is based on the amount of overhead the
online training creates and how much it is acceptable for the current task-set.

Chapter 4. Energy Optimizer 51

4.1.3 Actuation

The energy optimizer actuation is executed at each global hyper-period, after the
execution of Criterion: :charge (). The actuation is done by the Criterion: :award(),
handling DVFS domain voting based on the predictions done at Criterion: : charge(),
and actuating through DVFS and task migration accordingly. Algorithm 3 depicts the
Criterion::award() functionalities in the energy optimizer.

Algorithm 3 Actuating

1: procedure award (CPU;, DVFS_domain, SM, F_level, MT)
2 if CPU.idle_time < SM then

3 cpu::clock(cpu::clock() + F_level)

4 Vote_is_Readycpy, = false

5: else
6:
7

8

Ucpy, =0

for each t € CPU;.Scheduling_Queue do
; Ucpy, += t.prediction

9: end for

10: voteCpUI. =1-— UCPU,- > SM

11: vote_is_readycpy, = true

12: end if

13: if v CPU € DVFS_domain : vote_is_readycpy == true then
14: actuate =V CPU € DVFS_domain : votegpy == true
15: if actuate then

16: cpu::clock(cpu::clock() — F_level)

17: actuated = true

18: else

19: actuated = false

20: evaluate _migration(DVFS_domain, MT)

21: end if

22: end if

23: end procedure

The utilization predictions are composed to represent the utilization of each
CPU. The utilization of the ith CPU is accounted as Ucp, following (10), where N is
the number of tasks inside CPU,.Scheduling_Queue. As the collected data already
accounts for OS overhead and shared resources contention (i.e., through utilization
and performance counters), it is safe to assume that the sum of all task predictions
represents the total CPU utilization.

N
Ucpy, = Y _ tj.prediction (10)
j=0
Every CPU inside the DVFS domain runs Criterion: :award() periodically at
each global hyper-period HP, computing their utilization and voting for frequency de-

Chapter 4. Energy Optimizer 52

crease. The voting for frequency decrease is done by calculating the available idle time
of every CPU inside a DVFS domain using the predictions done at Criterion: : charge.
The vote of a CPU can be defined as follows:

votecpy. = 1—-Uppy. > SM (11
CPU; CPU;

A safety margin for resource reservation SM must be defined to ensure the
criticality of the system. A safety margin is a well-known concept of critical systems,
which aims at ensuring a critical-safety scenario. To ensure safety, such margin is often
overestimated when based on an offline estimation of WCET and task-set profiling. In
the design proposed here, the predictor, when fitted to the current scenario, provides
safety to the actuation, thus, enabling the usage of a smaller safety margin. Moreover,
a safety margin SM can be an adaptive configuration that follows the tasks behavior
variation, considering, in its definition, tasks with variable behavior and guaranteeing
the necessary resource reservation by limiting the actuation in the presence of a lower
utilization of the tasks, and reducing the margin when in the presence of a higher
utilization of the tasks. For instance, a task that periodically checks for a sensor reading
and only actuates on a specific scenario, will have a small utilization during most of
the execution, but under the specific scenario, will increase its usage. In this way, the
system can model a resource reservation represented through the SM to assure the
task timing correctness. So, during a lower utilization phase, the energy optimizer will be
limited by SM, which will be increased with the task variability. During a higher utilization
phase, the utilization of the task can be deduced from SM, thus, the energy optimizer
will not undo its optimizations.

When the last CPU inside a DVFS domain finishes its voting round, it also
evaluates the frequency scaling for that DVFS domain. Thus, if, and only if, every CPU
inside the DVFS domain voted for frequency scaling, it is executed. The flag actuated
is set to (true) for the DVFS domain if the frequency was scaled. Otherwise, it is set to
false, and the frequency remains untouched. Whenever no further frequency scaling
fits the current scheduling slack, the migration heuristic is executed.

In this sense, if an isolated core is being responsible for the energy optimizer,
a pooling strategy can be easily implemented to check for the DVFS domain vote
availability. In response, the actuation command will be issued by the isolated core,
triggering a frequency scaling. For task migrations, the isolated core will set a flag to
be checked by the target CPU when the next global hyper-period HP is reached in the
DVFS domain, avoiding issuing a migration in an unappropriated moment.

4.1.3.1 Task Migration

The task migration heuristic proposed here consists of minimizing the activity
variance between CPUs. The task migration heuristic is capable of migrating tasks in

Chapter 4. Energy Optimizer 53

two different ways: a simple migration, sending a task from one CPU to another, or by
swapping tasks between CPUs. The activity of a CPU is calculated using the concept
of a weighted activity vector, a composition of the very same features used by the
predictor, scaled to the range {0,1}. The activity A of each CPU; is calculated as follows:

N E
Acpy; = Y Y _ ti.activity[K] = Wi « t;.U (12)
Jj=0 k=0
Where N is the number of tasks inside the Scheduling_Queue of CPU;, E is the number
of features being monitored, tj.U is the utilization of the task t, and Wy is the weight of
the feature k.

The proposed heuristic is also supported by a recent memory concept com-
posed of the last activity prediction LAzpy (CPU activity estimated for migration) and
the lowest frequency reached until now LF. Whenever a migration incurs in a worse
configuration, the heuristic revokes it, and the task is no longer allowed to migrate to
that CPU until the system state changes. Such behavior can result from an underesti-
mated migration or due to a resource contention that didn’t exist before. However, if the
last execution was a swap, and in the current state, the best migration revolves around
sending one task from the CPU negatively affected to the one positively affected, that
means the heuristic has solved a contention, and hence, it is allowed to maintain the
last migration. If the lowest frequency is not met, the heuristic undoes the two previous
steps. At every undoing, the migration threshold is also increased.

The optimal weight W), of each feature k is determined by profiling the task-set,
thus avoiding a cold start. The profiling is done by initially setting the feature weights
to 0.5 and updating them online after each migration using Gradient Descent of the
activities of each CPU Agpy. considering the chosen migration and the measured value
in the next hyper-period HP, as depicted in Algorithm 6. The implementation is based
on (ROHAN PAUL, 2020) implementation of multivariate gradient descent. After the
profiling execution is done the weights are saved and used for the normal execution of
the task-set.

The heuristic scores a task migration according to its reduction in the activity
variance between CPUs. Moreover, only migrations that do not exceed the maximum
activity of each feature, i.e., W) > (Z];O ti.activity[k] = Wy = t;.U) Yk € activity, are
evaluated. If the migration with the lowest activity variance presents a minimization
higher than the current migration threshold, the migration is executed. In the case it fails
to meet threshold, task swaps between every CPU pair are evaluated in the same way.
Before the execution of the migration, a reset of CPU frequency takes place, setting
it to the maximum value to prevent that a migration exceeds the established Safety
Margin (e.g., due to an underestimation of the migration impact). Algorithms 4 and 5
depicts the idea of the migration heuristic for the procedure of finding and executing the

Chapter 4. Energy Optimizer

Algorithm 4 Activity Control - Auxiliary Functions

1: procedure fit (CPU, t, W)

2 fit = true

3 for each k < Activity_Features do

4 fit = fit and (CPU.activity[k] + t.activity[K] = t.U « W) < W
5: end for

6 return fit

7: end procedure

8

9: procedure update_activity (DVFS_domain, t, W)
10: for each CPU € DVFS _domain do

11: CPU.activity = 0

12: for each t € CPU.Scheduling Queue do

13: for each k € Activity _Features do

14: CPU.activity[k] += t.activity[k] « W = t.U
15: end for

16: end for

17: end for
18: end procedure

19:

20: procedure remove (CPU, t, W)

21: for each k < Activity _Features do

22: CPU.activity[K] -= t.activity[k] « W) x t.U

23: end for

24: end procedure

25:

26: procedure add (CPU, t, W)

27: for each k € Activity Features do

28: CPU.activity[k] += t.activity[k] « W« t.U
29: end for

30: end procedure

31:

32: procedure variance (DVFS_domain)

33: average = 0

34: variance = 0

35: for each CPU € DVFS domain do

36: average += Acpu A
|[DVFS_domain|

37: end for
38: for each CPU € DVFS _domain do
(Acpy — average)?

39: variance += -
|DVFS_domain|

40: end for
41: return variance
42: end procedure

Chapter 4. Energy Optimizer 55

Algorithm 5 Task Migration

1:
2
3
4
5:
6
7
8
9:
10:
11:
12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44.
45:
46:
47:
48:

procedure evaluate_migration (DVFS_domain, Threshold)
if Last_Frequency < cpu::clock() then
Last_migrate.block()
schedule _migration(Last _to, Last _from, Last _migrate)
Threshold += increase_factor
cpu::clock(Maximum_Frequency)
return true
else
update_activity(DVFS_domain, W)
variance = variance(DVFS _domain)
if variance < Threshold then
return false
end if
from_cpu = null
to = null
migrate = null
Threshold _aux = Threshold
for each CPU € DVFS _domain do
for each t € CPU.Scheduling Queue do
remove(CPU, t)
for each CPU _target € (DVFS_domain— CPU) do
if not t.blocked(CPU _target) and fit(CPU_target, t) then
add(CPU _target, t)
variancenew = variance(DVFS_domain)
if variancenew < variance — (variance x Threshold _aux) then
variance = variancenew
from_cpu = CPU
to = CPU_target
migrate = t
Threshold _aux =0
end if
end if
end for
add(CPU, t)
end for
end for
if from_cpu # null then
Last_Frequency = cpu :: clock()
Last _from_cpu = from_cpu
Last to=to
Last_migrate = migrate
cpu::clock(Maximum_Frequency)
schedulemigration(from_cpu, to, migrate)
return true
end if
return false
end if
end procedure

Chapter 4. Energy Optimizer 56

Algorithm 6 Gradient Descent weight update
procedure update_weights (DVFS_domain, Learning Rate, W)
for each CPU € DVFS domain do

errorcpy = Acpyu - LAcpu
end for

1:
2
3
4
5: for each k € Activity Features do
6:
7
8

adjustment = 0
for each CPU € DVFS domain do
: adjustment += LAcpy-activity[k]*errorcpy
9: end for

10: adjustment /= DVFS _domain.size()
11: W, -= Learning_Rate x adjustment

12: end for
13: return W
14: end procedure

best migration (non-swap) or revoking a migration. A swap is only evaluated when all
possible non-swap migrations were discarded. The search method for swap incurs on
adding one more for loop inside the for loop of lines 21-33 to evaluate every task inside
the CPU_target as a possible swap. The process requires removing the task from the
CPU_target activity vector and checking the fit for both CPUs, and adding it back to
the CPU _target after evaluation.

4.2 LEARNING WORKFLOW: FEATURE EXPLORATION AND ONLINE LEARNING
ANN

In this section, the learning process is depicted in details. First, the process
envisioned for feature exploration is presented, followed by the ANN design description.
The feature exploration method focuses on stimulating the architecture and collecting
every performance counter available. In this way, it is possible to find the counter-set that
better represent the system performance, especially considering counters that also can
depict shared resource contention in the multicore platform, thus, providing information
regarding the architectural phenomena that impacts the performance of tasks. Such
information can be used both to guide the aforementioned task migration heuristic and
to serve as input for the ANN model predicting the impact a DVFS actuation have into
a task performance. Such a counter-set is highly dependent on the architecture itself,
where the number of counters necessary to represent the architectural phenomena will
vary depending on the complexity of the architecture. Hence, the process described for
the feature exploration is designed to be extendable for several architectures, especially
the feature selection process. However, the final counter-set will vary according to the
target architecture.

Chapter 4. Energy Optimizer 57

Shared resources in multicore processors, when requested by two cores simul-
taneously, will create access contention. For instance, two tasks running in parallel
requesting data from the last level cache or main memory will create such behavior,
where one will suffer from contention waiting for the required resource to be released.
Moreover, the performance increase provided by faster memory access (e.g., caches)
is one of the main concerns when addressing performance variability in a multicore
scenario, where two or more tasks running in parallel can evict cache lines from each
other, impacting their execution time.

Tracing tasks in order to identify counters that can provide information regard-
ing architectural usage of shared resources, and then using them to depict contention
behavior, can benefit migration heuristics, which can migrate such task to avoid the
contention. Nevertheless, if the contention is somehow unavoidable, the system must
build awareness of the contention impact and consider this information when applying
frequency scaling and other kinds of actions. Henceforth, a model created to predict
execution time using timing characteristics or classical counters (i.e., Committed instruc-
tions rate, Cache Access, and Cycle Count) without a proper relevance analysis for the
target architecture, will have limited expressiveness in a complex scenario, like when
facing shared resource contention, decreasing the model accuracy for such scenarios.

The data-set must include scenarios with and without contention. A correlation
analysis of performance counters and CPU utilization without considering contention
scenarios will indicate that most of the performance counters are proportional to CPU
utilization. For instance, when not considering shared resources contention, the classi-
cal counter Committed Instruction is proportional to the task’s performance, as depicted
through Task T1 in Figure 13. Figure 13 presents the behavior of a task under three
different conditions. T1 is the task running in a no contention scenario, T3 is the task
running in a low contention scenario, and T2 is the task running in a high contention
scenario, which presents a performance loss in its execution time of approximately 10%,
and most notable, making its utilization disproportional to the Committed Instructions
rate. In this way, when adding shared resources implications, like in the behavior T2,
this counter alone is not sufficient to accurately represent performance, as the relation
previously established for the counter Committed Instructions and Task Utilization is not
valid anymore. A model built upon this counter alone, without considering the contention
behavior, will mislead a prediction to a wrong actuation.

Exploring every performance counters during the feature extraction process
can reveal meaningful information about the architectural behavior. A combined perfor-
mance counter-set, acquired through feature selection techniques can yield sufficient
information to build a prediction model accounting for contention. For instance, Coun-
ters like Bus Access for Memory Write provides a better description of the scenario
presented in Figure 13. Through the depiction presented in Figure 14, it is clear that the

Chapter 4. Energy Optimizer 58

= 1.07—Committed
= 0.8 Instructions
g "~ |—Thread Usage
- 0.67
(&)
£0.41 L
O©
§ 0.2
=0.01
T1 T2 T3

Figure 13 — Committed Instructions trace of a task in three different scenarios: T1 runs
in a no contention scenario, T2 runs in a high contention scenario, and T3
runs in a low contention scenario.

number of Bus Access for write operations better depicts the architectural phenomenon
that created the worsened performance than the Committed Instructions. Where in task
T2 the counter growth highly increases when compared to the other scenarios, as it is
facing contention over the Memory Bus by sharing it with other tasks running parallel in
the platform.

Not only memory hierarchy but any resources shared between the CPUs can
impact the performance of a task in a multicore platform. Thus, a combination of perfor-
mance counters is expected to yield a more reliable prediction model for CPU frequency
demand prediction by also considering performance losses.

=107 —pus Access for
20.81 Memory Write
S |—Thread Usage
< 0.6

(]

= 0.4

o

£0.21

o

=0.0-

T1 T2 13

Figure 14 — Bus Access for Memory Write trace of a task in three different scenarios:
T1 runs in a no contention scenario, T2 runs in a high contention scenario,
and T3 runs in a low contention scenario.

Considering the aforementioned, the feature exploration designed here relies
on the data collection performed through the execution of a representative task-set,
using benchmark tasks to stimulate architectural phenomena. In this way, the chosen
task-set must include examples with and without shared resources contention for the
feature selection techniques to be able to correlate the counters to the utilization of the
modeled tasks. The Monitoring API (see Section 3) is then configured for collecting
the performance counters and OS statistics for the selected task-set. Moreover, to
enable a complete overview of the architecture, every performance counter available

Chapter 4. Energy Optimizer 59

is expected to be sampled. To do so, several execution will be required, as PMUs are
limited regarding the amount of registers available for monitoring.

The Monitor APl configuration also includes the definition of a sampling rate.
Defining an optimal sampling rate requires profiling for each task-set, and must consider
the problem requirements (e.g., samples in a specific form, like per CPU or Task),
the very own specificities of the task-set (e.g., by synchronizing the sampling rate
with rescheduling operations), and the monitored features specificities (e.g., a sensor
that has a low sample rate). For instance, if a too high sampling rate is selected, the
collection of sensors and performance counters with a low occurrence rate can mislead
a further analysis, as sampling them in a too high frequency will result in several
captures with zero-occurrences, possibly classifying the monitored event occurrence
as an outlier. On the other hand, selecting a too low sampling rate can create trashing
of the collected data, mixing two or more behaviors into the same capture (e.g., job
rescheduling or mixing it with other tasks or even idle time).

Therefore, as the architectural phenomena stimulation is here assumed to be
done through a synthetic task-set, a recommendation is to sample the counters at least
once for each job, aiming for samples that are composed of a single task trace. This
enables a correlation analysis between counters growth and the utilization of a specific
task. A synthetic task-set ease the profiling of the architecture, as the as the architec-
tural phenomena stimulation can be done in a controllable scenario. For instance, con-
figuring jobs with the same priority provides more control over the parallelism present
in the execution of the task-set (enables periods of known shared resource contention)
at the same time it avoids undesirable task’s preemption that could mix behaviors on
the same sample.

4.2.1 Pre-processing

Following the learning strategy proposed in Section 3.2.4, the learning goal and
the data collection configuration have already been defined in the previous sections.
The next step is the pre-processing of the data collected, which is described below.

+ Data alignment: Given PMU simultaneous monitoring limitations, several execu-
tions are necessary to capture all performance counters. Due to the low intru-
siveness added by the monitor design, and assuming a low intrusive RTOS (e.qg.,
EPOS (UFSC/LISHA, 2019)), the data captured through the executions will be
equivalent regarding timing characteristics2. Along with the fact that no feature
has a limitation over its sampling rate (performance counters are not limited to

2 In the case the target OS does not provide low intrusive RTOS capabilities, a more sophisticated
data alignment process is required. For such, the steps recommended in Section 3.2.4 can be
used to implement the data alignment considering, for instance, interpolation and sampling rate
synchorinization

Chapter 4. Energy Optimizer 60

sampling), no misalignment between features will be present (e.g., a temperature
sensor can have its sampling rate lower than the PMU counters, which would
create the necessity of interpolation). Thus, to gather the data-set from the ex-
ecutions, only time-stamp alignment is necessary. After alignment, the data-set
collected by the Monitor API per CPU is concatenated, resulting in a single data-
set with all PMU events and OS statistics as features. Lastly, the samples are
transformed from cumulative count to per capture growth (the difference from a
current count to its previous).

« Outlier detection and removal: Due to the occurrence of performance counter
overflows (32-bit or 64-bit registers depending on the architecture, limited to
232 _ 1 or 264 — 1 event occurrences count), some outliers are present in the data
sampled. However, as this is known behavior of performance counters (event
occurrences count can only grow and not decrease), they can be detected when-
ever Current_Sample < Previous Sample. Thus, instead of removing the sam-
ples, the original value of the counter growth can be reconstructed as follows:
Counter_growth = Counter_Limit — Previous_Count + Current_Count. Moreover,
as every collected data comes from digital counters and OS statistics, no other
outlier removal technique was necessary (e.g., remove sensor sampling errors).

* Redundancy and dependency handling: Redundancy and dependency are han-
dled during feature selection using Pearson’s Correlation Coefficient between
each pair of counters, and is further detailed in Section 4.2.2.

» Scaling: Each counter has been scaled to the range {0,1} using Min-Max nor-
malization (SHALABI et al., 2006), where to scale each counter, its respective
minimum and maximum values at the data-set where used as the minimum and
maximum of the algorithm.

» Encoding: Data discretization was applied as a separated pre-processing from the
main pre-processing workflow, specifically to be used as input for some feature
selection techniques that require discretized data (i.e., Information Gain Ratio).
The discretization process subdivides every feature into ten folds as follows: class
0 represents values ranging from 0 to 0.1, 1 from 0.1 to0 0.2, 2 from 0.2 to 0.3, and
so forth. Moreover, the dependent variable, Task Execution Time, was discretized
into two classes, with and without shared resource contention.

» Data Split: The last pre-processing step applied to the data-set was a simple split
per task using the Running Thread ID as a parameter. Traces from tasks that
represent the same benchmark were merged to compose the different behaviors
of each stimulated configuration.

Chapter 4. Energy Optimizer 61

4.2.2 Feature Selection

The feature selection process combines three different feature selection algo-
rithms, each one using a different technique to filter the data-set and acquire the more
relevant counters. The final feature-set is a merged analysis of the three techniques,
aiming at increasing the model accuracy (prediction of impacts caused by frequency re-
ductions at tasks’ performance). The combination of feature selection techniques leads
to a more reliable assessment of feature relevance (MOLINA et al., 2002), as by merg-
ing different analysis, we do not limit the feature-set to a specific learning technique.
Focusing on a single technique can mislead the selection if the final learning model
has different limitations and metrics (e.g., linear regression vs. ANN non-linear model).
The merging method applied here is based on selecting the most relevant counters
in each technique while filtering those with a high Pearson’s Correlation Coefficient
with each other, thus, avoiding redundancy in the final ML model. The method starts
by selecting the counters with the highest correlation to the dependent variable that
is present in each of the three techniques results. If the counter is not present in the
three techniques, but a redundant counter to this one is present (i.e., a counter with
a high Pearson’s Correlation Coefficient (PCC) value to the one selected by the other
techniques). The merge is done following the PCC output order.

The three approaches presented here include Correlation and Entropy (Filter
Methods) and Linear Regression with regularization (Embedded Method) feature selec-
tion techniques. Each algorithm is described below:

» Pearson’s Correlation Coefficient (PCC): PCC is a classical statistical method
used to calculate the relationship between two attributes within a data-set. It
indicates how much a variation of one feature is related to the other’s using a
variance (13) and covariance (14) analysis (BENESTY et al., 2009), where a PCC
between two features, X and Y, can be calculated following (15). A PCC between
two features can result in a value in the range {-1,1}. A PCC of 1 represents a
perfect positive linear relationship. A PCC of 0 represents that the two variables
are independent. And a PCC of -1 represents a perfect negative relationship.
Correlation coefficients are very useful to identify the more relevant features to the
dependent one (i.e., Task execution time). Nevertheless, redundancy removal of
highly correlate features is also another possible result of this analysis, reducing
the data-set multicollinearity. In this sense, for the sake of simplicity, we use
the absolute values of PCC between two features for both feature selection and
redundancy removal procedures. PCC can handle both continuous and discrete
data. Thus, no extra preprocessing was necessary.

2 _ > (X = Xp)?

© N

(13)

Chapter 4. Energy Optimizer 62

SN (Xn=X)(Yn-Y)
N

Cov(X, Y) = (14)
Cov(X, Y)
Vo(X)2 % 1/0(Y)2

+ Information Gain Ratio (IGR): IGR (QUINLAN, 1986) is a filter algorithm that
scores each feature based on entropy, a statistical measure that shows how much
uncertainty is inherited by the feature possible outcomes. The Information Gain
Ratio of an attribute is calculated using (19), it represents the entropy of the class
H(Y) (16) minus the conditional class entropy, given the value of the feature X
(H(Y|X)) (17), divided by the intrinsic value of the feature (18). As Information
Gain Ratio is meant to handle discrete data, the preprocessing step Encoding,
described in the previous section (Section 4.2.1), is applied to the data-set.

PCC(X,Y) = (15)

H(Y) = - Z(P(V) logo p(v)) (16)
veY
HYIX) == (“X < X"(l';fass =YW, Hx € X|x.class = v}) (17)

veY

VX, Y) = Z (|{x € X|x|.;{ass = v}| l0g, l{x € X|x|.;fass = v}|) (18)
veY
IGR(X,Y) = H (\I/\)/(_XH (Y\;IX) (19)

» Lasso CV: Least Absolute Shrinkage and Selection Operator with Cross Valida-
tion (TIBSHIRANI, 1996) is a linear regression method that can be used for feature
selection, considered well suited for multicollinearity data-sets, like performance
counters. Lasso Regression uses shrinkage, a technique to shrunk data values
towards a central point like the mean, and can be calculated as a minimization
of formula presented in 20. The regression performs L1 Regularization, adding a
penalty equal to the absolute value of coefficient magnitude to a feature, which
can lead to zero coefficients. Cross-Validation is used to find the best A configura-
tion for the Lasso model, selecting the model with the lowest error in the validation
data-set.

N
S (ni= 200 =1xi8)) 23 = 118 (20)

i=1

Chapter 4. Energy Optimizer 63

4.2.3 ANN Design

Learning the impact of performance losses, especially for non-specific solutions,
is not trivial, as it lends on several aspects of task-sets and multicore architecture. The
capability of approximating an unexplored non-linear function and the model extrap-
olation to unforeseen scenarios provided by Multi-Layer ANN (PAGANI et al., 2020)
motivated the choice of ML predictor for the performance demands of tasks based on
their traces. Moreover, ANNs are reliable and widespread ML methods for performance
tracing-based predictions (RAIl et al., 2009; CHEN et al., 2018; YE; XU, 2012; SHEN
et al., 2013; MARINAKIS et al., 2019). They also avoid trial-and-error and the high
convergence time of Reinforcement Learning solutions. Furthermore, other learning
methods, like unsupervised learning (e.g., k-means), are focused on defining a hidden
structure for unlabeled data, which does not fit our scope.

ANN are complex methods which can require high computational costs and, if
not carefully designed, can create undesired contention into cache locality in a multicore
platform. To afford an ANN in a non-intrusive design, some restrictions were imposed:
(i) The ANN must be limited to linear activation functions (i.e., Stepwise linear approx-
imation to symmetric Sigmoid) to reduce its computational cost. (i) The ANN offline
tuning process must focus on finding a simple architecture with sufficient performance,
thus, reducing the ANN computational complexity. (iii) A contention-free design must
be accounted for, where every CPU must have its own ANN predictor structure.

The ANN learning here is guided by a backpropagation-based training (for more
details over backpropagation algorithm see Section 2.1.2.1). The error measure used
to train the ANN is Mean Square Error (MSE), measuring the mean squared deviation
between the regression result and the input label, where the training aims at minimizing
the MSE. Moreover, MSE is a widespread algorithm used for measuring regression
error, where the error is backpropagated from the output layer to the input layer updating
the neurons connections weights accordingly. In this scenario, to achieve continuous
learning for online specialization to the running task-set, and further optimize the model
accuracy, we have selected to train the ANN following incremental training method, as
the online training is naturally incremental learning. Thus, at run-time, each time the
ANN runs a prediction, the input pair must be stored to be evaluated after actuation.
Whenever a utilization prediction deviates for more than a deviation threshold (DT) from
the measured utilization, the input from the last actuation is retrieved, and the ANN is
trained incrementally, back-propagating the error accordingly for each input-output pair.

The ANN model must first be trained offline, using pre-collected data to tune the
ANN hidden layer configuration and create an initial base-knowledge to avoid cold start
issues. The data collection process revolves around sampling the selected counters
and OS statistics on every frequency configuration available on the platform. Thus, the
labeling of each sample can be done by coupling samples with their corresponding

Chapter 4. Energy Optimizer 64

measured utilization after one level of frequency scaling. For this purpose, the Monitor
API configured with its Per Task Monitoring Functionality can be used to collect samples
for the task-set in the same configuration proposed in Section 4.1.1, achieving clean
and adaptable sampling of task traces. In this sense, the ANN topology, in its first
layer, the input layer, is composed of the final feature-set acquired through the feature
selection process along with the task utilization and current CPU frequency. The last
layer, the output layer, is composed of one neuron and returns the prediction for the
task utilization at a lower frequency level. The hidden layer topology and the learning
rate of the ANN are parameters that require tuning.

Algorithm 7 ANN Topology Evaluation

1: procedure configuration_performance (frain, test, validation, topology)
2 ANN.topology = topology

3 ANN.incremental_train(train, test)

4: average = 0

5: for each v < validation do

6:

7

8

error = |ANN.predict(v) — v.label|

count =0
: while error > DT do
9: ANN.incremental _train(v)
10: error = |ANN.predict(v) — v.label|
11: count +=1
12: end while
13: average +=count
14: end for
15: average = average / validation.size()
16: return average

17: end procedure

To avoid over-fitting the ANN, a second data-set, collected from a different task-
set configuration, can be used as a validation data-set. Other than the validation data-
set, the evaluation of the ANN topology and the learning rate is done by simulating
the online training, considering as performance metric the average number of rounds
the ANN requires to fit a sample from the validation data-set, following the maximum
deviation threshold DT desired. A description of the performance evaluation of a ANN
topology considering its adaptation is presented in Algorithm 7, using as parameters the
training data-set subdivided into train and test data-sets, the validation data-set, and the
topology to be evaluated. In the aforementioned algorithm, the function incremental _-
train(v) (line 9) is an implementation of the standard backpropagation algorithm as
described in Section 2.1.2.1, and the function incremental_train(train, test) (line
3) is the same algorithm, but executed sequentially for the set of inputs presented in the
set train instead of a single sample, while the test set is used for validation purposes.

Chapter 4. Energy Optimizer 65

The tuning process is here implemented by iteratively modifying (e.g., increasing
and decreasing) the topology of the hidden layers (number of layers and number of
neurons per layer) and the learning rate, starting from a simple topology with one neuron
at the hidden layer and expanding the number of neurons one by one. Whenever adding
more neurons at one layer does not improve the model performance (or even decrease
it), a new layer is added. In the same way, if adding a new layer does not improve the
model performance, the process stops. For instance, if adding a new neuron to the
first hidden layer of a topology with two hidden layers with two neurons each does not
improve the model performance, the process will try adding the neuron to the second
layer instead. If the performance did not improved again, the process of adding new
neurons to the current layers stops, and a new layer is added with one neuron. If the
model performance did not improve by adding the new layer, the process stops. This
method execution time can be reduced if a performance threshold is provided, stopping
the process when the threshold of performance is met.

4.3 SUMMARY OF THE RUN-TIME ENERGY OPTIMIZER DESIGN

The runtime energy optimizer for multicore embedded architectures is designed
to cope with the stringent time requirements of critical tasks. The energy optimizer
capabilities include DVFS and task migration. It actuates based on the predictor (ANN)
output, that aims at predicting the impact of frequency scaling into the performance of a
task based on its performance trace. The energy optimizer accounts for every task cur-
rently running at each CPU to conceive an actuation, considering the available idle time
and a user-defined safety margin. Moreover, the predictor model is built upon runtime
traces collected from hardware performance counters and OS variables selected using
offline feature extraction algorithms. The feature extraction process aims at exposing
the most relevant variables related to performance using synthetic architecture-specific
task-sets. The traces collected are also used to build offline training to tune the ANN
topology. The predictor is then trained at runtime whenever the frequency is scaled,
setting it free from the initial synthetic task-set.

The proposed design abstracts heterogeneity by splitting the actuation voting
and migration heuristic per DVFS domain. In this way, the ANN used by each CPU
inside the DVFS domain can learn the specificities of each DVFS domain architecture,
adapting to each one of them. However, the migration heuristic presented in this section
is limited to migrations internal to the DVFS domain. Other works that handle task
migration between heterogeneous cores, like Run-DMC (MUCK et al., 2015), depict
the performance impact of a migration in a heterogeneous scenario by estimating the
Instructions per Cycle through a linear regression implemented to each heterogeneous
combination. In their solution, a ratio between the frequency of the target core and
the current core is used to model the effects of migrating a task between different

Chapter 4. Energy Optimizer 66

DVFS domains. Following this same principle, such a ratio can be used to extend the
migration algorithm proposed here for scenarios with multiple DVFS domains. The
ratio would act as an overall weight of the activity vector, weighing the task activity
when considering a migration between CPUs with different frequencies. For instance,
ti.activity = t.activity x (Ws * %), where t;.activity is the sum of the activity vector of
task t;, Wy is the weight profiled for the frequency ratio, and f; and f; is the target CPU
frequency and source CPU frequency, respectively.

The ANN model proposed here is focused on predicting the utilization of a task
in a lower frequency configuration. The focus of the ANN can be extended to predict
task utilization into different configurations instead. By adding two new inputs to the
architecture design, one covering the target CPU frequency and another one repre-
senting the target CPU architectural configuration, the ANN training can be extended
with information of the execution of the tasks in several different configurations, and
then learn the proportionality between the scenarios, both offline and online. Another
approach closer to the Run-DMC (MUCK et al., 2015) solution will be to profile the
weights of each feature offline for each core combination and then apply such weights
at the ANN inputs. However, this approach does not support online adaptation.

67

5 PROOF OF CONCEPT IMPLEMENTATION

In this section, the proof of concept implementation of the energy optimizer is
presented. The selected platform tor this proof of concept implementation is a Cortex-
A53 processor, a widely used processor for embedded applications. The Cortex-A53
has four homogeneous cores with a configurable execution frequency of 0.6GHz to
1.2GHz, an 8-stage pipeline with two issued instructions per cycle, a coherent Level 1
(L1) private Cache of 32KB (16KB for Instructions and 16KB for Data), a shared coher-
ent L2 cache of 512KB. The processor has support to ARM PMUv3 architecture (ARM,
2016) providing six configurable channels and over 50 performance event counters,
which will be used in this experiment to gather data in order to profile the tasks and
define a sane performance state.

The platform was mediated by EPOS (UFSC/LISHA, 2019), a low interference
Real-Time Operating System (RTOS) for embedded applications with support to mul-
ticore architectures. The Scheduler Framework and the Monitor API design presented
in Section 3 is currently implemented in EPOS and were used to perform the data col-
lection in this work. EPOS also presents support for Raspberry Pl 3B (RASPBERRY PI
FOUNDATION, 2019), a single-board computer that uses ARM Cortex-A53 processor,
the platform which will be used for the evaluation of this work.

5.1 DATA COLLECTION

Following the goal of predicting tasks’ performance demands in a new frequency
configuration based on their current performance demand and their architectural perfor-
mance trace, three OS counters have been monitored for timing trace: Running Thread
ID, Thread Execution Time, and CPU Execution Time. The idea is to correlate the tasks’
execution time into different scenarios (with and without shared resource contention)
to map the more relevant performance counters in the architecture regarding its archi-
tectural phenomena that impact the execution time. From the hardware performance
counters, all the 54 events available on Cortex-A53 PMU were monitored (e.g., Cycle
Count, Committed Instructions, Branches Taken and Missed, Unaligned Loads and
Stores, L1 (Instruction and Data) and L2 Cache Misses and Hits, Data Memory Access,
L1 and L2 Cache Writebacks, Bus Accesses). A full list of the available counters can
be found at Cortex-A53 Technical Reference Manual (ARM, 2016).

To make a cleaner and more reliable data collection, CPUO is reserved for man-
agement operations only (i.e., Interrupt Handling), as the management operations can
make the trace dirty and possibly lead to a misinterpretation further at the ANN model
training. Thus, the platform is configured with two logical clusters of processors, the
first one containing the Core 0, and the second cluster containing the remaining three
cores scheduled with a partitioned algorithm (P-EDF).

Chapter 5. Proof of Concept Implementation

68

5.1.1 Benchmarks

Table 2 — Task-sets configuration.

Task-set | CPU | Period/WCET | Task
1 500ms/100ms | TO Bandwidth
500ms/100ms | T1 Disparity
1 5 500ms/100ms | T2 Disparity
500ms/100ms | T3 CPU Hungry
3 500ms/100ms | T4 CPU Hungry
500ms/100ms | T5 Disparity
1 250ms/50ms TO Bandwidth
500ms/100ms | T1 Disparity
5 5 1000ms/200ms | T2 Disparity
250ms/35ms T3 CPU Hungry
3 125ms/20ms T4 CPU Hungry
250ms/100ms | T5 Disparity
1 100ms/10ms TO Bandwidth
5 100ms/5ms T1 Bandwidth
1000ms/400ms | T2 Disparity
3 100ms/30ms T3 CPU Hungry
3 500ms/100ms | T4 Disparity
250ms/60ms T5 CPU Hungry
1000ms/100ms | T6 Bandwidth

To acquire a data-set for the multicore real-time embedded system, the proposed
approach aims at a synthetic but representative task-set. The first task-set will be used
for data collection for offline analysis of the architectural phenomena and the ANN train.
This task-set is composed of distinct performance behavior to stimulate architectural
features. We aim at analyzing the performance impact considering resource sharing
contention between tasks when running parallel in a multicore embedded environment.
The following tasks are considered:

« Bandwidth is a benchmark implementation based on (HEECHUL YUN, 2019).
Bandwidth focuses on memory stressing and is tailored to constantly perform
read and write operations in a data structure with at least the size of L2 Cache

(512KB in our platform).

+ Disparity map is a task from San-Diego Visual Benchmark Studio (VENKATA et
al., 2009), representing a real workload task of embedded systems. Disparity Map
is a widely used task for embedded vision applications in autonomous vehicles,
like cruise control, pedestrian tracking, and collision control.

» CPU Hungry is a loop function executing mathematical operations using ALU.
Our implementation is based on iterative Fibonacci.

Chapter 5. Proof of Concept Implementation 69

Bandwidth and Disparity map were also used by Gracioli et al. in (GRACIOLI et al.,
2019) to depict shared resource contention. Our main difference to Gracioli’'s approach
is that we added a mathematical CPU-bound task. The synthetic task-set is composed
of the three applications, varying the tasks that run in parallel to capture traces that
depict the contention for a shared resource. Two combinations of parallel executions
have been configured, one composed of Bandwidth, Disparity Map, and CPU Hungry,
and the other one composed of 2 Disparity Maps and one CPU Hungry. A depiction of
the first task-set is presented in Table 2.

In this sense, the performance variability can be captured during the different
phases of the task-set execution, modeling variability with two different scenarios, one
with high shared resource contention, and the other with low shared resource contention.
The variability in the Disparity Map execution is also accounted for at the very own
variability from task T1 and T5. T1 starts its execution earlier than T5 due to TO, its
previous task, execution close to 10 ms less than T4. Thus, they will run most of their
execution in parallel, but in slightly different phases of execution, creating different
behaviors that are expressed by the performance counters (see Figure 16 (d), (f), and
(9))-

For the offline feature analysis, the monitor sampling rate selected for this task-
set was 33Hz, providing approximately three collections per job. This value has been
selected as the architectural phenomena are being stimulated in a controllable scenario
with small jobs. Additionally, as every task has the same priority (same period/deadline
in P-EDF scheduling criteria), a task job is not preempted during its execution, avoiding
trashing a capture.

A more variable scenario is presented for task-sets 2 and 3, the ones that will
be used as validation scenarios for the proposed solution later. In task-set 2, for in-
stance, due to the different periodicity of tasks, a single job of T2 will present different
phases of execution as its execution is partially parallel to a bandwidth task, which will
create a high contention scenario during the parallel execution. The same is true for
T5 in the same task-set. For task-set 3, a more complex scenario is presented due
to the high contention of the parallel execution of three memory-intensive tasks (the
bandwidth tasks TO, T1, and T6). Moreover, in those task-sets, the concept of WCET,
when extracted from the task running alone on the platform, is not representative when
facing shared resource contention, with the utilization of tasks, and subsequently of
a CPU, highly increasing (e.g., close to 4x TO normal utilization in task-set 3 when
running in parallel with T1). Thus, modeling all possible configurations manually is a
timing consuming task, and some times infeasible for applications with several tasks
and different phases of execution.

To further evaluate the proposed energy optimizer adaptability, explicit changes
into task execution performance are also modeled as more variable scenarios. In those

Chapter 5. Proof of Concept Implementation 70

evaluation cases, called here variable contention scenarios, the bandwidth task behav-
ior will periodically change from executing read and write operations into an array with
the size of L2 cache to an array with the size of L1 cache. This will further stimulate
the variability in the task-set execution (more details over these task-sets are given in
Section 5.2.2), especially due to the fact that the memory hierarchy is the main source
of shared resource contention in the target architecture.

5.1.2 Feature Selection Results

Each of the three algorithms considered uses a slightly different relevance metric,
so the identification of the feature-set that most closely expresses changes in perfor-
mance is not directly derivable from a simple intersection of their results. The 10 most
relevant performance counters according to each applied technique are depicted in
Figure 15 (a), (b), and (c), for Pearson’s Correlation Coefficient, Information Gain Ratio,
and Lasso CV, respectively. As a PCC inverse correlation is as relevant as a positive
correlation, the absolute PCC value was selected for analysis.

Pearson Correlation Coefficient

Bus Access for Memory Write
Read Alloc Mode

Stalls due to Write Buffer Full
Enter Read Alloc Mode

L2D Writeback

Pre-Decode Error

Immediate Branches
Conditional Brances Executed
Bus Cycles

CPU Cycle Count

0.00 0.25 050 0.75
Rank

(a) Pearson’s Correlation Coefficient Results.

Feature

Information Gain Ratio Lasso CV Feature Rank
Bus Access for Memory Write Bus Access for Memory Write
Immediate Branches Enter Read Alloc Mode
Conditional Brances Executed stalls due to Write Buffer Full
Stalls due to Write Buffer Full L2D Writeback

Bus Access for Memory Load
Enter Read Alloc Mode

Read Alloc Mode

L2D Writeback

Data Memory Access

CPU Cycle Count

Feature
Feature

Commited Instructions
Conditional Brances Executed
L1 Cache Misses

. L1 Cache Hits
Branch Misses

0.00 0.25 0.50
Gain Ratio

Pre-Decode Error

0.00 0.25
Rank

(b) Information Gain Ratio Results. (c) LASSO Results.

Figure 15 — Ten most relevant features according to the feature selection techniques
used.

Chapter 5. Proof of Concept Implementation 71

The first conclusion is the unanimity that the number of Bus Access for Memory
write is the most related feature to the performance loss presented. Following the
analysis, Stalls due to Write Buffer Full and Read Alloc Mode counters (Enter Read
Alloc Mode and Read Alloc Mode) are present in all three feature selection techniques
as one of the most relevant counters. However, they present a high PCC to each other,
about 95% correlation between the two Read Alloc Mode counters, and 92% between
Read Alloc Mode counters and Stalls due to Write Buffer Full. In this way, only one will
be selected to avoid multicollinearity and increase the amount of information available
for the ANN model by possibly adding another counter. A graphical representation of
the three counters is depicted in Figure 16 (a), (b) and (c).

The L2D Writeback counter also presented a high ranking in all three feature
selection methods and a PCC of approximately 85% to Bus Access for Memory Load.
Thus, only L2D Writeback has been selected. The performance trace of L2D Writeback
is depicted in Figure 16 (d). The next counter to be evaluated is Inmediate Branches
(depicted in Figure 16 (g)), which presented a high information gain ratio rank and is also
relevant through PCC. Moreover, PCC also pointed to a correlation of approximately
92% between Immediate Branches and Committed Instructions, counters that presents
lower values in contention scenarios. Besides Lasso CV not presenting Immediate
Branches as one of the best features, Committed Instructions was, thus, corroborating
with the importance of this counter for the desired prediction model. In this way, only
Immediate Branches has been selected.

CPU Cycle Count and Bus Cycles are both relevant features on PCC selection.
However, only CPU Cycle Count is present on Lasso CV selection, which is justified by a
correlation greater than 99% of those counters on PCC. However, the counters can still
be useful on a composed analysis of the counter set, for instance, as in Lasso CV. CPU
Cycle Count has already been used for performance prediction in other works (DAS
et al., 2015). The performance trace of CPU Cycles is depicted in Figure 16 (e). The last
counter to be selected is L1 Cache Hits, which can be useful in a composed analysis
to depict tasks that request for shared memory (low L1 Cache Hits accounted). As L1
Cache Misses are not accounted for if a subsequent miss also happens in cache L2,
and L2 Writeback already contributes with L2 Cache information (approximately 88%
correlated through PCC to L2 Cache Misses). Thus, even though it presents a higher
ranking in Lasso CV, we have selected L1 Cache Hits instead. Nonetheless, L1 Cache
Hits is also highly correlated to Data Memory Access, approximately 99% through PCC,
a counter selected through Information Gain Ratio. The performance trace of L1 Cache
Hits is depicted in Figure 16 (f).

The resultant set of features is composed of Bus Access for Memory write oper-
ations Figure 14, Stalls due to Write Buffer Full Figure 16 (a), L2D Writeback Figure 16
(d), CPU Cycle Count Figure 16 (e), L1 Cache Hits Figure 16 (f), and Immediate

Chapter 5. Proof of Concept Implementation 72

1.01— Stalls due to —— Thread Usage 1.0

—R All
Write Buffer Full ead Alloc

Mode

50.8'] — 50.8' Thread Usage|
5)
§0.6' 5 0.6
=0.4 0.4
€0.24 o2
= =
=0.0; 0.0
T1 T2 T5 T1 T2 T5
(a) (b)
= Lo Eﬂg%r@ggg = L0 _ \Iﬁrla:eback
£0.81— Thread £0.81 —— Thread

Usage Usage

—

- 0.6
S Sog
=0. =0.
go.z §0-2
=0.0 =0.0-
Tl T2 T5 T1 T2 T5
(c) (d)
= 1.0 - 1.0-
go.a- §0-8‘
20.6 20.6- |
- .
I, e L
§ 0.2+——CPU Cycle Coun é 0.2-|——L1 Cache Hits
20 0 Thread Usage 20 0- ——Thread Usage
T1 T2 T5 ' T1 T2 T5
(e) U]
{ ——Immediate
S 1.0 Branches
%0.8‘ ——Thread

Usage

Tl T5

T2
(9)
Figure 16 — Stalls due to Write Buffer Full and Read Alloc Mode performance Counters

trace (highly correlated counters following PCC): (a) Stalls due to Write
Buffer Full, (b) Read Alloc Mode, and (c) Enter Read Alloc Mode. And

Performance Counters trace of (d) L2D Writeback, (e) CPU Cycles, (f) L1
Cache Hits, and (g) Immediate Branches.

Branches Figure 16 (g).

The selected performance counters were chosen for their ability to capture the
current utilization of tasks from the perspective of the performance expressiveness.
Counters like CPU Cycle Count and Immediate Branches, for instance, can represent
the throughput demands in a CPU regarding CPU-bound behavior. Memory hierarchy
related counters (e.g., Bus Access for Memory Write, Stalls due to Write Buffer Full,
L2D Writeback, and L1 Cache Hits) can be used to describe non-CPU-bound behavior,
for instance, providing information regarding access to high latency resources that
can be caused by shared resource contention from both intra- and inter-CPU tasks. A

Chapter 5. Proof of Concept Implementation 73

composite analysis is expected to provide sufficient information to depict performance
losses, and subsequently, CPU’s frequency demands. For instance, an abrupt decrease
in CPU-bound related counters along with an increase in Memory Hierarchy access.
Thus, they provide representative information over performance for a ML technique (i.e.,
ANN) to be capable of learning to accurately predict the impact a frequency scaling
will have on the performance of a task, guiding the DVFS to enable energy-savings
accounting for real-time constraints.

5.1.3 ANN Configuration

The proposed ANN model serves as a predictor for the impact of a frequency
scaling at the resource utilization of tasks, using as input the performance trace of the
task and its utilization. The predictor outputs are taken per CPU and analyzed by the
energy optimizer for DVFS control.

For instance, the predictor is meant to learn that, even though a CPU idle time
seems to be suitable for a frequency reduction, a performance trace composed by a
lower growth of CPU Cycle Count, Immediate Branches and/or L1 Cache Hits, along
with higher growth of Bus Access for memory write operations, Stalls due to Write
Buffer Full, and/or L2D Writebacks points to a low throughput due to shared resource
contention, and, given the current frequency and task execution time, it can more accu-
rately estimate that the performance demands for this task in a lower frequency level
will differ from one with higher growth of CPU Cycle Count, which has higher throughput.
Thus, our proposed ANN can learn to differentiate the task behavior by encompassing
the growth of each selected performance counters and the current performance de-
mands. Therefore, we aim at both online and offline learning, whereby offline learning
we achieve an initial broader knowledge for initial stages and a tuning of the config-
uration of the nodes, avoiding the high overhead of complex ANN architectures and
cold start issues. And through online learning, we achieve a continuous and adaptable
optimization for the running task-set.

The validation task-set (task-set 2 at Table 2), was used to evaluate the model
accuracy during the tuning process. More specifically, the model capability of adaption
to new scenarios. Thus, the validation process is a simulation of the online learning
(see Algorithm 7), using previously collected data and re-training each CPU ANN model
whenever the current prediction deviates from the measurements by more than a user-
defined deviation threshold DT (i.e., 2% of deviation). The tuning process evaluates
both the ANN topology and learning rate, selecting the model that requires fewer re-
training rounds to adapt to the new scenario. The best results have been achieved with
a simpler topology and a small learning rate, as by increasing any of both configurations,
the ANN model rapidly over-fits to the training data-set. For more details over the tuning
of the ANN topology, see Section 4.2.3. The configuration that lends better results

Chapter 5. Proof of Concept Implementation 74

during validation is depicted in Figure 17 and explained in detail below. The selected
model used a learning rate of 0.35 and provided an offline performance as follows: a
minimum accuracy of 91.8% (a maximum of 35 trains required) for a deviation threshold
DT of 2% and an average accuracy of 95% considering the validation data-set.

Bus Access For
Memory Write =

S.S. S.S.
Stalls due to ;. Sigmoid Sigmoid
Write Buffer Full I I

Immediate _ ‘ \\ Linear

Branches
L2D
Writeback
CPU Cycle _
count Output Layer
Utilizati
L1 Cache () Hidden Hidden Regression
Hits Layer 1 Igayer 2
Task 3 neurons neurons
Utilization O
CPU — ' o ' o |
Frequency ‘ S. S. Sigmoid = Stepwise Symmetric Sigmoid

Input Layer

8 Neurons

Figure 17 — Artificial Neural Network final architecture.

Input Layer is composed of eight elements: six performance counters, represent-
ing the task’s performance trace and utilization in the last global hyper-period of
execution and the current frequency level. Also, the inputs are equally normalized
as an average to account for different tasks periods and represented on the same
scale as the output {0,1} with Min-Max Normalization. In our experiments, we
have empirically selected a normalization period of 100ms.

Output layer is composed of one output neuron representing the utilization pre-
diction for the task if the frequency is scaled, accounting in this prediction, the
shared resource contention through the input variables. Moreover, the OS over-
head is naturally accounted into the task trace and execution time measuring. The
output neuron result will be represented in the range {0,1}, directly mapping to the
task utilization between 0% and 100%.

» Hidden Layer is composed of two layers, with three neurons each, using the
Step-wise Symmetric Sigmoid activation function.

Chapter 5. Proof of Concept Implementation 75

5.1.3.1 ANN Implementation Library

The ANN library chosen for this project was Fast Artificial Neural Network (FANN)
(STEFFEN NISSEN, 2019). FANN neural network library, which implements multilayer
artificial neural networks in C with support to the necessary functions required by the
proposed ANN design, especially the incremental training and the linear approximations
of activation functions. The ANN model was first trained offline with the runtime data
collected with the Monitor, and then the resultant model was ported to EPOS.

For this to be possible, the necessary structure for FANN to execute was linked
to the EPOS as part of the Monitor to be used for Criterion: : charge () implementa-
tion. The ported methods were FANN: : fann_run() and every method used to execute
a FANN, along with an adaptation of FANN: :fann_create_from_file(), that creates
a FANN with the results of the training, called FANN: : create_from_config(). As the
ported FANN model is required to adapt at run-time through incremental training, the
method FANN: : fann_train_data_incremental () and every method used by this func-
tion were ported to EPOS too. The EPOS code with the FANN port is available at
https://qgitlab.lisha.ufsc.br/epos/epos/tree/ann-energy-optimizer.

Once the methods were ported to EPOS, the final model configuration is ported
by parsing the configured network parameters and then configuring the FANN at com-
pile time to be initialized as an EPOS component. Moreover, as the ANN is trained with
scaled data, a Min-Max scaling function was added as a preprocessing of the input
vector.

5.2 PROPOSAL EVALUATION

In this section, the evaluation of the proposed energy optimizer, including non-
intrusiveness analysis, method effectiveness regarding energy consumption, and the
ANN model predictions and online adaptations. The evaluation uses three case
studies composed of different configurations, especially to evaluate the ANN adaptabil-
ity through online learning and the task migration heuristic proposed. Moreover, the
evaluation is done in a real multicore embedded platform, a Cortex-A53 processor, the
same used for feature extraction and offline training. Each task-set configuration is
depicted in Table 2.

First, an overhead analysis of our approach is presented to corroborate the claim
of low-intrusiveness for the Monitor API| and the energy optimizer. The overhead has
been measured by comparing executions with and without the Monitor APl and energy
optimizer enabled. Then, the analysis of the energy consumption of the three task-sets
is presented, comparing the proposed approach to a scenario with no optimization and
with Linux’s Power Governors. Next, an overview of the energy optimizer actuation is
presented, covering the ANN predictions and online learning, and the task migration ex-

Chapter 5. Proof of Concept Implementation 76

ecution. Lastly, the three task-sets are extrapolated regarding their behavioral variation
to evaluate the online learning capabilities of the energy optimizer approach, as they do
not necessarily represent realistic variations on embedded systems, like autonomous
vehicles task-sets (GRACIOLI et al., 2019).

5.2.1 Overhead Analysis

The energy optimizer design accounted for non-intrusiveness from the features
monitoring up to the actuation execution. The main design decisions that lead to the
low-intrusion are the following: the initialization along with the OS, contention-free mon-
itoring buffers, polling instead of interruptions for both monitoring and actuation (collec-
tion, charging, and award), contention-free predictor structures, and limited actuation
windows, where the energy optimizer actuates only at global hyper-period to avoid mis-
leading a prediction or affecting a task in the middle of its execution due to a frequency
scaling or preempting it due to migration.

The monitoring overhead was evaluated first during the first implementation of
the monitor (HORSTMANN et al., 2019), in an Intel i7-2600 processor with 8 logical
cores with 2-way hyperthreading (i.e., 4 physical cores), L1 cache with 4 x 64KB 8-way
set associative, L2 cache (non-inclusive) with 4x 256KB 8-way set associative and
L3 cache (inclusive) with 8MB 16-way set associative. The platform was mediated by
EPOS, with the OS configured to produce no additional overhead besides the one
caused by the scheduler. The monitor was configured to sample: two OS counters,
deadline misses (OS) and idle time (OS); two PMU counters, committed instructions
per core (PMU) and per-thread (PMU); and two hardware sensor, the PP0 and PKG,
core and entire chip energy consumption sensors, obtained through Intel RAPL inter-
face (INTEL CO., 2019). The sampling rate was set to 100Hz, incurring into a maximum
observed overhead of 43 ms for a set of executions lasting 1 minute (corresponding
to 0.0718%). Moreover, the jitter imposed in the architecture was measured per tasks
by capturing the time-stamp of each thread release (at Semaphore: :v() in Figure 9)
and another one when it effectively resumes execution (after Periodic_Thread: :wait_-
next ()). The variation was calculated using these time-stamps aligned for both cases,
with and without the monitor. The maximum observed difference on the jitters was of
38.81us, the minimum was 0.78us, and the standard deviation was 11.22us. Thus, the
overhead was non-intrusive into tasks’ execution behaviors.

Considering such a low intrusion, in the Cortex-A53 platform, the Monitor API
is considered non-intrusive, especially when running in its Per Task Monitoring Func-
tionality (see Section 3.2.2), where a collection is only executed when a thread leaves
the CPU. In this sense, the overhead of the energy optimizer will consider its impact
on tasks’ execution time, mostly incurred by the low impact on data and instruction
cache’s locality. The overhead was evaluated through three aspects: (i) ANN run and

Chapter 5. Proof of Concept Implementation 77

train overhead; (ii) energy optimizer online overhead; (iii) Impact on Tasks execution
time.

The ANN average overhead, for both prediction and training, was measured on
each available frequency level through 260000 iterations. The time necessary to run
a prediction ranged from 0.9027us to 2.5657us on average at the highest and lowest
frequency, respectively. And the necessary time to execute the incremental train online
over one sample ranged from 1.8073us to 5.1318us on average at the highest and
lowest frequency, respectively. Moreover, the necessary time to run an iteration of the
ANN is related to its topology (i.e., number of layers and neurons per layer). In a similar
scenario, using a more complex ANN over the same Monitor API design, but focusing
on anomaly detection based on performance traces (HOFFMANN et al., 2019), the
same ANN port and the same hardware platform were used in a different configuration.
On an ANN using the same activation functions, but with 5 neurons on the input layer,
two hidden layers with 10 neurons each, and one neuron at the output layer, the ANN
predictions required approximately 4us to run in the highest frequency possible. Even
though 4us is still a small overhead, the increase of complexity in the ANN model must
be carefully done, as in this case, by increasing the number of neurons in approximately
1.73 times (from 15 to 26) increased the prediction run time in approximately 4 times.

For the energy optimizer online actuation overhead, a limit of 8 rounds of train-
ing at each training section (every time a frequency scaling occurs) was selected.
This is a configurable feature of the energy optimizer, and can be customized con-
sidering the affordable overhead the system can manage. In this configuration, the
maximum measured overhead during training rounds was 92us (in a global hyperpe-
riod of 500000us), which includes Criterion::collect() complete execution (Algo-
rithm 1) and Criterion: : charge () training execution (Algorithm 2 from lines 9 to 29).
For voting rounds, which includes Criterion::collect() complete execution (Algo-
rithm 1), Criterion: :charge() prediction execution (Algorithm 2 from lines 2 to 8),
and Criterion: :award() voting (Algorithm 3 lines 2 to 11) presented an average over-
head added per activation of 15.3585us. All the aforementioned measurements were
captured in a scenario with two tasks per CPU.

Lastly, to measured the impact of the energy optimizer execution, the actuation
was disabled to provide the same scenario with and without the presence of the energy
optimizer procedures, thus, providing a measure of the intrusiveness added by the
energy optimizer into each task type execution time. For CPU-Hungry tasks, which
are completely CPU-bound tasks, no intrusion was added to their execution time, thus
highlighting the low impact into instruction caches locality the energy optimizer adds.
For Disparity, the task representing the class of applications with a mid-term behavior
regarding CPU-/Memory-Boundness, the average overhead added to its execution time
was 0.0365%. And for bandwidth, the task representing fully memory-bound tasks, the

Chapter 5. Proof of Concept Implementation 78

average overhead added to its execution time was 0.1791%.

5.2.2 Experimental Results

To provide a baseline for the evaluation of the proposed energy-optimizer, the
energy consumption of the task-sets presented in Table 2 was first measured in a run-to-
halt approach over the same OS (EPOS), where the task-set is also limited to run only
at the CPUs 1, 2 and 3. The run-to-halt approach is focused on maintaining the highest
frequency to increase the time the CPU stays in the halt state, thus, saving energy with
DPM. The isolation of CPU 0 from this comparison was made as a design decision
(see Section 4.1). Furthermore, this CPU has a low utilization and is only responsible
to issue the DVFS commands and to run the Task Migration heuristic, where the Task
Migration heuristic is an algorithm with a complexity dependent on the number of Tasks
and the number of cores inside a DVFS domain. Nevertheless, the energy consumed
by CPU 0 is also accounted for, as the energy consumption of the platform (Raspberry
Pi 3b) is measured as a whole for evaluation purposes. Due to its low utilization, a
solution to avoid the isolation of 1 CPU could be using a micro-controller to handle the
command issues and the Task Migration Heuristic.

To build a more extensive baseline the energy optimizer performance is also
compared to RaspberryPi OS with Linux Kernel version 5.4. In this scenario, the Linux
energy consumption is measured by computing the same workload computed on EPOS
in three different configurations: run-to-halt and CPUFreq’s OnDemand and Conserva-
tive. On Linux, to provide the same computing power in both scenarios, only 3 out of
the 4 available CPUS were used. The CPUFreq’s OnDemand and Conservative power-
governor policies were used. Both policies check the CPU-utilization statistics over
the last period and then set the CPU Frequency accordingly (DOMINIK BRODOWSKI,
2017). The Conservative policy increases and decreases the CPU frequency more
slightly than OnDemand, which jumps between the minimum and maximum frequen-
cies. To provide an equivalent scenario in Linux, the task-sets were scheduled using
Linux’s SCHED-DEADLINE, to provide a real-time environment, and the amount of
CPUs in which the task-set can run was restricted to CPUs from 1 to 3, using Linux’s
cpuset.

The proposed energy optimizer effectiveness is evaluated through the energy
consumption reductions achieved and the ANN online adaptation capability. Figure 18
presents a comparison of the energy consumption on each scenario, with the Linux OS
in a run-to-halt approach, along with OnDemand and Conservative power governors
presented as a baseline. The energy optimizer is implemented in a Real-Time OS
(RTOS) (i.e., EPOS) considering a Safety Margin of 5%. The RTOS is focused on
handling the given task-set and managing the performance monitoring and actuation,
thus, presenting a lower energy consumption when compared to Linux. During the

Chapter 5. Proof of Concept Implementation 79

experiments, the energy optimizer always reaches the lowest frequency possible for
each task-set and achieves, on average, 24.97% of energy consumption reduction
when compared to the RTOS, and 68.91%, 64.70%, and 65.13% when compared to
Linux run-to-halt, OnDemand, and Conservative, respectively.

Moreover, the energy measurements were taken using an energy consump-
tion monitor at the platform power-source, thus, accounting for the whole platform
energy consumption while the energy optimizer actuation only accounts for CPU en-
ergy consumption optimizations. In this way, to reduce this element impact at the energy
consumption comparisons, a baseline of energy consumption for the platform was mea-
sured using an execution with idle tasks only. Thus, every CPU remains halted during
execution, being waked-up periodically by the system alarm. The energy consumption
was measured for the same amount of time the task-set used for evaluation execute,
and presented a consumption of 81.702J. Then, for every analysis presented here
using EPOS, this was considered the system base energy consumption.

Linux Linux OnDemand M Linux Conservative B RTOS
750 B RTOS with our approach

)
=
@)
=
< 500
.0
a
€
-}
(2]
S
o 250
>
>
()
C
L

0

Task-set 1 Task-set 2 Task-set 3

Figure 18 — Task-sets energy consumption under different optimizers.

For the first task-set, the same one the ANN has been trained with the energy
optimizer presents an average energy saving of 30.30%. A depiction of the task-set
execution is presented in Figure 19, where the bar plot in the background of the figure
represents the CPU cluster frequency. The lines represent the CPUs’ utilization related
to the right axis, and the stars the utilization prediction of the CPUs’ if a frequency
scaling is executed. The task-set converges to a stable configuration at the lowest
frequency possible in this architecture (i.e., 0.6 GHz), without requiring any migration.
The CPU with the highest load presents a slack of 19.65% of utilization. The variability
in the multicore architecture on its own demanded online training of the ANN model

Chapter 5. Proof of Concept Implementation 80

1.2 120
(Left Axis)
1.1 Frequency 100
N1.0]
T
9 2 80 ,\3
- _ s » =
v A A 60 =
= ©
g 0.8 (Right Axis) N
w —— CPU1 I)
E 0.7 CPU1 Prediction 40
© —— CPU2
CPU2 Prediction
20
0.6 CPU3
CPU3 Prediction
0.5 - - - - - - - -
0 20 40 60 80 100 120 140 160 188

Time (seconds)

Figure 19 — Energy Optimizer actuation on Task-set 1.

even for the task-set it was originally trained offline. The ANN started with a deviation
in the utilization prediction of 3.85%, 1.59%, and 3.52%, for CPU1, CPU2, and CPU3,
respectively. The deviations at the last actuation were 0.49%, 1.14%, and 1.07%. The
ANN was retrained online whenever a prediction deviates for more than 2%, this fitting
the model to the current task-set behavior.

For the second task-set, the energy optimizer presents an average energy saving
of 14.81% and improve the load balance in the task-set, reducing the standard deviation
of the CPUSs’ utilization by 22.74%. A depiction of the task-set execution and the ANN
predictions is presented in Figure 20, using the same semantics described for Figure 20,
now with the addition of the fourth axis at the top. The dashes and numbers at this axis
represent the migrations executed, described in the legend at the bottom. The task-set
converges to a stable configuration at the lowest frequency possible in this architecture
(i.e., 0.6 GHz) after two migrations. In the final configuration, the CPU with the highest
load presents a slack of 5.2% of utilization, respecting the safety margin of 5.0%. The
ANN started with a deviation in the utilization prediction for CPU1, CPU2, and CPU3
of 8.05%, 0.62%, and 3.58%, respectively. At the last actuation, the ANN presented
deviations of 1.73%, 3.77%, and 7.01% deviation. It is worth mentioning that, after
the first migration, the deviation increased up to 6.57% for CPU1, 7.93% for CPU2,
and 12.2% for CPUS. The ANN online training improved the prediction deviation, fitting
the model to the task-set behavior, especially after being affected by migrations, for
instance, because a shared resource contention was solved.

Chapter 5. Proof of Concept Implementation 81

1 2
X (=

1.2 120
(Left Axis) . ﬂxxxx*”"‘”w”x"f“”‘”m”ﬁx”wxw .. XMW“MA
1.1 Frequency =~ R 1100
_/\/M rnsnsosr st
T 1.01 ' T s §
9 S WW"*%WXRWWM' 80 ’\3
2 0.91 v =
< o
g - (Right Axis) 60
©0.81{ —— CPU1 N
L . . +J
5 CPU1 Prediction 40 2
8,0.7 —— CPU2
Migrations: ~ CPU2 Prediction
0.6 (1) from CPU3,T4 to CPU2 CPU3 20
(2) from CPU2,T3 to CPU1 CPU3 Prediction
0-5 T 1 T T T T T T
0 20 40 60 80 100 120 140 160 188

Time (seconds)

Figure 20 — Energy Optimizer actuation on Task-set 2.

For the third task-set, which represents a more complex scenario in terms of
shared resources contention (due to the three bandwidth tasks), the energy optimizer
presents an average energy saving of 14.81% and improve load balancing, reducing
the standard deviation of the CPUs’ utilization by 68.00%. A depiction of the task-set
execution and the ANN predictions is presented in Figure 21 using the same semantics
described for Figure 20. The task-set converged to a stable configuration at the lowest
frequency possible for this task-set (i.e., 0.8 GHz) after four migrations and one revo-
cation. The safety margin SM of 5% was preserved, as the CPU with the highest load
presented a slack of 16.12%. The ANN started with a deviation in the utilization predic-
tion for CPU1, CPU2, and CPUS3 of 0.16%, 21.64%, and 11.66%, respectively. At the
last actuation, the deviations decreased to 4.70%, 0.25%, and 4.71% (the deviation for
the last actuation was 17.91%, but the training log reported that the error was reduced
to 4.71% after the online training). It is worth to mention that after each migration that
affected the behavior of the tasks, the deviation at the related CPUs increased. The
maximum deviation for CPU1, CPU2, and CPUS3 after the initial actuation were 16.52%,
15.30%, and 17.91%, respectively, and the ANN quickly adapted to the new behavior.

The importance of activity vector weight profiling (described in Section 4.1.3.1)
for critical scenarios such as the one represented by this task-set 3 is illustrated in
Figure 22. It depicts the task-set profiling and shows undesirable migrations based on
the initial weights of 0.5. For instance, near 50 seconds of execution, migration can be
seen to have caused a deadline miss. Certainly, increasing the safety margin beyond

Chapter 5. Proof of Concept Implementation 82

the 5% used in this case could also prevent faulty migrations, but only profiling will allow
the system to learn bad combinations of tasks that must be avoided during ordinary
operation. The activity weights profiling usually also reduces the number of migrations,
reducing the overhead while leading to an optimal task allocation.

122 A |
12— T 120
(Left Ag(is)
1.1 100
N
g 10 LI} S %xxx“xx"xm,g,(x" M&)«'W}"wxxmxxxx‘mxm YL L e | 80 N
~ 1 oo g0 20000 o\o
>\ ul; Ipessssss ~—
o 0.9 : (Il S
S Ll (Right Axis) 160 =
308141 L W——— R 8
L wxxm L]
35)q (Il . CPU1 Prediction 40 2
& 0.7 LF""'\ MY by
L[-A CPU2 Prediction
0.6 CPU3 20
CPU3 Prediction
0.5 - : : : . . . | 8
0 20 40 60 80 100 120 140 160 18
Time (seconds)
Migrations:
(1) from CPU2,T1 to CPU1 (4) undo
(2) from CPU3,T3 to CPU2 (5) from CPU2,T3 to CPU1

(3) Swap CPU1,T1 and CPU3,T4

Figure 21 — Energy Optimizer actuation on Task-set 3.

To further evaluate the energy optimizer capabilities, each one of the task-sets
has been executed with two additional configurations, especially to make the task-
set vary its contention on Bandwidth and Disparity tasks. The two new configurations
work as follows: i) the bandwidth task runs in a reduced data-set, performing a loop of
reads and writes into a 16KB data structure (the size of the data cache level 1 in the
Cortex-A53 available at the Raspberry Pi 3B), reducing the impact on shared resources
with other CPUs, while still affecting the cache level 1 locality in the CPU it runs. ii) the
bandwidth task changes its behavior periodically (every 90 jobs), providing an extremely
variable scenario to evaluate the predictor and the migration technique capabilities.
For those two new scenarios, the energy optimizer improved energy consumption by
19.59% on average. A depiction of the energy consumption for each case is depicted
in Figure 23 for the task-sets with reduced Bandwidth data-set, and in Figure 24 for the
task-sets with variable Bandwidth data-set.

Chapter 5. Proof of Concept Implementation 83

1.2 —12345%—7—89—101 120
(Left Axis
11 m xFrequen A | B ”x: 200600, 2 | 00020%000%000000000000%, 36| 100
"\T 1-0) i\ oo “" " XX)?(xxx"x“XxXx&xxxX"’°‘x"xx"XxW"x’°"°‘xv”xx&”‘x“xxxxwx"xxxxxxw*mﬁxx%"*x%f x|
< I i S
3 0.9 | s
c)
g (Right Axis) 60 =
$ 0.8 —— CPUL N
- CPU1 Prediction | 49 5
0.7 e | RN 2
- ﬂ ~ CPU2 Prediction
0.6 I gl 20
CPU3 Prediction
0.5 - - - ; ; ; - ; 8
0 20 40 60 80 100 120 140 160 18
Time (seconds)
Migrations: (6) from CPU3,T2 to CPU1
(1) from CPU2,T1 to CPU1l (7) from CPU1,TO to CPU3
(2) from CPU3,T3 to CPU2 (8) from CPU3,T6 to CPU2
(3) Swap CPU2,T2 and CPU3,T5 (9) undo
(4) Swap CPU1,T1 and CPU2,T3 (10) Swap CPU2,T3 and CPU3,TO
(5) undo (11) undo
Figure 22 — Energy Optimizer actuation on Task-set 3 without predefined weights for
migrations.
RTOS M RTOS with our approach
250
)
é 200
C
2 150
Q.
£
=}
2 100
o
o
>
© 50
()
c
L
0

Task-set 1-2 Task-set 2-2 Task-set 3-2

Figure 23 — Task-sets with reduced Bandwidth data-set energy consumption for the
RTOS and the Energy Optimizer running on the RTOS.

Chapter 5. Proof of Concept Implementation 84

RTOS M RTOS with our approach
250

- - N
o (€] o
o o o

(o)
o

Energy Consumption (Joule)

Task-set 1-3 Task-set 2-3 Task-set 3-3

Figure 24 — Task-sets with Bandwidth configured with behavior variation data-set en-
ergy consumption for the RTOS and the Energy Optimizer running on the

RTOS.
1.2 120
(Left Axis)
1.1 Frequency 100
N i
51.0 80 .
30.9; g
g il (Right Axis) 60
508 o ot 0% 0 e e rR«L“ ey g
; - x CPU1l._Prediction 40 5
& 0.7j —— CPU2
CPU2 Prediction
0.6 —— CPU3 20
CPU3 Prediction
0.5

0 50 40 60 80 100 120 140 160 189
Time (seconds)

Figure 25 — Energy Optimizer actuation on Task-set 1 with Low Contention Bandwidth.

For the first task-set in the low contention configuration, the energy optimizer
presented an average energy saving of 28.57%. A depiction of the task-set execution
is presented in Figure 25, following the same semantics as the previous plots. The
task-set runs in the same way as before, but now with a lower utilization in task TO
(Bandwidth), also incurring in a lower contention for the other tasks. This configuration

Chapter 5. Proof of Concept Implementation 85

quickly converges to a stable configuration at the lowest frequency possible in this
architecture (i.e., 0.6GHz), and it does without requiring any migration. In the final
configuration, the CPU with the highest load still presented a utilization slack of 21.05%.
In this scenario, the maximum prediction deviation presented by the ANN was 12.78%,
4.00%, and 4.97%, for CPU1, CPU2, and CPUS3 during the first and second actuation.
Note that CPU1 prediction, the one with the new behavior inserted, deviated in 12.78%
with no training to the new configuration, which decreased to 0.55% through the online
learning in the next prediction, showing a high level of adaptability. The maximum
deviations at the last actuation (from 0.7GHz to 0.6GHz) were 0.22%, 2.22%, and
3.65%. It is worth mentioning that for CPU2 and CPU3, the lowest prediction error
was during the frequency scaling from 0.9 to 0.8 GHz, presenting a deviation of 0.57%
and 0.81%. As this task-set has a lower utilization in general, even when setting TO
to vary its performance demands periodically, the task-set still maintains the lowest
frequency possible for this architecture, as depicted by Figure 26, where, with this
variable behavior, the average energy saving achieved by the energy optimizer in this
scenario was 24.00%. After 90 seconds of execution, task TO (Bandwidth) changes
its behavior to the one presented in the original task-set configuration (Figure 19), in
which, as the CPU slacks already fit into the current configuration, does not impacts
the energy optimizer actuation. For this scenario, as the actuation was done during
the first behavior of TO, the one equal to the previous case, the deviations were very
similar. The maximum prediction deviation presented by the ANN was 13.00%, 4.06%,
and 4.97%, for CPU1, CPU2, and CPUS3, respectively. And the maximum deviations at
the last actuation (from 0.7GHz to 0.6GHz) were 0.11%, 1.86%, and 3.58%.

For the second task-set in the low contention configuration, the energy optimizer
presented an average energy saving of 17.39%. A depiction of the task-set execution
is presented in Figure 27, following the same semantics as previous plots. In a sce-
nario where CPU1, the CPU running the Bandwidth task, has a lower utilization when
compared to the original task-set. In the final configuration, the CPU with the highest
load still presented a utilization slack of 20.29%, which was only achieved by combining
the migration heuristic and the ANN predictor. In this sense, instead of requiring two
migrations to reach the optimal configuration, this task-set required only one. It is pos-
sible to see that T4, the CPU-Hungry task, initially allocated to CPU 4, was migrated
to CPU1, providing an improved load balance between CPUs and achieving the lowest
frequency configuration possible for the architecture (0.6 GHz). In this scenario, after
the migration, the predictions deviations for CPU1 utilization increased to almost the
same deviation presented at the beginning (13.57%), as the CPU1 now includes tasks
from the three task types. The maximum prediction deviation presented by the ANN
was 13.95%, 7.23%, and 4.04%, for CPU1, CPU2, and CPU3, respectively. And the
maximum deviations at the last actuation (from 0.7GHz to 0.6GHz) were 6.13%, 3.86%,

Chapter 5. Proof of Concept Implementation 86

1.2 120
(Left Axis)
1.1 Frequency 1100
N1.0
G " 80
> “‘ =
8 0.9 " m&“’*mx‘&’“ M&x::‘%x xx'x*"a,x&% ""%MXX"""",M, g
0} | (Riaht Kxic) 60 S
csr WJ g 7 ©
U 0 e — " . —— CPU1 1 =
™ mJ . . +
S I x CPU1 Prediction 40 2
8077 —— CPU2
CPU2 Prediction
0.6 CPU3 20
CPU3 Prediction
0.5

0 20 40 60 80 100 120 140 160 189
Time (seconds)

Figure 26 — Energy Optimizer actuation on Task-set 1 with variable contention Band-

width.
1
1.2 T 120
(Left Axis)
1.1 Frequency 100
—_ KK, K. Sl ,(w
9, -80 ,\3
3 0.91 Y st
c o)
g (Right Axis) 60 E=
o 0.81 —— CPU1 N
L . .)
5 . . CPU1 Prediction 40 2
6 0.7 Migrations: —— CPU2
(1) from CPU3,T4 to CPU1 « CPU2 Prediction
0.6 CPU3 20
CPU3 Prediction
0.5 T T T T T T T T 8
0 20 40 60 80 100 120 140 160 18

Time (seconds)

Figure 27 — Energy Optimizer actuation on Task-set 2 with Low Contention Bandwidth.

Chapter 5. Proof of Concept Implementation 87

and 0.99% (CPU1 and CPU2 presented a deviation of 6.67% and 7.23% during the
last actuation, which, following the training log, decreased to 6.13% and 3.86% through
the online learning algorithm).

1
X

N
(%)
I
yn
o)

1.2 = o : 120
(Left-AX{s) T
1.1- Frequen'cy . x
oK R00000000000¢ 3¢ oo oot '100
(@] 09' r c
c o
3 Bk (Right Axis) m =
$ 0.81 —— cpPUl I
; CPU1 Prediction ¥ 5
6 0.7 —— CPU2
CPU2 Prediction
0.6 CPU3
CPU3 Prediction
0.5

20 40 60 80 100 120 140 160 180
Time (seconds)
Migrations:
(1) from CPU3,T4 to CPU1 (4) undo
(2) from CPU1,T4 to CPU2 (5) from CPU2,T4 to CPU3
(3) from CPU2,T3 to CPU3 (6) from CPU3,T4 to CPU2

Figure 28 — Energy Optimizer actuation on Task-set 2 with variable contention Band-
width.

Still analyzing task-set 2, but now for the task-set with Bandwidth configured with
behavior variation, the energy-saving achieved by the energy optimizer was, on average,
17.39%. A depiction of the task-set execution is presented in Figure 28. In this scenario,
even with Bandwidth’s task utilization periodically changing, the task was still capable
of reaching the lowest frequency (0.6GHz) while still under the 5% margin. Near 110
seconds of execution, due to the very own architectural variability, CPU 1 presented a
slight increase in its utilization, breaking the 5% margin in 0.26%, not causing a deadline
miss. In this way, by monitoring every CPU idle time, the energy optimizer identified the
margin break and increased the CPUs frequency in one level to avoid disrupting time
correctness. In this way, in the next prediction round, the voting concluded that CPUO
would again break the safety margin if the frequency is decreased, triggering the Task
Migration heuristic to look for further optimizations, which executed four more migrations
and one revocation. The behavior variation, when not fitted under the Safety Margin

Chapter 5. Proof of Concept Implementation 88

at the lowest frequency, will always trigger the behavior depicted in Figure 28, which
can only converge if the migration threshold is not met by any migration or swap (see
Section 4.1.3.1 and Algorithm 5 for further details regarding migration threshold). The
maximum prediction deviation presented by the ANN was 16.95%, 15.85%, and 8.02%,
for CPU1, CPU2, and CPUS, respectively. Note that such high deviations occurred
mainly after migration and during behavior changes, where after the aforementioned
maximum deviation, the ANN learned the new behavior, reducing the deviation up to
0.45%, 2.93%, and 2.78% for CPU1, CPU2, and CPU3 during the next actuation in the
same behavior.

1
X

N

2
=

IS

1.2 120
(Left Axis) —_— .
1.1 Frequency 100
N1.0]
) = i 80
3 0.91 Il - e
< o
g (l , (Right Axis) 60 =
o 0.8 il —— CPU1 =
[N . .)
S il CPU1 Prediction 40 2
6 0.7 —— CPU2
CPU2 Prediction
0.6 CPU3 20
CPU3 Prediction
0.5 - - - - - - - - 8
0 20 40 60 80 100 120 140 160 18

Time (seconds)
Migrations:

(1) from CPU3,T4 to CPU1 (3) undo
(2) from CPU3,T3 to CPU1 (4) from CPU3,T5 to CPU1

Figure 29 — Energy Optimizer actuation on Task-set 3 with Low Contention Bandwidth.

For the third task-set in the low contention configuration, the energy optimizer
presented an average energy saving of 5.94%. A depiction of the task-set execution is
presented in Figure 29. In this scenario, where the three Bandwidth tasks are configured
with a small utilization, the energy optimizer successfully reached a stable configuration
achieving the lowest frequency possible for the architecture (0.6 GHz) after three mi-
grations and one revocation. The safety margin SM of 5% was preserved, as the CPU
with the highest load presented a slack of 13.88%. The maximum prediction deviation
presented by the ANN was 14.42%, 10.08%, and 7.09%, for CPU1, CPU2, and CPUS3,
respectively. Note that such high deviations occurred mainly after migration, which has

Chapter 5. Proof of Concept Implementation 89

been learned by the ANN during the next actuation. The prediction deviations at the last
actuation were 6.87%, 0.19%, and 3.33% for CPU1, CPU2, and CPUS3, respectively
(the deviation for the last actuation was 7.09%, but the training log reported that the
error was reduced to 3.33% after the online training).

1 2 2 A |~ I~
1.2 T—T o T T 120
(Left Axis) _
1.1 Frequency =" e P St 100
N1.0f
5 '80 ,\3
50-9— E
g m . 160 3
o Il o
0.8 il it i N
i . iy 7 “FE.._J | e
- N e | 40
G 07 —— CPU2
(Right Axis) » CPU2 Prediction
0.6 —— CPU1 CPU3 20
CPU1 Prediction CPU3 Prediction
0.5 - - - : : : ! .
0 20 40 60 80 100 120 140 160 188

Time (seconds)

Migrations:

(1) from CPU3,T4 to CPU1 (4) from CPU3,T6 to CPU2
(2) Swap CPU1,T4 and CPU2,T1 (5) undo

(3) from CPU3,T5 to CPU1 (6) from CPU3,T6 to CPU1

Figure 30 — Energy Optimizer actuation on Task-set 3 with variable contention Band-
width.

For the task-set with Bandwidth configured with behavior variation in task-set 3,
the energy optimizer presented an average energy saving of 24.24%. A depiction of the
task-set execution is presented in Figure 30. In this scenario, where the three Bandwidth
tasks are configured with behavior variation between the original and small utilization,
the energy optimizer successfully reached a stable configuration. The final configuration
achieved the same level of optimization presented for the original task-set (0.8GHz)
after five migrations, where one of them was a swap between CPU1 and CPU2, and one
a revocation. The safety margin SM of 5% was preserved in the final configuration, only
being breached during the first moment of behavioral change, reaching a maximum of
98.44% of utilization (predicted as 93.23%). In the final configuration, the CPU with the
highest load, CPU 2, presented a slack of 11.77% (9.3% during the execution of the
heavy Bandwidth configuration) fitting the SM of 5%. The maximum prediction deviation
presented by the ANN was 57.63%, 32.02%, and 11.2%, for CPU1, CPU2, and CPU3,

Chapter 5. Proof of Concept Implementation 90

respectively. Note that such high deviations occurred due to the behavior variation,
especially for CPU1 when holding two bandwidth tasks, where after the aforementioned
maximum deviation, the ANN learned the new behavior, reducing the deviation up to
0.83%, 0.39%, and 0.41% for CPU1, CPU2, and CPU3 during the next actuation in the
same behavior.

5.3 DISCUSSION

The energy optimizer design was evaluated through a proof of concept imple-
mentation, which included the complete scheduler design presented in Figure 9. The
implementation focused on the non-intrusive design and the capabilities of the moni-
toring and actuation API proposed in this work. When allied with the low intrusiveness
presented by an RTOS (i.e., EPOS), the API design creates a clean and reliable sched-
uler framework with powerful monitoring and actuation capabilities. With the RTOS
focusing on handling the given task-set, the performance monitoring and actuation
design can be controlled without impairing the correctness of any task execution.

To implement the energy optimizer, first, a utilization predictor is required, and
to fulfill the proposed design, a predictor with online learning capabilities is desired.
So, an incremental trained ANN design is proposed along with feature exploration for
architectural phenomena profiling through performance monitoring. Furthermore, the
ANN design is focused on two learning moments: An offline training using a synthetic
task-set for architecture tuning and cold start issues avoidance. And the online training,
to make the model free from the synthetic task-set used for offline training, to account
for performance variability of the task-set, incoming from both the tasks and the archi-
tectural phenomena. To further improve the ANN results, a tuning process including a
validation data-set incoming from a secondary task-set is recommended, thus, simulat-
ing the ANN online training to evaluate the architecture regarding the number of training
cycles required for adaptation. Moreover, to accommodate such a complex solution
as an ANN into a non-intrusive design, some restrictions were imposed: (i) The ANN
must be limited to linear activation functions to reduce its computational cost. (ii) The
ANN offline tuning process must focus on finding a simple architecture with sufficient
performance, thus reducing the ANN computational complexity. (iii) A contention-free
design must be accounted for, where every CPU must have its own ANN predictor
structure.

The feature exploration design proposes a performance counter analysis focused
on the architectural phenomena related to task performance, especially performance
issues incurred from shared resource contention generated by the complex multicore
architecture. Such a process usually requires an extensive manual analysis allied with
expert knowledge to define the most relevant performance counters. Aiming at making
it completely independent of expertise knowledge and manual analysis, similar to Wu

Chapter 5. Proof of Concept Implementation 91

and Taylor's (WU; TAYLOR, 2016) and Donyanavard et al.'s (DONYANAVARD et al.,
2016) works, a data mining approach for feature selection is designed. Nevertheless,
different from their works, which focus on a single method, namely PCA and PCC,
respectively, the proposed method includes a preprocessing workflow along with the
combination of three different feature selection approaches. This practice of combining
multiple techniques, according to Molina et al. (MOLINA et al., 2002), provides a more
reliable and extensive feature-set, making the resulting feature-set free from the limita-
tions of using a single technique. This process is combined with redundancy removal
to improve the coverage of the resulting feature-set. The resultant set of features is
composed of Bus Access for Memory Write operations, Stalls due to Write Buffer Full,
L2D Writeback, CPU Cycle Count, L1 Cache Hits, and Immediate Branches. The cov-
erage of the resulting feature-set includes performance counters tracing the memory
and CPU usage of tasks, where the memory comprises the primary shared resource in
the target architecture. The performance information extracted through such counters
was sufficient to build the envisioned Machine Learning model to control the DVFS
actuation and guide the task migration, which corroborated the effectiveness of the
approach used for feature extraction, the synthetic task-set along with the non-intrusive
Monitoring API and the feature selection.

The energy optimizer evaluation over the three different task-sets, including three
different configurations for each task-set, provided an overview of the proposed solution
performance on a real platform. The idea of including variations of the same task-set
was intended to promote an overview of the ANN architecture and Task Migration design
under different levels of performance demands and contention. The variation in tasks
configuration enabled a further evaluation of the model adaptability, which successfully
reached the threshold of frequency configuration without breaking the safety margin
established, and thus, not impairing the timing correctness.

The energy optimizer showed an average energy consumption reduction of
24.97%, up to 30.30%, for the original configuration, 17.30%, up to 28.57%, for the
low contention scenario, and 21.88%, up to 24.24%, for the scenario with behavior vari-
ation. The comparison of energy consumption reductions was done by comparing the
energy optimizer performance on an RTOS focusing on a run-to-halt approach, which
aims at increasing the amount of halt time of the CPUs, and it does this by always
running the tasks at maximum frequency.

As previously discussed, Dynamic Power Management (DPM) is also an actua-
tion available on such embedded platforms. However, the DVFS control provided by the
energy optimizer overcame the energy-savings of the run-to-halt approach in every sce-
nario. The only scenario where the energy consumption of the run-to-halt approach was
closer to the energy optimizer results was for task-set 3 in the low contention scenario,
where the modified task was present in every CPU, reducing the overall performance

Chapter 5. Proof of Concept Implementation 92

demands of the task-set. In this scenario, the DPM strategy achieved good results, as
one of the CPUs (CPU1) remained halted for approximately 99% of the execution, as
the only task in its scheduling queue was one of the tasks affected by the variation, the
Bandwidth task, presenting an utilization close to 1%. However, the energy optimizer op-
timizations still presented a reduction of 5.94% in the energy consumption. Additionally,
as this work addresses real-time scenarios, the maximum energy-saving possible for
a task-set is inversely proportional to the available idle time and the configured safety
margin SM assumed for the task-set.

When comparing the energy consumption of the proposed approach, running
on the RTOS, with Linux and its power governors, a reduction of 68.91%, 64.70%, and
65.13% were seen for Linux run-to-halt, OnDemand, and Conservative, respectively.
Linux’s OnDemand and Conservative power governors improved the energy consump-
tion of the Linux Platform up to 16.22%, 3.33%, and 13.16%, for the three task-sets,
respectively. When comparing the results in a proportional relation, the energy-savings
of Linux Power Governors for the Linux baseline (i.e., run-to-halt), and the optimizations
of the proposed approach for the RTOS baseline, the proposed approach still achieved
better results in every scenario: 30.30% vs. 16.22% (This work vs. OnDemand and
Conservative) in TS1, 14.81% vs. 3.33% (This Work vs. Conservative) in TS2, and
29.79% vs. 13.16% (This Work vs. OnDemand) in TS3.

As claimed by Chen et al. (CHEN et al., 2018), in some applications, not nec-
essarily the lowest frequency configuration provides the lowest energy consumption.
However, to not limit the energy optimizer to platforms supporting online power con-
sumption measurement, and as a power model is out of the scope of this work, the
actuation design here is focused on reaching the lowest level of frequency possible for
the current configuration (comprised of CPU load and SM). In this sense, the energy
optimizer will not reach the optimal energy-saving state for every scenario, resulting in
sub-optimal energy-savings but still without impairing critical tasks. In the evaluated sce-
narios, task-sets 1, 2, and 3, under three different configurations, the proposed energy
optimizer always reached the lowest frequency configuration possible combining the
DVFS and the Task Migration heuristic, and it did so without impairing any critical task.
As migrations impacts are harder to predict without previously established knowledge,
especially due to shared resource contention, one of the limitations of the Task Migra-
tion heuristic is to initially profile the activity vector weights to avoid cold start issues,
similar to the ANN requirement for offline training. The profiling process is depicted in
Section 4.1.3.1.

The performance demand awareness for each different scenario, while maintain-
ing a low ANN architecture complexity, was only achievable by accounting for online
learning, here implemented as incremental learning with backpropagation. Increasing
the offline data-set extensiveness will make the predictor proposed here closer to the

Chapter 5. Proof of Concept Implementation 93

models proposed by Chen et al. (CHEN et al., 2018), Donyanavard (DONYANAVARD
etal., 2016), and Miick et al (MUCK et al., 2015), creating a model with a more complex
architecture that can provide better accuracy in its initial state. However, measuring the
model coverage, including frequency changes, which can affect the tasks’ parallel inter-
actions, and aging effect has a complexity that scales with the platform complexity itself,
as modern embedded multicore processors combine a large variety of architectural fea-
tures, including heterogeneous cores, SIMD units, and application-specific accelerators
interconnected by NoC technology, while making intense use of parallelism and latency
hiding mechanisms.

Therefore, the first thought that made online learning an objective for this work
was to enable the model to account for variability without requiring extensive profiling in
an offline analysis, which encompasses both feature extraction and ANN training. More-
over, online learning makes the ANN a process independent of task-set, accounting for
several scenarios with low prediction deviation. First of all, as previously explained, the
feature extraction must include data from different scenarios to be capable of resulting in
the most relevant feature-set regarding task performance and architectural phenomena
coverage, a goal that is much easier to achieve through a synthetic task-set in a con-
trollable scenario. Furthermore, the complexity of building a dataset for training an ANN
with sufficient coverage for it to be able to extrapolate every possible outcome with high
accuracy is infeasible for complex scenarios. The online learning approach reduces
the complexity required for ANN offline training, enabling a much more budget-friendly
analysis at the cost of a little adaptation during run-time.

The performance of the ANN and the effectiveness of the online learning can
be observed, for instance, through the last task-sets’ configuration, where the behavior
variation of tasks was extrapolated to evaluate the adaptability of the ANN model in an
extreme scenario. For Task-set 3 (depicted in Figure 30) during the first occurrence of
behavior variation, the ANN prediction deviation increased, reaching 57.63% for CPU1,
32.02% for CPU2, and 11.2% for CPU3. For CPU1, its highest deviation occurred
near 30 seconds of execution, reaching a deviation of 57.63% of utilization, which
decreased to 16.35% and 0.83% in just two training sessions. The deviation increased
again after the second migration, up to 34.87%, which was quickly learned in the next
two training sessions, reducing it to 6.33%, and subsequently to 2.43%. Again, near
30 seconds of execution, CPU 2 reached 32.02% of deviation, which decreased in
the following frequency scaling to 24.65%, and subsequently to 0.39%. And after the
second migration, at 35 seconds, the deviation increased to 15.47%, decreasing to
6.69% and 0.28% in the next two learning sessions. In the remaining execution time,
whenever the behavior of the task changed, the deviation increased again, but never
that much higher, with the new behavior learned in two or fewer training sessions. For
CPUS3, the deviations were never higher than 11.2%. This occurrence only happened

Chapter 5. Proof of Concept Implementation 94

once and decreased to 0.41% after two learning sessions, as the task that presented
behavior variation was migrated to CPU1 near 20 seconds of execution. Therefore,
we can conclude that online learning is capable of quickly adapting to new scenarios
without compromising tasks’ timing correctness.

The energy optimizer results also corroborate the claim for low intrusiveness,
adding less than 100us of overhead during training rounds in the worst-case scenario
(limiting to 8 training rounds), and less than 16us on average per activation, with a
maximum overhead on the tasks’ execution time of 0.1791% on memory-bound tasks,
the ones most affected. For the sake of comparison, the worst-case scenario evaluated
for Run-DMC (MUCK et al., 2015), a task-set with 16 threads, incurred an overhead
of up to 869us per actuation (sensing, estimation and prediction, optimization, and
thread mapping), and 158us in the simpler test case provided in their evaluation, with 4
threads. The ANN prediction and training overhead, when analyzed alone, presented
an average run-time of 1.8073us for predictions and 5.1318us for one training iteration
at the lowest execution frequency, also corroborating the claim for the ANN low-intrusive
design. Moreover, the Monitor APl was also evaluated alone, presenting a maximum
overhead of 0.0718% for the sampling configuration composed of 6 Clerks at 100Hz,
with a maximum jitter at job releases never higher than 40us, thus providing a non-
intrusive monitoring design.

95

6 CONCLUSION

Real-time Multicore Embedded Systems, due to multicore architectural com-
plexity, incur the necessity of careful handling of task execution in order to maintain
execution determinism and to afford the expanding functionalities which demand more
and more performance in such critical environments. With autonomous vehicles, for
example, which must handle several computer vision applications in real time, criti-
cal application design in multicore embedded systems goes beyond modeling system
performance manually and assuring Worst Case-Execution Time estimations. The com-
plexity of such systems, combining a large variety of architectural features of multicores
and the extensive usage of parallelism and latency hiding mechanisms, requires han-
dling performance, temperature, and energy consumption in a more automated way.
The platforms, however, are themselves highly instrumented cyber-physical systems
that can be monitored and controlled based on the data they produce during operations.
Therefore, Hardware Performance Counter provides a powerful tool for monitoring the
most relevant architectural phenomena that have an impact on task execution. Machine
Learning stands up as an alternative to automate the process of acquiring the neces-
sary knowledge about the architectural phenomena expressed by performance traces
and OS statistics.

In this work, a non-intrusive, ANN-based run-time energy optimizer for multicore
embedded architectures is proposed. The energy optimizer is able to cope with the
stringent time requirements of critical tasks. The energy optimizer capabilities include
DVFS and task migrations, and it actuates based on the ANN model outputs. The ANN
is a component of the energy optimizer that aims at providing predictions regarding
the impact a frequency scaling will have on a task performance by using its perfor-
mance trace as input. The energy optimizer accounts for every task currently running
at each core to conceive an actuation, considering the available scheduling slack and
a user-defined safety margin. The ANN model is built upon run-time traces collected
from hardware performance counters and OS variables, selected using offline feature
extraction algorithms. The feature extraction process aims at exposing the most rel-
evant variables related to performance using synthetic architecture-specific task-sets.
The traces are also used to build offline training to tune the ANN configuration. The
predictor is then trained at run-time whenever the frequency is scale, setting it free from
the initial synthetic task-set. The task migration is based on a weighted activity vector
concept, and uses the same performance counters used by the ANN. The objective of
the task migration is to reduce the activity variance between CPUs in a load-balancing
fashion, including task migrations and task swaps between CPUs to achieve a better
load distribution and solve contentions. The weights used by the algorithm are profiled
beforehand via Gradient Descent.

Chapter 6. Conclusion 96

A proof of concept implementation of the proposed energy optimizer design in
a real platform, a Cortex-A53, a widespread quad-core embedded processor, is pre-
sented to evaluate the proposed design regarding the predictor capabilities, including
its regression accuracy and adaptability and the achieved energy-savings. The evalua-
tion encompassed three different task-sets over three different configurations, totaling 9
evaluation scenarios. The energy optimizer successfully achieved energy consumption
reductions in each one of them, always reaching the lowest frequency configuration
possible without impairing any critical task. The proposed solution achieved 24.97%
energy consumption reductions on average when compared with the run-to-halt ap-
proach in the original task configuration, and it did so without impairing any critical
task. In the low contention configuration of the task-sets, it achieved 17.30% energy
consumption reductions on average. And in the scenario with behavior variability, it
achieved 21.88% energy consumption reductions on average. The energy optimizer
triggered task migrations with two of the three evaluated task-sets, further optimizing
the frequency configuration. The last scenario, with behavior variability, was an extreme
scenario made to evaluate the ANN adaptability to online training. The ANN was able to
learn the new behavior at run-time, reducing prediction deviations from close to 50.0%
to nearly 1.0% in two or fewer training sessions. The non-intrusiveness of the proposed
design was evaluated through the poof of concept implementation, showing a maxi-
mum average overhead incurred in terms of the execution time on a task of 0.1791%,
particularly to a Memory-bound task. For CPU-bound tasks, no overhead was added.
In terms of system time overhead, each prediction added 15.3585us of overhead on
average, and each retraining cycle triggered at frequency adjustments was never larger
than 100us.

6.1 FUTURE WORKS

In future works, the energy optimizer will be extended in terms of its task migra-
tion capabilities in order to include a Machine Learning approach for task migrations,
especially for heterogeneous scenarios, where the Machine Learning model can be
extended to predict the performance demands of a task on a completely different con-
figuration, instead of only evaluating frequency scaling, for instance, on a big.LITTLE
architecture. Other possible future works can investigate other ML algorithms and the
combination of different ML algorithms for both Task Migration and DVFS control.

In this sense, the idea of using more complex techniques, or the need for more
complex ANN models depending, which scales according to the very own system com-
plexity, also put as a relevant future work the exploration of hybrid Software/Hardware
implementations of the Energy Optimizer through FPGAs, like running the ML algo-
rithms as a hardware component to improve the Energy Optimizer non-intrusiveness.

Moreover, the presented approach and analysis methodology can be extended

Chapter 6. Conclusion 97

to several different scenarios where the limiting agent is the performance impact over
shared resources, and not only multicore embedded environments.

98

REFERENCES

AKRAM, Naveed; ZHANG, Yangyang; ALI, Shahbaz; AMJAD, Hafiz Muhammad.
Efficient Task Allocation for Real-Time Partitioned Scheduling on Multi-Core Systems.
In: 2019 16th International Bhurban Conference on Applied Sciences and Technology
(IBCAST). [S.L]: IEEE, Jan. 2019. DOI: 10.1109/ibcast.2019.8667139.

ALENAWY, T. A.; AYDIN, H. Energy-aware task allocation for rate monotonic
scheduling. In: 11TH IEEE Real Time and Embedded Technology and Applications
Symposium. [S.l.: s.n.], 2005. P. 213-223.

ARM. ARM Cortex-A53 MPCore Processor. [S.|.]: ARM, 2016.

BASTONI, A.; BRANDENBURG, B. B.; ANDERSON, J. H. Is Semi-Partitioned
Scheduling Practical? In: 2011 23rd Euromicro Conference on Real-Time Systems.
[S.l.:s.n.], 2011. P. 125-135.

BENESTY, Jacob; CHEN, Jingdong; HUANG, Yiteng; COHEN, Israel. Pearson
Correlation Coefficient. In: NOISE Reduction in Speech Processing. [S.l.]: Springer
Berlin Heidelberg, 2009. P. 1—4. DOI: 10.1007/978-3-642-00296-0_5.

BINKERT, Nathan et al. The Gem5 Simulator. SIGARCH Comput. Archit. News,
Association for Computing Machinery, New York, NY, USA, v. 39, n. 2, p. 1-7, Aug.
2011. ISSN 0163-5964. DOI: 10.1145/2024716.2024718. Available from:
https://doi.org/10.1145/2024716.2024718.

BISWAS, Dwaipayan; BALAGOPAL, Vibishna; SHAFIK, Rishad;

AL-HASHIMI, Bashir M.; MERRETT, Geoff V. Machine learning for run-time energy
optimisation in many-core systems. In: DESIGN, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. [S.l.]: IEEE, Mar. 2017. DOI:
10.23919/date.2017.7927243.

BOLON-CANEDO, Verénica; SANCHEZ-MARONO, Noelia;

ALONSO-BETANZOS, Amparo. A review of feature selection methods on synthetic
data. Knowledge and Information Systems, Springer Science and Business Media
LLC, v. 34, n. 3, p. 483-519, Mar. 2012. DOI: 10.1007/s10115-012-0487-8. Available
from: https://doi.org/10.1007/s10115-012-0487-8.

https://doi.org/10.1109/ibcast.2019.8667139
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.23919/date.2017.7927243
https://doi.org/10.1007/s10115-012-0487-8
https://doi.org/10.1007/s10115-012-0487-8

REFERENCES 99

BRANDENBURG, Bjérn B. Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. 2011. PhD thesis — The University of North Carolina at Chapel
Hill. Ph. D. Thesis.

CALANDRINO, J.; ANDERSON, J.; BAUMBERGER, D. A hybrid real-time scheduling
approach for large-scale multicore platforms. 19th Euromicro Conference on
Real-Time Systems (ECRTS’07), v. 2, n. 19, p. 247-258, 2007. ISSN 1068-3070.
Available from: https://ieeexplore.ieee.org/document/4271698.

CARPENTER, J.; FUNK, S.; HOLMAN, P.; SRINIVASAN, A.; ANDERSON, J.;
BARUAH, S. A categorization of real-time multiprocessor scheduling problems
and algorithms. [S.|.]: Chapman Hall/CRC, 2004.

CHEN, Yen-Lin; CHANG, Ming-Feng; YU, Chao-Wei; CHEN, Xiu-Zhi;

LIANG, Wen-Yew. Learning-Directed Dynamic Voltage and Frequency Scaling
Scheme with Adjustable Performance for Single-Core and Multi-Core Embedded and
Mobile Systems. Sensors, MDPI AG, v. 18, n. 9, p. 3068, Sept. 2018. DOI:
10.3390/518093068. Available from: https://doi.org/10.3390/s18093068.

CRAEYNEST, Kenzo Van; JALEEL, Aamer; EECKHOUT, Lieven; NARVAEZ, Paolo;
EMER, Joel. Scheduling heterogeneous multi-cores through performance impact
estimation (PIE). In: 2012 39th Annual International Symposium on Computer
Architecture (ISCA). [S.1.]: IEEE, June 2012. DOI: 10.1109/isca.2012.62370109.

DAS, Anup; WALKER, Matthew J.; HANSSON, Andreas; AL-HASHIMI, Bashir M.;
MERRETT, Geoff V. Hardware-software interaction for run-time power optimization: A
case study of embedded Linux on multicore smartphones. In: 2015 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED). [S.L.]: IEEE,
July 2015. DOI: 10.1109/is1ped.2015.7273508.

DAVIS, Robert I.; BURNS, Alan. A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems. ACM Comput. Surv., Association for Computing Machinery,
New York, NY, USA, v. 43, n. 4, Oct. 2011. ISSN 0360-0300. DOI:
10.1145/1978802.1978814. Available from:
https://doi.org/10.1145/1978802.1978814.

DEHMELT, F. Adaptive (Dynamic) Voltage (Frequency) Scaling—Motivation and
Implementation. [S.I.: s.n.], Mar. 2014. Available from:
http://www.ti.com/1lit/an/slva646/slva646.pdf.

https://ieeexplore.ieee.org/document/4271698
https://doi.org/10.3390/s18093068
https://doi.org/10.3390/s18093068
https://doi.org/10.1109/isca.2012.6237019
https://doi.org/10.1109/islped.2015.7273508
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/1978802.1978814
http://www.ti.com/lit/an/slva646/slva646.pdf

REFERENCES 100

DOMINIK BRODOWSKI. Linux CPUFreq - CPUFreq Governors. 2017. Available
from: https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt.
Visited on: 10 Sept. 2020.

DONYANAVARD, Bryan; MUCK, Tiago; SARMA, Santanu; DUTT, Nikil. SPARTA:
Runtime task allocation for energy efficient heterogeneous manycores. 2016
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), IEEE, p. 1-10, 2016.

EYERMAN, Stijn; EECKHOUT, Lieven. A Counter Architecture for Online DVFS
Profitability Estimation. IEEE Transactions on Computers, Institute of Electrical and
Electronics Engineers (IEEE), v. 59, n. 11, p. 1576—1583, Nov. 2010. DOI:
10.1109/tc.2010.65. Available from: https://doi.org/10.1109/tc.2010.65.

FAHLMAN, Scott E. Faster-Learning Variations on Back-Propagation: An Empirical
Study. In: TOURETZKY, David S.; HINTON, Geoffrey E.; SEINOWSKI, Terrence J.
(Eds.). Proceedings of the 1988 Connectionist Models Summer School. [S.l.]: San
Francisco, CA: Morgan Kaufmann, 1989. P. 38-51.

FROHLICH, Anténio Augusto. A Comprehensive Approach to Power Management in
Embedded Systems. International Journal of Distributed Sensor Networks,
v.2011,n. 1, p. 19, 2011. ISSN 1550-1477. Available from:
http://www.hindawi.com/journals/ijdsn/2011/807091/.

FROHLICH, Anténio Augusto. Application-Oriented Operating Systems. 2001.
S. 200. PhD thesis — Berlin: Technical University, Berlin. Ph. D. Thesis.

GENNARI, John H.; LANGLEY, Pat; FISHER, Doug. Models of incremental concept
formation. Artificial Intelligence, Elsevier BV, v. 40, n. 1-3, p. 11-61, Sept. 1989. DOI:
10.1016/0004-3702(89)90046-5. Available from:
https://doi.org/10.1016/0004-3702(89)90046-5.

GRACIOLI, Giovani. Real-Time Operating System Support for Multicore
Applications. 2014. S. 359. PhD thesis — Federal University of Santa Catarina,
Florianépolis. Ph. D. Thesis.

GRACIOLI, Giovani; FROHLICH, Antonio Augusto. CAP: Color-aware task partitioning
for multicore real-time applications. In: PROCEEDINGS of the 2014 IEEE Emerging

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://doi.org/10.1109/tc.2010.65
https://doi.org/10.1109/tc.2010.65
http://www.hindawi.com/journals/ijdsn/2011/807091/
https://doi.org/10.1016/0004-3702(89)90046-5
https://doi.org/10.1016/0004-3702(89)90046-5

REFERENCES 101

Technology and Factory Automation (ETFA). [S.l.]: IEEE, Sept. 2014. DOI:
10.1109/etfa.2014.7005118.

GRACIOLI, Giovani; FROHLICH, Anténio. Towards a Shared-data-aware Multicore
Real-time Scheduler. In: REAL-TIME Scheduling Open Problems Seminar (RTSOPS).
Paris, France: [s.n.], July 2013. Available from:
http://www.lisha.ufsc.br/pub/Gracioli’%5C_RTSOPS%5C_2013.pdf.

GRACIOLI, Giovani; FROHLICH, Anténio Augusto. On the Design and Evaluation of a
Real-Time Operating System for Cache-Coherent Multicore Architectures. ACM
SIGOPS Operating Systems Review, v. 49, n. 2, p. 2-16, 2015. ISSN 0163-5980.
Available from: http://dl.acm.org/citation.cfm?id=2883594.

GRACIOLI, Giovani; TABISH, Rohan; MANCUSO, Renato; MIROSANLOU, Reza;
PELLIZZONI, Rodolfo; CACCAMO, Marco. Designing Mixed Criticality Applications on
Modern Heterogeneous MPSoC Platforms. In: QUINTON, Sophie (Ed.). 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019). Dagstuhl, Germany:
[s.n.], 2019. (Leibniz International Proceedings in Informatics (LIPIcs)), 27:1-27:25.
DOI: 10.4230/LIPIcs.ECRTS.2019.27.

HALL, Mark Andrew. Correlation-based Feature Selection for Machine Learning.
1999. PhD thesis — The University of Waikato, New Zealand. Ph. D. Thesis.

HEECHUL YUN. Misc micro-benchmarks & tools. 2019. Available from:
https://github.com/heechul/misc/.

HOFFMANN, J. L. C.; HORSTMANN, L. P;; FROHLICH, A. A. Anomaly Detection in
Multicore Embedded Systems. In: 2019 IX Brazilian Symposium on Computing
Systems Engineering (SBESC). [S.I.: s.n.], 2019. P. 1-8.

HORSTMANN, L. P; HOFFMANN, J. L. C.; FROHLICH, A. A. A Framework to Design
and Implement Real-time Multicore Schedulers using Machine Learning. In: 2019 24th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). [S.l.: s.n.], 2019. P. 251-258.

HSU, Chung-Hsing. Compiler-directed dynamic voltage and frequency scaling for
cpu power and energy reduction. 2003. S. 120. PhD thesis — Rutgers University,
New Brunswick, NJ, USA. Ph.D Thesis.

https://doi.org/10.1109/etfa.2014.7005118
http://www.lisha.ufsc.br/pub/Gracioli%5C_RTSOPS%5C_2013.pdf
http://dl.acm.org/citation.cfm?id=2883594
https://doi.org/10.4230/LIPIcs.ECRTS.2019.27
https://github.com/heechul/misc/

REFERENCES 102

IGEL, Christian; HUSKEN, Michael. Improving the Rprop learning algorithm. English.
In: PROCEEDINGS of the Second International Symposium on Neural Computation,
NC’2000. [S.l.]: ICSC Academic Press, 2000. P. 115—-121.

INTEL CO. Intel 64 and 1A-32 Architectures Software Developer’s Manual. [S.|.]:
Intel Corporation, 2019.

ISLAM, F. M. M. ul; LIN, M.; YANG, L. T.; CHOO, K.-K. R. Task aware hybrid DVFS for
multi-core real-time systems using machine learning. Information Sciences,

v. 433-434, p. 315-332, 2018. ISSN 0020-0255. Available from:
https://www.sciencedirect.com/science/article/pii/S0020025517308897.

ISMAIL, H.; JAWAWI, D. N. A.; ADHAM ISA, M. A weakly hard real-time tasks on
global scheduling of multiprocessor systems. In: 2015 9th Malaysian Software
Engineering Conference (MySEC). [S.l.: s.n.], 2015. P. 123-128. DOI:
10.1109/MySEC.2015.7475207.

JOHNSON, David. Near-optimal bin packing algorithms. 1973. S. 401. PhD thesis —
Massachusetts Institute of Technology, Massachusetts. Ph. D. Thesis.

JUNG, H.; PEDRAM, M. Supervised Learning Based Power Management for Multicore
Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Institute of Electrical and Electronics Engineers (IEEE), v. 29, n. 9,

p. 1395-1408, Sept. 2010. DOI: 10.1109/tcad.2010.2059270.

JUNIOR, Arliones Stevert Hoeller. Gerenciamento do Consumo de Energia
Dirigido pela Aplicacao em Sistemas Embarcados. 2007. S. 87. MA thesis —
Federal University of Santa Catarina, Floriandpolis. M.Sc. Thesis.

KEDAR, G.; MENDELSON, A.; CIDON, |. SPACE: Semi-Partitioned CachE for Energy
Efficient, Hard Real-Time Systems. IEEE Transactions on Computers, v. 66, n. 4,
p. 717-730, 2017.

KIM, Myungsun; KIM, Kibeom; GERACI, James R.; HONG, Seongsoo.
Utilization-aware load balancing for the energy efficient operation of the big.LITTLE
processor. 2014 Design, Automation and Test in Europe Conference and
Exhibition (DATE), p. 46-55, 2014. ISSN 1530-1591. Available from:
https://ieeexplore.ieee.org/document/6800437.

https://www.sciencedirect.com/science/article/pii/S0020025517308897
https://doi.org/10.1109/MySEC.2015.7475207
https://doi.org/10.1109/tcad.2010.2059270
https://ieeexplore.ieee.org/document/6800437

REFERENCES 103

KRAWCZAK, Maciej. Multilayer Neural Networks. [S.l.]: Springer International
Publishing, 2013. DOI: 10.1007/978-3-319-00248-4. Available from:
https://doi.org/10.1007/978-3-319-00248-4.

LAHIRI, Anirban; BUSSA, Nagaraju; SARASWAT, Pawan. A Neural Network Approach
to Dynamic Frequency Scaling. In: 15TH International Conference on Advanced
Computing and Communications (ADCOM 2007). [S.l.]: IEEE, Dec. 2007. DOI:
10.1109/adcom.2007.123.

LAKSHMANAN, Karthik; NIZ, Dionisio de; RAJKUMAR, Ragunathan. Coordinated
Task Scheduling, Allocation and Synchronization on Multiprocessors. In: 2009 30th
IEEE Real-Time Systems Symposium. [S.L.]: IEEE, Dec. 2009. DOI:

10.1109/rtss.2009.51. Available from: https://doi.org/10.1109/rtss.2009.51.

LI, H.; HOMER, N. A survey of sequence alignment algorithms for next-generation
sequencing. 2010 Briefings in Bioinformatics, Volume 11, p. 473—483, 2010. ISSN
0020-0255. Available from: https://doi.org/10.1093/bib/bbq015.

LIU, C. L.; LAYLAND, James W. Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of the ACM, Association for Computing
Machinery (ACM), v. 20, n. 1, p. 46—61, Jan. 1973. DOI: 10.1145/321738.321743.
Available from: https://doi.org/10.1145/321738.321743.

LIU, Jane W. S. Real-Time Systems. Upper Saddle River, NJ: Prentice Hall, 2000.
Available from:
http://www.amazon.com/Real-Time-Systems-Jane-W-Liu/dp/0130996513.

MAIZA, Claire; RIHANI, Hamza; RIVAS, Juan M.; GOOSSENS, Joél;

ALTMEYER, Sebastian; DAVIS, Robert I. A Survey of Timing Verification Techniques
for Multi-Core Real-Time Systems. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 52, n. 3, June 2019. ISSN 0360-0300. DOI:
10.1145/3323212. Available from: https://doi.org/10.1145/3323212.

MANNILA, H. Data mining: machine learning, statistics, and databases. In:
PROCEEDINGS of 8th International Conference on Scientific and Statistical Data
Base Management. [S.I.: s.n.], 1996. P. 2-9. DOI: 10.1109/SSDM. 1996 .505910.

https://doi.org/10.1007/978-3-319-00248-4
https://doi.org/10.1007/978-3-319-00248-4
https://doi.org/10.1109/adcom.2007.123
https://doi.org/10.1109/rtss.2009.51
https://doi.org/10.1109/rtss.2009.51
https://doi.org/10.1093/bib/bbq015
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
http://www.amazon.com/Real-Time-Systems-Jane-W-Liu/dp/0130996513
https://doi.org/10.1145/3323212
https://doi.org/10.1145/3323212
https://doi.org/10.1109/SSDM.1996.505910

REFERENCES 104

MARCONDES, Hugo. Uma Arquitetura de Componentes Hibridos de Hardware e
Software para Sistemas Embarcados. 2009. S. 92. MA thesis — Federal University
of Santa Catarina, Floriandpolis. M.Sc. Thesis.

MARCONDES, Hugo; CANCIAN, Rafael; STEMMER, Marcelo;

FROHLICH, Anténio Augusto. On the design of flexible real time schedulers for
embedded systems. In: INTERNATIONAL Symposium on Embedded and Pervasive
Systems. Vancouver, Canada: [s.n.], Aug. 2009. P. 382-387.

MARINAKIS, Theodoros; KUNDAN, Shivam; ANAGNOSTOPOULOS, Iraklis. Meeting
Power Constraints while Mitigating Contention on Clustered Multi-Processor System.
IEEE Embedded Systems Letters, Institute of Electrical and Electronics Engineers
(IEEE), p. 1—1,2019. DOI: 10.1109/1es.2019.2956990. Available from:
https://doi.org/10.1109/1les.2019.2956990.

MCCULLOCH, Warren S; PITTS, Walter. A logical calculus of the ideas immanent in
nervous activity. Bulletin of mathematical biology, Bulletin of Mathematical
Biophysics, v. 5, p. 115-133, 1943.

MEIRA, Gustavo Roberto Nardon. Real-Time Dynamic Voltage and Frequency
Scaling no sistema EPOS. Florianopolis: [s.n.], 2011. P. 77. B.Sc. Thesis.

MERKEL, Andreas; STOESS, Jan; BELLOSA, Frank. Resource-Conscious Scheduling
for Energy Efficiency on Multicore Processors. In: PROCEEDINGS of the 5th European
Conference on Computer Systems. Paris, France: Association for Computing
Machinery, 2010. (EuroSys ’10), p. 153—-166. DOI: 10.1145/1755913.1755930.
Available from: https://doi.org/10.1145/1755913.1755930.

MITCHELL, Thomas M. Machine Learning. 1. ed. USA: McGraw-Hill, Inc., 1997.
ISBN 0070428077.

MOK, Aloysius Ka-Lau. Fundamental design problems of distributed systems for
the hard-real-time environment. 1983. PhD thesis — Massachusetts Institute of
Technology, Cambridge, MA, USA. Ph. D. Thesis. Available from:
http://hdl.handle.net/1721.1/15670.

MOLINA, L. C.; BELANCHE, L.; NEBQOT, A. Feature selection algorithms: a survey and
experimental evaluation. In: 2002 IEEE International Conference on Data Mining, 2002.
Proceedings. [S.l.: s.n.], 2002. P. 306—-313.

https://doi.org/10.1109/les.2019.2956990
https://doi.org/10.1109/les.2019.2956990
https://doi.org/10.1145/1755913.1755930
https://doi.org/10.1145/1755913.1755930
http://hdl.handle.net/1721.1/15670

REFERENCES 105

MUCK, Tiago; FROHLICH, Antonio A.; GRACIOLI, Giovani;: RAHMANI, Amir M.;
REIS, Joao Gabriel; DUTT, Nikil. CHIPS-AHOy. In: PROCEEDINGS of the 18th
International Conference on Embedded Computer Systems Architectures, Modeling,
and Simulation - SAMOS’18. [S.l.]: ACM Press, 2018. DOI: 10.1145/3229631.3229642.
Available from: https://doi.org/10.1145/3229631.3229642.

MUCK, Tiago; SARMA, Santanu; DUTT, Nikil. Run-DMC: Runtime Dynamic
Heterogeneous Multicore Performance and Power Estimation for Energy Efficiency. In:
PROCEEDINGS of the 10th International Conference on Hardware/Software Codesign
and System Synthesis. Amsterdam, The Netherlands: IEEE Press, 2015. (CODES
'15), p. 173—-182.

NEMATI, Farhang; NOLTE, Thomas; BEHNAM, Moris. Partitioning Real-Time Systems
on Multiprocessors with Shared Resources. In: LECTURE Notes in Computer Science.
[S.l.]: Springer Berlin Heidelberg, 2010. P. 253—-269. DOI:
10.1007/978-3-642-17653-1_20.

NISSEN, Steffen. Large Scale Reinforcement Learning using Q-SARSA()\) and
Cascading Neural Networks. 2007. S. 264. MA thesis — University of Copenhagen,
Denmark. M.Sc. Thesis.

PAGANI, Santiago; MANOQOJ, P. D. Sai; JANTSCH, Axel; HENKEL, Jorg. Machine
Learning for Power, Energy, and Thermal Management on Multicore Processors: A
Survey. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Institute of Electrical and Electronics Engineers (IEEE), v. 39, n. 1,

p. 101-116, Jan. 2020. DOI: 10.1109/tcad.2018.2878168.

QUINLAN, J. R. Induction of decision trees. Machine Learning, Springer Science and
Business Media LLC, v. 1, n. 1, p. 81-106, Mar. 1986. DOI: 10.1007/b£00116251.

RABAEY, J.M.; PEDRAM, M. Low Power Design Methodologies. [S.l.]: Springer US,
2012. (The Springer International Series in Engineering and Computer Science). ISBN
9781461523079. Available from:
https://books.google.com.br/books?id=9IzuBwAAQBAJ.

RADHA, R.; MURALIDHARA, S. Removal of redundant and irrelevant data from
training datasets using speedy feature selection method. International Journal of
Computer Science and Mobile Computing, 2016, p. 359-364, 2015. ISSN

https://doi.org/10.1145/3229631.3229642
https://doi.org/10.1145/3229631.3229642
https://doi.org/10.1007/978-3-642-17653-1_20
https://doi.org/10.1109/tcad.2018.2878168
https://doi.org/10.1007/bf00116251
https://books.google.com.br/books?id=9IzuBwAAQBAJ

REFERENCES 106

2320-088X. Available from:
https://www.ijcsmc.com/docs/papers/July2016/V5I7201670.pdf.

RAI, Jitendra Kumar; NEGI, Atul; WANKAR, Rajeev; NAYAK, K.D. On Prediction
Accuracy of Machine Learning Algorithms for Characterizing Shared L2 Cache
Behavior of Programs on Multicore Processors. In: 2009 First International Conference
on Computational Intelligence, Communication Systems and Networks. [S.l.]: IEEE,
July 2009. DOI: 10.1109/cicsyn.2009.45.

RAI, Jitendra Kumar; NEGI, Atul; WANKAR, Rajeev; NAYAK, K.D. Performance
Prediction on Multi-core Processors. In: 2010 International Conference on
Computational Intelligence and Communication Networks. [S.l.]: IEEE, Nov. 2010. DOI:
10.1109/cicn.2010.125. Available from: https://doi.org/10.1109/cicn.2010.125.

RASPBERRY Pl FOUNDATION. Raspberry Pi 3 Model B. 2019. Available from:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. Visited on: 22
June 2019.

RIPOLL, I.; BALLESTER-RIPOLL, R. Period Selection for Minimal Hyperperiod in
Periodic Task Systems. IEEE Transactions on Computers, Institute of Electrical and
Electronics Engineers (IEEE), v. 62, n. 9, p. 1813—-1822, Sept. 2013. DOI:
10.1109/tc.2012.243.

ROHAN PAUL. Vectorizing Gradient Descent — Multivariate Linear Regression
and Python implementation. 2020. Available from:
https://medium.com/analytics-vidhya/vectorizing-gradient-descent-

multivariate-linear-regression-and-python-implementation-e12758bc31b2.

RUPANETTI, D.; SALAMY, H. Energy Efficient Scheduling with Task Migration on
MPSoC Architectures. In: 2019 IEEE International Conference on Electro Information
Technology (EIT). [S.I.: s.n.], 2019. P. 156—-161. DOI:
https://doi.org/10.1109/EIT.2019.8833726.

SARMA, S.; DUTT, N.; GUPTA, P.; VENKATASUBRAMANIAN, N.; NICOLAU, A.
Cyberphysical-System-on-Chip (CPSoC): A Self-Aware MPSoC Paradigm with
Cross-Layer Virtual Sensing and Actuation. In: PROCEEDINGS of the 2015 Design,
Automation and Test in Europe Conference and Exhibition. Grenoble, France: EDA
Consortium, 2015. (DATE ’15), p. 625—-628.

https://www.ijcsmc.com/docs/papers/July2016/V5I7201670.pdf
https://doi.org/10.1109/cicsyn.2009.45
https://doi.org/10.1109/cicn.2010.125
https://doi.org/10.1109/cicn.2010.125
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://doi.org/10.1109/tc.2012.243
https://medium.com/analytics-vidhya/vectorizing-gradient-descent-multivariate-linear-regression-and-python-implementation-e12758bc31b2
https://medium.com/analytics-vidhya/vectorizing-gradient-descent-multivariate-linear-regression-and-python-implementation-e12758bc31b2
https://doi.org/https://doi.org/10.1109/EIT.2019.8833726

REFERENCES 107

SHALABI, Luai Al; SHAABAN, Zyad; KASASBEH, Basel. Data Mining: A
Preprocessing Engine. Journal of Computer Science, Science Publications, v. 9,
n. 2, p. 735-739, 2006. ISSN 1549-3636.

SHEKHAR, M.; SARKAR, A.; RAMAPRASAD, H.; MUELLER, F. Semi-Partitioned
Hard-Real-Time Scheduling under Locked Cache Migration in Multicore Systems. In:
2012 24th Euromicro Conference on Real-Time Systems. [S.I.: s.n.], 2012. P. 331-340.
DOI: 10.1109/ECRTS.2012.27.

SHEN, Hao; TAN, Ying; LU, Jun; WU, Qing; QIU, Qinru. Achieving autonomous power
management using reinforcement learning. ACM Transactions on Design
Automation of Electronic Systems, Association for Computing Machinery (ACM),

v. 18, n. 2, p. 1-32, Mar. 2013. DOI: 10.1145/2442087 .2442095.

SINGH, Karan; BHADAURIA, Major; MCKEE, Sally A. Real Time Power Estimation
and Thread Scheduling via Performance Counters. ACM SIGARCH Computer
Architecture News, p. 46-55, 2009. ISSN 0163-5964. Available from:
https://doi.org/10.1145/1577129.1577137.

STANKOVIC, J.A.; LU, Chenyang; SON, S.H.; TAO, Gang. The case for feedback
control real-time scheduling. 11th Euromicro Conference on Real-Time Systems,
York, UK, p. 11-20, Aug. 1999. Available from:
https://doi.org/10.1109/EMRTS.1999.777445.

STEFFEN NISSEN. FANN:Fast Artificial Neural Network Library. 2019. Available
from: http://leenissen.dk/fann/wp/.

SUTTON, Richard S.; BARTO, Andrew G. Reinforcement Learning: An
Introduction. Cambridge, MA, USA: A Bradford Book, 2018. ISBN 0262039249.

TANENBAUM, A.S.; BOS, H. Modern Operating Systems. [S.|.]: Pearson, 2015.
(Always learning). ISBN 9780133591620. Available from:
https://books.google.com.br/books?id=9gqnngEACAAJ.

TIBSHIRANI, Robert. Regression Shrinkage and Selection via the Lasso. Journal of
the Royal Statistical Society. Series B (Methodological), [Royal Statistical Society,
Wiley], v. 58, n. 1, p. 267—288, 1996. ISSN 00359246.

https://doi.org/10.1109/ECRTS.2012.27
https://doi.org/10.1145/2442087.2442095
https://doi.org/10.1145/1577129.1577137
https://doi.org/10.1109/EMRTS.1999.777445
http://leenissen.dk/fann/wp/
https://books.google.com.br/books?id=9gqnngEACAAJ

REFERENCES 108

UFSC/LISHA. EPOS: Embedded Parallel Operating System). 2019. Available from:
https://epos.lisha.ufsc.br/. Visited on: 22 June 2019.

VENKATA, Sravanthi Kota; AHN, Ikkjin; JEON, Donghwan; GUPTA, Anshuman;
LOUIE, Christopher; GARCIA, Saturnino; BELONGIE, Serge;

TAYLOR, Michael Bedford. SD-VBS: The San Diego vision benchmark suite. 2009
IEEE International Symposium on Workload Characterization (IISWC), p. 55-64,
Oct. 2009.

WERBOS, Paul John. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. 1974. PhD thesis — Harvard University.

WU, Xingfu; TAYLOR, Valerie. Utilizing Hardware Performance Counters to Model and
Optimize the Energy and Performance of Large Scale Scientific Applications on
Power-Aware Supercomputers. In: 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). [S.l.]: IEEE, May 2016. DOI:
10.1109/ipdpsw.2016.78. Available from:
https://doi.org/10.1109/ipdpsw.2016.78.

YANG, Maolin; HUANG, Wen-Hung; CHEN, Jian-Jia. Resource-Oriented Partitioning
for Multiprocessor Systems with Shared Resources. IEEE Transactions on
Computers, Institute of Electrical and Electronics Engineers (IEEE), v. 68, n. 6,

p. 882—-898, June 2019. DOI: 10.1109/tc.2018.2889985. Available from:
https://doi.org/10.1109/tc.2018.2889985.

YE, Rong; XU, Qiang. Learning-based power management for multi-core processors
via idle period manipulation. In: 17TH Asia and South Pacific Design Automation
Conference. [S.l.]: IEEE, Jan. 2012. DOI: 10.1109/aspdac.2012.6164929. Available
from: https://doi.org/10.1109/aspdac.2012.6164929.

ZEPPENFELD, Johannes; HERKERSDORF, Andreas. Applying autonomic principles
for workload management in multi-core systems on chip. In: PROCEEDINGS of the
8th ACM international conference on Autonomic computing - ICAC. [S.l.]: ACM Press,
2011.

https://epos.lisha.ufsc.br/
https://doi.org/10.1109/ipdpsw.2016.78
https://doi.org/10.1109/ipdpsw.2016.78
https://doi.org/10.1109/tc.2018.2889985
https://doi.org/10.1109/tc.2018.2889985
https://doi.org/10.1109/aspdac.2012.6164929
https://doi.org/10.1109/aspdac.2012.6164929

	Title page
	Approval
	Dedication
	Acknowledgements
	Abstract
	Resumo
	Resumo Expandido
	List of Figures
	List of Tables
	Contents
	Introduction
	Goals
	Specific Goals

	Previous Related Works By the Group
	Methodology
	Contributions
	Overview

	Literature Review
	Background
	Real-Time Scheduling
	Unicore Real-Time Scheduling
	Multicore Real-Time Scheduling

	Machine Learning
	Artificial Neural Networks
	Feature Selection

	Related Works
	Real-time Multicore Scheduling
	Contention-aware Task Allocation
	Task Migration

	Machine Learning for Energy Optimization in Multicore Systems
	Supervised Learning approaches for Energy Optimization
	Reinforcement Learning approaches for Energy Optimization
	Summary of the Literature Review

	Non-Intrusive Monitoring
	Scheduler Framework
	Non-intrusive Monitor Design
	Non-Intrusiveness
	Per Task Monitoring Functionality
	Actuation Design
	A Generalized Learning Strategy

	Summary of the Non-Intrusive Monitor

	Energy Optimizer
	Energy Optimizer Design
	Collecting
	Charging
	Actuation
	Task Migration

	Learning Workflow: Feature Exploration and Online Learning ANN
	Pre-processing
	Feature Selection
	ANN Design

	Summary of the Run-time Energy Optimizer Design

	Proof of Concept Implementation
	Data Collection
	Benchmarks
	Feature Selection Results
	ANN Configuration
	ANN Implementation Library

	Proposal Evaluation
	Overhead Analysis
	Experimental Results

	Discussion

	Conclusion
	Future Works

	REFERENCES

		2021-01-08T16:12:31-0300

		2021-01-11T08:30:59-0300

